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ABSTRACT

In this paper, we analyze the literature concerning the implementation of digital twins (DTs) for zero-
defect manufacturing (ZDM) following a systematic method and, guided by a preliminary finding
that a structured and standardised approach to the development of the DT applications is lacking,
we provide a standardised design methodology to guide researchers and practitioners in their efforts
to develop DTs regardless of the domain. After examination and interpretation of the literature, we
also present the results of our state-of-the-art analysis, discuss the current state and limitations of
research and practice, and provide useful insights on this important and complex topic. The design
methodology proposed in our study will benefit both practitioners and academicians by covering
the essential elements to be considered when developing DTs for ZDM for any applications in this
domain. The study also contributes to knowledge by presenting a structured overview of the specific
research area with a comprehensive, systematic, and critical analysis of the literature and by pro-
viding answers to some fundamental questions in the context of DTs for ZDM. Finally, we provide
suggestions for further developments in research and practice.
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1. Introduction

In the manufacturing community today, there is great
deal of interest in digital twins (DTs), and the term is
becoming more commonly used. Although the idea and
definition of DTs were coined earlier, it was not until
2010 that the concept became popular with its appear-
ance in NASA’s draft version of its technological roadmap
(Shafto et al. 2010). Since then, significant effort has
been invested and a vast amount of work accomplished
on the development of DTs for different purposes. A
DT, in one of its simple definitions, is a digital repre-
sentation of a real-world physical entity or system that
assists us in understanding the present and predicting
the future (Grieves). The sense of ‘digital’ in the con-
text of DTs differs from that used to describe the data in
the era of computer-integrated manufacturing (Grieves
2014). Batty (2018) defines a DT as ‘a mirror image of
a physical process that is articulated alongside the pro-
cess in question, usually matching exactly the operation
of the physical process which takes place in real-time’
(Batty 2018). Hence, a DT is an important practical tool
for engineers and operators to better understand how
products currently perform and, more importantly, how
they will perform in the future (Wang et al. 2018). The

benefits of DTs are manifold and include real-time visu-
alisation of products and processes, predictive analytics,
troubleshooting of remote equipment, and building of
digital threads by connecting different systems (Tao et al.
2019).

Manufacturing processes are becoming increasingly
digital, and companies are having difficulties in under-
standing how to accordingly adjust their value proposi-
tion both strategically and operationally (Gibson et al.
2021). In that regard, DTs support companies in solv-
ing physical issues by detecting them more quickly,
achieving a precise prediction of process outcomes, and
creating better products with improved quality (Ding
et al. 2019). A DT is superior to the traditional CAD
(computer-aided design) and sensor-based IoT (inter-
net of things) solutions as it considers the interactions
between different components and life cycle processes
(Liu et al. 2021a). The near real-time linkage and inter-
activity between digital and physical worlds enabled by a
DT lead to better artificial intelligence (AI) models and
smart manufacturing profiles that provide more com-
prehensive and realistic measurements leading to more
accurate prediction capabilities (Dreyfus et al. 2021). In
addition, increasing computing power capabilities along
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with recent advancements in data analytics and predic-
tive algorithms provide an easier way of analyzing such
measurements and collected sensor data to facilitate bet-
ter decision-making (Cho et al. 2018).

Zero-defect manufacturing (ZDM) is one of the most
effective approaches to improving product quality today.
It is a new industry 4.0 paradigm that goes beyond tradi-
tional quality management approaches by using modern
methods and digital technologies in production envi-
ronments (Psarommatis et al. 2020a). In other words,
ZDM is a philosophy regarding product and process
quality based on a target that is simple and yet difficult
to achieve: Do it right the first time. To that end, ZDM
is integrated into the manufacturing process from the
beginning instead of addressing problems and defects at
a later stage, and it follows a cycle of continuous improve-
ment aligned with standardised benchmarks (Psarom-
matis et al. 2020b; Psarommatis et al. 2021).

ZDM eliminates product defects by using data-driven
corrective, predictive, and preventive tools and meth-
ods, thus improving manufacturing sustainability and
service level to the customer (Psarommatis, Dreyfus, and
Kiritsis 2022). The ever-increasing availability of data
and advanced technologies that support emerging data-
driven innovation results in more effective implementa-
tion of ZDM (Sousa et al. 2021). With the advancement
of industry 4.0 technologies within smart factories, one
of the fastest-growing and most promising approaches to
ZDM is the use of DTs that incorporate the IoT, big data,
Al and machine learning (ML) (Psarommatis, Drey-
fus, and Kiritsis 2022). Therefore, understanding how
to properly implement DTs in the context of ZDM is
of paramount importance to improving and maintaining
product quality.

1.1. Purpose of the study

Our analysis of the available literature reviews on the
topic, which is presented in Section 2 of this paper,
revealed a lack of review studies with a particular focus
on the implementation of DTs for ZDM. In particular, the
literature on the topic could benefit from a unified design
methodology for DTs and applications. This paper there-
fore analyzes the current literature on DTs for ZDM and,
based on our findings that a common and standard way
of structuring DT implementations is lacking, provides a
design methodology to be used by both practitioners and
academicians working on the topic. This research work
points to a large unexploited potential for ZDM applica-
tion in the industry, especially concerning a standardised
and effective implementation and use of DTs for improv-
ing the quality of finished products in manufacturing
environments. For academicians, the current paper paves

the way for further studies by providing useful insights
based on critical analysis of the previous literature and
by discussing the industrial challenges and opportunities.
For practitioners, the standardised DT design methodol-
ogy provided in this paper could be of use in their efforts
to design new DT applications for, but not limited to,
ZDM.

