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A B S T R A C T 

We present clustering redshift measurements for Dark Energy Surv e y (DES) lens sample galaxies used in weak gravitational 
lensing and galaxy clustering studies. To perform these measurements, we cross-correlate with spectroscopic galaxies from the 
Baryon Acoustic Oscillation Surv e y (BOSS) and its extension, eBOSS. We validate our methodology in simulations, including a 
new technique to calibrate systematic errors that result from the galaxy clustering bias, and we find that our method is generally 

unbiased in calibrating the mean redshift. We apply our method to the data, and estimate the redshift distribution for 11 different 
photometrically selected bins. We find general agreement between clustering redshift and photometric redshift estimates, with 

differences on the inferred mean redshift found to be below | �z| = 0.01 in most of the bins. We also test a method to calibrate a 
width parameter for redshift distributions, which we found necessary to use for some of our samples. Our typical uncertainties 
on the mean redshift ranged from 0.003 to 0.008, while our uncertainties on the width ranged from 4 to 9 per cent. We discuss 
how these results calibrate the photometric redshift distributions used in companion papers for DES Year 3 results. 

Key words: surv e ys – galaxies: distances and redshifts – large-scale structure of Universe – cosmology: observations. 
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 I N T RO D U C T I O N  

arge galaxy imaging surv e ys hav e pro v en to be an ef fecti ve tool for
nderstanding the cosmos. Optical surv e ys, such as the Dark Energy
urv e y (DES; DES Collaboration 2005 ), the Kilo-De gree Surv e y
KiDS; de Jong et al. 2013 ) and the Hyper Suprime-Cam (HSC;
ihara et al. 2018 ), have shown the ability to catalogue millions of
alaxies and to extrapolate cosmological information out to redshift, 
 ∼ 1, probing the structure and dynamics of the Universe in the past

six billion years (DES Collaboration 2018 ; Asgari et al. 2021 ).
ccompanying this work, DES Collaboration et al. ( 2022 ) shows the

atest analysis of the structure of the Universe using galaxy clustering 
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nd weak lensing measurements of more than 100 million galaxies. 
n the future, surv e ys such as the Vera Rubin Observatory Le gac y
urv e y of Space and Time (LSST; Ivezi ́c et al. 2019 ) and Euclid
Laureijs et al. 2011 ) will extend such analyses to include billions of
alaxies further back in time. 

A critical component of these imaging surv e ys is the estimation
f galaxy redshifts. Accurate redshift information is necessary for 
recise cosmological measurements of the growth of structure across 
ime. Ho we v er, large imaging surv e ys tend not to have spectroscopic
apabilities. Instead, spectral information tends to be limited to 
agnitude estimates in a few colour bands. In the DES, imaging data

nclude the g , r , i , z and Y bands. There is a large body of literature
hat deals with the estimation of photometric redshifts (photo- z); see,
or example, Hildebrandt et al. ( 2021 ) and Hoyle et al. ( 2018 ), and
eferences therein. In these methods, a redshift estimate is extracted 
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rom these few colour and magnitude measurements. These methods
ll require some form of testing on galaxies where photometric
nd spectroscopic measurements are taken. Despite much success
ith these methodologies, the best photometric redshift estimates in

he DES for particularly suitable samples of galaxies are thought
o have uncertainties around σ z ≈ 0.02 for individual galaxies,
ith many samples much more uncertain. These errors are orders
f magnitude larger than typical spectroscopic redshift errors. One
articular issue is that a systematic bias can emerge if the test samples
f galaxies are not fully representative of the galaxies being studied
Rivera et al. 2018 ). This may happen, for example, because of a
ifference in the depth of the samples. Extrapolating from a few
olour-band measurements to a precise redshift remains a difficult
roblem. 
In recent years, an alternative and complementary method of

stimating the redshifts of galaxies has developed. The approach,
alled ‘clustering redshifts’ or ‘cross-correlation redshifts’, computes
n angular cross-correlation of the galaxy sample in question and
 galaxy sample with known (spectroscopic) redshifts. This cross-
orrelation will contain a signal proportional to the redshift o v erlap
f the two samples. The method is completely independent of
hotometry, not relying on the colour–magnitude information at
ll (other than for initially binning the galaxies). Instead, it relies
n gravity. Because galaxies cluster, objects near each other in
ngular coordinates are more likely to be near each other in radial
eparation, and thus redshift. While this spatial information will not
e significantly informative on a galaxy by galaxy basis, it is very
seful probabilistic information when trying to estimate the redshift
istribution of thousands or millions of galaxies. 
The use of angular clustering to infer proximity in distance

etween two samples extends back to Seldner & Peebles ( 1979 )
nd Phillipps & Shanks ( 1987 ). The modern method of using that
nformation for a rigorous estimate of a redshift distribution traces
ack to Newman ( 2008 ). It has since been developed theoretically and
mplemented on data in a number of papers including Matthews &
ewman ( 2010 ), McQuinn & White ( 2013 ), M ́enard et al. ( 2013 ),
chmidt et al. ( 2013 ), Choi et al. ( 2016 ), Scottez et al. ( 2016 ),
ohnson et al. ( 2017 ) Krolewski et al. ( 2020 ), Hildebrandt et al.
 2021 ), and van den Busch et al. ( 2020 ). In the DES Year 1 cosmology
nalysis (DES Collaboration 2018 ), clustering redshifts of both lens
nd source galaxies were computed (Davis et al. 2017 ; Cawthon et al.
018 ; Gatti et al. 2018 ). 
In this work, we present the clustering redshift estimates for the

ES ‘lens’ galaxies used in the ‘Year 3’ cosmological analyses
based on data from the first three years of DES observations). These
alaxies are used as lenses for g alaxy–g alaxy lensing measurements,
nd for galaxy clustering measurements in the cosmology analysis
n DES Collaboration et al. ( 2022 ). The lens galaxies and those
easurements are analysed in more detail in several related DES Year
 analyses (P ande y et al. 2021 ; Porredon et al. 2021a ; Prat et al. 2021 ;
odr ́ıguez-Monroy et al. 2022 ; Elvin-Poole et al., in preparation).
here are two samples of DES lens galaxies presented in these works:

he red-sequence matched-filter galaxy catalogue (redMaGiC, for
hort) and a magnitude-limited sample called MagLim. redMaGiC
Rozo et al. 2016 ) is an algorithm that finds luminous red galaxies
LRGs) by using the red sequence of galaxies (Gladders & Yee 2000 ;
ykoff et al. 2014 ). This type of selection has been shown to give

airly small photometric redshift errors for the sample. A similar
ample was used in the DES Year 1 analysis (Cawthon et al. 2018 ;
lvin-Poole et al. 2018 ; DES Collaboration 2018 ). The MagLim
ample is a denser sample that goes to slightly higher redshifts, as
escribed in Porredon et al. ( 2021b ), and it is expected to have more
NRAS 513, 5517–5539 (2022) 
ncertainty in its photo- z estimates than redMaGiC. The redMaGiC
nd MagLim samples are split into five and six tomographic redshift
ins respectively, selected by photo- z estimates. 
To calibrate the redshift distributions of these two samples, in each

f their redshift bins, we cross-correlate them with spectroscopic
amples of galaxies. For these spectroscopic samples, we use galaxies
bserved by the Sloan Digital Sky Survey (SDSS; Gunn et al. 2006 ;
isenstein et al. 2011 ; Smee et al. 2013 ; Blanton et al. 2017 ).
pecifically, we use galaxies from the Baryon Oscillation Spectro-
copic Surv e y (BOSS; Da wson et al. 2013 ), as used by Cawthon
t al. ( 2018 ), as well as from the extended Baryon Oscillation
pectroscopic Surv e y (eBOSS; Da wson et al. 2016 ). About 15 per
ent of the DES Year 3 samples o v erlap with BOSS and eBOSS. 

Much of the methodology in this work is similar to that of
awthon et al. ( 2018 ). We briefly highlight the main differences

n this analysis. 

(i) We use significantly larger data sets for the DES and spectro-
copic reference galaxies. In addition to the larger area of co v erage
or the DES, we calibrate two lens samples (redMaGiC and MagLim)
hile DES Year 1 results only used redMaGiC. For spectroscopic

amples, we are able to use more of BOSS due to the wider area of the
ES in Year 3. We are also able to use the eBOSS galaxy catalogue,
hich greatly impro v es the redshift co v erage available, increasing

he maximum redshift of our study from roughly z = 0.7 to z = 1.15.
s a result of both area and redshift co v erage, the o v erall number
f DES redMaGiC galaxies and spectroscopic galaxies used in this
ork are each a factor of 10 larger than in Cawthon et al. ( 2018 ).

n addition, the MagLim sample is about 3.5 times larger than the
edMaGiC sample in the Year 3 studies. 

(ii) While much of the methodology is the same, it is much more
 xtensiv ely tested in simulations. These tests were possible because
he simulated spectroscopic samples are similar to the BOSS and
BOSS catalogues. These tests give a more thorough estimate of the
rrors and uncertainties in the method. 

(iii) We introduce a no v el step in correcting for the evolution of
he galaxy clustering bias. The galaxy bias describes the relationship
etween the distribution of galaxies and of total matter. The change
n this parameter with redshift within a single tomographic bin is
nown as a challenging systematic in the clustering redshifts method;
ee van den Busch et al. ( 2020 ) for a recent re vie w of attempts
o correct this effect. Autocorrelations of galaxies can in principle
e used both for the photometric and spectroscopic samples as an
stimate of the galaxy bias, which is then calibrated out of the
lustering redshift estimate. Because the DES samples do not have
pectroscopic redshifts, their autocorrelations are a function of not
nly the galaxy bias (and cosmology) but also the scatter in their
rue redshift distributions. In the DES Year 1 analysis in Cawthon
t al. ( 2018 ), this photo- z scatter effect on the autocorrelations was
alibrated from simulations. In our work, we calibrate this scatter
ffect with cross-correlations of the DES and spectroscopic samples
n smaller redshift bins. The main advantage of this new step is that
t is empirically driven, no longer assuming any information from
imulations (although the step is tested along with all the others in
imulations). 

(iv) We test a fe w dif ferent ‘two-parameter fits’, which ef fecti vely
onstrain both the mean redshift and the width of a distribution. In
etail, the fits solve for a shift and a stretch of a photo- z distribution
o better match the clustering redshift data. This procedure is needed
hen the shapes of the two distributions mismatch, and a single shift
arameter would not make them match well enough. 



DES Y3: calibration of lens sample redshift distributions 5519 

l  

c  

e
w
F
s  

t
B
e  

e
 

t  

s  

w
m  

a  

r
s
t
t  

r  

l  

m
t

2

I  

r
c
‘
g  

c  

c  

c  

d  

e  

s  

o  

w  

f
r  

a  

A  

‘

2

T
r  

c  

r
g
fi
f
s
i  

r
a
e

Table 1. redMaGiC galaxies used in this work. 

Redshift bin L / L ∗ n gal (arcmin −2 ) N gal 

1: z ph ∈ [0.15, 0.35] 0.5 0.027 61 586 
2: z ph ∈ [0.35, 0.5] 0.5 0.049 110 586 
3: z ph ∈ [0.5, 0.65] 0.5 0.075 170 102 
4: z ph ∈ [0.65, 0.8] 1.0 0.038 86 767 
5: z ph ∈ [0.8, 0.9] 1.0 0.032 72 833 
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We also note that a clustering redshift measurement of the weak 
ensing ‘source’ galaxies in DES Collaboration et al. ( 2022 ) and
ompanion papers is performed in Gatti et al. ( 2022 ), which has sev-
ral similarities and differences in methodology compared with this 
ork. One example regards constraining the galaxy bias evolution. 
or the lens sample, we have a generated random catalogue, which 
amples the surv e y selection function. This gives us a greater ability
o measure the galaxy bias e volution ef fects with autocorrelations. 
ecause the source galaxies do not have such a catalogue, Gatti 
t al. ( 2022 ) use a more agnostic model to account for galaxy bias
volution. 

The structure of our paper is as follows. In Section 2 , we discuss
he data sets used in this work. In Section 3 , we describe the
imulated data sets used for validating our methodology. In Section 4 ,
e present our methodology for performing a clustering redshift 
easurement and calibrating it to find a best-fitting shift, or shift

nd stretch parameters to be applied to a photometric estimate of the
edshift distribution. In Section 5 , we validate our methodology in 
imulations and derive systematic uncertainties for different parts of 
he method, as well as testing different methods for performing a 
wo-parameter fit. In Section 6 , we show our results, the clustering
edshift measurements of each of the redshift bins of the two DES
ens samples. In Section 7 , we calculate a theory prediction for

agnification effects in our measurements, showing they are likely 
o be insignificant. In Section 8 , we summarize our work. 

 DATA  SETS  

n this section, we describe the data sets used for the spectroscopic
eference galaxies and the photometric DES galaxies that we wish to 
alibrate. The redMaGiC and MagLim samples are derived from the 
Y3 Gold catalogue’ (Sevilla-Noarbe et al. 2021 ), which contains 
alaxies found in the first three years of DES data. The Gold
atalogue co v ers the full DES footprint of nearly 5000 deg 2 , and
ontains around 388 million objects. The two samples are used for
osmological analyses in DES Collaboration et al. ( 2022 ), and are
escribed in detail in Rodr ́ıguez-Monroy et al. ( 2022 ) and Porredon
t al. ( 2021b ). We repeat some of the main information about each
ample here. This work only uses the part of the DES catalogues that
 v erlaps the sky area of BOSS or eBOSS galaxies, about 860 deg 2 ,
ith slightly less o v erlap at higher redshifts. Masks are also derived

rom the Gold catalogue as well as random galaxy catalogues, which 
eflect the surv e y selection efficiency at different points. After masks
re applied, the ef fecti ve DES area in our study is 632 deg 2 . In
ppendix E , we describe and analyse a third sample, called the

flux-limited’ sample, which is not used in the cosmology analyses. 

