
PHYSICAL REVIEW C 106, 034314 (2022)

Evolution of the γ-ray strength function in neodymium isotopes

M. Guttormsen ,1,* K. O. Ay,2 M. Ozgur,2 E. Algin,2,3 A. C. Larsen,1 F. L. Bello Garrote,1 H. C. Berg,1,†

L. Crespo Campo,1 T. Dahl-Jacobsen,1 F. W. Furmyr,1 D. Gjestvang,1 A. Görgen,1 T. W. Hagen,1 V. W. Ingeberg,1

B. V. Kheswa,1,4 I. K. B. Kullmann,5 M. Klintefjord,1 M. Markova,1 J. E. Midtbø,1 V. Modamio,1 W. Paulsen,1

L. G. Pedersen,1 T. Renstrøm,1 E. Sahin,1 S. Siem,1 G. M. Tveten,1 and M. Wiedeking6,7

1Department of Physics, University of Oslo, N-0316 Oslo, Norway
2Department of Physics, Eskisehir Osmangazi University, Faculty of Science and Letters, 26040 Eskisehir, Turkey

3Department of Metallurgical and Materials Engineering, Pamukkale University, 20160 Denizli, Turkey
4Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa

5Institut d’Astronomie et d’Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels, Belgium
6SSC Laboratory, iThemba LABS, P.O. Box 722, Somerset West 7129, South Africa

7School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa

(Received 12 April 2022; accepted 9 September 2022; published 21 September 2022)

The experimental γ -ray strength functions (γ SFs) of 142,144–151Nd have been studied for γ -ray energies up to
the neutron separation energy using the Oslo method. The results represent a unique set of γ SFs for an isotopic
chain with increasing nuclear deformation. The data reveal how the low-energy enhancement, the scissors mode,
and the pygmy dipole resonance evolve with nuclear deformation and mass number. This indicates that the
mechanisms behind the low-energy enhancement and the scissors mode are decoupled from each other.
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I. INTRODUCTION

The γ -ray strength function (γ SF) is a fruitful concept
in the nuclear quasicontinuum region, describing the average
reduced γ -ray transition probabilities between groups of lev-
els. The definition was established by Bartholomew et al. [1],
connecting the γ SF directly to the average partial γ -ray width
of the initial levels. For γ decay (deexcitation), the γ SF is
given by
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where the initial and final spin-parity obey the selection
rules for transitions of type X and multipolarity L. The av-
erage γ energy is given by Eγ = Ei − E f , and ρ is the level
density at the initial excitation energy Ei with spin-parity
Jπi

i .
There are many experimental methods to determine the

γ SF. Recently, Goriely et al. [2] summarized the various
techniques, and have compiled experimental γ SF results in
a database hosted at the IAEA [3].

The γ SF is composed of several collective modes where
the dominant component is the giant electric dipole reso-
nance (GDR) centered typically around 15 MeV of γ -ray
energy. The γ SF below the neutron separation energy (Sn ≈
5–10 MeV) represents the low-energy part of the GDR. As the
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GDR strength is 10–100 times lower for these γ -ray energies
as compared to its maximum, other smaller structures appear,
such as the low-energy enhancement (LEE), the scissors mode
(SM), and the pygmy dipole resonance (PDR). The magnetic
spin-flip resonance is also expected at these energies, but with
a negligible strength [3].

Interpreting several of the γ SF structures has been a long-
standing problem. Of particular interest is the nature of the
LEE and SM structures and their dependence on deforma-
tion. It has been speculated [4–6] that these two (presumably)
M1 structures are in some way connected and add up to an
integrated strength, which is relatively independent of defor-
mation and mass number. One of the experimental challenges
is to measure the LEE γ SF down to the lowest γ -ray energies.
Furthermore, the impact of the PDR and its interpretation as
being due to neutron skin oscillations outside the N = Z core
are of utmost interest[7].

The chain of stable neodymium isotopes covers nuclei
from almost-spherical to well-deformed shapes. In the present
work, we have measured the γ SFs of 142,144–151Nd using
particle-γ coincidences from light-ion reactions on stable
neodymium targets. The data were analyzed within the frame-
work of the Oslo method [8–10] and the recently developed
shape method [11]. By also exploiting experimental results
from other measurements, the evolution of the γ SF in the en-
ergy region of Eγ ≈ 0–17 MeV and the interplay between its
various components are discussed as functions of deformation
and mass number.

Since both experimental and theoretical studies of the NLD
in the neodymium isotopes were recently published [12], we
focus mainly on the γ SF in the present work.
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FIG. 1. Proton-γ coincidence matrices obtained in the 146Nd(d, pγ ) 147Nd reaction with deuteron energies of 13.5 MeV. The (a) raw,
(b) unfolded, and (c) primary matrices are shown for initial excitation energies Ei between the ground level and the neutron binding energy Sn.
The primary P(Eγ , Ei ) matrix of panel (c) represents the starting point for the Oslo method. We also show the Q(Eγ , Ef ) matrix of panel (d),
which reveals the intensities of γ -ray transitions populating final excitation energies Ef . All matrices have (x, y)-pixel sizes of (28,31) keV.

The paper is outlined as follows. Section II describes the
experiments at the Oslo Cyclotron Laboratory and the Oslo
method. In Sec. III the spin distributions of the two applied
reactions are investigated with the help of γ -ray sidefeeding
intensities into the rotational ground band of 150Nd and by
means of the shape method. The experimental γ SF results
are presented in Sec. IV together with model fitting to the
experimental data. Summary and conclusions are given in
Sec. V.

II. EXPERIMENTS AND THE OSLO METHOD

The chain of 142,144–151Nd isotopes was studied with light-
ion reactions at the Oslo Cyclotron Laboratory. The targets
were self-supporting metallic foils of 142,144,146,148,150Nd with
thicknesses of ≈2 mg/cm2 and enrichments of ≈97%. The
targets were bombarded with proton and deuteron beams of
energies 16.0 and 13.5 MeV, respectively.

The SiRi particle-telescope system [13] was applied to de-
termine the outgoing particle type and energy. The 64 particle
telescopes were located ≈ 5 cm from the target in eight angles
between 126◦ and 140◦ with respect to the beam direction.
The front (�E ) and back (E ) detectors had thicknesses of
130 and 1550 μm, respectively. The total particle energy
(E + �E ) resolution was ≈ 150 keV (FWHM).