The structure of the rest of the paper is as follows:
Section 2 presents an analysis of the existing litera-
ture review papers on the topic of DT and ZDM to
demonstrate the research gap that exists and support the
need for the current literature review paper. Section 3
presents in detail the methodology and steps that were
used for acquiring and filtering the papers to analyze.
Next, Section 4 highlights the results from the con-
ducted literature review, as well as some key shortcom-
ings revealed. Section 5 provides a structured and unified
design methodology for developing DT models. Finally,
Section 6 concludes by illustrating some key discussion
points derived from the literature analysis.

2. Comparison with previous literature reviews
and motivation of this research

This section justifies the need for content analysis and
the development of the proposed design methodology
by summarising the findings of previous review papers
on the combined topic of DTs and ZDM. Accordingly,
we present the results of the pertinent literature reviews,
determine points of concern that require further explo-
ration, and finally point out the gap covered in the current
paper.

Most of the pertinent literature reviews have been pub-
lished within the last three years due to growing interest
in the topic. The earliest of these focus on the appli-
cations of DTs in the industry in general (Tao et al.
2019). In Tao et al. (2019), the authors reviewed the state-
of-the-art research on DTs to investigate the key com-
ponents, recent developments, and major applications
of DTs in the industry. In 2020, Jones et al. analyzed
92 DT publications covering a ten-year span and deter-
mined 13 characteristics that characterise a DT, iden-
tified knowledge gaps, and explored opportunities for
further research (Jones et al. 2020). Both of these first
attempts were generic in nature and attempted to under-
stand the basic characteristics and implementation fea-
tures of DTs. In a more focused analysis concerning
implementation scenarios and use cases, Errandonea,
Beltran, and Arrizabalaga (2020) conducted a system-
atic review of the literature in which the concepts of DT
and maintenance were involved. The paper investigated
how DTs are applied for maintenance and presented open
issues in research (Errandonea, Beltran, and Arrizabalaga



2020). The literature review most pertinent to our line
of research was that of Wiarmefjord et al. (2020), in
which the authors directed their attention toward previ-
ous research that studied tolerance analysis and geometry
assurance when using DTs - hence a specific area of ZDM
- and discussed industrial applications and challenges in
this domain (Wédrmefjord et al. 2020). However, unlike
our current work, Warmefjord et al. did not provide any
insights to practitioners and academicians on how to bet-
ter design DTs with a standardised approach; their study
also did not highlight the shortcomings of DT applica-
tions on the topic. In addition, they focused on a very spe-
cific area of ZDM, as their focus was limited to geometry
assurance only rather than a broader view of ZDM.

The first half of 2021 saw an increase in review pub-
lications on the topic. Liu et al. (2021) (Liu et al. 2021a)
analyzed DT concepts, technologies, and industrial appli-
cations. He and Bai (2021) focused on DT-based sustain-
able intelligent manufacturing and provided a direction
for future development (He and Bai 2021). Referring
to further development efforts for advancing DT tech-
nology, previous review studies also addressed simula-
tion tools used with DT technology as well as concep-
tual architecture of the DT. Mourtzis (2020) investigated
the simulation aspects of manufacturing systems with
respect to their design and operations, and Stavropou-
los and Mourtzis (2022) (Stavropoulos and Mourtzis
2022) analyzed and mapped DT architecture and applica-
tions for smart manufacturing on various levels including
manufacturing processes and systems. The only review
study we found that focused on standardisation of the
DT development process was that of Zhang (2021), who
proposed a DT data model for researchers and practi-
tioners to incorporate into the DT development process
(Zhang et al. 2020b). However, their study, with a partic-
ular focus on the methods and key technologies for DT
data, lacks critical discussions on industrial challenges
and applications and does not pay specific attention to
ZDM. Finally, Serrano-Ruiz, Mula, and Poler (2021) took
stock of the literature on smart manufacturing schedul-
ing with a key focus on ZDM, but this work also did not
address the standardisation issue for a common method
of implementation (Serrano-Ruiz, Mula, and Poler 2021).

The contributions of our paper are compared to these
previously mentioned review papers in Table 1, thus
highlighting the novelty of and need for this current
research work. Hence, guided by the gaps found by our
preliminary analysis, our current research focuses on
the specifics of DTs for applications in the ZDM con-
text. As one of the insights gained during our analysis
of the state of the art concerned the lack of a stan-
dard way to structure and guide DT implementations, we
provide a standardised development approach for both
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researchers and industry practitioners as a guideline for
future developments of any DT for ZDM. This approach
can be generalised and applied to other domains as well.

3. Review methodology

A systematic review was carried out on the specific meth-
ods in the literature that are required to conduct a system-
atic content analysis and prepare a valid state-of-the-art
analysis (Hsieh and Shannon 2005; Krippendorff 2018;
Psarommatis et al. 2020a; Xiao and Watson 2017; Thomé,
Scavarda, and José Scavarda 2016). The first step of the
analysis was to collect the sample. This was achieved
by searching on six major scientific databases: Scopus,
ScienceDirect, IEEExplorer, Web of Science, Inspec and
Compendex. These databases were selected because they
index the majority of high-impact and well-known jour-
nals as well as high-impact conference proceedings in the
domain of manufacturing. Table 2 summarises the infor-
mation that was used to collect the papers to analyze.
More specifically, Table 2 presents the databases used,
the query that was used for the search on each online
database, the search period, and the criteria that were
used for screening the papers to derive the final paper set.
The search period was selected to be from 2002 to 2021.
The year of 2002 was not selected randomly; in 2002 the
term ‘digital twin’ was first introduced by Grieves (2019).

