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a b s t r a c t 

Understanding the spreading process of new products provides valuable knowledge that can be used for effective 
marketing. The ability to make early prediction of success or failure is a great advantage in innovation processes. 
Extending current literature in a novel way, we propose a data-driven agent-based methodology that accomplishes 
this task. Inference and predictions are based on short-time observations of the product adoption history and 
knowledge of the social network of consumers. We model and predict adoptions at the agent level as driven 
by unobserved peer-to-peer influence and external factors such as marketing. The method compares interaction 
between consumers and general campaigns, and quantifies the importance of characteristics of customers and 
their social relations. Our computationally efficient method is demonstrated by analyzing real data, predicting the 
process far into the future using data from a short period after launch, and validated by simulation experiments 
on a true full-scale communication network. 
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. Introduction 

Imagine that you have recently launched a new product in the mar-
et, and that you have collected data on all the adoptions so far; there
ave been some general advertising campaigns, and there are signs, or
t least hopes, that adoptions start to get ”viral ” among your customers,
ho are interacting in a social network. You have a good picture of your

ustomer base and would like to understand how adoptions will develop
n the next months, and ideally in the next year, under the assumption
hat the adoption processes which are in action now, will persist. You
ould also like to ask what-if questions, related to personalized market-

ng of your product. In this paper we present a new data-driven agent-
ased model (ABM) ( Zhang et al., 2016 ), which allows performing these
nalyses in a real market and in useful computational time. Studying and
nderstanding the spreading of innovations can point the way to more
ffective marketing. This work presents methodology that gives unique
nsights into the spreading process. Our methodology enable fast learn-
ng of what is going on with the adoption of a particular innovation.
he results and methods presented represent a rare combination of in-
ights, both for understanding and for practical applicability. A recent
nalysis of the field of digital marketing ( Saheb et al., 2021 ) suggests
ix important themes for future research, including marketing strategy,
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E-mail address: idasch@math.uio.no (I. Scheel) . 
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ocial media, customer behavior and location data, which are all topics
elated to the work in this paper. 

The methodology we propose is based on (i) an available social
etwork, here captured by the complete agent-to-agent telecommuni-
ations over a mobile phone network observed over one month, (ii) a
et of covariates related to the agent-to-agent communication, such as
he intensity of the communication (for example total number of min-
tes spoken) and the nature of the connection (for example similarity in
ge), (iii) a set of agent related covariates, e.g. demography and agent
ocation, (iv) the time points, targets and volumes of specific advertis-
ng campaigns and (v) the list of adopters and adoption times during a
hort period, often during product launch time. In our model, time is
ontinuous. By modeling the interactions between customers by means
f an observed social network, which is assumed to represent interac-
ions among all pairs of agents, ABMs capture the effect of social influ-
nces. Data-driven ABMs differ from non-empirically constructed ABMs,
hich are informed by general knowledge and hypotheses, and which
re useful tools in understanding and comparing policies and marketing
trategies, less in predicting the future of actual products in specific mar-
ets. We refer to the excellent reviews ( Zhang & Vorobeychik, 2019 and
and & Stummer, 2021 ) for discussions of advantages and challenges of
ata-driven ABMs. Next we highlight some of the important criteria set
 29 September 2022 
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p by these seminal papers for successful ABMs, including current chal-
enges, pinpointing how the present paper contributes advancements of
ethod and practice. 

The modeling process for data-driven ABMs has three fundamen-
al stages: initialization, calibration and validation ( Rand & Stummer,
021; Zhang & Vorobeychik, 2019 ). Initialization comprises the model
ormulation of the agent behavior, the social interaction and the ex-
genous influences, its parametrization, and the data-sources needed
nd available to inform models from data. Calibration consists of the
ethod and algorithms used to learn parameters from data. Validation

s the process of determining if the ABM is able to describe the market
ppropriately. Zhang & Vorobeychik (2019) finds that very few papers
resent all three phases in a satisfactory way, and concludes that the cur-
ent literature on data-based ABMs ”commonly exhibits several major
hortcomings in model calibration and validation ”. 

Often, calibration relies on the matching of aggregated statistics
called macro-calibration), for example comparing actual weekly to-
al sales in the training data with ABM-based simulated weekly total
ales. This approach can suffer from non-identifiability of parameter es-
imates, leading to potentially wrong conclusions. Instead, proper statis-
ical inference, based on cross-validation and maximum-likelihood of all
ata (micro-calibration) is recommended. In the present paper, we de-
elop a full maximum-likelihood based calibration, which uses each sin-
le agent’s behavior in the training period. An additional important chal-
enge of calibration is computational complexity. Zhang et al. (2016) ex-
lains that it is sometimes necessary to sub-sample the set of agents,
r the set of adoption times, in order to be able to estimate parame-
ers in useful computational time. However, reducing sample size can
ead to bad parameter estimates. For our proposed generic ABM we de-
elop a computational approach which reduces computational complex-
ty markedly, so that we can scale our algorithm to full societal level.
ur telecommunication case has approximately 2 million agents, the so-
ial network has approximately 20 million edges, and there are 36,448
doptions in the training data and 245,728 in the validation data. A
nal pitfall of calibration is related to stochastic ABMs, for which un-
ertainty in parameter estimation must be properly quantified. As we
ill see later, this is particularly important in prediction, as the uncer-

ainty of the calibration must be propagated into the validation, for this
o be valid. Using penalized regression (like lasso; Tibshirani, 1996 ) and
ross-validation does not easily lead to valid confidence intervals for the
arameters ( Lockhart et al., 2014 ). Instead, the maximum likelihood ap-
roach used in this paper naturally leads to confidence intervals, whose
overage appears to be appropriate. 

Three more pitfalls found by Zhang & Vorobeychik (2019) are related
o the validation step. First, citing from this paper, ”rigorous quantita-
ive validation on independent data is uncommon ”–that is, testing of
he model is seldom performed on data which have not been used for
raining. Zhang et al. (2016) writes ”Few conduct validation of fore-
asting effectiveness on independent future data ”. As recommended
n Zhang & Vorobeychik (2019) , we perform validation by prediction
f future adoptions, comparing how the true adoptions are captured
ithin the uncertainty ranges of the ABM-based prediction. In this pa-
er, we do both macro- and micro-validation. The first verifies how the
BM predictions fit aggregated statistics of the future data, for example

otal adoptions. Micro-validation on the other hand focuses on how the
redicted agent-level behavior fits observed individual behavior. For a
tochastic ABM, one cannot expect exact correspondence between pre-
icted future individual events and true ones ( Zhang et al., 2016 ), but a
ood correspondence of individual characteristics, for example in terms
f shares of adopters belonging to one gender or to a given age group,
an be expected. 

The present paper makes the following contributions: 

1. We propose a continuous-time, intensity-based modeling approach
for ABMs, which include an agent-level model, an external-level
model and an interaction-level model, based on an existing social
2 
network representing social interactions, i.e. agent-to-agent influ-
ence. 

2. We perform maximum-likelihood inference for the model parame-
ters, based on each agent’s properties and behavior in the training
period. We present computationally efficient algorithms for calibra-
tion and prediction, allowing to run our ABM in useful time at a full
societal level. 

3. We are able to distinguish the exogenous, out-of-network sources of
influence from the viral, word-of-mouth spread, which is important
and generally difficult ( Aral et al., 2009 ). 

4. We perform both macro- and micro-validation on a real data set by
prediction of total sales two years into the future, based on a short
training period of three months, and by predicting useful properties
of the agents who will adopt in the future. 

5. We illustrate how to use the ABM in what-if scenario simulations,
which can be for example changing the general advertising cam-
paigns or simulating that the product will become more or less viral.
This opens important possibilities for personalized marketing, for
example by targeting the most difficult group of customers, or the
strongest influencers. 

The paper is organized in six sections as follows: in Section 2 we
resent previous research on the central concepts of this paper. Then in
ection 3 , we present the methodology and data. Results are presented
n Section 4 , then Section 5 discusses the contributions of work as well
s limitations and future work. Conclusions are drawn in Section 6 . 

