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Abstract
Searches for supersymmetric particles, in particular charginos (χ̃±1 ) and
neutralinos (χ̃0

1 and χ̃0
2), have been carried out using data from proton-

proton collisions at
√
s = 13 TeV. The data were collected by the ATLAS

experiment during the LHC Run 2.
The first search considers χ̃±1 χ̃∓1 pair-production with decays via

sleptons and sneutrinos into final states with two leptons (e, µ) and missing
transverse energy from two χ̃0

1s and two neutrinos. In the simplified models
considered in this thesis, χ̃0

1 is taken to be the lightest supersymmetric
particle and a dark matter candidate. Sensitivity studies are presented for
6 and 10 fb−1, in addition to observed exclusion limits in the mass-plane of
χ̃±1 and χ̃0

1 with 13.3 fb−1. The exclusion reach for the χ̃±1 mass increases
up to 620 GeV (for a massless χ̃0

1), compared to 480 GeV with the Run 1
data at

√
s = 8 TeV, whereas the exclusion reach for the χ̃0

1 mass increases
from 180 GeV in Run 1 up to 260 GeV with these early data of Run 2.

The second search considers production of a mass-degenerate χ̃±1 χ̃0
2

pair with decays via a W and a Z boson into two leptons, two jets and
missing transverse energy from two χ̃0

1s. Sensitivity studies are presented
for 36.5 fb−1, and observed exclusion limits in the plane of the χ̃±1 /χ̃0

2 and
χ̃0

1 masses are obtained with 36.1 fb−1. The exclusion reach for the χ̃±1 /χ̃0
2

mass increases from 420 GeV with Run 1 data to 580 GeV (for a massless
χ̃0

1) with the 2015+2016 dataset of Run 2, whereas the exclusion reach for
the χ̃0

1 mass increases from 150 GeV to 230 GeV w.r.t. the Run 1 limits.
The third search is a continuation of the previous one, but redefines and

optimizes the signal regions for the full Run 2 dataset. Sensitivity studies
and background estimation are presented for 139 fb−1, with expected
exclusion limits in the mass-plane of χ̃±1 /χ̃0

2 and χ̃0
1. The expected mass

exclusion reach increases from 580 to 750 GeV for χ̃±1 /χ̃0
2 and from 230 to

320 GeV for χ̃0
1 w.r.t. the expected exclusion limits obtained for the analysis

with 36.1 fb−1. The complete ATLAS publication, which incorporates the
results just mentioned, goes beyond the expectations and excludes χ̃±1 /χ̃0

2
masses up to 820 GeV and χ̃0

1 masses up to 380 GeV.
The fourth and final search investigates whether machine learning,

or multivariate analysis, with the XGBoost algorithm can improve the
sensitivity to the signal model of the two previous searches, with the
integrated luminosity of the full Run 2 dataset. On the one hand, the
single-bin XGBoost signal regions increase the expected exclusion reach
from 600 to 700 GeV for χ̃±1 /χ̃0

2 and from 150 to 350 GeV for χ̃0
1, compared

to conventional single-bin discovery regions. On the other hand, the
signal sensitivity of the XGBoost signal regions are comparable to the
conventional multi-bin signal regions, suggesting that there may be more
sensitivity to be gained by also considering multi-bin shape-fits for the
XGBoost output.
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Chapter 1

Introduction

The Large Hadron Collider (LHC) had its first successfull operational period
of particle collisions between November 2009 and February 2013, referred to as
Run 1. In March 2010, the record-breaking center-of-mass energy of

√
s = 7 TeV

was finally reached in proton-proton collisions. This was followed by a period
of data-taking for physics analysis during most of 2011. At the end of 2011,
the collision energy was raised again, to

√
s = 8 TeV, with another period of

data-taking for physics analysis, which ended in early 2013.
During the LHC Run 1, the ATLAS experiment collected about 4.7 fb−1 of

integrated luminosity from proton-proton collisions at
√
s = 7 TeV, and about

20 fb−1 of integrated luminosity at
√
s = 8 TeV, which were of sufficiently high

quality to be used for physics analysis. In 2012, using the data from Run 1, the
ATLAS and CMS experiments were able to declare discovery of the final missing
piece of the Standard Model (SM) of particle physics, the Higgs boson, almost
50 years after it was first theorized in 1964.

The LHC Run 1 was followed by a two year long shutdown in preparation
for Run 2. In the Spring of 2015, the LHC started the new run of proton-proton
collisions at yet another record-breaking energy level of

√
s = 13 TeV. This

became the operational collision energy for protons throughout the whole of Run
2, which came to a close at the end of 2018. The work of this thesis makes use
of the data collected by the ATLAS experiment during the LHC Run 2.

The center-of-mass energy of the colliding initial-state particles corresponds
to an upper limit on the mass that can be produced for any final-state particle.
I.e., the increase in collision energy from Run 1 to Run 2 thereby increased
the upper limit on the particle masses that could be probed in the collision
events. This fact sparked hope of discovering new particles which have been
proposed in theories that go beyond the Standard Model. One of the most
popular theoretical models beyond the SM is Supersymmetry, which adds a
so-called superpartner to all the particles in the SM. Since such superpartners
have not yet been discovered, they must be heavier than their SM counterparts.
Could any of these hypothetical particles be present in the extended mass-range
accessible by the LHC in Run 2?

In this thesis, I present the work I have done as part of working groups
in the ATLAS experiment searching for Supersymmetry in various production
mechanisms and final-states. The searches have been conducted within the
framework of simplified models, with only two free mass parameters in each
model. My main focus has been on production of charginos and neutralinos
in electroweak interactions, with a signature of two leptons, hadronic jets and
missing transverse energy in the final-state. The lightest neutralino, which in
this thesis is assumed to be the lightest supersymmetric particle, is a prime
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1. Introduction

example of a so-called weakly interacting massive particle (WIMP), and has
been considered among the most promising candidates for dark matter.

My work has been centered on the task of finding event and particle selections
that optimize the sensitivity to the signal models. We refer to these selections
as signal regions. I consider two different approaches to defining the signal
regions. In the three first analyses of the thesis, I make use of the conventional
approach of applying so-called “rectangular” cuts to kinematic variables, such as
the transverse momenta of the visible particles and on the missing transverse
energy, in order to separate signal from background. In the fourth and final
analysis, I present a feasibility study which instead makes use of a machine
learning approach, in the form of gradient boosted decision trees, to learn more
refined, multivariate decision boundaries between signal and background.

The thesis is presented in two main parts. The first part, chapter 1 through
4, introduces the theoretical motivation and contents of Supersymmetry (chapter
2), the facilities and kinematics of particle collisions at the LHC (chapter 3),
and the experimental data which is collected and reconstructed by the ATLAS
experiment (chapter 4). The second part, chapter 5 through 9, first outlines the
general ingredients and workflow of the physics analyses to come (chapter 5),
before presenting my main research contributions. Chapter 6 presents my first
analysis, where I estimated the expected sensitivity for chargino pair production
with decays via sleptons and sneutrinos into two leptons and missing transverse
energy from two neutrinos and two lightest neutralinos in the final-state, with
the amount of data we expected to have in time for the summer conferences of
2016. In chapter 7, I move on to another signal model, namely production of a
mass-degenerate chargino-neutralino pair with decays via a W and Z boson into
final-states with two leptons, two jets and missing transverse energy from two
lightest neutralinos, using the ATLAS dataset from 2015 and 2016, where my
work was on defining and optimizing signal regions. Chapter 8 deals with the
same signal model as chapter 7, but in this case the signal regions are redefined
and optimized for the full Run 2 dataset. Finally, in chapter 9, I investigate
whether machine learning in the form of binary classification with the XGBoost
algorithm can improve the sensitivity to the signal model considered in chapter
7 and 8, with the integrated luminosity of the full Run 2 dataset.
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Chapter 2

Supersymmetry

2.1 The Standard Model

In order to understand Supersymmetry (SUSY), we first need to know the
Standard Model (SM) of particle physics, which sums up our current knowledge
about the elementary particles and how they interact; and we need to know
its limitations, which motivate the search for a more complete theory that can
explain more of what we observe.

2.1.1 The elementary particles

The elementary particles of the SM are neatly illustrated in Figure 2.1. We
can broadly put these particles into two categories: (i) the fermions, or matter
particles, and (ii) the bosons, or force carriers.

The fermions, which are characterized by having the spin quantum number
s = 1/2, come in three so-called generations, where the second and third
generation particles are basically increasingly heavier copies of the particles in
the first generation1. The first generation fermions consist of two quarks: called
up (u) and down (d), and two leptons: the electron (e) and the electron neutrino

1We do not know if this holds for the neutrinos, since their masses are still unknown.

Figure 2.1: A schematic overview of the elementary particles that we currently
know of, and which are the building blocks of the Standard Model of particle
physics [1].
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2. Supersymmetry

(νe). The up- and down quarks make up the protons (uud) and neutrons (udd)
in the atomic nuclei, whereas the electrons complete the atoms by forming
electron clouds around the nuclei. The final first-generation fermion, the electron
neutrino, is, e.g., emitted in decays of radioactive nuclei. The electron, the
electron neutrino and the up quark are stable, because of lepton and baryon
number conservation in the SM, and can thereby not decay further to other
particles.

The neutrinos have only got one type of charge, namely weak isospin, T3 (the
charge of the weak interacton, see Section 2.1.2), and they are almost massless2.
The massive leptons, including the electron (e), the muon (µ) and the tau (τ),
do in addition to the weak isospin also have electric charge. Finally, we have the
quarks, which also hold a third, so-called color3 charge.

In addition, all the fermions have anti-particles, with exactly the same mass
and spin, but with all their internal charges conjugated (inverted).

The bosons, characterized by having an integer value of spin, do in the SM
come in two forms: vector bosons with s = 1 and a scalar boson with s = 0. The
vector bosons are the force mediating particles: the gluons (g) (eight different
color-pair combinations) couple to color charged particles, the photon (γ) couples
to electrically charged particles, whereas theW± and Z couple to weakly charged
particles. Then, the final piece left in the SM is the only scalar particle we
currently know of: the Higgs boson (H), which is the manifestation of the Higgs
quantum field that causes most of the SM particles to acquire a mass.

2.1.2 The elementary forces

The SM is mathematically described in terms of quantum fields (one field for each
type of particle), and gauge symmetry groups, which describe the transformations
that the fields are allowed to undergo. The symmetry group of the SM can be
expressed as a direct product of three independent gauge groups:

GSM = SU(3)c × SU(2)L ×U(1)Y , (2.1)

where SU(3)c is the special unitary group of 3-dimensional color (c) transfor-
mations, SU(2)L is the special unitary group of 2-dimensional weak isospin
transformations (strictly between left-handed (L) particle [and right-handed
anti-particle] states) and U(1)Y is the unitary group of 1-dimensional weak
hypercharge (Y ) transformations.

The SU(3)c group represents the quantum chromodynamics (QCD) [2, 3, 4, 5]
or strong interaction between color charged quark states, as mediated by gluons.
The gluons act on quark triplet states (3-dimensional vectors), corresponding

2The neutrinos are in fact assumed to be massless in the SM, in contrast to observations.
The well established neutrino flavor oscillations require three distinct neutrino masses, as well
as mixing between generations, but only upper bounds on their masses have been obtainable
in measurements to date. See Section 2.2.4

3Not to be confused with the electromagnetic radiation with wavelengths in the range of
the human visual perception. The term color in this context is only an analogy to the three
colors red, green and blue which give a neutral result (white) when combined.
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to the three color charges (dimensions of QCD), which are called red (r), green
(g) and blue (b). The strong interaction exerts an attractive force between color
states, which is responsible for binding the quarks inside baryons (combinations
of rgb) and mesons (combinations of rr̄, gḡ and bb̄) together in color neutral
states. This phenomenon is called color confinement. A consequence of this
color interaction is so-called asymptotic freedom, where the individual color
charged particles within a bound state (a hadron) are less affected by the strong
interaction the closer they get to each other. On the other hand, when charged
states are separated, e.g., in production of a quark-anti-quark pair, the attractive
force between them increases with increasing distance. If the separating states
are sufficiently energetic, new quarks may be produced from the high energy
density between them, and contribute to form new color neutral hadrons. This
is called hadronization, and produce what we often refer to as hadronic showers
or jets.

The combined SU(2)L×U(1)Y group represents the electroweak gauge symme-
try [6, 7, 8], which unifies the electromagnetic and weak interactions at energies
above 246 GeV4. Above this electroweak unification scale, the SU(2)L group has
three massless gauge bosons (generators of the symmetry) calledW1,W2 andW3,
which act on weak isospin doublets (2-dimensional vectors) of neutrino and lepton
pairs or up- and down-type quark pairs, and the U(1)Y group has one massless
gauge boson called B, which acts on single fermion states (1-dimensional/single
particle states). The electric charge, Q, of the electromagnetic interaction, the
weak isospin, T3, of the weak interaction and the weak hypercharge, Y , of the
unified electroweak interaction, are related by

Q = T3 + 1
2Y. (2.2)

Below the unification scale, however, the electroweak symmetry is sponta-
neously broken, because of the shape of the Higgs potential5 [9, 10, 11]. The
spontaneously broken symmetry gives rise to a particular realization of the
observable gauge boson states. The W1 and W2 states mix to form the W±
bosons, and at the same time acquire masses via the Higgs mechanism (spon-
taneous symmetry breaking). Similarly, the W3 and B states mix to form the
γ and Z bosons, where only the Z boson acquires a mass and the γ remains
massless. We have then recovered the W± and Z bosons we know from the weak
interaction, and the γ we know from the electromagnetic interaction, or quantum
electrodynamics (QED) [12, 13, 14], as the full renormalizable gauge theory is
called.

The weak interaction has the peculiar feature of being a vector minus axial-
vector interaction, which in consequence only acts on left-handed particles (and
right-handed anti-particles), and thereby maximally violates conservation of
parity (P , effect on the physical laws by inversion of the spatial coordinates).

4The number 246 GeV corresponds to the measured vacuum expectation value, v =
(GF
√

2)−1/2, of the Higgs field, where GF is the Fermi effective coupling constant.
5The so-called Mexican hat or wine bottle potential.
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This is in stark contrast to QED and QCD, which both conserve parity. The
combination of charge conjugation and parity transformation (CP ), almost
restore symmetry (because C-symmetry is also maximally violated), but not
fully. The CP -symmetry is found to be slightly violated due to a complex phase
that enters the CKM6-matrix [15, 16], which describes all possible flavor changing
quark interactions. However, it turns out that by adding a time reversal (T ,
which is minimally violated) to the CP -transformation, the combined CPT -
symmetry is conserved by the weak interaction, and hence by all interactions in
the SM.

2.2 Shortcomings of the Standard Model

The SM has been immensely successful in explaining the particles we know of
today and their interactions (with the exception of gravity). The vast number of
particle experiments that have been conducted over the years have continued to
confirm the predictions of the SM to ever greater precision. However, there are
some aspects of nature where the SM comes up short.

2.2.1 Baryon asymmetry

As a consequence of our world being made up of baryonic matter, more matter
than anti-matter must have been produced during the evolution of the universe.
The process responsible for creating this imbalance between baryons and anti-
baryons is called baryogenesis. Andrei Sakharov proposed in 1967 [17] that three
conditions must be met in order for baryogenesis to take place: (i) baryon number
conservation must be violated; (ii) charge(C)- and charge-parity(CP )-symmetry
must be violated – that is, not only must there be an unequal rate of particle-
and anti-particle production, but also an unequal rate of left-handed particle and
right-handed anti-particle production, and vice versa; and (iii) interactions must
be out of thermal equilibrium – that is, baryogenesis must happen at a lower rate
compared to the expansion of the universe. The baryon and lepton numbers are
accidental symmetries of the SM formulation, but this is only true at the classical
level. It has been shown that quantum effects of the weak interaction can violate
baryon number non-perturbatively [18]. However, experimental results have put
strong limits on the size of baryon number violation within the SM, e.g., in terms
of the life time of the proton [19].

2.2.2 Gravity

Whereas the SM has been successful in describing three out of the four funda-
mental forces (the electromagnetic, the weak and the strong interactions) as
being mediated by gauge bosons (quanta of gauge fields or force fields), similar
attempts to construct a corresponding quantized theory of gravity has so far not
been able to obtain perturbative renormalizability, and as a consequence has

6Cabibbo, Kobayashi and Maskawa
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not been able to provide physical predictions across energy scales. Experiments
have not been able to guide the theoretical work much either, as gravity is so
much weaker than the three other fundamental forces. The Planck scale, the
energy scale at which the gravitational coupling is expected to be comparable
to the other interactions, is around the order of 1019 GeV, or equivalently at a
length scale of 10−35 m or a time scale of 10−43 s. This is way beyond what is
accessible to particle colliders today, with the LHC operating at 1.3× 104 GeV.

2.2.3 Accelerating expansion of the Universe

By comparing the magnitude-redshift of standard candles [20] (astronomical
object with known luminosity) and/or the distance-redshift of standard rulers
(astronomical objects with known size), among other methods, it has been
established that the expansion rate of the universe is increasing with distance.
The most common explanation for this phenomenon suggests that there is a
cosmological constant or vacuum energy (negative pressure) that gives rise to a
repulsive force, resulting in an accelerated expansion of space. Because of its
unknown origin (and being a counterpart to the unknown dark matter in the
universe), it has been coined dark energy, and makes up about 69% of the total
energy-matter content of the universe [21].

