
University of Oslo
Department of Informatics

Comparing two
Ways of Applying
Use Case Models in
Object-Oriented
Design with UML

Erik Syversen

Hovedoppgave

October 7, 2002

Contents

1 Introduction 6

2 Software Process Improvement 9
2.1 Empirical Software Engineering 10
2.2 Experimentation in Software Engineering 11
2.3 Measurements . 12

3 Applying the UML in Object-Oriented Software Develop-
ment Processes 13
3.1 UML Models . 13

3.1.1 Use Case Diagrams and Use Case Modelling 13
3.1.2 Sequence Diagrams . 14
3.1.3 Class Diagrams . 14

3.2 Recommended Use . 14
3.2.1 Problems and Proposed Solutions 16

3.3 Tool Support . 18

4 Analysis Framework 19
4.1 Qualitative Metrics . 19
4.2 Quantitative Metrics . 21

5 Evaluation of the two Processes 22
5.1 Hypotheses . 22
5.2 Experimental Design . 23

5.2.1 Subjects . 23
5.2.2 Procedure of the Experiment 23
5.2.3 Experimental Material 23

5.3 Analysis and Results . 25
5.3.1 Assessment of level of detail, Hypothesis H1 25
5.3.2 Assessment of realism, Hypothesis H2 26
5.3.3 Assessment of correspondence, Hypothesis H3 27
5.3.4 Assessment of size, Hypothesis H4 28
5.3.5 Assessment of superfluous elements, Hypotheses H5 . . 28
5.3.6 Assessment of false elements, Hypotheses H6 29
5.3.7 Assessment of time spent, Hypothesis H7 29

5.4 Improving the Experimental Design 30
5.4.1 The Subjects . 30
5.4.2 The Task . 30
5.4.3 The Environment . 31
5.4.4 The Use Case Model 31
5.4.5 Interpretation of the two Approaches 31
5.4.6 The Guidelines . 31

2

5.4.7 The Measurement Framework 31

6 Conclusions and Future Work 33

A Experimental Design 38
A.1 Background Information Qustionnaire 38
A.2 Use Case Model . 39

A.2.1 Use case diagram . 39
A.2.2 Use case descriptions 40

A.3 Requirements Document . 42
A.4 Assignment Description for the Use Case Driven Process . . . 43
A.5 Assignment Description for the Responsibility-driven Process 45
A.6 Part Two of the Experiment 47

B Analysis 50
B.1 Checklist . 50
B.2 Kruskal-Wallis Test Results 52

List of Tables

1 The qualitative metrics . 20
2 The quantitative metrics . 20

List of Figures

1 The steps in a use case driven process 15
2 Outline of the use case driven process 15
3 The steps in a validation process 17
4 Outline of the validation process 18
5 Guidelines for the use case driven process 24
6 Guidelines for the validation process 25
7 Realism in class methods . 26
8 The mapping of methods from use case descriptions 27
9 Class and sequence diagram correspondence 28
10 Variance in number of classes 28
11 Number of false classes . 29
12 Time spent on exercises 1 and 2 30
13 the background information qustionnaire 38
14 The use case diagram . 39
15 Use case 1: check out item . 40
16 Use case 2: check item status 41
17 Use case 3: check in item . 42

3

Abstract

In software engineering most proposed technology have not been subject to a
thorough investigation. Knowledge of the effects, strenghts, and weaknesses
of technology is essential to ensure a successful transfer to industry and
identify areas of improvement. For example, the Unified Modeling Language
(UML) is becoming the de-facto standard for object-oriented software analy-
sis and design. Constructing analysis- and design models of a software system
is beneficial to gain a higher-level understanding of the system domain prior
to implementation. Models provide blueprints of possible solutions and are
beneficial to comprehending a complex system in its entirety, ensure a sound
architecture, and to support communication among project developers and
teams. However, UML does not prescribe a development process, nor has
it undergone a thorough investigation to identify how it is best applied in a
software development process. A use case driven development process, where
a use case model is the basis for constructing an object-oriented design, is
recommended with UML. An alternative way of applying a use case model
is to use it to validate a design model made as part of another development
process. We are interested in the differences imposed on design models con-
structed between such processes. In order to investigate the differences, we
conducted a controlled experiment with 26 students as subjects. One half
of the subjects were given guidelines on a use case driven process whereas
the other half on a validation process. The resulting class diagrams were
evaluated with regards to how well they were suited as a basis for automatic
code generation. The results show that the validation process produced class
diagrams better suited for automatic code generation than those produced
in the use case driven process. In particular, the subjects applying the use
case driven process primarily identified methods that were mapped directly
from the use case descriptions, something that resulted in design models
with fewer appropriate methods than those produced with the validation
process. The results also show that the use case driven process resulted in
more erroneous classes, and the validation process led to a larger variation
in the number of classes in the class diagrams. This indicates that the use
case driven process gave more, but not always more appropriate, guidance
on how to construct a class diagram. In summary, our study implies that
following a validation process is the better choice in similar conditions to our
experiment.

4

Acknowledgement

I would like to express gratitude to my supervisor, PhD Student Bente Anda,
and Simula Research Laboratory for giving me the opportunity to conduct
an experiment. This gave me the chance to design and carry out my own
little empirical study. I am also grateful for the guidance I have received
from my supervisor.

I would like to thank professor Dag I.K. Sjøberg for his involvement and
valuable contributions.

I acknowledge all the students at University of Oslo who took part in the
experiment.

I would like to thank my student colleagues and friends for valuable dis-
cussions and support throughout my student carreer.

Last but not least, my sincerest gratitude goes to my familiy for their sup-
port, encouragement, and inspiration. Thanks!

5

1 Introduction

Technologies (processes, methods, programming languages, tools, etc.) are
introduced to the software industry claiming to improve software production
and the quality of the resulting products. However, little or no evidence
exists to support the claims [4,17]. As software researchers and practitioners
recognize a direct correlation between the quality of the software process and
the quality of the resulting software product, proposed technology need to
be investigated thoroughly. Knowledge of the effects, strengths, and weak-
nesses of technology is essential to ensure a successful transfer to industry
and identify areas of improvement [4,17,29]. Such knowledge may also lead
organizations to adopting technology they otherwise would not have consid-
ered because any benefits will be realized [17].

Empirical studies are a means to increase our understanding of the phenom-
ena under study. In software engineering, empirical studies are essential in
order to assess, validate and provide evidence on the usefulness and effects of
technology, improve existing technology, and develop new technology [28,29].
An overview of empirical research and results in software engineering is pro-
vided in [4]. Among future research directions it is suggested that software
development processes, such as the Unified Process, need to be investigated
and compared to alternatives in order to be successfully transferred into in-
dustrial practice, and that the use of the Unified Modelling Language (UML)
need to be investigated more thoroughly since it is now becoming a de-facto
standard for object-oriented analysis and design.

A use case driven development process is recommended when applying UML
[2,3,15,16,32]. In a use case driven process the use case model, possibly in
combination with a domain model, serves as the basis for deriving all sub-
sequent models. Use case driven development processes have, however, been
criticized for not providing a sufficient basis for the construction of a design
model. For example, in [22] it is claimed that:

• The use case model alone is insufficient for deriving all necessary and
appropriate classes.

• Focusing on the use case model leads the developers to mistake re-
quirements for design.

It may therefore be more beneficial to construct a design model using alter-
native processes. In [22], a combination of use case driven, responsibility-
driven, and data-driven processes is recommended. In [24], a responsibility-
driven process, where a use case model is applied subsequently to validate
the design model, is suggested as an equal alternative to a use case driven
process. In the following, the term "validation process" is used to denote

6

such a development process.

We are interested in differences between a use case driven process and a vali-
dation process in constructing design models. This may influence the choice
of development process, even though the choice of development process in
a software project is typically determined by characteristics of that project,
such as the experience and skill of the developers, the problem domain and
existing architecture, and may also influence how to teach object-oriented
design. To investigate the differences, we conducted an experiment with 26
undergraduate students as subjects where the task was to construct a design
model of a library system consisting of class and sequence diagrams. One half
of the subjects were given guidelines on a use case driven process whereas the
other half was given guidelines on a validation process. The processes inves-
tigated were based on the use case driven process and the validation process
described in [24]. The resulting design models were evaluated relative to how
well they specified a class diagram suited for automatic code generation. The
class diagrams should implement the requirements, and should be specified
at an appropriate level of syntactic granularity. Suitability for automatic
code generation is important because it helps ensure consistency between
models and code. We also investigated differences in size and number of
errors in the class diagrams.