. Background 

Artificial intelligence and statistical modeling is increasingly more
mportant in marketing and information sciences. For a general
ackground on the use of artificial intelligence in these areas see
erma et al. (2021) , Kushwaha et al. (2021) , Votto et al. (2021) , Huang
 Rust (2021) . The use of ABMs ( Banks & Hooten, 2021; Negahban
 Yilmaz, 2014; Rand & Rust, 2011; Rand & Stummer, 2021 ) is by
ow a classical approach to build digital twins ( Croatti et al., 2020 )
f complex systems, which are composed of many simple units (agents,
ere the customers) who can act autonomously, but are influenced by
he interactions with other units. Because each single agent is mod-
led using its specific features (which we call covariates in this paper),
BMs allow to represent a heterogeneous population. ABMs are con-
tructed by defining simple behavioral rules which the agents follow;
hese rules can be deterministic or stochastic (as in this paper) and
epend on the interaction patterns between subsets of agents. In con-
rast to ABMs, compartmental or aggregated models represent groups
f agents together (the compartment), often by means of ordinary dif-
erential equations ( Bass et al., 1994 ). By construction, these models
an capture heterogeneity of the population only by introducing multi-
le compartments. However, their number must remain small for prac-
ical and computational purposes, which severely limits their capac-
ty to describe complex markets ( Rand & Stummer, 2021 ). ABMs have
een proposed very successfully in many different areas, from sociology
 Squazzoni, 2012 ) to psychology ( Kangur et al., 2017 ), from economy
 Farmer & Foley, 2009 ) to information science ( Zhou et al., 2021 ), from
nfectious diseases ( Di Ruscio et al., 2019; Scheel et al., 2007 ) to mar-
eting ( Rand & Rust, 2011 and references their-in), to mention a few. 

Social relations are well known to affect the adoption of products
 Rogers, 1995 ) and lay the foundation of viral marketing ( Hinz et al.,
011; Leskovec et al., 2007; Li et al., 2010; Liu et al., 2022 ). They have
lso been used in other contexts, e.g. for detecting fake news campaigns
 Michail et al., 2022 ). Many possible models for social relations have
een proposed in the literature, ranging from theoretical assumptions
bout who influences who and how much, to fully observed or surveyed
ecommendation messaging between customers. Networks are an intu-
tive framework for social relations, where customers are nodes, and
dges between nodes represent existing social relations between cus-
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omers. Among the theoretical models which have been assumed in the
iterature, an important role is taken by regular stochastic networks,
or example based on preferential attachment and scale-free growth
 Singer et al., 2009 ). In many applications, one can assume that the
nfluence is in the form of local interaction: for example, all customers
esident in a certain geographic area influence each other when adopt-
ng a product; or customers belonging to specific groups (age-based,
ncome-based etc) influence each other. Within each local group the
etwork is complete (with an edge between each pair of customers),
ith further links between groups originating from multiple group mem-
ership of customers. In more recent times, it is becoming possible to
bserve the social network between customers directly, for example, as
e do in the present paper, through the telecommunication between

ustomers, or by explicitly designed recommendation referral programs
 Leskovec et al., 2007 ), or on social media websites ( Hanaysha, 2022;
athore et al., 2017; Yerasani et al., 2019; Zhang et al., 2021 ). Customer
ehavior does of course not only depend on social influence. The adop-
ion of products is affected by external interventions, such as general
r targeted marketing campaigns, and by overall trends and fashions
 Rand & Rust, 2011 ). These exogenous, out-of-network sources of influ-
nce can be easily modeled within an ABM, for example as additional
ynthetic nodes which are connected to all customers ( Tran, 2012 ). 

Some other papers have considered aspects of what we present in this
ork, but not together. Myers et al. (2012) combines a non-parametric
odel of the external influence with word-of-mouth influence, but as-

umes this latter contribution to be fully known, and hence estimates
nly the parameters for the external influence. Pi š korec et al. (2019) pro-
oses a similar non-parametric model, doing inference on both vi-
al and external forces, with an algorithm that alternates between
he two components, but without agent-level heterogeneity. Pazoki &
amarghandi (2021) proposes a framework which similarly to our work
s based on an epidemic SIS model. The framework combines word-of-
outh with external factors, but differs from ours in that it is based

n the structure of the social network, and disregards agent-level infor-
ation on individual nodes and edges. Alternative approaches to pre-
icting future adoptions include the self-exciting Hawkes point process
 Hawkes, 1971; Rizoiu et al., 2018; Zhao et al., 2015 ). This process also
imics the effect of the viral spread in a network, but does not utilize

he available network structure nor does it model the individual actions;
t is therefore quite different from ABMs. 

The previous work which to our knowledge is closest to our paper
s Zhang et al. (2016) . Like us, the authors present a data-driven ABM
nd perform calibration and validation in the recommended way. Still,
here are several differences between this and our paper: first, we use
n existing and real agent-to-agent social network, as a proxy for social
elations, while Zhang et al. (2016) builds a network based on the ge-
graphic location of the agents. This interesting construction depends
n the definition of region, and the authors work with three different
eographical units (entire area, ZIP code and a circle with a given ra-
ius around each agent). During calibration they select the unit which
llows best cross-validation fit. However, there is a certain level of ar-
itrariness in the definition of the geographical units, which can have
 large impact on predictions. Because in real-life situations validation
y prediction is not possible (the future is still unknown), and because
e believe that geographical closeness might not be enough in many

ituations, and oftentimes not even correct to describe social relations,
e prefer to rely on a given network, which captures in an unequivo-

al way the interactions between agents. Telecommunication operators
ave the opportunity to observe a proxy of the social network of their
ustomers ( Nitzan & Libai, 2011 ), via communication links (voice and
ext), which is what we use in this paper. We believe that such data
escribing networks, defined by telecommunication, financial transac-
ions, or ownership (when agents are companies), etc. are becoming
ore common. The second important difference relates to the agent-

evel model. We assume continuous time and work with adoption inten-
ities, in the spirit of ABMs for infectious diseases ( Scheel et al., 2007 ),
3 
ather than using adoption probabilities and discrete time. Because in-
ensities are not normalized, the modeling is less constrained. Our ap-
roach is generic and we indicate how other modelers can build their
wn ABMs using our mathematical approach. The third important ad-
antage of our approach is scalability. “Solving the resulting maximum
ikelihood estimation can be computationally intractable ”, states Zhang
 Vorobeychik (2019) . We are able to transform several computational
omponents of the maximum likelihood computations into operations
n sparse matrices, which are computationally very efficient. Instead of
uilding our algorithms upon an existing simulation software (like the
epast ABM simulation toolkit; North et al., 2013 , used in Zhang et al.,
016 ), we have optimized our code for fast calibration, and in this way
e are able to use all the data available in the training set. During pre-
iction, we are also able to update all states at each single adoption,
nstead of accumulating several adoptions before updating, as done in
hang et al. (2016) . 

. Material and methods 

.1. Model 

We let 𝑖 = 1 , 2 , … , 𝑛 identify each agent in a given market. The 𝑛
gents are considered as nodes in a network, with edges representing
irect social contact between agents. For instance in a telecom context,
n edge could be present between nodes 𝑖 and 𝑗 if they phone or text
essage above a given threshold. The network of nodes does not need

o be connected and can consist of separate components. We denote
he existence of an edge from 𝑖 to 𝑗 by 𝑒 𝑖𝑗 = 1 , while 𝑒 𝑖𝑗 = 0 indicates
bsence of an edge. We assume that agent 𝑖 may influence agent 𝑗 only
f 𝑒 𝑖𝑗 = 1 . The edges can vary in time if the network is time-dynamic,
ut for simplicity here we assume that the network is static. Depending
n the context, edges may be directed or undirected, with 𝑒 𝑖𝑗 = 𝑒 𝑗𝑖 in
he latter case. The ABM is inspired by epidemic models for infectious
iseases ( Diggle, 2006; Keeling et al., 2001; Scheel et al., 2007 ). 

Both nodes and edges carry covariate information, and we denote
he vector of 𝑝 covariates related to the node 𝑖 as 𝑥 𝑖 . Demographic co-
ariates can for instance include age, gender and geographic location,
hile behavioral covariates can include information on how nodes have
sed similar products or services in the past and their past propensities
o adopt new versions of products. In general, covariates should be cho-
en so that they potentially contribute information to the propensity of
 node to adopt the new product and to influence others to do so. Co-
ariates connected to an edge between nodes 𝑖 and 𝑗 carry information
bout the propensity for 𝑖 to specifically influence 𝑗, and may be directed
r undirected. An example of a directed edge covariate is an indicator
ariable of whether 𝑖 is younger than 𝑗 or not, while an indicator of
hether 𝑖 and 𝑗 live in the same municipality would be an undirected
dge covariate. As these covariates may be thought of as a weight (or
trength) of the connection between nodes 𝑖 and 𝑗, we let 𝑤 𝑖𝑗 denote the
ector of covariates related to the edge between nodes 𝑖 and 𝑗. 

For the rest of the paper, we assume that a product or service be-
omes available on the market from time 𝑡 = 0 , and we observe the
doption process in the time period [0 , 𝑇 obs ] . We assume that all nodes
an adopt, i.e. are susceptible in the epidemic metaphor, until adoption
r 𝑇 obs . Let 𝐵 denote the set of agents or nodes adopting the product
uring the time period until 𝑇 obs . For a specific node 𝑖 ∈ 𝐵 we denote
y 𝑡 𝑖 ∈ [0 , 𝑇 obs ] the adoption time of agent 𝑖 . 

