
UNIVERSITY OF OSLO
Department of Informatics

Real-time
simulation of the
incompressible
Navier-Stokes
equations on the
GPU

Master’s thesis

Lars Moastuen

July 2007

Abstract

This thesis explores the possibility of using graphics processing
units (GPUs) to compute approximations of the Navier-Stokes equa-
tions for usage in real-time simulation. The Navier-Stokes equa-
tions describe the change in mass and momentum of fluids, e.g.,
liquids or gases. Typical applications for such a simulator can be
computer games to increase realism by simulating, e.g., clouds or
smoke that interact with the environment. A new, efficient solver
that supports arbitrary boundaries is presented. Support for ob-
jects following the flow whilst acting as obstacles themselves is also
discussed. The simulation is performed solely on the GPU, and of-
fers high quality simulations at a modest cost.

i

ii

Contents

Abstract i

Contents iii

1 Introduction 1

1.1 Research questions . 1

1.2 Organization of the thesis 3

2 The GPU architecture 5

2.1 The graphics pipeline 5

2.2 Technical introduction 9

2.2.1 Memory model 9

2.2.2 Performance . 11

2.2.3 Branching . 13

2.2.4 IEEE 754 floating-point arithmetic 14

2.3 The OpenGL shading language 15

2.4 NVIDIA GeForce 8800 17

3 Computation fluid dynamics on the GPU 21

3.1 Real-time simulators 22

3.2 Offline rendering algorithms 25

3.3 The future of GPU physics 26

iii

iv CONTENTS

4 Incompressible Navier-Stokes 29

4.1 Derivation . 29

4.2 The incompressible Navier-Stokes equations 33

4.3 Semi-Lagrange discretization 35

4.4 Vorticity confinement 39

4.5 Transport of quantities 44

4.6 Implementation . 46

5 Solving the Poisson equations 49

5.1 The Jacobi iterative solver 51

5.2 The successive overrelaxation solver 53

5.3 Convergence of SOR and Jacobi 55

5.4 A GPU-optimized SOR solver 58

5.5 Results . 65

5.5.1 Comparison between Jacobi and SOR 66

5.5.2 Analysis of the optimized SOR solver 68

5.6 Other solvers . 69

6 Boundary conditions 71

6.1 Boundaries of arbitrary shape 71

6.2 Types of boundary conditions 77

6.3 Discrete boundary conditions 80

6.3.1 Discrete no-slip boundary conditions 80

6.3.2 Discrete freeslip boundary conditions 81

6.3.3 Discrete outflow boundary conditions 81

6.3.4 Discrete inflow boundary conditions 82

6.3.5 Pure Neumann boundary conditions 83

6.4 Non-stationary obstacles 86

6.4.1 Representation 86

6.4.2 Simulation of movement 87

CONTENTS v

6.4.3 Avoiding stationary obstacles 90

6.4.4 Visualization and updating the boundaries . . 92

6.4.5 Results . 93

7 Summary and results 95

7.1 Discussion . 97

7.2 Future work . 99

Bibliography 103

vi CONTENTS

Preface

This thesis has been written at SINTEF ICT under the GPGPU pro-
ject. It has been a lovely place to work, not many students get 24
inch flatscreens and an office view a view.

This thesis could not have been written without the assistance
from many people. My first thanks goes to my supervisors Knut-
Andreas Lie and Trond Runar Hagen for giving me the opportunity
to write my thesis at SINTEF ICT and for valuable assistance, tips
and opinions. Apologies to Knut-Andreas for all the red pens he
has depleted during the draft reading.

The days would have been very long if there was no fellow students
around. Thanks to Trygve Fladby, Thomas Lunde, Hanne Moen
and Martin Lilleeng Sætra at SINTEF. Especially thanks to André
Brodtkorb for (over-) excessive draft reading, valuable opinions and
coffee. Also thanks to former fellow students, including Gaute Jør-
gensen, Guo Wei Ma, Eirik Munthe and Kristoffer “Litjkarn” Skaret.

If if had not been for my friends, I would probably been crazy by
now from applying Navier-Stokes to the everyday things, such as
skies and smoke. Thanks to everyone that have not contributed to
the thesis in any way, you have kept me sane while working on it.
Last, but not least, thanks to my family.

vii

viii CONTENTS

Chapter 1

Introduction

This thesis explores the use of graphics processing units (GPUs)
to numerically solve the incompressible Navier-Stokes equations.
Visual appearance and efficiency are the two main areas of focus,
with physical accuracy as a secondary target. Such simulations
could potentially be interesting in games to simulate phenomena
such as smoke, clouds, etc. The demand for realistic physics has
increased as graphics has become more and more photorealistic.
The highly parallel nature, the potential floating-point performance
and the recent shader programmability makes the GPU an inter-
esting architecture for such applications.

As GPUs are evolving very rapidly, it is important to state that the
work done in this thesis is based on the NVIDIA NV70 architecture.
More specifically, the simulator has been implemented and tested
on a Dell Optiplex GX620. The machine is equipped with a Pen-
tium 4 3.00GHz processor, 2 GB of RAM and an NVIDIA 7800GT
graphics card.

1.1 Research questions

There exists a lot of research within the field of computation fluid
dynamics (CFD). Since the mid 1990s there has been an increase
in focus on visual appearance from parts of the CFD community.
Methods for simulations with high visual quality for use in graphics
applications have emerged. Recently, graphics processing units
have been used to accelerate the CFD simulations, in contrast to

1

2 CHAPTER 1. INTRODUCTION

traditional approaches where the CPU is the main computational
engine.

Lately, GPUs have been utilized for CFD applications, resulting in
high performance simulations. This thesis is written with the fol-
lowing questions in mind:

1. Is it plausible that GPUs will be used to handle physics com-
putations in the future, and more specifically, fluid dynamics
simulations?

2. How can solutions of the Poisson equations that arise from the
semi-Lagrange discretization of the Navier-Stokes equations
be computed efficiently on the GPU?

3. Can arbitrary stationary and non-stationary obstacles be in-
corporated in a real-time simulator for the incompressible Navier-
Stokes equations?

The first question asks if GPUs will be used for other purposes
than rendering in the future, especially physics. GPUs have been
used to solve a large number of problems already. However, the
use of GPUs for non-rendering tasks in games remains a relatively
unexplored territory. Lately, there has been an increased focus on
physically plausible effects in games and dedicated physics hard-
ware has emerged. A common approach to fluid dynamics in games
has been to use pre-rendered animations that allow little or no in-
teraction with the environment. Fluid dynamics simulation can be
used to improve interaction with phenomena such as smoke and
clouds. The question if such simulations can be performed on the
GPU while allowing high quality rendering remains open.

By using operator splitting, Lagrangian description of one of the
terms in the Navier-Stokes equations and implicit methods, an un-
conditionally stable solver with respect to the size of the time steps
can be developed. This discretization is called a semi-Lagrange de-
scription of the Navier-Stokes equations. When discretizing the in-
compressible Navier-Stokes equations, two Poisson equations ap-
pear. Many methods exist to efficiently compute solutions of these
equations. These terms are bottlenecks in the simulation and it is
crucial that the equations are solved in a very efficient manner for
the simulator to be used in real-time simulations.

1.2. ORGANIZATION OF THE THESIS 3

For the simulator to support interaction with the environment, it is
important that arbitrary obstacles are supported. The mechanism
for handling boundaries needs to be very efficient, as boundaries
must be applied several times per time step when using an oper-
ator splitting technique to solve the incompressible Navier-Stokes
equations. It is also desirable that several types of boundaries are
supported. For many applications, support for obstacles that ad-
vect through the flow is also desirable. This can typically be flakes
of ashes in a smoke simulation, or floating objects that follows a
liquid flow.

1.2 Organization of the thesis

The thesis is organized around the questions introduced in the
previous section. In the next chapter, some background mater-
ial about the technical properties of the GPU, and how they can
be utilized for general purposes, is presented. Chapter 3 examines
some of the problems that have been solved using GPUs, and intro-
duces some of the most important research presented within the
CFD research field. Especially is research concerning techniques
to simulate fluids for visual purposes mentioned here.

In Chapter 4 the incompressible Navier-Stokes equations are re-
viewed. The equations are derived from conservation of momentum
and mass. The result is discretized using the semi-Lagrange scheme
presented. A technique for reinserting lost energy as a result of nu-
merical dissipation is also reviewed.

Chapter 5 discusses how the Poisson equations that emerge when
discretizing the incompressible Navier-Stokes equations can be solved
efficiently. A Jacobi iterative solver and an optimized successive
overrelaxation iterative solver are presented. Their performance
and convergence properties are also discussed.

Boundaries are discussed in Chapter 6. Here a technique for ap-
proximating obstacles of arbitrary shape using piecewise linear
segments is discussed. This approximation is used in an efficient
algorithm for applying arbitrary boundaries. The algorithm sup-
ports several types of boundary conditions. Last, but not least, the
chapter introduces techniques for simulation of a large amount of
obstacles that follows the flow.

4 CHAPTER 1. INTRODUCTION

In Chapter 7 some important results are reviewed. The research
questions are discussed in light of the results reviewed. Possible
extensions and improvements for future work are presented.

Chapter 2

The GPU architecture

GPUs are specialized hardware designed to offer high render per-
formance at a low cost. The architecture is highly parallel and
offers extremely high floating-point performance. However, as the
hardware is highly specialized for rendering 3D graphics, new meth-
ods must be developed in order to utilize the full potential. Since
the architecture is very different from regular CPUs, it is important
to have good knowledge about how the hardware is designed and
what its strengths and weaknesses are.

This chapter reviews how GPUs work and discusses how the ar-
chitecture can be utilized for general purpose computation, a field
commonly called GPGPU. The first section gives a basic introduc-
tion to the OpenGL pipeline. Then some of the technical features
of the GPU, and the impact these features has for general purpose
utilization of GPUs is discussed. At the end of the chapter, the new
NVIDIA GeForce 8800 series is mentioned briefly.

This chapter is written mainly with the NVIDIA GeForce 7800 ar-
chitecture in mind. Most of the discussion also applies to the
GeForce 6800 and the ATI X1900-series, but there may be some
minor differences.

2.1 The graphics pipeline

Today there are two major graphics APIs in use, OpenGL [SWND05]
and Direct3D [Mic07]. The APIs are specialized in rendering real-

5

6 CHAPTER 2. THE GPU ARCHITECTURE

Composition

Possible multiple rendertargets Blending

Screen

Vertex Shader

Vertex stream (geometry)

Texture data

Color + depth

Framebuffer

Pixels after testsCanidate pixel

Texture memory
Render to texture

Rasterization

Clipped/Culled trianglesTransformed vertex stream

Vertex connectivity (topology)

B
U

S

Fragment Shader

Interpolated attributes

Primitive Assembly

Figure 2.1: The graphics pipeline. Rendering is initiated by specify-

ing geometry and topology, textures and transformations (called “the

state”). The vertex transformation step and fragment transformation

(blue) step are programmable on current hardware.

time 3D graphics and utilize native hardware in doing so. OpenGL
is used in this thesis, and the discussion will therefore not neces-
sarily apply to Direct3D, even though the two APIs are similar in
most cases.

In OpenGL, 3D graphics consists of vertices (geometry) that form
triangles, quads and lines (topology). To achieve a result of high
visual quality, lights are placed, textures applied and colors, nor-
mals and material properties specified (among other things). Cus-
tom programs may be applied to each vertex and candidate output
pixel to achieve custom effects. In order to render a scene to screen,
a series of transformations must be applied to transform and clip
the primitives from world space to screen space. The triangles are
rasterized to form candidate pixels called fragments that must pass
through a series of tests in order to be written to the framebuffer.
A simplified presentation of the pipeline is presented in Figure 2.1.

Before discussing the pipeline in detail, some background informa-
tion about transformations in OpenGL is helpful. Transformations
are necessary in order to transform from world space to screen
space, and are used to implement cameras, projection, etc. By
adding a w-component to the spatial 〈x, y, z〉-coordinates, affine
transformations can be used to perform the transformations re-
quired. The advantage of affine transformations over linear trans-
formations is that translatation can be expressed as matrix multi-

2.1. THE GRAPHICS PIPELINE 7

plication:

~x 7→ A~x+~b,

where A is a linear transformation and ~b is a translation vector.
The affine transformation matrix for this transformation is

T =

[

A ~b
0 1

]

.

This enables transformations to be specified as matrices, and mul-
tiple transformations can be concatenated, or multiplied together:

~x 7→ T~x =

[

A~xxyz + ~xw
~b

~xw

]

.

The 3D nature of graphics and the extra w-component, makes
GPUs specialized in handling vectors of four components.

Now follows a description of each of the stages in the OpenGL
pipeline (see Figure 2.1). The figures in the margin of the para-
graphs below refers to the stages in this figure, and marks what
stage of the pipeline the paragraph discusses.

Vertex shader. When vertices are sent to the GPU, they are pro-
cessed by the vertex shader which outputs an intermediate set of
coordinates, called clip coordinates. The vertex shader has access
to vertex attributes, such as the color, texture coordinates and nor-
mals. Custom attributes can also be specified per-vertex and may
be outputted for usage later in the pipeline. By default, OpenGL
computes lighting in the vertex shader and interpolates the result
between vertices in the rasterization stage. A more detailed intro-
duction to OpenGL shaders is found in Section 2.3.

Primitive assembly. The vertex shader has no knowledge about
the connectivity between the different vertices. The primitive as-
sembly stage uses the transformed vertex stream as input and ap-
plies connectivity (topology) to form primitives, such as triangles,
quads and lines. The primitives are clipped and culled to fit into
screen space before the rasterizer processes the triangles. Culling
is a process to remove back-facing triangles and clipping removes
primitives outside the view.

8 CHAPTER 2. THE GPU ARCHITECTURE

A2

A1

t3

A3

t2

t1 P

Figure 2.2: Interpolation using barycentric coordinates. Interpolated

output is calculated using the homogenous barycentric coordinate

P =< A1, A2, A3 >. A1, A2 and A3 are the normalized areas (A1 + A2 +

A3 = 1) to the opposite of the vertices t1, t2 and t3 respectively.

Rasterization. Rasterization is the processes of creating candid-
ate pixels, called fragments, from the primitives. The rasterizer
also interpolates vertex attributes (normal, color, texture coordin-
ates and custom attributes among others) and passes them along
with the fragments. The OpenGL specification requires that in-
terpolation behaves as if interpolated using barycentric coordin-
ates [MB05], where the resulting value is a weighted average of the
three vertices of the primitive (see Figure 2.2).

Fragment shader. The fragment shader uses the interpolated
values as input and discards the fragment or outputs at minimum
a vector containing the color of the fragment, but can also output
several vectors using so-called multiple render targets. Both the
NVIDIA GeForce 6- and 7-series support four render targets [NVI05],
making it possible to output up to a total of 16 scalars in addition
to fragment depth, which is a special buffer used for depth-tests.

Composition. If the fragment shader does not discard the frag-
ment, it will pass through a series of tests including depth-, stencil-
and alpha-test (when the tests are enabled). Fragments that pass
all tests are processed by the composition-step. Here fog is ad-
ded and blending between new and current framebuffer values is
applied if enabled.

2.2. TECHNICAL INTRODUCTION 9

Framebuffer. The result of the composition is stored in the frame-
buffer. In addition to the color buffer, the framebuffer consists of
several other buffers including depth, stencil and an accumulation
buffer. The depth and stencil buffers are used as reference when
performing depth and stencil tests, respectively. The accumulation
buffer is a special buffer used to accumulate intermediate render-
ing results.

Render to texture. Instead of outputting the result directly to
the screen it is possible to store the result as a texture. For graphic
purposes this can typically be used to render scenes with mirrors.
For this purpose, the scene is rendered from the mirrors point-
of-view and stored to texture. The stored texture is then used as
a texture when rendering the mirror in the next pass. For GP-
GPU purposes this serves as storage of the result and intermediate
storage in multi-pass algorithms.

2.2 Technical introduction

The GPU architecture differs radically from the CPU architecture.
Different programming techniques are used, and care must be
taken to exploit the full potential of the GPU. This section aims to
inform about some of the pitfalls related to GPGPU and to mention
some of the most important restrictions of the GPU architecture.

2.2.1 Memory model

The memory model of the GPU differs quite a lot from the memory
model of the CPU. NVIDIA 7800 GPUs uses a 256 bit memory in-
terface [NVIb] to achieve high memory bandwidth. Cache layout
differs drastically between the two architectures, as GPU cache is
based on a 2D layout (see Figure 2.3) while the CPU cache is based
on a 1D layout. This is done to suit the common usage of the
GPUs to apply 2D textures to primitives. The vendors keep the size
and layout of the GPU cache secret, but measurements have in-
dicated that the cache of each fragment processor may be of size
8x8 [GLGM06]. The restricted size is a result of the high cost of

10 CHAPTER 2. THE GPU ARCHITECTURE

Figure 2.3: Cache layout for CPUs (left) and GPUs (right). Memory is

cached row-wise on CPUs (1D) and in the neighbouring area on GPUs

(2D) when using two dimensional arrays.

cache, and the common usage of textures, e.g., to do texture filter-
ing.

The processing units of GPUs differ radically from CPUs. Both
CPUs and GPUs utilize a technique called instruction pipelining
to increase instruction throughput by dividing the execution of an
instruction into several stages. Intel Pentium 4 has an instruc-
tion pipeline that consists of about 20-30 stages [Sto04, HSU+01].
GPUs have even more instruction pipeline stages. The GeForce 7
series has more than 200 stages [NVIc]. This results in very high
theoretical performance, but the penalty of flushing the pipeline
(e.g., at branches) is high. Even though memory read latency is
hidden through pipelining, cache efficiency is important to avoid
stalls when waiting for memory reads [GLGM06]. Since the memory
bandwidth is higher on GPUs than on CPUs, the penalty of a cache
miss is less on the GPU than on the CPU. However, due to the
limited cache size, the cache miss ratio will often be higher on the
GPU.

There are two conceptual ways to work with memory. Gather cor-
responds to the operation c = a[i], or in other words, that the
entire memory can be read. Memory scatter corresponds to the
operation a[i] = c that makes it possible to write to the entire
memory area. Regular CPUs are capable of both memory gather
and scatter, while GPUs are less flexible. Fragment shaders are
capable of fetching data anywhere from a texture, thereby making
it capable of memory gather. However, the position of the output is
determined before the fragment is processed, making the fragment
shader incapable of memory scatter. Vertex shaders have texture
read capabilities and are capable of changing the position of the

2.2. TECHNICAL INTRODUCTION 11

vertices. The vertex shader is therefore both capable of memory
gather and scatter. However, vertex scatter can lead to memory
and rasterization coherence issues further down in the pipeline. In
order to achieve scatter, programmers instead have to utilize vari-
ous tricks. These include rewriting the program in terms of gather,
or by tagging the output with some output address and later sort-
ing the data based on this tag (address sorting) [Buc05b].

2.2.2 Performance

Modern GPUs offer very high floating-point performance compared
to CPUs. NVIDIA 7800 offers 165 GFLOPS performance and the
new NVIDIA 8800 offers performance up to 520 GFLOPS. The Intel
Pentium 4 Extreme Edition offers up to 24.6 GFLOPS. The the-
oretical maximum performance of GPUs is rarely experienced in
practice as cache is very limited and very high arithmetic intensity
is required to keep the processors busy at all times. Arithmetic
intensity is a measurement on the number of operations neces-
sary to perform per memory fetch in order to keep the processor
busy. Table 2.1 lists a summary of floating point performance and
memory bandwidth for different architectures. All GPU bandwidth
figures are collected from GPUBench results [GPU]. GFLOPS fig-
ures for GPUs are collected from Owens et al. [OLG+05, OLG+07],
and NVIDIA [NVIc] (note that 520 GFLOPS for NVIDIA 8800 is a
theoretical peak). Intel Pentium 4 Extreme is an dual-core 3 GHz
processor, and figures are collected from Geer [Gee05] and Hinton
et al. [HSU+01].

Modern GPUs are connected through a PCI Express slot. This
standard comes in different variants and the transfer rate is de-
termined by the number of lanes available. PCIe x16, supported by
modern GPUs, can transfer up to 4.0 GB/s in each direction sim-
ultaneously [Mic04]. Even though the transfer rate has improved
tremendously, it is still a bottleneck when utilizing the GPU for gen-
eral purposes. Reading and writing to the GPU memory should be
kept to a minimum and problems that are to be solved on the GPU
should be of sufficient complexity such that gain in speed is not
lost by the overhead of data transfer. Texture formats must also
be taken into consideration as some formats require conversion
from/to native format by the graphics driver. The native formats

12 CHAPTER 2. THE GPU ARCHITECTURE

Table 2.1: Single-point floating performance versus memory band-

width. Note that these figures are disputed and that many different

figures appear in different articles. However, the essence is that GPUs

offer higher theoretical performance than CPUs.