The results show that the validation process resulted in design models that
better described the requirements and contained class diagrams better suited
for automatic code generation. The subjects following the use case driven
process mostly mapped the steps of the use case descriptions directly onto
methods in the class diagram, while those following the validation process
were more successful in deriving appropriate methods from the written re-
quirements document. The results also show that the use case driven process
led to more erroneous classes, and the validation led to a larger variation in
the number of classes in the class diagrams. This indicates that the use
case driven process provides more, but not necessarily better, guidance. In
our opinion, the results support the claims that a use case model is insuf-
ficient for deriving the appropriate classes and may lead the developers to
mistake requirements for design. The results also indicate that it may be
more appropriate to consider a use case as a behavioural feature of a sys-
tem against which class diagrams can be validated, rather than consider a
use case as having state and behaviour from which the design can be derived.

The remainder of this paper is organized as follows:

• Section 2 discusses software process improvement and empirical soft-
ware engineering with an emphasis on software experimentation.

• Section 3 gives a brief description of UML and the models relevant to

7

this paper, and discusses how it is currently recommended applied in
a development process. An elaboration of the two process investigated
in this paper is also given.

• Section 4 presents the framework for the analysis of the experiment.

• Section 5 describes the experimental design, analysis and results, and
suggests areas of improvement.

• Section 6 concludes and suggests future work.

8

2 Software Process Improvement

A software process is defined as the set of activities, methods, and practices
developers use to produce and maintain a software product [9,14,30]. A
software process model outlines the framework of a software process from
a certain perspective [27]. From a workflow perspective, a process model
outlines the sequence of activities needed to produce and maintain a software
product. Generic activities in all software process models are [27]:

• Specification - what the system should do, and its development con-
straints.

• Development - production of the software system.

• Validation - checking that the system is coherent with customer re-
quirements

• Evolution - changing the software system in response to changing de-
mands.

>From other perspectives, process models may show how developers are
coordinated on activities and how information flows within an organization
during development [27]. A software process thus includes any aspect related
to software production and maintenance.

A software product is often behind schedule, over budget, non-conforming
to requirements, and of poor quality. Controlling and improving the pro-
cess used to produce and maintain software products has been proposed as
the solution to these problems [6,9,14,30]. The software industry is there-
fore becoming increasingly aware of the competitive advantages gained from
conducting software process improvement [18]. This means continuously as-
sessing, refining, and changing the process to increase its ability to meet the
requirements and expectations of company stakeholders and of the market
[9]. For example, organizations may have strategic goals, such as to develop
reusable code, reduce development effort, users may demand usability or re-
liability, and the market may expect an organization to be up to date with
current technology.

In industry, software process improvement can be considered a process in
its own right. The software process needs to be assessed in order to deter-
mine its current state relative to strategic goals. Based on this assessment
an improvement plan, that outlines the changes that will be introduced in
order to improve the process according to the strategic goals, needs to be
created. Then, the changes need to be implemented and the effects of change
need to be monitored and evaluated. Software process improvement methods,

9

such as SPICE and IDEAL, specify generic activities in a cyclical process for
conducting software process improvement within an organization [19,30]:

1. Initiating - to start the improvement effort.

2. Diagnosing - to assess the current state of practice.

3. Establishing - to determine the improvement plan.

4. Acting - to implement the actions in the improvement plan.

5. Leveraging - to analyse the lessons learned and results of the improve-
ment effort.

Quality models such as The SEI Capability Maturity Model (CMM) and
the ISO 9001 standard can be used as references to assess an organization’s
state regarding overall process quality based on the requirements of an ideal
company [9]. For example, CMM evaluates a software process relative to
five levels of maturity. Process maturity implies the capability of a process:
to what extent it is explicitly defined, managed, controlled, and effective
[30]. The maturity levels differentiate potential for growth in capability.
When evaluating the CMM level of an organization, a process improvement
proposal is produced based on questionnaires or inspecting tangible process
artefacts [6]. The CMM may thus be used as a roadmap for process improve-
ment within an organization.

2.1 Empirical Software Engineering

Empirical studies are essential to support software process improvement [9].
The three main empirical research methods applied in software engineering
are highlighted in [18,31]:

• Case studies. A study focusing on a single project.

• Formal experiments. A study focusing on multiple projects or a single
project replicated several times.

• Surveys. A survey is similar to a formal experiment. If the selection
of projects and teams is post hoc it is a survey.

Organizations usually conduct software process improvement through case
studies. In a case study, the measurement framework is derived from a spe-
cific project setting and specific goals, thus the results are of value to that
particular type of project. Projects are due regardless of data-collection,
thus case studies are also the least expensive for an organization [31].

Organizations constantly seek technology that improves software production

10

and maintenance [18]. When deciding on an improvement strategy that in-
volves introducing new technology, organizations will benefit from any avail-
able evidence on the usefulness and effects of the technology. This will aid
organizations in selecting the appropriate technology and reduce the risks
concerning introducing inappropriate technology [29]. This may also lead
organizations to adopting technology they otherwise would not have consid-
ered because the benefits are proven [17,29]. However, the usefulness and
effects of a technology needs to be proven valid in many different settings,
due to different use in different organizations. The evidence must therefore
be based on a study that produces results that are applicable across many
different types of projects and organizations. Experiments may produce such
results.

2.2 Experimentation in Software Engineering

Although no amount of experimentation can provide absolute evidence on
the validity of a theory as it always stand in danger of being falsified by a
counter-example, experiments test theories, explore factors of interest, and
may trigger ideas on new theories [29]. Research in other scientific fields has
shown that when an extensive base of empirical evidence supports a theory
it will gradually be accepted as a valid theory in that field [29]. For these
reasons, experimentation is considered essential to making progress in any
scientific field, including software engineering [4,29].

With a correlation between the quality of the software process and the quality
of the resulting product, processes in particular need to be fully understood
and improved to advance in the quality of softare products. Experiments
may contribute by exploring critical factors and effects of a process. The
knowledge derived and collected from experimental studies of a process may
lead to a higher understanding of that process which may contribute to iden-
tifying areas of improvement in that process.

In order to make claims on their results, experiments must be well designed
by having internal- and external validity. Internal validity means the ex-
perimental design must be based on valid theory and carried out through
correct scientific practice [9]. For example a valid measurement programme
must be used, data must be collected in an objective manner, and con-
clusions must have scientific support. There are problems identified with
achieving internal validity, such as biased researchers aiming to prove one
alternative superior to another [29], an invalid measurement programme [4],
or conclusions drawn without scientific support [29]. External validity means
results that are valid in other settings [9,18]. The results of an experiment
do not generalize outside the controlled experimental conditions [18], thus it
is important to determine the external validity of an experiment by precisely

11

specifying its conditions.

If the goal of an experiment is to transfer results from research to indus-
try it is therefore essential that there is a close relationship between the
experimental conditions and real industrial situations [28]. Without such a
relationship, organizations may perceive the results as irrelevant and ignore
them [28]. However, as most experiments are conducted by researchers in
a laboratory setting, this relationship might be difficult to achieve [18]. As
a solution, it is suggested that experiments should be designed and carried
out as realistic as possible [28]. An experiment is considered realistic if it
motivates and appears meaningful to the subjects and resembles "real" in-
dustrial situations [28]. The latter is referred to as mundane realism and is
achieved by having:

• A realistic task - the task should resemble real industrial projects.

• Realistic subjects - subjects should be representative of software de-
velopers.

• Realistic environment - the experimental environment should resemble
a real industrial development environment.

2.3 Measurements

When investigating the effects of technology in empirical studies, measure-
ments on both the process and the resulting product are needed. Specifically
what needs to be measured is relevant to the goal and nature of the individ-
ual study, but three main dimensions for measurement related to software
production and maintenance are highlighted in [19]:

• Cost - by devlopment effort, maintenance effort, training costs, cost of
tools ets.

• Quality - by usability, reliability, maintainability, etc.

• Schedule - by project duration, maintenance duration, etc.

Internal structural attributes such as inheritance, coupling, cohesion, etc.,
are assumed closely related to external quality attributes, such as fault prone-
ness, reusability, maintainability, etc. [4]. Therefore, many software metrics
for internal structural attributes have been developed, with perhaps the most
commonly referenced those by Chidamber and Kemerer [5]. Such metrics
collects data on code. Recent research has identified the need for metrics
for higher-level design in order to evaluate quality early on in the process
lifecycle [4]. Metrics especially developed for UML class diagrams are for
example presented in [10], and [23] presents a model for refining traditional
object-oriented metrics to be applicable on higher-level design (e.g. UML).

12

3 Applying the UML in Object-Oriented Software
Development Processes

The UML is a notation for object-oriented software analysis and design. Its
notation is specified by a set of grammatical rules for constructing analysis-
and design models of software systems, and defined by a meta-model [32].
The UML itself does not prescribe or give advice on how to use the notation
in a software development process [3,8,32].

3.1 UML Models

The UML provides a set of diagrams for modelling the requirements, struc-
ture, state, and behaviour of a software system. When applied in a develop-
ment process, diagrams are grouped together forming analysis- and design
models of the system [2,15,16,25]. This section elaborates on the diagrams
relevant to this paper, and how they are used in the respective models.