During the neodymium experimental campaign, the γ -
detector array CACTUS [14] was replaced by the OSCAR
array [15,16]. The CACTUS array is equipped with 26
NaI(Tl) 5′′ × 5′′ collimated scintillator detectors at a distance
of 22 cm from the target. This γ -detector array was used
for the 144,148,150Nd(d, p) reactions.1 The new OSCAR array
consists of LaBr3(Ce) scintillators characterized by high effi-
ciency combined with excellent timing and energy resolution.
In the 142,146Nd((p, p′) and 146Nd(d, p) reactions a total of 15
LaBr3(Ce) detectors were placed 22 cm from the target, and
in the 144,148,150Nd(p, p′) reactions 30 detectors at 16 cm were
used.

1We also analyzed the (d, d ′) reaction, but this channel had too low
of a cross section at high excitation energies.

The Oslo method allows a simultaneous extraction of NLD
and γ SF from the same particle-γ coincidence data set. The
first task is to sort the coincidence events into γ spectra for
each initial excitation energy Ei of the residual nucleus. The
Ei value is calculated event by event from the detected energy
of the charged ejectile and the reaction kinematics. Figure 1(a)
shows this raw (Eγ , Ei ) matrix of 147Nd. Each γ spectrum is
then unfolded using the known detector response functions
for CACTUS or OSCAR [9,17]. The matrix obtained from
the unfolding procedure [9] is displayed in Fig. 1(b), which
presents all γ cascades from each Ei. The γ multiplicity of
these statistical transitions including all γ rays for all cascades
is typically ≈1–4, which can be calculated from [8]

Mγ (Ei ) = Ei

〈Eγ (Ei )〉 , (2)

where 〈Eγ 〉 is the average γ -ray energy of the γ spectrum for
an initial excitation energy Ei.

An important step of the Oslo method is to obtain a reliable
first-generation (primary) γ -ray matrix. The construction of
this matrix is based on an iterative subtraction technique [8],
which separates the energy distribution of the first emitted γ

rays from the distribution of higher-generation γ rays.
Let uEi (Eγ ) be the unfolded γ spectrum measured at the

initial excitation energy Ei, as shown in Fig. 1(b). Then, the
primary spectrum at initial excitation energy Ei can be ob-
tained by subtracting a sum of weighted uE ′

i
(Eγ ) spectra from

lower excitation energies:

pEi (Eγ ) = uEi (Eγ ) −
∑

E ′
i <Ei

wEi (E
′
i )uE ′

i
(Eγ ), (3)

where the weighting coefficients w and first-generation spec-
trum p are determined by an iterative procedure as described
in Ref. [8]. After a few iterations, the multiplicity of the
primary spectrum is found to be Mγ ≈ 1, which is compared
to the higher multiplicity of the u spectrum of the average
total cascades. The reason for the fast convergence is the close
relationship between p and w. At a given initial excitation
energy Ei, the functional form of pEi (Eγ ) should end up by
having the same functional form as wEi (E

′
i ) when taken as

function of Ei − E ′
i , which represents the argument Eγ of p.
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FIG. 2. Probability densities of primary γ spectra (crosses) from various initial excitation energies Ei in 147Nd. The spectra are compared
to the product ρ(Ei − Eγ )T (Eγ ) (blue histogram). The statistical error bars are less than the data crosses. Both the γ and excitation energy
dispersions are 124 keV/channel.

The extracted primary P(Eγ , Ei) matrix for the
146Nd(d, pγ ) 147Nd reaction is shown in Fig. 1(c). Compared
to the matrix of cascades in panel (b), we see that the
intensities of γ rays with energies at the initial excitation
energy Ei and slightly below are about the same since
they represent primary transitions in both matrices. On
the other side, we see that the intensities of lower-energy
γ rays at high Ei are strongly suppressed in the primary
matrix as they represent higher-generation γ rays. For
illustration, in Fig. 1(d), we have also constructed the
intensities of γ rays feeding final excitation energies E f given
by Q(Eγ , E f ) = P(Eγ , Ei − Eγ ). The Q matrix shows that
γ rays below 3 MeV decay mainly directly to four to five
low-lying levels at E f < 200 keV. The decay to these levels
are also recognized as the lowest diagonal in the P matrix.

In order to extract NLD and γ SF, we first normalize the
primary spectra to unity by

∑
Eγ

P(Eγ , Ei ) = 1. We then fac-
torize P by [10]

P(Eγ , Ei ) ∝ ρ(Ei − Eγ )T (Eγ ), (4)

where we assume that the decay probability is proportional to
the NLD at the final energy ρ(Ei − Eγ ) according to Fermi’s
golden rule [18,19]. The decay is also proportional to the
γ -ray transmission coefficient T , which is assumed to be
independent of excitation energy according to the Brink hy-
pothesis [20,21].

Provided that relation (4) holds, we extract the one-
dimensional vectors ρ and T from the two-dimensional P
matrix using the least χ2 fit iteration procedure of Schiller
et al. [10]. For a successful fit we adopt a part of the P matrix
where the decay can be considered statistical. A guide to this
qualitative statement is to monitor at what energy region the
first-generation method works well, meaning that we obtain

the expected multiplicity of Mγ ≈ 1. In the case of 147Nd
in Fig. 2, the energy region of 3.0 < Ei < 5.4 MeV with
Eγ > 0.5 MeV works well as confirmed by the agreement
between experimental data points and the results (blue his-
togram) using the fit functions ρ and T . The figure includes
six out of the 21 available γ spectra that have been used to
determine ρ and T in the fitting procedure.

With the transmission coefficient T in hand, we obtain the
γ SF by [22]

f (Eγ ) = 1

2π

T (Eγ )

E3
γ

, (5)

as dipole transitions dominate the decay in the quasicontin-
uum [23].

The local variation of data points of ρ and T are uniquely
determined through the fit, but the scale and slope of these
functions are still undetermined. It has been shown that trans-
formations of the type [10]

ρ̃(E − Eγ ) = A exp[α(E − Eγ )] ρ(E − Eγ ), (6)

T̃ (Eγ ) = B exp(αEγ )T (Eγ ), (7)

give identical fits to the primary γ spectra. Therefore, A, α,
and B are parameters that have to be determined from other
experimental data or systematics.