Architecture GFLOPS Cache BW Sequential BW

(GB/s) (GB/s)

ATI X800 XT 63.7 31 17

ATI X1900 XTX 240 39 27

NVIDIA 6800 Ultra 53 21 9.5

NVIDIA 7800 GTX 165 48 19

NVIDIA 8800 GTX 520 140 55

Pentium 4 Extreme 24.6 48.0 6.4

vary with vendors and models [Buc05b].

GPUs are highly parallel stream processors, typically with 16, 24
or even more fragment-shading pipelines and six or more vertex
pipelines, suitable for processing large data streams. Each pipeline
is a powerful floating-point arithmetic processor, and on most hard-
ware each of them can process up to four scalars simultaneously as
they are designed to work with vectors of length four. This requires
care when implementing algorithms as various tricks must be util-
ized to pack data in a manner that allows for maximum utilization
of the hardware. The advantage of a parallel processor is that when
the number of pipelines is doubled, the performance is doubled (in
theory). Regular CPUs are based on the von-Neumann architec-
ture, where processing is driven by the instruction sequence. This
architecture is very flexible, but yields bad performance for large
data blocks. In the data-stream processing-architecture used by
GPUs, the processor is first configured using the instructions that
should be performed. These data-stream operators are called ker-
nels and can be written in assembly or C-like languages. A number
of parallel units then process the data-stream [LBM+05].

Due to the nature of computer graphics, there is typically a lot
more pixels in a scene than vertices, so the number of fragment
processors exceeds the number of vertex processors. Therefore,
most of the computational potential resides in the fragment pro-
cessors [OLG+05]. In a GPGPU sense, vertex shaders are usually
used to compute texture coordinates and other simple computa-
tions.

2.2. TECHNICAL INTRODUCTION 13

true false true false

Figure 2.4: Spatially coherent branches (left) execute efficiently,

while spatially incoherent branches (right) execute less efficiently as

all the fragment processors must execute the same instruction sim-

ultaneously.

2.2.3 Branching

The highly parallel nature of GPUs makes their support for branch-
ing very limited and demands care in how branching is used. There
are two common branch-control mechanisms in parallel architec-
tures. All processors in a single instruction, multiple data (SIMD)
architecture execute the same instruction at the same time, while
processors in a multiple instructions, multiple data (MIMD) archi-
tecture may execute different instructions simultaneously. MIMD
branching is the ideal case, while SIMD branching is cost-effective
in cases where the branch conditions are spatially coherent (see
Figure 2.4). Incoherent branching is very expensive with SIMD. A
single processor entering a branch is sufficient to keep the remain-
ing processors idle while waiting for the one processor entering
the branch to complete. In older architectures, condition codes
(extra bits set to indicate status of various mathematical opera-
tions [Wik07c]) were used to emulate branching. With this archi-
tecture, both the taken and not taken branch must be evaluated,
but only the branch taken is written to registry [HB05]. NVIDIA
GeForce 6 and 7 series support MIMD branching in their vertex
processors and SIMD in their fragment processors [KF05, NVId].

14 CHAPTER 2. THE GPU ARCHITECTURE

0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 1 001

0

. . .

23 X 22

1.0 1

2

1

4

1

223

2131−127 = 24

31

1

× (1 + 2−1 + 2−2 + 2−3 + 2−4 + 2−7 + 2−8 + 2−10 + 2−12 + 2−13 + 2−14 + 2−19 + 2−21)

Figure 2.5: Binary 32-bit float representation of 31.21. The number

cannot actually be represented exactly and the best approximation is

31.209999.

2.2.4 IEEE 754 floating-point arithmetic

The IEEE standard for binary floating-point arithmetic (IEEE-754)
is the most used standard for real number computation. Floating-
point representations differ from fixed-point representations in that
the location of the decimal point is stored, in this case using an
exponent. Fixed-point representation is used for integers, but is
rarely used for rationals. In the IEEE-754 standard, floating-point
numbers are represented by:

• one sign bit,

• e exponent bits,

• p significand bits

Figure 2.5) shows an illustration of the bits in a 32 bit floating-
point number. The significand consists of a “hidden bit” (d0) that
represent 20 = 1, and bits d1, · · · , dp that represents 2−1, 2−2, · · · , 2−p.
The hidden bit is not actually stored and is always 1 except for
some special values such as zero, NaN, and Infinity. The signific-
and is normalized, that is, it is always between 1 and 2 except for
the special values zero, NaN, and Infinity. Zero is represented by
reserving the value when all the exponent bits are zero [Gol91].

The exponent is biased by 2e−1 − 1 such that exponents are signed
values making it possible to represent very small numbers as well
as very big ones. The distance between two adjacent floating-point
numbers doubles when the exponent is increased by 1. This means
that the relative precision is constant, but the absolute precision
is highest near zero [Dar03]. The value of a binary floating-point

2.3. THE OPENGL SHADING LANGUAGE 15

number is computed by

±
(

d0 + d12
−1 + d22

−2 + · · ·+ dp2
−p
)

2Σ, (2.1)

where Σ is the value of the unbiased exponent and the sign is + if
the sign bit is zero and − else.

The IEEE 754 standard treats 32 bit (called float or single) and
64 bit (double) floating-point numbers, and is currently under re-
vision. The revised standard, IEEE-754r, will also treat 16 and
128 bit floating point numbers [Wik07a]. GPUs have near complete
IEEE-754 single-precision support with a goal to converge to exact
behavior within a few years [Bly06]. NVIDIA GPUs also support 16
bit floating-point numbers (often called half). This format should
be used over float whenever precision is not crucial as this can
increase performance drastically [NVI05]. On NVIDIA, the 32 bit
floating-point numbers are represented using a 23 bit significand
and a 8 bit exponent in addition to a sign-bit, or in short, s23e8,
as specified by the IEEE 754 standard. In this format, all integers
in range [−224, 224] are represented exactly. 16 bit floating-point
numbers are represented using 5 bit exponent and 10 bit signific-
and and a sign-bit (s10e5 in short) [EBL05]. Integers in the range
[−2048, 2048] are represented exactly using the half format.

2.3 The OpenGL shading language

The programming languages used by the shaders have developed
since the first revision, when assembly language was the only op-
tion. Today, several C-like languages have evolved, including C for
graphics (often called Cg), by NVIDIA [FK03], HLSL by Microsoft [Mic]
and GLSL (OpenGL Shading Language) [Ros06]. High-level lan-
guages and interfaces have also evolved, such as Brook [BH], Rap-
idMind [Rap] and PeakStream which has been acquired by Google [Pop07].
For more information on high-level languages, I refer to Buck [Buc05a].
The rest of this section focuses on GLSL.

GLSL closely resembles C, and all C keywords are reserved words
in GLSL (although not always in use). The built-in instruction set
is very limited and tailored for graphics needs. It contains some
functions to access texture memory and some common functions
such as clamp(), min() and max(). The last group of functions

16 CHAPTER 2. THE GPU ARCHITECTURE

are trigonometric and other mathematical functions such as cos()
and sqrt(). Most functions are designed to work on scalars or
vectors with up to four components, and some functions for calcu-
lations using matrixes of size up to 4x4 are available. GPUs lack
support for integers and have no bitwise operations such as and,
or, or not [Ros06]. No random number generators are available,
but continuous quasi-noise functions give the appearance of ran-
domness are available. If “true” random numbers are needed, they
are typically generated offline and stored in a texture for lookup by
the shaders.

Shaders have support for branching and iterations, but these fea-
tures should be used with care due to the SIMD nature of the
fragment processors. Experiments have shown that loops are re-
stricted to 256 iterations [JS05, Bro07], but consecutive or nes-
ted loops can be used to remedy this. Both the vertex and frag-
ment processors have access to texture memory, but the support
in vertex processors is partial and depends on the texture format
used [NVI05].

Debugging is a major obstacle when developing shaders. Currently
no fully qualified debugging environment for shaders exists, and
there is no conventional way of debugging through printing to con-
sole as there is for CPUs. There is neither no full-fledged develop-
ment environments for developing shaders, and analyzing shader-
performance can be a painstaking process. NVIDIA has released
a profiling toolkit named NVPerfKit [NS06] that gives access to a
number of performance counters, e.g., workload between vertex
and fragment processors and texture lookup latency. This toolkit
can help identify bottlenecks and inefficient code. For more in-
formation about GPU debugging and performance analysis, I refer
to Hilgart [Hil].

GLSL supports three types of variables in addition to the regular,
temporary variables. Uniform variables are specified per render-
ing pass and shared between all vertices/fragments in the vertex-
and fragment-processors. Attribute variables are specified per ver-
tex and only accessible through vertex shaders. Varying variables
are set by the vertex program, interpolated by the rasterizer, and
read by the fragment program. In addition, constant variables and
defines are also available. GLSL is very flexible in how the vari-
ables can be accessed, and implements two features called swizz-

2.4. NVIDIA GEFORCE 8800 17

ling and smearing. Swizzling feature enables programmers to eas-
ily select and rearrange components by listing their names, e.g,
pos.xy or color.abgr. Smearing allows duplication of compon-
ents, e.g., var.xxyy [Ros06].

2.4 NVIDIA GeForce 8800

GPUs are probably one of the most rapidly evolving pieces of con-
sumer level hardware in the market, and new generations appear
frequently. When the work on this thesis began, GeForce 7800
was state of the art. Today, just over a year later, 7800 is second
generation and the new G80-series is about to take over. The new
series has “more of everything”, but also radically changes many
aspects of the GPU that close the gap between the GPU and a gen-
eric stream processor. GeForce 8800 Ultra is the latest addition
to the family, with 128 scalar processors running at 1.5 GHz and
768 Mb of video memory running at 2160 MHz. GeForce 8800 GTX
can theoretically perform up to 520 GFLOPS [NVIc]. The Direct3D
10 API, fully supported by the G80 series, requires the GPUs to
have support for 32-bit integer operations, including bitwise oper-
ations [Bly06].

With the new series, a new programmable stage is introduced,
the geometry shader. This shader replaces the triangle assembly
stage. The stage is executed after the vertex shader, and its input
is primitives with adjacency information. The output of the geo-
metry shader is zero or more primitives. This can be used to refine
a mesh or to reject primitives at an early stage [Bly06].

As different scenes have different processing requirements, the
utilization of the different shader types varies. The G80 series have
unified shader hardware in opposition to the separated design used
in previous generations. This improves the processing capabilities
by ensuring that all processors are kept busy at all times (see Fig-
ure 2.6). For GPGPU this means that more processors are avail-
able.

In contrast to previous vectorized designs, the GPUs in the G80-
series are scalar processors. On previous hardware packing schemas
was used to pack data into textures with four components to util-
ize the vector design of the processors. This makes the G80 series

18 CHAPTER 2. THE GPU ARCHITECTURE

Vertex processors

Fragment processors

Idle

Working

Unified processors

Fragment shader

Pixel shader

Geometry shader

Figure 2.6: Typical GPGPU scenario on previous generations (left).

The vertex processors have little or virtually no work to do and are

idle most of the time, while the fragment processors are busy doing

computations. The right illustration shows the situation on the new

G80 series, where the number of processors utilized by each shader

is dynamic.

easier to utilize for general purposes as there is no reason to at-
tempt to apply as much operations as possible on vectors instead
of scalars. The new architecture currently has up to 128 scalar
processors instead of 32 four-vector processors [NVIc]. For fully
vectorized programs, 128 scalar processors conforms to 32 four-
vectorized processors (4×32=128), but for scalar operations the
new architecture is up to four times more efficient.

NVIDIA has also released a new framework named CUDA for gen-
eral stream processing applications [NVI07]. This framework en-
ables developers to implement GPU stream programs in C, and al-
lows direct access to the GPU without interference from the graph-
ics API. This results in less overhead and direct utilization of the
GPU processors without worrying about differences between ver-
tex, geometry and fragment processors. Many restrictions have
been removed, e.g., processes can communicate with each other,
giving new possibilities. Scattered memory writes are also sup-
ported by CUDA, thereby removing one of the major obstacles in
GPGPU. Hardware debugging is supported, making the develop-
ment process a lot less painful [NVIc]. NVIDIA have also released
CUBLAS [NVI06], an implementation of a part of the BLAS (basic
linear algebra subprograms) library. This implementation can be
used without knowledge about CUDA.

Although not supported at this moment, NVIDIA plans to support
64-bit floating-point precision arithmetic (double) in late 2007 [NVIa].
This will move the GPU one step closer to being a full-fledged gen-
eral parallel floating-point processor.

2.4. NVIDIA GEFORCE 8800 19

Even though the main focus will remain to be to deliver high-
quality graphics for games, all these new features, in addition to
improved performance, make the G80-series a more general stream-
ing processor than its predecessors.

20 CHAPTER 2. THE GPU ARCHITECTURE

Chapter 3

Computation fluid dynamics
on the GPU

GPGPU is a relatively new field of research that focuses on utilizing
the tremendous floating-point processing capabilities of the GPUs
to solve general problems. In recent years there has been an explo-
sion in the interest for GPGPU, and new algorithms are presented
regularly. The reason for this interest is the high potential floating-
point performance GPUs offers at a modest cost.

Problems from many different fields have utilized GPUs, ranging
from sorting and database applications, to linear algebra and al-
gorithms for solving PDEs. Among linear algebra applications im-
plemented with good results, is matrix multiplication [Bro07, HCH03],
conjugated gradients [KW03, BFGS03] and PLU factorization [Bro07].
The fast Fourier transform has also been implemented [GLGM06],
and many image processing algorithms are suitable for GPU imple-
mentation [FM05]. A number of sorting and data mining algorithms
have been implemented [GZ06, GGKM06].

CFD has been a field of research for a very long time, and CFD
algorithms have been implemented on GPUs in various forms in
the recent years. This chapter focuses on some of the research
done within the field of CFD, both implementations for real-time
rendering and high-quality simulation for visual purposes. The
implementations reviewed focuses on performance, plausible res-
ults and visual quality. Physical correctness is a secondary goal.
Note that many of the implementations reviewed are CPU based.
These implementations are mentioned to give useful background

21

22 CHAPTER 3. COMPUTATION FLUID DYNAMICS ON THE GPU

Figure 3.1: Turbulent wind simulated using Stam and Fiume’s

model. Figure is courtesy of Stam and Fiume.

information, as many of the ideas implemented for use by CPU
implementations have been adapted for usage by GPU implement-
ations. The chapter ends with a discussion concerning the future
for GPUs as a physics coprocessor.

3.1 Real-time simulators

It is only recently that real-time fluid simulators have emerged.
However, efficient simulation has been a field of research for a long
time. Here, a few important methods are introduced to give some
background for the methods described later in this thesis.

Early implementations utilized various tricks to resemble fluid be-
havior, while avoiding to use of too much processing power. In
1993, Stam and Fiume [SF93] presented a model for turbulent
wind flow based on one field for large-scale motion and one field for
small turbulent motion. The large-scale field is generated by nu-
merically solving the Navier-Stokes equations and the small-scale
field is a random field. The model can simulate wind fields to some
extent, but as the random field is not a function of the actual mo-
tion, the simulated field looks rather artificial (see Figure 3.1).

Foster and Maxamas [FM96] presented an implementation for an-
imating liquids based on the Navier-Stokes equations in 1996.
They described three different methods for tracking the surface of
fluids, which is often necessary when rendering. Marker particles
track mass less particles that are convected by the fluid velocity
and are ideal for animating violent phenomena such as a tsunami.
The free surface technique also utilizes marker particles to track

3.1. REAL-TIME SIMULATORS 23

the surface. A grid of marker particles is placed along the boundary
layer between the fluid and the air. These particles are also con-
vected by the velocity field. Next, assume that cells can either be
Full or Empty (of fluid), The volumes of the two fluids are grown by
alternating between growing Full and Empty volumes (or areas in
2D). Initially, cells containing marker particles are marked as Full,
the rest of the cells are marked as Unknown. Next the volumes
are grown by marking a cell known always to be Empty. The
Empty volume is grown from this cell by marking neighbouring
cells marked as Unknown with Empty instead. When no more Un-

known cells with Empty neighbour(s) are found, a second region
is grown by marking Unknown cells adjacent to Full cells as Full.
The process is repeated, alternating between Empty and Full re-
gions. The authors also describe tracking of a surface through a
height field. This method tracks height by calculating it based on
pressure and velocity. The change in surface elevation is computed
using

∂h

∂t
= w − u

(

∂h

∂x

)

− v

(

∂h

∂y

)

,

where h is the surface height, w is the vertical component of the
fluid velocity, u and v are the components of velocity in the XY-
plane (assuming vertical component is specified along the Z-axis).

Stam [Sta99] described an unconditionally stable discretization method
for fluid flows in 1999. As opposed to the methods mentioned
above, the solution is stable for any choice of ∆t. This is achieved
by using a combination of Lagrangian and implicit methods to solve
the incompressible Navier-Stokes equations. An approximation to
the Navier-Stokes equation is computed using operator splitting
and projection is used to project the resulting velocity field onto
its divergent free part (as required by the incompressible Navier-
Stokes). As the model suffers from numerical dissipation, the flow
tends to dampen too rapidly. Stams implementation of the stable
method enables near real-time simulation and rendering on relat-
ive coarse grids (163 to 303) on an SGI machine.

Stam [Sta03] also described an implementation for real-time fluid
dynamics for use in games in 2003. The implementation described
is unconditionally stable and based on the incompressible Navier-
Stokes equations, just as the previous implementation described.
No new techniques are introduced in this article, but a number of
extensions that could be implemented are mentioned. Figure 3.2

24 CHAPTER 3. COMPUTATION FLUID DYNAMICS ON THE GPU

Figure 3.2: Screenshots from Stams implementation of a real-time

fluid simulator. Figure is courtesy of Stam.

shows a screenshot from the example application.

Harris wrote a chapter about real-time CFD on the GPU for “GPU
Gems” [Har03] released by NVIDIA in 2003. Here, an uncondi-
tionally stable method for computing solutions of the incompress-
ible Navier-Stokes equations in the same manner as the method
presented by Stam [Sta99] was presented. Harris used an iterat-
ive Jacobi solver to estimate the solutions of the Poisson equations
that arise from the semi-Lagrange discretization. He used the sim-
ulator to simulate liquids and gases. Support for smoke and cloud
simulations was also implemented using buoyancy and convection.

Krüger and Westermann [KW05] documented another GPU imple-
mentation of CFD in 2005. They implemented a simulator for
smoke, fire or explosions that could be run on the GPU without
any readback. The implementation is based on the incompressible
Navier-Stokes equations and uses various tricks to enable the user
to control the simulation and to support 3D simulations without
using an unacceptable amount of processing power. Using inser-
tion of pressure and velocity templates (i.e., local perturbations
of the respective fields) the user can control where desired effects
such as vortices should occur. To support 3D simulations without
having to simulate the whole 3D domain, the application supports
volumetric extrusion. This technique simulates a number of slices
using slightly different initial conditions and uses spherical lin-
ear interpolation to extrude these 2D slices to 3D. The applica-
tion supports both texture-based volume rendering and particle-
based volume rendering methods. The conjugate-gradient method
is used to solve the linear set of equations that arises when dis-
cretizing Poisson pressure equation that must be computed when

3.2. OFFLINE RENDERING ALGORITHMS 25

Figure 3.3: Screenshots from a Navier-Stokes simulator on the GPU.

Figure is courtesy of Krüger and Westermann.

implementing projection. However, the method described is not
unconditionally stable, introducing constraints on the choice of ∆t.
Figure 3.3 shows a screenshot from their application.

3.2 Offline rendering algorithms

The methods mentioned above focus on high performance simulat-
ors that produce a visually plausible result. In this section a few
methods focusing on high quality simulations using offline render-
ing, are reviewed.

Stam, Fedkiw and Jensen [FSJ01], described a model based on the
inviscid Euler equations for visual simulation of smoke. This model
uses a technique called vorticity confinement to reinject lost energy
due to numerical dissipation. Vorticity confinement is a computa-
tionally cheap technique to counteract dissipation, and has later
been implemented in a number of simulators. Advanced rendering
techniques used to achieve smoke of high visual quality are also
described. Notice the difference between the simulations with and
without vorticity confinement in Figure 3.4.

Enright, Marschner and Fedkiw [EMF02] described in 2002 a model
for simulating and rendering water with very high visual quality.
They described a method for tracking the water surface based on
extrapolating velocity from the regions of water (or some other li-
quid) to the regions of air. Navier-Stokes is solved in the same
manner as in the stable fluid model described by Stam [Sta99]
mentioned above.

26 CHAPTER 3. COMPUTATION FLUID DYNAMICS ON THE GPU

Figure 3.4: Screenshots from the implementation using vorticity con-

finement by Stam, Fedkiw and Jensen. The screenshot to the left is

from a simulation of smoke. The middle screenshot is a simulation

performed without vorticity confinement, while the right screenshot

is from a simulation using the same initial conditions with vorticity

confinement enabled. Figure is Stam, Fewkiw and Jensen.