3.1.1 Use Case Diagrams and Use Case Modelling

A use case model captures interactions between the system and its users. A
use case represents one complete service required by a system. For example,
registering a loan in a library system is a use cases in such a system. A use
case is related to its actor(s), which are the human users or external sys-
tems that require the use cases. A use case diagram shows the relationship
between the actors and use cases of the system. Written descriptions of use
cases, following some guideline such as the formats in [7], specifies each use
case and the flow of events necessary for realizing each use case scenario. A
use case scenario is one particular path through a use case. Graphical de-
scriptions of use cases, using for example activity or sequence diagrams, may
also describe use cases. However, these are less appropriate for validating
requirements in collaboration with users and customers since they cannot be
expected to be familiar with UML. A use case model is the collection of the
use case diagram and written or graphical descriptions of the use cases.

The common approach to constructing use case diagrams is to first iden-
tify the actors, then the use cases required by the actors [2,3,8,24]. The
identification of actors can be made by abstraction in the problem domain,
investigating nouns that represent actors in written requirements documents,
or by consulting the customer(s). The use cases are identified by imagining
services required by actors, investigating verb sentences that represent use
cases in requirements documents, or consulting human actors.

13

3.1.2 Sequence Diagrams

Sequence diagrams show how entities of the system interact in order to ex-
ecute a use case scenario. When applied in an analysis model, the entities
are conceptual classes, separated into boundary, control, and entity objects
[2,15,16,25]. The interaction is shown by how these objects delegate respon-
sibilities between them. The responsibilities are the high-level operations
that the system must be able to perform to realize use cases. When applied
in a design model, the entities are system class instances and the interaction
is shown by the flow of method calls between the class instances.

3.1.3 Class Diagrams

A class diagram shows the static structure of a system’s concepts, types,
or classes. A class diagram is constructed in one of three different perspec-
tives [8]. When applying class diagrams in analysis models, the perspective
is conceptual. Such a class diagram is referred to as a domain model, and
shows the entities, which are class candidates, in the domain under study,
their high-level- attributes, operations, and relationships [2,15,16,25]. When
applied in a design model, the perspective is either specification or imple-
mentation. In a specification perspective interfaces of software components
are modelled. In an implementation perspective the system classes, their
attributes, methods, and associations are shown.

3.2 Recommended Use

The UML meta-model defines a use case as a subclass of the meta-model el-
ement Classifier [32]. This implies that a use case has a state and behaviour
from which classes, attributes, methods, and associations can be derived. In
our opinion a use case driven development process implicitly assumes this
definition and that the use case model contains all information necessary for
constructing analysis- and design models.

The Unified Process, which is considered to be the process that best com-
plements UML [2], is the primary example of a use case driven process. It is
developed by the authors of UML and covers their recommended application
of all UML models. In the Unified Process, an analysis model is derived
from the use case model, possibly in combination with a domain model, and
a design model is a refinement of the analysis model. The design model
contains the same diagrams as the analysis model, but with a higher-level
perspective. This stepwise process of transitioning a use case model to a
design model is claimed to ensure traceability from requirements to design
[2,16]. The result of implementing the system according to the class diagram
in the design model is thus a system architecture that to a great extent will
be determined by the information retrieved and contained in the use case

14

model and how this is refined to a design model.

The extensive framework provided by the Unified Process allows for sev-
eral interpretations and adaptations to different development projects. For
example, the ICONIX process described in [25] is a derivate of the Unified
Process, and the use case driven process described in [24] may be considered
a simplification of the Unified Process. The steps of the use case driven
process, as described in [24], are presented in Figure 1. The actual use case
driven process investigated in this paper is outlined in Figure 2.

1. Identify the use cases of system behaviour

2. Describe each use case in detail, for example using a template format.

3. Define a scenario for each interesting path through the use case, for example
using an activity diagram.

4. Draw a sequence diagram for each scenario.

5. Identify the methods needed in every scenario, thus all the methods needed
for the realization of the use cases.

6. Transfer the objects and methods in the sequence diagrams to a class dia-
gram.

Figure 1: The steps in a use case driven process

Figure 2: Outline of the use case driven process

15

3.2.1 Problems and Proposed Solutions

It is often difficult to ensure a consistent transition of models, due to their
different aim and different perspectives of diagrams [12,20,25]. Solutions to
this problem have been suggested. For example:

• In [20] the refinement of activity diagrams are used to ensure a trace-
able transition and proper coupling of use cases and class diagrams.

• In [12] semi-formal models are introduced as means to systematically
identify corresponding or redundant information in models depicting
use case scenarios and class diagrams.

• A set of reading techniques for inspecting the quality and consistency
of diagrams and other artefacts such as class descriptions, are used
as a means to validate a design model according to requirements and
ensure consistency in [26].

• The process in [25] places a stronger emphasis on the analysis phase by
constructing a more elaborate analysis model in the attempt to bridge
the gap between the use case model and the class diagram.

In [22] it is claimed that a use case driven development process may lead to
an unsuitable architecture. For example:

• The use case model does not contain the information necessary for
deriving all or the appropriate classes.

• Focusing too much on the information contained in the use case model
may lead developers to mistake requirements for design.

• Focusing on realizing the use cases in the current iteration may cause
developers to loose sight on structural quality aspects, thus prohibiting
maintainability, especially if the schedule to complete the iteration is
tight.

The proposed solution to these problems in [22] is to apply a process that
combines and includes aspects of use case driven, data-driven, and respon-
sibility driven processes. Data-driven and responsibility-driven processes
derive a class diagram by investigating nouns and verb phrases in written
requirements documents, and possibly by abstraction in the problem do-
main. They differ in their starting points: A data-driven process starts by
identifying classes and their state (attributes and associations) whereas a
responsibility-driven process starts by identifying classes and their responsi-
bilities [22]. In such a combination the design model is derived from written
requirements documents, and possibly abstraction, in addition to the use
case model. The use case model will thus less determine the system’s archi-
tecture.

16

In [24], a validation process is suggested as an equal alternative to a use
case driven process. In such a process the use case model only contributes to
detecting required functionality overlooked in validating the class diagram.
Thus, the use case model will not determine classes or the class composition,
and in our opinion a validation process supports the definition of a use case
as a behavioural feature of a system, rather than as a classifier.

The steps of a validation process as described in [24], is presented in Figure
3. The actual validation process investigated in this paper is outlined in
Figure 4. The differences between Figures 2 and 4 are encircled.

1. Identify the classes in the system using abstractions or noun phrases in re-
quirements documents.

2. Make a list of the responsibilities of the objects of each class.

3. Draw a class diagram to show the classes and their responsibilities, that is
their methods.

4. Identify interesting scenarios that will be used to validate the class diagram.
To do this, identify and model the use cases.

5. Draw a sequence diagram for each scenario.

6. Use the sequence diagrams to validate that the class diagram contains all the
necessary methods. Add or rearrange methods if necessary.

Figure 3: The steps in a validation process

17

Figure 4: Outline of the validation process

3.3 Tool Support

Most UML CASE tools support automatic generation of code from class
diagrams to common object-oriented programming languages, such as Java
and C++. The resulting code is a framework of the system where ideally only
the contents of methods need to be implemented. This provides a controlled
transformation of design models to code, ensuring consistency.

18

4 Analysis Framework

The design models produced in the experiment were evaluated relative to
both qualitative and quantitative metrics. The qualitative metrics describe
the class diagrams’ suitability for automatic code generation and to what
extent the subjects were successful in following the guidelines for the two
different processes. The quantitative metrics describe the size and number
of errors in the class diagrams. The time spent on creating the design models
was also measured.

4.1 Qualitative Metrics

We propose a set of metrics for measuring the level of detail of the class di-
agrams, the extent to which the design models implement the requirements,
and the correspondence between class and sequence diagrams. Our metrics
are based on the marking scheme for evaluating quality properties of a use
case description presented in [1].

The level of detail was measured relative to the syntactic elements that were
used in the resulting class diagrams. To support code generation, the class
diagrams should show the:

• Visibility of attributes and methods.

• Type and names of attributes, methods and parameters.

• Navigation and cardinality of associations.

Realism of the class diagrams, to what extent the processes are successful in
constructing design models that implement the requirements, was measured
in three ways:

• Realism in class abstractions - to what extent the class diagrams con-
tain the necessary classes.

• Realism in class attributes - to what extent the necessary attributes are
identified, and whether they are specified as attributes of the correct
classes.

• Realism in class methods - to what extent the necessary methods are
identified, and whether they are specified as methods of the correct
classes.

The realism of sequence diagrams was measured similar to the realism of
class methods. The advantage of measuring sequence diagrams is that it is
easier to follow the flow of successive method calls and flow of parameters
than it is in class diagrams.