At low excitation energies, we normalize the NLD to
known discrete levels [24]. At high excitation energies, we
use the measured average neutron s-wave resonance spacing
D0 [25] at the neutron separation energy Sn. To convert the
measured D0 to the total level density, we insert E = Sn into
the spin distribution [26]

g(E , J ) � 2J + 1

2σ 2(E )
exp

[−(J + 1/2)2/2σ 2(E )
]
, (8)
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TABLE I. The quadrupole deformation β2 and parameters for extracting experimental NLD and γ SF.

Nucleus β2 TCT Ed σd Sn σ (Sn) D0 ρ(Sn) 〈�γ 〉
(MeV) (MeV) (MeV) RMI (eV) (106 MeV−1) (meV)

142Nd 0.092(2) 0.65(5) 2.5 3.0 9.828 6.6 19(4)a 1.23(35)b 77(20)c

144Nd 0.125(2) 0.63(3) 2.5 2.8 7.817 6.3 37.6(21) 0.32(5) 74.2(18)
145Nd 0.138(5)d 0.59(3) 1.3 2.9 5.755 5.9 450(50) 0.16(4) 51(4)
146Nd 0.151(2) 0.62(3) 1.5 2.6 7.565 6.2 17.8(7) 0.67(11) 74(3)
147Nd 0.176(5)d 0.57(3) 0.5 2.0 5.292 5.8 346(50) 0.20(5) 54(4)
148Nd 0.200(2) 0.59(3) 1.4 2.5 7.333 6.1 5.9(11) 2.4(6) 68.8(60)
149Nd 0.242(5)d 0.54(3) 0.5 2.3 5.039 5.8 165(14) 0.42(9) 45(3)
150Nd 0.283(2) 0.61(4) 1.2 2.9 7.376 6.2 3.0(10)a 4.8(18)b 70(20)c

151Nd 0.314(10)d 0.54(3) 0.4 2.6 5.335 6.0 169(11) 0.43(9) 67(25)

aAdjusted to reproduce ρ(Sn).
bEstimated from systematics [12].
cEstimated from 144,146,148Nd.
dInterpolated between even-mass neighbors.

where J is the spin quantum number. The function of the spin
cutoff parameter is given by [23]

σ 2(E ) = σ 2
d + σ 2(Sn) − σ 2

d

Sn − Ed
(E − Ed ), (9)

where σ 2
d is determined from known discrete levels at low

excitation energy E = Ed and σ 2(Sn) is determined from the
rigid-body moment of inertia (RMI) estimate, as shown in our
previous work [12].

Table I lists the quadrupole deformations and parameters
needed for extracting ρ(Sn). The β2 values of the even-mass
isotopes are taken from the compilation of Pritychenko et al.
[27]. For the odd-mass isotopes, we assume a deformation
that is the average of their even-mass neighbors. The table
also includes the temperature TCT extracted by a χ2 fit of the
constant-temperature (CT) formula [26]

ρCT(E ) = (1/TCT) exp [(E − E0)/TCT] (10)

to the experimental high-energy data points and the predicted
ρ(Sn) value of Table I. Such a fit is shown in Fig. 3, where
ρCT was fitted to the data points in the excitation region of
E = 2.7–4.1 MeV. The energy shift parameter is given by
E0 = Sn − TCT ln[TCT ρ(Sn)]. Further details on the extraction
of NLDs in the neodymiums are given in our previous work
[12]. For convenience, we list the NLD parameters from
Ref. [12] in Table I.

The last column of Table I lists the average γ widths for
� = 0 neutron capture reactions compiled in Ref. [25]. These
quantities are exploited to determine the scaling of T (param-
eter B of Eq. (7)) by reproducing the average, experimental
γ -decay width [10,28]

〈�γ (Sn)〉 = 1

2πρ(Sn, Ji, π )

∑
Jf

∫ Sn

0
dEγ T (Eγ )

× ρ(Sn − Eγ , Jf ), (11)

where the summation and integration run over all final levels
with spin Jf that are accessible from initial spin Ji by E1 or
M1 transitions with energy Eγ . The integral is performed with
the measured experimental ρ and T data points; however,

in the case of missing data points at the lowest and highest
energies, extrapolations are used. The Oslo method has been
extensively tested and discussed by Larsen et al. [29]. The
Oslo method software is available on the Oslo Cyclotron
Laboratory GitHub [17].

III. SPIN DISTRIBUTIONS OF THE APPLIED REACTIONS

Before we can extract the γ SFs from the first-generation
matrix, we have to consider the spin distribution populated
in these light-ion reactions compared to the intrinsic spin
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FIG. 3. Level densities of 147Nd. The open and filled square
data points show the results of the Oslo method applied with a
total (ρtot) and a reduced (ρexp) level density, respectively, having
ρexp(Sn) = 0.11ρtot (Sn). The data points of the two level densities are
connected to ρ(Sn) (shown as diamonds) with a constant temperature
(CT) model. The solid line shows the level density of known levels
[24].
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distribution of the heavy nuclei studied. Table I shows typ-
ically σ (Sn) ≈ 6, which represents [see Eq. (8)] an average
spin of 〈J〉 ≈ 7 with a negligible contribution of spins above
J ≈ 15–20. This is a significantly larger spin distribution than
expected from the applied (p, p′) and (d, p) reactions at low
beam energies.2

In the following, we aim to estimate experimentally the
ratio

η = ρexp(Sn)

ρtot (Sn)
(12)

between the level density populated in the reaction and the to-
tal, intrinsic level density3 given in Table I. With this reduction
factor, we can estimate the experimental level density ρexp(E )
for excitation energies up to the neutron separation energy Sn,
as demonstrated in Fig. 3 for 147Nd by the filled black data
points.

It is obvious that the observed level density has a less steep
slope compared to that without a reduction of available spins.
Since the observed P(Eγ , Ei ) matrix represents the experi-
mental spin range, ρexp(E ) must be adopted in Eq. (4). By
replacing ρtot (E ) with ρexp(E ), the slope of T (Eγ ) will cor-
respondingly change to fit the observed P(Eγ , Ei ) landscape.
As seen from Eqs. (6) and (7), a less steep slope of ρ will
induce a less steep slope of T as well.

In the following, we adopt two techniques to estimate η,
namely (i) the side feeding into the rotational ground-state
band for well-deformed nuclei and (ii) the recently developed
shape method [11]. Only 150Nd works for the side-feeding
method, whereas the shape method may be used for all nuclei
if the final levels are known and experimentally separable.