3.3 The future of GPU physics

The articles presented above are only a small selection of the pub-
lished work within CFD. Real-time CFD for visual purposes has
received much attention from the GPGPU community, and applic-
ations have been implemented at several occasions. As the meth-
ods improve and GPUs get more powerful, this opens for usage of
real-time visual CFD for interactive applications, typically games.
There is a trend that new games utilize physics in a more extensive
manner than older games. Rhodes [Rho04] claims that physics can
reduce the cost of game production by reducing the number of an-
imators necessary. He also states that the use of a physics engine
enables behavior that is not practical when using artist-generated
animations.

AGEIA has released a dedicated physics processor called PhysX [AGE].
This processor supports a wide range of physical phenomena, such
as particle effects, fluid and cloth simulation and collision compu-
tation. There is also a software development kit (SDK) associated
with PhysX that Sony has licensed to the Playstation 3 among oth-
ers [Son05a]. Playstation 3 also supports a competing physics en-
gine, named Havok [Son05b]. The Havok SDK is not based upon
a dedicated physics processor, but has several implementations,
such as one for recent ATI and NVIDIA GPUs. The SDK features
collision detection, simulation of particles, cloth and liquids and

3.3. THE FUTURE OF GPU PHYSICS 27

effects including debris and fog. A release based upon the Shader
Model 3.0 standard for using the GPU as the computational engine
was released June 2006 [Hav06]. Performing physics on the GPU
makes sense, because many games are CPU limited rather than
GPU limited. Since the simulations will be used for rendering pur-
poses, performing them directly on the GPU eliminates much data
transfer too [Har06].

The emerge of dedicated physics engines and hardware is an in-
dication of the increasing interest for physics in computer games.
Increased focus from GPU hardware vendors on the use of GPUs for
general purposes, e.g., physics, leads to increased level of program-
mability and makes handling of physics on the GPU a simpler pro-
cess. The adaptation and implementation of physics SDKs, such
as Havok for GPUs, indicate that the GPUs will not only be used for
purely graphical purposes in future games, but also handle some,
or even most, of the underlying physics.

28 CHAPTER 3. COMPUTATION FLUID DYNAMICS ON THE GPU

Chapter 4

Incompressible Navier-Stokes

The Navier-Stokes equations are set of equations that describe
changes in mass and momentum of fluids. The equations can
be used to describe a large number of phenomena, ranging from
water flow to the motion of stars inside a galaxy. This chapter
will go through the derivation, discretization and an implementa-
tion of a simulator for computing solutions to the incompressible
Navier-Stokes equations. The incompressible equations are used
to describe flows for which the density changes in the fluid are neg-
ligible. This form of Navier-Stokes can be used to simulate many
phenomena, such as smoke, formation of clouds, and fluid flows.
In real life, incompressible fluids do not occur; all materials are
compressible to some extend. However, under the proper condi-
tions, compressible fluids can undergo near incompressible flow.

4.1 Derivation

The derivation of the incompressible Navier-Stokes equations in-
volves three fields:

~u : Ω × [0, tend] → R
n velocity field

p : Ω × [0, tend] → R pressure field
ρ : Ω × [0, tend] → R density field

(4.1)

In the incompressible case, the density changes in time and space
are negligible, i.e., ρ(~x, t) is constant.

The Navier-Stokes equations are derived from conservation of mass

29

30 CHAPTER 4. INCOMPRESSIBLE NAVIER-STOKES

and momentum. Conservation of mass means that an amount of
fluid occupying a domain Ω0 will later occupy domain Ωt. The mass
of the fluid occupying a domain equals the integral of the density
ρ(~x, t) over the domain. Thus

∫

Ωt

ρ(~x, t)d~x =

∫

Ω0

ρ(~x, 0)d~x. (4.2)

In other words, the time derivative of the integral on the left side
must be zero:

d

dt

∫

Ωt

ρ(~x, t)d~x = 0. (4.3)

The transport theorem gives an expression for the time derivative of
the integral of a field λ over a domain that changes with time:

d

dt

∫

Ωt

λ(~x, t)d~x =

∫

Ωt

[

∂λ

∂t
+ ∇ · (λ~u)

]

(~x, t) d~x. (4.4)

By applying this theorem to ρ(~x, t) and using (4.3) it is clear that
the left term of (4.4) vanishes. After rearranging the equation and
using that the result is valid for arbitrary domain Ωt, the equation
reads

0 =
∂ρ

∂t
+ ∇ · (ρ~u)

=
dρ

dt
+ ρ∇ · ~u+ ~u∇ρ

=
Dρ

Dt
+ ρ∇ · ~u,

where D
Dt

is the Lagrangian derivate defined as D
Dt

= ∂
∂t

+(u·∇). Since
the density changes in time and space are negligible the first term
can be left out. This results in

The continuity equation.

∇ · ~u = 0. (4.5)

4.1. DERIVATION 31

The second equation of the incompressible Navier-Stokes equa-
tions is a result of conservation of momentum (product of mass
and velocity). Since the velocity varies in space, the product must
be written as an integral:

~m(t) =

∫

Ωt

ρ(~x, t)~u(~x, t) d~x. (4.6)

Newton‘s second law states that the change in momentum equals
the sum of the forces acting on the fluid

d

dt
~m(t) =

∑

~f(t). (4.7)

The forces can be separated into two terms, external forces and
surface forces. External forces account for, e.g., gravity, and can
be written as the integral of the product between density and force
density per unit volume. Surface forces account for pressure and
internal friction and can be written as the integral of the product
of a stress tensor τ and the surface normal ~n. Thus,

~fext =

∫

Ωt

ρ(~x, t)~g(~x, t) d~x, (4.8)

~fsurf =

∫

∂Ωt

τ(~x, t)~n(~x, t) ds, (4.9)

where ~g is the force density and ∂Ωt is the boundary of the do-
main Ωt. By replacing ~m(t) in (4.7) by the right hand side of (4.6),
Newton’s second law reads

d

dt

∫

Ωt

ρ~u d~x = ~fext + ~fsurf. (4.10)

Here the assumption that ρ is constant has been used. In order
to derive the Navier-Stokes momentum equation the transport the-
orem (4.4) and the divergence theorem are needed. The divergence

theorem reads
∫

∂Ωt

~κ · ~n ds =

∫

Ωt

∇ · ~κ d~x, (4.11)

where ~n is the surface normal and ~κ is a vector field. By apply-
ing the divergence theorem (4.11) to the expression for surface
forces (4.9) we get

~fsurf =

∫

∂Ωt

τ~n ds =

∫

Ωt

∇ · τ d~x. (4.12)

32 CHAPTER 4. INCOMPRESSIBLE NAVIER-STOKES

By using that ρ is constant, a simplified expression for ~fext is found:

~fext = ρ

∫

Ωt

~g(~x, t) d~x (4.13)

The transport theorem (4.4) is applied to the left hand side of (4.10):

d

dt

∫

Ωt

ρ~u d~x = ρ

∫

Ωt

[

∂~u

∂t
+ (~u · ∇)~u

]

d~x = ~fext + ~fsurf. (4.14)

Since Ωt is arbitrary, the integrals can be removed from each term
of (4.10). After dividing by ρ, (4.10) can be expressed as

∂~u

∂t
+ (~u · ∇)~u =

1

ρ
∇ · τ + ~g. (4.15)

The stress tensor τ for incompressible flows includes a Lamé dy-
namic viscous term µ and reads

τ = −pI + 2µǫ, (4.16)

where ǫ is the deformation tensor given by

ǫ =
1

2

(

∇~u+ (∇~u)T
)

.

In the 2D case, the tensor reads

τ =





µ∂ux

∂x
− p µ

(

∂ux

∂y
+ ∂uy

∂x

)

µ
(

∂ux

∂y
+ ∂uy

∂x

)

µ∂uy

∂y
− p



 .

Now, ∇·τ in (4.15) can be simplified by assuming that µ is constant
and applying the continuity equation (∇ · ~u = 0). For tensors, the
∇-operator is defined as applying ∇ to each row, resulting in a
vector:

∇ · τ = −∇p + ∇ · (2µǫ)

= −∇p + µ∇ · (∇~u+ (∇~u)T)

= −∇p + µ∇2~u.

The momentum equation can now be formed by inserting the value
of ∇ · τ into (4.15) and rearranging.

4.2. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 33

Figure 4.1: The velocity field advects itself

The momentum equation.

∂~u

∂t
= − (~u · ∇) ~u+ ν∇2~u−

1

ρ
∇p+ ~f. (4.17)

Here ~f is defined as ~f = ~g to emphasize that the term may include
other forces than gravity and ν = µ

ρ
is the kinematic viscosity con-

stant [Mar04].

4.2 The incompressible Navier-Stokes equa-

tions

By combining the momentum and continuity equations from the
previous section, the Navier-Stokes equations for incompressible
fluids appear:

∂~u

∂t
= −(~u · ∇)~u+ ν∇2~u−

1

ρ
∇p+ ~f, (4.18)

∇ · ~u = 0. (4.19)

The first equation (4.18) is the momentum equation. It has four
terms on the right hand side sums up to the total acceleration:

Advection – The first term, −(~u · ∇)~u, is called the advection term.
The velocity field causes quantities to follow, or be advected,
by the flow. This happens to particles, e.g., dye, but the velo-
city field also advects itself (see Figure 4.1).

34 CHAPTER 4. INCOMPRESSIBLE NAVIER-STOKES

Diffusion – The second term, ν∇2~u, accounts for viscous diffusion.
This is an effect of resistance to deformation due to shear
stress and ν is the viscosity of the fluid (high values meaning
highly viscous fluid). The special case when ν = 0 is called an
inviscid fluid. Such fluids do not occur in real life, but can
be useful in practice when simulating fluids with low viscosity
(e.g., air) and high velocities to save computation [Wik07d].
This corresponds to simulations with a high Reynolds num-
ber, which is defined as

Re =
Inertial forces

Viscous forces
=

|~u|L

ν
,

where ~u is the fluid velocity, ν is the viscosity and L is the
characteristic length, which is related to the size of the domain
of interest. The Reynolds number is dimensionless and used
to identify different types of flows [Wik07b]. Laminar flow is
relative steady flow with Reynolds number up to about 2000.
In this type of flow, streamlines follow the obstacles or time-
invariant stable regions where the flow is reversed is formed.
Turbulent flow is characterized by its unpredictable behavior.
No periodicity can be observed and the flow is chaotic and ir-
regular. A flow with Reynolds number larger than about 4000
is called turbulent. Transitional flow fills the gap between
laminar and turbulent flow. This type of flow often starts out
as laminar, but starts to behave turbulent after a certain dis-
tance from the inflow [GDN98]. This thesis mainly focuses on
inviscid fluids to narrow the field of focus.

Pressure – Next is the pressure term, −1

ρ
∇p, which reflects the ef-

fect of internal pressure caused by particles packed together
causing outward pressure. As shown in the next section, the
pressure term can be disregarded when semi-Lagrange dis-
cretization is used.

External forces – The last term of (4.18), ~f , accounts for external
forces. This can typically be gravity or in the case of computer
graphics, an artificial force added to produce a desired visual
effect.

The second equation (4.19), is called the continuity equation and
ensures conservation of mass. This equation is the incompress-

4.3. SEMI-LAGRANGE DISCRETIZATION 35

Figure 4.2: The effect of the continuity equation. The image to the left

shows a vector-field with non-zero divergence (∇ ·~v 6= 0), and the right

image shows the same vector-field projected to the corresponding field

with zero divergence. Figure is courtesy of Jos Stam.

ible requirement, that is, it allows us to assume that density is
constant. Figure 4.2 shows the effect of the continuity equation.

4.3 Semi-Lagrange discretization

The focus of this thesis is real-time simulations for visual purposes.
Unconditional stability with respect to ∆t is desirable to allow time
steps of arbitrary size. An unconditionally stable solver based on
the semi-Lagrange scheme is presented in this section. The discret-
ization leads to numerical dissipation, and vorticity confinement is
used to reinject lost energy in order to retain small-scale effects,
i.e., vortices. For simplicity, it is assumed that the grid spacing is
equal in both directions throughout the chapter; that is, ∆x = ∆y.

Implicit discretization tends to result in more stable solvers than
using explicit methods. In addition to using Lagrangian description
of the advection term, this is utilized to achieve a unconditionally
stable solver as done by Stam [Sta99]. The derivation of this solver
uses the Holmholtz-Hodge decomposition, which states that a vec-
tor field ~w always can be uniquely written as

~w = ~u+ ∇q, (4.20)

where ~u is a divergence-free (incompressible) vector field and q is a
scalar field [CM05]. The projection-operator P projects any vector
field ~w onto its divergence-free part ~u. This operator is defined as
multiplying (4.20) with ∇:

36 CHAPTER 4. INCOMPRESSIBLE NAVIER-STOKES

∇ · ~w = ∇ · ~u+ ∇2q = ∇2q. (4.21)

This is the Poisson equation for a scalar field q. By solving this for
q we can calculate the projection from ~w to its incompressible part
~u:

~u = P~w = ~w −∇q. (4.22)

By applying P to (4.18) we get

∂~u

∂t
= P

[

−(~u · ∇)~u+ ν∇2~u+ ~f
]

. (4.23)

Here two important properties have been utilized. First, from the
continuity equation (4.19) we know that P~u = ~u since ~u is divergence
free. The second property utilized is that when P is applied to ∇p
the result is 0. This is shown by applying P to (4.20):

P~w = P~u+ P∇q.

By definition P~w = P~u = ~u, so P∇q = 0 or P∇p = 0 in this case.

The projected Navier-Stokes equation is used to compute (4.18) in
four steps:

u(~x, t)
Add Forces

−→ v1(~x)
Advect
−→ v2(~x)

Diffuse
−→ v3(~x)

Project
−→ u(x, t+ ∆t).

Each term is applied to an intermediate solution and ~v3(x) is “pro-
jected” such that the final result ~u(x, t+∆t) is incompressible. This
technique is known as operator splitting for projection.

Add forces. The first step is straight forward to implement, and
simply boils down to adding two fields together, where the force

field ~f is weighted by ∆t:

~v1(~x) = ~u(~x, t) + ∆t · ~f(~x). (4.24)

In other words, ∂~u
∂t

= ~f is solved using the forward Euler method.

4.3. SEMI-LAGRANGE DISCRETIZATION 37

Figure 4.3: Two ways of approximating advection. The method illus-

trated to the left considers which cells the current cell will contribute

to by integrating forward in time. The right method integrates back-

ward in time to find its origin and interpolates the four-cell neigh-

bourhood to find the new value of the cell.

Advection. Advection transports the velocity field along itself. The
advection term reads ∂~u

∂t
= −(~u · ∇)~u and could also have been com-

puted by using an explicit update. However, this method has two
serious drawbacks. The operation is a scatter operation which
makes it ill-suited for GPU implementation. The second drawback
is related to the constraint on the size of the time step used in the
simulation. The Courant-Friedrichs-Lewy (CFL) condition,

∆t

∆x
|~v1(~x)| < C, (4.25)

is a condition for a number of equations to be stable. If it is not
complied, that is, when a quantity is transported through one or
more cells in one time step, the solution may blow up [Har03].
By introducting Lagrangian coordinates and using the method of
characteristics, both of these problems are avoided. In mathemat-
ical terms, the discretized equation for advection now reads:

~u (~x, t+ ∆t) = ~u(~x− ∆t · ~u(~x, t), t). (4.26)

This method is unconditionally stable [Sta99]. By integrating back-
ward in time, this method resolves the new values at each grid
point (see Figure 4.3).

Diffusion. The next term is the diffusion term, which reads

∂~u

∂t
= ν∇2~u. (4.27)

38 CHAPTER 4. INCOMPRESSIBLE NAVIER-STOKES

The kinematic viscosity constant, ν, controls the amount of diffu-
sion and can be considered to be the thickness of the fluid [GDN98].
For water at 20oC this constant equals 1.004× 10−6 m2/s and 1.330×
10−5 m2/s for air at the same temperature [Box]. The diffusion term
can be approximated explicitly by integrating forward in time:

~u(~x, t+ ∆t) ≈ ~u(~x, t) + ∆t · ν∇2~u(~x, t). (4.28)

Unfortunately this is numerically unstable for large ∆t and ν [Har03].
By instead using an implicit discretization schema, a Poisson type
equation is obtained:

uk+1 − uk

∆t
≈ ν∇2uk+1

uk+1 − uk ≈ r
(

uk+1
i−1,j + uk+1

i+1,j + uk+1
i,j−1 + uk

i,j+1 − 4uk+1
i,j

)

,

where r = ν∆t
∆x2 . By moving terms uk+1 to one side and term uk to the

other, and rewriting to matrix form the discrete implicit diffusion
equation appears:

(I − rL) uk+1 = uk, (4.29)

where I is the identity matrix and L ∈ R
n2×n2

is the Laplacian matrix
given by (n is the number of unknowns in each direction)

L =







































−4 1 0 · · · 0 1 0 0 0 0 0 0

1 −4 1 0 · · · 0 1 0 0 0 0 0

0 1 −4 1 0 · · · 0 1 0 0 0 0

· · · 0 1 −4 1 0 · · · 0 1 0 0 0

0 · · · 0 1 −4 1 0 · · · 0 1 0 0

1 0 · · · 0 1 −4 1 0 · · · 0 1 0

. . .
. . .

. . .
. . .

. . .

0 0 1 0 · · · 0 1 −4 1 0 · · · 0

0 0 0 1 0 · · · 0 1 −4 1 0 · · ·
0 0 0 0 1 0 · · · 0 1 −4 1 0

0 0 0 0 0 1 0 · · · 0 1 −4 1

0 0 0 0 0 0 1 0 · · · 0 1 −4







































. (4.30)

How solutions to this problem can be computed is discussed in
Chapter 5.

Projection. After performing the previous steps (adding forces,
advection and diffusion), the projection operator P is applied to

4.4. VORTICITY CONFINEMENT 39

the intermediate result. Recall that this operator projects a vector
field ~w onto its incompressible part ~u, which satisfies the continuity
requirement in (4.19). This is achieved by applying the P-operator
to the result from the last operator splitting pass, ~v3:

∇ · ~v3 = ∇ · ~u+ ∇2q = ∇2q. (4.31)

This is also a Poisson equation, and will from now on be called
the pressure equation. By solving for q and using this scalar field
and the identity ~u = ~v3 −∇q, the result from each time step will be
incompressible (if exact arithmetic and methods were used).

In order to determine the projection to the incompressible velocity
field, the pressure must be computed. The pressure equation can
be discretized as follows. The right side of (4.31) is discretized using
central differences, yielding

(

∇2q
)

i,j
=

1

∆x2
(qi+1,j + qi−1,j + qi,j+1 + qi,j−1 − 4qi,j) . (4.32)

The discrete pressure equation can now be expressed in matrix
form:

1

∆x2
L~q = ~g. (4.33)

The right hand side ~g is formed by stacking columns of ∇·~v3 on top
of each other. The unknown vector ~q is formed in a similar fashion,
and the coefficient matrix L is the Laplacian matrix (4.30). Efficient
methods for computing solutions to this problem will be discussed
in Chapter 5.

4.4 Vorticity confinement

The semi-Lagrangian solver causes numerical dissipation that res-
ult in loss of fine scale details. Vorticity confinement is specifically
designed to preserve small vortices in a flow, giving a more realistic
appearance. The method was designed by Steinhoff and Under-
hill [SU94] and was later utilized by Fedkiw, Stam and Jensen [FSJ01]
to preserve the vorticity field which is smoothed out due to the nu-
merical dissipation. By reinjecting energy where the vorticity field
is pointing from low to high values, vorticity confinement tends to
reinject energy where it is lost. This is the strength of vorticity con-
finement. It results in very few or no artificial vortices at undesired

40 CHAPTER 4. INCOMPRESSIBLE NAVIER-STOKES

Figure 4.4: A vector field is generated from the gradient of the vorti-

city field (left). The red contour lines indicate areas with high vorticity

and the arrows point in the direction of the gradient. Force is added

to the velocity field (blue arrows) in the direction perpendicular to the

gradient of the vorticity field (right).

locations as many other techniques do (e.g. adding a random vec-
tor field according to some energy function [SF93]). The algorithm
first calculates a vorticity field (the curl of the velocity field). In 2D,
the vectors always point out from the plane, and can therefore be
represented using a scalar field. Next, the normalized gradient of
the vorticity is calculated, revealing areas where vorticity goes from
low to high concentrations. Force is added in the direction perpen-
dicular to this field (see Figure 4.4). This tends to keep the vortices
alive and localized and yields small vortices in the boundary layer
between high and low velocities.