2.2.4 Neutrino oscillations and masses

According to the Standard Model, all of the three neutrino flavors are massless,
and experiments have to date excluded neutrino masses above 1.1 eV [19]. How-
ever, experiments have also shown that the neutrinos mix and undergo flavor
oscillations as function of the ratio of distance traveled to their respective energies.
The Super-Kamiokande experiment first confirmed oscillations of atmospheric
neutrinos in 1998 [22], whereas the Sudbury Neutrino Observatory measured
oscillations from solar neutrinos in 2001 [23]. Neutrino flavor oscillations can
only occur if the neutrinos have non-zero masses, and the observable flavor (e,
µ, τ) eigenstates are mixtures of the three distinct mass (‘1’, ‘2’, ‘3’) eigenstates.
The neutrino sector of the Standard Model therefore needs to be extended in
order to account for this phenomenon.

2.2.5 The hierarchy problem

Quantum loop corrections to the Higgs boson mass (the only scalar particle in
the SM) are quadratically divergent in the momenta running in the loops. Since
we need to account for all momenta where the SM is still valid, which to the best
of our knowledge extends up to the Planck scale of 1018 GeV, we get corrections
to the Higgs mass that are much larger than the Higgs mass itself. In order
to obtain the measured Higgs mass of 125 GeV, there needs to be a fine-tuned
cancellation of these corrections of size 1016 GeV, which without involving new
physics is regarded as highly unnatural. This huge discrepancy between what
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we expect and what we measure is what is called the hierarchy problem of the
SM [24].

2.2.6 Dark matter

Many different experiments suggest that there must be a significant amount of
matter in the universe that we so far have not been able to observe directly.
All indications of this unseen matter have come through indirect, gravitational
effects on astrophysical observations, including a wide range of phenomena and
scales, such as: the rotation curves of galaxies in galaxy clusters [25], the velocity
dispersion of stars inside individual galaxies [26], gravitational lensing [27], the
power spectrum of the Cosmic Microwave Background (CMB) [21], the large-
scale structure formation of the universe [28], and more. The fact that we have
not been able to observe it directly yet, tells us something about its identity:

• it must be electrically neutral, since it does not interact with light or any
other electromagnetic radiation;

• it cannot have color charge, since we otherwise would have detected it
binding to normal atoms, resulting in anomalous heavy nuclei;

• it must have a non-zero mass in order to exert a gravitational pull on
normal matter;

• it must be cold, i.e., move with non-relativistic speeds, in order to conform
with the observed large-scale structure of the universe;

• it must be stable, meaning it cannot decay into lighter SM-particles (at
least on the time scale of the age of the universe); and

• it can at most have a weak interaction to normal matter.

These features rule out all the particles in the SM as possible candidates for dark
matter, including the neutrinos. The observations of the CMB by the Planck
collaboration estimate that dark matter makes up 25.9% of the mass-energy
content of the universe [21], which is more than five times the amount of normal,
baryonic matter.

2.2.7 Gauge-coupling unification

Reminiscent of how James Clerk Maxwell found that the electric and magnetic
forces could be unified in one combined, electromagetic force, and the work of
Glashow, Weinberg and Salam which showed that the electromagnetic U(1)Y and
weak SU(2)L gauge symmetries could at some higher energy scale be unified in an
electroweak SU(2)L×U(1)Y gauge symmetry, several theoretical arguments have
also been made in favor of an even larger symmetry, unifying the electroweak
with the strong gauge interaction. Theories that exhibit such a unification of
all the SM gauge couplings, at some higher energy scale, have become known
as Grand Unified Theories (GUTs). The simplest example of a GUT is the
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SU(5) ⊃ SU(3)c × SU(2)L ×U(1)Y gauge group, as proposed in 1974 by Georgi
and Salam [29], which is supposed to be broken down to the SM gauge group at
the so-called grand unification scale (∼1016 GeV). In this model, the lepton and
quark fields are combined into single, irreducible representations, which give rise
to interactions that do not conserve the baryon and lepton numbers individually,
but instead keep the combined B − L quantum number a conserved quantity.
One of the consequences is that the proton is allowed to decay, a process that
has not yet been observed.

2.3 Introducing fermion-boson symmetry

So far, we have briefly touched upon some of the successes and shortcomings of
the SM, in terms of the natural phenomena it is able to describe, and some of
the cases where it fails to do so. A multitude of theories have been developed
beyond the SM (BSM), in order to try and explain one or more of these missing
pieces. Among the most studied BSM theories is supersymmetry, which adds a
symmetry between fermions and bosons, and as a consequence is able to provide
explanations to several of the outstanding questions in the SM. In the following
section we will introduce some of the formalism behind this new symmetry [30,
31, 32].

Quantum field theory (QFT) generalizes quantum mechanics to the realm of
special relativity (SR), where the relative speeds of particles are non-negligible
compared to the speed of light. The four-dimensional spacetime of SR has a
Minkowski metric, where a point on the Minkowski manifold is denoted by the
coordinates xµ = (t, x, y, z).

One of the postulates of SR is that the laws of physics are invariant under
linear transformations between reference frames,

xµ → x′µ = Λµνxν , (2.3)
that consist of boosts and rotations. These are called Lorentz transformations
and they make up the Lorentz group of transformations, L.

A special subgroup of L called the proper orthocronous Lorentz group, L↑+,
only includes proper boosts and rotations (no space or time reflections) and
makes sure that time runs forward, therefore requiring that detΛ = 1 and
Λ0

0 ≥ 1.
By adding translation to the set of transformations in the Lorentz group,

xµ → x′µ = Λµνxν + aµ, (2.4)

we can obtain the restricted Poincaré group, P ↑+, which is a semidirect product
of the proper orthoncronous Lorentz group and the translation group, T(1, 3),
where the latter only translates the 3-dimensional space coordinates, and leaves
the time coordinate unaffected. The product (combination) of a 4-dimensional
operator with a 3-dimensional operator, is expressed mathematically in terms of
the semidirect product:

P ↑+ = L↑+ o T(1, 3). (2.5)
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The Poincaré group captures all symmetries of the Minkowski spacetime.
It can be shown that L↑+ is homomorphic (structure preserving) to the 2-

dimensional special7, unitary8 groups SU(2)× SU(2) (from the structures of the
boost and rotation generators),

L↑+
∼= SU(2)× SU(2), (2.6)

and furthermore to SL(2,C), the special group of linear transformations acting
on 2-dimensional complex numbers. The latter homomorphism means that each
element Λ ∈ L↑+ can be assigned to two elements M ∈ SL(2,C). We can express
this as two SL(2,C) groups with a Z2 graded Lie algebra or superalgebra9:

L↑+
∼= SL(2,C)/Z2, (2.7)

where Z2 is the set of integers modulo 2, i.e., {0, 1}. This means that we
can choose to work with 2-dimensional (complex) Weyl spinors instead of the
4-dimensional Dirac spinors.

It can be shown that SL(2,C) has the following two inequivalent fundamental
representations: a self-representation,

ρ(M) = M, (2.8)

and a complex conjugate self-representation,

ρ(M) = M∗. (2.9)

We can use this to define two sets of Weyl spinors:

• Left-handed (self-representation), which transform as:

ψ′A = MA
BψB , A,B = 1, 2. (2.10)

• Right-handed (complex conjugate self-representation), which transform
as10:

ψ̄′
Ȧ

= (M∗)Ȧ
Ḃ
ψḂ , Ȧ, Ḃ = 1, 2. (2.11)

7Special: determinant = +1
8Unitary: preserving probability amplitudes
9A Z2 graded Lie algebra, or superalgebra, is a vector space L which is a sum of two vector

spaces L0 and L1, L = L0 ⊕ L1, with a binary operation, • : L× L→ L, such that ∀xi ∈ L:
i xi • xj ∈ Li+j mod 2 (grading)

ii xi • xj = −(−1)ijxj • xi (supersymmetrization)

iii xi • (xj • xk)(−1)ik + xj • (xk • xi)(−1)ji + xk • (xi • xj)(−1)kj (generalized Jacobi
identity)

(see Reference [30]).
10The dots above the indices Ȧ and Ḃ are merely added to mark that they are distinct

from the indices A and B.
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A Dirac fermion can then be represented by a left- and a right-handed
Weyl-spinor as follows,

ψa =
(
ψA
χ̄Ȧ

)
, (2.12)

where ψ†A 6= χ̄Ȧ and a = 1, 2, 3, 4. Similarly a Majorana fermion can be repre-
sented as

ψa =
(
ψA
ψ̄Ȧ

)
, (2.13)

where ψ†A = ψ̄Ȧ.
In 1967, Coleman and Mandula [33] showed that any extension of the Poincaré

group (external symmetries) that includes the SM gauge group (internal symme-
tries) is isomorphic to a direct product of the groups, i.e., all elements of one
group will commute with all elements of the other group. Hence, no unification
of external and internal symmetries is possible. This has become known as the
no-go theorem.

However, in 1975, Haag, Lopuszanski and Sohnius [34] showed that one can
get around the no-go theorem by using a graded Lie algebra instead. An example
of such a Z2-graded Lie algebra is the so-called superalgebra, which is of the form

L = L0 ⊕ L1, (2.14)

where L0 = P ↑+ and L1 is a new vector space spanned by four Majorana spinor
charges (generators) Qa, with a = 1, 2, 3, 4, or alternatively, QA, with A = 1, 2,
and Q†

Ȧ
, with Ȧ = 1, 2. This is called an N = 1 supersymmetry. One can also

add additional sets of spinor charges, Qαa , with α = 1, . . . , N , to get what we
call N > 1 supersymmetry, which results in more complicated group structures.

The irreducible representations or superfields of the superalgebra can be
labeled by (m, j), with m representing mass and j representing a generalized
form of spin11. For a given value of j, there are 2j + 1 states with j3 =
−j,−j + 1, . . . , j − 1, j, obtained by acting with the spinor charges Qa on the
states |m, j, j3〉.

The Majorana spinor charges work as ladder operators that either raise or
lower the spin of the states they are acting on with half a unit, so that

Q|boson〉 = |fermion〉, (2.15)
Q|fermion〉 = |boson〉. (2.16)

11The generalized spin operator Jk = Sk + 1
8m Q̄γkγ

5Q, with k ∈ {1, 2, 3}, satisfies the
angular momentum algebra, and includes the standard quantum mechanical spin operator Sk,
plus an additional term involving a product of the spinor charges Q and Q̄. One can show
that eigenstates of Jk, with a corresponding eigenvalue of j3 (and j), are also eigenvalues of
Sk, with sk = jk (and s = j). This means that the eigenstates of Jk are also eigenstates of
the second term in its expression with separate eigenvalues. Therefore, one can, by using the
spinor charges as ladder operators, construct multiple eigenstates of Jk, each with the same
generalized spin values j and j3, but with different values of s and s3.
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This means that for every superfield labeled by (m, j), there is an equal number
of boson and fermion states, or put differently, there is an equal number of
fermionic and bosonic degrees of freedom (d.o.f.).

It is convenient to collect these states in two types of superfields:

• Chiral (or scalar) superfield (j = 0):

– one Weyl spinor with s = 1
2 and s3 = ± 1

2 (2 fermionic d.o.f.)
– two scalars with s = 0 (2 bosonic d.o.f.)

• Gauge (or vector) superfield (j = 1
2 ):

– one (massive) vector boson with s = 1 and s3 = −1, 0, 1 (3 bosonic
d.o.f.)

– two (hermitian conjugate) Weyl-spinors, each with s = 1
2 and s3 = ± 1

2
(4 fermionic d.o.f.)

– one scalar with s = 0 (1 bosonic d.o.f.)

2.4 The Minimal Supersymmetric Standard Model

Now that we have a framework in place, that naturally produces fermion-boson
symmetric states, the next step is to incorporate the SM particles into this
framework, and to identify the corresponding superpartners that arise alongside
these [35].

Using one set with four Majorana spinor charges (N = 1 supersymmetry),
we can construct the Minimal Supersymmetric Standard Model (MSSM). This
refers to the minimal extension of the SM that includes the symmetry between
bosons and fermions. That is, each SM particle gets its supersymmetric partner
with the same quantum numbers, apart from differing by half a unit of spin (if
SUSY is unbroken, also the masses of the supersymmetric partners are expected
to be the same as their SM counterparts).

The simplest way to construct the SM particles is by using the states of
the chiral (j = 0) and the gauge (j = 1

2 ) superfields. Since the Qa operators
that generate the different spin states of a superfield (given by specific values of
(m, j)) are Majorana-spinors, the particle-anti-particle Weyl-spinors from the
same superfield cannot make up the left-handed and right-handed hermitian
conjugate Weyl-spinors of a Dirac fermion. A Dirac fermion needs a distinct
particle and anti-particle pair. Therefore, one chiral superfield can, e.g., provide
the Weyl-spinor of the left-handed up-quark, uL, with s = 1

2 , along with its
scalar superpartner the left-handed up-squark, ũL, with s = 0 (being a scalar, it
does not have helicity, but is labled by L to signify that it is the superpartner of
the left-handed up-quark). The right-handed up-quark then needs to come from
another complex conjugate superfield, with a Weyl-spinor, u†R, along with its
superpartner the right-handed up-squark, ũ∗R.
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Figure 2.2: Chiral superfields in the MSSM. The table only explicitly shows the
first generation quarks, squarks, leptons and sleptons, leaving out the two heavier
generations (with the same structure) for brevity. The second column from the
left denotes the SU(2)L doublets for left-handed particles and their superpartners
in capital letters, and the corresponding singlets for the right-handed particles
and their superpartners in lowercase letters. In the third and fourth columns,
the superfields are arranged according to spin, where the SM particles are shown
in blue text, whereas their superpartners are shown in orange. The final column
denotes the dimensionality and gauge quantum numbers of the fields, where
the first number tells whether the fields transform as color triplets or singlets
under SU(3)c transformations (the bar denotes triplets of anti-colors), the second
number whether the fields transform as weak isospin doublets or singlets under
SU(2)L, and the last number tells the value of their weak hypercharge, Y , which
is related to their electromagnetic charge and third component of weak isospin
by Equation (2.2). Inspired by Table 1.1 in Reference [35].

Let us denote the left-handed superfield of the up-quark and -squark by
u = (uL, ũL), and the corresponding right-handed superfield by ū = (u†R, ũ∗R).
If we do the same for the down-quark and -squark, with d = (dL, d̃L) and
d̄ = (d†R, d̃∗R) for the left- and right-handed superfields, we can also collect the
left-handed superfields in a weak isospin superfield Q1 = (uL, dL)T , where the
subscript denotes the quark/squark-generation. The rest of the fermions and
sfermions can be constructed and grouped in the same manner, where the weak
isospin doublets for the left-handed leptons are labeled L1 = (νe, eL)T , and
similarly for the second and third generations.

In addition to SM particles and their superpartners, an extra Higgs doublet is
needed in order to provide masses to both up- and down-type quarks and leptons
in the weak isospin doublets. The fact that we need two Higgs (weak isospin)
doublets12, Hu = (H+

u , H
0
u)T and Hd = (H0

d , H
−
d )T , results in five Higgs scalars

12The subscripts u and d signifies which Higgs doublet gives masses to the up- and down-type
quarks and leptons.
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Figure 2.3: Gauge superfields in the MSSM. The superfields of the SM gauge
bosons are denoted by blue text, whereas their fermionic superpartners, the
gauginos, are denoted by orange. The final column tells that the gluon and
gluino transform as color octets under SU(3)c and as a singlet under SU(2)L,
the W bosons and the winos transform as singlets under SU(3)c, but as triplets
under SU(2)L, whereas the B boson and the bino do not carry either color charge
or weak isospin, and therefore transform as singlets under both SU(3)c and
SU(2)L transformations. All of these superfields have zero weak hypercharge, Y .
Inspired by Table 1.2 in Reference [35].

in total: two neutral and CP-even13 (h0 and H0), two charged (H±) and one
neutral and CP-odd14 (A0). The fermionic superpartners of the Higgs bosons are
called higgsinos. As a consequence of the additional Higgs doublet, a new mass
term, quadratic in the Higgs/higgsino doublet fields, arises in the superpotential
of the MSSM. This term contains the Higgs/higgsino mass parameter, µ, which
is the only new free parameter in the unbroken supersymmetric Lagrangian on
top of the parameters of the SM.

The particles (fermions and sfermions15, Higgs bosons and higgsinos) that are
constructed from the components of chiral superfields, are listed in Figure 2.2.

The SM gauge bosons (spin-1) get fermionic superpartners called gauginos
(spin-1/2), where, e.g., the superpartner of the gluon is called a gluino. The
particles (gauge bosons and gauginos) in the MSSM, that are made from the
components of gauge superfields, are given in Figure 2.3.