For the query construction, Boolean operators were
used to find all relevant articles combining different
terms. To increase the reliability of our review and
search method, two researchers independently searched
the databases mentioned in Table 2 following the meth-
ods suggested by different methodology papers (Brereton
et al. 2007; Templier and Paré 2015). The two different
queries have different search keywords, but they share a
common part. In both queries, we searched for the terms
‘manufacturs’ and ‘Industrs’ using the wildcard opera-
tor. This was done to get as many papers related to the
manufacturing domain as possible. Furthermore, those
keywords were searched in the abstract, title and key-
words of the paper, whereas the rest of the keywords were
searched only in the titles of the papers. This method was
selected in order to retrieve a reasonable but representa-
tive number of papers.

The purpose of the present paper is to perform a
systematic literature review for analyzing the literature
on the topic of the use of DTs for quality-related top-
ics. ZDM is the latest approach to quality improvement
(QI), and therefore ZDM will be used alongside the qual-
ity term in the queries. Therefore, to retrieve relevant
papers, the following two lean queries were built. The first
search string containing the ‘quality’ AND ‘digital twin’
terms returned 524 papers in total (273 after removing
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Table 1. Previous literature reviews and comparison to our current research work.

Efforts toward
Standardisa-

Discussions on
industrial challenges

Authors Year ZDM DT Main scope and applications tion
Current Paper 2022 + +  Digital twins for ZDM and a stan- + We propose a standardis-
Psarommatis & May (2022) dardisation framework for DT ation framework for DT
development process development process
Serrano Ruiz et al. (2021) 2021 + 4+ Smart manufacturing scheduling - -
He & Bai (2021) 2021 - + DT-based sustainable intelligent + -
manufacturing
Zhang et al. 2021 - 4+  Methods and key technologies for DT - Proposed a DT data model
data for researchers and
practitioners to incorporate
into the DT development
process
Liu et al. (2021a) 2021 - + DT concepts, technologies, and + -
industrial applications
Waérmefjord et al. (2020) 2020 + + DT for tolerance analysis and geometry + -
assurance
Errandonea et al. (2020) 2020 + + DT for maintenance + -
Jones et al. (2020) 2020 - +  Characterisation of the DT and - -
identification of gaps in knowledge
Tao et al. (2019) 2019 - + DTs in industry + -
Mourtzis (2020) 2020 - - Simulations for design and operation + -
of manufacturing systems
Stavropoulos & Mourtzis (2022) 2022 - + DTs in industry 4.0 - -

Table 2. The method used for screening papers.

Database
Article Type
Searching Queries

Scopus, ScienceDirect, IEEExplorer, Web of Science, Engineering Village (Inspec + Compendex)
Scientific articles published in peer-reviewed journals and conferences
e TITLE(quality AND digital twin) AND ABS-Title-Key(manufacturs OR Industrs)

e TITLE((ZDM OR ‘Zero Defect Manufacturing’) AND digital twin) AND ABS-Title-

Key(manufacturs OR Industrs)
From 1st January 2002 to 1st July 2021 (digital twin was first introduced in 2002)

Search Period
Screening Criteria Full paper available?

Article in English?

Article related to DT?

[ ]
[ ]
[ )
[ ]
o Isitareview article?
[ ]

(YES: include, NO: exclude)

Article in the manufacturing domain?

Is the paper dealing with improving product or process quality?

duplicates), and the second search query ZDM’ AND
‘digital twin’ yielded 236 papers in total (192 after remov-
ing duplicates). Hence, a total of 465 different papers
were initially collected from all of the databases. Next,
the authors analyzed each paper and determined whether
to include it in the final sample based on the screen-
ing criteria presented in Table 2. A total of 128 papers
were included in our final analysis. Figure 1 illustrates the
process of deriving the final set of papers for our anal-
ysis. Finally, all 128 final papers were analyzed in detail
based on their content and the defined attributes, such as
domain of application and technological implementation
of DTs, leading to the results presented in Section 4.

4. Quality-oriented DT literature review critical
analysis

The results from the analysis of the 128 final papers
will be presented in the current section. The goal of
this analysis is to thoroughly investigate the domain of
DTs that are related to quality factors, whether it is

product or process quality. The section is organised in
three individual sub-sections. In Section 4.1, the basic
findings of this analysis will be presented, followed by
Section 4.2 wherein the different application domains
of DT are identified. Finally, Section 4.3 presents the
results regarding the technical implementation of DTs.
The following references are the 128 references found
and have been used for the literature review that fol-
lows: (Soderberg et al. 2018; Kang, Chun, and Kim 2019;
Steringer et al. 2019; Papacharalampopoulos, Stavropou-
los, and Petrides 2020; Pombo et al. 2020; Groen et al.
2020; Dimitris Mourtzis, Angelopoulos, and Panopoulos
2021; Veera Aditya and Srikanth 2017; Wei et al. 2020;
Yan and Ballu 2018; E Guo et al. 2018; Dittrich et al.
2019; Shivajee, Singh, and Rastogi 2019; Urbina Coron-
ado et al. 2018; Zidek et al. 2020; Padovano et al. 2018;
Chen et al. 2020; Soderberg et al. 2017; Rezaei Aderi-
ani, Wirmefjord, and S6derberg 2021; Wirmefjord et al.
2018; Afazov and Scrimieri 2020; Vrana and Singh 2021;
P. Pereverzev, Akintseva, and Alsigar 2018; Wen-hao et al.
2020; Srikonda, Rastogi, and Oestensen 2020; Levy et al.