Mathematically the method can be described in the following way:
Vorticity is defined as the cross-product between ∇ and a vector ~u,
in this case the velocity-field,

~ω = ∇× ~u. (4.34)

We then want to find the areas where vorticity goes from low to
high concentrations and define

~η = ∇ |~ω| , (4.35)

~ψ =
~η

|~η|
. (4.36)

Now ~ψ points from low to high concentrations in the vorticity field.
The magnitude and direction of the resulting force is calculated
using

~fvc = β∆x
(

~ψ × ~ω
)

, (4.37)

where β is a scalar that defines how much energy to reinject and
∆x is the grid-spacing. I have chosen β to 0.35 as default, as ex-

4.4. VORTICITY CONFINEMENT 41

periments have shown that a reasonable amount of energy is re-
injected when using this value. The cross-products needed can be
simplified and specialized for the 2D-case:

~ω = ∇× ~u =

(

∂uy

∂x
−
∂ux

∂y

)

k. (4.38)

This can be discretized using central differences, resulting in

ωi,j = (∇× ~u)i,j =

(

ui,j−1 − ui,j+1

2∆x
−
ui−1,j − ui+1,j

2∆y

)

k. (4.39)

Now (~η)i,j can be calculated using the discrete version of (4.35),

(~η)i,j =

(
∣

∣ωz
i+1,j

∣

∣−
∣

∣ωz
i−1,j

∣

∣

2∆x

)

i +

(
∣

∣ωz
i,j+1

∣

∣−
∣

∣ωz
i,j−1

∣

∣

2∆y

)

j, (4.40)

where ωz
i,j refers to the z-component of ~ω at position (i, j). Since ~η is

later normalized and it is assumed that ∆x = ∆y, the denominator
can be skipped:

(~η)i,j =
(
∣

∣ωz
i+1,j

∣

∣−
∣

∣ωz
i−1,j

∣

∣

)

i +
(
∣

∣ωz
i,j+1

∣

∣−
∣

∣ωz
i,j−1

∣

∣

)

j. (4.41)

Recall that ~ψ = ~η

|~η|
. Since ~ψ only has x and y components and ~ω

only has a z-component, ~ψ × ~ω simplifies to

~ψ × ~ω = ωz (ψyi − ψxj) , (4.42)

and in discrete form
(

~ψ × ~ω
)

i,j
= ωz

i,j

(

ψy
i,ji − ψx

i,jj
)

. (4.43)

This cross-product is used to calculate the resulting force, defined
by (4.37).

The algorithm is implemented using two shaders. The first shader
calculates the vorticity-field ~ω using the discrete formula for the
cross product ∇ × ~u in 2D (4.39). ~η is computed by the second
shader and ~ψ calculated using this result and normalizing it. In
order to avoid numerical artifacts, a safe normalization is used:

~ψ =
~η

√

max(ǫ, ~η · ~η)
, (4.44)

42 CHAPTER 4. INCOMPRESSIBLE NAVIER-STOKES

Figure 4.5: A vorticity field without vorticity confinement (left) and

with (right) resulting from the same initial conditions.

where ǫ ≪ 1.0 is a small number. The cross product ~ψ × ~ω is com-
puted and force is calculated using (4.37). The code for this frag-
ment shader is listed in Listing 4.1.

The result from using vorticity confinement is clearly visible. Fig-
ure 4.5 shows the vorticity field of a simulation with and without
vorticity confinement. When vorticity confinement is used, the flow
tends to contain a lot more small vortices than it would do when
not using this technique. The flow becomes much less uniform,
and for visual purposes, small vortices are very desirable, as the
flow feels much more alive and lifelike.

4.4. VORTICITY CONFINEMENT 43

1 uniform sampler2DRect vorticity;

2 uniform sampler2DRect field;

3

4 uniform float scalar;

5 uniform float h;

6 uniform float dt;

7

8 void main()

9 {

10 // Fetch direct neighbours

11 float vT = texture2DRect(vorticity, gl_TexCoord[0].xy

12 + vec2(0,1)).x;

13 float vB = texture2DRect(vorticity, gl_TexCoord[0].xy

14 - vec2(0,1)).x;

15 float vR = texture2DRect(vorticity, gl_TexCoord[0].xy

16 + vec2(1,0)).x;

17 float vL = texture2DRect(vorticity, gl_TexCoord[0].xy

18 - vec2(1,0)).x;

19 float vC = texture2DRect(vorticity, gl_TexCoord[0].xy).x;

20

21 // n = grad(vorticity)

22 vec2 n = vec2(abs(vT) - abs(vB), abs(vR) - abs(vL));

23

24 // Safe normalize

25 const static float EPSILON = 2.4414e-4;

26 float isqrt = rsqrt(max(EPSILON, dot(n, n)));

27 // omega = n / |n|

28 vec2 omega = n * isqrt;

29

30 // f = e(omega x n)*dx

31 vec2 force = scalar * h * (vC * vec2(omega.y, -omega.x));

32

33 // Apply force

34 gl_FragColor = texture2DRect(field, gl_TexCoord[0].xy);

35 gl_FragColor.xy += force * dt;

36 }

Listing 4.1: Shader code for the vorticity confinement shader.

44 CHAPTER 4. INCOMPRESSIBLE NAVIER-STOKES

4.5 Transport of quantities

A velocity field alone is not very interesting; it is when the velocity
field is applied to some quantity like particles or dye the visually in-
teresting results appear. A number of techniques exist to simulate
and visualize different quantities. This section will only cover visu-
alization of vector fields and advection of dye. The techniques de-
scribed are designed to reveal the underlying properties of the flow,
such as the vorticity field. More advanced techniques such as sim-
ulation and visualization of smoke and other rendering techniques
is left out to retain focus on the research questions selected.

Visualization of vector fields. In order to visualize different vec-
tor fields, a visualization technique for general vector fields have
been implemented. This visualizer supports visualization of two
concurrent fields. One field, called the scalar field is simply scaled
and written to the result. This is typically used to visualize scalar
fields containing only a R-component such as vorticity and pres-
sure. Scalar fields can also be used to visualize multi-component
textures, e.g., images that have been advected through the flow.

The other field that is visualized is called the vector field. The R-
and G-components of the vector field is mapped to G and B of the
result. This field is typically used to visualize some 2D field, such
as the velocity field.

The visualizer also supports masking of boundaries. Although a
very simple technique, this have proven to be sufficient to show
many details in the underlying fields is able to clearly show the
relationship between two fields. Figure 4.6 shows a screenshots
from a visualization of a velocity and a pressure field.

Dye is the simplest form of simulation. This is implemented using
some initial image that is simply advected through the velocity field
without affecting it. The technique is a pure visualization method,
and is implemented for visualization of different properties with
a high level of control. The application also supports injection of
dye by applying them with the mouse or advection of some texture
through the flow. Figure 4.7 shows an example of visualization
using this technique.

4.5. TRANSPORT OF QUANTITIES 45

Figure 4.6: Visualization of pressure as the scalar field (red) and ve-

locity as the vector field (green and blue). Notice that green conforms

to velocity in the x-direction, while blue is velocity in y-direction.

Figure 4.7: Visualization using advection of an initial image (left).

The right image shows the situation after a little while.

46 CHAPTER 4. INCOMPRESSIBLE NAVIER-STOKES

4.6 Implementation

Due to the use of operator splitting, one time step in the simula-
tion is performed by a number of small programs that form several
stages. One stage typically conforms to one term in the incom-
pressible Navier-Stokes equations, but can also be artificial com-
putations, such as vorticity confinement. All computation is per-
formed by the GPU using fragment programs. Most of these pro-
grams are small and executes very efficiently, however there are
some programs that are critical to performance. Boundary con-
ditions must be applied after all stages affecting the velocity field
in the simulator to ensure that the result remains valid with re-
spect to the boundary conditions. Boundary conditions must also
be applied after each iteration in the iterative solvers, resulting in
boundary conditions being applied many times per time step. Since
boundary conditions are applied frequently, the mechanism for do-
ing so must be as efficient as possible. Such an implementation is
presented in Chapter 6. The iterative solvers used to compute solu-
tions of the discrete Poisson equations must also be efficient. Effi-
cient solvers for these terms are reviewed in Chapter 5. Figure 4.8
on the next page shows the workflow for the simulator. Some of
the stages in the simulator can be enabled and disabled, such as
vorticity confinement and diffusion. Other stages have several im-
plementations, such as calculation of pressure which is supported
by two iterative solvers. Note that not all parts of the simulator
have been mentioned yet, such as the rigid object simulation and
updating boundary conditions. This is discussed in Chapter 6.

4.6. IMPLEMENTATION 47

Programs

Optional operations

Textures

Navier−Stokes steps

Boundaries

Add velocity sourceSource

∂~u
∂t = ~f

Boundaries

Advect

Boundary

VelocityBoundaries

Diffusion

Boundary

Boundary

Vorticity

Boundary

Confine vorticity

Calculate vorticity

Boundaries

Boundaries

Boundary

Calculate divergence

DivergenceCalculate pressure

Boundary

Projection

Boundary Rigid simulation

Velocity

Update boundaries

BoundariesObjects

Boundaries

Boundaries

Objects

∂~u
∂t = ν∇2~u

∂~u
∂t = −(~u · ∇)~u

∇ · ~u = 0

Velocity

Velocity

Vorticity

Figure 4.8: Simulator workflow. Since operator splitting is used, the

simulation is performed in many steps. The red boxes are fragment

programs that perform the computations necessary. The green boxes

are either input or output textures. Dashed, black boxes indicate

an optional step in the simulator, and blue boxes are groups of pro-

grams that conform to a term in the incompressible Navier-Stokes

equations.

48 CHAPTER 4. INCOMPRESSIBLE NAVIER-STOKES

Chapter 5

Solving the Poisson equations

Two Poisson equations arise when solving Navier-Stokes using the
semi-Lagrange discretization:

ν∇2~u = ∂~u
∂t

Viscous diffusion
∇2q = ∇ · ~u Poisson equation for pressure

At first glance they may look rather different, but both can be
solved using the same methods. Most of the work performed per
time step by the simulator involves solving these equations, so effi-
cient solvers are crucial for the performance. This chapter assumes
the domain is a rectangle without internal obstacles. In Chapter 6
it is shown how this assumption can be relaxed so that the simu-
lator supports arbitrary, internal obstacles as well. However, since
the obstacles are treated separately from the solving of the Pois-
son equations by the simulator, this assumption will not pose a
problem.

Recall from Section 4.3 that the discretized diffusion equation reads

(I − rL)uk+1 = uk, (5.1)

where I is the identity matrix and

r =
ν∆t

∆x2
.

This equation uses the intermediate velocity field as the right hand
side and computes new velocity values. The discretized pressure
equation reads

1

∆x2
L~q = ~g. (5.2)

49

50 CHAPTER 5. SOLVING THE POISSON EQUATIONS

The right hand side ~g is formed by stacking columns of ∇ · ~u on
top of each other (~u is in this case the velocity resulting from the
last operation). The vector of unknowns, ~q, is formed in a similar
fashion. Both the discrete diffusion equation (5.1) and the discrete
pressure equation (5.2) involves the Laplacian matrix,

L =







































−4 1 0 · · · 0 1 0 0 0 0 0 0

1 −4 1 0 · · · 0 1 0 0 0 0 0

0 1 −4 1 0 · · · 0 1 0 0 0 0

· · · 0 1 −4 1 0 · · · 0 1 0 0 0

0 · · · 0 1 −4 1 0 · · · 0 1 0 0

1 0 · · · 0 1 −4 1 0 · · · 0 1 0

. . .
. . .

. . .
. . .

. . .

0 0 1 0 · · · 0 1 −4 1 0 · · · 0

0 0 0 1 0 · · · 0 1 −4 1 0 · · ·
0 0 0 0 1 0 · · · 0 1 −4 1 0

0 0 0 0 0 1 0 · · · 0 1 −4 1

0 0 0 0 0 0 1 0 · · · 0 1 −4







































. (5.3)

Clearly, (5.1) and (5.2) are very similar and both matrices L and
(I − rL) can be expressed as M (α, β) = M:

M =







































α β 0 · · · 0 β 0 0 0 0 0 0

β α β 0 · · · 0 β 0 0 0 0 0

0 β α β 0 · · · 0 β 0 0 0 0

· · · 0 β α β 0 · · · 0 β 0 0 0

0 · · · 0 β α β 0 · · · 0 β 0 0

β 0 · · · 0 β α β 0 · · · 0 β 0

. . .
. . .

. . .
. . .

. . .

0 0 β 0 · · · 0 β α β 0 · · · 0

0 0 0 β 0 · · · 0 β α β 0 · · ·
0 0 0 0 β 0 · · · 0 β α β 0

0 0 0 0 0 β 0 · · · 0 β α β

0 0 0 0 0 0 β 0 · · · 0 β α







































. (5.4)

The discrete pressure equation can be expressed using M by letting
L = M(−4, 1), so the equation reads

1

∆x2
M(−4, 1)~q = ~g. (5.5)

The discrete diffusion equation can be expressed using M by

M(1 + 4r,−r)uk+1 = uk. (5.6)

5.1. THE JACOBI ITERATIVE SOLVER 51

yk
i,j

yk
i,j+1

yk
i,j−1

yk
i−1,j yk

i+1,j yk+1

i,j

Figure 5.1: The stencil for updating a value of a cell using the Jacobi

iterative method.

Many optimized methods exist to solve these systems, and sev-
eral considerations must be made when choosing a method for
use on the GPU. To minimize overhead associated with initiating
rendering, it is desirable with a method that requires as few iter-
ations as possible. Also, as boundary conditions are applied after
each iteration of the Poisson solver, the number of iterations ne-
cessary is crucial for the performance. Another desired property is
that the method achieves high arithmetic intensity so the execu-
tion is not stalled when waiting for texture reads. Also, readback
should be avoided as this generally is a huge performance bot-
tleneck. Last, but not least, the coefficient matrix of the Poisson
systems are known in advance and should not be stored on the
GPU to save texture lookups. Two iterative solvers have been im-
plemented, namely the Jacobi iterative solver and the successive
overrelaxation iterative solver.

5.1 The Jacobi iterative solver

The Jacobi iterative solver is suitable for GPU implementation and
is very simple to implement. The iteration is defined as

yk+1
i =

1

aii

(

bi −
∑

j 6=i

aijy
k
j

)

, (5.7)

which approximates the system A~y = ~b. The solver requires quite a
few iterations to converge satisfactory. The strength of the method
is that it is straightforward to implement. It also allows for great
control, in the sense that only a few iterations can be executed

52 CHAPTER 5. SOLVING THE POISSON EQUATIONS

uk+1

Pu′ = uk

swap(uk, u′)
m iterations

uk+1

uk

Figure 5.2: The Jacobi solver reads ~u from one texture and writes the

updated ~u to another texture, and swaps the two textures after each

iteration.

when there is a lack of computational resources or precision is of
little interest. Since the solver is explicit, it can easily be implemen-
ted on a GPU. For matrices on the form of (5.4), each cell requires
five texture lookups per iteration. All required cells are neighbours
of a center cell (see Figure 5.3), so it can be assumed that cache
hit ratio is high. The cell values are scaled and summed together
to form a result. When considering the discrete general Poisson
coefficient matrix (5.4) and the Jacobi iteration formula (5.7), the
expressions sums to

yk+1
i,j =

1

α
bi,j −

β

α

(

yk
i−1,j + yk

i+1,j + yk
i,j−1 + yk

i,j+1

)

. (5.8)

The Jacobi solver is implemented using a ping-pong strategy between
two buffers. One buffer is used for input and one for output. After
each iteration the roles of the buffers are swapped, such that the
updated buffer is used as input for the next iteration. Figure 5.2
illustrates the algorithm.

When using the Jacobi iterative solver to approximate a solution
for the discrete viscous diffusion equation, both the unknowns ~y
and the right hand side ~b are the velocity field ~u. Matrix coefficients
are α = 1 + 4 ν∆t

∆x2 and β = − ν∆t
∆x2 . Experiments have shown that

30-40 iterations is a good compromise between performance and
accuracy. As mentioned in Section 4.2, for many purposes, fluids
can be simulated as an inviscid fluids. For such fluids ν = 0, so the
viscous diffusion equation is reduced to ∂~u

∂t
= 0. This cancels out

the viscous term in the incompressible Navier-Stokes equations.
Due to the relative heavy computations necessary to compute a
solution of the discrete viscous equation, this may often be a good

5.2. THE SUCCESSIVE OVERRELAXATION SOLVER 53

option to save computation and thereby increase performance.

The Jacobi solver can also be used to solve the pressure equation,
but as optimizations can be done for this equation and the fact
that a solution always must be computed in order to perform the
projection step, a more efficient solver has been implemented for
this purpose.

5.2 The successive overrelaxation solver

The successive overrelaxation (SOR) solver improves Jacobi itera-
tion in two ways. The first improvement is that it always uses the
most recent data available. This can be expressed as two sums, one
for the already calculated cell values and one for the uncalculated
cell values:

yk+1
i =

1

aii

(

bi −
∑

j<i

aijy
k+1
j −

∑

j>i

aijy
k
j

)

. (5.9)

This iterative method is called the Gauss-Seidel iterative method.
It cannot be straightforward parallelized, since the update of a cell
depends on cells that may be in the progress of being updated
themselves. By exploiting the structure of the Poisson problem,
this can be avoided. Each cell is dependent on the value of the
cell itself at the previous iteration and the four direct neighbours.
In the black-red scheme, every other cell is marked as black and
red. This is utilized as red cells only depend on black neighbours
and vice versa (see Figure 5.3). Each iteration is split in two, one
that uses the red cells to update black cells and one that uses the
calculated black cells to update the red ones. This is done using
the following scheme:

yk+1
i =















1

aii

(

bi −
∑

j 6=i aijy
k
j

)

black cells

1

aii

(

bi −
∑

j 6=i aijy
k+1
j

)

red cells

.

First, the black cells are updated in parallel using values from the
previous iteration, and then the red cells are updated using the
newly calculated black cells.

54 CHAPTER 5. SOLVING THE POISSON EQUATIONS

(i+ 1, j)(i− 1, j) (i, j)

(i, j + 1)

(i, j − 1)

Figure 5.3: The left figure shows Poisson equation stencil. Update

of a cell value depends on values of the four direct neighbours and

the cell value itself at previous location. The right figure shows the

red-black scheme. Red elements only depend on black ones and vice

versa.

The second improvement SOR uses is to introduce an overrelaxa-
tion factor. The idea behind this is that if a direction cki is a good
direction to move to make yk

i a better solution, the approximation
should move further in that direction than it would do when using
Gauss-Seidel. The overrelaxation factor ω specifies how much to
move in the direction known:

yk+1
i = (1 − ω)yk

i + ωcki . (5.10)

As ω < 1 corresponds to underrelaxation and ω = 1 corresponds to
Gauss-Seidel, ω is always larger than 11. It has also been shown
that the method fails to converge when ω ≥ 2 [Lyc06]. Altogether,
the SOR method reads

yk+1
i =















(1 − ω)yk
i + ω

[

1

aii

(

bi −
∑

j 6=i aijy
k
j

)]

black cells

(1 − ω)yk
i + ω

[

1

aii

(

bi −
∑

j 6=i aijy
k+1
j

)]

red cells

.

When extending ~y to 2D and applying this method to the discrete
Poisson coefficient matrix (5.4), the expressions sums up to

yk+1
i,j =







(1 − ω)yk
i,j + ω

α
bi,j − ω β

α

(

yk
i−1,j + yk

i+1,j + yk
i,j−1 + yk

i,j+1

)

black cells

(1 − ω)yk
i,j + ω

α
bi,j − ω β

α

(

yk+1
i−1,j + yk+1

i+1,j + yk+1
i,j−1 + yk+1

i,j+1

)

red cells

.

When using SOR to approximate solutions to the discrete pressure
equation, the unknown field y equals the pressure field q used to

1Underrelaxation can be used to establish convergence for diverging iterative
processes.

5.3. CONVERGENCE OF SOR AND JACOBI 55

project the velocity field onto its divergence free part. The right
hand side b is the divergence of the velocity field, that is ∇· ~w where
~w is the non-divergence free intermediate velocity field. The matrix
coefficients are α = − 4

∆x2 and β = 1

∆x2 .

The overrelaxation-factor ω is central factor when using SOR. It
has been proven that the optimal choice for the Poisson prob-
lem [Lyc06] is

ωopt =
2

1 + sin (π∆x)
. (5.11)

5.3 Convergence of SOR and Jacobi

This section will investigate the convergence properties and the
time complexities for the Jacobi method and the SOR method.
First, error estimates are introduced and some plots shown to give
an impression of the convergence properties of the two methods.
Next, the time complexities are deduced and it is proven that the
error when using Jacobi always is larger than, or equal to, the er-
ror when using SOR to compute an approximation to the solution
of the discrete pressure equation.

Error estimates. The Jacobi iterative solver decreases the error of
an approximation to the solution of the discrete pressure equation
by a factor ρJ(n) < 1, where n× n is the size of the domain. It turns
out that the error factor can be expressed by [Deh96]

eJ(m) ≤ (ρJ(n))meJ(0), (5.12)

where m is the number of iterations taken, ej(0) is the inital error,
and

ρJ(n) = cos

(

π

n + 1

)

(5.13)

≈ 1 −
1

2

(

π

n+ 1

)2

, when n is large. (5.14)

This factor approaches 1 as n grows. The error is defined as the
squareroot of the sum of the error squared at each grid-point:

e(m) =

√

∑

i,j

(

si,j − xm
i,j

)2
, (5.15)

56 CHAPTER 5. SOLVING THE POISSON EQUATIONS

where s is the exact solution and xm is the approximation after m
iterations.