A. Spin distribution of the (p, p′ ) reaction

The 150Nd isotope is a well-behaving rotor with a
quadrupole deformation of β2 = 0.283 [27]. With an ini-
tial excitation energy gate of Ei = 7.2–7.8 MeV, we have
evaluated the efficiency-corrected ground-state band γ -ray
intensities Iγ (J → J − 2) and from these values estimated the
side feeding of spin J from the quasicontinuum by

S(J ) = Iγ (J → J − 2) − Iγ (J + 2 → J ). (13)

The intensities in the ground-state band fade exponentially
with spin, and the highest transition found was the 10+ →
8+ 468.9-keV γ -ray line. Assuming that this 10+ level also
collects the decay from higher spins, we fit the side-feeding
spin distribution to Eq. (8) with the spin cutoff parameter as
a free parameter. The fit result for the experimental data is
shown in Fig. 4(a), with σexp = 2.9(2). For comparison, also
the intrinsic spin distribution with σtot = 6.2 is displayed as a
solid curve.

The two spin distributions g(Sn, J )tot and g(Sn, J )exp of
Fig. 4(a) are normalized to unity by integrating Eq. (8) for

2For previous helium-induced reactions on lighter nuclei, the pop-
ulated spin distribution was much closer to the real intrinsic spin
distribution, and performing corrections was not necessary.

3By intrinsic level density we mean all available levels within an
excitation energy bin (independent of the nuclear reaction applied).
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FIG. 4. Spin distributions in 150Nd. Panel (a) shows the intrin-
sic spin distribution (solid curve) with a spin cutoff parameter of
σ = 6.2. The experimental data points are the S(J ) values obtained
by the evaluated side feeding, which are fitted to a spin distribution
(dashed curve) with σ = 2.9. Panel (b) shows the experimental spin
distribution (dashed curve) with σ = 2.9 normalized to the lowest
spin of the intrinsic spin distribution. The dashed-dotted curve (ar-
bitrary units) shows the ratio between the experimental and total
spin distributions, and will be referred to as the average probability
plevel (Ei, Ji ) of populating individual levels of spin Ji, where the value
at J = 0 is normalized to unity.

all J . However, with the assumption that there is no spin
reduction for the lowest spin, i.e., J = 0 for 150Nd, we find
the level-density reduction factor by

η = g(Sn, J = 0)tot

g(Sn, J = 0)exp
= 0.22(2). (14)

The function ηg(Sn, J )exp is shown in Fig. 4(b), which coin-
cides with the lowest spins of the g(Sn, J )tot distribution. We
have calculated the side feeding for three excitation-energy
bins: 5.1, 6.3, and 7.5 MeV and found that the populated spin
distribution varies with less than 10%. Therefore, we have
assumed that this populated spin distribution is also valid at
the neutron separation energy to estimate the reduction factor
η at Sn.
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TABLE II. Average probability plevel for populating individual
levels in the (p, p′) and (d, p) reactions at Sn. The data are normal-
ized to unity for Ji = 0 or 1/2.

150Nd(p, p′) 150Nd 144Nd(d, p) 145Nd

Ji plevel Ji plevel

0 1.00 1/2 1.00
1 0.91 3/2 0.72
2 0.76 5/2 0.41
3 0.57 7/2 0.19
4 0.39 9/2 0.07
5 0.25 11/2 0.02
6 0.14 13/2 0.00
7 0.07 15/2 0.00
8 0.04 17/2 0.00
9 0.02 19/2 0.00
10 0.01 21/2 0.00

The average probability for populating individual levels of
spin Ji at excitation energy Ei is given by

plevel(Ei, Ji ) ∝ g(Ei, Ji )exp

g(Ei, Ji )tot
, (15)

which is shown as the red dashed-dotted curve (arbitrary
units) in Fig. 4(b). The probability plevel(Ei, Ji ) has to be
taken into account in the shape method if γ -decay rates to
final levels with different spins are compared. The population
probabilities for various initial spins are listed in Table II. It
is interesting to note from Eqs. (8) and (15) that the func-
tional form of plevel for the present surface-induced light-ion
reactions follows the right part of a Gaussian centered at
J = −1/2; see the red dashed-dotted curve in Fig. 4(b).

We will now test if the above findings are consistent with
the shape method results and known (n, γ ) data. The shape

method [11] relies on measuring the number of counts ND in
a diagonal D of the primary matrix defined by Ei = Eγ + E f

for a fixed value of E f . Examples of such diagonals are
revealed as D1 and D2 in Fig. 5(a). The number of γ -ray
transitions with energy Eγ from a given initial excitation
energy Ei is given by

ND ∝ f (Eγ )E3
γ

∑
[Jf ]

Ji=Jf +1∑
Ji=Jf −1

plevel(Ei, Ji ) g(Ei, Ji )tot, (16)

where the fixed final excitation energy E f = Ei − Eγ defines
the diagonal D. All transitions are assumed to be dipole
as the dipole strength is known to be dominant within the
quasicontinuum [23]. The notation [Jf ] describes the spins
of the final levels within the diagonal; e.g., if the diagonal
contains four levels with [Jf ], then

∑
[Jf ] is the sum over those

corresponding four terms. The second sum is restricted to the
available spins J populated by dipole transitions connecting
initial and final levels, which generally include three initial
spins. However, in the case of Jf = 0 only the Ji = 1 spin is
included, and for Jf = 1/2 only the Ji = 1/2 and Ji = 3/2
spins are included.

The primary P(Eγ , Ei ) matrix for 150Nd is shown in
Fig. 5(a) including two diagonals with their integration limits
shown as black lines. Diagonal D1 includes the 0+ (0 keV),
2+ (130 keV), and 4+ (381 keV) final levels and diagonal
D2 includes 12 levels in the final excitation energy region
0.85–1.3 MeV with average spin of 〈Jf 〉 ≈ 3.0.

The shape method implemented in the present work is
based on the code diablo.c available on the Oslo Cyclotron
GitHub [17]. The algorithm of the code steps through one
initial excitation energy Ei of the primary P(Eγ , Ei ) matrix
and integrates the number of counts at the diagonals D1 and D2

within the window Ei ± �Ei/2, �Ei being the bin size. From
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FIG. 5. (a) The primary γ matrix P(Eγ , Ei ) of 150Nd showing the cuts for the two diagonals. (b) The resulting γ SF from the shape method
(filled and open blue triangles) compared to the Oslo method using η = 1.0 (solid grey squares) and η = 0.22 (solid black squares) from the
side-feeding technique.
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discrete resonance capture data (DRC) [3].

the counts ND1 and ND2, a pair of internally normalized values
f (Eγ 1) and f (Eγ 2) is extracted by exploiting the proportion-
ality of Eq. (16). These pairs are then connected together by
a sewing technique based on logarithmic interpolation. The
obtained strength function f (Eγ ) has in principle the correct
functional form, but the absolute normalization is arbitrary
and must be determined by other means. More details of the
shape method are given by Wiedeking et al. [11].