Scopus (Quality & Digital twin) |
177 papers

Scopus (ZDM & Digital twin)
12 papers

WoS (ZDM & Digital twin)
8 papers

WoS (Quality & Digital twin)
106 papers

EV (ZDM & Digital twin)
217 papers

EV (Quality & Digital twin)
212 papers

IEEE (ZDM & Digital twin)
0 papers

IEEE (Quality & Digital twin)
29 papers

Figure 1. Literature review sample acquisition procedure.

2021; Lv et al. 2021; Sun et al. 2020; Liu et al. 2021b;
Wang, Wang, and Liu 2020b; Cheng et al. 2020; Magin-
nis, Hapuwatte, and Keown 2019; Nikolaev et al. 2020;
Baranwal et al. 2020; Mario, Alessandro, and Elena 2019;
Constantinescu et al. 2020; Su et al. 2021; Borovkov et al.
2020; Blum and Schuh 2017; Tabar, Wirmefjord, and
Soderberg 2020b; Zehetner et al. 2021; Gurjanov et al.
2021; Lechler et al. 2019; Barthelmey et al. 2019; Guerra
et al. 2019; Howard 2019; Ma et al. 2019; Stojanovic and
Milenovic 2019; Zambal et al. 2018; Borangiu et al. 2020;
Felton and Ferguson 2020; Moyne and Iskandar 2017;
Cao 2017; Bohlin et al. 2018; Wittig 2018; Kubota et al.
2018; Hehr et al. 2017; Becue et al. 2018; Longo, Nicoletti,
and Padovano 2019; J. Liu et al. 2019; Anderson, Barvik,
and Rabitoy 2019; Demartini et al. 2019; Gohari, Berry,
and Barari 2019; Bellavista and Mora 2019; Damgrave
and Lutters 2019; Ahuett-Garza and Coronado 2019;
Centomo, Panato, and Fummi 2019; Rokka Chhetri et al.
2019; Qamsane et al. 2019; Mandolla et al. 2019; Ko et al.
2019; Cai, Zhang, and Zhu 2019; Zorrer et al. 2019; Yacob,
Semere, and Nordgren 2019; P. P. Pereverzev, Akintseva,
and Alsigar 2019; Wagner et al. 2020; C. Liu et al. 2020;
Franciosa et al. 2020; Huang et al. 2020; S. Zhang et al.
2020a; Gramegna, Greggio, and Bonollo 2020; Lacueva-
Perez et al. 2020; Bordatchev, Cvijanovic, and Tutunea-
Fatan 2020; Z. Zhao et al. 2020; Hanel et al. 2020; Shahpar
2021; Zheng et al. 2020; Ferreira et al. 2020; Schmidt
et al. 2020; Blake (n.d.); Santolamazza et al. n.d.; Chang-
ming, Yaqi, and Zhaoyu 2020; Zidek et al. 2020; Pérez
et al. 2020; Loaldi et al. 2020; Negri et al. 2020; Lind-
strom et al. 2020; Min et al. 2020; Uhlenbrock et al. 2020;

Total sample

761 papers
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Duplicands removed

Final sample
128 papers

Hao et al. 2020; Ali, Umer, and Khan 2020; Centomo,
Dall'ora, and Fummi 2020; Azangoo, Taherkordi, and
Blech 2020; Stieber et al. 2020; Hiirkamp et al. 2020; Tabar
et al. 2020a; Wang, Jiao, and Zhang 2020a; Sedighiani
etal. 2020; Liu et al. 2021; Moretti, Rossi, and Senin 2021;
Liu et al. 2021b; Rausch et al. 2021; Ruhland et al. 2021;
Zambrano et al. 2021; Hirkamp et al. 2021; Giuliano,
Corrado, and Polini 2021; Xu et al. 2021; Wang et al. 2021;
Pei et al. 2021; Xi et al. 2021; Klingaa et al. 2021; Cai,
Zhu, and Zhang 2021; Guo et al. 2021; Pang et al. 2021;
Gunasegaram et al. 2021; Psarommatis 2021).

4.1. Basic findings of the DT literature review

Based on the selected search criteria, the first papers that
examined DT for improving the quality of a process or
a product were published in 2017. Figure 2(a) illustrates
the distribution of papers from 2017 to 2021. The high-
est number of papers is observed in 2020, with almost
double the number of papers compared to 2019 or 2021.
The next analysis criterion was to identify under which
QI framework each DT was developed. Seven categories
were defined for this analysis, five of them represent-
ing the traditional QI methods such as Six Sigma (SS),
Lean, Lean Six Sigma (L6S), theory of constraints, and
total quality management (TQM). The sixth category is
ZDM, and the authors defined another category named
‘partial ZDM’. A significant portion (39.84%) of the total
papers discussed some of the ZDM principles, such as
using its predictions to prevents defects. All the papers
that used ZDM principles but did not explicitly mention
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(a) (b)

DT and quality related papers

Quality improvement method used

" DT implementations

theoretical - 17.19%

practical _ 82.81%

39.84%

48.44%

2017 mm S5 TQM 1 0.78%
2018 e 14 L6S 10.78%
Lean ®™ 1.56%
2019 I
2 ZDM s 8.59%
2020 = 55 partial ZDM
2021 TS 7 none
0 20 40 60 0.00%

20.00% 40.00% 60.00% 0.00% 50.00% 100.00%

Figure 2. Review analysis basic findings: years distribution (a), QI method used (b), and type of implementation (c).