Figure 1 sketches the essential components of our approach. 

.1.1. Intensity based model of viral influence 

We assume that node 𝑖 can influence its neighbors in the network
rom the adoption time 𝑡 𝑖 , until time 𝑡 𝐴 

𝑖 
= min ( 𝑡 𝑖 + 𝐴, 𝑇 obs ) . For simplic-

ty, and following Scheel et al. (2007) , the duration of the influence
indow 𝐴 is here assumed constant and equal for all nodes. 

Consider two nodes 𝑖 and 𝑗. Assume that 𝑖 ∈ 𝐵 and that 𝑗 has not
dopted the product by time 𝑡 . If (1) 𝑗 ∈ 𝐵 and adopts the product at
𝑖 
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Fig. 1. The flow of our methodology is in- 
dicated by arrows. Inference is based on the 
model, training adoption data and social net- 
work with covariate information. The esti- 
mated parameters and uncertainty are then 
used in the prediction of future adoptions. For 
validating predictions, test adoption data are 
used. Both the estimation and the prediction 
phases rely on information from the same so- 
cial network. 

t  

a  

a  

f
 

𝑖  

n  

w  

t  

n  

t  

s  

t  

t  

a  

a  

b  

o  

e  

t  

c  

o  

u  

o  

t  

𝑡

𝜆  

 

i  

D  

r  

s  

a  

𝛼

3

 

n  

o  

b  

p  

t  

n  

o  

t  

𝐼

 

𝜆  

c  

n  

o  

l  

𝜆  

c  

e  

d  

t  

a  

0

𝜆  

3

 

b

𝜆  

H  

fl  

𝑗

𝜆  

a  

𝑡  

b  

(

3

3

 

m  
ime 𝑡 𝑗 , (2) 𝑡 𝑗 ∈ [ 𝑡 𝑖 , 𝑡 𝐴 𝑖 ] , and (3) 𝑒 𝑖𝑗 = 1 , then 𝑖 may have influenced 𝑗 to
dopt. If on the other hand node 𝑗 does not adopt the product during
 period [ 𝑡 𝑖 , 𝑡 𝐴 𝑖 ] even if 𝑒 𝑖𝑗 = 1 , then we assume that the influence effect
rom 𝑖 to 𝑗 has failed. 

Let 𝜆𝑖𝑗 ( 𝑡 ) denote the transmission intensity of the influence from node
 to node 𝑗 at time 𝑡 , which is different from 0 only if node 𝑖 can influence
ode 𝑗 at time 𝑡 . This is ensured by an influence indicator function 𝐼 𝑖𝑗 ( 𝑡 ) ,
hich equals 1 only if node 𝑖 can influence node 𝑗 at time 𝑡 . There are

hree conditions that must be fulfilled for this: (1) 𝑡 ∈ [ 𝑡 𝑖 , 𝑡 𝐴 𝑖 ] such that
ode 𝑖 has adopted the product and may still influence its neighbors at
ime 𝑡 , (2) node 𝑗 has not adopted the product before time 𝑡 and hence is
usceptible, and (3) 𝑒 𝑖𝑗 = 1 such that there is contact from 𝑖 to 𝑗. If these
hree conditions are not fulfilled at time 𝑡 , 𝑖 cannot influence 𝑗 at that
ime and 𝐼 𝑖𝑗 ( 𝑡 ) = 0 , which implies that also 𝜆𝑖𝑗 ( 𝑡 ) = 0 . Furthermore, we
ssume a common baseline intensity for the influence strength between
ll pairs of nodes, denoted by 𝜆vir = exp ( 𝛼0 ) . This could be extended to
e time-varying, including for instance seasonality. Finally, the effect
f the agent covariates is modeled by three different groups of param-
ters, denoted by the vectors 𝛼1 , 𝛼2 and 𝛼3 . The first group 𝛼1 models
he effect of the influence strength of the infectious node 𝑖 , using the
ovariate vector 𝑥 𝑖 of node 𝑖 . The second group 𝛼2 models how difficult
r easy it is to influence the susceptible node 𝑗 to adopt the product,
sing the covariate vector 𝑥 𝑗 of node 𝑗. The term 𝛼3 allows the intensity
f influence to depend on covariates of the edge between 𝑖 and 𝑗. All
ogether, the overall intensity of influence from node 𝑖 to node 𝑗 at time
 is modeled as 

𝑖𝑗 ( 𝑡 ) = 𝜆vir exp 
(
𝑥 𝑇 𝑖 𝛼1 

)
exp 

(
𝑥 𝑇 𝑗 𝛼2 

)
exp 

(
𝑤 

𝑇 
𝑖𝑗 𝛼3 

)
𝐼 𝑖𝑗 ( 𝑡 ) . (1)

This form of dependency on the covariates is based on the model
n Scheel et al. (2007) , which was inspired from Keeling et al. (2001) ,
iggle (2006) . Generally, it may be the case that the covariates that are

elevant for influence are different from the ones that are relevant for
usceptibility. This can be handled technically by including all covari-
tes in the covariate vector 𝑥 𝑖 and fixing the appropriate elements of 𝛼1 ,

2 to zero (and similarly for 𝛽2 below). 

.1.2. Intensity based model of external influence 

Each node 𝑗 can be influenced to adopt the product not only by its
eighbors, but also by external factors such as marketing campaigns
r an underlying propensity towards the product. External sources or
ackground influence have been included in several other modeling ap-
roaches (e.g. Hawkes, 1971; Myers et al., 2012 ). For consistent nota-
4 
ion, we add an external node to the network, indexed by 𝑖 = 0 , con-
ected to all nodes, such that 𝑒 0 𝑗 = 1 , ∀𝑗. Node 0 represents the source
f any external convincement. This node is always infectious and can
hus influence all susceptible nodes in the network at all times. Hence
 0 𝑗 ( 𝑡 ) = 1 if node 𝑗 is susceptible at time 𝑡 , otherwise 𝐼 0 𝑗 ( 𝑡 ) = 0 . 

We start by assuming a common time-varying baseline intensity

ext ( 𝑡 ) , expressing the external influence, such as specific marketing
ampaigns. Marketing covariates or information describing the exter-
al influence over time are denoted by 𝑚 ( 𝑡 ) , for instance the intensity
f marketing campaigns at time 𝑡 . We model the time-varying base-
ine as a function of marketing covariates with parameters 𝛽1 , so that

ext ( 𝑡 ) = exp 
(
𝛽0 + 𝑚 ( 𝑡 ) 𝑇 𝛽1 

)
. The value 𝑚 ( 𝑡 ) = 0 then corresponds to a

onstant baseline, so that 𝜆ext ( 𝑡 ) = exp 
(
𝛽0 

)
. In addition we model the

ffect of agent covariates of 𝑗 by parameters 𝛽2 , expressing how easy or
ifficult it is for the external node to influence the node 𝑗. It is reasonable
o assume that the set of covariates connected to 𝛽2 is often the same
s for 𝛼2 . Overall, the external intensity of influence from the external
 node to node 𝑗 at time 𝑡 is modeled as 

0 𝑗 ( 𝑡 ) = 𝜆ext ( 𝑡 ) exp 
(
𝑥 𝑇 𝑗 𝛽2 

)
𝐼 0 𝑗 ( 𝑡 ) . (2)

.1.3. Combining all sources of influence 

The total intensity of influence to a node 𝑗 at time 𝑡 is given by com-
ining Eqs. (1) and (2) 

𝑗 ( 𝑡 ) = 

𝑛 ∑
𝑖 =0 

𝜆𝑖𝑗 ( 𝑡 ) = 𝜆0 𝑗 ( 𝑡 ) + 

𝑛 ∑
𝑖 =1 

𝜆𝑖𝑗 ( 𝑡 ) . (3)

ere, influence intensities are summed over all sources which may in-
uence node 𝑗. Define 𝐶 𝑗 ( 𝑡 ) to be the set of influential neighbors of node
at time 𝑡 . Then Eq. (3) simplifies to 

𝑗 ( 𝑡 ) = 𝜆0 𝑗 ( 𝑡 ) + 

∑
𝑖 ∈𝐶 𝑗 ( 𝑡 ) 

𝜆𝑖𝑗 ( 𝑡 ) , (4)

s 𝜆𝑖𝑗 ( 𝑡 ) is non-zero only for influential neighbors of 𝑗 at time 𝑡 . At time
 , the time to adoption for the nodes that are susceptible are assumed to
e independent and exponentially distributed with intensities given in
4) . 