Figure 2.4 lists the gauge and mass eigenstates of the new particles added
on top of the SM. These are the supersymmetric particles and the new Higgs
boson states, where the latter arises from the fact that there are now two
Higgs doublets, instead of the one present in the SM. The gauge eigenstates
represent the pure flavor eigenstates of the gauge interactions. However, the
observable particle states are in general mixtures of all gauge/flavor eigenstates
that share the same conserved quantum numbers, and for squarks and sleptons,

13A CP -even scalar field (wave function), φ, remains identical under the combined transfor-
mation of charge conjugation (Ĉ) and parity inversion (P̂ ): ĈP̂φ = φ.

14A CP -odd scalar field (wave function), φ, changes sign under the combined transformation
of charge conjugation (Ĉ) and parity inversion (P̂ ): ĈP̂φ = −φ.

15The supersymmetric fermions, which are superpartners of the SM bosons.
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are of the same squark or slepton flavor. Below the weak scale, where the EW
symmetry is broken down to the electromegnetic (EM) symmetry of QED, i.e.,
SU(2)L ×U(1)Y → U(1)EM, fields that share the same electromagnetic charge
are allowed to mix, regardless of their T3 and Y charges.

As a result, the (complex) field components of the two Higgs doublets mix
among themselves, as long as they have the same electric charge, to form the
five observable Higgs bosons mentioned above.

The mass states of the squarks and sleptons can be a mixture of their left-
and right-handed components. In practice, the first and second generation
squarks and sleptons can be considered the same as their gauge eigenstates, due
to the negligible Yukawa couplings which make up the non-diagonal elements in
the mass-mixing matrices. However, the sizable Yukawa couplings of the third
generation squarks and sleptons cannot be ignored, which leads to two distinct
mass eigenstates, labeled 1 and 2, where the mass state with label 1 is heavier
than the mass state with label 2.

The observable mass states of the neutral, electroweak gauginos, the bino
(B̃0) and the wino (W̃ 0), mix with the neutral higgsinos, H̃0

u and H̃0
d , to form four

neutralino states, χ̃0
i , with i = 1, 2, 3, 4, according to increasing mass. Similarly,

the charged electroweak gauginos and the charged higgsinos mix to form the
observable chargino mass states, χ̃±i , with i = 1, 2. The neutralinos and charginos
are sometimes collectively referred to as electroweakinos.

Finally, the gluino and the gravitino16 do not have any other gauge eigenstates
to mix with, so their observable mass eigenstates are the same as their gauge
eigenstates.

In contrast with the SM, where all the renormalizable terms of the Lagrangian
conserve the baryon (B) and lepton (L) numbers, the MSSM does contain
renormalizable terms that violate these quantities. However, we know from
experiments that B and L are conserved to high accuracy, which puts restrictions
on how large the B- and L-violating terms in the MSSM can be. A common
approach to deal with this tension, is to impose a B −L symmetry on the terms
in the Lagrangian, via a multiplicative quantum number called R-parity, which
has to be conserved:

PR = (−1)3(B−L)+2s, (2.17)

where the spin quantum number, s, has been added to obtain the attractive
property that all SM particles have PR = +1, while all sparticles have PR = −1.

In consequence, R-parity conservation implies that the lightest supersymmet-
ric particle (LSP) cannot decay further to SM particles, and must be stable. If
the LSP is electrically neutral, it will at most have weak interaction, and can
therefore be a good candidate for making up (maybe a part of) the dark matter.
At colliders, sparticles would need to be produced in pairs, and decay to the
LSP, which will escape detection, and therefore leave a significant amount of
missing energy in the events.

16The superpartner of the hypothetical graviton, which mediates the gravitational interaction
in quantum gravity.
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Figure 2.4: Gauge and mass eigenstates of the new particles added on top of the
SM, along with their spin and R-parity quantum numbers. The mass eigenstates
are mixtures (linear combinations) of their corresponding gauge eigenstates.
Given the small Yukawa couplings of the first and second generation squarks and
sleptons, we have not included mass mixing for these states in the table. The
gluino and gravitino simply do not have other gauge eigenstates, with the same
set of quantum numbers, to mix with. Inspired by Table 8.1 in Reference [35].

2.5 Supersymmetry breaking models

Since a superfield is labeled by a mass, m, the sparticles should have the same
mass as their SM counterparts. If this were the case, we should have seen lots
of sparticles by now. Therefore, supersymmetry must be broken at the energy
scales currently accessible to us.

There exist several models for how supersymmetry can be spontaneously
broken, which adds supersymmetry breaking terms to the Lagrangian. The
SUSY breaking terms introduce more than 100 new, free parameters, which
comprise masses and couplings for the sparticles.

In order to stay within the experimental constraints, e.g., to the extent CP
is violated in nature, SUSY must be softly broken. In practice, this is done by
adding ad hoc terms to the MSSM Lagriangian that produce the particle masses
we need, but at the same time only break the supersymmetry in a minimal
way. By applying a set of theoretically and experimentally well-motivated
assumptions/constraints on the SUSY breaking terms in the Lagrangian, we can
reduce the number of new, free parameters down to sets that are more tractable
to explore. Examples of groups of models or mechanisms that can explain the
soft SUSY breaking terms we have added explicitly, are gauge-mediated SUSY
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breaking (GMSB) models (mediated by new, hidden sector gauge bosons entering
loop corrections) and Planck-scale-mediated SUSY breaking (PMSB) models
(mediated by gravity). We will only focus on the PMSB mechanism in what
follows.

The idea is that the MSSM (visible sector) couples flavor blindly to some
hidden sector, which contains a field, F , that develops a non-zero vacuum
expectectation value (VEV), 〈F 〉 6= 0, which in turn breaks supersymmetry
in the hidden sector [35]. In this case, the coupling to the hidden sector is
assumed to be mediated by gravitational strength interactions, including the
effects of supergravity, which are assumed to become sizable at the Planck
scale, MP ∼ 1018 GeV. Then the soft mass terms in the visible sector should by
dimensional analysis be roughly

msoft ∼ 〈F 〉/MP. (2.18)

This is consistent with msoft → 0, when either 〈F 〉 → 0 or MP → ∞, which
corresponds to SUSY being unbroken or gravity becoming irrelevant, respectively.

For the soft masses to be of the order msoft ∼ 100 GeV, the mass scale
associated with the breaking of SUSY in the hidden sector must be situated
around

√
〈F 〉 ∼ 1010 GeV.

A popular simplification, motivated by gauge coupling unification, is to
assume a minimal form for the normalization of kinetic terms and gauge interac-
tions in the (non-renormalizable) Lagrangian at the Planck scale. By assuming,
at the Planck scale, a common mass for the gauginos, m1/2, a common mass for
the scalars (sleptons and squarks), m0, a common coefficient for the (trilinear)
Yukawa couplings (two sleptons or two squarks coupling to a Higgs/higgsino
field), A0, and a common coefficient for the (bilinear, i.e., two-scalar particle,
including Higgs/higgsino field) couplings, B0, we have reduced the number of
free parameters from the soft breaking terms down to four. In total, by also
counting the Higgs/higgsino mass parameter from the superpotential, µ, of the
unbroken MSSM, we are left with only five free parameters in total:

m1/2,m0, A0, B0, µ. (2.19)

A popular re-parametrization of B0 and µ, is to instead express these in terms
the ratio of the vacuum expectation values of the H0

u and H0
d fields, 〈H0

u〉/〈H0
d〉 =

vu/vd = tan β, and the sign of µ, giving the alternative parametrization:

m1/2,m0, A0, tan β, sign(µ). (2.20)

These parameters will then need to be evolved down to the energy scale in question
by use of the renormalization group equation (RGE), to obtain predicted values
at lower energy. One may in practice choose to start the RGE running from the
grand unification (GUT) scale, at mGUT ∼ 1016 GeV, rather than the Planck
scale, at mP ∼ 1019 GeV, because the unification of the gauge couplings (at the
GUT scale) makes us more confident in what is happening between the weak
and the GUT scale, than we are at what happens above the GUT scale.
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Figure 2.5: Example of how the masses of the sparticles can be realized at the
weak scale (left end of the plot), from particular choices of a common scalar mass,
m0, a common gaugino mass, m1/2, and the Higgs/higgsino mass parameter µ
from the superpotential, at the GUT (or Planck) scale (right end of the plot).
From Figure 8.4 in Reference [35].

This kind of reduction has been referred to as minimal SUperGRAvity
(mSUGRA) or the Constrained Minimal Supersymmetric Standard Model (CMSSM),
and has become a benchmark model for both theoretical and experimental stud-
ies.

Figure 2.5 shows a sketch of how the mass-hierarchy of the MSSM may look
like at the weak scale, after the masses have been evolved using the RGE from
the mSUGRA/CMSSM assumptions at the GUT scale, mGUT = 1.5× 1016 GeV.
This model suggests that gaugino masses of the bino (B̃ with mass M1) and
the wino (W̃ with mass M2), with M1 < M2, can both be realized with masses
below 1 TeV. The sleptons are also predicted to be among the lightest sparticles,
and could be found in between the B̃ and W̃ masses. The gluino mass, M3, and
the masses of the squarks are in this model believed to be quite a bit heavier
than the electroweakinos and the sleptons.

The mass-hierarchy at the weak scale is, however, heavily dependent on the
initial choices of m0, m1/2 (setting the initial condition for the RGE running
of M1 and M2) and µ. When χ̃0

1 is taken to be the LSP, the gaugino-higgsino
compositions and mass-splittings of the neutralinos, χ̃0

i , with i = 1, 2, 3, 4, and
charginos, χ̃±j , with j = 1, 2, will often be considered w.r.t. three different
scenarios:

• M1 < M2, |µ|: χ̃0
1 is bino-like, while χ̃±1 and χ̃0

2 are both wino-like and
about twice as heavy as the LSP. The experimental signature is typically
not expected to be kinematically dominated by the mass-splitting between
the LSP and the NLSP (non-compressed mass spectrum).
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• |µ| < M1,M2: χ̃0
1, χ̃±1 and χ̃0

2 are all higgsino-like, and have comparable
masses. The experimental signature is expected to be dominated by the
mass-splitting between the LSP and the NLSP, where the NLSP decays to
the LSP via soft (low-pT) SM particles (compressed mass spectrum).

• M2 �M1, |µ|: χ̃0
1 and χ̃±1 are all wino-like, and are expected to have very

similar masses. The high degree of mass-degeneracy may cause the NLSP
to not decay promptly, i.e., giving it a sizable life-time, and produce a
displaced vertex (highly compressed mass spectrum).

2.6 Simplified models

Even though the five parameters of mSUGRA/CMSSM are a lot more manageable
than the full MSSM, the 5-dimensional phase space still poses a challenging task
to explore and interpret. Therefore, so-called simplified models [36], where we
reduce the number of free parameters even further, and typically down to two or
three, have become popular at the LHC.

The idea is to cover as many event topologies as possible, by looking at a large
number of specific and well-defined processes and final states. The simplified
models are often inspired by more complete models, such as mSUGRA/CMSSM,
but assume a simplified mass-hierarchy, where only a few particles will be able
to contribute. We can typically summarize the simplified model with a single
Feynman diagram, where the only free parameters are the mass of the pair-
produced sparticles and the mass of the LSP, and the decay to the LSP happens
with 100% branching fraction via the decay chain specified in the diagram.
Figure 2.6 shows a typical example of a diagram illustrating a simplified model.

This simplicity comes at the cost of providing a very limited phenomenology
in a single model. The strength of the simplified models comes from considering
multiple models together. One can for example consider additional decay chains
of the same pair-produced sparticles by combining them, and scale the branching
fractions according to the interpretation one is interested in.

Another possible use of the simplified models is to include the search results
as constraints in global likelihood fits of parameters in more complete BSM
models. This has been done by the GAMBIT collaboration [37] in a global fit
to the electroweakino sector of the MSSM, where multiple results from both
ATLAS and CMS in terms of simplified models were used as inputs to the fit.

2.7 Supersymmetric solutions

Along with the attractive feature that supersymmetry supplies a fundamental
space-time symmetry between fermions and bosons, several other important
features come along as consequences of this additional symmetry. In the following
section, I will outline three of these consequences, which happen to provide
solutions to major outstanding issues with the SM.
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Figure 2.6: An example of a diagram representing a simplified model.

2.7.1 Natural solution to the hierarchy problem

The Higgs field potential, V (H), has the form [30, 35]

V (H) = µ2|H|2 + λ|H|4, (2.21)

where λ is some constant, and µ2 can be recognized as the negative of the squared
Higgs mass, µ2 = −m2

H (as the factor in front of the squared Higgs field term).
In order for spontaneous symmetry breaking to occur, we must have λ > 0 and
µ2 < 0, so that the Higgs field can develop a non-zero vacuum expectation value
(VEV), 〈H〉 ≡ v. The mass of the Higgs boson (an excitation of the Higgs field)
is determined by the VEV of the Higgs field, as

mH =
√

2λv. (2.22)

Via its relations to other electroweak parameters, such as the mass of the W
boson and the weak isospin coupling, g, the VEV has been measured to be
v = 246 GeV [19].

The SM fermions and the electroweak gauge bosons obtain their masses from
their coupling strength to the Higgs field, and more specifically, to the VEV of
the Higgs field. For a Dirac fermion, f , with a Yukawa coupling, λf , to the Higgs
field, the Lagrangian term is given as −λfHf̄f , and the mass of the fermion as

mf = λf√
2
v. (2.23)

If we instead solve for the Yukawa coupling,

λf =
√

2mf

v
, (2.24)
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we find that the heavier the particle, the stronger it couples to the Higgs field.
When we calculate the interactions between quantum fields to higher orders

in perturbation theory (including loops), we get additional terms that contribute
to the masses of the particles, i.e., terms that are proportional to the fields
squared. If we include the contribution from one fermion loop to the Higgs mass
squared, we get an additional correction term of the form:

∆m2
H = −|λf |

2

8π2 Λ2
UV + . . . , (2.25)

where ΛUV is a regularizing term that goes to zero for momenta above some
high energy (ultra-violet, UV) cut-off scale, where the SM is no longer valid, or
will be modified by new physics.

The only reference we currently have for such a new physics scale, is the
Planck scale at ∼ 1018 GeV, where we expect gravity to become of similar
strength as the SM interactions, and a new high energy theory of gravity will
modify the physics of the SM. But this quadratic sensitivity of the Higgs mass
to the cut-off scale, then leads to corrections of order 1036 to the mass we have
measured to be m2

H = (125 GeV)2. Therefore, there needs to be a dramatic
cancellation from other terms, of some 30 orders of magnitude, in order to
produce the measured Higgs mass. Clearly, there needs to be some missing
piece(s) in the SM that could provide an explanation for this discrepancy, but
without a natural mechanism of the theory to provide such a cancellation, some
miraculously fine-tuned counter-terms would need to be added at each order of
perturbation theory to get the right mass. This is by many regarded as unnatural,
and has become known as the hierarchy problem.

If we in addition to the fermions, would have some new scalar boson, s, the
corresponding correction to the squared Higgs mass from the scalar would be of
the form:

∆m2
H = λs

16π2 Λ2
UV + . . . , (2.26)

where λs is the coupling strength of the scalar field, s, to the Higgs field. By
comparing the corrections from fermions and scalars to the Higgs mass, we can
notice that the two contributions have opposite signs, and if 2λs = |λf |2, the
two leading terms would cancel exactly.

This is in fact precisely what happens in supersymmetry when the SM
fermions and their scalar superpartners have the same masses, i.e., coupling
with equal strength to the Higgs field. And there are twice as many scalars
as fermions, because the fermions have two internal spin-degrees of freedom,
thereby giving the same number of fermion and boson degrees of freedom in
total. Since the coupling strengths to the Higgs field is proportional to the mass
of the particles in question, the heaviest SM particles, with their corresponding
superpartners, are expected to give the largest corrections to the Higgs mass.
Figure 2.7 shows diagrams of the top quark fermion loop correction to the Higgs
mass in (a), and the corresponding cancellation from the stop squark scalar loop
correction in (b). The fact that supersymmetry provides this natural cancellation
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Figure 2.7: Feynman diagrams of one-loop corrections, from (a) SM Dirac
fermions and (b) SUSY scalar bosons, to the vacuum energy of the Higgs field,
and consequently to the (squared) mass of the Higgs boson.

of the enormous corrections to the Higgs mass, and thereby providing a solution
to the hierarchy problem, is one of the main reasons why supersymmetry has
become so popular as a possible extension to the SM.

However, since we have not observed any SUSY particles so far, supersym-
metry must be broken and the masses of the sparticles need to be heavier than
their SM partners. Therefore, the cancellations between the fermion and boson
loops will not be exact. If sparticles are found with masses up to around the
TeV scale, the additional corrections needed to get the measured Higgs mass
may still be regarded as acceptably natural.

Given that the ATLAS and CMS experiments have not yet seen any signs of
sparticles in the LHC Run 2, many scientists have started to lose faith in SUSY
being realized in nature, mostly because it does not seem to be as natural a
solution to the hierarchy problem as many had hoped for. This has been referred
to as the little hierarchy problem.

2.7.2 Dark Matter candidates

One of the main open questions in physics today, is that of the nature of dark
matter (DM). Among the many new particles that arise in supersymemtry, it
turns out that a few of these seem to satisfy the characteristics of DM [30].