Figure 5(b) shows the result of the Shape method giv-
ing a perfect overlap with the Oslo method data using
a level-density reduction factor η = 0.22 at Sn. Here, the
Shape-method data points are multiplied by a common
absolute-normalization factor, which is found by a χ2 fit to the
Oslo data in the Eγ = 2.5–7.3 MeV energy region. The γ SF
data points from populating the two diagonals (filled and open
blue triangles) scatter slightly, indicating that the systematic
uncertainties with the Shape method is small in the case of
150Nd. The fact that the side-feeding technique and the shape
method give consistent results is very gratifying.

We also test the shape method on 144Nd where known
(n, γ ) data exist for comparison. Figure 6(a) shows that an-
other advantage with this almost spherical nucleus (β2 =
0.125) is that the diagonal to the 0+ (0 keV) and 2+ (697 keV)
are well separated and thus more accurate integrals for D1 and
D2 can be obtained. The 0+ ground level is reached by dipole
transitions from initial spin/parities 1±, whereas the 2+ level
is populated by decay from the 1±, 2±, and 3±. It is therefore
important to use reasonable probabilities plevel (see Table II)
for the initial spins populated in the reaction.4

4If the two diagonals represent decay to levels with identical spin-
parities or with a broad range of spin-parities, the values of plevel can
be kept fixed for all spins.

The results of the shape method are displayed in Fig. 6(b).
Again we see a good agreement between the γ SF from the
Shape method and the Oslo method using η = 0.22. In ad-
dition, the two γ SFs agree well with the discrete resonance
capture data (DRC) [3], which gives additional support to our
procedure described above.

We conclude that the two test cases 144,150Nd strongly
suggest that a common level density reduction factor of η =
0.22(2) at Sn is reasonable for the (p, p′) reaction with 16-
MeV protons on these neodymium isotopes.

B. Spin distribution of the (d, p) reaction

In the present work, (d, p) reactions are used to study the
odd-A neodymium isotopes. Here, the side-feeding method
cannot be applied due to many close-lying γ -ray lines that
are not separated due to the limited detector resolution. Also,
intraband transitions connecting close-lying rotational bands
complicate the extraction of side feeding from the quasicon-
tinuum. However, the shape method is applicable provided
that the two diagonals include levels of known spin-parities.

The best case for the shape method applied to the (d, p)
reaction is 145Nd, where the lowest diagonal D1 is well de-
fined with the levels 7/2− (0 keV), 3/2− (67 keV), and 5/2−
(73 keV). Diagonal D2 is more problematic; however, we have
taken ten levels in the final excitation region 0.66–1.09 MeV
with average spin of 〈Jf 〉 ≈ 2.9.

Figure 7(a) shows the diagonals and integration limits for
145Nd, and the shape method results are displayed as filled and
open blue triangles in Fig. 7(b). As shown, the Oslo method
with intrinsic spin distribution (solid grey squares) exhibits a
γ SF too steep compared to the shape method. By introducing
a level density reduction factor at Sn of η = 0.11(2), a very
good overlap between the Oslo and shape methods is obtained.
As for the (p, p′) reaction, we assume that the experimental
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FIG. 7. (a) The primary γ matrix P(Eγ , Ei ) of 145Nd showing the cuts for the two diagonals. (b) The resulting γ SF from the shape method
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spin distribution follows Eq. (8). Again we can estimate the
probability plevel(Ei, Ji ) for populating individual levels of
spin Ji at excitation energy Ei using Eq. (15). Table II lists
the (d, p) spin population probabilities plevel at Sn, which are
normalized to unity for J = 1/2.

Figure 8 summarizes the results obtained by introducing
spin corrections in the Oslo method. With reduction factors of
η = 0.22(2) and η = 0.11(2) for the (p, p′) and (d, p) reac-
tions, respectively, the γ SFs follow a systematic trend from
isotope to isotope. This feature is encouraging and indicates
that our corrections are sound.

We should mention that the extracted data points at or
below Eγ ≈ 1 MeV of Fig. 8 may have been distorted by an
imperfect subtraction of strong γ lines in the first-generation
procedure. Such structures appear as vertical ridges and/or
valleys in some of the primary Nd matrices, and therefore data
points at or below Eγ ≈ 1 MeV should be taken with caution.

IV. COMPOSITION AND EVOLUTION OF THE γSF

The γ SF is composed of several structures which interplay
and add up to the total γ SF. Many of these structures depend
strongly on the quadrupole deformation β2, which makes the
chain of neodymium isotopes of particular interest. The giant
dipole resonance (GDR) is known to split into two com-
ponents with deformation and the pygmy dipole resonance
(PDR) is expected to be stronger with increasing neutron
excess. Furthermore, the scissors mode (SM) strongly de-
pends on deformation and finally the low-energy enhancement
(LEE) seems to be absent for deformed, heavy systems.

By introducing semiempirical models [2,23] for all these
structures, a total of 18 parameters have to be determined. This
complicates a simultaneous fit to the data, and the following
fitting strategy is chosen. Since the GDR is well separated
from other structures around ≈15 MeV, we will first fit this
part of the GDR. Using these parameters, the low-energy E1
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FIG. 8. The γ SFs with spin reduction factors of η = 0.22 and
0.11 for 142,144,146,148,150Nd (red symbols) and 145,147,149,151Nd (blue
symbols), respectively (see text). Except for 142Nd, the γ SFs are
separated by multiplying the next data set with a factor of 3 for better
visualization.
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tail from the GDR is established, and we may introduce the
weaker and lower-lying structures on top of this. In cases
where no experimental data exist for certain γ -energy regions,
we use the neighboring isotopes as a guidance. We apply the
fit method implemented in ROOT, which is based on the MINUIT

package [30] with Hessian matrix error analysis.
We should point out that the Oslo method cannot sepa-

rate the data into E1 or M1 contributions. Furthermore, the
technique is restricted to an excitation energy of maximum
Sn, which is typically around 5–6 and 7–8 MeV for the odd-
and even-mass isotopes, respectively. Nevertheless, by also
exploiting other experimental data, we will obtain a reliable
description of the γ SF. Figure 9 presents our data together
with other external data for 142,144–151Nd. The various models
are shown as curves with corresponding model parameters
listed in Tables III and IV.