.1 DES redMaGiC sample 

o create the redMaGiC sample, the cluster-finding algorithm 

edMaPPer (Rykoff et al. 2014 ) is run on the Gold catalogue to
alibrate the red sequence of galaxies (Gladders & Yee 2000 ). The
edMaGiC algorithm (Rozo et al. 2016 ) then selects luminous red 
alaxies with colours that fit with the red-sequence template. This 
tting also estimates a redshift probability distribution function 
or each LRG. The redMaGiC algorithm further tunes the colour 
election threshold to produce a constant comoving density, which 
s expected for passively evolving red galaxies (Rozo et al. 2016 ).
edMaGiC galaxy catalogues were similarly used for DES Year 1 
nalyses (Cawthon et al. 2018 ; DES Collaboration 2018 ; Elvin-Poole 
t al. 2018 ). 
The redMaGiC algorithm selects galaxies abo v e a giv en luminos-
ty threshold. For the Year 3 lens samples, thresholds of either 0.5 L ∗
r 1.0 L ∗ were used for the different redshift bins (see Table 1 ). The
eference luminosity, L ∗, comes from a model (Bruzual & Charlot
003 ) for a single star -formation b urst at z = 3, as described in
ykoff et al. ( 2014 ). For the reference luminosities 0.5 L ∗ and 1.0 L ∗,

he comoving densities produced by the redMaGiC algorithm are 
¯ = 10 −3 and 4 × 10 −4 galaxies ( h −1 Mpc) −3 respectively, where
 is the reduced Hubble constant (Rodr ́ıguez-Monroy et al. 2022 ).
he redMaGiC galaxies are split into tomographic bins by the mean

edshift of each galaxy’s redshift probability distribution function 
roduced by the redMaGiC algorithm. We show the number of 
alaxies used in this analysis (co v ering the 632 de g 2 of o v erlap with
OSS) for each tomographic bin in Table 1 . 
We also apply weights to redMaGiC galaxies as described in 

odr ́ıguez-Monroy et al. ( 2022 ). These weights are selected based on
urv e y properties, such as seeing and sky brightness, for each of the
bserved galaxies. The weights are chosen to minimize the effects 
f these surv e y properties on galaxy clustering measurements. 

.2 DES MagLim sample 

he DES MagLim samples are described in Porredon et al. ( 2021b ).
hey are created using a redshift-dependent magnitude cut, with the 

edshift estimate for each galaxy coming from the DNF (De Vicente,
 ́anchez & Sevilla-Noarbe 2016 ) photometric redshift algorithm. 
his redshift dependence tends to eliminate faint, low-redshift 
alaxies from entering the sample (as verified in Appendix E ).
he creation of this sample was moti v ated by a significantly larger
umber density than redMaGiC. Ho we ver, photo- z error estimates
ere expected to be larger, making the calibration of photo- z biases

n this work essential. 
In Porredon et al. ( 2021b ), a Fisher forecast is run to find the best
agnitude cuts for the DES cosmology analyses, with different cuts 

rading off number density and larger photo- z scatter. From that work,
he optimal redshift-dependent cut is selecting on i -band magnitude, 
 < 4 z phot + 18. Bright galaxies with i < 17.5 are also remo v ed.
hese MagLim galaxies are split into tomographic bins by the mean

edshift of the redshift probably distribution function given by DNF .
otably, the MagLim sample extends to slightly higher redshifts 

han redMaGiC. The numbers of galaxies used in this work for each
omographic bin (again reflecting only the galaxies o v erlapping with
OSS) are shown in Table 2 . Again, we also apply surv e y property
eights as described in Rodr ́ıguez-Monroy et al. ( 2022 ). 

.3 BOSS galaxies (SDSS DR12) 

ur first source of reference galaxies comes from catalogues created 
y the BOSS from SDSS Data Release 12 (DR12; Alam et al. 2015 ).
e use their LOWZ and CMASS galaxy and random catalogues 

escribed in Reid et al. ( 2016 ). For z > 0.6, we use a joint catalogue
f CMASS galaxies and eBOSS LRG galaxies created by eBOSS 
MNRAS 513, 5517–5539 (2022) 



5520 R. Cawthon et al. 

M

Table 2. MagLim galaxies used in this work. 

Redshift bin n gal (arcmin −2 ) N gal 

1: z ph ∈ [0.2, 0.4] 0.154 349 673 
2: z ph ∈ [0.4, 0.55] 0.115 260 671 
3: z ph ∈ [0.55, 0.7] 0.115 262 468 
4: z ph ∈ [0.7, 0.85] 0.154 349 996 
5: z ph ∈ [0.85, 0.95] 0.117 266 750 
6: z ph ∈ [0.95, 1.05] 0.113 257 139 
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Figure 1. The BOSS/eBOSS n ( z) used in this work as reference samples. 
In shaded outline, we show the BOSS n ( z) used in the Year 1 analysis of 
Cawthon et al. ( 2018 ). This work uses about a factor of 10 more reference 
galaxies o v erall. The numbers of galaxies from each BOSS/eBOSS catalogue 
are shown in Table 3 . 

Table 3. Spectroscopic samples used as the reference galaxies for clustering 
redshifts in this work. We show the approximate redshift range of the BOSS 
samples used. In contrast, the eBOSS catalogues each have set redshift 
boundaries. 

Name Redshifts N gal Area 

LOWZ (BOSS) z ∼ [0.0, 0.5] 45 671 ∼860 deg 2 

CMASS (BOSS) z ∼ [0.35, 0.8] 74 186 ∼860 deg 2 

LRG (eBOSS) z ∈ [0.6, 1.0] 24 404 ∼700 deg 2 

ELG (eBOSS) z ∈ [0.6, 1.1] 89 967 ∼620 deg 2 

QSO (eBOSS) z ∈ [0.8, 1.18] 10 502 ∼700 deg 2 
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o prevent double counting of galaxies (see Ross et al. 2020 ). Our
pectroscopic tracers at z < 0.6 are solely from the BOSS samples.
hese samples were also used for clustering redshifts in DES Year 1
osmology (Cawthon et al. 2018 ; DES Collaboration 2018 ). These
atalogues were optimized for clustering in order to measure the
aryon acoustic oscillation (BAO) signal (Alam et al. 2017 ), but
heir wide, uniform co v erage of the sk y makes them one of the best
pectroscopic data sets for clustering redshifts. 

.4 eBOSS (SDSS DR16) 

e also use spectroscopic galaxies from the eBOSS. The galaxies
re part of the SDSS Data Release 16 (DR16; Ahumada et al. 2020 ).
e use the large-scale structure (LSS) catalogues of emission-line

alaxies (ELGs), luminous red galaxies (LRGs) and quasi-stellar
bjects (QSOs). The creation of the ELG catalogues is described
n Raichoor et al. ( 2021 ) and the LRG and QSO catalogues are
escribed in Ross et al. ( 2020 ). The catalogues were provided to DES
efore being made public for clustering redshift usage by agreement
etween DES and eBOSS. 

The target selection for the eBOSS ELG sample is described in
aichoor et al. ( 2017 ). The sample selection is based on observations

rom the Dark Energy Camera Le gac y Surv e y (DECaLS; De y et al.
019 ) with colour and magnitude cuts to yield strong [O II ] emitters
n the redshift range of 0.6 < z < 1.1. The LRG sample selection
s described in Prakash et al. ( 2016 ). The LRGs were selected
sing colour and magnitude cuts on objects found in SDSS and
he Wide-Field Infrared Survey Explorer ( WISE ; Wright et al. 2010 )
hotometry. The LRG sample primarily spans the range 0.6 < z

 1.0. The LRGs are combined with the BOSS CMASS sample
ecause there are duplicate objects. The QSO sample selection is
escribed in Myers et al. ( 2015 ). The QSO sample spans from 0.9
 z < 2.2, although we only use up to z = 1.18 for clustering

edshift measurements because of the low density of objects at higher
edshifts for both DES and reference samples. The target selection
sed photometric observations from the SDSS as well as WISE . 
The details of creating LSS data sets from these samples are

escribed in Raichoor et al. ( 2021 ) and Ross et al. ( 2020 ). We use
he weights (given by w tot in Ross et al. 2020 ) and random points
ssociated with these catalogues to account for the surv e y selection
unction. We also use the combined LRG catalogue using eBOSS
alaxies as well as z > 0.6 BOSS CMASS galaxies, as described in
oss et al. ( 2020 ). We show the total number of reference galaxies
sed in this work by their catalogue source in Fig. 1 and Table 3 .
n our measurements, we combine all these catalogues into a single
ample. 

 SIMULA  TED  DA  TA  SETS  

long with many of the other accompanying papers related to DES
ollaboration et al. ( 2022 ), our paper makes use of the Buzzard sim-
NRAS 513, 5517–5539 (2022) 
lations (DeRose et al. 2019 , 2021 ). Buzzard simulates a Universe
f dark matter only, which is then populated with galaxies by the
DDGALS algorithm (Wechsler et al., in preparation). ADDGALS

s calibrated by a series of algorithms, many of which are fit
mpirically to galaxy distributions (in terms of luminosity, clustering,
bundance, etc.) of SDSS galaxies (e.g. subhalo abundance matching
ts from Lehmann et al. 2017 ). The resulting galaxy catalogues are

hen sampled similarly to how DES creates its cosmological data sets.
or the samples used in this work, this specifically means running

he redMaPPer and redMaGiC algorithms on Buzzard to create a
imulated redMaGiC catalogue, and using the colour and magnitude
uts from the MagLim sample to create a simulated version of it. The
uzzard simulations used for DES Year 3 analyses are described

n more detail in DeRose et al. ( 2021 ), where the simulated DES
ata sets are shown to replicate well the galaxy properties and
osmological measurements from data. 

.1 Simulated DES redMaGiC 

s described in DeRose et al. ( 2021 ), the redMaGiC algorithm is run
n Buzzard galaxies similar to the procedure on data. In particular,
olour-dependent clustering was impro v ed for Year 3 Buzzard to
etter match the redMaGiC-selected galaxies in data. The same
edshift and L ∗ cuts applied on the data are applied to obtain the
imulated samples. 
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Figure 2. Comparison of simulated and real spectroscopic data sets. We 
show BOSS CMASS (South) and DMASS, an algorithm run on simulations, 
and also eBOSS ELG (South Galactic Cap) and a simulated ELG sample. The 
top ro w sho ws the redshift distributions. The bottom ro w sho ws the square 
root of a weighted autocorrelation (equation 5 ). The simulated samples go 
o v er the full DES 5000 deg 2 , so they are larger than the real data sets. 

Table 4. Definitions for various redshift distributions, binning schemes and 
correlation functions referred to in Section 4 . 

Redshift distributions 
n u, i ( z) The true redshift distribution of an 

unknown sample in photometric 
redshift bin i 

n u, j ( z) The true redshift distribution of a 
sample binned by photometric 
redshift in micro-bin j 

n spec, j ( z) The true redshift distribution of a 
sample binned by spectroscopic 
(true) redshift in micro-bin j 

n pz, i ( z) The photometric redshift distribution 
of a photometric redshift bin i 

Binning schemes 

Photometric bins, i The main target bins used for 
cosmology, with sizes in the range 
d z = 0.1 −0.2 

Micro-bins, j The reference sample bins of size 
d z = 0.02; unknown and reference 
samples use these bins for 
autocorrelations 

Nano-bins Bins of size d z = 0.005–0.01, which 
are used for computing the width of 
n j ( z) in equation ( 10 ) 

Correlation functions 

w̄ ur Weighted cross-correlation between 
an unknown (photometric) and 
reference (spectroscopic) galaxy 
samples 

w̄ rr Weighted autocorrelation of a 
reference sample 

w̄ uu,pz Weighted autocorrelation of an 
unknown sample that is binned by 
photometric redshift 

w̄ uu,spec Weighted autocorrelation of an 
unknown sample that is binned by 
spectroscopic redshift (typically not 
possible with data) 
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.2 Simulated DES MagLim sample 

or MagLim galaxies in Buzzard, we use a similar redshift-dependent 
agnitude cut as is done on data. For the tests in this work, a slightly

lder version of the MagLim cuts was used to generate the sample.
his version selected galaxies with i -band magnitude, i < 4.28 z phot +
8. It also cut out bright galaxies with i < 17.5. The slight differences
rom the final MagLim cuts on data should not change the efficacy
f our clustering redshift method, which is what the simulations 
re used to check. We do not use any information on, for example,
alaxy bias or photo- z scatter from these simulated samples in our
easurements. The redshift bins are selected in the same way as on

ata. 

.3 Simulated BOSS (CMASS) sample 

o simulate the BOSS CMASS sample in Buzzard, we use the 
MASS algorithm described in Lee et al. ( 2019 ). The goal of the
MASS algorithm was to create a CMASS-like sample of galaxies 

rom the DES samples of galaxies. Because the properties of CMASS
alaxies have been well characterized, a large CMASS-like sample 
n DES would be useful for several studies. 

In Lee et al. ( 2019 ), the DMASS algorithm is trained on the
 v erlapping area of DES and BOSS to derive a Bayesian model based
n galaxy colours and magnitudes for any DES galaxy to be CMASS-
ike. For our work, this algorithm is used on the Buzzard-simulated 
ES g alaxies. Each g alaxy is given a CMASS-like probability. We

hen take one random draw based on these probabilities to define our
imulated CMASS sample. 

.4 Simulated eBOSS (ELG) sample 

o simulate the eBOSS ELG sample in Buzzard, we use the 
agnitude and colour cuts used for target selection in Raichoor et al.

 2017 ) for the South Galactic Cap (SGC) sample. Since these targets
ere found by the Dark Energy Camera (DECam), the targeting 
agnitudes are in the DECam filter bands. 
We show comparisons of the simulated BOSS/eBOSS samples to 

heir real counterparts in Fig. 2 . There is relative agreement in both
edshift distribution and amount of clustering. We note that perfect 
greement is not necessary, as the clustering and redshift distribution 
f the BOSS/eBOSS samples are well measured on the data, and 
here is no explicit reason why the method’s accuracy should depend 
trongly on redshift or galaxy bias. The relative agreement should be 
uf ficient to v alidate the methodology. We investigate the method’s 
ependence on the number of galaxies in Appendix D . 

 M E T H O D S  

e now lay out our methodology for the clustering redshift measure- 
ent. A number of different redshift distributions, binning schemes 

nd correlation functions are mentioned in this section. To aid the 
eader, a summary of various terms is shown in Table 4 . 