19

Table 1: The qualitative metrics

Property Mark Comment
Level of Detail in Class Diagram 0-6 0 = all wrong, 6 = all correct
Realism in Class Abstractions 0-6 0 = all wrong, 6 = all correct
Realism in Class Attributes 0-7 0 = all wrong, 6 = all correct
Realism in Class Methods 0-8 0 = all wrong, 6 = all correct
Realism in Sequence Diagrams 0-8 0 = all wrong, 6 = all correct
Class and Sequence Diagram Correspondence 0-6 0 = all wrong, 6 = all correct

Table 2: The quantitative metrics

Property Description
NC Total Number of Classes
NA Total Number of Attributes
NM Total Number of Methods
NAssoc Total Number of Associations
NFC Total Number of False Classes
NFA Total Number of False Attributes
NFM Total Number of False Methods
NFAssoc Total Number of False Associations
NSC Total Number of Superfluous Classes
NSA Total Number of Superfluous Attributes
NSM Total Number of Superfluous Methods
NSAssoc Total Number of Superfluous Associations
Time Time used to develop a design model

A measure of the correspondence between class and sequence diagrams was
in our experiment used to assess to what extent the subjects were successful
in following the guidelines for the two processes. For the use case driven
process, the objects used in the sequence diagrams should be derived from
the domain model, and the class diagram should contain exactly the meth-
ods found in the sequence diagrams. For the validation process, the objects
used in the sequence diagrams should be derived from the class diagram, and
the class diagram should contain complementing methods to those found in
the sequence diagrams. For both processes, the direction of method calls
between objects in the sequence diagrams should be consistent with the way
the methods are defined in the class diagrams.

Table 3 summarizes the qualitative metrics described above. The score of

20

each metric is made according to a checklist1 with yes/no questions for each
property. The marking scales match the number of questions (between 6 and
9) in the checklists.

4.2 Quantitative Metrics

Many design metrics for object-oriented code have been proposed, but not
all are applicable to high-level design [23]. The metrics suggested in [10] are
developed for UML class diagrams and have been empirically validated [11].
To examine the size of the class diagrams, we use a subset of those metrics:
total number of classes, attributes, methods and associations.

Errors in class diagrams were measured according to the number of classes,
attributes, methods and associations that were wrong relative to the problem
domain, false, or did not contribute to the implementation of the require-
ments, superfluous. Time measures the total time spent on constructing the
design model. The quantitative metrics are summarized in Table 4.

1Appendix B.1

21

5 Evaluation of the two Processes

This section describes the experimental design, analysis, results and possi-
ble improvements to the experimental design. To the authors’ knowledge,
no empirical studies have been conducted to compare alternative ways of
applying use case models in a development process. This study is therefore
explorative; the goal of the evaluation was to investigate differences between
the two processes.

5.1 Hypotheses

The aim of the experiment was to investigate differences in the design mod-
els resulting from applying two different development processes. The design
models were evaluated relative to their suitability for code generation, the
size of the class diagrams, the number of false and superfluous elements2

in the class diagrams, and the time spent on creating them. We also at-
tempted to assess differences in the subjects’ ability to follow the guidelines
of the processes. These aspects were separated into the following hypotheses:

H10: There is no difference in the level of detail in the class diagrams.
H11: There is a difference in the level of detail in the class diagrams.

H20: There is no difference in the realism of the design models.
H21: There is a difference in the realism of the design models.

H30: There is no difference in the correspondence between the class and
sequence diagrams.
H31: There is a difference in the correspondence between the class and se-
quence diagrams.

H40: There is no difference in the size of the class diagrams.
H41: There is a difference in the size of the class diagrams.

H50: There is no difference in the number of false elements in the class
diagrams.
H51: There is a difference in the number of false elements in the class dia-
grams.

H60: There is no difference in the number of superfluous elements in the
class diagrams.
H61: There is a difference in the number of superfluous elements in the class
diagrams.

2The terms false and superfluous elements are used as abbreviations for false and
superfluous classes, attributes, methods, and associations.

22

H70: There is no difference in time spent creating the design models.
H71: There is a difference in time spent creating the design models.

5.2 Experimental Design

5.2.1 Subjects

The subjects were 26 undergraduate students following a course in software
engineering. Half of the subjects received guidelines for the use case driven
process whereas the other half received guidelines for the validation process.
The experiment was voluntary, and the subjects were paid for their partic-
ipation. The subjects had learned the basics of UML and had constructed
an object-oriented design as part of a compulsory assignment in the course.

5.2.2 Procedure of the Experiment

The experiment lasted for three hours. The subjects used pen and paper.
They wrote down the exact time they started and finished each exercise. The
experiment consisted of two parts. The first part contained three exercises
guiding the subjects in developing a design model with a class diagram and
three sequence diagrams, modelling three functional services of a library
system. The second part was not included in our analysis, but was part of
the experiment in order to make sure that all the subjects had enough to do
for three hours. The subjects had no former training in neither of the two
alternative development processes so detailed guidelines on were given. The
second part gave equal guidelines for both processes.

5.2.3 Experimental Material

The task of the experiment was to construct a design model for three func-
tional services of a library system. This case is described in many books on
UML, for example [24]. It was chosen because it is a well-known domain
and simple enough for students just introduced to UML. The subjects were
given a use case model with the following use cases:

• Checking out an item.

• Checking in an item.

• Checking the status on an item.

The use cases were described using a template format based on those given
in [7]. Those following the validation process also received a textual require-
ments document of the system. The guidelines were based on the descriptions
of the use case driven process and the validation process described in [24]

23

and presented in Tables 1 and 2. In order to provide complete design pro-
cesses, some additions were made to the original descriptions based on the
reading techniques for object-oriented design described in [26]. For the same
purpose, the construction of a domain model was added to use case driven
process. Because of the time constraints on the experiment, one step from
the original descriptions was removed from each process respectively. In ad-
dition, the subjects were given a use case model instead of being asked to
construct one. In the use case driven process the explicit definition of the use
case scenarios through activity diagrams was excluded. Table 5 shows the
detailed guidelines for the use case driven process used in the experiment.

Exercise 1: Domain model

1. Underline each noun phrase in the use case descriptions. Decide for each
noun phrase if it is a concept that should be represented by a class candidate
in the domain model.

2. For the noun phrases that do not represent class candidates, decide if these
concepts should be represented as attributes in a domain model instead. (Not
all attributes are necessarily found this way.)

Exercise 2: Sequence Diagrams

1. Read the use case descriptions carefully to understand the functionality they
represent.

2. Mark the verbs or sentences in the descriptions that represent actions per-
formed by the systems’ classes. Decide if these actions should be represented
by one or more methods in the sequence diagram. (Note! Not all methods
needed are necessarily identified this way).

Exercise 3: Class Diagram

1. Transfer the domain model from exercise 1 into a class diagram.

2. For each method in the sequence diagram:

(a) If an object of class A receives a method call M, the class A should
contain the method M in the class diagram.

(b) If an object of class A calls a method of class B, there should be an
association between the classes A and B.

Figure 5: Guidelines for the use case driven process

In the validation process the listing of responsibilities for each class was
excluded. Figure 6 shows the detailed guidelines for the validation process.

24

Exercise 1: Class Diagram

1. Underline all noun phrases in the requirements document. Decide for each
noun phrase if it is a concept that should be represented by a class in the
class diagram.

2. For the noun phrases that do not represent classes, decide if these concepts
should be represented as attributes in the class diagram instead. (Not all
attributes are necessarily found this way.)

Exercise 2: Sequence Diagrams

Same as for the use case driven process.

Exercise 3: Validation of the Class Diagram

1. For each method in the sequence diagram, draw a circle around it. If several
methods together form a system service, treat them as one service.

2. For each method or service circled out:

(a) Validate that the class that receives the method call contains the same
or matching functionality.

(b) If an object of class A calls a method of class B, there should be an
association between the classes A and B in the class diagram. If the class
diagram contains any hierarchies, remember that it may be necessary
to trace the hierarchy upwards when validating it.

(c) If the validation in the previous steps failed, make the necessary updates
in the class diagram.

Figure 6: Guidelines for the validation process

5.3 Analysis and Results

The design models were evaluated according to the analysis framework pre-
sented in Section 3. The Kruskal-Wallis statistical test was performed on
the results. This test was chosen because the data distributions were non-
normal. A p-value of 0.1 was chosen as the level of significance for all the
tests, because of the explorative nature of the experiment.

5.3.1 Assessment of level of detail, Hypothesis H1

We neither expected nor found a difference in the level of detail of the class
diagrams, and we can therefore not reject H10. In our opinion, it is unlikely
that this aspect relates to the choice of development process.