In the early, hot universe, we believe that both SM and dark matter particles
were in thermal equilibrium. This means that the energy and matter density
(thereby also the temperature) of the universe was high enough for SM and
DM particles to interact frequently and to pair-produce DM from SM particles,
and vice versa, with equal rates, SMSM ↔ DMDM. This was the case when
the temperature of the universe, T , was much larger than the mass of the DM
particles, T � mDM.

As the universe expanded and cooled, the temperature did at some point
become too low for the average energy of the particle interactions to produce the
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mass of the DM particles, T < mDM. When this happened, the DM production
effectively stopped, SMSM 9 DMDM, but the DM would continue to annihilate
into the lighter SM particles, SMSM← DMDM.

Eventually, when the universe had diluted and cooled even more, the ex-
pansion rate of the universe exceeded the annihilation rate of the DM parti-
cles, so that the final remaining DM interactions effectively stopped as well,
SMSM 8 DMDM. The consequence of this was that the comoving number
density17, or the relic density, was frozen to a constant value. This is called
freeze-out.

The relic DM density is dependent on the annihilation cross-section of the
DM particles. The higher the annihilation cross-section, the more of the DM
particles would have annihilated before the density was frozen. It turns out that
a DM particle of weak scale cross-section and mass would yield almost exactly
the measured relic density in the universe. Particles that fall into this category
are called weakly interacting massive particles (WIMPs), and the fact that such
particles should be in reach of current or planned experiments, has been called
the WIMP miracle. WIMPs show up in multiple BSM theories, such as SUSY
and Kaluza-Klein theory with an extra compactified dimension.

In supersymmetry, if R-parity is conserved, the lightest supersymmetric
particle (LSP) will be absolutely stable, and cannot decay to other particles. In
the cases where the lightest neutralino is the LSP, it is a prototypical example of
a WIMP, and has been one of the most popular and well-studied DM candidates
for decades. There are also other sparticles that could be candidates for DM, such
as the gravitino, the sneutrino and the axino [38]. However, I will here only focus
on the lightest neutralino, as it is taken to be the LSP in the simplified models
presented later in the thesis. More specifically, it is taken to be a bino LSP, with
the lightest chargino and the next-to-lightest neutralino as mass-degenerate wino
NLSPs.

After the LHC Run 1, ATLAS performed a re-interpretation of all the
exclusion limits obtained from the Run 1 data on simplified SUSY models, in
terms of a scan over the 19-dimensional pMSSM [39]. 500 million samples were
randomly picked from flat distributions of the 19 parameter dimensions. The
ranges of the parameters were chosen to conform with experimental constraints
and to values reachable at

√
s = 8 TeV. In addition, a pre-selection of the sampled

points were applied to keep within constraints from precision measurements on
electroweak and flavor physics, the measured DM relic density, and from collider
experiments.

Figure 2.8 shows the distribution of the parameter points that passed the pre-
selection, on the left, and the points that in addition were not excluded by any
ATLAS Run 1 analyses, on the right. The distributions are shown in the plane of
the lightest neutralino mass on the x-axis and the corresponding DM relic density
on the y-axis. The points are also colored according to the dominant gaugino
or higgsino component. The top of the plots correspond to relic density values

17The number density in a relatively small volume which moves along with the expanding
universe.
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(a) Before the ATLAS Run 1. (b) After the ATLAS Run 1.

Figure 2.8: Phase space points sampled from the 19-dimensional pMSSM, high-
lighting the dominant component of the LSP [39].

consistent with the measured DM relic density of ΩΛCDMh
2 = 0.1188± 0.0010,

from the Planck Collaboration. I.e., the points at the very top are able to fulfill
the complete DM component, while the points lower on the y-axis will only be
able to account for a part of the total DM contribution.

It is worth to note that only bino-like LSPs can satisfy the relic density
constraints below an LSP mass of 100 GeV, while wino- and higgsino-like LSPs
are more likely to explain the full DM density at around 1 TeV. However, after
the Run 1 limits have been applied, a significant fraction of the points with a
bino-like LSP below masses of 200 GeV are excluded.

In general, bino-like LSPs tend to over-produce DM, in the sense that the
annihilation cross-section is too low to get below the relic density constraints.
However, there are a few mechanisms that can raise the annihilation cross-section
in certain parts of the parameter space, and which give rise to the distinct features
shown in these plots. In Figure 2.9, only the points with a bino-like LSP are
shown, and they are colored according to which mechanism that allows the
points to evade the relic density constraints. Again, after pre-selection on the
left, and after the Run 1 limits have been applied on the right.

The points below an LSP mass of 100 GeV are attributed to the so-called Z-
and H-funnels. This happens when the mass of the bino-like LSP is close enough
to either the Z- or H-mass, so that we could get resonant annihilation of the LSP
along with the corresponding boson. The same could happen together with the
heavier CP -odd Higgs boson, A0. The remaining mechanism is co-annihilation
of an LSP together with some other sparticle, if the two sparticles have very
similar masses.

Even though a large fraction of the pMSSM points with a bino-like LSP were
excluded by the ATLAS Run 1 limits, it is by no means excluded altogether as a
DM candidate. Compared to the wino- and higgsino-like LSP, the bino-like LSP
scenario still exhibits the richest, non-excluded phenomenology out of the three.
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(a) Before the ATLAS Run 1. (b) After the ATLAS Run 1.

Figure 2.9: Phase space points sampled from the 19-dimensional pMSSM, high-
lighting the mechanism that lets the points evade the DM relic density constraints
[39].

2.7.3 Gauge coupling unification

The gauge couplings of the SM interactions are often referred to as:

g′ for U(1)Y , g for SU(2)L, gs for SU(3)c, (2.27)

where the electroweak gauge couplings are related to the electric charge of QED
by

e = g sin θW = g′ cos θW , (2.28)

with θW being the Weinberg angle. Often, we instead refer to the vertex factors
of the corresponding interactions as:

α1 = g′2

4π , α2 = g2

4π , α3 = g2
s

4π . (2.29)

The renormalization group (RG) evolution of the inverse of these couplings,
turn out to run linearly with the RG scale at one-loop order [30, 35]:

d

dt
α−1
a = − ba4π , a = 1, 2, 3, (2.30)

where t = ln(Q/Q0), with Q the RG scale, and the canonical normalization of
g1 =

√
5/3g′, g2 = g and g3 = gs for gauge coupling unification is used. The

renormalization coefficients for the SM and the MSSM at one-loop order are
given in Table 2.1.

The results of running the gauge couplings of SM and MSSM up to higher
energy scales at two-loop order, are shown in Figure 2.10. If we only include
the SM particles in the loop-corrections, pairs of gauge couplings will meet at
different energy scales, separated by orders of magnitude, as indicated by the
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2. Supersymmetry

Table 2.1: The renormalization coefficients for the SM and the MSSM, at one-loop
order [30, 35].

b1 b2 b3
SM 41/10 −19/6 −7

MSSM 33/5 1 −3

dashed lines. However, if we include the sparticles of the MSSM in the loops
as well, all the three gauge couplings will meet at the same energy scale. The
approximate point of coincidence is dependent of the mass scale at which the
sparticles appear and by varying αs within uncertainties, which is illustrated by
the red and blue lines in the plot.

The calculations visualized in Figure 2.10 will not make the three gauge cou-
plings meet at exactly the same point, but the deviations are small enough that
they could be consistent within uncertainties of threshold effects by whatever par-
ticles may exist near the unification scale. The definition of the unification scale,
MGUT, is often taken to be the point where the U(1) and SU(2) couplings meet,
i.e., where α1(MGUT) = α2(MGUT). This happens at MGUT ∼ 1.5× 1016 GeV.

This unification of the gauge couplings may well be a coincidence, but in light
of the successful electroweak unification, this is taken by many to be a strong
hint of a grand unified theory (GUT) including supersymmetry, e.g., superstring
theory.
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Figure 2.10: Renormalization group running of the couplings of the weak hy-
percharge (U(1)), the weak isospin (SU(2)) and the strong color charge (SU(3))
interactions, above the weak scale. The dashed lines show the pure SM evo-
lution, without any contributions from SUSY particles, whereas the red and
blue lines show two possible evolutions if sparticles enter the game. The blue
line representing one possible realization of the sparticles, where the lightest
sparticle mass enters at a lower energy (mass) scale compared to the particular
realization represented by the red line. In both cases where SUSY is present,
the SM couplings unify at approximately the same energy scale, which is not
the case for the pure SM evolution. From Figure 6.8 in Reference [35].
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Chapter 3

Proton collisions at the LHC

The Large Hadron Collider (LHC) is the largest and most advanced particle
accelerator ever made, with its 27 km long ring of superconducting magnets,
placed in a tunnel about 100 meters below the ground, on the boarder between
Switzerland and France, near Geneva. It is designed to reach the unprecedented
collision energy of 14 TeV in proton-proton (pp) collisions. This is about seven
times more than the Tevatron (pp̄) at Fermilab, near Chicago in the United
States, which used to be the most powerful particle collider. By using protons,
which are composite particles consisting of quarks and gluons, a wide range of
quark and/or gluon interaction energies can be explored. This fact makes it
a discovery machine for new physics phenomena at energy scales up to the pp
collision energy. That makes it the ideal tool in our search for supersymmetry.

3.1 The Large Hadron Collider

The LHC [40, 41] operates with two particle beams, traveling in opposite
directions, inside seperate beam pipes of ultrahigh vacuum. Because the protons
are extremely tiny, about 1 fm = 10−15 m in diameter, they are collected in
bunches of about 1011 protons per bunch, in order to increase the chance for
inelastic proton-proton scattering to take place in each bunch crossing. The
proton bunches are accelerated up to nearly the speed of light, with 25 ns
bunch-spacing, which corresponds to a collision rate of 40 MHz.

The collider ring consists of 1232 dipole magnets, which produce magnetic
fields of 8.3 T that bend the particle trajectories, and 392 quadrupole magnets
that focus the particle beams. These are superconducting electromagnets that
are cooled down by liquid helium to a temperature of 1.9 K, which is colder than
the temperature of outer space, at 2.7 K. A number of radiofrequency cavities
are placed along the ring to accelerate the particle beams a little more each time
they pass. For the Run 2 of LHC, each beam was accelerated up to 6.5 TeV,
giving a center-of-mass collision energy of 13 TeV. The beams are made to
collide at four different interaction points along the ring, at which the four main
LHC experiments ATLAS, CMS, ALICE and LHCb are located. Special triplets
of quadrupole insertion magnets are placed close to the experiments to squeeze
the transverse beam areas as much as possible, from 0.2 mm to 16 µm across,
for the interaction points, again to maximize the chances of inelastic scattering
events.

Before the protons enter the LHC ring, they have passed through multiple
stages of acceleration, as illustrated in Figure 3.1. The journey starts in a
small red bottle of hydrogen, from which hydrogen atoms are extracted and
the electrons separated from the proton nuclei by passing through an electric
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Figure 3.1: A schematic of the accelerators and associated experiments at CERN
[42].

field, before being injected into LINAC2 (which in 2020 has been replaced by
LINAC4, to be used for the LHC Run 3). This is a linear accelerator that uses
radiofrequency cavities to accelerate the protons up to an energy of 50 MeV. The
protons then enter the Proton Synchroton Booster (BOOSTER), which is made
up of four superimposed synchrotron rings, and takes the protons up to 1.4 GeV.
The next stage of acceleration happens in the Proton Synchrotron (PS), which
sends the protons on to the Super Proton Synchrotron (SPS) with an energy of
25 GeV. The SPS is the second largest accelerator at CERN, measuring nearly
seven km in circumference, and was the accelerator ring that was used to discover
the W and Z bosons. It accelerates the protons up to 450 GeV, which is the
energy of the protons when injected into the LHC.

In the following sections, we will discuss some of the most important pa-
rameters of particle collider experiments, namely the particle types that are
accelerated and collided, the center-of-mass energy at which they collide, the
luminosity of the particle beams, and the cross-section, i.e., a measure of the
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probability, for the particle interactions to occur.

3.1.1 Particle type

At e+e− colliders, which collide the elementary electron and positron particles,
we have full control of the momenta of the initial state (the colliding/interacting)
particles. At a pp collider, however, which collide protons built up of quarks and
gluons, we have full control of the momenta of the composite protons, but not
the momenta of the quarks, anti-quarks and/or gluons that actually make up
the initial state of the particle events we measure in the detectors. Both of these
types of colliders have their pros and cons.

If we want to do precision measurements on a specific type of particle, e.g.,
study the detailed properties of the Higgs boson, we would be better off with
an e+e− collider1 tuned to operate at the energy corresponding to the Higgs
mass, because of the simple and clean electroweak interactions, which are nearly
free of background processes. However, we are then stuck with a fixed collision
energy, which is not particularly useful if we want to search for new physics at
an unknown energy scale.

In addition, the bending magnets that steer the electrons in a circular
trajectory cause them to emit synchrotron radiation. The energy loss per time
(power, P ) due to synchrotron radiation is proportional to the Lorentz factor,
γ, of the particle in question raised to the fourth power, P ∝ γ4. The Lorentz
factor can be expressed in terms of the energy, E, and the rest mass, m0, of the
particle, as γ = E/(m0c

2). At a given energy, E, an electron (or positron) will
lose 1013 times more energy per time to synchrotron radiation compared to a
proton, due to the difference in their rest masses. Therefore, a pp collider can
achieve higher collision energies compared to an e+e− collider.

If we then instead consider a pp collider, like the LHC, the quarks, anti-quarks
and gluons inside the protons can take on almost any fraction of the proton
momenta, and thereby explore a wide range of energies. This makes it a good
choice for new physics searches, but comes at the cost of allowing a lot more
to happen in each collision event, including chaotic QCD interactions and a
huge increase in background contributions to the final states we are looking for.
Therefore, accurate modeling, and finding ways to reduce the background to the
event and particle selections, are among the main challenges in basically any
analysis of data from the LHC.

3.1.2 Center-of-mass energy

The center-of-mass energy
√
s of two (or more) particles, such as two colliding

protons at the LHC, can be found from their energies and momenta via the

1Like the Large Electron Positron collider (LEP), the predecessor of the LHC.
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Lorentz invariant quantity

s =
(∑

i

Ei

)2

−

(∑
i

pi

)2

, (3.1)

which has units of energy squared [43]. By taking the square root of s, we have
a measure of the combined center-of-mass energy of the collision,

√
s, typically

given in units of electron volts, eV.
The center-of-mass energy of the colliding protons during the LHC Run 2,

was
√
s = 1.3× 1013 eV = 13 TeV.

3.1.3 Luminosity

The instantaneous luminosity, L, of two proton beams which collide head-on,
with Gaussian profiles, is given by

L = f
n1n2

4πσxσy
, (3.2)

where f = 40 MHz is the bunch crossing frequency at the LHC, n1 and n2
are the numbers of protons in the colliding bunches, and σx and σy are the
root-mean-square (rms) horizontal and vertical beam sizes, respectively [43].
This quantity is a measure of the expected number of interactions per time per
area, or incident flux of particles, s−1cm−2. It can be increased either by raising
the collision frequency, packing more protons into the bunches or squeezing the
beam sizes more.

The integrated luminosity, L, is the integral of the instantaneaous luminosities
over a period of time, i.e., the sum of the instantaneous luminosity of each bunch
crossing, at given points in time, L(t), over a period of data-taking,

L =
∫
L(t) dt. (3.3)

It is used as a measure of the “total amount of potential interactions” we have
exposed the protons for in the experiments. The integrated luminosity has
units of inverse area, and are often given in terms of the inverse unit of barns,
where 1 barn ≡ 10−28 m2. Typically the order of magnitude we are working
with are picobarn (pb), where 1 pb = 10−12 barn, or femtobarn (fm), where
1 fb = 10−15 barn.

3.1.4 Cross-section

The so-called interaction cross-section, σ, is a quantum mechanical measure of
the probability of a given particle interaction to occur. For a proper, formal
definition, see any introductory book on quantum field theory, e.g., Reference [43].
Qualitatively, it can be expressed as

σ = number of interactions per unit time per target particle [s−1]
incident flux [s−1cm−2] ∼ [cm2],

(3.4)
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Figure 3.2: Cross-sections measured by the ATLAS detector for various SM pp
interactions at the LHC, as a function of the center-of-mass energy of the pp
collisions [44].

and therefore has units of area [43]. As for luminosity, this area is typically given
in terms of barns, and the typical scale is pb or fb.

The cross-sections for different SM processes to take place in pp collisions,
measured at

√
s = 7, 8 and 13 TeV at the LHC, are shown (as colored points) in

Figure 3.2, and are compared to the theoretical predictions (in gray lines). The
cross-section values span several orders of magnitude, from diboson production
of order 1 pb, all the way up to single boson production (+jets) of order 105 pb.
By comparison, the inclusive (total) cross-section for pp collisions at the LHC, is
of order 1011 pb.