.1 Unknown and r efer ence corr elation measur ement 

he clustering redshift methodology involves a cross-correlation of 
wo samples: an ‘unknown’ sample with undetermined redshifts, 
nd a ‘reference’ sample with known redshifts. For this work, the 
nknown samples will be the DES samples (redMaGiC and MagLim) 
nd the reference sample will be the combined BOSS/eBOSS 

pectroscopic data set. 
MNRAS 513, 5517–5539 (2022) 
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We use a cross-correlation version of the Landy–Szalay estimator
Landy & Szalay 1993 ) o v er physical scales r , 

( r) = 

D 1 D 2 ( r) − D 1 R 2 ( r) − D 2 R 1 ( r) + R 1 R 2 ( r) 

R 1 R 2 ( r) 
(1) 

here w( r ) is the excess probability of finding a pair of galaxies
 distance r away compared with a random sample, D signifies a
ata set of galaxies, R signifies a random distribution of galaxies
nd D 1 D 2 , for example, is the number of pairs between the two data
ets separated by comoving length-scale r . The length-scale is set by
 = θχ ( z), where θ is the observed angle between the two galaxies
nd χ ( z) is the comoving distance calculated using the Planck 2015
osmology (Planck Collaboration XIII 2016 ). The redshifts are set by
he centre of the reference sample bins. For all of our measurements,
e use a weighted averaged estimate of w( r ) o v er a range of r values,

¯  12 : 

¯  12 = 

∫ r max 

r min 

r −1 w( r ) d r . (2) 

Unless otherwise stated, we use eight bins between r min =
.5 Mpc and r max = 1.5 Mpc. These parameters, as well as the
eighting by r −1 , were first shown to be ef fecti ve for clustering

edshifts by Schmidt et al. ( 2013 ) and were used in the DES Year 1
nalyses (Davis et al. 2017 ; Cawthon et al. 2018 ; Gatti et al. 2018 ).
hese comoving scales are smaller than the scales used for related
osmological galaxy clustering studies in DES Collaboration et al.
 2022 ) and others to reduce covariance of the measurements. For
ll of the following weighted cross-correlations and autocorrelations
iven by equation ( 2 ), statistical errors are measured by 100 jackknife
esamplings. 

Our weighted cross-correlation, w̄ of the unknown (u) and refer-
nce (r) samples should be written as 

¯  ur = 

∫ z max 

z min 

n u ( z ) n r ( z ) b u ( z ) b r ( z ) ̄w mm 

( z ) d z , (3) 

here n u and n r are the normalized redshift distributions of the
nknown and reference galaxy samples, b u and b r are the galaxy
iases of the two samples and w̄ mm 

is the weighted cross-correlation
f the total (primarily dark) matter distribution. 
We now introduce two redshift binning schemes that are important

or our work. The goal is to derive correct mean redshifts for the
hotometric redshift-binned DES samples to be used in the DES
osmology analyses. There are five bins for redMaGiC, and six bins
or the MagLim sample. We call these the photometric bins and they
re signified by i . These bins are typically d z = 0.1 −0.2 in size.
o obtain a measurement of n u, i ( z) rele v ant for these photometric
ins, we need to measure using thinner bin widths. These thinner
ins will be of size d z = 0.02. We call these the micro-bins and they
re signified by j . Our spectroscopic reference samples will al w ays
e binned in these smaller d z = 0.02 bins. We refer to the centres
f these micro-bins as z j . Our goal is to measure the photometric
edshift sample’s redshift distribution, n u, i , in each of the micro-bins
t z j . The characters u and r will al w ays refer to samples, and the
haracters i and j will al w ays refer to bins. In one micro-bin, we
now the exact number of galaxies in the reference sample (as it has
pectroscopic redshifts). Going from equation ( 3 ), our estimate for
 u, i at a micro-bin centred at z j is 

 u ,i ( z j ) ∝ w̄ ur ( z j ) 
1 

b u ( z j ) 

1 

b r ( z j ) 

1 

w̄ mm 

( z j ) 
, (4) 

here n u, i ( z j ) is the desired quantity of the number of galaxies in
nknown (photometric) sample i in the micro-bin centred at z j , and
NRAS 513, 5517–5539 (2022) 
¯  ur ( z j ) is the weighted cross-correlation of the unknown sample in
hotometric bin i and reference sample in micro-bin j . As seen in the
quation, we assume that within a micro-bin, the galaxy bias of each
ample is constant. 

It is easiest to note here that the key issue with clustering redshifts
s not galaxy bias, but rather the galaxy bias evolution with redshift.
n equation ( 4 ), if the galaxy biases are the same for all z j (even
f unknown), they will effectively cancel out when all n u, i ( z j ) are
ombined, because the total number of galaxies in the i th bin is
nown. If the galaxy biases change with redshift within a single
hotometric bin though, they will not cancel out and will distort the
stimated n ( z). 

.2 Correcting for galaxy bias 

e can get closer to solving for n u, i ( z j ) in equation ( 4 ) by using
utocorrelations of each sample binned by the micro-bin j . The
eighted autocorrelations for the samples, again assuming a single
alaxy bias value for the micro-bin, are 

¯  rr ( z j ) = b r ( z j ) 
2 w̄ mm 

( z j ) 
∫ 

n r ,j ( z ) 
2 d z , (5) 

¯  uu ,j ( z j ) = b u ( z j ) 
2 w̄ mm 

( z j ) 
∫ 

n u ,j ( z ) 
2 d z . (6) 

We note that in equation ( 6 ) we have introduced new quantities,
¯  uu ,j and n u, j . These are quantities related to an unknown sample (i.e.
 DES sample) binned in a micro-bin j . Our previous equations had
 u, i , which relates to the unknown sample binned by photometric
in, i . These larger bins again correspond to the bins used by DES
osmology analyses, and thus what we ultimately want to figure out.
o we ver, as laid out in this section, we sometimes need to measure
roperties of this sample in smaller redshift slices (i.e. n u, j ) to
ltimately work out n u, i . We also note that these n ( z) refer to the
rue (spectroscopic) redshift distribution. Thus, for example, n u, j ( z)
s the true redshift distribution of galaxies binned into micro-bin j by
hotometric redshift. So, for example, n u, j ( z) in micro-bin z pz ∈ [0.2,
.22] will extend beyond z = 0.2 and z = 0.22 in its true redshift
istribution. 
If spectroscopic redshifts are obtained, in the limit of a large

umber of g alaxies, g alaxy distributions tend to be fairly flat across
he small redshift range of the micro-bins (d z = 0.02). In this limit,
he normalized n 2 in the integrals of equations ( 5 ) and ( 6 ) is the same
or all distributions and can be dropped. For spectroscopic (true)
edshifts only, we can use equations ( 4 )–( 6 ) for an expression for
 u, i ( z j ) in terms of measurable correlation functions: 

 u ,i ( z j ) ∝ 

w̄ ur ( z j ) √ 

w̄ rr ( z j ) ̄w uu,spec ( z j ) 
( w/spec- z only ) . (7) 

Ho we ver, the assumption that n 2 u ,j is flat in equation ( 6 ) is
lmost certainly wrong as the unknown sample only has photometric
edshifts. If the unknown sample is binned by photometric redshift
nto micro-bin j , then n 2 u ,j in equation ( 6 ) will span the entire true
edshift range of that sample, which will extend beyond d z = 0.02. 

We can relate the theoretical autocorrelation of the unknown
ample at z j if it could be binned by spectroscopic redshift, to the
easurable autocorrelation of the unknown sample binned by z ph 

photometric redshift) in micro-bin j : 

¯  uu , spec ( z j ) ∝ w̄ uu,pz ( z j ) 

∫ 
n spec ,j ( z) 2 d z ∫ 
n u ,j ( z) 2 d z 

. (8) 

ere, n spec, j and w̄ uu , spec are, respectively, the true redshift distribution
nd the theoretical autocorrelation of the unknown sample if it could
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Figure 3. An example of clustering redshift measurements on a ‘micro- 
bin’ of size d z = 0.02 in a simulation, showing the true redshift distribution 
and the one measured from clustering redshifts, on simulated redMaGiC 

galaxies with peak photo- z probability in the range z = 0.49 −0.51. The 
goal of this particular measurement is to measure the standard deviation, 
σ , of n ( z). The standard deviation serves as a proxy for estimating how 

much an autocorrelation of this same micro-bin of redMaGiC will be reduced 
compared with the spectroscopic case – where the entire n ( z) would be entirely 
between 0.49 and 0.51. To perform this measurement, the spectroscopic 
sample (DMASS) is divided up into smaller ‘nano-bins’ of size d z = 0.005 
in order to obtain more data points for the measurement. 

Figure 4. Various approximations of the ‘correction term’ needed to estimate 
the autocorrelation of a sample micro-binned by true (spectroscopic) redshift 
from the autocorrelation of the sample micro-binned by photometric redshift. 
The correction term is either σ , the standard deviation of an n ( z) estimate, or 
the ‘ n 2 term’, 1 / 

∫ 
n 2 u ,j from equation ( 8 ). The ‘ n 2 term’ curve is normalized 

to the ‘ σ (true)’ data points. Specifically, these σ estimates represent the 
standard deviation of the true redshift distribution when binned by photo- z. 
This value is either calculated exactly (simulations), measured by clustering 
redshifts on smaller ‘nano-bins’ (on either simulations or data) or calculated 
from the photometric redshift estimates (data). We quantify the agreement of 
some of these approaches in Section 5 . The σ pz curve is the σ estimated 
from the photo- z algorithm itself, that is, from n pz ( z). The sample shown is the 
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e binned by spectroscopic redshift into micro-bin j . Similarly, n u, j 

nd w̄ uu,pz are, respectively, the true redshift distribution and the 
easurable autocorrelation of the unknown sample when binned by 

hotometric redshift into the micro-bin j . 
This equation was used to solve for n u, i ( z j ) in determining DES

ear 1 clustering redshifts in Cawthon et al. ( 2018 ). Simulations were
sed to estimate both integrals. Again, for spectroscopic samples, 
 ( z) o v er a micro-bin tends to be flat and the upper integral can be
ropped. The bottom integral, the true redshift distribution of the 
alaxies binned in micro-bin j by photo- z, is the main unknown.
t essentially measures the photo- z scatter at redshift z j , with more
catter producing a wider distribution, and smaller value of n 2 . 

In a change from Cawthon et al. ( 2018 ), we attempt to e v aluate the
hoto- z scatter effect in equation ( 8 ) empirically by using clustering
edshift measurements on the photometric galaxies binned in each 
icro-bin j by photometric redshift, as an estimate of n u, j ( z). We

ssume in this narrower redshift range spanned by n u, j ( z) that we
an approximate b u ̄w mm 

as constant. From that approximation and 
quations ( 4 ) and ( 5 ), we have 

 u ,j ( z ) ∝ 

w̄ ur ( z ) √ 

w̄ rr ( z ) 
( assume b u ̄w mm 

= const. ) . (9) 

Measurements of n u, j ( z) are noisier than e v aluating n u, i ( z) (equa-
ion 7 ). We are dividing up the DES photometric sample into smaller
icro-bins j than the main photometric bins, i . Furthermore, as n u, j ( z)

s narrower than n u, i ( z), we evaluate equation ( 9 ) on even smaller
ins than the d z = 0.02 micro-bins. These ‘nano-bins’ are either
 z = 0.01 or 0.005 depending on the signal-to-noise ratio. Ho we ver,
hese further subdivisions make each measurement noisier. In order 
o reduce the computations and not propagate as many noisy data 
oints, we make the approximation that the integral of n 2 ( z) can be
stimated by simply the inverse of the standard deviation of n ( z), ∫ 

n u ,j ( z) 2 d z ≈ 1 

σj 

, (10) 

here σ j is the standard deviation of the redshift distribution. 
We note that photometric redshift scatter is often approximated as 

 Gaussian function (LSST Science Collaboration 2009 ; Cawthon 
020 ). If n ( z) is a Gaussian, that is, 

 ( z) ≈ 1 

σ
√ 

2 π
exp 

[ 

−1 

2 

(
z − μ

σ

)2 
] 

, 

where μ and σ are the mean and standard de viation, respecti vely, 
hen the integral of n 2 directly e v aluates to ∝ 1/ σ . Thus, the
pproximation of equation ( 10 ), particularly in trying to estimate 
hoto- z scatter, seems appropriate. 1 We also note that if there is linear
alaxy bias evolution across even the ‘micro-bin’ measurement (i.e. 
 u ̄w mm 

varies across the small redshift range, just as we expect it to
or the larger, main photometric bins), this would have far less impact
n the standard deviation, σ , than it will on the mean redshift. 
Using simulations, we validate the efficacy of the approximation 

n equation ( 10 ). In Fig. 3 , we show an example of measuring
j , the standard deviation in one of the micro-bins, by carrying 
ut clustering redshift measurements in the smaller ‘nano-bins’. In 
ig. 4 , we show comparisons of the σ j and 1/ 

∫ 
n 2 correction terms

easured in different ways in simulations and in data. We quantify 
he differences of each approximation (equations 7 –10 ) in our tests
MNRAS 513, 5517–5539 (2022) 

n Section 5 . 

 Even in the case of a perfect Gaussian redshift distribution, equation ( 10 ) 
ould not be exact because of the finite width of the micro-bins. 

high-density redMaGiCsamples from z ph = 0.35 −0.65 in both simulations 
and data. 
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Using equations ( 7 )–( 10 ), we find our estimate for n u ( z j ): 

 u ( z j ) ∝ 

w̄ ur ( z j ) √ 

w̄ rr ( z j ) ̄w uu,pz ( z j ) σj 

. (11) 

ecause 
√ 

w̄ uu,pz ( z j ) σj is a noisy approximation of 
√ 

w̄ uu,spec ( z j ) ,
e approximate it with a power law, as was done in Davis et al.

 2018 ) and Cawthon et al. ( 2018 ): 
 

w̄ uu,spec ( z j ) ≈
√ 

w̄ uu,pz ( z j ) σj ∝ (1 + z) γ . (12) 

We test the accuracy of our methodology in various steps in
ection 5 . Specifically, we test the method when using spectroscopic
edshifts (equation 7 ), the power-law approximation when using
pectroscopic redshifts (equation 12 ), and the approximate solutions
hen using photometric redshifts (equations 8 and 11 ). 