ZDM were classified in the ‘partial ZDM’ category. Figure
2(b) illustrates the distribution of the analyzed papers
based on QI method. Most of the papers, 48.44%, did not
use any form of QI method, followed by 39.84% that used
the partial ZDM and 8.59% that explicitly mentioned the
use of ZDM. Of the traditional QI methods, only Lean,
L6S, and TQM were used, with 1.56%, 0.78%, and 0.78%
respectively. Another insight that emerged from the lit-
erature analysis was the fact that some papers referred to
DT implementations only from a theoretical perspective.
In total, 17.19% of the analyzed papers were classified as
theoretical whereas the rest, 82.81%, were categorised as
practical (Figure 2(c)). This classification was performed
based on whether the paper developed and presented an
actual DT model rather than just a conceptual frame-
work, explanation of how to develop a DT, or discussion
of where DTs can be used and their benefits.

4.2. DT domains of implementation

The current section is devoted to presenting the different
industrial and domain applications of DTs in the context
of ZDM. Figure 3(a) illustrates the different industries
in which DTs were used in the 128 analyzed papers.
Remarkably, 60.16% of the analyzed papers presented
the development of a DT without mentioning a specific
industry to which it would be applied. The most com-
mon industries in which a DT was developed for quality

(a) ; ; ;
Industries using DTs for quality purposes

grinding industry
packaging industry
micro-milling

purposes were aerospace and automotive with 13.28%
and 10.16% respectively. The machine tool, metal, semi-
conductor, and marine industries followed with 3.91%,
3.13%, 2.34%, and 1.56% respectively. The rest of the
identified industries in Figure 3(a) appeared only one
time. Figure 3(b) illustrates the different purposes of
the developed DTs and includes all of the categories
that appeared in more than one paper. The categories
in which only one paper appeared are classified in the
‘one-time occurrence’ category, which includes 11.72%
of papers. The most common purpose of the devel-
oped DTs was to improve or assure product quality, with
37.5%. The second most common category was pro-
cess quality, with 17.97%, meaning that these papers
focused on improving the quality of the manufactur-
ing process to avoid product defects and, by extension,
product quality. Moving forward, some of the other
categories are related to the manufacturing processes
but focus on other process-related topics. Those cate-
gories are process optimisation and control as well as
production control and predictive maintenance. Unlike
the preceding categories that concerned the operations
phase, the final categories concern the design phase.
In 2.34% of the analyzed papers, the goal of the DT
was to assist in the design phase either for the product
or the production. Furthermore, 3.91% of the papers
used DTs as simulation engines to virtually test the
performance of a newly designed product. Only 5.47%

(b) ; :
Purpose of DT implementation

One time occurrence I 11.72%
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Figure 3. Most frequent industries in which DTs are implemented (a), and implementation purpose of DTs (b).
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Figure 4. DTs' specific applications (a), and process of application (b).

were under the category of ‘not stated,” and most of
those were the theoretically oriented papers described in
Figure 2(c).

Analyzing the results from the literature review even
further, the specific DT applications were extracted and
presented in Figure 4. In both Figure 4(a and b), it
is notable that a high percentage of papers (22.66% of
papers discussing specific applications and 35.16% of
papers discussing specific processes) fell into the cate-
gory ‘not stated.” The application for which DTs were
most often developed was simulation, with 25%. In
those papers, the developed DTs were emulating sim-
ulation engines for purposes such as scheduling, pro-
cess simulation, product performance, and finite ele-
ment analysis. The next category, virtual detection, is
derived directly from the ZDM concept (Psarommatis
et al. 2020a; Psarommatis et al. 2021). Virtual detection
is part of virtual metrology (Dreyfus et al. 2021), which
estimates product quality without physically measuring
and inspecting the part by analyzing the process data dur-
ing its production. Furthermore, other categories related
to ZDM are defect detection, defect prediction, and pre-
vention, with 6.25%, 3.13%, and 1.56% of DT applications
respectively. An interesting finding is the purpose of the
papers within the category ‘computation time reduction’
with 3.91%. Those papers developed a DT of a system to
reduce the computation time that the ‘physical’ system
required to complete the task.

Figure 4(b) presents the different processes that DTs
were called to emulate. As was observed in the other
result graphs, a significant number of papers (35.16%)
did not explain the details of their DTs. The processes
for which DTs are most commonly used are machin-
ing (17.19%) and particularly milling, assembly (11.72%),
additive manufacturing (8.59%), and manufacturing
products out of composite materials (6.25%). Regard-
ing the milling process, most of the time the purpose
of the DT implementation was to determine the part’s
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surface roughness and geometrical tolerances. Regarding
the assembly process, almost all papers were concerned
with the correct positioning of the components before
assembly. The DTs that emulated the additive manu-
facturing process focused mainly on three topics: layer
thickness, residual stress, and geometrical tolerances.

4.3. DT technological implementation

Proceeding with the more technical-oriented results from
the literature review, it is important to remember that
the results presented in Figure 5 concern DTs related
to quality and not DTs in the manufacturing domain in
general. A high percentage of the papers did not state
specifically the technologies (32.87%) or data (35.42%)
that were used for the DTs. In the 128 papers ana-
lyzed, 54 different technologies were identified that were
used for DT development, but a large portion of those
technologies were found only in one paper. These tech-
nologies were classified under the category ‘one-time
occurrence,’ which constitutes 27.27% of the total papers.
The most frequently used techniques were the finite ele-
ment method (FEM) and neural networks, with 6.29% for
both techniques. For neural networks, the most frequent
forms were artificial and convolutional neural networks.
Machine learning and CAD software follow closely with
5.59% and 4.90% respectively. The rest of the technolo-
gies were covered in less than 3% of the total papers.
Although there were many different technologies used
(54 in total), relatively few data types were used for devel-
oping the DTs; only 6.25% fell into the category ‘one-
time occurrence’. The most commonly used data was
process and production data with almost identical per-
centages, 12.5%, and 11.81% respectively. Process data
is a subset of production data. Production data con-
tains more information about the production, not only
data that concerns a specific process. The third type of
data is 3D models with 9.72%, which is explained by the
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Figure 6. DT characteristics (a) type of DT usage, (b) accuracy measured?, (c) communication type, (d) given DT parameters.

technologies used (FEM and CAD). The rest of the data
types are under 5% each.