.2. Data analysis 

.2.1. Maximum likelihood estimation 

We fit the model to data by maximum likelihood, to provide esti-
ates of the parameters of the model together with their uncertainty.
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he necessary data consist of all individual adoptions with the corre-
ponding adopting times, for the initial training period of time [0 , 𝑇 𝑜𝑏𝑠 ] .
n addition, the covariates of all nodes and edges are needed. Missing
alues need to be imputed, for example as in Scheel et al. (2005) . To
dentify relevant covariates for nodes and edges, expert information
nd/or a preliminary data analysis can be useful. It is recommended
o use an alternative data set to avoid overfitting, for instance data from
revious similar products. 

We derive the likelihood for the parameters given the observed
ata (see e.g. Aalen et al., 2008 , equation (5.2)). Defining 𝜃 =
 𝛼0 , 𝛼1 , 𝛼2 , 𝛼3 , 𝛽0 , 𝛽1 , 𝛽2 ) , the likelihood resulting from Eq. (4) is 

 ( 𝜃) = 

{ ∏
𝑘 ∈𝐵 

𝜆𝑘 ( 𝑡 𝑘 ) 

} 

exp 

{ 

− ∫
𝑇 obs 

0 

𝑛 ∑
𝑗=1 

𝜆𝑗 ( 𝑡 ) 𝑑𝑡 

} 

= 

{ ∏
𝑘 ∈𝐵 

[ 
𝜆0 𝑘 ( 𝑡 𝑘 ) + 

∑
𝑖 ∈𝐶 𝑘 ( 𝑡 𝑘 ) 

𝜆𝑖𝑘 ( 𝑡 𝑘 ) 

] } 

exp 
⎧ ⎪ ⎨ ⎪ ⎩ − 

𝑛 ∑
𝑗=1 

∫
𝑇 obs 

0 

⎡ ⎢ ⎢ ⎣ 𝜆0 𝑗 ( 𝑡 ) + 
∑

𝑖 ∈𝐶 𝑗 ( 𝑡 ) 
𝜆𝑖𝑗 ( 𝑡 ) 

⎤ ⎥ ⎥ ⎦ 𝑑𝑡 
⎫ ⎪ ⎬ ⎪ ⎭ .

(5) 

or 𝑗 = 1 , … , 𝑛 , define 𝑇 s 
𝑗 

as the time period in which node 𝑗 is susceptible, i.e.

 

s 
𝑗 
= [0 , 𝑡 𝑗 ] if 𝑗 adopts in the observation period, or 𝑇 s 

𝑗 
= [0 , 𝑇 obs ] otherwise, and

et 𝑁 𝑗 be the set of all nodes that have been influential neighbors of 𝑗 at some
oint in time period 𝑇 s 

𝑗 
. Furthermore, for 𝑖 ∈ 𝑁 𝑗 , let 𝑇 s 

𝑖𝑗 
be the time interval in

hich 𝑖 is infectious and 𝑗 is susceptible, i.e. 

 

s 
ij 
= 

⎧ ⎪ ⎨ ⎪ ⎩ 
[
𝑡 𝑖 , min 

(
𝑡 𝐴 
𝑖 
, 𝑡 𝑗 

)]
if 𝑗 ∈ 𝐵, 𝑡 𝑖 < 𝑡 𝑗 and 𝑖 ∈ 𝑁 𝑗 [

𝑡 𝑖 , 𝑡 
𝐴 
𝑖 

]
if 𝑗 ∉ 𝐵 and 𝑖 ∈ 𝑁 𝑗 

∅ otherwise. 

ow, to simplify notation, introduce 𝛾𝑖𝑗 = exp 
(
𝑥 𝑇 
𝑖 
𝛼1 + 𝑥 𝑇 𝑗 𝛼2 + 𝑤 

𝑇 
𝑖𝑗 
𝛼3 

)
as the total

iral effect of agent covariates and let 𝛾0 𝑗 = exp 
(
𝑥 𝑇 
𝑗 
𝛽2 

)
be the total external effect

f agent covariates. Then we can write Eq. (5) in the following way 

 ( 𝜃) = 

{ ∏
𝑘 ∈𝐵 

[ 
𝜆ext ( 𝑡 𝑘 ) 𝛾0 𝑘 + 

∑
𝑖 ∈𝐶 𝑘 ( 𝑡 𝑘 ) 

𝜆vir 𝛾𝑖𝑘 

] } 

⋅

⋅ exp 
⎧ ⎪ ⎨ ⎪ ⎩ − 

𝑛 ∑
𝑗=1 

⎡ ⎢ ⎢ ⎣ 𝛾0 𝑗 ∫𝑇 s 𝑗 𝜆ext ( 𝑡 ) 𝑑𝑡 + 
∑
𝑖 ∈𝑁 𝑗 

( 

𝛾𝑖𝑗 ∫𝑇 s 
𝑖𝑗 

𝜆vir 𝑑𝑡 

) ⎤ ⎥ ⎥ ⎦ 
⎫ ⎪ ⎬ ⎪ ⎭ . (6) 

ote that the likelihood comprises two parts. The first includes contributions from
odes that eventually adopt and consists of multiplying the total intensity of in-
uence for each 𝑘 ∈ 𝐵 at the time of adoption 𝑡 𝑘 . The second part summarizes the

nfluence exerted onto all nodes 𝑗 = 1 , … , 𝑛 during the period that they are suscep-
ible. The two parts collect the effects of external pressure alongside two different
ets of influential neighbors. The set 𝑁 𝑗 contains all neighbors that have exerted
nfluence on 𝑗 in its susceptibility period 𝑇 𝑠 

𝑗 
, and appears in the second part. The

rst part makes use of 𝐶 𝑘 ( 𝑡 𝑘 ) , which only contains the nodes that are influential
eighbors of 𝑘 at the specific time point 𝑡 𝑘 . For all adopting nodes 𝑘 ∈ 𝐵, the set
 𝑘 ( 𝑡 𝑘 ) is a subset of 𝑁 𝑘 . 

An essential contribution of our approach is its computational effi-
iency, which allows to run both inference (maximum likelihood) and
redictions (see Section 3.2.3 ) in useful operational time with a real-
ife number of agents and network connections. Details can be found
n Appendix A . An investigation of the time complexity can be seen in
ppendix B . 

.2.2. Estimating the influence period 𝐴 

An adoption due to external pressure may happen at any time, while
 viral adoption may only have occurred if an adopter has at least one
nfluential neighbor who adopted during the 𝐴 previous time units. The
ength of the influence period 𝐴 has an important role in describing the
iral influence. In our model, every adopting neighbor of a given agent
contributes to 𝜆𝑗 ( 𝑡 ) immediately after the adoption time and for an

mount of time 𝐴 . An estimate of the value 𝐴 can be found by analyz-
ng the difference in the adoption times of all dyads where both nodes
dopted in the observed period. More precisely, for all pairs of observed
doption times 𝑡 𝑖 and 𝑡 𝑗 for { 𝑖, 𝑗} ∈ 𝐵 × 𝐵 such that 𝑡 𝑖 < 𝑡 𝑗 and 𝑒 𝑖𝑗 = 1 ,
e study the empirical distribution of Δ𝑡 𝑖𝑗 = 𝑡 𝑗 − 𝑡 𝑖 . We expect to see
 distribution with a clear change-point at some value Δ𝑡 ∗ 

𝑖𝑗 
, which we
5 
hen select as the estimate of 𝐴 . This method is used in the real-life ap-
lication ( Section 4.1 ), and then successfully validated in the simulation
tudy ( Section 4.2 ). 

This method, however, requires some refinement when used in real-
ife, because several marketing campaigns are launched during the train-
ng period, creating time segments with a higher intensity of non-viral
doptions. This produces noise in the empirical distribution of Δ𝑡 𝑖𝑗 . The
ffect of marketing campaigns must therefore be removed from the data
y omitting dyads for which the adoption of node 𝑗 happens at a time
ith an active marketing campaign. 

An alternative approach is to treat 𝐴 as a tuning parameter, select-
ng the value giving the best accuracy or performance according to some
rror measure. For example, we may evaluate the out-of-sample predic-
ion error over a suitable range of possible 𝐴 values (based on expert
nowledge). If [0 , 𝑇 obs ] is the time interval in which the adoptions are
bserved, we use [0 , 𝑇 ∗ ] as the training period (with 𝑇 ∗ < 𝑇 obs ), and
hen validate the model’s prediction error on the period [ 𝑇 ∗ , 𝑇 obs ] . The
rocedure is repeated for each value of 𝐴 on a grid, and the 𝐴 -value
ielding the best predictions is then selected. 