Figure 3.3 shows the expected cross-sections for sparticle production in
pp collisions at

√
s = 13 TeV at the LHC. The sparticle cross-sections fall

exponentially with increasing sparticle masses, where the strongly interacting
sparticles, the squarks and gluinos, range from about 101 − 103 pb at 250 GeV,
down to about 10−2 − 1 pb at 1 TeV; while the weakly interacting sparticles,
such as the neutralinos and charginos, range from about 1 pb at 250 GeV, down
to 10−3 pb at 1 TeV.
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Figure 3.3: Predicted cross-sections for various SUSY production processes at
the LHC, as a function of the sparticle mass [45].

3.1.5 Expected number of events

When we know the integrated luminosity, L, of a period of data-taking, and
the cross-section, σX , for a certain process X to occur, we can calculate the
expected number of events, NX , for this particular process during the given
period of data-taking, by

NX = L× σX . (3.5)

3.2 Kinematics at the LHC

At the LHC, we know the full 4-momenta of the colliding protons fairly accurately,
but it is typically only one parton from each proton that takes part in the inelastic
scattering events we are interested in. Moreover, the individual partons may
take on nearly any fraction of the longitudinal momentum of the proton, as given
by the parton distribution function for the parton flavor in question, at a given
proton energy/momentum scale. Therefore, we do not know the longitudinal
momentum carried by the initial state partons. However, since the protons
travel parallel to the beam line (the z-axis), the vector sum of the initial state
partons should, because of momentum conservation, be equal to zero in the
plane transverse to the beam line. This means that the vector sum of the final
state particles also needs to be zero in the transverse plane. In consequence, we
typically work with the transverse components of momenta, energies and masses
for capturing the full event kinematics in the transverse plane.
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We can broadly categorize the kinematic variables in two groups: (i) low-level
variables, which are measurements or reconstructed quantities of a single particle
or object, and (ii) high-level variables, which are calculated from the the low-level
variables of multiple particles or objects.

3.2.1 Low-level variables

The ATLAS detector encapsulates the collision point, which is taken to be the
origin of the coordinate systems, e.g., (x, y, z)collision point = (0, 0, 0) in Cartesian
coordinates. Since the incoming protons collide at (or very close to) the defined
origin of the ATLAS detector, the outgoing particles from the collisions radiate
out from the origin in a spherically symmetric fashion. Therefore, the geometry
and kinematics of the events can be described naturally in the 3-dimensional
spherical coordinate system, (r, θ, φ), where r is the radius, θ the polar angle
and φ the azimuthal angle.

In practice, we use a slightly modified version of the spherical coordinate
system, inspired by the physical interpretations of the measurements. The
polar angle, θ, is translated to the pseudo-rapidity, η, by the following relation,
η = − ln tan(θ/2). The resulting 3-dimensional position vector can then be
expressed as

xspherical = (r, η, φ), (3.6)

which can be translated to Cartesian coordinates by

xCartesian = (x, y, z) (3.7)
= (r cosφ, r sinφ, r sinh η). (3.8)

If we have a measurement of the full energy deposit of a particle or an object
(e.g., a jet) from a calorimeter measurement, or have inferred the identity of
a particle with a known mass, we can construct the full 4-momentum of the
particle/object in terms of the 4-vector

pµspherical = (E, pT, η, φ), (3.9)

which can be translated to Cartesian coordinates by

pµCartesian = (E, px, py, pz) (3.10)
= (E, pT cosφ, pT sinφ, pT sinh η), (3.11)

where E = m (in natural units2), with m being the mass of the particle/object.

3.2.2 High-level variables

From the low-level variables of single particles/objects, we can construct higher-
level quantities by combining the measurements from multiple particles/objects.

2In natural units, we set c = 1, giving the energy-momentum relation E = mc2 → E = m,
and the time-component of the 4-momentum vector, E/c→ E.
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Figure 3.4: A sketch of the Cartesian (x, y, z) and the spherical (r, θ, φ)
coordinate systems, where the radial coordinate r is given by r =

√
x2 + y2.

These two coordinate systems are used to describe the geometry of the ATLAS
detector, and the characteristics of the particles involved in the collisions taking
place inside of the detector volume. From Reference [46].

This can be simple relations, such as the the angular separation between a pair
of particles/objects, or more involved relations, such as the “stransverse” mass
of a system of particles.

Below is a list of the high-level variables that will be considered in this thesis.

3.2.2.1 Momentum/energy scales

Variables that quantify the total momentum or energy of all, or part of, the
particles of an event, can be useful for characterizing the energy scale at which an
event, or part of an event, is taking place at. The energy scale typically correlates
strongly with the topology of the event (angular distributions), and with the
amount and composition of the expected contributions to the background.

Scalar summed pT The HT-variable is calculated as the scalar sum of the pT
of all the hadronic jets in the event:

HT =
∑

i∈{jets}

||pT,i||, (3.12)

and gives a measure of the hadronic energy scale of the event.

Vector summed pT The absolute value of the vector summed pT of two
particles/objects, 1 and 2, which are decay products of a vector boson, V , are
calculated as

pT,12 = ||pT,1 + pT,2|| (3.13)
= pT,V . (3.14)
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Missing transverse momentum/energy By summing the transverse momen-
tum vectors of all the reconstructed objects (the first term in the equation below)
and the so-called soft terms from low-pT tracks that have not been associated
with a reconstructed object (the second term in the equation), we can negate
this sum to get an estimate of the missing transverse (2-vector) momentum that
is needed for momentum conservation in the transverse plane,

pmiss
T = −

 ∑
i∈{obj.}

pT,i +
∑

j∈{soft}

pT,j

 . (3.15)

The absolute value of this 2-vector is what we call the missing transverse energy,

Emiss
T = ||pmiss

T ||. (3.16)

Relative Emiss
T In order to deal with sizeable mis-measurements of jets or

leptons, which lead to so-called fake Emiss
T (becomes important in chapter 7 and

8), we can construct a new variable which only counts the component of pmiss
T

that is perpendicular to the φ-direction of the nearest lepton or jet, in events
where the ∆φ`,j is less than 90 degrees:

Emiss,rel
T =

{
Emiss

T if ∆φ`,j ≥ π/2
Emiss

T × sin ∆φ`,j if ∆φ`,j < π/2
, (3.17)

where ∆φ`,j = mini∈{`,j}∆φ(pT,i,pmiss
T ), and the minimization is performed

over the set of all reconstructed leptons and jets in the event, {`, j}.
Mis-measurements of visible objects lead to an artificial momentum imbalance

in the event, which further cause artificial or fake Emiss
T . Significant visible

momenta traveling in the same direction as the Emiss
T , may indicate such a mis-

modeling. By disregarding any Emiss
T component parallel (in the same direction)

to the nearest lepton or jet, which is more likely to occur for background
processes, such as Z + jets, we can effectively obtain better separation between
the distribution of background and signal events, and thereby increase our
sensitivity to the signal.

Object-based Emiss
T significance Another way to deal with artificial or fake

Emiss
T , is to weigh the value of the Emiss

T by the precision of its reconstruction.
The Emiss

T significance can, in a simplified manner, be expressed as

Emiss,sig
T = Emiss

T
σ(Emiss

T ) , (3.18)

where σ(Emiss
T ) is the uncertainty in the reconstruction of the Emiss

T , which
considers the individual uncertainties of the objects that enter into the Emiss

T
calculation. See Section 8.3 for a more detailed description.
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3.2.2.2 Masses

By calculating the combined mass of multiple particles or objects, we can
statistically target particle combinations which are likely to be decay products
of a given mother particle with a certain mass. We can use this information
to either keep events, if the mother particle is part of the signal process, or
throw away events, if the mother particle is part of a background process, or is
otherwise not of interest for the study at hand.

Invariant mass The invariant mass of two particles/objects, labeled 1 and 2,
can be calculated in the following way:

m2
12 = (E1 + E2)2 − ||p1 + p2||2 (3.19)

= m2
1 +m2

2 + 2(E1E2 − p1 · p2). (3.20)

If these two particles are the only decay products of a mother particle of mass
mmother, then the invariant mass of the daughter particles should be equal to
the mass of the mother particle, m12 = mmother(±Γ/2), where mmother is the
pole mass and Γ is the width of the resonance in the invariant mass spectrum.

Transverse mass The transverse equivalent of the invariant mass of a lepton,
`, and Emiss

T , stemming from a decay of a heavy particle into a visible and an
invisible particle (e.g. a neutrino), is called the transverse mass,

mT(p`T,pmiss
T ) =

√
2(p`Tpmiss

T − p`T · pmiss
T ), (3.21)

where the invisible particle is taken to be massless, which is a good approximation
for the neutrinos. The transverse mass distribution forms a kinematic endpoint
at the mass of the mother particle. The events reaching the endpoint are
characterized by fully taking place in the transverse plane, i.e., the longitudinal
components of the momenta of the lepton and the invisible particle are equal to
zero.

Stransverse mass In R-parity-conserving SUSY models, the sparticles are
always produced in pairs, and if both of these sparticles (e.g. χ̃±1 χ̃∓1 ) decay
to leptons, we have (at least) two leptons and (at least) two particles escaping
detection (e.g. the χ̃0

1 LSPs). In that case, there is a supersymmetric version
of the transverse mass, which calculates a transverse mass for each of the two
leptons by distributing the total pmiss

T among the two systems, and minimizing
the maximum of the two transverse masses by varying the distribution of the
pmiss

T -vector in terms of the size of qT:

mT2 = min
qT

[
max

(
mT(p`1T ,qT),mT(p`2T ,p

miss
T − qT)

)]
, (3.22)

where the transverse masses are given by

mT(pT,qT) =
√

2(pTqT − pT · qT). (3.23)
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As SM processes also can produce a similar kinematic endpoint, such as the
diboson process WW , where each of the bosons decay leptonically as W → l+νl,
and produce an endpoint at the W mass, we can use mT2 to efficiently reduce
WW background by throwing away events with mT2 < mW .

3.2.2.3 Angular separation

The combined angular separation between the direction of two objects in both
the η- and φ-angles, are calculated by

∆R12 =
√

(∆η12)2 + (∆φ12)2 (3.24)
=
√

(η1 − η2)2 + (φ1 − φ2)2. (3.25)

This variable can also be used to define a cone of radius ∆R around an object,
and be used for isolation requirements, e.g., by restricting the presence of tracks
from other object within this cone.

3.2.2.4 Ratios

We will in some cases also be interested in the balance between different high-
and/or low-level variables in the event. E.g., the amount of Emiss

T in the event
compared to the pT of one or (vector sum of) multiple visible object(s), X:

Emiss
T /pT(X). (3.26)
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Chapter 4

13 TeV pp data collected by the
ATLAS detector

4.1 The ATLAS detector

The ATLAS experiment is located at interaction point 1 along the LHC ring, right
next to the main CERN site in Meyrin. The ATLAS detector [47] is designed
to encapsulate the interaction point as much as possible, to reach almost 4π of
angular coverage. It has a cylindrical geometry, consisting of multiple layers of
sub-detector systems, which target measurements of the momentum or energy
of different types of particles. Figure 4.1 shows a sketch of the ATLAS detector
and its sub-detector systems.

A simplified, transverse cross-section of the ATLAS detector components is
sketched in Figure 4.2, along with how the different particle types interact with
each layer. The trajectories of the particles are represented by solid lines inside
the detector components they interact with (are visible to), and by dashed lines
in the detector components they do not interact with (are invisible to). Charged
particles have curved trajectories, because of the Lorentz force exerted on them

Figure 4.1: A schematic of the ATLAS detector [47].

43



4. 13 TeV pp data collected by the ATLAS detector

Figure 4.2: An illustration showing how different types of particles interact with
the different layers of the ATLAS detector [47]. Note that the relative sizes of
the detector components, and distances between them, are not representative
of the real detector, but are modified for the purpose of displaying the particle
interactions.

by the magnetic field. The sign of the electric charge (positive or negative) of a
particle determines its direction of deflection.

The inner detector trackers only interact with electrically charged parti-
cles, like the electron, muon and proton, which means that the electrically
neutral photon, neutron and neutrino do not leave hits in the tracking detectors.
The momentum and electric charge of the electrically charged particles can be
determined from the curvature of their reconstructed tracks.

The electromagnetic (EM) calorimeter interacts with all particles that feel
the EM interaction, and stops the photon and the electron entirely through
EM showers of particles, thereby absorbs and measures their total energy. The
proton and the muon interact slightly with the EM calorimeter, but do only lose
a small portion of their energy there.

The hadronic calorimeter is designed to interact strongly with hadrons, such
as the proton and the neutron, to completely absorb and stop these particles, by
producing hadronic showers in the calorimeter, and thereby measures the total
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energy of the incident particles.
The muon spectrometer makes up the outermost layers of the ATLAS detector.

Similarly to the inner detector, it aims to measure hits from the electrically
charged muons that pass through the muon tracking layers. It does, however, not
aim to stop the muons, but rather determine their momenta from the curvature
of their reconstructed tracks. Therefore, the only detectable particles which are
expected to escape from the ATLAS detector, are the muons.

There are a few other elementary particles we have not yet mentioned. The
tau lepton, the EW gauge bosons and the Higgs boson are heavy enough that
they decay to lighter particles before they even reach the innermost pixel layer.
The final, unmentioned elementary particles, with large enough life time to
traverse the detector volume, are the neutrinos. They only interact via the
weak interaction, and are therefore not detectable by any of the ATLAS sub-
systems. The energy/momentum carried away by the undetected neutrinos leads
to missing energy. However, it is not only the neutrinos that can produce missing
energy, also exotic particles that only interact weakly, could be responsible for
part of the missing energy in collision events. This fact is heavily exploited in
searches for dark matter, supersymmetric particles and other BSM searches.

4.1.1 The inner detector

The detector layers closest to the interaction point are referred to as the inner
detector (ID) or inner trackers. Their role is to measure the momenta of the
electrically charged particles. This is done by exposing the charged particles to a
2 T magnetic field, produced by a solenoid surrounding the ID, which bends the
particle trajectories in the plane transverse to the beam axis. By reconstructing
the particle tracks from the hits they leave in the detector layers, the momentum
and the sign of the electric charge can be determined, from the straightness of
the track and the direction of deflection, respectively.

The ID consists of three sub-systems: (i) the pixel detector, (ii) the semicon-
ductor tracker (SCT) and (iii) the transition radiation tracker (TRT). A sketch
of the inner detector sub-systems can be found in Figure 4.3.

The pixel detector is made up of 80 million silicon pixel sensors, each of size
50× 400 µm2, with a resolution of 14× 115 µm2, and spread over multiple layers,
both in the barrel and the end-cap regions. The innermost layer is called the
insertable b-layer (IBL), and was inserted before the start of Run 2 in order to
allow for a better determination of secondary vertices from b-hadron decays.

Situated outside of the pixel layers, are the SCTs, which consist of silicon
microstrip trackers, also placed on multiple layers in the barrel and disks in the
end-caps. Readout strips every 80 µm on the silicon, enables a spatial resolution
of 17 µm, in the direction transverse to the strips. The pixel and SCT (precision
tracking) detectors cover the pseudo-rapidity range |η| < 2.5.

Furthest away from the interaction point, we find the TRTs. They consist
of 4 mm in diameter straw tubes, 144 cm long, with a 0.03 mm in diameter
gold-plated tungsten wire in the center. They provide spatial measurements
with a precision of 0.17 mm. The TRTs extend out to |η| = 2.0.
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Figure 4.3: A schematic of the ATLAS inner trackers [47].

4.1.2 The calorimeters

ATLAS has, broadly speaking, two types of calorimeters: (i) electromagnetic
calorimeter (ECAL) and (ii) hadronic calorimeter (HCAL) systems, which are
both designed to fully stop certain types of incident particles. This is done by
installing high-density, passive or absorbing detector plates that cause lots of
interactions with the incoming particles, which then lose their energy by emitting
showers of new particles. So-called active detector volumes are placed in between
the passive material, in regular intervals, in order to measure all the energy
emitted by the shower particles, and thereby measure the total amount of energy
of the incoming particle(s) that hit the detector in the first place. A sketch of
the ATLAS calorimeters is shown in Figure 4.4.

The ECAL is immediately surrounding the inner detector, both in the barrel
(|η| < 1.475) and the end-cap regions (1.375 < |η| < 3.2). It consists of
absorbing lead plates, with liquid Argon (LAr) volumes in between, working
as the active part of the calorimeter. The ECAL is split in a barrel and two
end-cap systems (one on each end of the cylinder), all three being lead-LAr
detectors. The thickness of the calorimeter is made large enough to fully measure
the showers of incident photons and electrons/positrons. The muons naturally
have longer interaction lengths (average distance between interactions) with lead,
and therefore only lose a small fraction of their energy in the ECAL.

The HCAL is immediately surrounding the ECAL on all sides. It consists of
two different types of detectors. In the barrel (|η| < 1.0) and extended barrel
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Figure 4.4: ATLAS electromagnetic and hadronic calorimeters
A schematic of the electromagnetic and hadronic calorimeters of the ATLAS

detector [47].

regions (0.8 < |η| < 1.7), the HCAL is made of absorbing steal plates, and
plastic scintillator tiles are used as the active material. In the end-cap regions
(1.5 < |η| < 3.2), however, there are hadronic LAr detectors, with absorbing
copper plates used as the active material; whereas in the very forward regions
(3.1 < |η| < 4.9), a combination of copper and tungsten plates are used instead.
The active materials are chosen to maximize the interaction cross-section with
hadrons, such as neutrons, protons and pions. The depth of the HCALs are also
designed to fully stop the particle showers which arise from the incident hadrons,
in order to measure their total energies and avoid punch-through to the muon
system. Hadrons are efficiently stopped by the HCAL, which in principle means
that the muons and the weakly interacting neutrinos are the only particles that
leave the HCAL.