The SOR iterative solver has better convergence properties than
Jacobi. When using the optimal relaxation parameter (5.11), it can
be shown that a SOR iteration decreases the error in the approx-
imation by a factor [Deh96]

ρS(n) =

(

cos(π/(n+ 1))

1 + sin(π/(n+ 1))

)2

(5.16)

≈ 1 −
2π

n + 1
, when n is large. (5.17)

After m SOR iterations, the error is reduced by factor

eS(m) ≤ (ρS(n))meS(0). (5.18)

Both ρJ and ρS approach 1 as n → ∞, so convergence slows down
as n grows. However, the rate of slowdown is less for SOR than for
Jacobi, as seen in the left plot of Figure 5.4. Note that the axis for
number of iterations is logarithmic, so using the SOR method re-
quires an order of magnitude less iterations than using the Jacobi
method. The right plot in Figure 5.4 shows the relation between
precision and iterations required for a 256×256 grid. From this plot
it is clear that relative growth in iterations relative to precision is
similar. Since the growth relative to grid size is larger for Jacobi
than SOR, and the growth relative to precision is equal for the two
methods, it can be stated that SOR requires increasingly fewer it-
erations relative to Jacobi as grid size increase. Now follows two
proofs to support these claims.

Time complexities. Using ρJ and ρS, expressions for the number
of iterations m necessary to get a desired precision ξ can be found:

ξ > ρ(n)m,

m <
ln(ξ)

ln(ρ(n))
.

Replacing ρ(n) with ρJ(n) and ρS(n), the approximations for the
number of iterations required for the two methods appear:

5.3. CONVERGENCE OF SOR AND JACOBI 57

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
810

0

10
10

10
20

10
5

10
15

Gridsize (n)

Ite
ra

tio
ns

 (
m

)

Iterations required to achive ξ = 0.1

Jacobi
SOR

0.10.20.30.40.50.60.70.80.9
10

0

10
5

10
1

10
2

10
3

10
4

Precision (ξ)

Ite
ra

tio
ns

 (
m

)

Iterations required for a 256×256 grid

Jacobi
SOR

Figure 5.4: The left plot shows the approximate number of iterations

required to achieve ξ = 0.1 for a given grid size. The right plot shows

the approximate number of iterations required to achieve a desired

precision for a 256x256 grid.

mJ ≈ ln(ξ)/ ln

(

1 −
1

2

(

π

n+ 1

)2
)

Jacobi,

mS ≈ ln(ξ)/ ln

(

1 −
2π

n+ 1

)

SOR.

Using these approximations and the identity

ln(1 − x) = −x−
x2

2
−
x3

3
− · · · ,

time complexities of the Jacobi and SOR iterative solvers can be es-
tablished. To reduce the error of an approximation to the discrete
pressure equation by a given factor, the Jacobi method requires
O(n2) iterations while the SOR method only requires O(n) itera-
tions [SB93]. Each iteration requires O(n2) operations, so Jacobi
requires O(n4) operations to achieve a given precision, while SOR
requires O(n3) to achieve the same precision. This is potentially a
huge performance boost, and linear increase in iterations required
to achieve a given precision allows for simulation on larger grids
without too much loss in precision.

Convergence. It can also be proven that the error of using the
SOR method with optimal ω always is equal or smaller than the
error of using the Jacobi method. Note that this also is a con-
sequence of the time complexities derived above. However, this will
be shown by proving that SOR always reduces the error with an

58 CHAPTER 5. SOLVING THE POISSON EQUATIONS

factor equal to, or smaller than, the factor from Jacobi (recall that
the error is reduced more when the factor is small), or in mathem-
atical terms

ρJ (n) ≥ ρS(n). (5.19)

First, let α = π/(n + 1) and calculate the difference between ρJ(n)
and ρS(n):

ρJ(n) − ρS(n) = cosα−

(

cosα

1 + sinα

)2

= cosα

(

1 −
cosα

(1 + sinα)2

)

.

Since n ∈ [1,∞) it is clear that α ∈ (0, π/2]. Then,

cosα

(1 + sinα)2
∈ (0, 1] ,

so
ρJ(n) − ρS(n) ≥ 0. (5.20)

This proves that the convergence using the SOR method always is
better, or as good, as when using the Jacobi method. In addition,
it is clear from the approximations (5.14) and (5.17) that the error
reduction factor for the Jacob method approaches 1 much more
rapidly than the reduction factor for the SOR method.

5.4 A GPU-optimized SOR solver

Since computing the solutions to the Poisson equations is such a
major part of the simulation, it is crucial that the solvers are as
efficient as possible. I have implemented an SOR solver optimized
for the pressure equation. Extending the implementation to solve
the implicit viscous diffusion equation will be straightforward.

The SOR solver utilizes the red-black structure of the Poisson prob-
lem by packing the data in a manner efficient for lookup and up-
dating values. It also uses a large overrelaxataion parameter ω,
thereby increasing the rate of convergence. The SOR solver is im-
plemented on the GPU as three separate operations:

1. Pack the divergence texture.

5.4. A GPU-OPTIMIZED SOR SOLVER 59

p

m iterations
Lp′ = (∇ · u)′

SOR
∇ · u

Pack

p′

Unpack

Figure 5.5: The SOR algorithm. Divergence is packed in a red-black

fashion, and m iterations of SOR is performed to find packed pres-

sure, p′. This texture is unpacked to form the result, pressure p.

2. Compute the solution to the discrete pressure equation using
SOR.

3. Unpack the pressure texture for usage later.

Figure 5.5 illustrates how the algorithm works. Each of the steps is
implemented using a separate shader. Now follows an introduction
to these shaders, where the figures in the margin below refers to
Figure 5.5.

Packing. The first shader converts a single-component texture
into a four-component texture suitable for red-black computation.
More specifically, the shader is used to pack the pre-calculated di-
vergence to the format used by the SOR solver. The packing scheme
used packs a scalar field by separating red and black cells to sep-
arate parts of an intermediate texture. More specifically are black
cells stored in the left half of the texture and red cells are stored
in the right half. Next, 2×2 blocks of the intermediate texture are
stored in a single texel holding four values, reducing the size of the
texture holding the data from n × n to n/2 × n/2. The actual im-
plementation does not utilize an intermediate texture. Figure 5.6
illustrates the result of the packing.

The packing algorithm is based on a fragment program that cal-
culates coordinates and fetches the texels to store in its R, G, B
and A-components. If c is the coordinate of the fragment that is

60 CHAPTER 5. SOLVING THE POISSON EQUATIONS

Figure 5.6: Packing of the divergence and pressure texture. The

texture is converted from a single-component texture (left) into a four-

component texture (right) of half the size in each dimension. The

texture is split in two parts, one for red elements and one for black

elements, making updates very efficient.

being processed and dim is the dimension of the input texture, the
algorithm for packing the red or black cells of a 2×4-block into a
single fragment is:

1. Determine if the fragment is in the red or black part of the
output by considering if the x-coordinate is more or less than
half the dimension (black if less).

2. Calculate coordinate vector. This vector points to the coordin-
ate of the texel that will be stored in the red component.

• For fragments holding black cells this is 〈4c.x, 2c.y〉.

• For fragments holding red cells this is 〈4(c.x− dim/2), 2c.y〉.

3. Fetch texels from input texture. The following offsets are used
to fetch values for the respective components (see Figure 5.7):

• For fragments holding black cells: R: 〈0, 0〉, G: 〈2, 0〉, B : 〈1, 1〉
and A: 〈3, 1〉.

• For fragments holding red cells: R : 〈0, 0〉 , G : 〈2, 0〉 , B : 〈−1, 1〉
and A : 〈1, 1〉.

Note that the actual computation is performed without branching
to maximize performance.

By packing in this manner, cache hit ratio should be improved as
the input texture range can be specified to cover only the texels

5.4. A GPU-OPTIMIZED SOR SOLVER 61

R G
〈0, 0〉 〈2, 0〉

B
〈1, 1〉

A
〈3, 1〉

R G
〈2, 0〉〈0, 0〉

〈−1, 1〉
B A

〈1, 1〉

Figure 5.7: Illustration of the offsets used when fetching texels

to a black fragment (left) and a red fragment (right).

necessary for calculation (that is, red texels when computing black
ones, and vice versa). Specifying the texture range improves pre-
fetching, thus improving the performance. Another advantage is
that only half the domain needs to be processed when computing
the values of cells of a given color in the SOR iteration. If no pack-
ing were to be used, the whole domain would have to be processed
when calculating values of cells of each color. In this case, val-
ues for all cells of the unselected color would have to be discarded.
This can be done at an early stage in the fragment shader, but
due to the SIMD nature of the fragment processors, the discarding
processors would have to wait for the rest of the processors to com-
plete before new fragments can be processed. When assuming that
the processors process fragments in a spatially coherent block-wise
manner, roughly half of the fragment processors would be idle or
processing results that would be discarded. Packing also enables
the GPU to utilize its full processing potential, by utilizing the four
long vectorized design of the GPU. Therefore, the red-black-packing
is a very good method of packing the data for the SOR algorithm.

SOR iteration. After the divergence field has been packed in a
red-black fashion, multiple SOR iterations are performed. Each
SOR iteration is split into one pass for updating black cells using
red cells, and one for updating red cells using the newly computed
black cells. Since cells are separated by their color, updating cells
of a given color is done by drawing a quad covering the part of the
texture that conforms to this color. This effectively filters out cells
from being processed when they should not be updated. Figure 5.8
illustrates one SOR iteration.

When using the red-black scheme, the new value of a cell is de-

62 CHAPTER 5. SOLVING THE POISSON EQUATIONS

Update black elements

xkxk → xk+1

Update red elements

xk+1 xk → xk+1

Figure 5.8: One SOR iteration. The iteration is split into two passes,

one that updates the black cells to timestep k + 1 using red cells

computed for timestep k (left), and one that updates the red cells to

timestep k + 1 using the newly calculated black cells (right).

pendent on the previous value of the cell and its direct neighbours
which is of the opposite color of the cell itself. Due to the pack-
ing scheme used, neighbours are located in the half of the texture
that is not being processed. Five texels are fetched from this tex-
ture to retrieve the neighbours of the cells of the fragment being
processed. In addition the texel conforming to the cells being up-
dated are fetched. Figure 5.9 illustrates the texels that contains
neighbours in the packed texture. Each of the cells of the current
fragment are updated using different components of the fetched
texels. Figure 5.10 shows two stencils for updating the result. No-
tice that the stencil differs when updating the red and the black

Figure 5.9: Illustration of what texels to fetch when updating the

cells marked with hollow circles. Crosses marks a selected cell and

its neighbours in both figures. Note that not all elements of the texels

fetched in the packed case is used to update the marked cells.

5.4. A GPU-OPTIMIZED SOR SOLVER 63

rblack = wG + nB + cR + cB

rblack

rred = cR + nB + cG + cB

rred

Figure 5.10: Stencils for updating the packed pressure texture. The

left stencil is for updating the R-component of the black cells, and

the right stencil is for updating the R-component of the red cells. The

variables refer to the direction from the center cell, that is north, east,

south, east or center. The subscripts refer to the components of the

texels, that is R, G, B or A.

cells. Listing 5.1 lists some of the code used by the SOR shader.
Note that the texture coordinates used are computed earlier in the
shader.

As mentioned in Section 5.2, the theoretical optimal relaxation
factor is

ωopt =
2

1 + sin (π∆x)
.

However, using this value in the SOR shader leads to “unnatural”
behavior and artificially unstable flow. This may be a consequence
of using discrete arithmetic. Using

ω =
1.9

1 + sin (π∆x)
,

works fine and convergence is still very good. By default, the simu-
lator uses 15 SOR iterations to compute solutions to the pressure
equation. This results in satisfactory results with respect to visual
quality and computational time.

Unpacking. After SOR has completed, the results are unpacked
for utilization by the projection step. This step subtracts the gradi-
ent of the pressure field from the velocity field, resulting in an in-
compressible field. The resulting pressure field may also be used
for visualization purposes.

The unpacking algorithm performs the inverse transformations as
the packing algorithm performs, such that cells are positioned
as they was before they was packed using the red-black packing

64 CHAPTER 5. SOLVING THE POISSON EQUATIONS

1 // Lookup x_ij and right-hand side b

2 const vec4 self = texture2DRect(p, gl_TexCoord[1].xy);

3 const vec4 b = texture2DRect(div, gl_TexCoord[1].xy);

4

5 // Neighbouring texels

6 const vec4 c = texture2DRect(p, cc);

7 const vec4 n = texture2DRect(p, nc);

8 const vec4 w = texture2DRect(p, wc);

9 const vec4 s = texture2DRect(p, sc);

10 const vec4 e = texture2DRect(p, ec);

11

12 // Neighbour stencils

13 vec4 dir;

14 dir.r = isred*(c.r + c.b + c.g + n.b) +

15 isblack*(n.b + c.b + c.r + w.g);

16 dir.g = isred*(n.a + c.a + c.g + e.r) +

17 isblack*(c.r + c.g + c.a + n.a);

18 dir.b = isred*(c.b + c.r + s.r + w.a) +

19 isblack*(c.r + c.a + c.b + s.r);

20 dir.a = isred*(c.b + c.a + c.g + s.g) +

21 isblack*(c.a + c.g + s.g + e.b);

22

23 // SOR iteration

24 gl_FragColor = self + 0.25*omega*(dir - 4.0*self - dx*dx*b);

Listing 5.1: SOR shader. Two sets of texture coordinates are used,

one for fetching divergence values and values from the previous pass,

and one for fetching values of the opposite color. isred and isblack

are constant per pass and either 0 or 1. This is used to avoid if-tests.

5.5. RESULTS 65

scheme. The algorithm can be considered as first converting each
fragment of the four-component texture to 2×2 blocks of an in-
termediate single-component texture. Red and black cells are still
separated in the intermediate texture. This texture is unpacked
by positioning every other red and black cell in the final output,
starting with black cells for odd rows and red cells for even rows
(counting from one). Just as the packing algorithm, the actual im-
plementation does not utilize an intermediate texture in order to
maximize performance.

Boundary handling. Boundary handling will be discussed fur-
ther in Chapter 6, but note that boundaries have not been imple-
mented for the SOR pressure solver. The reason for this is that
a new mechanism for applying boundaries will have to be imple-
mented in order to support boundaries for packed textures. Due to
the time limitation, this has not been implemented. This leads to
“leakage” through the obstacle cells, and must be implemented for
any real-life applications.

5.5 Results

The performance gain from packing pressure and divergence in a
red-black fashion and using an optimized SOR solver is quite high.
Using a 50-iteration Jacobi iterative solver on a 512×512 grid, the
simulation runs steadily at about 15 frames per second. Using a
20-iteration SOR solver for pressure, the simulation runs at about
30 frames per second on an NVIDIA GeForce 7800GT. In addition,
the SOR solver converges faster than the Jacobi solver, resulting in
a more accurate result.

Since the SOR solver does not support boundaries, all perform-
ance results presented are measured without boundary handling
for both the Jacobi and the SOR solver. However, since the bound-
aries are applied after each iteration in the iterative solver, the cost
is proportional to the number of iterations required. Since Jacobi
requires more iterations to achieve an accurate result, the cost of
applying boundary conditions to Jacobi will be higher than the cost
of applying boundaries for the SOR solver.

The divergence after projection is known to be exactly zero on the

66 CHAPTER 5. SOLVING THE POISSON EQUATIONS

Figure 5.11: Error in the resulting velocity field when using Jac-

obi (left) and SOR (right) after 500 time steps using the same initial

conditions. The plots shows the square root of the absolute error to

increase contrast. Red means high error and blue means low error.

entire domain, due to the continuity equation (4.19). Since the
projection-step is very simple, it will not introduce any mentionable
error other than the error for using discrete math. Non-zero diver-
gence value is a consequence of the error in the iterative method
used to compute the pressure. The divergence of the velocity field
after the projection step can therefore be used as a measurement
of the error of the method used to approximate the pressure. Fig-
ure 5.11 shows the error in divergence field after the projection
step for both the Jacobi and the SOR solver. The figure shows the
error in the cover of an obstacle creating unsteady flow. Using the
SOR method gives a slightly smaller maximum error than Jacobi
for the segment of the simulation shown, more precisely the Jacobi
results in a maximum error that is 26% larger than the maximum
error using the SOR solver. The total error is much larger for Jac-
obi than for SOR. The total sum of the absolute error using SOR
for the segment of the result shown is 58% larger when using the
Jacobi solver over the SOR solver. Note that only a segment of the
domain is checked, due to erroneous values near the boundaries
as boundaries are disregarded by the optimized SOR solver. It is
clear that the SOR method leads to more correct results, which
generally results in a better visual result. Figure 5.12 shows an
example of this.

5.5.1 Comparison between Jacobi and SOR

Achieving the same accuracy using the Jacobi solver as the SOR
solver achieves is not possible when requiring simulations to be
performed real-time. Therefore, the accuracy requirement is lowered
when using Jacobi to allow real-time simulation. More specifically,

5.5. RESULTS 67

Figure 5.12: Comparison between simulations using a 40-pass Jac-

obi solver (left) and a 15-pass SOR solver (right) for computing pres-

sure. The inflow and surroundings are the same for both simulations.

SOR tends to give a more lively simulation due to better convergence,

which is clearly shown in the screenshots.

Jacboi and SOR are compared using a 8:3 ratio in the number of
iterations used. This ratio is chosen because using 40 Jacobi it-
erations produces results comparable to the result when using 15
SOR iterations.

Performance gains achieved using the optimized SOR solver over
the Jacobi solver to solve the discrete pressure equation is sub-
stantial. Using SOR typically results in speedups in range 100-
200% over Jacobi. Table 5.1 lists some of the results observed
when measuring the speedup of using the optimized SOR solver
over the Jacobi solver. The trend is clear; the SOR solver performs
increasingly better than the Jacobi solver as the number of itera-
tions and grid size increases.

Very much of the performance gain is a result of the packing and
other optimizations that have been implemented. A plain red-black
implementation of SOR without packing only increases the per-
formance by a fraction of the gain experienced when using the op-
timized SOR. As stated in Section 5.4, this is a result of the fact
that roughly half of the fragment shaders will remain idle at all
times due to the structure of the problem for the unoptimized SOR
solver. Another reason is that the optimized SOR solver utilizes
the four-vector design of the GPUs, the plain red-black implement-
ation only utilizes one fourth of the potential processing power.
Typically, speedup using an unoptimized SOR solver is only about
5-10% compared to the Jacobi solver. Even though there is some
overhead associated with packing and unpacking textures, the op-

68 CHAPTER 5. SOLVING THE POISSON EQUATIONS

Table 5.1: Performance gain using SOR over Jacobi for different

choice of number of iterations and grid sizes. The timings are meas-

ured after 500 time steps.

N Steps (Jacobi/SOR) Jacobi SOR Speedup

256 40/40 4932 ms 4059 ms 22%

256 40/15 4932 ms 2590 ms 90%
256 53/20 6474 ms 2945 ms 120%
256 80/30 9722 ms 3425 ms 180%

512 40/15 18411 ms 6261 ms 194%
512 53/20 24330 ms 6861 ms 254%

1024 40/15 72695 ms 25038 ms 190%

timized version has always proven more efficient, even when using
as few as five iterations. One can expect substantial speedup by
using packing-techniques for Jacobi too, but the convergence prop-
erties remain better for the SOR solver, which therefore should be
preferred.

5.5.2 Analysis of the optimized SOR solver

The major bulk of the work done by the SOR solver is in the SOR
computation itself. Packing and unpacking data is relatively cheap
in comparison. For a simulation using 15 SOR iterations on a
512×512 grid, the distribution of the work done by the solver is
found in Table 5.2. Note that the packing could have been avoided
in some sense if the divergence calculating shader and projection
shader supported the packed format. However, for visualization
and implementation purposes this is left out. The performance
gain for doing so would probably be mentionable, but not compar-
able to the gain already achieved by using SOR over Jacobi, only
< 15% compared to the current optimized solver.

5.6. OTHER SOLVERS 69

Table 5.2: Distribution of work for the SOR solver using on a

512×512 grid after 500 time steps.

Shader Time Relative load

Pack divergence 691 ms 11.7%

SOR calculation 4844 ms 82.4%

Unpack result 346 ms 5.9%

5.6 Other solvers

Many specialized methods exist to compute solutions of the dis-
crete Poisson equation. Several of these methods theoretically out-
perform the SOR solver. A Fast Fourier Transform (FFT) solver
will directly solve the discrete Poisson equation exactly (not con-
sidering floating-point round-off errors). This is a very efficient
solver that can compute the solution in O(log(n2)) operations given
n2 processors [Deh02]. Generally, we are not interested in an exact
solution for real-time simulation and the FFT-solver may therefore
be a bad choice for this purpose.