Reviewing the 128 selected papers also yielded data
about when DT was used. Figure 6(a) illustrates that
in 52.34% of the analyzed papers, DTs were developed
only when needed, while in 37.50% they were used

continuously. An important aspect of DTs is their accu-
racy because this controls how efficient the DT will be;
however, 80.47% of the analyzed papers did not measure
the accuracy of their DTs. Moving forward to Figure 6(c),
almost 50% of the DTs analyzed were developed to be
online integrated into the production, meaning that they



were automated, and data was fed into the DT automat-
ically, whereas in offline DTs the data must be loaded
manually. Finally, only 11.72% of the analyzed papers
presented in detail the input and output parameters
of their DTs. The rest of the papers, 88.28%, did not
present explicitly which parameters were used as input
and output.

4.4. DT literature shortcomings on DT development

From the literature analysis conducted and presented in
the previous sub-sections (4.1, 4.2 and 4.3), it is evi-
dent that DT development does not follow a common
structured methodology. This fact creates a great deal
of confusion in the research and industrial communities
because there is no common language. More importantly,
it makes the re-use of DT models nearly impossible.
Re-using existing DT models is essential for increas-
ing the level of sustainability of manufacturing systems.
Currently, it is very hard to compare different DT imple-
mentations because each DT model is developed in a
different way and includes different information, and in
most cases very little information is provided for the DT
model. This can be observed in the very high percentages
of papers classified in the ‘not stated’ and ‘not given’ cat-
egories in Figures 3-6. For example, 80.47% of the papers
do not present the accuracy of the DT, making impossi-
ble to validate the performance of the DT method. Also,
the input and output parameters in 88.28% of the ana-
lyzed papers were not given, making it impossible for the
reader to understand how the corresponding DT works
and therefore prohibiting the clear understanding and
re-use of the DT method.

During the literature analysis, authors identified this
lack of a standard approach for developing DT mod-
els and proposed a common structured approach for
developing them (Section 5). There have been a few
recent attempts to develop such design methodologies
to much complex enterprise systems in the literature to
support early phases of the digital twin development pro-
cess Sandkuhl and Stirna 2020; Wang, Lee, and Angel-
ica 2020c. Those studies propose methods applicable
to only specific case studies and hence do not provide
any unified method applicable to different industries and
scenarios.

5. Proposal for a structured and unified design
methodology for the development of DTs

The current section presents a common framework for
the development of DTs by acting on the results from the
detailed literature review. The goal is to move toward a
more standardised way to develop DTs. The use of DTs is

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH . 9

increasing as the technology becomes more mature, and
standardisation of the development of DTs will ensure
that all DTs developed are accompanied by the same
information. This will help researchers, industrial actors,
and users of DTs in general to evaluate DT implementa-
tions more easily.

Figure 7 illustrates the proposed design methodology
for the development of DTs. The methodology is inde-
pendent of the use case and therefore is meant to be
used by all scientific and industrial communities. The
information presented in the proposed design method-
ology might seem logical, but only 10.32% of the ana-
lyzed papers had all of the proposed information. In
more detail, the first step is to define the purpose of the
DT. For example, in the literature review conducted in
Section 4, some of the top results were related to the
DTs’ final purpose - i.e. either product or process qual-
ity. Once this information is defined, then the actual
design of the DT can be performed, starting with the
most basic information that will control the rest of the
steps: identifying which physical or virtual system, pro-
cess, or system in general the DT will emulate. In many
cases observed, this information is not clear or is mixed
with other information, making it very difficult for the
audience to truly understand a DT implementation. The
next required information concerns when the DT is used
- when needed, continuously, etc. Once this information
is defined, the suitable application technologies can be
identified, and a selection process should then take place
to choose the most suitable technology for the specific use
case.

A key characteristic of a DT is the parameters that are
used as input and output. If we go back to the definition
of what a DT is, it states that a DT is a digital representa-
tion of a system, and each system has numerous inputs
and outputs. It is in the hands of the designers which
they will select for their DT. The parameters should be
set according to each use case in order not to increase
the complexity of the DT without reason. Therefore, each
DT development should be accompanied by a detailed
list of input parameters. This will allow easy understand-
ing of the DT by a broader audience and at the same
time increase the re-usability of the DT in other use
cases. By defining the input and output parameters at
the same time, the required data for the DT is defined
as well, which is a key factor in determining the sustain-
ability of the DTs. Table 3 summarises all the information
that must be defined for each DT application, with addi-
tional details and examples. The goal is that each DT is
developed using the proposed design methodology and is
accompanied by a table similar to Table 3 completed with
the information related to the DT under development or
developed.
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Figure 7. DT design methodology.

Table 3. Basic information required for DT development.

DT fundamental information before implementation

Industry

Purpose of the DT

Process or asset that the DT describes

Type of use (continuously, when needed, both, etc.)

Technologies used for the DT

Input parameters

Output parameters

For which industry will the DT be developed? In some cases, this might be important because some
industries such as pharmaceutical, medical devices, aerospace, etc. have specific regulations that must
be followed. There might be more than one industry to which the DT can be applied.