4.1.3 The muon spectrometer

The outermost layers of the ATLAS detector are dedicated to measurements
of muon momenta. Similar to the ID, the muon system or muon spectrometer
(MS) is also a tracking detector, consisting of multiple layers of detector material,
immersed in a strong magnetic field in order to bend the trajectories of the
electrically charged muons.

In contrast to the ID, which uses a solenoid magnet, the MS has eight
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Figure 4.5: A schematic of the muon spectrometer of the ATLAS detector [47].

large air-core toroid magnets in the barrel region (which provide up to 2.5 T of
magnetic field strength), and two smaller toroid systems in the end-cap regions,
each with eight smaller toroid coils (which provide field strengths up to 3.5 T).
The muon detectors, along with the toroid magnets, are illustrated in Figure 4.5.

The MS consists of four different types of detector components, which fulfill
two different purposes: (i) precision tracking is predominantly done by the
Monitored Drift Tubes (MDTs) in most of the pseudo-rapidity range, with the
Cathode Strip Chambers (CSCs) (multi-wire proportional chambers) of higher
granularity, dealing with the harsher conditions closer to the beam line in the
forward directions; while (ii) triggering and second coordinate tracking is done
by Resistive Plate Chambers (RPCs) in the barrel and by Thin Gap Chambers
(TGCs) in the end-caps. Tracking is provided for pseudorapidities up to |η| < 2.7,
whereas the trigger system only extends to |η| < 2.4.

Alignment of the muon chambers is essential to obtain precise track re-
construction, and thereby precise momentum estimates. Internal deformation
and relative positions of the MDTs are monitored by 12,000 precision-mounted,
optical sensors, in order to obtain the required 30 µm precision on the relative
alignment of the chambers.
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Figure 4.6: The components of the ATLAS TDAQ system [48] for Run 2.

4.2 Experimental data

The experimental dataset studied in this thesis is taken from measurements made
by the ATLAS detector, of pp collisions provided by the LHC, from mid-2015
until the end of 2018. The pp collisions were conducted at a center-of-mass
energy of

√
s = 13 TeV, corresponding to 6.5 TeV per proton. The protons were

packed in bunches of 1.1× 1011 protons per bunch, and accelerated up to nearly
the speed of light, with a final bunch spacing of 25 ns. This translates to a
collision rate of 40 MHz, i.e., 40 million collisions per second.

4.2.1 Triggering and data acquisition

The ATLAS trigger and data acquisition (TDAQ) system [48] performs online
(real-time) processing of the detector measurements, and is responsible for
selecting and storing the most interesting events for offline analysis (of recorded
events). The TDAQ system is illustrated in Figure 4.6.

The Level 1 trigger (L1) is hardware-based, and uses custom electronics
to trigger on reduced-granularity information from the calorimeters (L1Calo)
and the muon system (L1Muon). In the L1Calo, the analogue signals are first
digitized and calibrated by the preprocessor, before, in parallel, being handed
over to the Cluster Processor (CP) for identification of electron, photon or
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tau-candidates, and the Jet/Energy-sum Processor (JEP) for identification of
jet candidates, and for performing global sums of total and missing transverse
energy. The L1Muon trigger uses hits from the RPCs in the barrel and the TGCs
in the end-caps to measure the momentum of the muons. In order to reject
contributions from muon measurements in the end-caps that do not come from
the interaction point, L1Muon puts coincidence requirements on the hits in the
inner and outer TGC stations, and between the TGCs and the tile calorimeter.

The L1 trigger information is collected in the so-called Central Trigger, which
outputs the final L1 trigger decisions. The decision can be based on event-level
quantities, object multiplicities (above pre-defined threshold) or topological
quantities, such as invariant masses or angular separations. Geometric and
kinematic combinations of trigger objects from both the L1Calo and the L1Muon
systems are collected and processed by the L1Topo trigger, which applies the
topological requirements on the events. The L1 trigger reduces the event rates
from the collision frequency of 40 MHz down to a maximum L1 trigger rate of
100 kHz.

For each event that has been accepted by the L1 trigger, the Front-End (FE)
electronics read out the event data from all detectors. The data are then passed
on to the Read-Out Drivers (RODs) for initial processing and formatting, before
reaching the Read-Out System (ROS), which buffers the event data, awaiting a
decision from the second trigger level.

The High Level Trigger (HLT) is software-based, and makes use of Regions
of Interest (RoIs) in η and φ, which have been identified by the L1 trigger. The
HLT typically runs dedicated fast trigger algorithms to provide early rejection,
before running more CPU-intensive algorithms that are similar to full offline
object and event reconstruction. These algorithms are run on a dedicated
computing farm, making use of approximately 40,000 selection applications
called Processing Units (PUs). The PUs make decisions within the order of a
few hundred milliseconds. Multiple steps of feature-extraction algorithms are
executed, using data fragments from within the RoI, until, finally, a hypothesis
algorithm makes a decision on whether the trigger condition has been met or not.
However, in some cases, such as triggering on Emiss

T , the full detector information
of the event is needed. The HLT reduces the event rate even further, from the
L1 rate of 100 kHz, down to about 1.2 kHz. This corresponds to about 1.2 GB/s
of physics throughput.

The events that have been accepted by the HLT, are forwarded to the Tier-0
facility at the CERN Data Center, for offline reconstruction and permanent
storage.

4.2.2 The Worldwide LHC Computing Grid

The data of the events that have passed the HLT, is transferred to the CERN
Data Center, also referred to as Tier 0, for further processing and for permanent
storage of the raw data. The first pass of the reconstruction of particle tracks
and objects from the raw data, is done at Tier 0, before the reconstructed data
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Figure 4.7: A schematic of the data centers which are part of the Worldwide
LHC Computing Grid (WLCG).

are distributed to 13 large data centers, also known as Tier 1s, spread across
the world.

These data centers are part of a global computing infrastructure called the
Worldwide LHC Computing Grid (WLCG). The purpose of this computing
infrastructure is to provide resources to store, distribute and analyze the data
produced by the LHC experiments, and to make the data available to all partners
regardless of their location on the globe.

The Tier 1s are responsible for storing a proportional amount of the raw and
reconstructed data, running large re-processing campaigns for calibration of the
data, and to distribute these data to smaller computing centers, called Tier 2s,
which are located at around 160 universities and other scientific institutes, in 42
countries.

The Tier 2s have enough computing resources and disk space to handle user
analysis tasks, and to produce and store the outputs of Monte Carlo simulations.

Figure 4.7 shows an illustration of the hierarchy of the computing centers
which are part of the WLCG.

4.2.3 The dataset

The dataset [49] is divided into multiple levels of granularity, concerning different
aspects of the data-taking. Given that the LHC has had an extended shut-down
at the end of each year, for maintenance or upgrades, it is natural to divide the
data according to which year it has been taken in. Furthermore, the data-taking
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conditions often change throughout a given year, and so we divide a year into
periods of uniform data-taking conditions (often separated by short technical
stops). On a day-to-day basis, the LHC is normally able to provide collisions
with so-called stable beams for a few hours at a time, before having to dump
the remaining parts of the particle beams and do a restart, by re-filling the
beams with new protons. This is referred to as a fill, and every time interval
that ATLAS is able to uninterruptedly take data from an LHC fill is called a
run. And finally, the smallest data collection unit (apart from single events), is
what we call a luminosity block (LB). A LB typically corresponds to 60 seconds
of data-taking.

4.2.4 Luminosity and pile-up measurements

The primary luminosity detectors of ATLAS are the LUCID2 Cherenkov de-
tectors, which consist of 16 photomultiplier tubes, and are placed about 17 m
from the interaction point, in either direction along the beam line [49]. They
measure the hit counts for every bunch crossing, and integrate these numbers
for every luminosity block. Based on absolute luminosity calibrations, which
happened once in each data-taking year, using beam separation scans in the
x- and y-directions (so-called van der Meer scans), dedicated algorithms are
used to estimate the visible interaction rate per bunch crossing, µvis, which in
turn is proportional to the instantaneous luminosity. The integrated luminosity
measurements are summarized per year of Run 2 in Table 4.1.

Figure 4.8 shows the integrated luminosity accumulated as a function of
time. The green histogram represents the full luminosity delivered by the LHC,
the yellow histogram the part that ATLAS was able to record, whereas the
blue histogram shows the amount of this data that passed all the data quality
(DQ) requirements needed to be used for physics analysis. Details on the DQ
requirements are given in section 4.2.5. Figure 4.9 shows the distributions of the
mean number of interactions per bunch crossing, often referred to as pile-up, split
by year. We can see a large spread in the number of pile-up events per bunch
crossing from year to year, but also within a given year. From the average of
13.4 interactions per crossing in 2015 to 37.8 in 2017, with the maximum number
achieved during Run 2 extending up 70 interactions per bunch crossing. The
average of the whole of Run 2 was 33.7 mean interactions per bunch crossing.

4.2.5 Data quality

In order to make sure that the quality of the experimental data, recorded by
the ATLAS detector and subsequently reconstructed by dedicated software, is
sufficiently high to be used for physics analysis, the performance of every detector
component, the triggers and the data acquisition systems are constantly being
monitored and scrutinized during periods of data-taking [50]. This monitoring
consists of both automatic surveillance and flagging of potentially compromized
data by software, but also by human shifters on-site in the ATLAS control
room and remote shifters monitoring the performance via webpages. Some
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Table 4.1: Summary of the integrated luminosity taken by ATLAS during Run
2, which has been labeled good for physics [49]. The columns represent the year
of data-taking, the measured integrated luminosity (int. lumi.), and the total
(tot. unc.) and relative uncertainties (rel. unc.) on the integrated luminosity
measurements.

Year Int. lumi. [fb−1] Tot. unc. [fb−1] Rel. unc. [%]
2015+16 36.2 0.8 2.1
2017 44.3 1.0 2.4
2018 58.5 1.2 2.0

Combined 139.0 2.4 1.7

of the shifters are responsible for specific detector systems, such as the inner
tracker, the calorimeters or the muon system, separately, while other shifters
are responsible for monitoring the combined performance of several sub-systems
or reconstruction steps. In case of a change in performace, the software or the
shifters can either mark the affected data as having a certain defect or supply
calibration information to the conditions database, which stores the status of all
parts affecting the measurements, acquisition and reconstruction of the data.

Figure 4.10 shows the flow of data processing, including feedback on the
conditions of the data from the data quality (DQ) monitoring. Subsequent
data (re-)processing then make use of the updated conditions to calibrate the
reconstructed data. There is also DQ monitoring taking place during and
after a data (re-)processing campaign to make sure that the calibrated data
looks reasonable. In case something does not look right, the whole luminosity
block (LB) containing the compromized data-taking interval is flagged as bad.
Conversely, all the LBs that are flagged as good for physics, i.e., passing all
the DQ requirements, are stored in the so-called Good Run List (GRL) for the
corresponding year. Physics analyses only use data events from LBs that are
listed in the GRL.

During a (re-)processing of the data, it is possible to drop data-taking intervals
down to the order of milliseconds, while marking the rest of the corresponding
LB as good for physics. In that case, the calculation of the integrated luminosity
subtracts off the integrated luminosity of the sub-intervals within an LB which
have been flagged as bad. In this way, one can retrieve some of the data that
were actually good for physics, but initially fell into an LB where a fraction of
the events were flagged as bad, and therefore the whole LB was flagged as bad.

Figure 4.11 shows the DQ efficiency for the 2015 through 2018 data-taking
period. The DQ efficiency is calculated w.r.t. the amount of data that was
recorded by ATLAS and intended for physics, and not w.r.t. the luminosity
delivered by the LHC. The figure shows the cumulative DQ efficiency as function
of the integrated luminosity, split by year. Because the DQ and ATLAS operation
procedures have continuously been reviewed and developed throughout the Run
2 data-taking campaign, we can see a tendency of improvement in the DQ
efficiency over time.
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(a)

Figure 4.10: A schematic view of the data quality monitoring and (re-)processing
procedures in ATLAS [50].
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Figure 4.11: The fractions of the recorded data that were found to pass all the
DQ requirements, as a function of integrated luminosity [50].
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4.3 Simulated events

In order to make meaningful analyses of the experimental data, we need to
understand which processes we expect to contribute to a given event/object
selection, and at which rates. To that end, extensive resources are applied to
perform Monte Carlo (MC) simulations [51] of the particle interactions that we
expect to take place in the proton-proton collisions at the LHC, and eventually
be measured by the ATLAS detector.

The simulations go through three main steps to get from theory to experi-
mental signatures: (i) event generation, (ii) parton showering, hadronization and
modeling of the underlying event, and (iii) propagation through the detector
media.

4.3.1 Event generation

The first step in the simulation of a proton-proton interaction is to decide which,
out of all possible interactions, is going to take place between the partons of
the incoming protons in a given event. We make use of theoretical knowledge
about which particles are allowed to take part in the given interaction, and
at which rates, in terms of the S-matrix1, or scattering matrix, formalism of
perturbation theory (see any introductory book on quantum field theory, e.g.,
[43]). The number and type of matrix elements we decide to include in the event
generation determine the accuracy at which we simulate the processes. Each
set of simulations (MC sample or dataset) typically only target a specific type
of interaction, or a set of interactions. In order to capture the full distribution
of event types and kinematics for a physics analysis sufficiently well, we often
need to include the contributions from many different types of independent
simulations, which focus on different processes.

4.3.2 Parton showering, hadronization and pile-up

Due to the compositeness of the protons and the complexity of the QCD interac-
tions, the complete dynamics of a proton-proton collision at the LHC is extremely
complicated [52]. A pp collision typically produces hundreds of particles in a
large number of interactions. Still, a few distinct stages in the evolution of such
events have been identified, which are used in MC simulations to mimic the real
events, before they reach the detectors.

1Each element of an S-matrix, or scattering matrix, holds (an expression for) the transition
amplitude from a specific initial state to a specific final state in a scattering process. Each
matrix element corresponds to a unique Feynman diagram. The transition from a given initial
state to a given final state can happen via multiple different sub-processes, where the more
processes we include in the S-matrix, the more accurate the calculation becomes. Typically,
we include all possible processes up to a chosen order of perturbation theory, such as leading
order (LO) or next-to-leading order (NLO) in a given coupling constant.
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4.3.2.1 Parton showering and hadronization

Similarly to how electrically charged particles undergo bremsstrahlung (braking
radiation) in the presence of an external electric field, color charged particles
produce gluon radiation, called parton showering (PS), in the presence of an
external color field. Developers of simulation software apply clever techniques to
efficiently simulate realistic radiation processes and match them with the matrix
elements of the event generation [52].

However, the bremsstrahlung of QED and the PS of QCD are not completely
equivalent, as the photons do not have electric charge and thereby do not interact
among themselves. The opposite is true for the gluons, as they do carry two
color charges each (one color and one anti-color, e.g., rb̄). This leads to the QCD
phenomenon of confinement, where the attractive force between partons increase
with separation. The products of the PS eventually experience the process of
hadronization, where the color charged partons are confined to color neutral
hadron states. A schematic showing the evolution of a pp collision simulation is
depicted in Figure 4.12.

4.3.2.2 Pile-up conditions

The event generation step only produces one hard-scatter event between a
pair of protons. In the experimental data, however, there are multiple proton-
proton interactions/collisions happening in each bunch crossing. To simulate
this, additional minimum-bias events2 have been simulated separately, and are
overlaid on top of the primary simulated hard-scatter event. The number of
minimum-bias events to add to each event is drawn randomly from a distribution
that attempts to replicate that of the mean number of interactions per bunch
crossing in data.

As the distribution of the mean number of interactions per bunch crossing
changed significantly with the year of data-taking in Run 2, it was decided to
produce one set of MC samples for each data-taking year. Each set of MC
samples reflects either a guess of what the pile-up distribution in data would
look like, for early production of MC samples before or during the data-taking
period, or the actual pile-up distribution, in the cases where the MC samples
needed to be reproduced with a more accurate pile-up distribution after the
data-taking period was over. The pile-up distributions that were used for the
three MC production sub-campaigns are shown in Figure 4.13.

Additionally, to correct for any discrepancies in the simulated and measured
pile-up distributions for a given year, a dedicated re-weighting procedure is
applied to the simulated events. This correction up-weights the events with a
pile-up number which was underrepresented compared to the experimental data,
and vice-versa.