Multigrid is a very efficient iterative method. It is not as efficient as
the FFT-solver given n2 processors to process data, but the num-
ber of elements will far exceed the number of processors available,
even on GPUs. The multigrid solver converges to a given precision
in O(n2) operations on serial architectures. In other words, the
multigrid solver is theoretically optimal [Deh02].

The presented iterative solvers only transfer information to its dir-
ect neigbours. For proper convergence, information has to travel
back and forth several times. The idea behind multigrid is to use
extrapolated approximations from coarser grids as initial guesses
for the finer grids. The coarse grids are usually of half the dimen-
sion of the finer grid, that is if the original domain Ωh is of dimen-
sion N × N , the coarser grid Ω2h is of dimension N/2 × N/2. This
reduces the number of elements to one quarter. Using extrapolated
coarser approximations as initial guesses for the coarser problems
is applied recursively. At the coarsest level an optional method is
used to compute the approximation to the solution. The process is
illustrated in Figure 5.13. Since each multigrid iteration requires
O(n2) operations and the total running time for the solver also is
O(n2), it is clear that the method converges in a constant number
of iterations. For an introduction to multigrid methods I refer to

70 CHAPTER 5. SOLVING THE POISSON EQUATIONS

Ω4h

Ωh Ωh

Ω2h Ω2h

X0

X1 7→Solve(X0)

X 7→ Solve(X1)

Figure 5.13: The idea behind multigrid. Extrapolation of the approx-

imation of a solution of the coarser version of the problem is used as

an initial guess.

Briggs [Bri].

Chapter 6

Boundary conditions

Simulation on a simple rectangular grid with some fixed bound-
ary is rarely sufficient for real applications. Often it is desirable
with internal obstacles and support for different types of bound-
ary conditions. For some applications it is also desired to have
objects following the flow, e.g., bottles flowing through water and
getting stuck in eddies. A natural extension to this is that the ob-
jects themselves act as obstacles. This requires extra care as the
boundaries are changing, requiring extra work at each time step.
Boundary conditions must be applied after each step in the incom-
pressible Navier-Stokes simulator. The Poisson solvers presented
in Chapter 5 require boundaries to be processed after each itera-
tion. This means that the boundary conditions must be applied a
large number of times each time step, so the mechanism for doing
this must be as efficient as possible.

6.1 Boundaries of arbitrary shape

Applying boundaries of arbitrary shape is a complex operation and
some approximations has been made to allow real-time simulation.
The boundaries are approximated using a small set of linear seg-
ments that are joined together to form a piecewise linear curve.
Approximating arbitrary boundaries with a small set of linear seg-
ments reduces the number of different cases that must be handled
to only a few. This is exploited by precomputing normals and tan-
gents for the set of linear segments available. The precomputed

71

72 CHAPTER 6. BOUNDARY CONDITIONS

Figure 6.1: Boundaries (dotted, thin curve) are drawn using OpenGL

calls and rasterized to pixels (grey squares). From this texture an

approximated piecewise linear curve (bold, black lines) is constructed.

normals and tangents are stored in a texture for rapid lookup, and
used when applying boundary conditions. The boundary mech-
anism consists of two parts, one algorithm for precomputing the
piecewise linear curve that approximates the boundaries and one
algorithm for using the precomputed curve to apply boundary con-
ditions. Now follows a detailed introduction to how the algorithms
work.

Approximating the boundary curve. Boundaries may be drawn
by loading a pre-generated image of the boundaries or using regu-
lar OpenGL vertex calls. The result is rasterized to form a texture
where zeros represent obstacles/boundaries and ones represent
interior cells. The generated texture is processed by a fragment
shader that forms an approximation of the obstacles by joining
eight types of constant curves together (the unit vectors on the x
and y axis in both directions and the four diagonals). The approx-
imated curve formed (see Figure 6.1) is never used directly, only
the normals and tangents will be used, so it is only necessary to
store these attributes for each cell. However, instead of storing the
normals and tangents directly, a cell code is stored for each cell in
a texture instead. This code is calculated by convolving the bound-
ary mask texture with a kernel that is based on the neighbourhood
of each cell (see Figure 6.2). The kernel checks if the direct neigh-
bours (north, south, east and west) are obstacles and generates an
unique code between 0 and 31 for each layout. Figure 6.3 shows an
example of the process. Note that cells lying on the outer border
will not pose a problem as texture coordinates are clamped to the
domain. Due to this clamping, neighbours outside the domain are
treated as obstacles if the cell on the outer border is an obstacle.

6.1. BOUNDARIES OF ARBITRARY SHAPE 73

1

2

4

16

8

Figure 6.2: Boundary code pattern. The pattern is convolved over

an underlying texture where 1 represents interior and 0 represents an

occupied cell, generating an unique code for each case.

Therefore, an obstacle on the outer border will never have a normal
pointing outside the domain.

Precomputed normals and tangents. The generated code tex-
ture is later used to lookup normals and tangents from a precom-
puted texture when applying boundary conditions. The precom-
puted lookup texture is generated offline and contains normals
and tangents for all approximated cases. Because tests showed
that there was virtually no difference in performance between us-
ing a precomputed lookup texture and storing the cell code and
storing the normal and tangent directly, I have chosen to store the

0 0 00

0 0 00

0 0 00

0 0 00

11

1 1

11

1 1

11

1 1

11

1 1

11

1 1

11

1 1

11

1 1

0

0

0

0 0 0

1 1 1

1

1111111

1

0

1

2

4

16

8

6

4

5

6

2

5 1 1 9

11

8

8

102

0 000

0 0 0

00

26

27

27

2521

30 22

3117171731

312828282831

23

23

23

31

313131

31

31

31

31

31

31 31

31

31

31

31

31

31

31

31

Figure 6.3: Generation of cell codes. First a texture where zero means

boundary and one means interior is created (left). Next a kernel (the

middle) is convolved with the generated texture generating a code for

each element, resulting in a texture with cell codes (right).

74 CHAPTER 6. BOUNDARY CONDITIONS

< 0, 1 >
1

< 1, 0 >
11 9

< 1, 1 >

Figure 6.4: The left image shows the case for code 1 and the middle

image shows the case for code 11. For this case the normal is set to

< 1, 0 > since east is between the two other choices. The right image

shows a case where the normal is set to chose an element that has

not been checked if it is an obstacle or not. The thick lines are the

local curve approximations.

code and use a precomputed lookup texture. This is a bit more flex-
ible approach, e.g., since different normal/tangent textures may be
applied for different operations. Another advantage of storing the
code is that it only requires a single-element texture making it very
compact. The code texture is represented using a two-component
16 bits floating point native [NVI05, page 39] texture format and a
four-component 16 bits format is used to store the precomputed
normals and tangents. The code is stored in the red-channel, the
use of the green-channel is explained later.

The precomputed normals and tangents are stored as a 4×4 texture
containing 16 elements, one texel for each case where the center-
cell is an obstacle, that where the cell contained by the fragment
is an obstacle. Cells with code larger than 15 are interior cells
and should not be affected by boundary conditions. The texture
contains four components per texel, where 〈R,G〉 represents the
normal and 〈B,A〉 represents the tangent corresponding to a given
code. The precomputed normals and tangents are determined by
considering what neighbours are obstacles for each of the cases.
Figure 6.4 shows a few examples from the precomputed texture. In
the 3D case the tangent and normal cannot be packed into a four
component texture and some trick will have to be used in order to
represent normal and tangent, e.g., can two textures be utilized or

6.1. BOUNDARIES OF ARBITRARY SHAPE 75

by representing each case by two texels where one texel contains
the normal/offset while the other contains the tangent. It would
also be possible to only store the normal and calculate the tangent
on the fly in the shaders.

Most types of boundaries perform some operations on a neighbour-
ing cell to determine the value of the boundary cell. For such cal-
culations, an offset is necessary in order to determine what neigh-
bouring cell to get values from. In this case the nearest neighbour
in the normal direction is used, that is, the normal is also used as
an offset.

The small size of the pre-computed lookup texture results in that
it easily fits completely in texture cache making the penalty of nor-
mal/tangent lookup very small. This is why storing the actual nor-
mal/tangent instead of the cell code is not more efficient than stor-
ing the cell code.

Ambigious cases. As mentioned above, the algorithm for code
generation only checks the neighbours directly north, south, east
and west. The performance penalty of checking the complete neigh-
bourhood would be neglible when considering the amount of work
done by the rest of the computation each time step, but there is
only a few cases that suffer from problems when discarding neigh-
bours on the diagonal. When two or more elements adjacent to a
boundary are marked as interior, the case is ambiguous and sev-
eral offsets are valid. The offset chosen is the one in the direc-
tion that lies in the middle of the possibilities. When two opposite
offsets are valid, e.g., north and south, one of them is chosen.
This case only occurs when using one-pixel wide obstacles, which
is adviced against since such obstacles will appear to leak. The
reason for this is that the value of each cell is calculated from
its neighbours and cells in one-pixel wide obstacles will be used
for calculation on both sides of the obstacle. The case where two
neighbouring cells share a corner (north and west, south and west,
etc.) and are open, the offset is chosen to be the sum of the offsets
these cells would have generated if they were the only possibility
(see Figure 6.4). The ambiguous cases can lead to problems for
some rare cases, but in practice this is a good solution when the
obstacles do not contain thin lines. Figure 6.5 shows an example
of an obstacle this could have caused some problems for. However,

76 CHAPTER 6. BOUNDARY CONDITIONS

4

2

Figure 6.5: Boundary case 6. East and south element is marked

as interior. In this case offset is set to < −1,−1 > (south-east) even

though this element is an boundary

since the main goal is visual quality this is not an intolerable draw-
back. There are only a few cases that will suffer from this flaw, and
this will most probably not be visible anyways. Therefore, I have
chosen not to look at the complete neighbourhood as this complic-
ates the calculation of the offset-texture significantly as the size of
the offset texture increases from 16 texels to 256, making it some-
what necessary to write a program to generate the normals and
tangents. This texture would probably be too big to fit completely
in cache (recall that the cache probably is of size 8×8), thereby
reducing performance.

Applying boundaries. When applying boundaries, the boundary
code is looked up from the boundary texture. If the code is greater
than 15 the element is not a boundary and the fragment is dis-
carded, leaving the value of the field that boundaries are applied
to unchanged. If not, the offset is looked up from the precomputed
offset texture. This returns four values, where the two first rep-
resent the spatial offset to lookup the new value from. In order to
support zeroing of the interior of the obstacles, the output may be
scaled with clamp(code, 0.0, 1.0) which corresponds to 0 for
the interior of obstacles and 1 else. This is typically useful when
applying boundary conditions for iterative methods where non-zero
values in the interior of the obstacles will spread as more iterations
are applied.

The computations related to boundary conditions are performed
solely on the GPU so no readback to the CPU is necessary. Since
the application supports moving obstacles, the boundaries may
change at each time step. Therefore, the boundaries are drawn

6.2. TYPES OF BOUNDARY CONDITIONS 77

and the boundary code texture is recalculated after each time step.

6.2 Types of boundary conditions

In addition to obstacles of arbitrary shapes, different types of bound-
ary conditions supported is generally required to get a desired ef-
fect. The application supports four types of boundaries: no-slip,
free-slip, outflow and inflow. At no-slip boundaries, no fluid pen-
etrates and the fluid is at rest at the boundary. This means that
the layer of fluid near the surface sticks to the surface. If σn is
the component of the velocity normal to the boundary and σt is
the component in the tangential direction, the no-slip boundary
condition can be described mathematically by

σn(x, y) = σt(x, y) = 0. (6.1)

Free-slip conditions are similar to no-slip, except that there is no
friction at the boundary. A free-slip boundary imposes no drag on
the fluid in contrast to no-slip. Mathematically free-slip is defined
as

σn(x, y) = 0,
∂σt

∂n
(x, y) = 0. (6.2)

On an inflow boundary, the velocity is given such that the bound-
ary acts as a source of velocity:

σn(x, y) = α, σt(x, y) = β. (6.3)

Outflow boundaries simply let the flow pass through with unchanged
velocity, so

∂σn

∂n
(x, y) =

∂σt

∂t
(x, y) = 0. (6.4)

In addition to these, the Poisson solver for pressure utilizes pure
Neumann boundaries, meaning that the change in pressure at the
boundary is zero, or

∂p

∂n
(x, y) = 0. (6.5)

The type of boundary used may be specified in two ways in the
application implemented. As mentioned above, boundaries are
specified by drawing zeros and ones to the red-channel of a two-
component texture. By utilizing the green-channel as a boundary

78 CHAPTER 6. BOUNDARY CONDITIONS

Figure 6.6: Approximation of normals and tangents. The normals

(left) is set to the offset generated for a given cell. I have chosen to use

the tangents in the clockwise direction (right).

type specifier, boundaries of different types may be drawn to the
texture. The shader generating the code texture now has access to
both mask and type of the boundaries by reading both components
of the mask-texture. The type-flag is simply preserved through the
generation of cell code from the mask and is stored in the green-
channel of the code-texture. The type flag is read when applying
boundaries, and the boundary is treated according to the type.

Discretized versions of the boundary conditions are necessary when
implementing them. Arbitrary boundaries are supported so the
boundary conditions must be supported for all shapes, not just
the simple boundaries that surround the domain. The conditions
are not directly defined in the 〈~ex, ~ey〉-direction, but in the

〈

~n,~t
〉

-

direction where ~n is the normal and ~t the tangent of the obstacle.
From now on, these bases will be called XY and NT respectively,
and mappings from XY to NT and back are necessary when apply-
ing the boundary conditions. A vector ~σ ∈ XY can be mapped to
~σ′ ∈ NT and back again using

~σ′ = P−1~σ, (6.6)

~σ = P~σ′, (6.7)

where

P =
[

~n,~t
]

.

As discussed in Section 6.1, the normal is defined by the local ap-
proximation of the boundary. The tangents are stored in the same
texture as the normal are stored, where the R- and G-components

6.2. TYPES OF BOUNDARY CONDITIONS 79

~n ~t

~t

~n

Figure 6.7: Mapping from XY (left) to NT (right).

contain the normals and the tangents are stored in B and A. Given
~n and ~t, the algorithm for applying the boundary conditions can be
implemented in the following manner:

1. Read the neighbouring element ~σn = ~σ(x+ ox, y+ oy) where ~o is
the neighbour offset of the current element.

2. Calculate a projection matrix P =
[

~n,~t
]

and its inverse P−1.

3. Change basis of ~σn ∈ XY to the normal-tangential basis NT

(see Figure 6.7) by

~σ′
n = P−1 ~σn.

4. Apply boundary conditions in the NT-basis. This step will
be discussed for the different types of boundaries later. The
result is stored as ~σ′

c.

5. Change basis back from ~σ′
c ∈ NT to XY using

~σc = P~σc
′.

6. Store ~σc as the new value at the boundary.

All of these steps are performed by one shader. Cells that are not
marked as obstacles are simply discarded, thereby saving output
bandwidth. This requires the use of an if-statement that poten-
tially could be inefficient. However, as boundaries often is of a
certain size it can be assumed that the there is some spatial co-
herence, reducing the chance of idle processors as a result of dif-
ferent branches being processed. Discarding fragments also frees
memory bandwidth for the other processors, reducing memory latency.

80 CHAPTER 6. BOUNDARY CONDITIONS

6.3 Discrete boundary conditions

Now the discretizations of the different types of boundary condi-
tions can be discussed, starting with no-slip.

6.3.1 Discrete no-slip boundary conditions

Recall the no-slip boundary condition:

σn(x, y) = σt(x, y) = 0 (6.8)

For boundaries that are aligned with the x- or y-axis this is simply
obtained by setting the x component to zero in the case of a bound-
ary aligned with the y-axis, and vice versa. The non-zero compon-
ent is set to the negate of the respective component of the neigh-
bouring element. However, since arbitrary boundaries are suppor-
ted, things are a bit more complicated. Boundaries are defined to
lie on the edge between the boundary cell and the nearest neigh-
bour. Since the value at the boundary should be zero, the average
between the neighbour and the boundary element that is processed
should be zero in the normal and tangential direction, or

[

(~σ′
n)n + (~σc

′)n

]

/2 = 0,
[

(~σ′
n)t + (~σc

′)t

]

/2 = 0,
(6.9)

where (~σ′
n)n and (~σ′

n)t are the normal and tangential components
of the neighbour. (~σc

′)n and (~σc
′)t are the same components of the

current element. From the discussion above it is known that ~σ′
c has

to be computed in NT and mapped to XY. By assuming that the
neighbouring element in tangential direction also is a boundary,
the boundary condition for the tangential component is satisfied
by always setting it to zero. The normal component is set to the
negate of the respective component of the neighbouring, yielding

~σ′
c =

[

(~σc
′)n

(~σc
′)t

]

=

[

−(~σn
′)n

0

]

. (Discrete no-slip) (6.10)

Clearly this satifies (6.9). Figure 6.8 shows an example on how the
no-slip boundary condition is applied.

6.3. DISCRETE BOUNDARY CONDITIONS 81

(2, 1)

(1.5, 0.5)

(−
1.5, 0)

(−1.5,−1.5)

Figure 6.8: Applying no-slip boundary conditions. First the normal

and tangent is determined (left) and the problem mapped from XY to

NT. The conditions are applied in NT (middle). Last, the new value of

the cell is mapped back to XY and stored (right).

6.3.2 Discrete freeslip boundary conditions

Freeslip boundary conditions (6.2) are similar to no-slip and can
be treated in the almost same manner. Discretized the condition
reads

[

(~σ′
n)n + (~σc

′)n

]

/2 = 0,
[

(~σ′
n)t − (~σc

′)t

]

/h = 0.

For free slip, no assumption about the element in the tangential
direction is necessary and by solving for ~σc

′, the condition reads

~σ′
c =

[

(~σc
′)n

(~σc
′)t

]

=

[

−(~σn
′)n

(~σn
′)t

]

. (Discrete free slip) (6.11)

This is translated to XY using (6.7).

6.3.3 Discrete outflow boundary conditions

Outflow (6.5) is discretized in the same way as no-slip and free slip.
The discretized version reads

[

(~σ′
n)n − (~σc

′)n

]

/h = 0
[

(~σ′
n)t − (~σc

′)t

]

/h = 0
.

Solving for ~σc
′ yields

~σ′
c =

[

(~σc
′)n

(~σc
′)t

]

=

[

(~σn
′)n

(~σn
′)t

]

. (Discrete outflow) (6.12)

82 CHAPTER 6. BOUNDARY CONDITIONS

+/−

15

0 1 0 0 1 1

10 X 9

1 . . .

1 1 1 1 0 0 1 1 01 1

0

1

210

1

2

1

4

219−15 = 16
(

1 + 1

21 + 1

22 + 1

23 + 1

24 + 1

27 + 1

28 + 1

210

)

Figure 6.9: Binary 16 bit floating-point representation of 31.21. The

number cannot be stored exactly, and the result is 31.203125.

6.3.4 Discrete inflow boundary conditions

Inflow cannot be specified in the same manner as the other bound-
ary conditions as both the magnitude and direction of the inflow
have to be specified. A straightforward solution is to represent the
inflow velocities in a separate texture, but this complicates spe-
cification of boundaries as two textures have to be painted to for
inflow boundaries. Instead, a decomposition of the green compon-
ent of the boundary code texture into magnitude and direction is
used. The integer part (floor(G)) represent the magnitude mul-
tiplied with a constant and the remaining fraction (G - floor(G))
represent the angle divided by 2π. In order to control precision, an
upper limit for magnitude (MAXMAG) and a magnitude granularity
(MAGSCALAR) is defined. The magnitude of a vector is clamped to the
supported range and divided by the granularity. I have set MAXMAG
to 3.0 and MAGSCALAR to 30.0 so magnitude is scaled to [0.0, 30.0]. In
order to separate the inflow from the other types of boundary con-
ditions, 1.0 is added to the G-component such that the component
is guaranteed to be greater than a given threshold.

The algorithm for specifying inflow converts a vector to angle and
magnitude and packs these values into a float. Calculation from
float to vector is performed very frequently in the boundary shader
and must be very efficient. The loss of precision in this conver-
sion is considerable, but acceptable as the visual effect of the error
is very small. In order to examine the precision of the result, it
is necessary to look at the representation of 16 bit floating point
numbers. Recall from Section 2.2.4 that such numbers are repres-
ented in the s10e5 format on NVIDIA GeForce series 6 and 7. Also
recall that the absolute precision is best near zero. Since the trans-
formation splits the number into decimal and fractional part, it is

6.3. DISCRETE BOUNDARY CONDITIONS 83

important to remain some precision in the fractional part. This is
the reason for keeping the result relatively small. Figure 6.9 shows
the representation of 31.21, a relative high value when consider-
ing the maximum which is 32. The unbiased exponential part is 4,
biased by 15 it is 19. The fraction part should now be as close as
possible to 31.21/24 = 1.950625. Since the hidden bit represents 1,
the fraction bits should represent 0.950625. The most significant bit
represents 1

2
, the next bits 1

4
through 1

210 . The closest approximation
is 1.1111001101 in binary or as a decimal, 1.9501953125. Since mul-
tiplying with 16 corresponds to shifting the decimal point four digits
to the right in binary, the result can be represented as 11111.001101.
The left bits represents the magnitude while the right bits repres-
ents the angle. 32 numbers can be represented using five bits,
so in worstcase the angle has precision of 360o/32 = 11.25o, but for
inflows of magnitude < 3.0 the precision is much better.