TABLE III. Parameters for the GDR resonances with Tf =
0.50 MeV. Parameters with uncertainties are from the fit.

Nucleus GDR1 GDR2

EGDR1 σGDR1 �GDR1 EGDR2 σGDR2 �GDR2

(MeV) (mb) (MeV) (MeV) (mb) (MeV)

142Nd 13.5(3) 89(18) 3.3(8) 15.3(4) 325(22) 3.8(1)
144Nd 14.4(7) 179(93) 4.4(11) 15.9(2) 184(103) 4.3(7)
145Nd 14.0(4) 166(48) 3.7(9) 16.1(2) 209(48) 4.8(9)
146Nd 13.1(7) 89(19) 3.9(19) 15.7(5) 435(30) 4.6(2)
147Nd 13.5 130 5.2 15.8 292 4.6
148Nd 13.8(9) 172(32) 6.4(28) 15.9(8) 147(58) 4.6(11)
149Nd 13.6 193 6.0 16.2 146 4.3
150Nd 13.4(2) 213(5) 6.7(5) 16.5(8) 145(9) 4.0(4)
151Nd 13.4 213 6.7 16.5 145 4.0
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TABLE IV. Parameters for the PDR, SM, and LEE structures and the integrated B(M1) for LEE and SM. A common slope parameter of
κLEE = 1.9 MeV−1 is set for all isotopes. Parameters with statistical and systematical uncertainties are from the fit.

Nucleus PDR1 PDR2 SM LEE

EPDR1 σPDR1 �PDR1 EPDR2 σPDR2 �PDR2 ESM σSM �SM
∑

BSM CLEE
∑

BLEE

(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV)
(
μ2

N

)
(10−8MeV−1)

(
μ2

N

)
142Nd 6.90 3.0 0.6 11.1 25.0 1.6 6.0(16) 7.3(19)
144Nd 7.13(9) 5.8(9) 0.71(14) 9.80(10) 14.3(12) 1.96(12) 10.5(11) 14.1(15)
145Nd 7.5 9.0 0.9 9.3 16 1.6 12.6(21) 16.4(27)
146Nd 8.12(2) 9.3(4) 0.6 9.7 14 1.6 17.5(27) 21.4(33)
147Nd 7.1 5.5 0.5 9.3 13 2.0 2.22(16) 0.12(4) 1.0(5) 1.6(10) 16.5(11) 20.1(13)
148Nd 5.98(13) 1.6(9) 0.39(26) 8.80(9) 11.5(8) 2.45(13) 2.45(14) 0.18(4) 1.4(5) 2.8(12) 6.9(12) 9.0(16)
149Nd 6.03 3.9 0.75 2.37(16) 0.15(4) 1.9(5) 3.1(12)
150Nd 6.08(17) 6.1(18) 1.1(4) 3.00(30) 0.61(18) 1.5(7) 8.5(46)
151Nd 6.1 6.1 1.1 2.95(25) 0.64(27) 1.1(6) 7.0(47)

A. Giant dipole resonance

In the macroscopic picture, the GDR describes the dipole
oscillations of the proton and neutron clouds against each
other. The GDR is known to split into two components (GDR1
and GDR2) for nuclei with an appreciable ground-state defor-
mation.

There exist photoneutron cross sections from the Saclay
measurements on 142–146,148,150Nd by Carlos et al. [31] and
from inverse Compton scattering on 143–146,148Nd by Nyhus
et al. [32]. The γ SF is calculated from the cross section by
[33]

f (Eγ ) = 1

3(π h̄c)2

σγ n(Eγ )

Eγ

, (17)

where the constant reads 1/3(π h̄c)2 = 8.674 ×
10−8 mb−1MeV−2. The GDR data of Fig. 9 show the
expected spreading width [34] of ≈4 MeV for the almost
spherical 142Nd. For the heavier neodymiums, the GDR
gets broader with deformation and finally splits into two
clear GDR components for 150Nd. We also recognize for
144,145,148Nd that the high-energy Oslo data match very well
with the low-energy (γ , n) data of Nyhus et al. [32], which
gives further support to the spin restrictions introduced in
Sec. III. In the case of 146Nd, it is difficult to conclude on the
degree of matching.

To describe the GDR data, we use two generalized
Lorentzians (GLOs), each with the functional form of [23]:

fE1(Eγ )

= 1

3π2h̄2c2
σE1�E1

×
[

Eγ �(Eγ , Tf )(
E2

γ − E2
E1

)2 + E2
γ �2(Eγ , Tf )

+ 0.7
�(Eγ = 0, Tf )

E3
E1

]

(18)

with

�(Eγ , Tf ) = �E1

E2
E1

(
E2

γ + 4π2T 2
f

)
. (19)

The resonance parameters are the energy centroid EE1, the
strength σE1, and the width �E1.

The Tf parameter gives a nonzero tail for the lower γ

energies. The parameter is extracted from 142,144Nd, that
are assumed to have no broad, smoothly behaving features
except for the LEE structure. We find Tf = 0.46(1) MeV
for both isotopes, which is somewhat lower than the corre-
sponding constant-temperature values of TTC = 0.65(5) and
0.63(3) MeV. To reduce the number of free parameters in
the fit, we adopt the value of Tf = 0.50(5) MeV for all nine
isotopes.

Figure 9 presents our data together with other external data
for 142,144–151Nd. The E1 GLOs (long-dashed black curves)
are fitted to the data of Carlos and Nyhus [31,32], using Tf =
0.50 MeV. This part of the γ SFs demonstrates the interesting
broadening and splitting of the GDR with deformation. For
the three isotopes with no (γ , n) data, the systematics from
the neighbors are adopted. In the following, we exploit the
GDR data to obtain an estimate for the GDR E1 strength.
The parameter sets used for modeling the GDRs are listed in
Table III.

B. Pygmy dipole resonance

The pygmy dipole resonance (PDR) is believed to originate
from oscillations of the neutron skin against the N = Z = 60
core. The number of excess neutrons �N = A − 2Z changes
from �N = 22 for 142Nd to �N = 31 for 151Nd, and the
strength of the PDR resonance is expected to increase with
this neutron excess. An overview of experimental approaches
to study the low-lying electric dipole strength and experimen-
tal results is given by Savran et al. [7].