.2.3. Prediction 

Based on the results from the maximum likelihood estimation, we
an predict the market dynamics after 𝑇 obs by simulating the model
orward in time. One predicted trajectory for a given set of parameter
alues is obtained in the following way. Let 𝑆( 𝑡 ) denote the set con-
aining the nodes that are susceptible at time 𝑡 . At time 𝑡 , the time
o adoption 𝜏𝑗 ( 𝑡 ) for a susceptible node 𝑗 ∈ 𝑆( 𝑡 ) is exponentially dis-
ributed with intensity 𝜆𝑗 ( 𝑡 ) . We assume that 𝜏𝑗 ( 𝑡 ) and 𝜏𝑗 ′ ( 𝑡 ) are in-
ependent for all pairs of susceptible nodes 𝑗 ≠ 𝑗 ′, conditional on all

𝑗 ( 𝑡 ) , 𝑗 = 1 , … , 𝑛 . If we assume that 𝜆ext ( 𝑡 ) is constant in time, then the
ndividual intensities 𝜆𝑗 ( 𝑡 ) are also constant in time, between consecu-
ive adoptions. Hence, at a given time 𝑡 , the time to the next adoption
n the market, min 

{
𝜏𝑗 ( 𝑡 ) , 𝑗 ∈ 𝑆( 𝑡 ) 

}
, is exponentially distributed with in-

ensity 
∑

𝑗∈𝑆( 𝑡 ) 𝜆𝑗 ( 𝑡 ) . The probability that this adoption is done by node

 is then 𝜆𝑘 ( 𝑡 ) ∑
𝑆( 𝑡 ) 𝜆𝑗 ( 𝑡 ) 

. Using these results, we can simulate a trajectory in

he future by repeatedly sampling the next time-to-adoption and then
he actual node which adopts at this time, until we have predicted as
ar into the future as needed. 

Prediction uncertainty is handled using the fact that the maximum
ikelihood estimate 𝜃̂ is approximately multinormally distributed. The
redictions are simulated by repeating the following procedure 𝑀 times,
ith 𝑀 sufficiently large: each time, one parameter vector 𝜃̂𝑚 is sampled

rom the multinormal distribution and using this, one future trajectory is
imulated. This results in a collection of 𝑀 predicted trajectories of the
uture dynamics, from which a point-wise prediction band (say 95%)
an be constructed. This procedure allows to take into account both
ources of uncertainty of predictions, namely the natural randomness of
he model and estimation uncertainty. 

.3. Data collection 

.3.1. Social network 

We illustrate our proposed methodology on a customer telecommu-
ication network using simulated and real-life adoption data. The nodes
nd edges of the network are based on the calling history of the cus-
omers of a European telecom company (‘the Company’) during Septem-
er 2016. This includes aggregate information about contacts between
 sender and a receiver in that period, including both total duration of
oice calls (measured in seconds) and number of direct text messages
SMS). When defining the edges in the network, we include only edges
etween two nodes that have a minimum amount of contact: we take
 threshold of at least one sent or received SMS or a call duration of
t least 1 minute in total during the whole period. The edges are undi-
ected and constant over time. In addition, we only retained the largest
onnected component of the network. The final network consists of two
illions of nodes, with almost ten times as many connections. 
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Table 1 

The percentage of customers in the different age groups in the data set. 

Age group 1 2 3 4 5 

Ages 0–18 19–30 31–50 51–65 66–100 
Total share of age group 7.8% 12.9% 28.3% 24.6% 26.5% 
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.3.2. Covariates for nodes and edges 

Node and edge covariates are based on information on gender, age
nd ZIP code for the nodes in the network as in September 2016. Gender
s missing for 13.7% of nodes, age is missing for 13.6% of nodes, and
oth variables are typically missing for the same nodes. In addition,
here are 0.9% missing ZIP codes. All missing values are here simply
mputed by sampling from the observed population distribution. The
ovariates used for the nodes are gender (male = 0 , female = 1 ) and age
iscretized into 5 age groups (see Table 1 ). The ZIP code is converted
o an indicator variable for whether two connected nodes are in the
ame municipality, and used as an edge covariate. The additional edge
ovariates are: 1) an indicator variable for equal gender of the nodes of
he edge, 2) a categorical variable indicating either equal age group of
he nodes of the edge, one level difference in age group, or more than
ne level difference in the age group. We also use the amount of voice
inutes and the number of SMSs exchanged between the two nodes

s edge covariates. Due to extreme communication behavior of some
odes, we impose an upper threshold on voice duration (30 minutes)
nd the number of SMSs (50). The covariates for voice minutes and
umber of SMSs are normalized to assume values in [0 , 1] . The edge
ovariates are all symmetric. 

.3.3. Marketing covariates 

We specifically consider targeted marketing, e.g. SMS or e-mails with
pecific offers and advertisement sent to selected customers, referred to
s Below-the-Line (BTL) campaigns. Such targeted campaigns stand in
ontrast to mass audience advertising targeted at high volumes of con-
umers, e.g. TV commercials and posters in the subway, called Above-
he-Line (ATL) campaigns ( Doyle, 2011 ). For the given product, we have
ccess to all recorded BTL marketing via SMS for the observation pe-
iod, consisting of the date of the campaign and the total number of
ispatched SMSs, 𝑂( 𝑡 ) . The specific identities of the customers receiving
n SMS is not available, but the number of customers targeted by a BTL
ampaign is incorporated at an aggregate level. We incorporate the mar-
eting covariates 𝑚 ( 𝑡 ) by grouping the BTL campaigns in three different
ategories of low, medium and high intensity depending on the number
f SMSs that were sent on a given date: 

( 𝑡 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

Reference , if 𝑂( 𝑡 ) = 0 , 
Low intensity , if 0 < 𝑂( 𝑡 ) ≤ 10 000 , 

Medium intensity , if 10 000 < 𝑂( 𝑡 ) ≤ 50 000 , 

High intensity , if 𝑂( 𝑡 ) > 50 000 . 

(7)

n our data there is no information available on the ATL campaigns
elated to the product. With the categorization of the BTL campaigns
escribed in Eq. (7) , the baseline of the external influence, 𝜆ext ( 𝑡 ) , is
iece-wise constant with four different levels. 

.3.4. Real life adoption data 

We demonstrate our method on a data set for the adoption of an un-
pecified service offered, supplied by the Company. The data set, which
s on a daily time scale, cover 144 weeks from the launch date, dur-
ng which over 250,000 agents adopted the product on the network
escribed in Section 3.3.1 . To demonstrate the early inference and pre-
iction of the method, we use the adoptions from the 82 first days after
he launch of the service as training data. 
6 
.4. Robustness checks 

.4.1. Simulation study 

For investigating how the quality of the maximum likelihood esti-
ates and the prediction of future adoptions depend on the quantity of

raining data, we perform a simulation study of the adoption processes
ased on the real-life network, with associated covariates and on the
ame (daily) time scale, described in Section 3.3 . It is important to be
ble to make rapid predictions, based on a short initial observation of a
arket. 

The simulation consists of three steps which are repeated 𝑆 = 100
imes: (1) we simulate an adoption process for a specific set of parame-
ers 𝜃, (2) we estimate the parameter set ̂𝜃 for this adoption process using
raining periods of different length, and (3) we simulate 𝑀 = 100 predic-
ion trajectories of the future. For speed of computation, the network is a
ubset of the one described in Section 3.3.1 , obtained as the largest con-
ected component of the sub-network containing all agents belonging to
 specific city (which remains unnamed for privacy reasons) and neigh-
oring municipalities. The network consists of around 57,000 nodes and
40,000 edges. Although the size is significantly smaller compared to
he full network, the topological properties are preserved: the degree
istribution, the average clustering coefficient for nodes having same
egree and the ratio of edges to nodes are very similar (see Section 1.1 of
he Supplementary Material). We use all the node covariates described
n Section 3.3.2 for the adopter node (as 𝑥 𝑖 ) as well as for the suscep-
ible node (as 𝑥 𝑗 ), for both the viral and the external parts. We also
nclude all the edge covariates described in Section 3.3.2 for the edges
n the viral part ( 𝑤 𝑖𝑗 ), except for the unnecessary municipality indicator.
he parameter 𝐴 is set to 5 days. The parameter values (see Table 1 in
he Supplementary Material) used for simulating the 𝑆 = 100 adoption
rocesses are chosen to produce ‘S’-shaped cumulative adoption curves.
he ‘S’-shape is natural when the adoption process includes viral effects
nd the network has a dense core ( Canright & Engø-Monsen, 2006 ): the
lope of the adoption curve increases rapidly as the sale starts, while
t decreases as the number of adopters saturates the dense parts of the
etwork. After these phases, the slope eventually becomes constant, as
 further viral outbreak cannot take place anymore, and new adoptions
ely solely on the external terms. 

For validating the model estimates during the different phases of
he adoption process; before, during and after the viral outbreak, we
nvestigate inference performance for a varying number of adopters in
he training period, namely 250, 500, 1000, 1500, 2000, 2500, 3000,
nd 4000. 