.3 Estimating photometric redshift bias (one-parameter fit) 

hus far, we have focused on the clustering redshift measurements
hemselves and their veracity. We now briefly discuss how specif-
cally these measurements are used to calibrate the photometric
edshift distributions used in DES Collaboration et al. ( 2022 ) and
elated papers. 

Our general strategy is to use a calibrated photo- z distribution
ather than clustering redshifts directly. This strategy is formed from
 belief that the clustering redshifts are more accurate o v erall than
he photometric estimate, but are not reliable in the tails due to
oise and magnification effects. The clustering redshifts can also give
nph ysical, neg ative n ( z) measurements in the tails. A prediction-
alibrated photo- z distribution, n pz ( z) – where we now use an upper
ndex to distinguish from clustering or spectroscopic estimates of
 ( z) – is thus preferable to using clustering redshifts directly. 
For our fiducial plan, we assume that a single shift parameter,
z, is enough to calibrate the photo- z distribution. This parameter

s essentially the photo- z bias. Our final clustering distribution,
 u ( z), comes from equations ( 11 ) and ( 12 ), estimated for each i th
hotometric bin, with data points in each micro-bin, j . Our final step
s thus to find the shifted n pz ( z) that matches the mean of our n u ( z)
rom clustering redshifts. Specifically, we find the shift, �z, that
atisfies ∫ z max 

z min 
z n pz ( z − �z) d z ∫ z max 

z min 
n pz ( z − �z) d z 

= 

∫ z max 

z min 
z n u ( z) d z ∫ z max 

z min 
n u ( z) d z 

. (13) 

As in Cawthon et al. ( 2018 ) and Gatti et al. ( 2018 ), we set z min and
 max to be at 2.5 σ from the peak of the clustering redshift distribution.
his cuts the tails of n u ( z) from being used in the calculation for the
orrect shift. The tails of a clustering redshift estimate can be noisy,
ith ne gativ e signals being difficult to calibrate. The tails can also be

ffected by magnification, as we discuss in more detail in Section 7 .

.4 Estimating photometric redshift bias + stretch 

two-parameter fit) 

n this work, we also use a two-parameter fit to calibrate the photo- z
istribution with the clustering redshift measurements. In general,
his fit will work in cases where a one-parameter shift of the photo- z
istribution is a poor fit to the clustering data (i.e. the shapes of the
istributions disagree). 
For this fit, we use the �z shift parameter from the one-parameter

t, as well as a ‘stretch’ parameter, s . The stretch parameter is
ncluded by shifting the photo- z distribution, such that its mean is
entred at z = 0, then re-scaling the z -axis by a factor s , and finally
NRAS 513, 5517–5539 (2022) 
hifting back to z mean . The functional form of this is given by 

 2-param 

( z) = 

1 

s 
n pz 

(
z − z mean − �z 

s 
+ z mean 

)
, (14) 

here s is the new stretch parameter, equal to 1 if the width of
he photo- z and clustering- z are the same, and �z is the usual shift
arameter. We refer to this as the two-parameter model. We apply a
2 least-squares fitting of s and �z to the clustering redshift results.
o account for the galaxy bias correction in a manner similar to our
ducial methods of Section 4 , we propagate γ (equation 12 ) into the
lustering redshift n ( z) and covariance when performing the χ2 fit.
n Section 5.7 , we test in simulation the χ2 fitting method and two
ther methods of fitting for �z and s . 

 TESTING  M E T H O D O L O G Y  WI TH  

I MULATI ONS  

e v alidate v arious steps in our methodology, and estimate any
ssociated biases or systematic uncertainties with those steps, with
ests in simulations. As described in Section 2 , we use the Buz-
ard simulations, and simulated samples of the DES redMaGiC
nd MagLim galaxies, BOSS CMASS galaxies and eBOSS ELG
alaxies. We divide the simulated DES galaxies into six samples,
orresponding to bins 2, 3 and 4 for redMaGiC, and bins 2, 3 and 4
or the MagLim sample. These samples were chosen for their redshift
 v erlap with the two simulated BOSS/eBOSS samples. 
We e v aluate the dif ferent steps by testing our methodology on

ach of the six samples. From the six results, we then fit for bias
nd systematic uncertainty (on top of statistical uncertainties for the
orrelation functions). We describe the e v aluation step in more detail
t the end of this section. 

.1 Test 1: testing methodology with spectroscopic redshifts 

ur first test e v aluates the accuracy of equation ( 7 ), the solution for
 ( z) when using all spectroscopic measurements. In this scenario,
utocorrelations of both the unknown and reference samples can be
sed to calibrate the impact of galaxy bias evolution with redshift
cross a photo- z bin. Because the DES samples are photometric, we
an only carry out this measurement on the simulations. This test is
till useful to isolate performance of the method, including galaxy
ias corrections from autocorrelations, before e v aluating any of the
ffects associated with photometric redshifts. 

.2 Test 2: approximating galaxy bias correction with a power 
aw 

n equation ( 12 ), we approximate w̄ uu ( z) (or proxies of it) as a power
aw: (1 + z) γ . In Test 2, we test any biases in fitting the autocorrelation
o a power law. To isolate the effects of this approximation from the
ffects of photometric redshifts, we do this test on the autocorrelation
f the simulated DES samples, when using spectroscopic redshifts.
e note that in the following three tests (Tests 3, 4 and 5), the proxies

or the autocorrelation, w̄ uu ( z), are also approximated as a power law.

.3 Test 3: galaxy bias correction using photometric redshifts 
nd redshift scatter model 

n Test 3, we test how well equation ( 8 ) corrects for effects of
hoto- z scatter in the simulations. The integrals in equation ( 8 ),
hich describe how the redshift distribution changes when binned
y photometric or spectroscopic redshift, can only be e v aluated in
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Figure 5. Clustering redshift estimates on simulated DES galaxy samples. The first, third and fifth samples are simulated redMaGiC redshift bins, and the 
others are simulated MagLim samples. The first four bins are cross-correlated with the simulated DMASS sample. The last two are correlated with the simulated 
ELG sample. Shown are the true (spec- z) redshift distributions, the clustering measurements that could be derived if both samples had spectroscopic redshifts 
(‘spec clustering, Test 1’), and the clustering measurements described in ‘Test 5’, which is also the procedure done on the data. The simulated eBOSS sample 
runs out of galaxies around z = 0.9, limiting the higher- z bins shown here. 
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imulations with true redshift information. In the Year 1 DES results,
awthon et al. ( 2018 ) used this calculation from simulations for

he final correction to the clustering redshift results. We also fit
quation ( 8 ) to a power law for this test. 

.4 Test 4: galaxy bias correction using standard deviation 

n Test 4, we test the approximation of equations ( 10 ) and ( 11 ),
sing the standard deviation of a redshift distribution, σ j , as an 
pproximation in the photo- z correction of equation ( 8 ). In this test,
e calculate σ j for the DES samples exactly from their true redshifts

n the simulation. Our approximation of w̄ uu,spec ( z j ) in this test is
hen w̄ uu,pz ( z j ) σj . We again fit these new estimates of w̄ uu,spec ( z j ),
or each micro-bin j within the photometric bin, i , to a power law. 

.5 Test 5: galaxy bias correction using standard deviation 

nferr ed fr om clustering 

n Test 5, we test the last step in calculating a proxy for w̄ uu ( z j ).
e again calculate σ j , but this time from estimating the redshift

istribution of the photo- z microbinned DES sample by using cross-
orrelations with BOSS/eBOSS samples on even smaller ‘nano- 
ins’ (Fig. 3 ). We estimate σ j from these results and again test
quations ( 10 ) and ( 11 ). Unlike Tests 3 and 4, Test 5 describes a
easurement that can be done on the data, without true redshift

nformation. 

.6 Summary of tests on photo- z bias 

or each test in the simulations, we compute the clustering redshift
easurements. We show in Fig. 5 for each of the six simulated

amples: the true redshift distribution, the clustering estimate in Test 
 (using autocorrelations of DES samples using true redshifts), and 
he clustering estimate in Test 5, a procedure for calibrating the 
alaxy bias effects that can be done on the data. 

We calculate the mean redshift in each case for the clustering 
edshifts. We summarize the accuracy of each test based on the 
easured mean redshift in Fig. 6 . For each of our six simulated
ES test samples, we plot the ‘bias’ of each step individually, each

epresented by a different test. For Test 1, the method, if spectroscopic
edshifts are available for the unknown sample, the ‘bias’ is the true
ean redshift of the photometric bin (calculated in the range where 
here are clustering estimates) minus the inferred mean redshift. For 
ests 2–5, we plot as ‘bias’ the inferred mean redshift of Test 1 minus

he inferred mean redshift of the test in question. We do this because
ests 2–5 all involve replacing w uu in some way. Comparing these
ith Test 1 thus isolates the bias of the specific approximations of
 uu, spec compared with the case where w uu, spec is actually available. 
The method when spectroscopic redshifts are available (Test 1, 

Method’) is shown to be generally accurate. Five of the six samples
stimated mean redshifts that are consistent with the true mean 
edshift (i.e. zero bias) within the statistical error bar. The power-
aw approximation (Test 2) also shows little bias. Tests 3, 4 and 5,
hich all e v aluate methods of modifying w uu, pz to estimate w uu, spec ,

ho w a relati vely small positi ve bias in all six samples, suggesting a
rue bias of this approximation. A positive bias means the inferred
ean redshifts are too low. We also show the case of no correction,
here no estimate of w uu is used. We see that in each case, the

ttempted correction of Test 3, 4 or 5 does reduce some of the bias. 
We now quantify these tests to add any necessary biases or

ystematic uncertainties of the method to our results later. A non-
ero systematic uncertainty indicates that the o v erall uncertainty of
he method is larger than the measured statistical uncertainty from 

he jackknife resamplings. For each test, we model its bias, b , and
ystematic uncertainty, ω with a two-parameter fit to the six data
oints in Fig. 6 and perform a chi-squared test to find the best-fitting
arameters. Specifically, for each test, we calculate 

2 
red = 

6 ∑ 

x= 1 

( d x − b) √ 

σ 2 
x + ω 

2 
/ ( dof = 4) (15) 

here χ2 
red is the reduced chi-squared, x iterates o v er the six test

amples, d x is the measured bias on each sample for the given test,
x is the measured statistical error on those biases, and dof signifies
ur four degrees of freedom (six samples − two fit parameters). For
 reduced chi-squared, a value of 1 represents a good fit, a value less
han 1 indicates too good a fit (errors are o v erestimated) and a value
reater than 1 indicates a poor fit (errors are underestimated). 
We start by e v aluating a large set of b parameters with ω = 0. If

ny of the resulting reduced chi-square values are less than 1, this
ould indicate a good fit to a bias of the step, with no uncertainty
eeded to be added on top of the statistical uncertainties. For each
f the five tests, no b values result in χ2 

red < 1 when ω = 0. This
ndicates that each step tested has some systematic uncertainty 
MNRAS 513, 5517–5539 (2022) 
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Figure 6. Results of testing different steps of the methodology on six 
different simulated samples. The tests are described throughout Section 5 . 
Top: tests comparing the measured z mean with the true value. Test 1 compares 
the method if spectroscopic redshifts were available for the photometric 
sample autocorrelations. The full method is the method we can do on the 
data. Bottom: Tests 2–5 focus on different correction steps or techniques for 
simulating the true (spectroscopic) photometric sample autocorrelation. The 
bias shown is with respect to the mean redshift from Test 1 in order to isolate 
bias due to the correction alone. Test 5 represents the full method that can be 
done on data. For each panel, the bias with ‘no corrections’ shows the results if 
no attempt is made to use or measure the photometric sample autocorrelation. 
The six test samples are in order of redshift. In order, they are simulated 
versions of: (1) redMaGiC, Bin 2; (2) MagLim, Bin 2; (3) redMaGiC, Bin 3; 
(4) MagLim, Bin 3; (5) redMaGiC, Bin 4; (6) MagLim, Bin 4. The simulated 
samples are described in Section 3 . 
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Table 5. Analysis of the tests shown in Fig. 6 , by fitting parameters in 
equation ( 15 ). The tests are described throughout Section 5 . We note that the 
uncertainties represent uncertainty to be added to a step in the method. For 
example, Test 5 has more statistical uncertainty already in its step than Test 
4, so the results do not imply Test 4 has more total uncertainty. As described 
in the text, we choose to incorporate the biases and uncertainties of Tests 1 
and 5 so as not to double count uncertainties in any step of our methodology 
for solving for the redshift distribution, n u ( z). ‘Combined errors’ adds the 
counted biases and uncertainties (the latter in quadrature). The full method 
check is the bias and uncertainty found when not breaking up the analysis in 
different steps. 

Name of test Bias Uncertainty In error budget? 

Test 1: method w/Spec- z −0.0014 0.0013 Yes 
Test 2: power-law approximation 0.0009 0.0015 No 
Test 3: exact n 2 correction 0.0037 0.0030 No 
Test 4: exact σ j correction 0.0032 0.0020 No 
Test 5: clustering- z σj correction 0.0021 0.0021 Yes 
Combined errors 0.007 0.0025 –
Full method check 0.007 0.0023 –
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eyond the statistical uncertainties from the autocorrelation and
ross-correlation measurements. We then incrementally continue to
alculate χ2 

red for a range of ω and b values. We choose as our best
t the smallest value for ω, and the corresponding b that results in
2 
red < 1. Our results are shown in Table 5 . As suggested by Fig. 6 ,
ach of the biases are relatively small ( | b | ≤ 0.0037). 