2Minimum bias in the sense that these events mimic events recorded by minimum-bias
triggers in real data, which are minimally biased in their event selection, i.e., do not select
events of particular characteristics (close to random selection).
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Figure 4.12: An example schematic of a simulated proton-proton collision event
[53]. Upon incidence, the incoming protons (straight green lines, from left and
right) break up into individual quarks (straight blue lines) and additional gluon
radiation (blue curly lines). A quark from the left proton and a gluon from the
right proton go through initial state radiation (ISR), producing, among other
particles, a gluon each, which make up the intial state of the hard scatter event
(big red blob). The hard scatter produces a tt̄H final state, where the unstable
top quarks (red solid lines) and the Higgs boson (red dashed line) decay further
to lighter quarks (red solid lines) and/or leptons (yellow solid lines), involving W
bosons (red wavy lines) and photons (yellow wavy lines). In the presence of fields
from other color charges, the hard final state quarks undergo parton showering
(PS), whereby they lose momentum by gluon radiation (red curly lines). As the
quarks/anti-quarks move away from each other, their mutual attraction continues
to grow, until the energy density of their common color field is high enough to
produce new quark-anti-quark-pairs. These newly created quarks/anti-quarks are
then confined to the already existing quarks/anti-quarks, to form color neutral
hadron states (light green blobs), in a process called hadronization. The hadrons
can decay further to lighter and more stable hadrons (dark green blobs), which
eventually reach the detectors. At the same time, the remnants of the incident
protons, that do not take part in the hard(est) scatter interactions, may also
interact with each other (purple blob). These additional particle interactions are
referred to as the underlying event. The underlying event contribute so-called
pile-up interactions or collisions, that is, additional interactions and particles
that are not part of the main hard interaction. Photon radiation also happens
at all stages of the evolution (yellow wavy lines).
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Figure 4.13: The plot shows the pile-up distributions of the three MC simulation
sub-campaigns produced to match the actual distributions of the experimental
datasets taken in 2015+2016 (orange), in 2017 (purple) and in 2018 (green) [54].

4.3.3 Detector simulation

Finally, when the particles that leave the collision point have been evolved in
space and time, they eventually reach the different ATLAS sub-detectors. The
simulation of how these particles interact with the detector materials are carried
out using the GEANT4 software toolkit [55].

The full detector simulations consume a lot of computing resources, and
this is in particular the case for the particle showers that take place in the
electromagnetic and hadronic calorimeters. As a means to reduce the time and
resources spent on this task, a fast calorimeter simulation procedure (Atlfast-II)
[56] has been developed that uses a parametrization of the energy deposits of
these electromagnetic and hadronic showers. The reduction in computational
resources comes at the cost of slightly less accurate modeling of the energy
deposits, and is therefore only used for cases where the analyses are not sensitive
to this effect, or for BSM signal models where a high number of signal grid
points is more important than the slight degradation in the simulated calorimeter
response.

4.3.4 SUSY signal

In order to get a handle on what the experimental signatures of the SUSY
particles would look like, we make use of MC simulated SUSY events. The two
SUSY signal models considered in this thesis are: (i) chargino-pair (χ̃±1 χ̃∓1 )
production with decays via sleptons into two leptons and two neutralino (χ̃0

1)

59



4. 13 TeV pp data collected by the ATLAS detector

γ∗/Z∗

χ̃∓1

χ̃±1

˜̀−/ν̃

˜̀+/¯̃ν

q̄

q

ν̄/`+

`−/ν

χ̃0
1

χ̃0
1

`+/ν̄

ν/`−

(a) Chargino-pair production with de-
cays via sleptons or sneutrinoes into two
leptons and two lightest neutralinos.

W±∗
χ̃±1

χ̃0
2

Z0

W±

q̄′

q

`+

`−

χ̃0
1

χ̃0
1

q̄′

q

(b) Chargino-neutralino production
with decays via the W and Z bosons
into two leptons, two hadronic jets and
two lightest neutralinos.

Figure 4.14: Diagrams of MC simulated SUSY processes.

LSPs in the final state (Section 6), and (ii) χ̃±1 χ̃0
2-production with decays via EW

gauge bosons into two leptons, two light-flavor jets and two χ̃0
1 LSPs (Section 7

and 8). Diagrams illustrating these two processes are shown in Figure 4.14a and
4.14b, respectively.

Both of the SUSY signal models mentioned above have been generated with
the MadGraph v2.2.3 generator [57], where the parton showering, hadronization
and the underlying event have been handled by Pythia 8.186 [58] with the A14
tune [59]. Parton luminosities are given by the NNPDF2.3LO PDF set [60],
and jet-parton matching was done using the CKKW-L prescription [61], at the
matching scale equal to one quarter of the pair-produced sparticle mass.

The signal cross-sections have been calculated to NLO in the strong coupling
constant, with soft gluon emission effects added to NNLL accuracy [62, 63, 64,
65, 66]. The nominal cross-sections and their uncertainties are taken from an
envelope of predictions obtained by different PDF sets and renormalization and
factorization scales, as described in Reference [67].

4.3.5 SM background processes

The SUSY signals described in the previous section both result in events with
two leptons and Emiss

T , plus two jets from a W boson in the χ̃±1 χ̃0
2 case. There

also exist SM processes that result in the same final states as the SUSY signal,
which we refer to as background.

In order to estimate the expected contributions from SM background processes
to our event selections, we often make use of MC simulations to model these
processes as well. Below, I will give a short overview of the MC generators and
simulation setups that have been used to produce the background estimates for
the analyses presented in the following chapters.
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The simulated datasets come from two different ATLAS MC production
campaigns: (i) early Run 2, samples generated prior to the start of Run 2
data-taking in 2015, which were basically in use for analyses of 2015+2016 data
only, and (ii) full Run 2, samples generated for analyses of the full Run 2 dataset,
which were basically in use from the summer of 2017 and onwards.

The first two analyses of this thesis, which I will refer to as conventional
analysis (CA) 1 & 2, were conducted in the first half of Run 2, and therefore
make use of simulated samples from the early Run 2 MC campaign. The two
final analyses of the thesis, which I will refer to as CA 3 & multivariate analysis
(MVA), were conducted in the second half and after the end of Run 2, and
therefore make use of the simulated samples from the full Run 2 MC campaign.

Below, the MC samples from the two MC production campaigns are described
separately, where the early Run 2 datasets are given under the label CA 1 &
2, and the full Run 2 datasets are given under the label CA 3 & MVA. The
generator versions that were used for each of these two cases, are also summarized
in Table 4.2.

4.3.5.1 Multiboson

Diagrams showing examples of SM diboson and triboson production processes
are given in Figure 4.15 and 4.16, respectively.

CA 1 & 2 The SM diboson and triboson processes, involving W and Z bosons
with leptons in the final state, were simulated using the Sherpa 2.2.1 generator
[53, 68].

The fully-leptonic diboson processes, with four electroweak vertices, were
generated with the NNPDF3.0nnlo PDF [69] at next-to-leading order (NLO)
in the strong coupling constant with up to one additional parton for 4` and
2`+ 2ν, at NLO with no additional partons for 3`+ ν, and at leading order (LO)
with up to three additional partons for all the aforementioned processes.

The cases where one of the bosons decays hadronically, have similarly been
simulated with up to one additional parton at NLO, and up to three additional
partons at LO.

The di- and triboson processes with up to six electroweak vertices, including
the same-sign WW process with associated jets, W±W±jj, were generated with
the CT10 [70] PDF at NLO with no additional partons, and at LO for up to one
and two additional partons for the diboson and triboson processes, respectively.

In all cases, the Comix [71] and OpenLoops [72, 73, 74] matrix element
generators have been used to calculate additional hard parton emissions and
virtual QCD corrections, respectively, and the resulting matrix elements merged
with the Sherpa parton shower using the MEPS@NLO prescription [75, 76, 77,
78].

CA 3 & MVA Samples of diboson final states (V V ) were simulated with the
Sherpa 2.2.1 or 2.2.2 [68] generator depending on the process, including off-shell
effects and Higgs boson contributions, where appropriate. Fully leptonic final
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W±∗
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Figure 4.15: Diagrams of SM diboson production. A superscript star indicates
that the vector boson needs to be virtual and off mass shell, in order to produce
its subsequent decay products. A quark marked with a prime, indicates that
the quark is of a different quark flavor compared with a non-primed quark, i.e.,
by emitting or absorbing a W boson, an up-type quark becomes a down-type
quark, and vice versa.
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Figure 4.16: Diagrams of SM triboson production. V denotes an EW vector
boson (W or Z), where a superscript star indicates that the vector boson needs to
be virtual and off mass shell, in order to produce its subsequent decay products.
A quark marked with a prime, indicates that the quark may be of a different
quark flavor compared with a non-primed quark, depending on the actual vector
bosons involved in the process.
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states and semileptonic final states, where one boson decays leptonically and
the other hadronically, were generated using matrix elements at NLO accuracy
in QCD for up to one additional parton and at LO accuracy for up to three
additional parton emissions. Samples for the loop-induced processes gg → V V
were generated using LO-accurate matrix elements for up to one additional
parton emission for both the cases of fully leptonic and semileptonic final states.
The matrix element calculations were matched and merged with the Sherpa
parton shower based on Catani–Seymour dipole factorisation [71, 79] using the
MEPS@NLO prescription [75, 76, 77, 78]. The virtual QCD corrections were
provided by the OpenLoops library [72, 73, 74]. The NNPDF3.0nnlo set
of PDFs was used [69], along with the dedicated set of tuned parton-shower
parameters developed by the Sherpa authors.

Electroweak production of a diboson in association with two jets (V V jj)
was simulated with the Sherpa 2.2.2 [68] generator. The LO-accurate matrix
elements were matched to a parton shower based on Catani–Seymour dipole
factorisation [71, 79] using the MEPS@LO prescription [75, 76, 77, 78]. Samples
were generated using the NNPDF3.0nnlo PDF set [69], along with the dedicated
set of tuned parton-shower parameters developed by the Sherpa authors.

The production of triboson (V V V ) events was simulated with the
Sherpa 2.2.1 [68] generator. Matrix elements accurate to LO in QCD for
up to one additional parton emission were matched and merged with the Sherpa
parton shower based on Catani–Seymour dipole factorisation [71, 79] using the
MEPS@LO prescription [75, 76, 77, 78]. Samples were generated using the
NNPDF3.0nnlo PDF set [69], along with the dedicated set of tuned parton-
shower parameters developed by the Sherpa authors.

4.3.5.2 V +jets

Diagrams showing examples of SM V+jets production processes are given in
Figure 4.17.

CA 1 & 2 The production of a vector boson (W or Z) in association with
hadronic jets have also been simulated with the Sherpa 2.2.0 and 2.2.1 genera-
tors [68], for CA 1 and CA 2, respectively..

Massive b- and c-quarks have been used in the simulations to improve the
treatment of vector boson production with associated jets containing b- or
c-hadrons.

The matrix elements have been calculated with the Comix [71] and Open-
Loops [72, 73, 74] generators, and merged with the Sherpa parton shower using
the ME+PS@NLO prescription [75, 76, 77, 78]. Matrix elements with up to
two additional partons were calculated at NLO, whereas up to four additional
partons were calculated at LO. Global k-factors3 were applied to normalize the

3k-factors are scale factors that correct the cross-section used in the event generation to a
higher order of perturbation theory. They are ratios that typically take an LO cross-section
to NLO-precision, k ≡ σNLO/σLO, or from NLO to NNLO precision, k ≡ σNNLO/σNLO. The
latter is the case for the V+jets samples considered here.
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Figure 4.17: Diagrams of SM V+jets production. V denotes an EW vector
boson (W or Z). A quark marked with a prime, indicates that the quark may
be of a different quark flavor compared with a non-primed quark, depending on
the actual vector bosons involved in the process.

QCD cross-sections to next-to-next-to-leading order (NNLO).

CA 3 & MVA The production of V+jets was simulated with the Sherpa 2.2.1 [68]
generator using next-to-leading-order (NLO) matrix elements (ME) for up to
two partons, and leading-order (LO) matrix elements for up to four partons
calculated with the Comix [71] and OpenLoops [72, 73, 74] libraries. They
were matched with the Sherpa parton shower [79] using the MEPS@NLO
prescription [75, 76, 77, 78] using the set of tuned parameters developed by
the Sherpa authors. The NNPDF3.0nnlo set of PDFs [69] was used and the
samples were normalised to NNLO prediction [80].

Electroweak production of ``jj, `νjj and ννjj final states was simulated
with Sherpa 2.2.1 [68] using leading-order (LO) matrix elements with up to two
additional parton emissions. The matrix elements were merged with the Sherpa
parton shower [79] following the MEPS@LO prescription [78] and using the set
of tuned parameters developed by the Sherpa authors. The NNPDF3.0nnlo
set of PDFs [69] was employed. The samples were produced using the VBF
approximation, which avoids overlap with semileptonic diboson topologies by
requiring a t-channel colour-singlet exchange.

4.3.5.3 Top-quark processes

Diagrams showing examples of SM tt̄ and single top quark production processes
are given in Figure 4.18 and 4.19, respectively.

CA 1 & 2 Production of tt̄ and single-top in the tW -channel have been done with
the Powheg Box v2 [81, 82, 83, 84] generator, using the NNPDF3.0NLO [69]
PDF set, with parton showering done by Pythia 8.186. The mass of the top quark
was taken to be 172.5 GeV. The tt̄ events were normalized to NNLO+next-to-
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Figure 4.18: Diagrams of SM tt̄ production.
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Figure 4.19: Diagrams of SM single top production. A quark marked with a
prime, indicates that the quark is of a different quark flavor compared with a
non-primed quark.

next-to-leading-logarithm (NNLL) QCD cross-sections, whereas the tW events
were normalized to NLO+NNLL cross-section.

The tt̄V and tt̄WW processes were generated at LO using the
MadGraph5_aMC@NLO v2.2.2 [57] generator, which was interfaced to Pythia
8.186 [58] for parton showering, hadronization and description of the underlying
event, with up to two (tt̄W ), one (tt̄Z) or no (tt̄WW ) additional partons included
in the matrix elements. MadGraph was also used to simulate the tZ, tt̄t and
tt̄tt̄ processes. The NNPDF2.3LO [60] PDF set was used along with the A14
set of tuned parameters [59]. Events containing these top quark processes were
normalized to their corresponding NLO cross-sections, apart from tZ and tt̄
which were normalized to their LO generator cross-sections.

CA 3 & MVA The production of tt̄ events was modelled using the
Powheg Box v2 [81, 83, 84, 85] generator at NLO with the NNPDF3.0nlo [69]
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PDF set and the hdamp parameter4 set to 1.5mtop [86]. The events were in-
terfaced to Pythia 8.230 [87] to model the parton shower, hadronisation, and
underlying event, with parameters set according to the A14 tune [88] and using
the NNPDF2.3lo set of PDFs [60]. The decays of bottom and charm hadrons
were performed by EvtGen 1.6.0 [89].

The associated production of top quarks with W bosons (tW ) was modelled
by the Powheg Box v2 [81, 83, 85, 90] generator at NLO in QCD using the
five-flavour scheme and the NNPDF3.0nlo set of PDFs [69]. The diagram
removal scheme [91] was used to remove interference and overlap with tt̄ produc-
tion. The related uncertainty was estimated by comparison with an alternative
sample generated using the diagram subtraction scheme [86, 91].The events were
interfaced to Pythia 8.230 [87] using the A14 tune [88] and the NNPDF2.3lo
set of PDFs [60].

Single-top t-channel production was modelled using the Powheg Box v2 [81,
83, 85, 92] generator at NLO in QCD using the four-flavour scheme and the
corresponding NNPDF3.0nlo set of PDFs [69]. The events were interfaced
with Pythia 8.230 [87] using the A14 tune [88] and the NNPDF2.3lo set of
PDFs [60].

Single-top s-channel production was modelled using the Powheg Box v2 [81,
83, 85, 93] generator at NLO in QCD in the five-flavour scheme with the
NNPDF3.0nlo [69] parton distribution function (PDF) set. The events were
interfaced with Pythia 8.230 [87] using the A14 tune [88] and the NNPDF2.3lo
PDF set.

The production of tt̄V events was modelled using the
MadGraph5_aMC@NLO 2.3.3 [57] generator at NLO with the NNPDF3.0nlo
[69] parton distribution function (PDF). The events were interfaced to
Pythia 8.210 [87] using the A14 tune [88] and the NNPDF2.3lo [69] PDF set.
The decays of bottom and charm hadrons were simulated using the EvtGen 1.2.0
program [89].

The production of tZq events was modelled using the
MadGraph5_aMC@NLO 2.3.3 [57] generator at NLO with the NNPDF3.0nlo
[69] parton distribution function (PDF). The events were interfaced with
Pythia 8.230 [87] using the A14 tune [88] and the NNPDF2.3lo [69] PDF set.

The production of tWZ events was modelled using the
MadGraph5_aMC@NLO 2.3.3 [57] generator at NLO with the NNPDF3.0nlo
[69] parton distribution function (PDF). The events were interfaced with
Pythia 8.212 [87] using the A14 tune [88] and the NNPDF2.3lo [69] PDF set.
The decays of bottom and charm hadrons were simulated using the EvtGen 1.2.0
program [89].

4The hdamp parameter is a resummation damping factor and one of the parameters that
controls the matching of Powheg matrix elements to the parton shower and thus effectively
regulates the high-pT radiation against which the tt̄ system recoils.