The resonance is described by the standard Lorentzian
(SLO) model [23] given by

f (Eγ ) = 1

3π2h̄2c2

σEγ �2(
E2

γ − E2
)2 + E2

γ �2
, (20)

with parameters E , σ , and � appropriate for the specific
resonance.

By inspecting Fig. 9, we find resonance structures in the
energy regions of 6–8 and 9–11 MeV that for simplicity we
denote PDR1 and PDR2, respectively. The lower resonance
PDR1 is probably the one traditionally called the pygmy
dipole resonance. The high-lying resonance PDR2, which
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accounts for the strength in the γ -energy region starting
around 11.3 MeV for 142Nd and decreasing with mass number
to 8.7 MeV for 148Nd, may as well be due to a fragmentation
of the GDR. Reinhard and Nazarewicz [35] have used nu-
clear density functional theory to describe a weak collective
E1 structure in the region below the GDR. Thus, the proper
interpretation of the observed PDR2 is uncertain.

The most clear fingerprints for the PDR1 are found in the
145Nd data of Nyhus et al. [32] and in the present 148,150Nd
Oslo data. For 145Nd, the PDR1 is located at Eγ ≈ 7.5 MeV
and drops to ≈6.0 MeV for 148,150Nd. However, there is no
clear evidence in the compiled data sets that the energy cen-
troids decrease in a smooth way with increasing mass number.
Also, the evolution of the PDR1 strength seems complicated
as it has a minimum for the transitional 148Nd isotope.

For 147,149,151Nd there are data of neither the PDRs nor
the GDRs, but we include these structures in the overall fit in
order to get a consistent description of the underlying strength
of the low-energy LEE and SM structures. For these isotopes,
the resonance parameters are estimated from the neighboring
isotopes with values listed in Tables III and IV.

C. Low-energy enhancement and scissors mode

The low-energy enhancement (LEE), often called upbend,
was first observed in 56Fe [36] and then in 93–98Mo [37]. The
phenomenon manifests itself as an increase in γ strength with
decreasing energy below Eγ ≈ 3 MeV. The LEE, which is
embedded in the nuclear quasicontinuum, was completely un-
expected at that time. Eight years later, Wiedeking et al. [38]
confirmed the same structure in 95Mo using other detectors
and techniques. The LEE has been found for many lighter
nuclei, but has recently also been observed in heavier isotopes
like 138,139La [39], 147,149Sm [5], and 151,153Sm [40]. However,
more recent experiments on 153,155Sm [41] did not reveal any
LEE. This makes it questionable if LEE exists also for heavy
deformed systems.

The first modeling of the LEE structure was performed by
Litvinova and Belov in 2013 [42] within finite-temperature
mean-field theory, adding a temperature parameter to explain
the LEE in terms of an increased E1 component. The same
year, Schwengner et al. [43] published a comparison with
shell-model calculations of the M1 strength function and
experimental data for 90Zr and 94–96Mo. They suggested an
exponential form of the LEE given by

f (Eγ ) = C exp(−κEγ ), (21)

where C and κ are parameters. Recently, Midtbø et al. [44]
reviewed the present status of the LEE. They reported on a
systematic large-scale shell-model study of 283 nuclei, which
reveals in general a more steep and pronounced LEE as the
mass number increases.

In this work, we follow the suggested description of
Ref. [43] to model the LEE. The slope parameter κ of Eq. (21)
is determined by fits to the pronounced LEE structures of
142,144–147Nd shown in Fig. 9, which give an average value
of κ = 1.9(2) MeV−1. The κ parameter may be interpreted as
the inverse of temperature [43]. However, 1/1.9 ≈ 0.53 MeV
do not coincide with the average value of TCT ≈ 0.61 MeV

for 142,144–147Nd; see Table I. Therefore, we use a fixed value
of κ = 1.9(2) MeV−1 in the fits for the 142,144–148Nd isotopes.
The fitted values of the remaining C parameter are listed in
Table IV. For isotopes heavier than 148Nd, we see no clear
LEE structure with the present experimental lower γ -energy
threshold. Variations in the Tf value (from 0.45 to 0.55 MeV)
are found to give only minor changes in the extracted LEE
strength.

The scissors mode (SM), which appears in deformed nu-
clei, was already described in 1978 by Lo Iudice and Palumbo
[45]. They proposed a geometrical picture where the deformed
proton and neutron clouds oscillate against each other like
scissors blades. Inspired by these predictions, the (e, e′) reac-
tion, which probes transition strengths from the ground-state
to excited levels in the low excitation-energy region, was
used to reveal M1 type resonant levels in 156,158Gd [46]. It
is interesting that these authors also report on the absence of
such levels in 146Nd, which is highly relevant for the present
work. Furthermore, nuclear resonance fluorescence (NFR)
experiments [47] reveal SM γ -transition strengths not only
to the ground state, but also eventually to the very lowest
excited levels. An alternative prediction of strong low-energy
transitions was given in 1982 by Chen and Leander [48],
which involves γ decay in the nuclear quasicontinuum. Their
calculations show that strong M1 transitions between �� = 1
Nilsson orbitals5 could compete with the statistical decay
in the quasicontinuum. These predictions were confirmed in
1984 by the observation of a bump at ESM ≈ 2–3 MeV in
the γ -ray spectra from various excitation energies in the qua-
sicontinuum of 161Dy [49]. It has been shown that the SM
in the low excitation-energy region increases in strength with
deformation [47]. A comprehensive review of magnetic dipole
excitations is given by Heyde et al. [50]. The main techniques
used to study the SM on excited states in the quasicontinuum
are the Oslo method, applied in the present work, and the
multistep cascade (MSC) method; see, e.g., Ref. [51].

In the present work we study the SM embedded in the
nuclear quasicontinuum applying the Oslo method; see, e.g.,
the study of 160–164Dy by Renstrøm et al. [52] and references
therein. In deformed rare earth nuclei, the SM follows closely
a standard Lorentzian at ESM ≈ 2–3 MeV. In the actinide
region, the SM strength increases and is best modeled by two
close-lying Lorentzians [53,54].

Figure 9(e) indicates a weak SM at ESM ≈ 2.2 MeV in
147Nd, which results in a rather flat γ SF located in between
the LEE structure and the tail of the GDR. It is interesting
to observe how the γ SF at these energies grows in strength
with deformation and finally reveals a clear and strong SM
structure in 150,151Nd at ESM ≈ 3.0 MeV.