We choose to only use Tests 1 and 5 to estimate the bias and
ncertainty we should add to our measurements of the data. Test
 (‘Method’) essentially estimates biases across the full method
resented in this work, modulo the complication of not having
pectroscopic redshifts to estimate w uu, spec . Tests 3, 4 and 5 all
easure the step of trying to estimate w uu, spec . Of these three, Test

, which measures σ j , the width of the true redshift distribution
NRAS 513, 5517–5539 (2022) 
f photometric galaxies in micro-bin j from clustering redshift
easurements on ‘nano-bins’, is the only method that can be used

olely from data. It happens to be that this method in the simulations
Test 5) is slightly more accurate than the other methods (Tests 3
nd 4), which estimate the photometric correction either from an
xact calculation of 

∫ 
n ( z) 2 or estimating σ j exactly. Because Tests

, 4 and 5 all approximate w uu, spec , adding all of their uncertainties
 ould lik ely be redundant and o v erestimate our errors. Tests 3, 4

nd 5 also involve a fit to a power law, so the small errors found
n Test 2 are likely incorporated into the results of Test 5. Thus,
eriving systematic biases and uncertainties from Tests 1 and 5 only
ncorporates each element of the measurements a single time. 

From Table 5 , we take the results from Tests 1 and 5. We add the
iases linearly and the systematic uncertainties in quadrature. This
esults in adding a bias of + 0.0007 and a systematic uncertainty
f 0.0025 to each of our measurements. We see in Section 6 that
hese systematic errors are generally similar to or smaller than our
nferred biases and statistical uncertainties on the mean redshift (or,
qui v alently, the �z parameter). 

We also show in Table 5 a calculation of a full method check.
his calculation is simply taking our fiducial estimate of clustering

edshifts (used in Test 5) and comparing with the true mean redshift,
ather than the results of Test 1, which is what Test 5 does. In this
ase of the full method check, the intention is not to estimate a bias
f a single step, but to estimate the bias of the entire method, end to
nd. We see in the table that the resulting bias and uncertainty are
ery similar to ‘added’ bias and uncertainty values of + 0.0007 and
.0025. We can thus conclude that whether we broke up the method
nto different steps or not would not have notably affected our derived
ias and uncertainty. 
In Appendix C , we briefly discuss a few alternative ways of

 v aluating these tests, as well as the assumption of the six samples
ach being independent tests of the method. We find very minor
ifferences in bias and uncertainty in all cases explored. 

.7 Tests of two-parameter fits 

n this section, we test the accuracy of the two-parameter fit
equation 14 ). The second parameter, the stretch, changes the width of
he distribution. The galaxy bias correction, at least in the power-law
orm (equation 12 ), has very little impact on the stretch parameter,
o our previous approach of breaking up the method into various
teps is less well moti v ated. Therefore, we estimate the accuracy of
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Figure 7. Results of testing the three different two-parameter fit methods 
on the six simulated samples: χ2 , STS (shift then stretch) and Mix (shift, 
then χ2 fit for stretch). We show the biases in measured �z and s parameters 
compared to the true values that make the photo- z distribution closest to the 
truth. As seen, the STS method has smaller errors and is more accurate in 
obtaining �z correct, but has larger errors and is more biased on the stretch 
parameter, s . The χ2 method is the most accurate and has the smallest errors 
on the stretch parameter. Mix gives similar results to χ2 for the stretches, 
but is still slightly more inaccurate for that parameter. Mix has the same �z 

estimate as STS. We fit for a ‘method uncertainty’ for each method, on each 
parameter, based on these results in Table 6 . 

Table 6. Analysis of the two-parameter methodology test results shown 
in Fig. 7 . We compare the estimates of �z and s with the true values in 
the simulation with equation ( 15 ) (setting b = 0 and just solving for an 
uncertainty, ω). 

Method Parameter Uncertainty 

χ2 �z 0.0044 
χ2 s 0.038 
STS �z 0.0025 
STS s 0.060 
Mix s 0.052 
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he two-parameter fit using just the ‘full method’ estimate, where 
he final �z and s parameters from our fiducial clustering redshift
stimate (equations 11 and 12 ) are compared to the true values. As
een in Table 5 , this test produced nearly identical results for the
ne-parameter fit as when we e v aluated dif ferent steps separately. 
We test a few different ways of fitting the two-parameter model, 

ach using the �z and s parameters from equation ( 14 ). The first,
s mentioned in Section 4.4 , is a χ2 fit to the clustering redshift
ata points, selecting �z and s to change the photo- z distribution so
s to be as close to the clustering redshifts as possible. The second
ethod is a more natural extension of the one-parameter fit. It selects
z in the same way as the one-parameter fit. Then, it selects the s

arameter that makes the photo- z distribution have the same standard 
eviation, σ , as the clustering data. We call it the ‘shift then stretch’
STS) method. This method fits to parameters, rather than fitting to 
ll the points, like the one-parameter fit. It will also give the same �z

onstraints as the one-parameter fit, while the χ2 method may not. 
e also try a third method, which we call ‘Mix’. This first computes

he one-parameter shift (so also gives same results on �z as STS).
hen, with a fixed �z, it does a χ2 fit for the stretch. 
To test the three methods of fitting, we compute �z and s for

ach of the six simulated samples, given their simulated photo- z 
istributions. We also calculate the true �z and s parameters that 
 ould mak e the photo- z distribution most closely match the true
istribution. Given these estimated and true �z and s parameters, we 
ompute biases on each parameter, for each method on each sample. 
he results are shown in Fig. 7 . 
As for the one-parameter fit (photo- z bias only), we e v aluate a

method error’ by comparing the estimated parameters with their 
rue values. We again use equation ( 15 ), though we decide to use
 more agnostic model of no bias, but just an added uncertainty ( ω 

n equation 15 ). We chose this because, in Figs 5 and 7 , there is
ome evidence of a directional bias to the stretch parameter based on
he signal-to-noise ratio, with stretches (widths) being o v erestimated 
ith noisy data (samples 5 and 6). In the first four bins, with better

ignal, there is a small preference for an opposite bias on the stretch,
ith a preference for narrower distributions than truth. Without more 

imulated samples to investigate these relationships, a no bias fit 
eemed most conserv ati ve, likely resulting in larger uncertainty than 
therwise. 
In Table 6 , we show the estimated ‘method uncertainty’ of each

arameter for each two-parameter method. These uncertainties are 
o be added to the statistical errors of a given method. As can also
e inferred from Fig. 7 , the STS (shift then stretch) method does
etter at finding the mean redshift, but is significantly less accurate 
han χ2 in reco v ering the stretch parameter. The χ2 method is the

ost accurate and has the smallest errors on the stretch parameter. 
he Mix method gives similar results to χ2 , but is still notably less
ccurate for the stretch parameter. It is more accurate than the STS
ethod for the stretch though. 
We note that for sample 6 (simulated MagLim bin 4), for only the

wo-parameter tests in Fig. 7 , we used larger clustering scales, 0.5–4
pc, as we do for the noisier MagLim bins in the data. Without this,

he stretch for sample 6 is significantly more ne gativ ely biased for
ach fit, and drives the method uncertainty for χ2 to 0.07, which 
eviates significantly from the uncertainty of 0.035 when fitting the 
rst five bins. This change in scales would affect all of the one-
arameter results by less than 0.001. 
In principle, any of these methods with the extra uncertainties from

hese tests should be unbiased. When we look at the o v erall error
udget that the three methods give on measurements of data, we find
hat the STS and Mix methods have slightly smaller uncertainty on 
z, but notably larger uncertainty on the stretch (particularly STS). 
ased on these results, we proceed with the χ2 method as our fiducial

wo-parameter fit method. We reiterate that each method is just a
ifferent way of fitting to the clustering redshift data, so the similar
MNRAS 513, 5517–5539 (2022) 
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Figure 8. The clustering redshift measurements for the five redMaGiC bins. The photo- z prediction comes from the redMaGiC algorithm itself. The dark blue 
data points indicate the range where clustering and photo- z are compared in order to find the best-fitting shift, �z. The grey points are outside this range and not 
used. Error bars only reflect statistical errors from the cross-correlation of DES and reference (BOSS/eBOSS) galaxies, and the autocorrelation of the reference 
galaxies. Best-fitting parameters are given in Tables 7 and 8 . 

Figure 9. The clustering redshift measurements for the MagLim sample. The photo- z prediction comes from the summation of the entire DNF PDF for each 
galaxy. See Fig. 8 for more details about the data points. Best-fitting parameters are given in Tables 9 and 10 . 
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Table 7. redMaGiC clustering redshift results for a one-parameter fit. �z 

is the shift that makes the photo- z prediction from redMaGiC match the 
mean of the clustering measurements. Statistical errors are from DES- 
reference cross-correlation and reference autocorrelations. Systematic errors 
are a combination of errors on the power-law fit to the DES autocorrelation 
(equation 12 ) and a 0.0025 method error from Section 5 . The bias of + 0.0007 
from that section is also applied. 

Redshift bin �z χ2 (points) 

1: z ph ∈ [0.15, 0.35] 0.006 ± 0.004 6.81 (13) 
2: z ph ∈ [0.35, 0.5] 0.001 ± 0.003 10.03 (11) 
3: z ph ∈ [0.5, 0.65] 0.004 ± 0.003 7.32 (13) 
4: z ph ∈ [0.65, 0.8] −0.002 ± 0.005 19.92 (16) 
5: z ph ∈ [0.8, 0.9] 0.020 ± 0.010 69.35 (18) 
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iases in Fig. 7 are expected. We note that we also tried fitting for the
arameters in Tables 5 and 6 using a maximum likelihood formalism,
nd we found consistent results in each case. 

In Appendix D , we describe tests to analyse possible density
ependence of the systematic uncertainties derived from this section.
e do find some indication of a density dependence that would result

n the uncertainties presented here being underestimated for the data
eing used. We discuss these results and implications in Appendix D ,
nding, even in a pessimistic case, that the impact on cosmological
esults is minimal. 

 RESULTS  

e show our clustering redshift estimates for the five redMaGiC and
ix MagLim redshift bins in Figs 8 and 9 , where we also show the
redicted redshift distributions from photometric redshift algorithms.
or redMaGiC, this is provided by the redMaGiC algorithm itself.
or MagLim, this is provided by the DNF photo- z algorithm, using

ts full probability distribution function (PDF). In each figure, the
olid blue points indicate the 2.5 σ range of the clustering signal
hich we use to calculate the mean redshift from clustering. The

aded grey points are shown, but not used. For each bin, we compute
he one-parameter fit, where we find �z, a shift parameter to make
he photometric and clustering distributions match in mean redshift
NRAS 513, 5517–5539 (2022) 
equation 13 ). We also compute the two-parameter fit, where a χ2 

t to the data simultaneously fits for a �z and a stretch parameter, s .
his two-parameter fit is also done on the 2.5 σ range of the clustering
ignal. 

The best one- and two-parameter fits and uncertainties are listed in
ables 7 –10 . Also shown is the χ2 value between the fit and the clus-

ering redshift data points. The listed uncertainties in the fits, as well
s the error bars in the figures, include contributions from statistical
nd systematic uncertainties. The statistical uncertainties come from
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Table 8. redMaGiC clustering redshift results for a two-parameter fit. �z 

is the shift parameter and s is the stretch parameter. Each is fit by changing 
the photo- z distribution to match the clustering data points with a χ2 fit. 
Uncertainty comes from statistical uncertainty of the fit, which includes 
contributions from the power-law fit uncertainty (equation 12 ), and the 
‘method error’ in Section 5.6 . 

Redshift bin �z s χ2 (points) 

1: z ph ∈ [0.15, 0.35] 0.007 ± 0.005 0.975 ± 0.043 5.90 (13) 
2: z ph ∈ [0.35, 0.5] −0.002 ± 0.005 1.015 ± 0.045 7.14 (12) 
3: z ph ∈ [0.5, 0.65] 0.003 ± 0.005 1.017 ± 0.048 6.99 (11) 
4: z ph ∈ [0.65, 0.8] −0.002 ± 0.006 1.051 ± 0.065 17.54 (16) 
5: z ph ∈ [0.8, 0.9] −0.007 ± 0.006 1.230 ± 0.066 16.74 (18) 

Table 9. MagLim sample clustering redshift results for a one-parameter fit. 
�z is the shift that makes the photo- z prediction from DNF match the mean of 
the clustering measurements. See Table 7 for further comments on uncertainty 
column sources. 

Redshift bin �z χ2 (points) 

1: z ph ∈ [0.2, 0.4] −0.010 ± 0.004 23.96 (18) 
2: z ph ∈ [0.4, 0.55] −0.028 ± 0.006 91.91 (23) 
3: z ph ∈ [0.55, 0.7] −0.004 ± 0.004 12.64 (11) 
4: z ph ∈ [0.7, 0.85] −0.010 ± 0.005 22.61 (19) 
5: z ph ∈ [0.85, 0.95] 0.013 ± 0.007 44.34 (18) 
6: z ph ∈ [0.95, 1.05] 0.009 ± 0.016 36.61 (20) 

Table 10. MagLim clustering redshift results for a two-parameter fit. �z is 
the shift parameter, and s is the stretch parameter. See Table 8 for further 
comments on the fit and uncertainties. A typo in bin 6 from the original 
version of this paper has been corrected. 

Redshift bin �z s χ2 (points) 

1: z ph ∈ [0.2, 0.4] −0.009 ± 0.007 0.975 ± 0.062 24.27 (18) 
2: z ph ∈ [0.4, 0.55] −0.035 ± 0.011 1.306 ± 0.093 22.94 (23) 
3: z ph ∈ [0.55, 0.7] −0.005 ± 0.006 0.870 ± 0.054 6.55 (11) 
4: z ph ∈ [0.7, 0.85] −0.007 ± 0.006 0.918 ± 0.051 21.96 (19) 
5: z ph ∈ [0.85, 0.95] 0.002 ± 0.007 1.080 ± 0.067 25.79 (18) 
6: z ph ∈ [0.95, 1.05] 0.009 ± 0.008 0.845 ± 0.073 36.59 (20) 
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Figure 10. Autocorrelations of the DES lens samples, redMaGiC and 
MagLim. We show the square root of the autocorrelation, 

√ 

w̄ uu,pz ( z j ) , 
listed as uncorrected. The corrected data points are 

√ 

w̄ uu,pz ( z j ) σj , to undo 
the influence of photo- z scatter on the autocorrelations. The 11 different 
tomographic bins are differentiated by colour. The solid lines in colour are 
the best power-law fit to the points in a given bin (equation 12 ). The grey 
lines indicate the 1 σ range of the power-law fit. We note that, because of 
the normalization of n ( z ), the amplitudes of these measurements are not 
important, only the change across a single tomographic bin 
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he cross-correlation of unknown and reference samples ( ̄w ur ) and 
utocorrelations of the reference sample ( ̄w rr ) in equation ( 11 ). For
he one-parameter fits, the systematic uncertainty is calculated on the 
erived mean redshift specifically and has two sources. The ‘method 
ncertainty’ of 0.0025 derived from Section 5 , and uncertainty in the
alculations of the autocorrelations of the unknown (DES) sample 
nd the calculation of the standard deviation parameter ( ̄w uu,pz σj ). 
his uncertainty is propagated into an uncertainty on γ in fitting that 
uantity to a power law (equation 12 ). The autocorrelations and the
ower law fits are shown in Fig. 10 . These two sources of systematic
ncertainty are added in quadrature. The total uncertainty comes 
rom adding the systematic and statistical uncertainty in quadrature. 