25

5.3.2 Assessment of realism, Hypothesis H2

The test on realism in class methods, figure 7, showed a difference in favour
of the validation process. We therefore reject H20 at the selected level of
significance, and assume with a 90% probability that there is a difference
in the realism of the design models constructed by the two processes. We

Process N Median Ave Rank Z
Use case driven 10 4,000 8,0 -2,15
Validation 11 6,000 13,8 2,15
Overall 21 11,0

H = 4,61 DF = 1 P = 0,032
H = 4,84 DF = 1 P = 0,028 (adjusted for ties)

Figure 7: Realism in class methods

believe that this result is due to the fact that the subjects mostly mapped
the steps in the use case descriptions directly onto methods when creating
sequence diagrams. This resulted in both misleading method names and
flaws is the method composition to realize the use cases. Figure 8 shows an
example of how the steps of the use case "Check out item" typically were
mapped to a sequence diagram. Every method in the sequence diagram is
named and derived from a "corresponding" step in the use case description.
For example, the initiating method is named "retrieveMember". This is ei-
ther an innapropriate method or the name is misleading, since retrieving the
member is probably just one of the things an initiating method needs to do
in order to create a new loan. The order of method calls is equivalent to
the order the steps are presented in the description. A problem caused by
this, is for example that the due date on the loan is to be set before the
loan is created. Also, how objects are associated is left out or not clear from
assessing the sequence diagram. For example, how the member instance is
associated with the new loan instance is left out or speculative.

The use case driven process used the sequence diagrams to identify all meth-
ods needed in the class diagram, while the validation process used the se-
quence diagrams only to detect any necessary functionality overlooked in
the first attempt at a class diagram. Therefore, the problems concerning the
direct mapping of methods had a much larger impact on the design models
constructed with the use case driven process.

The tests on realism in class abstractions, class attributes, and sequence
diagrams did, however, not show any difference with regards to realism be-

26

tween the two processes. This may be because of the small problem domain
used in this experiment.

Figure 8: The mapping of methods from use case descriptions

5.3.3 Assessment of correspondence, Hypothesis H3

We expected a difference in correspondence in favour of the use case driven
process as a strength of this process is claimed to be that it assures traceabil-
ity between the diagrams in a design model, but the test, figure 9, did not
show any difference, and we can not reject H30. However, there is a differ-
ence in median between the two processes, and the resulting p-values is close
to showing a difference at the chosen level of significance. The subjects had
little experience with creating and using sequence diagrams, and we believe
this to be the main reason why those following the use case driven process
did not achieve a better correspondence.

27

Process N Median Ave Rank Z
Use case driven 10 7,000 13,2 1,51
Validation 11 6,000 9,0 -1,51
Overall 21 11,0

H = 2,29 DF = 1 P = 0,130
H = 2,41 DF = 1 P = 0,120 (adjusted for ties)

Figure 9: Class and sequence diagram correspondence

5.3.4 Assessment of size, Hypothesis H4

We expected a difference in the size of the class diagrams, with larger class
diagrams produced with the validation process, because the use case driven
process provides stricter guidance on how to identify classes, attributes,
methods and associations. However, the tests regarding size did not show
any difference, and we can not reject H40 at the chosen level of significance.

Process N< N>= Median Q3-Q1 ----------|---------|---------|-
Use case driven 3 7 6,00 1,25 (---------|--)
Validation 3 8 6,00 3,00 (---------|--------------------)

----------|---------|---------|-
6,0 7,0 8,0

Overall median = 6,00

A 95,0% CI for median(Validation)-median(Use case driven):(-0,15;1,29)

Figure 10: Variance in number of classes

There is, however, a larger variance, figure 10, in the number of classes
using the validation process as opposed to using the use case driven process.
In our opinion this indicates that the use case driven process gives stricter
guidance on how to identify classes. No difference in the variance in number
of attributes, methods, or associations was found.

5.3.5 Assessment of superfluous elements, Hypotheses H5

We expected a difference in superfluous elements in the class diagrams cre-
ated by the two processes for the same reason as we expected a difference
in size. However, none of the tests on superfluous elements showed any dif-

28

ference, and we can not reject H50 at the level of significance. This may
indicate that the guidelines on both processes prevented the subjects from
including superfluous elements to an equal extent.

5.3.6 Assessment of false elements, Hypotheses H6

We did not expect a difference in false elements, due to the small problem
domain and because the subjects had similar experience. However, the test
on number of false classes, figure 11, showed a difference, and we reject
H60 at the level of significance, and assume with a 90% probability that
the use case driven process led to the inclusion of more false classes. The

Process N Median Ave Rank Z
Use case driven 10 1,00E+00 13,5 1,76
Validation 11 0,00E+00 8,7 -1,76
Overall 21 11,0

H = 3,10 DF = 1 P = 0,078
H = 3,50 DF = 1 P = 0,061 (adjusted for ties)

Figure 11: Number of false classes

results of the tests on differences in size in Section 4.3.4 indicate that the use
case driven process guided the subjects in a pattern when deriving classes.
This result shows that the pattern resulted in the derivation of some classes
that were wrong relative to the problem domain. For example the subjects
following the use case driven process frequently derived a class "Employee"
from the use case model. This is wrong relative to the problem domain, as
an employee is a user and not an entity of the system.

5.3.7 Assessment of time spent, Hypothesis H7

A difference in time spent creating the design models was expected as exer-
cises 1 and 3 were more comprehensive for the validation process. The tests
on time on the individual exercises all showed differences. Those following
the validation process spent most time on exercises 1 and 2, figure 12, while
those following the use case driven process spent most time on exercise 3.
The latter was surprising to us since exercise 3 was larger for the validation
process. We believe that although the experiment consisted of two parts,
many of the subjects did not proceed to the second part since they had been
told that the first part was the most important. This influences the total
time spent creating the design models, where no difference was shown. We
can therefore not reject H70 at the selected level of significance.

29

Process N Median Ave Rank Z
Use case driven 10 78,00 5,7 3,73
Validation 11 108,00 15,8 -3,73
Overall 21 11,0

H = 13,93 DF = 1 P = 0,000
H = 13,95 DF = 1 P = 0,000 (adjusted for ties)

Figure 12: Time spent on exercises 1 and 2

5.4 Improving the Experimental Design

This experiment was exploratory and there are several threats to the validity
of our results. These threats and how they can be remedied are discussed
below.

5.4.1 The Subjects

It is not clear how well student-based experiments generalize to software
professionals [28]. Establishing the competence level of students compared
to professional may be difficult based on number of credits earned and their
amount of professional work experience [28].

The subjects were novices to modelling with UML. The measure of class and
sequence diagram correspondence showed that neither process resulted in a
perfect correspondence. This indicates that the subjects were not entirely
able to follow the guidelines for the processes. Therefore, professional devel-
opers, more experienced subjects, or training in the processes in advance is
an identified improvement. However, the guidelines were comprehensive and
strict, which may compensate for lack of experience [13].

5.4.2 The Task

The task was small because of the time limit on the experiment. This re-
sulted in small design models, leaving little room for variations in structure.
Therefore, we were not able to investigate differences in external quality at-
tributes such as maintainability and flexibility. The task of an experiment
should be large enough to resemble real industrial projects in order to assess
all factors relevant to industry [28]. Increasing the task and applying a more
extensive measurement programme would thus represent an improvement.

30

5.4.3 The Environment

Pen and paper based experiments are not representative for real industrial
situations. The experimental environment should resemble the environment
in real software development projects if results are to be transferred to in-
dustry [28]. A great improvement would thus be to provide the subjects with
computers and any necessary supporting technologies.

5.4.4 The Use Case Model

The subjects were provided with a use case model instead of letting them
construct one for themselves. The analysis showed that the use case descrip-
tions were important in the use case driven process because the subjects of-
ten assumed a direct mapping from the steps in the use case descriptions to
methods in the class diagram. The results may therefore have been different
if the order and textual presentation of the steps in the use case descriptions
had been different, or if a use case model on another format had been used.
The format used is a well-known format, but an improvement may be to let
the subjects decide for themselves on which use case format to apply.

5.4.5 Interpretation of the two Approaches

The use case driven process and the validation process are not precisely
defined in [24]. The guidelines for the two processes used in this experiment
are therefore two particular interpretations of those processes. Due to the
time limit on the experiment, we did not ask the subjects to construct any
other models that might have served beneficial, such as activity diagrams
recommended in [24].

5.4.6 The Guidelines

The exercise guidelines specified creating one sequence diagram for each use
case. This was done because the use cases in this experiment are simple, but
with more complex use cases it may be difficult to model all scenarios con-
tained in one use case by one sequence diagram [21]. An improvement may
therefore be to provide only an explanatory outline of the two approaches as
in [24], letting the subjects decide for themselves which additional diagrams,
such as activity and collaboration diagrams, to construct in the design mod-
els, and demand separate sequence diagrams for every scenario in the use
cases.

5.4.7 The Measurement Framework

We used qualitative measurements in order to evaluate realism in the de-
sign models. This means the results of these measurements may have been
affected by the experience, skill, and preference of the author. In order to

31

claim internal validity, an identified improvement would be to only apply
metrics that are empirically validated and may be collected automatically.

32

6 Conclusions and Future Work

Technologies are introduced to the software industry often without evidence
on their usefulness and effects. However, in order to ensure a successful adap-
tation of technology in industry and be able to identify areas of improvement
in a technology, knowledge and evidence of its effects, strenghts, and weak-
nesses is essential. Empirical research is identified as a means to explore,
validate, and provide evidence on the effects of technology. In particular, ex-
perimentation is essential in order to build a base of knowledge and evidence.