To represent the variability of predictions into the future, for each
f the 𝑆 = 100 simulated adoption processes, and for each training set
ize, we simulate 𝑀 = 100 independent trajectories into the future as
escribed in Section 3.2.3 . 

.4.2. Micro-validation on the real data 

To micro-validate our model, we compare the characteristics of the
redicted adopters with the characteristics of the observed adopters in
he two weeks following the end of the training period. Given the co-
ariate information at our disposal, the comparison is carried out by
omparing the relative frequencies of agents belonging to either gender
nd to every age group in the two populations. For each of these groups,
he predicted relative frequency of the agents belonging to the group is
omputed by averaging over the results obtained by the 𝑀 = 100 simu-
ations. 

. Results 

.1. Results for analysis of real data 

.1.1. Inference 

Following the procedure in Section 3.2.2 , we use the histogram of
𝑡 𝑖𝑗 obtained from the training data to estimate 𝐴 , after removing the
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Fig. 2. The plot shows the distribution of Δ𝑡 𝑖𝑗 after having removed the mar- 
keting campaign effects: we conclude that 𝐴 should be 4. 

Table 2 

Estimated parameters for the telecom service example using 
an observation period of 82 days and an inferred influence 
period of 𝐴 = 4 days. 

Viral Parameter CI 

𝛼0 − 6.616 [-7.003, -6.230] 
𝛼1 

Gender − 0.305 [ − 0.403, − 0.208] 
Age group 2 − 0.831 [ − 1.176, − 0.487] 
Age group 3 − 1.040 [ − 1.357, − 0.723] 
Age group 4 − 1.021 [ − 1.347, − 0.696] 
Age group 5 − 1.008 [ − 1.368, − 0.649] 

𝛼2 
Gender − 0.022 [ − 0.114, 0.070] 
Age group 2 0.450 [ 0.117, 0.783] 
Age group 3 0.846 [ 0.540, 1.152] 
Age group 4 0.731 [ 0.418, 1.044] 
Age group 5 0.022 [ − 0.321, 0.365] 

𝛼3 
Voice call minutes 1.140 [ 1.016, 1.263] 
Number of SMS 0.723 [ 0.584, 0.863] 
Same gender − 0.446 [ − 0.543, − 0.349] 
= 1 age group diff. − 0.376 [ − 0.486, − 0.267] 
> 1 age group diff. − 0.727 [ − 0.895, − 0.560] 
Same municipality 0.258 [ 0.161, 0.355] 

External 

𝛽0 − 10.95 [ − 11.04, − 10.85] 
𝛽1 

Low intensity BTL 1.213 [ 1.175, 1.251] 
Medium intensity BTL 2.176 [ 2.139, 2.213] 
High intensity BTL 2.563 [ 2.530, 2.596] 

𝛽2 
Gender 0.162 [0.136, 0.188] 
Age group 2 1.365 [1.270, 1.460] 
Age group 3 1.657 [1.566, 1.748] 
Age group 4 1.531 [1.440, 1.623] 
Age group 5 0.510 [0.414, 0.606] 
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Table 3 

True and predicted shares of agents belonging to several groups. 

Female Male Age 1 Age 2 Age 3 Age 4 Age 5 

True share 56 . 4% 43 . 6% 3 . 9% 14 . 3% 42 . 5% 26 . 4% 12 . 9% 
Predicted share 52 . 3% 47 . 7% 3 . 1% 13 . 5% 40 . 5% 30 . 5% 12 . 4% 
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arketing campaign effects. The histogram is shown in Fig. 2 , and we
nfer that 𝐴 should be 4 days. 

The parameter estimates are given in Table 2 . For the covariates
elated to the infectious nodes, the effect of gender is estimated to be
egative, meaning that male adopters will influence others more than
emale adopters. All the age groups 2 to 5 are estimated to have a neg-
tive effect relative to the first group (0–18 years), suggesting that the
oungest adopters will influence others at a higher rate. All parameters
or the adopter are statistically significantly different from zero. 

Among the covariates related to the susceptible nodes in the viral
art, the effect of gender is estimated to be negative but not significant.
he effects for the age groups 2, 3 and 4 are estimated to be positive
nd significant relative to age group 1, meaning that susceptible nodes
7 
f age 18–66 years will have a higher propensity to be influenced. The
ffect for the oldest age group ( > 66 years) is not significant. 

For covariates related to the pairing between the adopter and the sus-
eptible, the estimated parameters for voice call duration and number
f SMSs were both positive. This indicates that more telephone contact,
s a proxy for social contact, between the nodes gave a higher probabil-
ty for the susceptible to adopt the product. The same holds true for the
ovariate measuring geographic co-location of the node pair, where co-
ocation leads to a stronger propensity for the susceptible to adopt the
roduct. Further, we see a negative effect for pairs of the same gender,
hich indicates a larger influence rate when the genders of the nodes
re different. The indicators of an age difference also has a negative ef-
ect, with larger age differences yielding a larger negative effect. The
airing with the highest influence is therefore co-located agents of dif-
erent gender, but equal age, with high telephone contact. All effects of
he pair covariates were significant. 

Contrary to the viral component, the results related to the external
arketing influence indicate that females will be influenced by the ex-

ernal sources at a higher rate than males. The estimates related to the
emaining covariates for the susceptible in the external part are compa-
able in sign and ordering to those given for the viral part. The estimated
ffects of the BTL campaigns are estimated to be positive and increas-
ng for increasing campaign intensity, as expected. All BTL effects are
ignificant. 

.1.2. Prediction 

Using the estimated probabilistic model, we construct a prediction
and for the future adoptions by running the adoption process forward
n time, as explained in Section 3.2.3 . We predict the process using
 = 100 independent simulations for the next 951 days from the end

f the training period at day 82, covering the full adoption history. The
ean cumulative number of adoptions (solid blue) and the 90% band

dashed blue) are shown in Fig. 3 , together with the actual observed
umulative adoptions (solid black). The predicted adoptions, approxi-
ately 2.6 years into the future, fit very well with the real adoptions. 

.1.3. Results for micro-validation and what-if-scenarios 

The results reported in Table 3 show that the predicted population
as very similar characteristics to the true one. 

As an example of what-if scenario simulations, Fig. 4 shows the effect
f adding hypothetical BTL campaigns. In addition to the BTL campaigns
hich actually took place (columns in blue), for the first what-if scenario
e add the hypothetical BTLs indicated by the columns in orange. The
redicted cumulative adoption curve for this what-if scenario is shown
s the orange curve. For a second what-if scenario, in addition to the
TLs added for the first what-if scenario, we add even more hypothetical
TLs (red columns). The predicted cumulative adoption curve of this
econd what-if scenario is shown as the red curve. 

.2. Results for simulation study 

.2.1. Inference 

Figure 5 shows box-plots of some estimated parameters, for varying
ize of the training set (complete results are in Section 2 of the Sup-
lementary Material). When the training set contains 1000 adopters or
ore, all parameters are well estimated around the true value (black
orizontal line). In our simulation, the viral outbreak just started around
000 adoptions. This means that our method is capable of performing
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Fig. 3. Predicted cumulative adoptions 138 weeks 
(2.6 years) after the training period of 82 days. The 
observed cumulative adoption curve is the solid black 
line; our point prediction is the solid blue line. The 
dashed blue lines show the uncertainty, as a 90% 

point-wise prediction band. Colored vertical bars show 

the day in which BTL campaigns were held. The inten- 
sity is color-coded, with dark orange, green, and pur- 
ple signaling increasing BTL intensity. (For interpre- 
tation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 4. What-if simulations. Expected cumulative 
adoptions 90 days after the training period of 82 days, 
for two hypothetical scenarios of BTL campaigns. The 
observed cumulative adoption curve is the solid black 
line; the solid orange and red lines represent the point 
predictions for the two what-if scenarios. In order to 
produce the first scenario, the BTL indicated by the 
orange columns are added to the original ones (blue 
columns). In the second scenario we add even more 
BTL campaigns (red columns). Here, the color-coding 
distinguishes the real and hypothetical BTLs, not inten- 
sities as in Fig. 3 . The hypothetical BTLs are of similar 
intensity as the real BTLs shown by the blue columns. 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version 
of this article.) 
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arly assessment of the virality of the adoption process. When using
ery small training sets, estimates show larger variability around the
rue value, and some also exhibit additional bias. This behavior is due
o lack of information about the effect of some covariates in the very
mall data sets. For instance, the estimates of age group 5 parameter for
he susceptible nodes ( Fig. 5 c) are not precise for small training data
ets, because in our simulation only very few customers in this specific
ge segment adopt early in the process. The estimates of the parameters
f the edge related covariates are more precise than for those for the
ode-wise covariates for small training sets, as illustrated by the results
or the voice call minutes parameter in Fig. 5 d. The reason is that for
 given number of adopters, the information available about edge-wise
ovariates is richer than the information available about node-wise co-
ariates. 