For the two-parameter fit, the uncertainty from the power law 

s propagated into the data points before the fit is performed, 
o the statistical error incorporates the power-law fit. The only 
emaining systematic uncertainty is the ‘method’ uncertainty from 

able 6 , which is added in quadrature to each parameter’s statistical
ncertainties from the χ2 fit. The exact contributions of statistical and 
ystematic uncertainty to each fit in each redMaGiC and MagLim 

in are shown in Tables B1 and B2 in Appendix B . 
.1 r edMaGiC r esults 

ur clustering redshift estimates for the redMaGiC sample are shown 
n Fig. 8 and in Tables 7 and 8 . In the first four bins of Fig. 8 , we
ee a generally good agreement in the shapes and means of the
lustering and photometric redshift distributions. The first four bins 
av e relativ ely small biases ( ≤0.006), and are within 1.5 standard
eviations of zero bias for the one-parameter fit. The fifth bin has a
ore obvious difference in shape between the clustering and photo- z 

istributions, with a high- z tail in the clustering redshift distribution.
riven by this tail, a large shift parameter of 0.02 is needed to match

he means of the distributions in the one-parameter fit. 
There are different possible metrics in selecting whether the one- 

r two-parameter model should be used for the DES cosmology 
nalysis. In a cosmology analysis, ev ery e xtra parameter allowed to
ary will typically reduce the constraining power of the experiment. 
hus, there is a benefit to having a simpler model if it is accurate
nough. One possible metric for deciding whether a one- or two-
arameter model is sufficient is whether the two-parameter model 
MNRAS 513, 5517–5539 (2022) 
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refers s 	= 1. In Table 8 , we see that the first four bins are all well
t by s = 1, suggesting that a two-parameter fit may be unnecessary.
in 5, in contrast, prefers s 	= 1 at > 3 σ confidence. 
Another metric could be to use the goodness of fit, which can be

ssessed with the χ2 values listed in Tables 7 and 8 . We see that the
edMaGiC one-parameter fits in the first four bins are all close to a
educed χ2 of 1. As expected, the fifth bin exhibits a very poor fit.

e do see lo wer χ2 v alues in the two-parameter fits for the first four
ins, but at the cost of a second parameter ( s ), and increased errors
n �z. In the fifth bin though, the two-parameter fit is much better,
ith a reduced χ2 near 1. We note that though the fit may not look

hat good in Fig. 8 , the off-diagonal terms of the covariance between
he n ( z) data points have a strong effect on this particular fit. 

For the cosmology analysis in DES Collaboration et al. ( 2022 ),
he general strategy is to add complexity to models only if it is
ecessary not to bias the cosmological results. With this strategy in
ind, we show another test in assessing whether the one- or two-

arameter models are needed in Appendix A . There, we show Markov
hain Monte Carlo (MCMC) chains from a simulated cosmology
nalysis approximating the analysis in DES Collaboration et al.
 2022 ). Chains are run with fixed cosmology but different redshift
nputs, to assess whether the redshift modelling is sufficient not to
ias cosmological results. 
In Fig. A1 in Appendix A , we show simulated results for 	m 

,
8 and the galaxy bias in each of the five redMaGiC bins for

our different redshift inputs. The different inputs are: the clustering
edshift results directly, a multi-Gaussian fit very closely matching
he clustering redshifts but smoother, and the one- and two-parameter
ts listed in Tables 7 –10 . We find in this test that the cosmological pa-
ameters are similar in all cases. Ho we ver, the galaxy bias recovered
n the fifth redMaGiC bin is offset from the more direct clustering
ts. This suggests that the poor fit of the one-parameter model in the
fth bin will give biased results for the galaxy bias if the clustering
edshift results are accurate. 

Based on these two tests, the one-parameter fits for the first four
EDMAGIC bins and the two-parameter fit for the fifth bin were
hosen as the fiducial models for DES Collaboration et al. ( 2022 ).
n order to be conserv ati ve with the fifth bin, the uncertainty on �z

as increased from 0.007 to 0.010, to match the uncertainty from the
ne-parameter fit. We investigate the fifth redMaGiC bin clustering
esults in more detail in Section 7 , specifically checking whether the
igh- z tail could be explained by magnification. As shown there, we
onclude it cannot be. We also note that we measured redMaGiC
in 5 at the larger clustering scale range, 0.5–4 Mpc, which we use
or two of the MagLim bins. With these scales, this high- z tail for
edMaGiC bin 5 remains, with marginally smaller error bars. 

.2 MagLim sample results 

ur clustering redshift estimates for the MagLim sample are shown
n Fig. 9 and in Tables 9 and 10 . We can see that there are significantly
ifferent shapes of the clustering and photo- z distributions in multiple
ins. It was expected that this larger sample of fainter galaxies would
ave larger photo- z biases than redMaGiC. 
It is again important to analyse whether a one- or two-parameter fit

ill be more appropriate for the cosmology analyses. For the metric
f checking whether the two-parameter fit is consistent with s = 1, we
nd in Table 10 only one bin where this is clearly the case (bin 1). In
xamining the χ2 fits for the one- and two-parameter fits in Tables 9
nd 10 , we see a very strong preference for the two-parameter fit
n bins 2 and 5, though it is less clear if the two-parameter fit is
ecessary for the other bins by this metric. 
NRAS 513, 5517–5539 (2022) 
The final decision on whether one or two parameters are needed
or the MagLim fits is determined by the procedures in DES
ollaboration et al. ( 2022 ) and Krause et al. ( 2021 ), which focus
n whether there will be biases in the cosmological analysis if
he simpler model is used. These tests for the MagLim redshifts,
nalogous to the redMaGiC tests in Appendix A , are shown in
orredon et al. ( 2021a , fig. 6). There it is shown that the galaxy bias

n MagLim bins 2–6 using the one-parameter fits of (this paper’s)
able 9 are offset from what the estimates would be when inputting

he clustering redshift measurements directly. This would mean that
he one-parameter fits may bias the galaxy bias measurements. Thus,
t was decided to use two-parameter fits for all of the MagLim bins. 

We note that our initial measurements of the two highest redshift
ins for the MagLim sample were very noisy, mainly due to the
ow number of eBOSS objects available to correlate with. Our final
nalysis for bins 5 and 6, shown in Fig. 9 , used the clustering redshift
ethod on scales 0.5–4.0 Mpc, while the rest of this work used

.5–1.5 Mpc. At these noisier high redshifts, we found that the
nclusion of more scales impro v ed the signal significantly, reducing
otal uncertainty on �z by about 50 per cent and 80 per cent for bins
 and 6, respectively (for the one-parameter fit). We tested other bins
t these scale ranges and found negligible differences in other cases.
s we weight the smallest scales most, where more information is

xpected, this lack of change in most cases is unsurprising. 
We also checked the z = 1.06 −1.08 clustering data point, which

tands out clearly in bin 5 and slightly in bin 6. An isolated peak such
s this appears strange and perhaps anomalous. We tested several
hings to try to find an issue with the clustering data, but could find
one. It was not found in redMaGiC when we extended the redshift
ange. It was not found in autocorrelations, or cross-correlations of
he eBOSS ELG and QSO samples with each other. It was found in
ross-correlations of MagLim with either the ELG or QSO alone.
hanging the binning, changing the number of jackknife patches or

plitting up the data into different large regions did not remo v e the
ignal. We also tried not using either MagLim or eBOSS weights,
nd also estimators that would not use one of the sample’s randoms.
n all cases, the signal persisted. The signal is also much too large for
agnification, which should not produce a sharp change in redshift

nyway. We conclude that the signal is real, either some statistical
uctuation or some interloping population of galaxies that entered

he MagLim cuts. 

.3 Comments on redshift impacts to cosmological analysis 

he redshift parameters and choices described in this section for
oth redMaGiC and MagLim were made before unblinding the
osmological results shown in DES Collaboration et al. ( 2022 ). In
ssessing those results post-unblinding, there were some redshift-
elated tests worth noting. 

One of the noteworthy issues discussed in DES Collaboration
t al. ( 2022 ) is the apparent disagreement of the redMaGiC galaxy
lustering plus g alaxy–g alaxy lensing results and the cosmic shear
esults. This is discussed in detail in DES Collaboration et al. ( 2022 ).
ne of the first tests done was to see if using the two-parameter
ts from Table 8 in all redMaGiC redshift bins could alleviate this

ssue. It did not. The resulting chains with the two-parameter redshift
odel had only slightly larger contours and there was still significant

nconsistency in the data. 
Another significant test for understanding the redMaGiC incon-

istency was dropping different redshift bins. Most notably for this
ork, the fifth redMaGiC bin was shown to have little impact on the

osmological results and the inconsistency. Therefore, though the
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fth redMaGiC bin is clearly the one with the greatest redshift un-
ertainties, it cannot be driving the inconsistencies in the redMaGiC 

esults. 
For the MagLim sample, a similar issue of significant mismatch 

etween the g alaxy–g alaxy lensing + galaxy clustering amplitude 
nd cosmic shear amplitude was found in bins 5 and 6, as discussed
n Porredon et al. ( 2021a ). The measurements in the first four bins
ere internally consistent though and were used for the fiducial 

esults in DES Collaboration et al. ( 2022 ). It is unclear at this time
hat the issue in these high-redshift bins is. In Porredon et al. ( 2021a ,

ppendix A), tests seemed to indicate that the problem is more with
 alaxy–g alaxy lensing than with galaxy clustering. Based on this, it
s unlikely errors in the lens redshifts are driving this tension. The
alaxy clustering measurements will depend much more on the lens 
edshifts, particularly the width parameter. 

 MAGNIFICATION  

n this section, we calculate whether magnification may be affecting 
ur results significantly. Clustering redshifts are known to be affected 
y magnification effects (Choi et al. 2016 ; Gatti et al. 2018 ), which
ecome significant in the tails of the redshift distribution where the 
ormal clustering signal is small. Our cut of the tails at 2.5 σ from the
eak of the clustering n ( z) should remo v e most of the redshift range
here magnification effects are significant in each bin. Ho we ver, 

ome of our results do include a fairly large signal in the tails.
otably, the high- z tail in redMaGiC bin 5 is large enough to be
ithin this cut and not remo v ed. 
We calculate a theory prediction for magnification in our clustering 

edshift measurements. Specifically, we calculate the theoretical 
ignal in the redMaGiC bin 5 measurements to assess whether the 
igh- z tail is magnification-induced, or is real evidence for a photo- z 
ias. We first calculate the strength of the galaxy clustering signal 
etween the two samples (Choi et al. 2016 ): 

( θ ) gg 
ur = b u b r 

∫ 
n u [ z ( χ )] n r [ z ( χ )] 

d z 

d χ

d z 

d χ
d χ

×
∫ 

k 

2 π
P [ k, z( χ )] J 0 ( χkθ) d k. (16) 

ere, θ = r/ χ ( z) , as described in Section 4 , b is the galaxy bias
or the unknown (DES) and reference (eBOSS) samples, n is the 
edshift distribution of each sample, χ is the comoving distance, k 
s the wavenumber, P ( k ) is the matter power spectrum and J 0 is the
eroth-order Bessel function. 

We also calculate the strength of the magnification signal, specifi- 
ally the signal from foreground redMaGiC galaxies lensing eBOSS 

alaxies (the magnification effect that could be found on the high- z 
nd): 

( θ ) g μur = b u ( α − 1) 
∫ 

n u ( z) K( χ ) 
d z 

d χ
d χ

×
∫ 

k 

2 π
P [ k, z( χ )] J 0 ( χkθ) d k. (17) 

 ( χ ) is the lensing kernel, 

( χ ) = 

3 H 

2 
0 	m 

c 2 

χ

a 

∫ ∞ 

χ

n r ( z) 
d z 

d χ

χ ′ − χ

χ ′ d χ ′ , (18) 

here H 0 is the Hubble constant, 	m 

is the matter density parameter, 
 is the speed of light and a = 1/(1 + z) is the scalefactor of the
niverse. In equation ( 17 ), α is the slope of the magnitude counts
or, in this case, the eBOSS sample, 

( m ) = 2 . 5 
d log 10 n ( > m ) 

d m 

, (19) 

here m is the limiting magnitude of the galaxy sample (Choi et al.
016 ). For eBOSS ELG (the main tracer used for the redshift range
f redMaGiC bin 5), we calculate a value of α = 2.71 at its limiting
 -band magnitude, m = 22.825 mag (Raichoor et al. 2017 ). 
We ignore the terms where eBOSS galaxies could magnify 

ackground redMaGiC galaxies. As the eBOSS galaxies have 
pectroscopic redshifts, we know the galaxies being correlated in 
he high- z tail are at z ∼ 1. Thus, for eBOSS galaxies to be

agnifying redMaGiC galaxies, there would need to be a significant 
umber of very high redshift outliers in the redMaGiC population. 
o we ver, redMaGiC galaxies around z ∼ 0.8 in this fifth bin could
lausibly magnify eBOSS galaxies at z = 1 where the excess is
een. We also ignore the magnification–magnification term, which 
hould be negligible, particularly for two galaxy samples not widely 
eparated in redshift space (for example, see Duncan et al. 2014 ). To
o the calculations, we assume for n u ( z), the photometric redshift
istribution estimate as an input, and we use Planck 2015 flat-
 CDM cosmological parameters including external data (Planck 
ollaboration XIII 2016 ). These parameters include H 0 = 67.74 km
 

−1 Mpc −1 and 	m 

= 0.3089. The power spectrum P ( k ) is calculated
sing the Boltzmann code in CAMB (Lewis, Challinor & Lasenby 
000 , Howlett et al. 2012 ) with HALOFIT (Smith et al. 2003 ) used to
alculate non-linear clustering effects. Minor deviations on the input 
edshift distribution or cosmology do not change the results qual- 
tatively. Because the galaxy-clustering and galaxy-magnification 
quations both contain a factor of b u , it ef fecti vely cancels in a
ormalized clustering redshift calculation, so we set it to 1. We ignore
he galaxy bias evolution, which will only produce small changes. 

e also set b r = 1, which is close to other studies of eBOSS ELGs
hat indicate b r = 1.3 (Guo et al. 2019 ). 