In [4], an assessment and comparison of proposed software development
processes and an investigation on the use of UML is in particularly great
demand. We conducted an experiment to compare two processes with UML
where the use case model is applied differently. One process was use case
driven. In such processes a use case model serves as a basis for constructing
a design model. The other process was a validation process where a use case
model is applied in validating the design. The aim of the experiment was to
investigate differences between the two processes with regards to the quality
of the resulting design models defined in terms of suitability as a basis for
automatic code generation as well as size and number of errors in the class
diagrams.

The results show that the validation process led to design models better
suited for automatic code generation because of greater realism in the method
composition of the class diagrams. No significant difference regarding size
was found, but there was a larger variance in the number of classes of the
class diagrams constructed with the validation process than with the use case
driven process. The use case driven process led to more erroneous classes
relative to the problem domain than did the validation process. This indi-
cates that the use case driven process gives more, but not necessarily better,
guidance on how to identify classes and their attributes and methods. In our
opinion, the results support the claims that a use case model is insufficient
for deriving all necessary and appropriate classes, and may lead the devel-
opers to mistake requirements for design [22]. The results also indicate that
it may be more appropriate to consider a use case as a behavioural feature
of the system against which class diagrams can be validated, rather than
consider a use case as having a state and methods from which the design
can be derived. In summary, our study supports claimed weaknesses of use
case driven processes and implies that following the validation process is the
better choice in similar conditions to our experiment.

This study was exploratory. We are going to replicate this experiment with
modifications discussed in section 4.3 incorporated. We also plan on con-
ducing further studies to investigate how to best apply a use case model in

33

an object-oriented design process. In particular we plan to interview project
managers and experienced software developers on how use case models are
actually applied in the software development process.

34

Bibliography

1. Anda, B., Sjøberg, D., Jørgensen, M. Quality and Understandability
in Use Case Models. 13th European Conference on Object-Oriented
Programming (ECOOP2001), June 18-22, Budapest, Hungary, LNCS
2072, Springer Verlag, pp. 402-428, 2001.

2. Arlow, J., Neustadt I. UML and the Unified Process. Practical Object-
Oriented Analysis and Design. ISBN: 0-201-77060-1, Addison-Wesley,
2002.

3. Booch, G., Rumbaugh, J.,Jacobson, I. The Unified Modeling Language
User Guide. ISBN: 0-201-57168-4, Addison-Wesley, 1999.

4. Briand, L., Arisholm, E., Counsell, S., Houdek, F., Thevenod-Fosse,
P. Empirical Studies of Object-Oriented Artifacts, Methods, and Pro-
cesses: State of The Art and Future Directions. Empirical Software
Emgineering: An International Journal, 2000.

5. Chidamber, S.R., Kemerer C.F. A Metrics Suite for Object-Oriented
Design. IEEE Transactions on Software Engineering, Vol.20, No.6,
pp.476-493, 1994.

6. Clark, C.B. The Effects of Software Process Maturity. USC Center
for Software engineering PhD Dissertations, University of Southern
California, 1997.

7. Cockburn, A.Writing Effective Use Cases. ISBN: 0-201-70225-8, Addison-
Wesley, 2000.

8. Fowler, M., Scott, K. UML Distilled Second Edition. A Brief Guide
to the Standard Object Modeling Language. ISBN: 0-201-65783-X,
Addison-Wesley, 2000.

9. Fuggetta, A. Software Process: A Roadmap. In Anthony Finkelstein,
ed. The future of Software Engineering. ACM Press, 2000.

10. Genero, M., Piattini, M., Calero, C. Early Measures for UML Class
Diagrams. L’Objet., Vol.6, No. 4, Hermes Science Publications, pp.
489-515, 2000.

11. Genero, M., Piattini, M. Empirical Validation of Measures for Class Di-
agram Structural Complexity through Controlled Experiments. 5th In-
ternational ECOOP workshop on Quantitative Approaches in Object-
Oriented Software Engineering, June 2001.

35

12. Glinz, M. A Lightweight Approach to Consistency of Scenario and
Class Models. Proceedings of the Fourth IEEE International Confer-
ence on Requirements Engineering. Schaumburg, Illinois, pp. 49-58,
June 2000.

13. Hohmann, L. Journey of the Software Professional. A sociology of
Software Development. ISBN: 0-13-236613-4, Prentice Hall, 1997.

14. Humphrey, W. Managing the Software Process. ISBN: 0-201-18095-2,
Addison-Wesley, 1989.

15. Jacobson, I., Christerson, M., Jonsson P., Overgaard, G.Object-Oriented
Software Engineering: A Use Case Driven Approach. ISBN: 0-201-
54435-0, Addison-Wesley, 1992.

16. Jacobson, I., Booch, G., Rumbaugh, J. The Unified Development Pro-
cess. ISBN: 0-201-57169-2, Addison-Wesley, 1999.

17. Juristo. N., Moreno, A.M. An Adaptation of Experimental Design
to the Empirical Validation of Software Engineering Theories. 23nd
Annual NASA Software Engineering Workshop. Maryland, EE.UU,
1998.

18. Kitchenham, B, Pickard, L., Phleeger, S.H. Case Studies for Method
and Tool Evaluation. IEEE Computer, Vol.12, No.4, pp.52-62, July
1995.

19. Kitchenham, B. Software Metrics: Measurement for Software Process
Improvement. ISBN: 1-85554-820-8, Blackwell, 1996.

20. Kösters, G., Six, H-W., Winter, M. Enhancing Activity Graphs to
Bridge the Gap between Use Cases and Class models. Technical Re-
port, Dept. of CS, University of Hagen, August 1999.

21. Kösters, G., Six, H-W., Winter, M. Coupling Use Cases and Class Mod-
els as a Means for Validation and Verification of Requirements Speci-
fications. Requirements Engineering Journal, Vol. 6, Nr. 1, Springer,
London, pp. 3-17, 2001.

22. Pooley P., Stevens R. Using UML. Software Engineering with Objects
and Components. ISBN: 0-201-64860-1, Addison-Wesley, 2000.

23. Reissing, R. Towards a Model for Object Oriented Design Measure-
ment. 5th International ECOOP workshop on Quantitative Approaches
in Object-Oriented Software Engineering, June 2001.

24. Richter, C. Designing Flexible Object-Oriented Systems with UML.
ISBN: 1-57870-098-1, Macmillan Technical Publishing, 1999.

36

25. Rosenberg, D. Scott, K. Applying Use Case Driven Object Modeling
with UML. An Annoted E-commerce Example. ISBN: 0-201-73039-1,
Addison-Welsey, 2001.

26. Shull, F., Travassos, G., Carver, J., Basili, V. Evolving a Set of Tech-
niques for OO Inspections. University of Maryland Technical Report
CS-TR-4070, October 1999.

27. Sommerville, I. Software Engineering, 6th Edition. ISBN: 0-201-39815-
X, Addison-Wesley, 2000.

28. Sjøberg, D., Anda, B., Arisholm, E., Bybå, T., Jørgensen, M., Kara-
hasanovic, A., Koren, E.F., Vokac, M. Conducting Realistic Experi-
ments in Software Engineering. Accepted for publication at the 2002
International Symposium on Empirical Software Engineering, Japan,
October 2002.

29. Tichy, W.F. Should Computer Scientists Experiment More? 16 Reason
to Avoid Experimentation. IEEE Computer, Vol.31, No.5, pp.32-40,
May 1998.

30. Zahran, S. Software Process Improvement. Practical Guidelines for
Business Success. ISBN: 0-201-17782-X, Addison-Wesley, 1998.

31. Zelkowitz, M.V., Wallace, D.R. Experimental Models for Validating
Technology. IEEE Computer, Vol 31, No.5, pp.23-31, May 1998

32. The UML meta-model, version 1.3. www.omg.org, 2001.

37

A Experimental Design

A.1 Background Information Qustionnaire

Figure 13: the background information qustionnaire

38

A.2 Use Case Model

A.2.1 Use case diagram

Figure 14: The use case diagram

39

A.2.2 Use case descriptions

Figure 15: Use case 1: check out item

40

Figure 16: Use case 2: check item status

41

Figure 17: Use case 3: check in item

A.3 Requirements Document

You are going to develop a partial design for a library system, handling the
borrowing and returning of books and movies. Only library members may
borrow books and movies from the library, and the system must keep track
of which books and movies are currently lent out to which members.

Each book and movie has a unique item number that the system uses to
identify that particular book or movie. An employee can find the status on a
book or movie by providing the system with the item number. Alternatively,
the employee can find the status on a book by providing the system with its
title and author, and status on a movie by its title only. The system must
give the employee appropriate error messages if invalid data is provided. The
books and movies can either be in the library (available for loan), lent out,
or lent out overdue. By overdue means the member has failed to return the
movie or book within its due date.