We also tested the method for estimating the 𝐴 parameter described
n Section 3.2.2 . The four panels in Fig. 6 show histograms of the dis-
ribution of the time differences Δ𝑡 𝑖𝑗 for four of the simulated adoption
rocesses from Section 3.4.1 , using the first 1000 adoptions as the train-
ng set. The bin size of the histogram is set to one day. Visual inspection
f these histograms shows a clear change-point at the true value of 𝐴 ,
hich was 5 for all the simulation setups. 

.2.2. Prediction 

The prediction results for a single simulated adoption process is
hown in Fig. 7 , for training sets containing 500, 1000, and 1500
dopters. We see that the true trajectory is contained in the prediction
ariability band for all three training set sizes. In fact, for all the 𝑆 = 100
8 
doption processes, and for all eight training set sizes, the true trajectory
s always contained in the prediction variability band (complete results
or four selected simulated adoption processes are shown in Section 2 of
he Supplementary Material). The important changes in the viral out-
reak are well captured, demonstrated from all trajectories exhibiting
he ‘S’-shaped curve. Hence, even though the prediction bands exhibit
igh variability when training data are scarce, the prediction offers a
alid qualitative insight into the potential of a viral adoption. Also, as
xpected, the variances of the prediction bands decrease as the training
et size increases. 

. Discussion 

.1. Contributions to literature and implications for practice 

The work presented in this paper is an important contribution to the
iterature on the use of data-driven ABMs for marketing innovations on
ocial networks. It adds to previous work in different directions: We use
 real agent-to-agent network, we model adoption intensities assuming
 continuous time process, and we have made a scalable methodology,
nabling full use of training data. 

We have shown that our intensity-based, continuous time stochastic
BM is able to learn the true model parameters after a short training pe-
iod, so that we can predict the future dynamics already in “early days ”
fter launch. This has the potential to drastically improve the efficiency
f the innovation process, by capturing early signals that correctly pre-
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Fig. 5. Boxplots for the point estimates of the parameters for (a) the baseline for the viral part, (b) gender for the infectious nodes, (c) age group 5 for the susceptible 
nodes, (d) voice call minutes, (e) the baseline for the external part and (f) low intensity BTL in the simulation study, for training set size 250, 500, 1000, 1500, 2000, 
2500, 3000, and 4000. The solid line represents the true value of the parameter. 

Fig. 6. Adoption time differences distributions: panels (a), (b), (c), and (d) show the distribution of Δ𝑡 𝑖𝑗 for four simulated adoption processes, after 1000 adoptions. 
The dashed line represents the true value of the parameter 𝐴 , which was 5. 
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ict success or failure of the innovation, also revealing the potential
enefit of different targeted marketing interventions. 

Our model successfully handles all important mechanisms in the real
ase study. Viral effects are detected in the training period — during
hich there seems to be some viral activity — and are small but sta-

istically significant. The external terms are also detected and signifi-
ant. Estimation results are verified by the prediction of the following
wo years of adoption —for which the dense core of the network can no
onger sustain viral spreading, as we will argue below. The prediction
esults for our simulation study with a stronger viral component ( Fig. 7 )
how that our approach can handle stronger virality also well — even
hen the training period includes only the very early days of the vi-
9 
al takeoff (leftmost panel of Fig. 7 ). This supports the claim that our
pproach can predict accurately the viral activity in the future. 

Earlier studies ( Sundsøy et al., 2010 ) identified a dense core in large
ocial networks, where the edge density is high and social spreading
an be very strong. The strong rise in the classical ‘S’-shaped curve
f adoption is associated with strong spreading in the dense core
 Canright & Engø-Monsen, 2006 ). The simulation results reported in
ection 4.2 —with finite 𝐴 —reveal that spreading in the dense core typ-
cally dies off without fully saturating it. Once this happens, the dense
ore becomes impervious to further viral spreading, while the periph-
ral parts of the network also do not support significant viral spreading.
he result is that the adoption curve becomes dominated by the external
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Fig. 7. Prediction results of a single simulated adoption process, are shown i for three different sizes of training sets: (a) 500, (b) 1000, and (c) 1500 adoptions. The 
black curve is the true adoption process, the gray lines represent 𝑀 = 100 prediction trajectories, each simulated with a parameter set drawn from the estimated 
multinormal approximation as described in Section 3.2.3 . The vertical dashed line indicates the number of days in the training set. 
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erm. This occurs both in our simulations ( Fig. 7 ) and in the real-data
 Fig. 3 ). Our viral simulations give new understanding of the evolution
n time of viral spreading in the case of a finite influence time 𝐴 , which
s often a very realistic assumption. 

.2. Limitations and future work 

In the following, we describe how our method can be extended in
ultiple directions to overcome limitations. We assume that a node 𝑖 ∈
is infectious, i.e. can convince neighbors to adopt, for a period 𝐴 after

doption. Instead we could assume a random length of this period, or
 decay of influence during a time interval [ 𝑡 𝑖 , 𝑡 𝐴 𝑖 ] . Further, this decay
ould depend on agent covariates, or have different parametric forms
or different subgroups. The influence could also start before 𝑡 𝑖 , to allow
or node 𝑖 to start influencing its neighbors already before adoption time
 𝑖 . All these options can be very important in specific situations. 

It is also possible to assume that the network, covariates or viral
aseline are time-varying instead than constant. The effect of the exter-
al 0–node, representing e.g. advertising campaigns, could be modeled
n a more complex way —for example, incorporating a decay in time,
alendar time effects, and other features of advertising campaigns. 

We also believe that including the viral and exogenous effects of com-
eting products could be important, but some data on the market pene-
ration of such alternative products would be needed. If the competing
roducts were offered by the same company, then an extension is rel-
tively straightforward —because the company would have the needed
nformation (adoptions, customer network, covariates, and campaigns)
or each of the products. If the company would market both competing
roducts to its customers, our method could predict the likely winner
arly on. If on the other hand product P from company Y faces compe-
ition from product Q from company Z, it is unlikely that any analyst
ould get complete information for both products. Instead, we imagine
aving only company Y’s detailed information. The effect of Q on com-
any Y’s customers —in particular, on their adoption of P —could then
nly be informed by publicly available aggregated data, for example on
doption of Q for the customers of Y, and on marketing campaigns for Q.
n short, the effect of product Q could be modeled as a negative external
nfluence over the market. 

Each agent 𝑖 in the network may also be characterized by its network
roperties, which can be used as covariates. For example, a network
easure of centrality for node 𝑖 could be associated with its strength of

nfluence. Here we note that we are allowing for a kind of ‘double count-
ng’ in our approach to centrality. If we think of network centrality as
 measure of well-connectedness, then it follows that well-connected
odes are well placed to influence many others — even if their abil-
10 
ty to influence their contacts is only average. One might however also
llow for the possibility that the perception (among the contacts) of a
ode’s centrality (or importance) makes the central node more influenc-
ng. Two good candidate measures of centrality are the degree centrality
number of neighbors) and the eigenvector centrality ( Bonacich, 1972;
anright & Engø-Monsen, 2006; Carreras et al., 2007 ). Either of these
easures is likely to contribute to the perception of a node’s importance

mong that node’s contacts. 
Currently, the model allows multiple neighbors of a node 𝑗 to in-

uence 𝑗 simultaneously, and we treat the effect of multiple sources of
nfluence as being additive. However, one could also incorporate syner-
istic effects, such that the influence received by 𝑗 from two or more in-
uenced neighbors is different from the simple addition of incoming in-
uence. One such model is complex contagion ( Centola & Macy, 2007 ),
efined as a threshold phenomenon, where more than one adopting
riend (influencer) is needed before the node, exposed to this influence,
ill adopt. Complex contagion is expected to occur when what is being

pread is behavioral change, rather than, say, the spread of information,
r an infectious disease. Since adoption is a behavior, the possibility of
omplex contagion can be introduced in our approach. 

Our method has shown ability to perform reliable inference early in
he adoption process. Sometimes, however, it is hard to obtain good esti-
ates of parameters related to covariates that are not well represented

n the training data. A Bayesian framework can help obtain better in-
erence faster, and also solve the aforementioned problem. Information
rom the history of similar past products can be incorporated nicely in
nformative priors for the study of a new product, and can thus help in
eaching reliable inference in a situation in which data are particularly
carce. This will help make early predictions. A Bayesian framework
lso allows for sequential updating of the parameter inference when
ew data arrive. This enables capturing potential dynamic behavior of
he covariate effects, which may change the adoption probabilities of
ertain customers during the product lifetime. 