Since glColor clamps each component to [0.0, 1.0], glTexCoord is
used to specify boundaries. A fragment shader that writes the un-
clamped texture coordinate to the color component of the output is
used to generate the mask texture.

Better packing methods can be developed, however, for this pur-
pose the method described is sufficiently accurate. Note that this
conversion only supports the 2D case, but there is possible to cre-
ate similar transformations for 3D vectors with further decreased
precision. This will require use of 32 bits textures instead of 16
bits.

Listing 6.1 lists the code for conversion from vector to a float and
Listing 6.2 lists code the conversion back again.

6.3.5 Pure Neumann boundary conditions

The Poisson pressure equation requires pure Neumann conditions
when computed [Har03]. This condition reads

∂p

∂~n
= 0,

where p is the pressure field and ~n is the normal to the boundary.
This condition can be approximated using

∂p

∂~n
≈

pn − pc

h
,

84 CHAPTER 6. BOUNDARY CONDITIONS

1 /**

2 * Returns a value between [1.0, MAGSCALAR] for any input v.

3 * Magnitude is clamped to [0.0, MAXMAG] if necassary.

4 */

5 float inflowToFloat(const float x, const float y) const {

6 const float len = sqrt(x*x + y*y);

7

8 // Shift and scale magnitude to [0.0, MAGSCALAR] to preserve

9 // some decimals

10 float sMag = (MAGSCALAR / MAXMAG) * clamp(len, 0.0f,

11 MAXMAG);

12 // Resolve angle

13 float angle;

14 if (x > 0 && y >= 0)

15 angle = atan(y/x);

16 else if (x > 0 && y < 0)

17 angle = 2*M_PI + atan(y/x);

18 else if (x < 0)

19 angle = M_PI + atan(y/x);

20 else if (x == 0 && y > 0)

21 angle = 0.5f*M_PI;

22 else // if (x == 0 && y < 0)

23 angle = (3.0f/2.0f)*M_PI;

24 angle /= (2.0f*M_PI);

25

26 // Form a float mag.angle in [0,MAGSCALAR]

27 const float result = round((MAGSCALAR/(MAGSCALAR +

28 1.0f))*sMag) + angle;

29 // Shift result to 1.0f+

30 return result + 1.0f;

31 }

Listing 6.1: Function that converts a vector to float (C code)

6.3. DISCRETE BOUNDARY CONDITIONS 85

1 vec2 floatToInflow(float val)

2 {

3 val -= 1.0;

4

5 float magPart = floor(val);

6 float mag = MAXMAG * magPart / (MAGSCALAR + 1.0);

7 float angle = (val - magPart) * 2.0*M_PI;

8

9 // Recreate vector

10 return mag*vec2(cos(angle), sin(angle));

11 }

Listing 6.2: Function that converts from float to vector (GLSL code)

where pn is the neighbouring pressure value and pc is the value of
the cell itself. This can very easily be implemented using

pc = pn. (6.13)

This condition will only be used by the pressure solver, and can
therefore be implemented directly by the solver. By reading the
boundary code and type from the boundary code texture, the condi-
tion can simply be applied in the same pass as computation of new
cell values. Each cell is checked to discover boundary cells that
are not inflow or outflow boundary cells. These types are ignored,
as they do not represent solid obstacles. If a cell is an obstacle
cell, the neighbouring offset is looked up just like by the general
boundary mechanism. However, as the pressure field is a scalar
field, the value can simply be copied from the neighbour according
to (6.13) instead of going through a series of transformations.

The performance penalty for using such a mechanism to handle
boundaries is small compared to the penalty when using the gen-
eral boundary mechanism. Branching is used to separate interior
cells and obstacle cells, so the performance penalty grows as the
complexity of the boundaries increases. This is due to the SIMD
nature of the processors, making spatial incoherent branches more
expensive than coherent ones. However, tests using 2000 random
distributed small obstacles showed that the penalty of incoherent
obstacles was next to nothing. On a simulation on a 512×512 grid
with relative complex boundaries, a Jacobi iterative solver using 40
iterations runs at about 20 frames per second when not handling

86 CHAPTER 6. BOUNDARY CONDITIONS

boundaries. Using the general mechanism for applying boundary
conditions, the frame rate drops to about 6 frames per second. The
penalty for using the specialized mechanism is much less, as the
simulation runs at about 13 frames per second using the embed-
ded boundary handling. The time spent to calculate pressure drops
from about 80% to about 62% when using this mechanism. Note
that the values used as neighbours by the optimized mechanism
actually are values from the previous time step. This is a result of
the parallel nature of the GPUs. As several values are computed
simultaneously, there is no guarantee for the values necessary to
apply the boundary conditions are calculated yet. Alternatively, the
mechanism could have been implemented as an optimized shader
that only supports Neumann conditions. Applying boundaries after
each iteration would allow using values from the same step when
applying boundaries. However, much of the performance penalty
associated with the general boundary mechanism is a result of ren-
dering initiating overhead. A separate, optimized mechanism for
Neumann conditions would be subject for this overhead too.

6.4 Non-stationary obstacles

In addition to stationary boundaries, objects flowing through the
flow acting as obstacles are also supported. The simulation of
these flowing obstacles is implemented purely on the GPU using
shaders. This section will first go through the representation and
simulation of the obstacles, and how collision detection with sta-
tionary obstacles is handled. Then, the mechanism making objects
act as obstacles and the visualization technique are explained. The
mechanism is implemented for the 2D case, but can be extended
to the 3D case using the same ideas.

6.4.1 Representation

All attributes of the flowing obstacles are stored in textures. Two
textures are used, one called PropData and another one called
ObjectData. Table 6.1 lists the attributes in the two textures
and in what components of the textures the attributes are stored
in. The position is a spatial coordinate between 〈−1,−1〉 and 〈1, 1〉,

6.4. NON-STATIONARY OBSTACLES 87

Attribute Texture Component(s)

Position PropData R, G
Angular position PropData B
Size PropData A
Velocity ObjectData R, G
Mass ObjectData B
Angular velocity ObjectData A

Table 6.1: Different flowing obstacle attributes and how they are

stored.

while the angular position is measured in radians. The mass is a
dimensionless quantity implemented to support inertia. All flow-
ing obstacles are represented as quads, and size is measured as
distance from the center to the corners of the flowing obstacles in
terms of texels.

6.4.2 Simulation of movement

Several considerations must be made with respect to movement
of the flowing obstacles. Two types of movement should be sup-
ported, spatial and angular. Another important aspect is collision
detection between flowing obstacles and stationary obstacles, so
flowing obstacles do not pass through stationary obstacles.

The implementation of movement is pretty straight forward. Velo-
city ~vk+1 of the flowing obstacles are computed using

~vk+1 = ~vk +
∆t

m+ ∆t
(~vflow − ~vk) , (6.14)

where ~vk the current velocity, ~vflow the current value in the under-
lying velocity-field and m is the mass of the flowing obstacle. Note
that ∆t is added to the mass to support mass less flowing obstacles,
where changes in velocity is immediate.

Computation of angular velocity α is similar to the computation of
spatial velocity:

αk+1 = αk +
∆t

m+ ∆t
(κωflow − αk) , (6.15)

where ωflow is the value of the underlying vorticity-field. The field
is scaled with κ to give some control on how much the flowing

88 CHAPTER 6. BOUNDARY CONDITIONS

obstacles rotate. Tests have shown that κ = 0.1 results in natural
angular movement. The formulas used here have no physical ori-
gin, but yields realistic behaviour. The angular and spatial velocity
approach the values in the underlying fields as time pass (assum-
ing the fields are relatively monotone), which naturally is expected.

Using the computed values for ~v and α makes computing the change
in spatial position, ~p, and angular position, θ, a straight forward
task:

~pk+1 = ~pk + ∆t~vk, (6.16)

θk+1 = θk + ∆tαk. (6.17)

By using modulus, obstacles flowing outside of the domain (i.e.
at outflow boundaries), will reappear on the opposite side of the
domain again.

Using two render targets, one shader is sufficient to calculate the
new velocities and positions of the flowing obstacles in a single
pass. Extra care must be taken when implementing the mechan-
ism as the flowing obstacles act as obstacles themselves. Several
problems arise from this.

Erroneous values in underlying fields. Since the flowing obstacles
act as obstacles themselves, the underlying fields will not have val-
ues at the position of the flowing obstacles, or the values are not
valid. Therefore, velocity and vorticity are averaged from the values
on the corners of the flowing obstacles (see Figure 6.10) instead.

Small values in cover of obstacles. Another problem that arises
from using the flowing obstacles as boundaries and using the aver-
age technique mentioned above, is that there most likely will form
an area behind the flowing obstacles that contains small values as
the area is in cover of the obstacles. Since the averaging technique
uses values outside all corners of the object, the resulting value will
probably be too low or even negative of values on the opposite side
(see Figure 6.11). As the mechanism already is a brute estimate of
the actual movement of objects, this is simply avoided by dividing
by 3 instead of 4 when averaging the values. This will often result
in an over-estimate of the correct value, but for visual purposes
this is a sufficient solution to the problem.

6.4. NON-STATIONARY OBSTACLES 89

Boundary element

Interior element

Figure 6.10: Fetching velocity and vorticity values from underlying

fields. Since flowing obstacles act as obstacles themselves, the val-

ues will be erroneous underneath the obstacles. Instead, values are

fetched from texels one element outside each corner of the obstacle

and averaged.

Figure 6.11: Eddies form behind objects and results in small values

or even values with the opposite sign compared to the values in front

of the objects.

90 CHAPTER 6. BOUNDARY CONDITIONS

Figure 6.12: An artificial “tail” (marked with a circle) with small

values in the velocity field in front of a moving object. The flowing

obstacles flows from left to right. The tail must not be mistaken with

the area with naturally small values in the cover of the obstacle.

Obstacles leave a footprint. When flowing obstacles are advec-
ted through the flow, they will leave a trace of small values in its
path of the underlying fields since they act as obstacles (see Fig-
ure 6.12). This happens because the values in the cover of the
objects are small, as stated in the previous paragraph. When flow-
ing obstacles move over this area, the small values are preserved.
As objects move along, this area will appear again, resulting in the
appearance of a “tail” with small values behind the moving objects.
The effect of this is not visually conspicuous when considering
fields not directly related to the simulation (e.g., a density field).
However, for a better simulation this problem should be avoided
by computing the values of the fields beneath the objects in some
manner, as the “tail” will result in loss of energy.

6.4.3 Avoiding stationary obstacles

It is crucial that the flowing obstacles are able to avoid station-
ary obstacles, such that they do not flow through walls etc. De
Chiara et al. [ECST04] used a force field around obstacles to sim-
ulate obstacle avoidance for a flock of simulated birds. This idea
will be used here too. The force field is generated using a multi-
pass approach. First, the initial field is generated by looking up in
the boundary code texture, generating a field with vectors pointing
outwards from the obstacles. The type of boundary per cell is con-
sidered, such that outflow and inflow boundaries do not appear as
solid walls. Next, the force field is smoothed using multiple passes.
The 3×3 neighbourhood of a cell is smoothed using a Gaussian

6.4. NON-STATIONARY OBSTACLES 91

γ
16

γ
16

γ
16

2γ
16

2γ
16

4γ
16

2γ
16

γ
16

2γ
16

Figure 6.13: Force field before smoothing (left), the stencil used to

smooth the field (middle) and after three passes of smoothing (right).

filter:

G =
1

16





1 2 1
2 4 2
1 2 1



 . (6.18)

In addition, an accelerator γ parameter is introduced. This can be
used to achieve a force field where the magnitude grows as more
passes are applied. Increased magnitude is often desirable to get
sufficiently large force near the obstacles. Tests have shown that
an accelerator parameter γ = 1.5 generally results in vectors that
grows enough to keep flowing obstacles advecting through station-
ary obstacles. The smoothing will result in a force field with gradu-
ally increasing force when approaching obstacles (see Figure 6.13).
The number of passes used to smooth the force field varies, but the
larger the velocities involved in the simulation are, the more passes
must be performed to create a sufficiently strong force field. How-
ever, the more passes is performed, the earlier will the force be ap-
plied as flowing objects are approaching stationary obstacles. This
is not always desirable, e.g., will stationary obstacles that are close
interfere with each other. For most purposes, ten passes seems to
be a good choice.

The force is applied by the same shader that calculates new velo-
cities and positions. When objects move parallel to, or away from
obstacles, no force should be applied. This is determined using the
dot-product between the value of the normalized force field and the
normalized velocity of the flowing obstacle:

= 0, the object is moving parallel to the obstacle, no adjustment
to the velocity is performed.

> 0, the object is moving away from the obstacle, no adjustment
to the velocity is performed.

< 0, the object is approaching the obstacle, adjust velocity such

92 CHAPTER 6. BOUNDARY CONDITIONS

that the object does not crash into (and possible through) the
stationary obstacle.

The result of the product is negated and clamped between 0 and
1 to gradually apply force, rather than using an on/off function.
Mathematically, the operation of applying obstacle force can be ex-
pressed as

~vobstacle = ~vk+1 + φ∆t∆x · ψ(~vk, ~f) · ~f, (6.19)

where φ is a parameter to control how much force is applied (set
to 4 in the implementation, which leads to natural behavior in the
test cases used), and

ψ(~v, ~f) = clamp

(

−
~v · ~f

|~v||~f |
, 0, 1

)

, (6.20)

is the scalar to ensure force only is applied when objects are ap-
proaching stationary obstacles. This mechanism works fine for
most simulations, but for problems that include high velocities or
stationary obstacles that are very close to each other (causing the
force fields of the obstacles to interfere) some adjustments may be
required.

6.4.4 Visualization and updating the boundaries

Although severing two different purposes, visualization and updat-
ing the boundaries are highly related and performed by the same
algorithm.

The visualization technique is rather crude. The PropData-texture
for flowing obstacles is read back to main memory to obtain pos-
ition, angular position and size. The texture is used to draw the
objects using OpenGL calls. Some other technique would probably
be more efficient, such as using pre-initialized vertex buffers with
accompanying texture coordinates, leaving specification of the ac-
tual vertex coordinates to the vertex shader instead. However, due
to simplicity of implementation, the readback approach has been
implemented instead.

Since the obstacles are moving, the boundary textures must be up-
dated after each time step. The mechanism for doing this is rather
simple. Just as stationary obstacles may be initiated by drawing

6.4. NON-STATIONARY OBSTACLES 93

them onto a boundary mask texture through OpenGL calls, moving
obstacles are simply drawn onto the same texture using the same
algorithm used to visualize the objects. Next, the boundary code is
calculated using the same mechanism explained in Section 6.1.

6.4.5 Results

The simulator is able to handle a large number of moving obstacles.
2000 objects can be simulated without any mentionable perform-
ance loss. Using the SOR solver to compute pressure, simulat-
ing 2000 number of objects on a 512×512 grid uses less than 2%
of the total simulation time. However, updating boundaries takes
somewhat longer than when not simulating any rigid objects, and
the time spent by updating boundaries increases from about 5%
to 12%. This can be improved by implementing a more efficient
rendering technique.

The boundary handling mechanism performs well and seems to not
be as dependent on the layout of the obstacles as expected. The
mechanism for applying boundary conditions uses branching to
determine if a cell is an obstacle cell. Spatially coherent branches
are preferred on GPUs, as all fragment processors must process the
same instruction at all times. However, tests have shown that the
penalty for incoherent boundaries is small, leading to predictable
performance.

The simulation is rather robust, and in most cases collisions between
moving and stationary obstacles are handled flawlessly. The move-
ment of the objects seems plausible, although the equations for
calculating the velocity of the objects are not physically correct.
In order to make the simulation of the moving obstacles feel more
natural, they should be able to interfere with each other to some
extent so they do not flock together in a tight spot as they some-
times have a tendency to do in the current implementation. Even
so, for many purposes the techniques presented are sufficient. The
mechanism can, e.g., be used to simulate light obstacles, such as
leafs that advects through a wind field. Another application is sim-
ulation of obstacles following the water flow, getting stuck in eddies
and avoiding stationary obstacles, e.g., rocks.

94 CHAPTER 6. BOUNDARY CONDITIONS

Figure 6.14: An excerpt of the result of a simulation with 2000 mov-

ing obstacles. The left screenshot shows the density field, and the

right field shows the pressure field (red) and the velocity field (green

and blue) at the same number of time steps.

Chapter 7

Summary and results

The aim of this thesis is to present a simulator for the incompress-
ible Navier-Stokes equations that focuses on visual quality rather
than physical correctness. The computation is performed solely
on the GPU, avoiding expensive readback. Support for arbitrary
boundaries is implemented as it is important for real-life applica-
tions to support general domains and interaction with the environ-
ment (e.g., objects passing through the domain). To support applic-
ations such as objects flowing through a water flow, a mechanism
for obstacles moving through the flow is implemented. It is crucial
that the implementation is efficient, allowing real-time simulation
in addition to real-time rendering of the scene the simulation is a
part of.

The implementation of the incompressible Navier-Stokes simulator
on the GPU presented is based on the semi-Lagrange discretization
of the equations. This discretization is unconditionally stable with
respect to ∆t, which can be exploited by allowing arbitrary adjust-
ment of the length of the time step. The time step may be adjusted
to the available processing power by skipping simulation for most
rendered frames and executing simulation passes with larger time
steps every tenth frame for instance. Arbitrary time steps also al-
lows for synchronization of the simulation with some other time
scale (e.g., the time scale of a game).

The semi-Lagrange discretization of the incompressible Navier-Stokes
equations used leads to numerical dissipation. Vorticity confine-
ment has been implemented to reinject energy where it is lost, and
preserves small vortices in the flow. This improves the visual qual-

95

96 CHAPTER 7. SUMMARY AND RESULTS

Table 7.1: Workload for the different simulation operations after 1500

time steps on a 512×512 grid using an optimized 15 iterations SOR

solver and a Jacobi solver using 40 iterations to compute pressure.

Boundary conditions were not handled when computing pressure, as

SOR does not support this. The fluid simulated is inviscid (no diffu-

sion term) and no moving obstacles are simulated.

Operation Jacobi SOR

Time (ms) Load Time (ms) Load

Calculate pressure 54995 78.7% 18423 55.3%

Apply boundaries 6266 9.0% 6272 18.8%

Vorticity confinement 2134 3.1% 2152 6.5%

Update boundaries 1800 2.6% 1850 5.5%

Advect velocity 1199 1.7% 1198 3.6%

Add sources 1056 1.5% 1062 3.2%

Projection 866 1.2% 862 2.6%

Calculate divergence 764 1.1% 764 2.3%

Calculate vorticity 738 1.1% 759 2.3%

ity of the result, making the flow become more “alive”.

The simulator is implemented using a technique called operator
splitting for projection. This results in a simulator consisting of
several stages, each representing one term in the incompressible
Navier-Stokes equation. Each stage consists of a number of sep-
arate operations and together these stages form the complete sim-
ulator. Some of the operations are very lightweight while other
operations require heavy computations.

Table 7.1 lists the workload of the different operations after 1500
time steps. Clearly, the majority of the work performed is com-
puting the pressure. The second most expensive operation is the
boundary mechanism. Therefore, it is desirable that these opera-
tions perform as efficiently as possible. The main areas of focus in
the thesis have therefore been to optimize these steps.

The majority of the computations performed involves solving the
Poisson equations that arise from the discretization. An iterative
SOR solver optimized for solving the pressure equation has been
implemented. This solver has resulted in good performance gains
over the iterative Jacobi solver also implemented. The convergence
properties of the SOR solver results in much more accurate results
than the Jacobi solver achieves using the same number of itera-

7.1. DISCUSSION 97

tions.

Arbitrary boundaries are approximated using a set of predefined
linear segments. By considering if the neighbours of a cell are
obstacle cells or not, an unique cell-code depending on the sur-
roundings of each cell is established. This code is computed for
every cell in the grid used by the simulation and stored in a texture
that is used to efficiently apply boundary conditions. Several types
of boundary conditions are supported, including freeslip, no-slip,
outflow and inflow.

The simulator also supports obstacles that follow the flow. The
movement of the flowing obstacles is calculated using approxima-
tions that results in plausible movement. Collision detection between
stationary obstacles and flowing obstacles has been implemented
using force fields constructed around the stationary obstacles.

7.1 Discussion

This section discusses the research questions asked considering
the results observed. First, recall the research questions asked in
the introduction:

1. Is it plausible that GPUs will be used to handle physics com-
putations in the future, and more specifically, fluid dynamics
simulations?