There may exist several copies of a book or movie.

When a member borrows an item (book or movie), its status changes from
available to out on loan. When an item is returned, its status must change
from either out on loan or out on loan overdue to available. The only issue
in consideration is that you must ensure that when the status on an item is
checked, the correct status is provided by the system, and that the members
fulfil the conditions for borrowing items.

Each member has a member card, with a unique member id. When a mem-

42

ber borrows an item, the employee must provide the system with the member
id and the item number. If the member is currently borrowing less than 10
items, and has no current loans that are overdue, the conditions for bor-
rowing items are fulfilled, and the loan may take place. If the conditions
aren’t met, the system must provide the employee with an appropriate error
message. A member may borrow a book for three weeks, and a movie for
three days.

NOTE! You are not to take into consideration any other functionality than
the specified requirements in this document when developing your design.

A.4 Assignment Description for the Use Case Driven Pro-
cess

The assignment is to develop a partial design for a library system. In this
experiment, you are to follow a use case driven approach design. You need
not to be familiar with this approach, as explicit guidelines are provided,
but hopefully you will have learned something about use case driven design
when you are finished. The problem domain is limited to a smaller area in
order for you to finish in time.

When creating the class diagrams, you are going to take on an implemen-
tation perspective. This means that the level of detail in the class diagram
should be at such that it is suited for generating code.

Part 1 is the most important part of the assignment. Remember to write
down the exact time you start and finish each exercise.

Exercise 1: Domain model
You will find a use case model attached to this document. Read the descrip-
tions carefully and create a domain model for a system that realizes these
and only these requirements. Follow the guidelines below.

NOTE! You are not to detect methods in this exercise. In addition to entities,
the domain model should consist of attributes, and any obvious associations.

Attributes should be specified with:

• Type (int, string, etc.).

• Visibility (public, private, protected).

Associations should be specified with:

• Cardinality on ends (1,*, 1..*, etc.)

43

• Navigation

Guidelines:

1. Underline every noun in the use case descriptions (wherever they may
be). Decide for each whether or not they are concepts that should be
represented by an entity or class.

2. For those nouns not representing classes, decide if they are instead
concepts that should represented as attributes of a class. (Not all
attributes are identified this way).

Exercise 2: Sequence diagrams
Study the attached use case model and create a sequence diagram for each
use case. The sequence diagrams should contain only methods derived from
the use case descriptions, and the objects from the domain model from ex-
ercise 1.

Guidelines:

1. Study the use cases and their descriptions carefully.

2. Underline the verbs or sentences describing an action. Decide if these
are actions that should be represented with methods in the sequence
diagrams.

Note! It is important that your sequence diagrams contain all methods
needed for realizing the use cases. The guidelines above do not guarantee
that all such methods are identified.

Exercise 3: Class diagram
If you completed exercise 2 correctly, this exercise will simply be to fill in the
methods and associations identified in exercise 2 into a class diagram., based
on the domain model from exercise 1. Create a complete class diagram for a
system that realizes the requirements of the use case model by following the
guidelines below.

Attributes should be specified with:

• Type (int, string, etc.).

• Visibility (public, private, protected).

Methods should be specified with:

• Return type (void, int, etc.).

• A list of parameters and their type.

44

• Visibility (public, private, protected).

Associations should be specified with:

• Cardinality on ends (1,*, 1..*, etc.)

• Navigation

Guidelines:

1. For every method call in each sequence diagram:

(a) If an object of class A receives a method call M, the class A should
contain M as a method.

(b) If an object of class A receives a method call M from an object of
class B, there should be an association between classes A and B.

A.5 Assignment Description for the Responsibility-driven
Process

The assignment is to develop a partial design for a library system. A require-
ments document is attached to this paper. In this assignment, you are to
follow a responsibility-driven approach design. You need not to be familiar
with this approach, as explicit guidelines are provided, but hopefully you
will have learned something about responsibility-driven design when you are
finished.

When creating the class diagrams, you are going to take on an implemen-
tation perspective. This means that the level of detail in the class diagram
should be at such that it is suited for a generating code.

Part 1 is the most important part of the assignment. Remember to write
down the exact time you start and finish each exercise.

Exercise 1: Class diagram
You will find a written requirements document attached to this document.
Study this carefully and create a complete class diagram for a system that
realizes these requirements. Follow the guidelines specified below.

NOTE! Do not study the use case model before completing this exercise.

Attributes should be specified with:

• Type (int, string, etc.).

• Visibility (public, private, protected).

45

Methods should be specified with:

• Return type (void, int, etc.).

• A list of parameters and their type.

• Visibility (public, private, protected).

Associations should be specified with:

• Cardinality on ends (1,*, 1..*, etc.)

• Navigation

Guidelines:

1. Underline every noun in the requirements document. Decide for each
whether or not they are concepts that should be represented by a class
in the class diagram.

2. For those nouns not representing classes, decide if they are instead
concepts that should represented as attributes of a class. (Not all
attributes are identified this way).

3. Mark all verbs or sentences describing an action in the requirements
document. Decide if these are actions that should be represented with
methods in the class diagram. (Not all methods are identified this
way).

NOTE! It is important that your class diagram contains all methods needed
for realizing the requirements. The guidelines above do not guarantee that
all such methods are identified.

Exercise 2: Sequence diagrams
Study the attached use case model and create a sequence diagram for each use
case. The sequence diagrams should contain only methods derived from the
use case descriptions, and the objects from the class diagram from exercise 1.

Guidelines:

1. Study the use cases and their descriptions carefully.

2. Underline the verbs or sentences describing an action. Decide if these
are actions that should be represented with methods in the sequence
diagrams.

NOTE! It is important that your sequence diagrams contain all methods
needed for realizing the use cases. The guidelines above do not guarantee
that all such methods are identified.

46

Exercise 3: Validation of the class diagram
In this exercise you are going to use the sequence diagrams from exercise 2 as
means to validate that the class diagram from exercise 1 realizes the require-
ments. The names and composition of methods in the class and sequence
diagrams need not to be identical, meaning the method names, the order of
method calls, and number of method calls will probably be different. It is
important that the methods in the class diagram support the functionality
of the sequence diagrams.

If the validation fails, you must create a revised class diagram that real-
izes the use cases. To save time, you only need to draw those classes where
changes are made in the revised class diagram. Write "the same" or similar
on classes that are left unchanged. Do not make direct changes on the class
diagram from exercise 1 by erasing etc. If you find that no changes are nec-
essary, leave this exercise blank.

NOTE! It is important that you do not make changes only because you feel
you have detected a more elegant way of structuring the class diagram. Only
if the validation process detects flaws or errors should you introduce changes.

Guidelines:

1. Consider every method of the sequence diagram one by one. Draw a
ring around the method. If one ore more methods together makes up
a system service you may draw a ring around all of them an consider
them as one system service.

2. For every method or system service:

(a) Check if the class that receives the method call or service re-
quest has corresponding behaviour defined in form of one ore more
methods.

(b) If an object A receives a method call from an object B there should
be an association between those two classes in the class diagram.
(If your class diagram contains any hierarchies remember that it
may be necessary to follow the hierarchy upwards when evaluating
this).

3. If you found disagreements in the previous step, do the necessary mod-
ifications on your class diagram.

A.6 Part Two of the Experiment

Exercise 1: State and behaviour
In this exercise you are going to validate that the classes with a defined

47

behaviour, also has the necessary state to perform this behaviour. More
specifically, if a class has a defined method, this class should also contain the
necessary attributes to execute the method.

It is important that you carefully think through what information the classes
need to execute their methods.

Guidelines:

1. For each method in each class: check whether or not the class has
(access to) the attributes needed to execute the method.

2. Draw a new class diagram with the modifications if you found one or
more classes lacked necessary information. To save time, you only need
to draw those classes where changes are made. Write "the same" or
similar on classes that are left unchanged.

Exercise 2: Extending the design
Imagine that you have generated code from your class diagram. This is far
from a complete solution to such a system, so now you need to add further
functionality.

The following is a prioritised list of new functionality to be added to the
design:

1. To add and remove members. The system needs to know the name,
date of birth, address, and phone number of every member.

2. To add new items. The system needs to know if it is a book or movie
and the number of copies of the item. If the item is a movie, the system
needs to know its title and genre, if it is a book the system needs to
know its author in addition.

3. If a member fails to return an item within its due date, the system
needs to calculate the fee upon return. The library management has
decided on a fee of $3 pr day over due, but it must be possible to
change this fee. The fee should be evaluated upon return, and stored
in the system. It must be possible for an employee to delete this fee if
the member pays cash upon return.

4. An employee must be able to change the personalia of members.

Guidelines:

1. Identify the new use case, and describe it using the mal outlined in
IN219.

2. Draw a sequence diagram for the use case.

48

3. Draw a CRC card for the updated classes. You may draw a class
diagram instead, but do not make direct modifications on the class
diagrams from the previous part by erasing etc.