We show the results of our theory calculations for the clustering–
lustering and clustering–magnification terms for redMaGiC bin 5 
s well as the measurements in Fig. 11 . The results show that the
agnification signal is far too small to explain the measured high- z 

xcess in the bin. We show that the magnification term would need
oughly an increase of a factor of 10 to match the data, so small errors
n, for example, the α calculated in equation ( 19 ) could not explain
he excess. 

We perform similar tests on other bins and consistently see a
heoretical magnification signal that is negligible to our results. This 
s mainly due to two factors. The first is the relati vely narro w redshift
ins used, reducing the amplitude of the lensing kernel (equation 18 )
etween the DES galaxies and eBOSS galaxies. For example, with 
ider bins, one could have z ∼ 0.6 DES galaxies lensing z = 1

BOSS galaxies, which would have a larger lensing kernel than z =
.8 DES galaxies. The second factor is our procedure of cutting the
ails where the signal is small, as described in Section 4.3 . This cuts
ut the regions with both highest magnification signal and lowest 
lustering signal. 

We note that there is also other evidence that the high- z excess in
edMaGiC bin 5 is a true photo- z bias. In the DES/eBOSS o v erlap
rea (mostly o v erlapping the re gion known as Stripe 82), about
 per cent of the redMaGiC bin 5 galaxies have spectroscopic red- 
hifts. In this subsample, a similar high- z excess in the spectroscopic
 ( z) is seen compared with the photometric estimate. We extrapolate
 prediction for n ( z) based on this spectroscopic subsample in Fig. 12 .
or this, we take the photometric n ( z) for the whole Stripe 82 region,
nd multiply that by a correction factor for each micro-bin (d z =
MNRAS 513, 5517–5539 (2022) 
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M

Figure 11. Estimates of the n ( z) signal for redMaGiC bin 5 ( z ph ∈ [0.8, 0.9]). 
For the purpose of comparison, the clustering data points are only from the 
cross-correlation of redMaGiC and eBOSS, making them slightly different 
from Fig. 8 . The solid (orange, gg) line shows the theoretical prediction for 
this cross-correlation due to clustering alone (equation 16 ). The dash-dotted 
(green, gg + g μ) line is the theoretical prediction from galaxy clustering and 
correlations between redMaGiC galaxies and magnification effects on eBOSS 
galaxies (equations 16 and 17 ). The dotted (red, gg + 10 ∗g μ) line is a theory 
prediction with galaxy clustering and a ten times larger amplitude prediction 
from the galaxy-magnification signal. Each of the theory predictions uses the 
photometric n ( z) prediction for the bin as input. Effects of magnification do 
not seem to be large enough in theory to account for the excess signal at high 
redshifts in this bin. There is no theoretical moti v ation for a factor of 10 error 
in magnification predictions. 

Figure 12. The solid (red) line shows the extrapolated n ( z) from spectro- 
scopic redshifts in redMaGiC bin 5. The extrapolation is based on the ratio 
of galaxies in each d z = 0.02 bin by spec- z and by ‘ZMC’, a draw from the 
redMaGiC redshift distribution function in the subset of galaxies with spec- z 
measurements. This ratio is then applied to the full redMaGiC sample (the 
portion o v erlapping eBOSS) to giv e this e xtrapolated prediction. We see it 
matches the clustering results well, giving some evidence that the high- z tail 
is physical, rather than a clustering systematic. 
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.02 in size) where the correction factor is n spec / n pz as measured in
he 3 per cent subsample with spectroscopic redshifts. We see that
here is good agreement with the clustering redshift signal. 

We caution that a comparison of photo- z errors on a sample
ith spectroscopic redshifts with a full sample is not generally
NRAS 513, 5517–5539 (2022) 
eliable. Mismatches are seen when applying this procedure to other
ins. This is generally because the subsamples with spectroscopic
easurements tend to be brighter than the full samples, and will

ypically have smaller photo- z errors. As this particular error is seen
n the brighter subsample of bin 5 though, it is more likely to be
resent in the full sample than the opposite case (i.e. assuming that a
ack of error in the bright sample extrapolates well to the full sample).
etween this minor evidence and the magnification calculations, we
onclude that the high- z excess in the last redMaGiC bin is likely real.
e also note that in early versions of the Year 3 redMaGiC catalogue,
e saw more significant biases when the fifth bin extended to z =
.95, also suggesting that the redMaGiC algorithm is encountering
ssues at high redshift. 

 SUMMARY  

n this work, we present clustering redshift measurements of two
ES lens samples, redMaGiC and MagLim (Figs 8 and 9 ). These
easurements inform the redshift models for the analyses in DES
ollaboration et al. ( 2022 ) and related papers. Our results are
olstered by the large number of spectroscopic galaxies available
or this measurement from the BOSS and eBOSS galaxy clustering
atalogues, and their several hundred deg 2 overlap with the DES. We
enerally find small biases ( | � | < 0.01) for the photometric redshift
redictions of these samples (Tables 7 –10 ). Our results suggest that
he shapes of the redMaGiC photo- z distributions in particular are
ery accurate. The fainter, larger MagLim galaxy sample had more
ignificant differences in shape when comparing the photo- z and
lustering distributions, suggesting the need for a two-parameter fit
or calibration. We were able to constrain the mean redshifts, in the
orm of the bias parameter �z, of the different bins to a precision
f typically around 0.005 when performing one-parameter fits. Our
ncertainties on the mean redshifts were only mar ginally lar ger when
erforming two-parameter fits. 
We tested our methodology in simulations (Section 5 ), including

 new method of calibrating the galaxy bias systematic of the
unknown’ sample, the DES galaxies. This new method, involving
ross-correlations on smaller redshift ranges, is made possible by the
arge number of spectroscopic tracers we had compared with previous
ork. We found the systematic errors on our method, beyond the

tatistical errors we account for in all of the autocorrelations and
ross-correlations, to be small for calculating a single photo- z bias
Fig. 6 and Table 5 ). We also tested our ability to constrain the width
f a redshift distribution. In this case, we found more significant
method’ errors not accounted for by the initial statistics. Despite
his, our results suggest we can constrain the width to around 4–7
er cent for most samples. In Appendix D , we show some tests that
uggest that the density dependence of the method may increase these
ncertainties up to around 11 per cent , but this would have negligible
mpact on the DES cosmological results. 

In one redMaGiC bin, we investigate specifically if a high-redshift
ail in our results can be explained by magnification, and we find that
t cannot. Our procedure of cutting the tails of the clustering redshift
istribution, and the relatively narrow redshift bins for the DES lens
amples in general, make magnification a negligible effect for our
ork. 
For that particular redMaGiC bin in Appendix A , we also show

hat a two-parameter fit to the clustering data should not bias our
osmological results (while a one-parameter fit could at least bias
he galaxy bias estimates). A similar analysis for MagLim is shown
n Porredon et al. ( 2021a ), where it is found that most of the MagLim
ins need a two-parameter fit as well not biasing cosmological results.

art/stac1160_f11.eps
art/stac1160_f12.eps
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hese tests show the importance of using a multiparameter fit in 
alibrating photometric redshifts. 

Our results provide important redshift constraints for our com- 
anion DES Year 3 results papers using redMaGiC and MagLim 

alaxies for galaxy clustering and galaxy–galaxy lensing (DES 

ollaboration et al. 2022 ; P ande y et al. 2021 ; Porredon et al. 2021a ;
odr ́ıguez-Monroy et al. 2022 ; Prat et al. 2021 ; Elvin-Poole et al.,

n preparation). This work also signifies some important steps in 
he progression of clustering redshift measurements, particularly 
n testing new methods to correct the galaxy bias systematic, and 
o constrain a width parameter of a redshift distribution. Future 
hotometric and spectroscopic surv e ys will need to continue to 
evelop the clustering redshift technique as they push to higher 
edshifts. 
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PPENDI X  A :  VA LI DATI NG  T H E  

H OTO M E T R I C  REDSHIFT  M O D E L  

ere, we show a test used to determine which photometric redshift
odel fits (one- or two-parameter) sufficiently match the clustering

edshift measurements such that it would not bias cosmological
esults. We want a photo- z model that is flexible enough to agree
ith the clustering redshift points directly. We represent ‘clustering
oints directly’ in two ways, one with a multi-Gaussian fit to the
lustering data, and one with a spline. The spline will it more
xactly to the clustering data points, so we call it ‘clustering
irect’ in Fig. A1 . The multi-Gaussian fit may be more realistic
s a result of the spline o v erfitting to noise in the clustering data
oints. For the fiducial cosmology used in Krause et al. ( 2021 ), we
alculate a noiseless galaxy clustering and g alaxy–g alaxy lensing
ata vector given the different redshift distributions. We ignore
osmic shear (the third part of the ‘3 × 2’ measurement) as it
oes not use the lens galaxies. We then run MCMC chains on
hese measurements to infer cosmological and galaxy bias pa-
ameters. In these chains, all cosmology and intrinsic alignment
arameters are allowed to vary and other nuisance parameters
such as the weak lensing source redshifts) are fixed. We follow
he model validation analysis choices outlined in Krause et al.
 2021 ). 

We ran chains with an input ‘true redshift’ distribution matching
he unshifted, unstretched redMaGiC photo- z prediction. We then
an chains with four different redshift models: a one-parameter
odel using �z in all bins to shift the photo- z predictions to match

lustering, a two-parameter model that introduces a stretch parameter
 in the fifth redMaGiC bin, a multi-Gaussian fit to the clustering data
oints, and a spline fit to the clustering data points. The results are
hown in Fig. A1 . In the first four redMaGiC bins, we find significant
 v erlap for the constraints on σ 8 , 	m 

and the galaxy bias, b , with our
ne-parameter model, and the redshift distributions that serve as a
roxy for the clustering results. This signifies a good match between
he clustering redshifts, and the one-parameter shifted photometric
edshifts. 

We do see that for the fifth redMaGiC bin, the galaxy bias is
ifferent when comparing the one-parameter model contours to the
ulti-Gaussian and direct clustering fits. We can infer that this
eans that a shifted redMaGiC photo- z distribution in this bin is

till different enough from the clustering redshift distribution that
hey would produce statistically different amplitudes for galaxy
lustering predictions in a given cosmology. The two-parameter
ontours show the constraints when the two-parameter fit is used
n just the fifth bin. The addition of the stretch parameter, s ,
itigates the discrepancy. With either the one- or two-parameter
odels, the cosmological constraints are unbiased compared with

he clustering direct models. The specific σ differences between
he two-parameter model and the multi-Gaussian fit for 	m 

, σ 8 

nd b 5 are 0.26, 0.39 and 0.31, respectively. The σ differences
etween the two-parameter model and the ‘clustering direct’ spline
t for 	m 

, σ 8 and b 5 are 0.11, 0.24 and 0.95, respectively. Be-
ause the ‘clustering direct’ and multi-Gaussian fits ignore the
lustering uncertainties on shape, these values may ef fecti vely
 v erestimate how much our model disagrees with the clustering
ata. 
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Figure A1. Simulated cosmological constraints from galaxy clustering and g alaxy–g alaxy lensing with four different redshift distribution models for the 
redMaGiC sample. The one-parameter contour uses the redMaGiC photometric redshift distribution with shift parameters in all redshift bins from the results in 
this work (Table 7 ). The two-parameter contour uses a two-parameter shift and stretch model for the fifth redMaGiC bin (Table 8 ). The MG fit contour uses a 
multi-Gaussian fit to the clustering redshift points. The clustering direct contour uses a spline fit to the clustering redshift points. The ‘true redshift’ data vector 
for the simulation is the unshifted redMaGiC photo- z prediction. We can see that the two-parameter model gives a better fit for the galaxy bias in bin 5 when 
compared with the predictions of the more exact fits to the clustering data, spline and multi-Gaussian. 
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PPENDIX  B:  B R E A K D OW N  O F  U N C E RTA I N T Y  

O N T R I BU T I O N S  TO  MAIN  RESULTS  

ere, we show the uncertainty contributions for our main results in 
ables 7 –10 . The calculations for o v erall uncertainty differ slightly
etween the one- and two-parameter cases. In the one-parameter 
ase, there are three contributions of uncertainty. The first is the 
tatistical errors from the cross-correlations of the unknown and 
eference samples and the autocorrelations of the reference samples. 
hese give an uncertainty on the mean redshift in equation ( 7 ) with
 uu set to 1. The second contribution is from the power-law fit to the

stimate of w uu in equation ( 12 ). The uncertainty in the exponent γ
s translated to an uncertainty contribution on the mean redshift of
 photometric bin. Finally, the third contribution is the systematic 
ncertainty derived in Table 5 . 
For the two-parameter fit, the χ2 fit for both �z and s is done

fter the estimate and uncertainties of the power-law fit to w uu 

equation 12 ) are already applied. Thus, the uncertainties in this fit
ncompass the first two contributions of the one-parameter fit. We call 
his combination the statistical uncertainty. To this uncertainty, the 
ystematic uncertainties from Table 6 are added. In each case of the
ne- and two-parameter uncertainty calculations, the contributions 
re added in quadrature. The contribution for each redshift bin is
hown in Tables B1 and B2 . 
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M

Table B1. One-parameter fit uncertainty contributions for our main one- 
parameter results in Tables 7 and 9 . 