Table IV shows that the SM energy centroid and strength
resonance parameters vary in a possibly systematic way. The
clear exception is the width of 149Nd. There is a possibility
that there is a significant LEE strength in 149Nd, comparable
to 148Nd. If so, this would reduce the width of the SM. As we

5The Nilsson orbitals are assigned a quantum number �, which
represents the projection of j on the nuclear symmetry axis.
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have not included an LEE in the fit, as our data are insuffi-
cient to conclude on its existence in this case, we cannot say
whether this is the main reason or not. The 149Nd nucleus is
also dependent on interpolations from the neighboring nuclei.
This may cause the large resonance width of 1.9 MeV from
the fit, or indicate that this nucleus for some structural reason
really exhibits a large width.

An intriguing idea was proposed by Schwengner et al. [4]
based on large-scale shell-model calculations for 60,64,68Fe.
They find that the strength of the SM increases by a factor
of 2 when going from 60Fe to 68Fe. At the same time, the LEE
strength decreases correspondingly and thereby conserves the
total strength of B(M1) ≈ 9.8μ2

N . The conservation of the
summed SM and LEE strengths has been experimentally
tested for 147,149,151,153Sm [5], but large uncertainties prohibit
a firm conclusion.

The evolution of the LEE and SM is shown in Fig. 9. It is
clear that the LEE is present in 142,144–148Nd and the SM is
present in 147–151Nd. Here, 148Nd is a key nucleus since both
the LEE and SM are significantly present. For 145,146Nd, we
do not have sufficient experimental evidence from our data to
claim the presence of the scissors mode. It is interesting to
note that no SM strength could be seen for 146Nd in the (e, e′)
experiments [46].

In order to quantify the strength of the LEE and SM res-
onances as function of deformation (or mass number), we
integrate the corresponding γ SFs for the two structures. The
γ -decay strength from an initial level with spin Ji is propor-
tional with the number of available final spins Jf that can be
reached with a transition of electromagnetic character XL. If
we further assume an initial spin with Ji � L, we obtain [1,55]

dB(XL)

dEγ

= L[(2L + 1)!!]2(h̄c)2L+1

8π (L + 1)
fXL(Eγ )

∑
Jf

1

= L[(2L + 1)!!]2(h̄c)2L+1

8π (L + 1)
fXL(Eγ )(2L + 1). (22)

This expression is now used to evaluate the total strength in
the γ -energy region 0–5 MeV. Assuming M1 electromagnetic
character, the upward integrated strength with L = 1 is given
by

B(M1) = 27(h̄c)3

16π

∫ 5MeV

0
f (Eγ )dEγ , (23)

where f (Eγ ) is modeled by Eqs. (20) and (21) for SM and
LEE, respectively. The factor in front of the integral has the
value 27(h̄c)3/16π = 2.598 × 108 μ2

N MeV2.
The LEE and SM strengths can now be evaluated from

their respective fit functions shown in Fig. 9 using Eq. (23).
Figure 10 summarizes the total M1 strengths for the nine
isotopes of the present experiment, which are also included
in Table IV. The error bars are mainly due to uncertainties
in the Tf = 0.50(5) parameter and the experimental 〈�γ 〉
value.

The blue curve of Fig. 10 shows the rise and fall of the LEE
strength with a maximum of ≈21μ2

N for 146,147Nd with β2 ≈
0.16. For 148Nd the strength drops to ≈9μ2

N and then vanishes
for the heavier isotopes. The strength of the SM (red curve)
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FIG. 10. The integrated LEE (blue diamonds) and SM (red trian-
gles) strengths B(M1) together with the summed strength of the two
structures (orange squares) as function of quadrupole deformation
β2. The strengths are integrated between Eγ = 0 and 5 MeV.

starts increasing at 147Nd and reaches a plateau of ≈8μ2
N for

the well-deformed 150,151Nd.
The summed strength of the LEE and SM structures is

shown as an orange curve in Fig. 10. It is clear that this curve
is far from constant and contradicts the picture of Schwengner
et al. [4]. First, we find that the SM structure does not account
for the missing strength of the LEE at 149–151Nd; it reaches
only one third of the maximum LEE strength. Secondly, there
is a strong increase of LEE strength from 142Nd to 146,147Nd
where no SM strength is present that could eventually account
for this behavior.

The 148Nd seems to be a key nucleus where both the LEE
and SM are coexisting. It is noteworthy that the clear onset of
the SM structure for this transitional nucleus coincides with
the onset of collectivity in the mean-field solution for the
shell-model interaction [12].

V. CONCLUSIONS AND OUTLOOK

The present study has shown that the limitation of trans-
ferred spin in the present (p, p′) and the (d, p) reactions has to
be taken into account when using the Oslo method. By includ-
ing the spin reduction, the slope of the γ SF is reduced. The
applied spin corrections are supported by the shape method
and γ -ray side feeding into the rotational ground-state band.
The corrected γ SF also matches (n, γ ) and (γ , n) data avail-
able from literature.

The (γ , n) data on the giant dipole resonances are modeled
using the GLO model with a fixed Tf = 0.50(5) MeV. The
fitted resonance parameters are exploited to obtain the E1
GDR tail, which is underlying the γ SF structures located at
lower γ energies.
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The pygmy dipole resonance is partly obtained from the
present Oslo data and the (γ , n) data from literature. The data
of 142,144–146,148Nd indicate the presence of two resonances.
However, we suggest that the one lower in energy is related to
the pygmy dipole resonance built on neutron skin oscillations.

The present Oslo data bring new insight into the evolution
of the low-energy enhancement (LEE) and the scissors mode
(SM). By increasing deformation, we observe around 148Nd
with β2 ≈ 0.2 that the LEE strength decreases and the SM
strength increases. Apart from that, there seems not to be any
connection between the amount of B(M1) strengths carried by
the two structures as function of deformation. This contradicts
the idea that the LEE and SM structures [4–6] are connected
by exchanging strength with each other. Thus, the evaluated
B(M1) strengths indicate that the two structures are due to
different mechanisms.

In conclusion, the present work reveals the fascinating
evolution of various γ -ray structures in the cross over from
spherical to deformed neodymium isotopes. There is a clear
need for more data and in particular, more robust theoretical

descriptions to understand the interplay between γ -decay
mechanisms in the nuclear quasicontinuum.
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