NOTE! Methods and attributes should be specified as in part 1.

49

B Analysis

B.1 Checklist

Realism in Class Diagrams:

Whether or not the class diagram contains a class representing:

1. The library.

2. The library members.

3. Lendable items (article).

4. Movies and books (subclasses of lendable item or article).

5. Member loans.

6. Lendables (copies) with an association to the abstract article.

Whether or not the classes in the class diagram contains the attributes:

1. Member ID number.

2. A lendable or article ID number.

3. Title for lendables.

4. Author for books.

5. Loan periods on lendables.

6. Status on either lendables or loans.

7. Date or due date on loans.

Whether or not the class diagram contains methods for:

1. Checking out a lendable to a member.

2. Checking the constraints on the number of outstanding loans a member
has, or any loans overdue before checking out a lendable to the member.

3. Setting the date or due date on a new registered loan.

4. Checking in a lendable from a member.

5. Checking the current status on a lendable.

6. Changing the status of a lendable to out on loan or similar when a
lendable is checked out. (If a class "loan" with a due date attribute
and with an association to/from the lendable exists and lendables does
not have a status attribute, this is not necessary, and will be evaluated
positively).

50

7. Changing the status of a lendable to available for loan or similar when
a lendable is checked in. (If a class "loan" with a due date attribute
and with an associations to/from the lendable exists and lendables does
not have a status attribute, this is not necessary, and will be evaluated
positively).

8. Changing the status on a lendable or loan to overdue or similar if a
lendable is not returned within its due date. (If a class "loan" with
a due date attribute and with associations to/from the member and
lendable exists, and lendables does not have a status attribute, this is
not necessary, and will be evaluated positively).

Realism in Sequence Diagrams:

This evaluation is equal to the one for methods in realism in class diagrams.
The three sequence diagrams are evaluated together.

Correspondence between Sequence and Class Diagrams:

For each sequence diagram:

1. Can the object classes (instances) be found in the class diagram?

2. Can the methods be found in the class diagram?

3. Are the right objects receiving the right method calls according to the
class diagram?

Level of Detail in Class Diagram:

Whether or not the class diagram is depicted with:

1. Visibility on attributes.

2. Visibility on methods.

3. Type on attributes.

4. Type on methods.

5. Type on parameters.

6. Cardinality on association ends.

51

B.2 Kruskal-Wallis Test Results

--
Level of Detail in Class Diagrams

Process N Median Ave Rank Z
Use case driven 10 5,000 12,2 0,81
Validation 11 4,000 10,0 -0,81
Overall 21 11,0

H = 0,66 DF = 1 P = 0,418
H = 0,72 DF = 1 P = 0,396 (adjusted for ties)
--
Number of Classes

Process N Median Ave Rank Z
Use case driven 10 6,000 10,5 -0,39
Validation 11 6,000 11,5 0,39
Overall 21 11,0

H = 0,15 DF = 1 P = 0,699
H = 0,17 DF = 1 P = 0,680 (adjusted for ties)
--
Number of Attributes

Process N Median Ave Rank Z
Use case driven 10 17,00 11,5 0,35
Validation 11 14,00 10,5 -0,35
Overall 21 11,0

H = 0,12 DF = 1 P = 0,725
H = 0,12 DF = 1 P = 0,724 (adjusted for ties)
--
Number of Methods

Process N Median Ave Rank Z
Use case driven 10 15,50 9,6 -0,99
Validation 11 16,00 12,3 0,99
Overall 21 11,0

H = 0,97 DF = 1 P = 0,324
H = 0,98 DF = 1 P = 0,323 (adjusted for ties)
--
Number of Associations

Process N Median Ave Rank Z
Use case driven 10 5,000 11,4 0,32
Validation 11 5,000 10,6 -0,32
Overall 21 11,0

52

H = 0,10 DF = 1 P = 0,751
H = 0,10 DF = 1 P = 0,747 (adjusted for ties)
--
Number of False Classes

Process N Median Ave Rank Z
Use case driven 10 1,00E+00 13,5 1,76
Validation 11 0,00E+00 8,7 -1,76
Overall 21 11,0

H = 3,10 DF = 1 P = 0,078
H = 3,50 DF = 1 P = 0,061 (adjusted for ties)
--
Number of False Attributes

Process N Median Ave Rank Z
Use case driven 10 5,00E-01 11,3 0,21
Validati 11 0,00E+00 10,7 -0,21
Overall 21 11,0

H = 0,04 DF = 1 P = 0,833
H = 0,06 DF = 1 P = 0,814 (adjusted for ties)
--
Number of False Methods

Process N Median Ave Rank Z
Use case driven 10 0,00E+00 10,4 -0,42
Validati 11 0,00E+00 11,5 0,42
Overall 21 11,0

H = 0,18 DF = 1 P = 0,673
H = 0,22 DF = 1 P = 0,637 (adjusted for ties)
--
Number of False Associations

Process N Median Ave Rank Z
Use case driven 10 0,00E+00 11,0 0,00
Validati 11 0,00E+00 11,0 0,00
Overall 21 11,0

H = 0,00 DF = 1 P = 1,000
H = 0,00 DF = 1 P = 1,000 (adjusted for ties)
--
Number of Superfluous Classes

Process N Median Ave Rank Z
Use case driven 10 0,00E+00 10,5 -0,35
Validati 11 0,00E+00 11,5 0,35

53

Overall 21 11,0

H = 0,12 DF = 1 P = 0,725
H = 0,91 DF = 1 P = 0,340 (adjusted for ties)
--
Number of Superfluous Attributes

Process N Median Ave Rank Z
Use case driven 10 6,500 12,6 1,09
Validati 11 2,000 9,6 -1,09
Overall 21 11,0

H = 1,19 DF = 1 P = 0,275
H = 1,23 DF = 1 P = 0,268 (adjusted for ties)
--
Number of Superfluous Methods

Process N Median Ave Rank Z
Use case driven 10 0,00E+00 10,1 -0,63
Validati 11 0,00E+00 11,8 0,63
Overall 21 11,0

H = 0,40 DF = 1 P = 0,526
H = 0,63 DF = 1 P = 0,427 (adjusted for ties)
--
Number of Superfluous Associations

Process N Median Ave Rank Z
Use case driven 10 1,00E+00 12,9 1,30
Validati 11 0,00E+00 9,3 -1,30
Overall 21 11,0

H = 1,70 DF = 1 P = 0,193
H = 1,94 DF = 1 P = 0,163 (adjusted for ties)
--
Realism in Classes

Process N Median Ave Rank Z
Use case driven 10 4,000 9,8 -0,81
Validation 11 5,000 12,0 0,81
Overall 21 11,0

H = 0,66 DF = 1 P = 0,418
H = 0,76 DF = 1 P = 0,384 (adjusted for ties)
--
Realism in Attributes

Process N Median Ave Rank Z
Use case driven 10 4,500 8,9 -1,48

54

Validation 11 5,000 12,9 1,48
Overall 21 11,0

H = 2,19 DF = 1 P = 0,139
H = 2,58 DF = 1 P = 0,108 (adjusted for ties)
--
Realism in Methods

Process N Median Ave Rank Z
Use case driven 10 4,000 8,0 -2,15
Validation 11 6,000 13,8 2,15
Overall 21 11,0

H = 4,61 DF = 1 P = 0,032
H = 4,84 DF = 1 P = 0,028 (adjusted for ties)
--
Realism in Sequence Diagrams

Process N Median Ave Rank Z
Use case driven 10 4,500 8,9 -1,48
Validation 11 6,000 12,9 1,48
Overall 21 11,0

H = 2,19 DF = 1 P = 0,139
H = 2,25 DF = 1 P = 0,133 (adjusted for ties)
--
Correspondence: Class - sequence diagrams

Process N Median Ave Rank Z
Use case driven 10 7,000 13,2 1,51
Validation 11 6,000 9,0 -1,51
Overall 21 11,0

H = 2,29 DF = 1 P = 0,130
H = 2,41 DF = 1 P = 0,120 (adjusted for ties)
--
Time Exercise 1

Process N Median Ave Rank Z
Use case driven 10 35,00 6,7 -3,06
Validation 11 56,00 15,0 3,06
Overall 21 11,0

H = 9,38 DF = 1 P = 0,002
H = 9,43 DF = 1 P = 0,002 (adjusted for ties)
--
Time Exercise 2

Process N Median Ave Rank Z

55

Use case driven 10 39,00 7,8 -2,25
Validation 11 48,00 13,9 2,25
Overall 21 11,0

H = 5,08 DF = 1 P = 0,024
H = 5,10 DF = 1 P = 0,024 (adjusted for ties)
--
Time Exercise 3

Process N Median Ave Rank Z
Use case driven 10 28,50 15,3 2,99
Validation 11 19,00 7,1 -2,99
Overall 21 11,0

H = 8,96 DF = 1 P = 0,003
H = 9,07 DF = 1 P = 0,003 (adjusted for ties)
--

56