Examples: automotive, composite materials, aerospace, etc.

Define the global goal of the application. If DT will be a part of a bigger system, what is the global goal of
the total system?

Examples: product quality, process quality, product design, production control, etc.

Define which process or asset the DT will model.

Examples: milling machine, the cutting process of a milling machine, scheduling tool, inspection process,

defect detection, defect prediction, etc.

Define how the DT will be utilised over time. Two sub-parameters should be defined:

Usage frequency (DT will be used continuously, DT will be used when it is needed, DT will operate on

hybrid mode, etc.)

Whether the DT will be dynamic or static (does the DT adapt to alterations of the initial conditions or not)

Define the technologies that will be utilised for the development of the DT.

Examples: ML (specify which method), Al, design of experiments, knowledge-based, etc.

Define explicitly the input parameters of the DT. Define also the type of data that each parameter handles
(e.g. single value, historical time series data, real-time data with the interval rate, etc.)

For each input parameter, the following should be defined:

Parameter name

Units (if applicable)

Type (single value, historical data, real-time data, etc.)

Interval rate of new values (if applicable)

Define explicitly the output parameters of the DT.

For each output parameter, the following should be defined:

Parameter name

Units (if applicable)

Type (single value, historical data, real-time data, etc.)

Interval rate of new values (if applicable)




6. Discussion

In this section, we present our discussions and insights
based on our analysis of the literature on DTs for ZDM
and critical examination of the results in Section 4. We
classify these discussion points in three main topics: DT
definition, DT design and development, and DT imple-
mentation and applications.

6.1. Discussions around DT definition

6.1.1. Scholars should increase their efforts to
introduce and promote ZDM as a common
terminology

In this paper, the authors defined in the results section a
category titled ‘partial ZDM’ that needs further discus-
sions and elaboration. This refers to research studies that
consider part of ZDM principles - for instance, predict-
ing defects in order to identify and trigger prevention
mechanisms - but that do not mention ZDM. This may
be because ZDM is a term that has only been widely used
within the last five years, and there is still much work to
be done by scholars to introduce and promote ZDM as a
common terminology for all research works that utilise
one of the ZDM strategies defined in Psarommatis et al.
(2020a). This was one of the key points highlighted in the
aforementioned paper by the authors.

6.1.2. A common definition of DT is missing in the
mind of researchers and practitioners

Different researchers tend to call different concepts or
implementations DT. Hence, the field could benefit from
a common understanding and a universally accepted
definition. The fact that there are several works that men-
tion DTs in the title but do not cover any real applications
concerning DTs for ZDM hinders valuable research on
real and proper DT implementations. In that regard, the
standardised design methodology developed in Section 5
of this paper could help researchers and practitioners to
gain a better understanding of the essential elements to
be considered for any DT implementation.

6.2. Discussions around DT design and
development

6.2.1. There is no uniformity in the development of
DTs for ZDM; a standardised design methodology is
needed

Many factors such as target industry, the purpose of
the DT, the process described by the DT, input-output
parameters, the technical scope of the DT, the technolo-
gies used, the summarised method of creating the DT,
the accuracy of the DT and its algorithms, and whether
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the DT is used continuously or when needed were not
even mentioned in the majority of the papers analyzed.
A guideline to direct researchers to better design and
develop DTs is required. Moreover, although accuracy
can be considered one of the most critical parameters
for a DT, the majority of the research studies did not
even measure accuracy. As a starting point toward these
efforts, we developed a standardised design methodol-
ogy for the development of DTs for ZDM applications
that can also be generalised to other applications. The
aim here is to introduce a standardised way to develop
DTs, thus supporting practitioners in their development
efforts and providing an easier way of evaluating DT
implementations.

6.2.2. More detailed and technical research is
required concerning the development of DTs for ZDM
Most papers analyzed in the literature review are generic
and provide either architecture or conceptual ideas. The
majority of the papers that claim to develop DTs include
mostly frameworks but not real DT implementations.
This non-conformity between the title, abstract, and real
content of research studies becomes a major issue for
research. To overcome this, more detailed and technical
works on the topic are required. In addition, this research
area could benefit from a better understanding of the
difference between a framework for DT and a real DT
developed for practical applications.

6.2.3. Aproper method and Key Performance
Indicators (KPIs) are needed to measure performance
of DTs for ZDM applications

As highlighted previously, the majority of the studies as
well as the current state of DTs lack a proper method
and key performance indicators to evaluate DT per-
formance. Although there are a few studies addressing
KPIs and their roles for DTs (Mourtzis, Fotia, and Vla-
chou 2017; Tambare et al. 2021), these works are lim-
ited in their scope to facilitating better management and
implementation of DTs. A better evaluation of perfor-
mance through proper KPIs could help improve manage-
ment of the effectiveness of DTs. However, most of the
studies in the literature do not even measure the accuracy
of the algorithms used for their implementation.

6.3. Discussions around DT implementation and
applications

6.3.1. There has been a significant shift from
traditional Qls to ZDM

Another observation in the Results section was that the
percentage of studies that utilise traditional QI methods
was on a significant decline, adding up to a very small
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portion of the total. This could be considered yet another
sign that migration to ZDM is happening. ZDM strate-
gies are more aligned with DT applications compared to
traditional QI, and therefore ZDM is preferred over QI
for the development of DTs. Furthermore, most studies
do not have a structured approach to dealing with qual-
ity and using QI frameworks would be beneficial in the
development of DTs.