. Conclusions 

This paper extends in several directions the work on agent-based
odels to predict the results of a new product or service in a market.
ethodologically, we develop a new intensity-based, continuous time

tochastic ABM, whose parameters can be estimated by maximum like-
ihood in useful time. Useful time means that a real-life market simula-
ion can be run in a few computing hours, so that its results can be in-
erpreted and made operational before the data become obsolete. Maxi-
um likelihood allows a coherent quantification of the uncertainty. We

nvestigate, by realistic simulation examples, how much training data
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re needed to obtain good enough estimates and predictions, and con-
lude that the full history of adoptions in the very early phase can be
ufficient to distinguish the viral part from the exogenous drift, and pro-
ide reliable and useful predictions. We apply our data-driven approach
o a real data case from the telecommunication sector, showing that
rediction in this case is computationally feasible and precise. 
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ppendix A. Computational efficiency 

We achieve computational efficiency by exploiting fast sparse matrix
omputations, by reformulating the two parts of the likelihood in Eq. (6) .
he second factor of Eq. (6) can be written by introducing the notation
 0 𝑗 = ∫

𝑇 s 
𝑗 
𝜆ext ( 𝑡 ) 𝑑𝑡 and 𝐿 𝑖𝑗 = ∫

𝑇 s 
𝑖𝑗 
𝜆vir 𝑑𝑡 as 

xp 
⎧ ⎪ ⎨ ⎪ ⎩ 

− 

𝑛 ∑
𝑗=1 

⎡ ⎢ ⎢ ⎣ 𝛾0 𝑗 𝐿 0 𝑗 + 

∑
𝑖 ∈𝑁 𝑗 

𝛾𝑖𝑗 𝐿 𝑖𝑗 

⎤ ⎥ ⎥ ⎦ 
⎫ ⎪ ⎬ ⎪ ⎭ 

. (A.1)

he 𝐿 0 𝑗 and 𝐿 𝑖𝑗 terms represent the baseline influence exerted onto node
during its period of susceptibility. These terms can be collected in
atrix form as 𝑳 = 

{
𝐿 𝑖𝑗 

}𝑛 
𝑖,𝑗=1 with the external terms in the diagonal,

 𝑗𝑗 = 𝐿 0 𝑗 , thus obtaining a compact representation of both the viral and
xternal influence. 

The elements of 𝑳 are defined for all nodes irrespective of their final
doption status. For a specific node 𝑗, however, the only non-zero ele-
ents of column 𝑗 of 𝑳 are those for which 𝑖 ∈ 𝑁 𝑗 , as the integrals for
hich 𝑖 ∉ 𝑁 𝑗 in Eq. (A.1) are computed over the empty set. Because 𝑁 𝑗 

s a subset of node 𝑗’s relatively small set of neighbors, as compared to
he whole network, 𝑳 is a sparse matrix. 

By collecting all covariate effects in an 𝑛 × 𝑛 matrix 𝚪, so that Γ =
𝛾𝑖𝑗 

}𝑛 
𝑖,𝑗=1 with Γ𝑖𝑖 = 𝛾0 𝑖 , we can express the 𝑗th term of the outer sum in

q. (A.1) as the 𝑗th element of the diagonal vector of the matrix prod-
ct 𝚪𝑇 𝑳 , for 𝑗 = 1 , … , 𝑛 . Hence, the contribution of Eq (A.1) to the log-
ikelihood is given by 

og 
⎛ ⎜ ⎜ ⎜ ⎝ exp 

⎧ ⎪ ⎨ ⎪ ⎩ 

− 

𝑛 ∑
𝑗=1 

⎡ ⎢ ⎢ ⎣ 𝛾0 𝑗 𝐿 0 𝑗 + 

∑
𝑖 ∈𝑁 𝑗 

𝛾𝑖𝑗 𝐿 𝑖𝑗 

⎤ ⎥ ⎥ ⎦ 
⎫ ⎪ ⎬ ⎪ ⎭ 

⎞ ⎟ ⎟ ⎟ ⎠ = − 

𝑛 ∑
𝑗=1 

diag ( 𝚪𝑇 𝑳 ) 𝑗 . (A.2)

ote that by definition, 𝚪 is potentially a full matrix. However, as high-
ighted in Eq. (A.2) , the only elements of 𝚪 that are needed to carry out
he computation are those corresponding to the non-zero elements of 𝑳 .

Now focusing on the first part of Eq. (6) , ∏
 ∈𝐵 

[ 

𝜆ext ( 𝑡 𝑘 ) 𝛾0 𝑘 + 

∑
𝑖 ∈𝐶 𝑘 ( 𝑡 𝑘 ) 

𝜆vir 𝛾𝑖𝑘 

] 

, (A.3) 

et 𝚲 be the 𝑛 × 𝑛 matrix defined for all node pairs in the network, with
lements 

𝑖𝑘 = 

⎧ ⎪ ⎨ ⎪ ⎩ 

𝜆vir , 𝑘 ∈ 𝐵, 𝑖 ∈ 𝐶 𝑘 ( 𝑡 𝑘 ) , 
𝜆ext ( 𝑡 𝑘 ) , 𝑘 ∈ 𝐵, 𝑖 = 𝑘, 

0 , otherwise . 

lthough the non-zero elements of 𝚲 could be represented by a 𝑏 × 𝑏

atrix, where 𝑏 = |𝐵| is the size of the set B, utilizing a sparse 𝑛 × 𝑛
11 
atrix simplifies the indexing of the adopter nodes. In this way each
ode is associated with the same row and column in 𝚲, 𝑳 , and 𝚪. Due to
he relationship between the sets 𝐶 𝑘 ( 𝑡 𝑘 ) and 𝑁 𝑘 , all non-zero elements
f 𝚲 appear in positions in which also 𝑳 has a non-zero element, but not
ice versa. 

Now, organizing Eq. (A.3) in a similar fashion as Eq. (A.2) , the con-
ribution to the log-likelihood of Eq. (A.3) can be written in compact
orm as 

og 

( ∏
𝑘 ∈𝐵 

𝜆𝑘 ( 𝑡 𝑘 ) 

) 

= 

∑
𝑘 ∈𝐵 

log 
(
diag ( 𝚪𝑇 𝚲) 𝑘 

)
. 

ppendix B. Computational time 

Social networks may be very large, and we therefore investigate the
ime complexity of our algorithms. The estimation procedure requires
he numerical optimization of the likelihood in Eq. (6) . Section Ap-
endix A provides a computationally efficient formulation of the log-
ikelihood 

og  ( 𝜃) = 

∑
𝑘 ∈𝐵 

log 
(
diag ( 𝚪𝑇 𝚲) 𝑘 

)
− 

𝑛 ∑
𝑗=1 

diag ( 𝚪𝑇 𝑳 ) 𝑗 . 

lbeit 𝚲 and 𝑳 have off-diagonal non-zero elements, each node gener-
lly has few neighbors such that both matrices are sparse. The numbers
f off-diagonal non-zero elements of 𝚲 and 𝑳 scale as a function of the
umber of rows, which is 𝑏 , in 𝚲, and 𝑛 , in 𝑳 . Furthermore, the matrix
does not need to be filled in every position, as only its elements cor-

esponding to the non-zero elements of 𝚲 and 𝑳 are required, hence the
ime needed for the numerical optimization of log  for a given network
s  ( 𝑏 + 𝑛 ) . 

Prediction is based on simulating new adopters using the estimated
odel, as in Section 3.2.3 . The time-consuming operation is the com-
utation of the probability 𝜆𝑘 ( 𝑡 ) ∑

𝑆( 𝑡 ) 𝜆𝑗 ( 𝑡 ) 
at time 𝑡 , when node 𝑘 adopts. This

robability needs to be computed for all nodes present in 𝑆( 𝑡 ) , hence it
cales with the number of susceptible nodes 𝑛 𝑠 , at time 𝑡 . This operation
lways requires the same amount of time, as the location of the suscep-
ible nodes in the matrices can be pre-stored to target them directly.
urthermore, the computation of the adoption probabilities for the sus-
eptible nodes has to be repeated 𝑟 times, where 𝑟 denotes the number
f adoptions to be simulated. It is worth to notice that when using the
ethod for performing early prediction, i.e. with a rather small train-

ng sets, the number of susceptible nodes in a network is very close to
ts natural upper-bound 𝑛 , the size of the network itself. This fact holds
hrough in this setting because the number of non-susceptible nodes rep-
esent a very small share of the total number of nodes contained in the
etwork. The time complexity of the whole prediction algorithm is then
pproximately  ( 𝑟𝑛 ) . A further analysis of the computational times is
iven in Section 1.2 of the Supplementary Material. 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.jjimei.2022.100127 . 
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