2. How can solutions of the Poisson equations that arise from the
semi-Lagrange discretization of the Navier-Stokes equations
be computed efficiently on the GPU?

3. Can arbitrary stationary and non-stationary obstacles be in-
corporated in a real-time simulator for the incompressible Navier-
Stokes equations?

Question 1 - GPU physics. Recently, the GPU has been utilized
to compute physics. Computational frameworks for physics sim-
ulation such as Havok are being adapted to use GPUs [Har06] as
the computational engine. AGEIA has released dedicated hard-
ware for performing physics [AGE], but only a handful of games

98 CHAPTER 7. SUMMARY AND RESULTS

supports hardware accelerated physics. GPU vendors such as ATI
and NVIDIA have noticed the interest for dedicated physics com-
putations, and will probably continue to improve support for phys-
ics simulation. Effect physics are very closely related to graphics,
and performing simulations directly on the GPU saves data trans-
fer. The parallel nature of much physics makes the GPU archi-
tecture suitable for physics simulation. As GPUs become increas-
ingly programmable, they can easier be utilized for such compu-
tations. These trends indicate that GPUs will be used for more
physics simulations in the future, and especially physics related to
purely visual effects.

CFD simulations require relatively much computational power, and
it is only in the recent years real-time simulations have been pos-
sible. Much research has been presented to make real-time sim-
ulations possible, and several GPU implementations of CFD simu-
lators have been presented. Harris [Har03] has presented a GPU
implementation that simulates the incompressible Navier-Stokes
equations in GPU Gems, a book that has received much attention
from the game development community. The Havok physics frame-
work also supports some fluid dynamics, a clear indication of the
attention from game developers for such effects. As GPUs become
more powerful, it is increasingly likely that they will be used to
simulate fluids in games too.

Question 2 - Poisson solvers. Several solvers for the discrete
Poisson problem have been presented in this thesis. The Jacobi
method is the simplest of the iterative solvers, but suffers from
bad convergence properties. Boundary conditions must be applied
once per iteration to ensure that the result remains valid, leading
to an extra penalty for using many iterations. The SOR method has
better convergence properties than the Jacobi method. Therefore,
the SOR solver requires fewer iterations to converge to a satisfact-
ory accuracy. A straightforward implementation of SOR leads to
poor utilization of the processing power of the GPUs, so an effi-
cient packing scheme has been implemented. Typically, perform-
ance gains in the range 100-200% are experienced when using the
optimized SOR solver over the Jacobi solver. However, the pack-
ing scheme used makes implementation more difficult. Therefore,
boundary support for the optimized SOR solver has been left out

7.2. FUTURE WORK 99

due to time limitations.

The SOR solver is a fairly efficient solver for the discrete Poisson
equation. However, several theoretically more efficient solvers ex-
ist. Multigrid converges even faster than SOR, in fact, it converges
in theoretically optimal time on serial architectures. Using a multi-
grid method would probably improve the performance even further,
and would probably result in better accuracy without increasing
workload.

Question 3 - Arbitrary boundaries. In order to support advanced
interaction with the environment, support for arbitrary boundar-
ies has been implemented. The implementation clearly shows that
support for arbitrary boundaries can be implemented for real-time
incompressible Navier-Stokes simulations on the GPU. The bound-
ary mechanism pre-processes the boundaries in the simulation
to allow boundary conditions to be applied in an efficient man-
ner. Specifying boundary conditions is very easy and flexible in the
sense that several types of boundary conditions are supported.

The simulator is able to handle real-time simulation of several
thousands concurrent obstacles that follow the flow. The flowing
obstacles interact with the stationary obstacles, avoiding obstacles
passing through walls.

7.2 Future work

This section mentions some of the most important improvements
that can be implemented to improve the performance and visual
result of the simulator.

Support for boundaries by the SOR solver. To be of any ac-
tual usage, support for boundaries must be implemented for the
SOR solver for computation of pressure. This mechanism should
be implemented in the same manner as the embedded boundary
handling mechanism implemented for the Jacobi solver. More spe-
cifically, boundary conditions should be performed “on the fly”, by
the shader computing the values for the next SOR iteration to re-
duce overhead associated with render initialization.

100 CHAPTER 7. SUMMARY AND RESULTS

More efficient diffusion simulation. Diffusion has not received
much attention in this thesis in order to narrow the field of focus.
However, since diffusion can be computed using the same tech-
niques used to compute pressure, applying SOR to diffusion may
lead to similiar performance and accuracy gains.

Multigrid. Multigrid methods should be very suitable for imple-
mentation on GPU as interpolation and extrapolation are a sub-
stantial part of the algorithm. Both of these can be implemented
efficiently on the GPU as they closely resemble texture filtering.
Bolz et al. [BFGS03] have successfully implemented a multigrid
solver for sparse matrices and applied this to the discrete Poisson
equation. Implementing an optimized multigrid solver for the dis-
crete Poisson equation with real-time simulation in mind would be
very interesting, and can potentially boost performance even fur-
ther. Some optimizations will probably have to be implemented to
achieve maximum performance, e.g., packing of textures.

Improved simulation of flowing obstacles. The mechanism for
simulation of flowing obstacles should be simplified, to avoid ex-
cessive use of configurable parameters. Interaction between sta-
tionary obstacles and flowing obstacles are supported, but it is also
desirable that flowing obstacles interact with each other. Another
important improvement is moving implementation of rendering of
the flowing obstacles from the CPU to the GPU, avoiding readback
and expensive OpenGL calls. Texturing of obstacles and obstacles
of various boundary types and shapes should also be implemented.

Support for 3D simulations. Support for 3D simulations is de-
sirable for most applications, as most of the applications that is
subject to the use a fluid simulator, e.g., games, are based on 3D
graphics. Full fledged 3D simulations are still too expensive on
grids of reasonable size. An alternative to full 3D simulation can
be to use 3D extrusion as implemented by Krüger et al. [KW05].

Visualization techniques. This thesis has only focused on sim-
ulation of the incompressible Navier-Stokes equations. No tech-
niques for simulations of real-life phenomena such as smoke and

7.2. FUTURE WORK 101

clouds have been presented. Such extensions are straightforward
to implement and are necessary for usage in real-life applications.

102 CHAPTER 7. SUMMARY AND RESULTS

Bibliography

[AGE] AGEIA. The First Dedicated Physics Processor For

PC Games! http://www.ageia.com/pdf/ds_product_

overview.pdf. [Online: accessed 11-May-2007].

[BFGS03] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. Sparse mat-

rix solvers on the GPU: conjugate gradients and multigrid.

ACM Trans. Graph., 22(3):917–924, July 2003.

[BH] I. Buck and P. Hanrahan. Data parallel computation

on graphics hardware. http://hci.stanford.edu/cstr/

abstracts/2003-03.html [Online: accessed 18-November-

2006].

[Bly06] D. Blythe. The Direct3D 10 system. In SIGGRAPH ’06: ACM

SIGGRAPH 2006 Papers, pages 724–734, New York, NY, USA,

2006. ACM Press.

[Box] The Engineering Tool Box. Material Properties. http://www.

engineeringtoolbox.com/material-properties-t_24.

html. [Online: accessed 13-June-2007].

[Bri] W. L. Briggs. A Multigrid Tutorial. http://www.llnl.gov/

CASC/people/henson/mgtut/ps/mgtut.pdf. [Online: ac-

cessed 4-July-2007].

[Bro07] A. R. Brodtkorb. A MATLAB Interface to the GPU. Master’s

thesis, Department of Informatics, Faculty of Mathematics

and Natural Sciences, University of Oslo, May 2007.

[Buc05a] I. Buck. High level languages for GPUs. In SIGGRAPH ’05:

ACM SIGGRAPH 2005 Courses, page 109, New York, NY, USA,

2005. ACM Press.

[Buc05b] I. Buck. Taking the Plunge into GPU Computing. In M. Pharr,

editor, GPU Gems 2, chapter 32, pages 509–519. Addison Wes-

ley, March 2005.

103

104 BIBLIOGRAPHY

[CM05] A. J. Chorin and J. E. Marsden. A Mathematical Introduction

to Fluid Mechanics. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2005.

[Dar03] J. D. Darcy. What Everybody Using the Java™ Program-

ming Language Should Know About Floating-Point Arith-

metic. 2003.

[Deh96] R. C. Dehmel. Lecture notes from CS267: Solving the

Discrete Poisson Equation using Jacobi, SOR, Conjugate

Gradients, and the FFT. http://www.cs.berkeley.edu/

~demmel/cs267/lecture24/lecture24.html, 1996. [On-

line: accessed 13-June-2007].

[Deh02] R. C. Dehmel. Lecture notes from CS267: Applications of

Parallel Computers - Solving Linear Systems arising from

PDEs. http://www.cs.berkeley.edu/~demmel/CS267_

2002_Poisson_1.ppt, 2002. [Online: accessed 6-June-

2007].

[EBL05] D. Etiemble, S. Bouaziz, and L. Lacassagne. Customizing

16-bit floating point instructions on a NIOS II processor for

FPGA image and media processing. Proceedings of the 2005

3rd Workshop on Embedded Systems for Real-Time Multime-

dia, ESTImedia 2005, September 22-23, 2005, New York Met-

ropolitan Area, USA, pages 61–66, 2005.

[ECST04] U. Erra, R. De Chiara, V. Scarano, and M. Tatafiore. Massive

simulation using GPU of a distributed behavioral model of a

flock with obstacle avoidance. In Vision, Modelling and Visu-

alization 2004 (VMV ’04), pages 21–51, November 2004.

[EMF02] D. Enright, S. Marschner, and R. Fedkiw. Animation and ren-

dering of complex water surfaces. In SIGGRAPH ’02: Proceed-

ings of the 29th annual conference on Computer graphics and

interactive techniques, pages 736–744, New York, NY, USA,

2002. ACM Press.

[FK03] R. Fernando and M. J. Kilgard. The Cg Tutorial: The Definitive

Guide to Programmable Real-Time Graphics. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[FM96] N. Foster and D. Metaxas. Realistic animation of liquids.

Graphical models and image processing: GMIP, 58(5):471–483,

1996.

BIBLIOGRAPHY 105

[FM05] J. Fung and S. Mann. Openvidia: parallel gpu computer vis-

ion. In MULTIMEDIA ’05: Proceedings of the 13th annual ACM

international conference on Multimedia, pages 849–852, New

York, NY, USA, 2005. ACM Press.

[FSJ01] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual

simulation of smoke. In SIGGRAPH ’01: Proceedings of the

28th annual conference on Computer graphics and interact-

ive techniques, pages 15–22, New York, NY, USA, 2001. ACM

Press.

[GDN98] M. Griebel, T. Dornseifer, and T. Neunhoeffer. Numerical sim-

ulation in fluid dynamics: a practical introduction. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA,

1998.

[Gee05] D. Geer. Taking the graphics processor beyond graphics. Com-

puter, 38(9):14–16, 2005.

[GGKM06] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha.

GPUTeraSort: high performance graphics co-processor sort-

ing for large database management. In SIGMOD ’06: Pro-

ceedings of the 2006 ACM SIGMOD international conference on

Management of data, pages 325–336. ACM Press, 2006.

[GLGM06] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha.

Memory—a memory model for scientific algorithms on graph-

ics processors. In SC ’06: Proceedings of the 2006 ACM/IEEE

conference on Supercomputing, page 89, New York, NY, USA,

2006. ACM Press.

[Gol91] D. Goldberg. What every computer scientist should know

about floating-point arithmetic. ACM Comput. Surv., 23(1):5–

48, 1991.

[GPU] GPUBench. GPUBench Results. http://graphics.

stanford.edu/projects/gpubench/results/. [Online: ac-

cessed 25-June-2007].

[GZ06] A. Greß and G. Zachmann. GPU-ABiSort: Optimal parallel

sorting on stream architectures. In Proceedings of the 20th

IEEE International Parallel and Distributed Processing Sym-

posium (IPDPS), Rhodes Island, Greece, 25–29 April 2006.

[Har03] M. Harris. Fast Fluid Dynamics Simulation on the GPU. In

R. Fernando, editor, GPU Gems, chapter 38, pages 637–665.

Addison Wesley, 2003.

106 BIBLIOGRAPHY

[Har06] M. Harris. Havok FX: Game Physics Simulation on GPUs. In

SUPERCOMPUTING 2006 Tutorial on GPGPU, November 2006.

[Hav06] Havok. Havok FX™. Technical report, 2006. http://www.

havok.com/content/view/187/77/ [Online: accessed 25-

June-2007].

[HB05] M. Harris and I. Buck. GPU Flow-Control Idioms. In Matt

Pharr, editor, GPU Gems 2, chapter 34, pages 547–555. Ad-

dison Wesley, March 2005.

[HCH03] J. Hall, N. Carr, and J. Hart. Cache and bandwidth aware

matrix multiplication on the GPU, 2003.

[Hil] M. Hilgart. Step-Through Debugging of GLSL Shaders. http:

//facweb.cti.depaul.edu/research/TechReports/

TR06-015.pdf [Online: accessed 10-July-2007].

[HSU+01] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,

A. Kyker, and P. Roussel. The Microarchitecture of the Pen-

tium 4 Processor. Technical report, Desktop Platforms Group,

Intel Corp., 2001.

[JS05] C. Jiang and M. Snir. Automatic tuning matrix multiplication

performance on graphics hardware. In PACT ’05: Proceed-

ings of the 14th International Conference on Parallel Architec-

tures and Compilation Techniques, pages 185–196, Washing-

ton, DC, USA, 2005. IEEE Computer Society.

[KF05] E. Kilgariff and R. Fernando. The GeForce 6 Series GPU Ar-

chitecture. In Matt Pharr, editor, GPU Gems 2, chapter 30,

pages 471–491. Addison Wesley, March 2005.

[KW03] J. Krüger and R. Westermann. Linear algebra operators for

GPU implementation of numerical algorithms. ACM Trans.

Graph., 22(3):908–916, July 2003.

[KW05] J. Krüger and R. Westermann. GPU simulation and rendering

of volumetric effects for computer games and virtual environ-

ments. Computer Graphics Forum, 24(3), 2005.

[LBM+05] A. E. Lefohn, I. Buck, P. S. McCormick, J. Owens, T. J.

Purcell, and R. Strzodka. General Purpose Computation on

Graphics Hardware. In IEEE Visualization, page 121. IEEE

Computer Society, 2005.

BIBLIOGRAPHY 107

[Lyc06] T. Lyche. Lecture notes from INF-MAT3350/4350 - 2006, Uni-

versity of Oslo. 2006.

[Mar04] K.-A. Mardal. Lecture notes from INF5670 - Numeriske met-

oder for Navier-Stokes likninger, University of Oslo. Lecture

1, 2004.

[MB05] T. McReynolds and D. Blythe. Advanced Graphics Program-

ming Using OpenGL (The Morgan Kaufmann Series in Computer

Graphics). Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2005.

[Mic] Microsoft. Reference (DirectX HLSL. http://msdn2.

microsoft.com/en-us/library/bb509638.aspx. [Online:

accessed 6-July-2007].

[Mic04] Microsoft. PCI Express FAQ for Graphics. http:

//www.microsoft.com/whdc/device/display/PCIe_

graphics.mspx, 2004. [Online: accessed 9-May-2007].

[Mic07] Microsoft Corporation. Microsoft DirectX. http://www.

microsoft.com/directx, 2007. [Online: accessed 22-May-

2007].

[NS06] J. Kiel (NVIDIA) and S. Dietrich (Compsite Studios). GPU Per-

formance Tuning with NVIDIA Performance Tools. In Present-

ations from 2006 Game Developers Conference, 2006.

[NVIa] NVIDIA. CUDA Toolkit Version 0.8 Release Notes.

http://developer.download.nvidia.com/compute/

cuda/0_8/NVIDIA_CUDA_SDK_releasenotes_readme_

win32_linux.zip. [Online; accessed 8-May-2007].

[NVIb] NVIDIA. GeForce 7800. [Online; accessed 8-November-2006].

[NVIc] NVIDIA. NVIDIA GeForce 8800 GPU Architecture Overview.

http://www.nvidia.com/object/IO_37100.html. [Online;

accessed 8-May-2007].

[NVId] NVIDIA. The GeForce 7800 GTX GPU. Online: http://

images.tweaktown.com/imagebank/news_G70intro.pdf.

[Online: accessed 4-May-2007].

[NVI05] NVIDIA. NVIDIA GPU Programming Guide. http:

//developer.download.nvidia.com/GPU_Programming_

Guide/GPU_Programming_Guide.pdf, August 2005. [Online;

accessed 18-April-2007].

108 BIBLIOGRAPHY

[NVI06] NVIDIA. The CUBLAS Library, version 0.8. http:

//developer.download.nvidia.com/compute/cuda/0_

8/NVIDIA_CUBLAS_Library_0.8.pdf, 2006. [Online; ac-

cessed 8-May-2007].

[NVI07] NVIDIA. NVIDIA CUDA - Compute Unified Device Architec-

ture, 2007. [Online; accessed 8-May-2007, version 0.8.2].

[OLG+05] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,

A. E. Lefohn, and T. J. Purcell. A survey of general-purpose

computation on graphics hardware. In Eurographics 2005,

State of the Art Reports, pages 21–51, August 2005.

[OLG+07] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,

A. E. Lefohn, and T. J. Purcell. A survey of general-

purpose computation on graphics hardware. Computer Graph-

ics Forum, 26(1):80–113, 2007.

[Pop07] B. Pops. Google Beats Nvidia, Intel and Microsoft. And

buys PeakStream. http://news.softpedia.com/newsPDF/

Google-Beats-Nvidia-Intel-and-Microsoft-56563.pdf,

2007. [Online: accessed 11-May-2007].

[Rap] RapidMind. RapidMind Development Platform

Product Overview. http://www.rapidmind.net/pdfs/

RapidmindDatasheet.pdf. [Online: accessed 6-July-2007].

[Rho04] G. Rhodes. Game Programming Gems 4, chapter PHYSICS -

Introduction, pages 207–208. Charles River Media, 2004.

[Ros06] R. J. Rost. OpenGL(R) Shading Language (2nd Edition).

Addison-Wesley Professional, January 2006.

[SB93] J. Stoer and R. Bulirsch. Introduction to numerical analysis,

volume 12 of Texts in applied mathematics. Second edition,

1993.

[SF93] J. Stam and E. Fiume. Turbulent wind fields for gaseous phe-

nomena. In SIGGRAPH ’93: Proceedings of the 20th annual

conference on Computer graphics and interactive techniques,

pages 369–376, New York, NY, USA, 1993. ACM Press.

[Son05a] Sony. SONY COMPUTER ENTERTAINMENT ENTERS

INTO STRATEGIC LICENSING AGREEMENT WITH AGEIA.

[Online: http://www.gamesindustry.biz/content_page.

php?aid=10281 accessed 11-May-2007, 2005.

BIBLIOGRAPHY 109

[Son05b] Sony. SONY COMPUTER ENTERTAINMENT ENTERS INTO

STRATEGIC LICENSING AGREEMENT WITH HAVOK. [On-

line: http://www.scei.co.jp/corporate/release/pdf/

050721de.pdf accessed 11-May-2007, 2005.

[Sta99] J. Stam. Stable fluids. In SIGGRAPH ’99: Proceedings of the

26th annual conference on Computer graphics and interactive

techniques, pages 121–128, New York, NY, USA, 1999. ACM

Press/Addison-Wesley Publishing Co.

[Sta03] J. Stam. Real-time fluid dynamics for games.

http://www.dgp.toronto.edu/people/stam/reality/

Research/pdf/GDC03.pdf, 2003. [Online: accessed 25-

April-2007].

[Sto04] J. Stokes. Understanding pipelining performance, 2004.

http://arstechnica.com/articles/paedia/cpu/

pipelining-1.ars/1 [Online: accessed 7-May-2007].

[SU94] J. Steinhoff and D. Underhill. Modification of the Euler equa-

tions for “vorticity confinement”: Application to the computa-

tion of interacting vortex rings. Physics of Fluids, 6(8):2738–

2744, 1994.

[SWND05] D. Shreiner, M. Woo, J. Neider, and T. Davis. OpenGL Pro-

gramming Guide, Fifth Edition, The Official Guide to Learning

OpenGL, Version 2. Addison-Wesley, 2005.

[Wik07a] Wikipedia. IEEE 754 — Wikipedia, The Free Encyclopedia,

2007. [Online; accessed 19-April-2007].

[Wik07b] Wikipedia. Reynolds number — Wikipedia, The Free Encyclo-

pedia, 2007. [Online; accessed 11-April-2007].

[Wik07c] Wikipedia. Status register — Wikipedia, The Free Encyclope-

dia, 2007. [Online; accessed 16-March-2007].

[Wik07d] Wikipedia. Viscosity — Wikipedia, The Free Encyclopedia,

2007. [Online; accessed 30-January-2007].