6.3.2. There has been an effect of the COVID
pandemic on ZDM research; the implementation of
DTs is still in its infancy

As highlighted in Section 4.1 and Figure 1 in particular,
the rate of increase in ZDM DT publications gradually
grew from 2017 until 2021, reaching a peak in 2020. How-
ever, when we consider the first half of 2021, this growth
stalls (i.e. compared to a 100% increase from 2019 to
2020, the number of papers in 2021 is expected to be very
similar to that in 2020). One of the reasons for this sud-
den stop in the rate of increase in research concerning
ZDM DTs could be the effect of the COVID pandemic
on research in general. To make a better judgment of
whether the topic reached its maturity level based on the
number of research studies and the resulting number of
publications, it will be necessary to compare publications
in 2022 and 2023. Since the topic is yet in its infancy,
we believe that the applications in this research area will
continue to grow at an increasing rate.

6.3.3. Some technologically more advanced
industries like aerospace and automotive are
dominant among the research concerning the
implementation of DTs for QI

Although there are several industries mentioned and cov-
ered in the literature about the implementation of DTs for
ZDM, such as the machine tool, metal, semiconductor,
and marine industries, the majority of research studies
and practical implementations concern DT applications
in the automotive and aerospace industries.

6.3.4. More consideration and discussions are needed
on data availability, data security, data quality, and
data integration when implementing DTs

The analyzed literature did not contain discussions or
considerations of four critical data aspects of DT appli-
cations. Before implementing any DTs in any domain,
including ZDM, it is crucial to ensure that the required
data is collected and available, data security protocols are
in place, bad data is excluded, and gaps in data streams are
properly managed. However, the literature on the topic
did not provide enough evidence of these considerations.
Since these data aspects are key factors that affect indus-
trial implementations, there should be more focus on

optimising them to achieve more efficient and effective
DTs for ZDM scenarios. Although some previous work
discussed the issues of data sharing and security (Zhang
et al. 2020b; Leng et al. 2020; Li, Zhou, and Zhang 2021),
often these issues are not considered in DT design and
development.

DTs lie within the concept of the virtual enterprise,
which is gaining ground as digital technologies are grow-
ing exponentially; however, many challenges are arising
and need to be considered. Many believe that data inte-
gration is one of the most important factors when dealing
with digital technologies, which is the case for devel-
opment of DTs because they rely entirely on data and
digital technologies (Zhao, Xie, and Zhang 2002; Liu
et al. 2008). In a manufacturing environment, there are
numerous different sources and types of data — struc-
tured data, semi-structured data, and unstructured data
— that are used for a variety of purposes. Currently, dif-
ferent companies collaborate in a variety of ways, which
makes efficient data integration and data interoperability
imperative. Furthermore, digital technologies can signif-
icantly improve the resilience and sustainability of global
manufacturing systems (Yu et al. 2021). A key technology
for supporting better data exploitation, data integration,
knowledge extraction, and systems interoperability are
ontologies, which are data models enriched with context
(Ameri et al. 2022); a system of ontologies is referred to
as a ‘semantic framework.” Combining DT technology
with ontologies creates a new type of DT called a ‘cog-
nitive twin,” which is an augmented version of the DT, as
stated by many researchers (Zheng, Lu, and Kiritsis 2021;
RoZanec et al. 2021).

7. Conclusions

In this paper, we analyzed the literature on digital twins
for zero-defect manufacturing following a systematic
method. Based on our detailed investigation of the con-
tent of the selected papers, we presented results of our
critical state-of-the-art analysis, discussed the current
state and limitations of research and practice, and pro-
vided insights on this important and complex topic. In
addition, because our preliminary analysis indicated a
lack of approaches and guidelines for standardising the
implementation of DTs for ZDM, we developed and pre-
sented a methodology for standardising the design proce-
dure that aims at structuring future designs and develop-
ments of DTs around considering and communicating all
essential elements for any DT applications in this domain.
We think this DT design procedure would be useful for
both practitioners and researchers working on the topic
of ZDM in their efforts to develop DT-based applica-
tions. Hence, this research work contributes to practice



in the sense that the DT design procedure developed in
Section 5 of this study as well as the useful insights pro-
vided in Section 6 concerning discussions around the
topic based on the critical analysis of results will guide
the way toward better and more structured future DT
implementations in the ZDM domain. On the research
side, our study contributes to knowledge by providing a
comprehensive, systematic, and critical analysis of the lit-
erature on DTs for ZDM that offers a structured overview
of the specific research area along with a standardisation
approach that could be used by researchers in designing
any further research works on the topic. In addition, the
research also contributed to knowledge with the answers
to some fundamental questions in the context of DTs
for ZDM.

Furthermore, key considerations have been derived
and discussed. First, one of the main findings pinpointed
a lack of uniformity in the development of DTs for
ZDM; to address this lack, we designed and presented
a methodology for standardising the design of DTs in
Section 5. Another discussion point focused on the effect
of the COVID pandemic on ZDM research and the
maturity of DT implementations in the ZDM domain,
which were found to still be in their infancy. The state
of different industries was also discussed, including the
dominant ones in DT research such as automotive and
aerospace; the sectors with as-yet unexploited potential
such as the semiconductor, machine tool, metal indus-
try, and marine sectors; and finally, the industries lagging
behind such as pharma, medical, oil and gas, and pack-
aging, among others. We also suggested that researchers
devote more attention to promoting ZDM as common
terminology. The shift from traditional QIs to ZDM has
also been highlighted with numbers and further discus-
sions. Other suggestions for further developments and
research in the area include gathering all actors around
a common definition of ZDM; development of novel
performance measurement methods specific to DTs for
ZDM applications; and exploring the critical areas of
data availability, data security, and data quality for
implementing DTs.
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