Redshift bin Total Statistical Power law Systematic 

redMaGiC bin 1 0.004 0.0026 0.0011 0.0025 
redMaGiC bin 2 0.003 0.0016 0.0006 0.0025 
redMaGiC bin 3 0.003 0.0018 0.0011 0.0025 
redMaGiC bin 4 0.005 0.0038 0.0015 0.0025 
redMaGiC bin 5 0.010 0.0089 0.0040 0.0025 
MagLim bin 1 0.004 0.0028 0.0015 0.0025 
MagLim bin 2 0.006 0.0036 0.0035 0.0025 
MagLim bin 3 0.004 0.0027 0.0018 0.0025 
MagLim bin 4 0.005 0.0036 0.0019 0.0025 
MagLim bin 5 0.011 0.0097 0.0044 0.0025 
MagLim bin 6 0.015 0.0127 0.0067 0.0025 

Table B2. Two-parameter fit uncertainty contributions for our main two- 
parameter results in Tables 8 and 10 . 

Bin Tot ( �z) Stat ( �z) Syst ( �z) Tot ( s ) Stat ( s ) Syst ( s ) 

redMaGiC bin 1 0.005 0.0025 0.0044 0.043 0.020 0.038 
redMaGiC bin 2 0.005 0.0017 0.0044 0.045 0.023 0.038 
redMaGiC bin 3 0.005 0.0029 0.0044 0.0025 0.029 0.038 
redMaGiC bin 4 0.006 0.0035 0.0044 0.048 0.053 0.038 
redMaGiC bin 5 0.006 0.0041 0.0044 0.065 0.052 0.038 
MagLim bin 1 0.007 0.0048 0.0044 0.062 0.049 0.038 
MagLim bin 2 0.011 0.0097 0.0044 0.093 0.085 0.038 
MagLim bin 3 0.006 0.0036 0.0044 0.054 0.039 0.038 
MagLim bin 4 0.006 0.0033 0.0044 0.051 0.033 0.038 
MagLim bin 5 0.007 0.0049 0.0044 0.067 0.056 0.038 
MagLim bin 6 0.008 0.0064 0.0044 0.073 0.062 0.038 
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Table C1. Re-analysis of the tests shown in Fig. 6 and Table 5 . In this 
case, we derive separate bias and uncertainty values when analysing the three 
simulated redMaGiC and three simulated MagLimsamples separately. 

Name of test Bias Uncertainty 

redMaGiC alone 
Test 1: Method w/Spec- z −0.0019 0.0033 
Test 5: Clustering- z σj correction 0.0026 0.0029 

MagLim alone 

Test 1: Method w/Spec- z −0.0007 0.0000 
Test 5: Clustering- z σj correction 0.0018 0.0034 
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PPENDIX  C :  A LT E R NAT I V E  ASSESSMENTS  

F  SIMULATION  TESTS  

n this appendix, we describe a few variations on the evaluation of
he tests on simulations in Section 5 , focusing on the one-parameter
t results in Table 5 . One alternative would be to remo v e a model
aving ‘biased’ tests at all, and only fit for additional uncertainty
i.e. fit for ω in equation 15 , and set b = 0). We do e v aluate the
wo-parameter fit in this manner in Section 5.6 . In this case of no
ias allowed, we would find uncertainty for Test 1, ω = 0.0016,
nd for Test 5, ω = 0.0029, for a combined uncertainty of 0.0033.
or these calculations, we modify the degrees of freedom to be 5

nstead of 4 in equation ( 15 ). This test would result in a very small
ncrease in method systematic uncertainty from the fiducial choice,
.0025. 
We also address the question of whether it is appropriate that

he six samples are treated as independent tests. While the six DES
amples are different, there is significant redshift o v erlap between the
edMaGiC and MagLim samples, so the same simulated reference
OSS/eBOSS galaxies are used for multiple samples. With only

ix simulated samples, it is difficult to definitiv ely pro v e correlation
r lack thereof. Ideally, a large set of simulated galaxy samples,
n different regions of the sky, could test this. Within our limited
amples, we can carry out a few tests though. 

If there are correlations in the measured biases between samples,
e would expect them to be on the bins with the most o v erlap in

edshift space. The pairs of samples with significant redshift o v erlap
n Figs 5 and 6 are [1, 2], [3, 4] and [5, 6]. Analysing only (mostly)
on-o v erlapping redshift bins would likely have no correlations.
e test this by performing again the calculations in Table 5 using

eparately just the three redMaGiC bins (samples 1, 3 and 5) and
NRAS 513, 5517–5539 (2022) 
agLim bins (samples 2, 4 and 6). The results for Tests 1 and 5
re shown in Table C1 . For redMaGiC alone, combining the Test
 and Test 5 results results in an o v erall bias of b = 0.0007 and
ystematic uncertainty ω = 0.0044. For MagLim alone, the combined
esults give b = 0.0011 and ω = 0.0034. These results are very
imilar to our fiducial values of b = 0.0007 and ω = 0.0025. In
he most pessimistic case of total correlation between o v erlapping
amples, using just the three MagLim samples changes our bias and
ncertainty measurements by less than 0.001 each. 
Although we have limited information in testing the hypothesis

hat the pairs of o v erlapping samples give correlated results, we can
ook at Fig. 6 . If we naively looked for correlations in, for example,
he Test 1 and Test 5 results between samples, we might conclude that
est 1 has correlations in samples 3 and 6, and Test 5 has correlations

n samples 1 and 6. These samples are very unlikely to be correlated
hough, as the y co v er different redshift ranges. This provides a little

ore evidence that the tests are likely to be uncorrelated. 
A simple w( θ ) measurement of o v erlapping galaxy samples should

ertainly be correlated. Ho we ver, it is not clear that the many w( θ )
easurements in the full clustering redshift methodology, including

he different angular bins in equation ( 2 ), and different redshift
ins in, for example, equation ( 7 ) should be correlated in their
easurements of mean redshift. We leave a more explicit test of

his for future work with a larger number of simulated samples. 
We note that an e v aluation of the two-parameter fits in Fig. 7

otentially indicates correlation in biases on the stretch parameter,
nlike the one-parameter results. This is seen in bins 5 and 6, which
o o v erlap in redshift, with each having a ne gativ e bias compared
ith the true width. Ho we ver, we belie ve that if there is a correlation
ere, it is likely not a result of the covariance of the redshift bins,
ut a general bias for noisier clustering redshift measurements to
redict too wide a redshift distribution (ne gativ e bias on Fig. 7 ).
e did see in tests that adding scales to the measurements, which
ould decrease the uncertainties notably for higher redshift bins,

lso reduced this bias on the stretch parameter. We leave further
tudy of this correlation of noise and bias in measured width to future
ork. 

PPENDI X  D :  TESTS  O F  M E T H O D O L O G Y ’ S  

E P E N D E N C E  O N  DENSI TY  

 or an y clustering statistics, uncertainty will depend significantly on
he number of objects. In the pair counting of w( r ) in equation ( 1 ),
 lower density of objects will result in larger uncertainty, which in
his work we call the statistical uncertainty. We briefly investigate if
here is also density dependence for the systematic errors determined
n this section. 

To do this, we take our six simulated samples shown in Fig. 5 , as
ell as the simulated spectroscopic samples, and cut their regions to
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able D1. Results from recomputing the systematic uncertainty parameters 
f Tables 5 and 6 when using simulated samples that are one-fourth of the
ize of the original ones used in Section 4 . 

ethod Parameter Ne w v alue Pre vious v alue 

ne-parameter test 1 b −0.0014 −0.0014 
ne-parameter test 5 ω 0.0022 0.0013 
ne-parameter test 1 b 0.0014 0.0021 
ne-parameter test 5 ω 0.0038 0.0021 
wo-parameter χ2 δ�z 0.0044 0.0057 
wo-parameter χ2 δs 0.038 0.0067 

pproximately one-fourth of their original size. We then recompute 
ach step of our methodology: taking clustering- z measurements 
ith cross-correlations and autocorrelations of the sample. We repeat 

Test 1’ by taking autocorrelations of the unknown (photometric) 
amples using their true redshifts. We also repeat ‘Test 5’, the 
ethod we will use on the data, where we take the photometrically

inned (micro-binned) unknown sample autocorrelations, and use 
ross-correlations on nano-bins to calibrate those autocorrelations 
equations 10 and 11 ). We finally recompute the two-parameter tests
or the χ2 method as well. In each case, we re-derive the systematic
ncertainty or bias and compare with the values from Tables 5 and
 . 
The new fits for systematic uncertainty in this one-fourth simulated 

ata case are shown in Table D1 . We see that the measures of bias in
ests 1 and 5 of Section 5 are the same or reduced, giving evidence

hat perhaps there is no o v erall bias of the method. We also see that the
ystematic uncertainty in both one-parameter ( ω) and two-parameter 
ests is increased. 

From this result, it is of interest to extrapolate how systematic 
ncertainties on the data may be underestimated. In the test described 
ere, both the reference and unknown sample were cut into one- 
ourth of the size. The uncertainties measured in Table D1 increase 
y a factor of 1.3–1.8. As a toy model, we will say the uncertainties
ncreased by roughly 4 1/3 = 1.587. This toy model would suggest
ystematic uncertainty scales as 

√ 

N r N u 
1 / 3 

. The data redshift bins 
ave a range of number density contrasts with the full simulated 
amples. In this toy model, the systematic uncertainty in different 
edshift bins for MagLim and redMaGiC would range from two to 
hree times the uncertainties derived in Section 5 . As the systematic
ncertainty is added in quadrature with the statistical uncertainty, the 
 v erall uncertainty would increase by less than a factor of 2 in most
ins. 
There are many caveats to this extrapolation. Most notably, if 

here is significant density dependence to the systematic uncertainty, 
hen averaging the results of different simulated samples of different 
ensities is likely not the optimal analysis. The cosmological analysis 
n DES Collaboration et al. ( 2022 ) ended up using the four most
ense redshift bins (MagLim bins 1–4). It is likely that, in these bins,
ny increase in systematic uncertainty is at the lower end of this
rojection. If averaging different densities across the six simulated 
amples has a large effect, then the increases for these bins may be
ignificantly o v erestimated here. 

We tested the impact of having increased redshift uncertainty 
n the cosmology analyses in DES Collaboration et al. ( 2022 )
nd Porredon et al. ( 2021a ). We ran chains where the systematic
edshift uncertainties for the two-parameter χ2 fit from Table 6 were 
ncreased to Unc.( �z) = 0.01 and Unc.( s ) = 0.1, which increased
he o v erall uncertainties in Table 10 by a factor of 2 or less. The main
osmological results used MagLim bins 1–4, so we did not need to
onsider the one-parameter fits, which were only used for redMaGiC. 
e ran chains for the ‘3 × 2’ analysis of DES Collaboration et al.

 2022 ) and the ‘2 × 2’ analysis of Porredon et al. ( 2021a ). In checking
he impact on cosmological parameters σ 8 , S 8 and 	m 

, we found in
ll cases parameter shifts of less than 0.17 σ and contour increases of
ess than 9 per cent . 

We note that in this appendix we are discussing systematic 
ncertainties beyond the statistical uncertainties, which also change 
ith density . Interestingly , the statistical uncertainties have lower 
ependence on density. They are within a factor of 1.5 in comparing
he simulated samples to data. This is less than the factor of 2–
 from the extrapolation of the systematic uncertainty. This may 
lso suggest that more tests are needed to verify the magnitude of
ystematic uncertainty dependence on density. 

The test in this appendix suggests that the accuracy and precision
f clustering redshift methods may be dependent on density, beyond 
he usual counting statistics. More precise work with a larger suite of
imulated samples at a range of densities will be needed to understand 
hese effects in detail. However, the upper bounds of the increase in
ncertainty from this section only increase the o v erall uncertainty by
p to a factor of 2, and this has minimal impact on the cosmological
esults. 

Several other parameters not explored here may also affect the 
recision of the clustering redshift measurements, including the 
xact shape of n ( z), the shape of the photo- z estimate, the width
f the redshift distribution, the shape and strength of galaxy bias
volution with redshift, and the number of objects. Of these, the
ost likely correlation is with the number of objects, so this is where
e investigate further. Future studies will attempt to quantify to a
igher degree the dependence of the clustering redshift methodology 
n these several factors, as well as choices such as bin size and scales
f measurement. 

PPENDI X  E:  D E S  FLUX-LI MI TED  SAMPLE  

n this section, we describe clustering redshift measurements for the 
ES ‘flux-limited’ sample described in Porredon et al. ( 2021b ). This

ample is not used in the DES Year 3 cosmology analyses (DES
ollaboration et al. 2022 ). In Porredon et al. ( 2021b ), this sample’s
osmological constraining power is compared to the redMaGiC and 
agLim samples. 
We carry out the same full clustering redshift analysis as was done

or the redMaGiC and MagLim samples in Section 6 . The results
re shown in Fig. E1 and Table E1 . We see that this sample shows
onsiderable photo- z biases of several σ , in sharp contrast to the
esults for the other two DES lens samples. Most notable are large
xcesses of low- z galaxies measured by the clustering redshifts in
he first three tomographic bins ( z ∈ [0.2, 0.65]) compared with the
hoto- z predictions. 

able E1. Clustering redshift results for the flux-limited sample (one- 
arameter). This sample is not used in the DES Year 3 cosmology analyses.
he systematic uncertainties listed include the power-law uncertainty and the 
.0025 method uncertainty from Section 5 . 

edshift bin �z δ�z(syst.) δ�z(stat.) 

: z ph ∈ [0.2, 0.4] −0.041 ± 0.007 0.005 0.005 
: z ph ∈ [0.4, 0.5] −0.058 ± 0.007 0.006 0.004 
: z ph ∈ [0.5, 0.65] −0.056 ± 0.007 0.005 0.005 
: z ph ∈ [0.65, 0.8] −0.026 ± 0.006 0.005 0.003 
: z ph ∈ [0.8, 1.05] 0.008 ± 0.015 0.004 0.014 
MNRAS 513, 5517–5539 (2022) 
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Figure E1. The clustering redshift measurements of the flux-limited DES sample. This sample is not used in DES Year 3 cosmology analyses, but has been 
studied in Porredon et al. ( 2021b ). 
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