67



4. 13 TeV pp data collected by the ATLAS detector

V ∗

q

q̄′

H

V

(a) Higgs strahlung

t

t

t̄

g

g

H

(b) Gluon-gluon fusion

V

V

q

q

q′

H

q′

(c) Vector boson fusion

t

t

g

g

t̄

H

t

(d) tt̄H

Figure 4.20: Diagrams of SM Higgs production. V denotes an EW vector boson
(W or Z), where a superscript star indicates that the vector boson needs to be
virtual and off mass shell, in order to produce its subsequent decay products. A
quark marked with a prime, indicates that the quark may be of a different quark
flavor compared with a non-primed quark, depending on whether the vector
boson involved in the process is a Z or a W .

4.3.5.4 Higgs

Diagrams showing examples of SM Higgs production processes are given in
Figure 4.20.

CA 1 & 2 Production of processes involving the Higgs boson, including gluon-
gluon fusion, associated V H production and vector boson fusion, have been
generated with Powheg Box v2 [81, 82, 83, 94] and Pythia 8.186 [58]. The
resulting events were normalized to cross-sections calculated at NNLO with soft
gluon emission effects added at NNLL accuracy.

tt̄H production was simulated with MadGraph5_aMC@NLO v2.3.2 [57] and
Pythia 8.186, and the corresponding events normalized to their NLO cross-
sections.
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All of the aforementioned processes have been produced with the Higgs boson
mass at 125 GeV.

CA 3 & MVA Higgs boson production via gluon–gluon fusion was simulated at
next-to-next-to-leading-order (NNLO) accuracy in QCD using Powheg Box v2
[81, 83, 85, 95, 96]. The simulation achieved NNLO accuracy for arbitrary
inclusive gg → H observables by reweighting the Higgs boson rapidity spectrum
in Hj-MiNLO [97, 98, 99] to that of HNNLO [100]. The PDF4LHC15nnlo
PDF set [101] and the AZNLO tune [102] of Pythia 8 [87] were used.

The gluon–gluon fusion prediction from the Monte Carlo samples was nor-
malised to the next-to-next-to-next-to-leading-order cross-section in QCD plus
electroweak corrections at next-to-leading order (NLO) [103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 113]. The decays of bottom and charm hadrons were
performed by EvtGen [89]. The normalisation of all Higgs boson samples
accounts for the decay branching ratio calculated with HDECAY [114, 115, 116]
and Prophecy4f [117, 118, 119].

Higgs boson production via vector-boson fusion was simulated with
Powheg Box v2 [81, 83, 85, 94] and interfaced with Pythia 8 [87] for par-
ton shower and non-perturbative effects, with parameters set according to the
AZNLO tune [102]. The Powheg Box prediction is accurate to next-to-leading
order (NLO) and uses the PDF4LHC15nlo PDF set [101]. It was normalised to
an approximate-NNLO QCD cross-section with NLO electroweak corrections [120,
121, 122]. The decays of bottom and charm hadrons were performed by Evt-
Gen [89]. The normalisation of all Higgs boson samples accounts for the decay
branching ratio calculated with HDECAY [114, 115, 116] and Prophecy4f [117,
118, 119].

Higgs boson production in association with a vector boson was simulated
using Powheg Box v2 [81, 83, 85, 94] and interfaced with Pythia 8 [87] for
parton shower and non-perturbative effects. The Powheg Box prediction is
accurate to next-to-leading order for V H boson plus one-jet production. The
loop-induced gg → ZH process was generated separately at leading order. The
PDF4LHC15nlo PDF set [101] and the AZNLO tune [102] of Pythia 8 [87] were
used. The decays of bottom and charm hadrons were performed by EvtGen [89].
The Monte Carlo prediction was normalised to cross-sections calculated at NNLO
in QCD with NLO electroweak corrections for qq̄/qg → V H and at NLO and
next-to-leading-logarithm accuracy in QCD for gg → ZH [123, 124, 125, 126, 127,
128, 129]. The normalisation of all Higgs boson samples accounts for the decay
branching ratio calculated with HDECAY [114, 115, 116] and Prophecy4f [117,
118, 119].

The production of tt̄H events was modelled using the Powheg Box v2 [81,
83, 84, 85, 130] generator at NLO with the NNPDF3.0nlo [69] PDF set. The
events were interfaced to Pythia 8.230 [87] using the A14 tune [88] and the
NNPDF2.3lo [69] PDF set. The decays of bottom and charm hadrons were
performed by EvtGen 1.6.0 [89].
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4.3.6 b/c-hadrons and pile-up

CA 1 & 2 For all MC events, except those produced by Sherpa, the Evt-
Gen 1.2.0 [89] program was used to simulate the properties of the b- and c-
hadrons.

The effects of additional pp collisions in the same bunch crossing (in-time
pile-up) and in neighboring bunch crossings (out-of-time pile-up) were simulated
using the soft QCD processes of Pythia 8.186 [58] with the A2 [131] tune and
the MSTW2008LO [132, 133].

CA 3 & MVA The effect of multiple interactions in the same and neighbouring
bunch crossings (pileup) was modelled by overlaying the simulated hard-scattering
event with inelastic proton–proton (pp) events generated with Pythia 8.186 [58]
using the NNPDF2.3lo set of parton distribution functions (PDF) [60] and the
A3 set of tuned parameters [134].

4.4 Fake and non-prompt lepton backgrounds

The background sources described so far, where the final-states consist of exactly
the same particle content as the signal of interest, we refer to as irreducible
backgrounds. There are, however, other SM processes which do not truly produce
the same final-state as the signal, but still end up being measured or reconstructed
that way. For final-states with leptons, which is the focus of this thesis, this
can be caused either by (i) hadronic jets being interpreted as leptons by the
object reconstruction, so-called fake leptons, or (ii) additional leptons arising
from so-called non-prompt processes, e.g., final-states with semi-leptonic decays
of heavy flavor hadrons or photon conversion to an e+e−-pair. These fake and
non-prompt (FNP) lepton backgrounds are referred to as reducible backgrounds,
as we can reduce their contribution by improving the quality of the measurements
or the reconstruction algorithms.

The sources of FNP leptons have been known to be sub-optimally modeled
by MC in the past, and we therefore use data-driven estimates for these sources
of background instead. The so-called Matrix Method (MM) [135] is used to
calculate FNP weights to reflect the expected contributions from three different
FNP sources: (i) photon conversion to an e+e−-pair, (ii) semi-leptonic decays of
heavy-flavor hadrons and (iii) mis-identification of light-flavor jets as electrons,
to each of the signal regions.

The FNP weights are applied to the observed data, event by event, according
to the event characteristics, and the resulting event yields are added to the
background estimates.

4.5 Reconstruction and selection of events and objects

The events and the particles/objects are reconstructed in exactly the same way
for both data and MC. Given the detector signals, the ATLAS reconstruction
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software performs various forms of pattern recognition in order to link measure-
ments from different sub-detector layers together, and form particle tracks and
energy clusters arising from single particles/objects. Based on the reconstructed
particle tracks and energy deposits, the software is then able to infer the particle
identity and kinematic features of each object.

4.5.1 Events

The term event, in the context of particle collisions, refers to measurements taken
in a time interval that contains only one bunch crossing. After particle tracks
have been reconstructed, interaction points/vertices are also reconstructed based
on where collections of tracks point back to the beam line. We have seen that
during the LHC Run 2, the average number of interactions per bunch crossing
was 33.7. This means that about 34 such interaction vertices were on average
reconstructed per event.

For physics analysis, we only consider particles coming from a single interac-
tion vertex per event. This vertex is chosen to be the one with the highest sum
of associated track pT squared,

∑
p2

T, and is called the primary vertex. In order
for an event to make it into the event selection, we require that it has a primary
vertex with at least two associated tracks of pT > 400 MeV each.

4.5.2 Baseline objects

We define two categories of quality criteria for the physics objects, such as
electrons, muons and hadronic jets. These are referred to as (i) baseline objects,
which are primarily used to estimate the so-called fake and non-prompt lepton
contributions, and (ii) signal objects, which is a subset of the baseline objects
and satisfy stronger quality requirements. The objects need to satisfy the signal
requirements in order to make it into the final analysis selections.

4.5.2.1 Baseline electrons

Baseline electrons are reconstructed from isolated calorimeter deposits, which
are matched to inner detector (ID) tracks. They need to satisfy pT > 10 GeV,
have been measured with pseudorapidity |η| < 2.47, and satisfy the Loose
likelihood-based identification working point (WP), described in [136, 137].

4.5.2.2 Baseline muons

Baseline muons are reconstructed from muon spectrometer (MS) tracks that
satisfy |η| < 2.7 and are matched to ID tracks. They must have pT > 10 GeV
and satisfy the Medium muon identification WP, described in [138]. The latter
is based on the number of hits and curvature measurements in the ID and MS
systems.
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4.5.2.3 Baseline jets

For reconstruction of hadronic jets, the anti-kt algorithm [139], as implemented
in the FastJet package [140], is used. The jets considered in this thesis are
reconstructed from three-dimensional energy clusters [141] in the calorimeter
within a cone of radius R = 0.4. In order to pass the baseline jet criteria, the
jets must have pT > 20 GeV and have been measured within |η| < 4.5.

In order to reduce effects from pile-up, jets with pT < 60 GeV and |η| < 2.4
must have a significant fraction of their associated tracks compatible with coming
from the primary vertex. We make this decision based on the score given to
each jet by the multivariate Jet Vertex Tagger [142]. Additionally, the expected
average energy contribution from pile-up jets is subtracted off the jet energies,
according to the jet areas [143]. Events are also dropped if they contain any
jet which is failing basic quality criteria or are identified to come from noise or
non-collision background.

4.5.2.4 Baseline b-jets

A multivariate discriminant, called MV2c10 [144, 145], identifies jets that contain
b-hadrons, making use of information about track impact parameters and recon-
structed secondary vertices. This procedure is referred to as b-tagging, and we
here use an identification requirement that correspond to 77% average efficiency
for b-jet identification in simulated tt̄ events. Apart from being b-tagged, the
baseline b-jets also need to satisfy the regular baseline jet requirements.

4.5.2.5 Baseline photons

Photons do not leave tracks, as they are not electrically charged, but they
are instead reconstructed from the energy they deposit in the electromagnetic
calorimeters. In order to satisfy the baseline photon requirements, they must pass
criteria of the Tight identification WP, described in [146, 147], have pT > 25 GeV
and |η| < 2.37, but excluding the transition/crack region 1.37 < |η| < 1.52,
where the calorimeter performance is degraded.

4.5.2.6 Overlap removal

After all the baseline objects have been identified, we need to check for possible
double-counting of objects. The overlap removal procedure is explained step-by
step, in the order it is applied, below:

1. An electron sharing an ID track with a muon is removed.

2. If a b-tagged5 jet is within ∆R = 0.2 of an electron candidate, the electron
is rejected, as it is likely coming from a semi-leptonic b-hadron decay.
Otherwise, if the jet which is within ∆R = 0.2 of the electron candidate

5The overlap removal procedure uses the 85% efficiency working point of the MV2c10
algorithm.
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is not b-tagged, the jet is rejected, as it is likely coming from an electron-
induced shower.

3. Electrons within ∆R = 0.4 of a remaining jet candidate are discarded, in
order to further suppress semi-leptonic decays of b- and c-hadrons.

4. Jets with a nearby muon that carries a significant fraction of the transverse
momentum of the jet6 are discarded either if the muon candidate is within
∆R = 0.2 of the jet or if the muon is matched to a track associated with
the jet. Only jets with less than three associated tracks can be discarded
in this step.

5. Muons within ∆R = 0.4 of a remaining jet candidate are discarded, to
suppress muons from semi-leptonic decays of b- or c-hadrons.

4.5.3 Signal objects

In addition to the baseline object requirements, the signal objects also need to
satisfy the criteria described below.

4.5.3.1 Signal electrons

Signal electrons must satisfy the Medium likelihood-based identification WP,
as well as the Tight isolation WP [136, 137] in order to reduce contributions
from fake and non-prompt electrons. The track associated with the electron
must have a transverse impact parameter (with respect to the primary vertex),
d0, of d0/σ(d0) < 5, with σ(d0) being the uncertainty in d0. There is also a
requirement on the longitudinal impact parameter of the electron track (with
respect to the primary vertex), z0, of |z0 sin θ| < 0.5 mm. The impact parameters
d0 and z0, along with other quantities involved in the perigee parametrization
used in track reconstruction, are illustrated in Figure 4.21.

4.5.3.2 Signal muons

Signal muons must satisfy |η| < 2.4, in addition to the Tight isolation WP
defined in [138]. They also need to fulfill the following requirements on the
impact parameters of the associated tracks: d0/σ(d0) < 3 and |z0 sin θ| < 0.5 mm.

4.5.3.3 Signal jets

In addition to the requirements described for baseline jets, the signal jets also
need to satisfy |η| < 2.4. The same goes for b-tagged jets.

6pµT > 0.7
∑

pjet tracksT , where pµT and pjet tracksT are the transverse momenta of the muon
and the tracks associated with the jets, respectively.
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Figure 4.21: A schematic involving the five perigee parameters used in track
reconstruction: the transverse impact parameter, d0, the longitudinal impact
parameter, z0, the azimuthal angle, φ0, of the track at the point (d0, z0), the polar
angle of the track, θ, and the signed charge over momentum, q/p, representing
the direction of curvature [148].

4.5.4 Missing transverse energy

The missing transverse energy, Emiss
T , is the magnitude of the negative vector

sum of the transverse momenta of all the reconstructed objects (electrons, muons,
photons and jets), in addition to the soft (low pT) tracks which are associated
with the primary vertex, but not with a reconstructed physics object. The Emiss

T
is calculated using the physics objects after they have been calibrated. See
section 3.2.2.1 for a more formal definition of missing transverse energy.

4.5.5 Triggers

In order to select relevant collision events that have two high-pT leptons, we
require the events to have fired one of the unprescaled7 dilepton triggers. This
includes dielectron, dimuon and electron-muon triggers, both symmetric and

7In practice, there is a limit to the rate at which we can read out and store the full
information about the collision events. In cases where the selection criteria of certain triggers
are too inclusive, i.e., would read out too much data too often, we can apply prescaling to
the relevant triggers. E.g., a trigger with a prescale factor of 1/10, only stores one out of ten
events which fire the trigger in question. In that way, we can still make use of the trigger
selection. However, we lose the full event information about nine out of ten events, and we
need to multiply the resulting event rate by 10 to obtain the actual number of events which
have fired the trigger. By only making use of unprescaled triggers, we have the full information
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asymmetric in the pT-thresholds of the 1st and 2nd lepton, in the range from
8 to 22 GeV. Since the triggers are not fully efficient starting from the online
pT-threshold (the threshold required for the event to be stored in the first place),
we apply a so-called offline pT-cut on top (at the analysis level) to ensure that
the trigger efficiencies have reached their maximum values (the trigger efficiency
plateau).

In the analysis targeting χ̃±1 χ̃∓1 production (Chapter 6), the offline pT-
thresholds are set to 25 and 20 GeV for the pT-leading and -sub-leading leptons,
respectively, whereas the analyses targeting χ̃±1 χ̃0

2 production (Chapter 7 and
8), require both the leading and sub-leading leptons to satisfy pT > 25 GeV.

For more general information about the trigger and data acquisition (TDAQ)
system, see section 4.2.1, and for lists of the specific triggers used in the different
years of data taking, see Appendix B.

4.5.6 Scale factors

The efficiencies of the signal lepton triggers, reconstruction, identification, iso-
lation and b-tagging may differ slightly between data and MC. Therefore we
apply scale factors, SF s, to the MC event weights, for each of the procedures
mentioned above, that correct for these discrepancies. The scale factor for a
specific quantity is determined as the ratio of efficiency measured in data, εdata,
to the efficiency found in simulated events, εMC,

SFi ≡
εi,data

εi,MC
, (4.1)

where i represents an index in the set of measured and reconstructed quantities
mentioned above.

about all events that fire the trigger, which avoids blowing up the statistical uncertainties
related to the application of prescale factors.
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Chapter 5

Analysis workflow

This second part of the thesis presents searches for supersymmetic particles
in the data recorded by the ATLAS detector during the LHC Run 2. As a
member of the ATLAS collaboration, I was part of an international working
group searching for electroweak production of sparticles in final states with two
leptons. The various tasks of the analyses were distributed among the team
members, where progress was presented and discussed in weekly working group
meetings.

In the chapters that follow, I will mainly focus on the parts of the analyses
that I contributed to myself, which center on estimation of expected signal
sensitivity with a given integrated luminosity, and definition of signal regions
that optimize the sensitivity to particluar SUSY scenarios. Since the analyses
presented in this thesis follow more or less the same workflow from start to finish,
this first analysis chapter aims to give an overview of the main steps taken by a
full, conventional analysis chain, before the actual work is presented in Chapter 6
through 9.

5.1 Signal model

The first step is to decide on which signal to look for. In our case, we wanted
to investigate whether charginos and/or neutralinos have been produced in the
proton-proton collisions. We then need to know how to recognize these particles
in the data, i.e., the signature we expect them to produce in the detectors.

In the case of the Minimal Supersymmetric Standard Model (MSSM), there
are more than 100 free parameters, which affect the composition of the charginos
and neutralinos, their lifetimes, how they decay, etc. This practically makes
it intractable to explore all the possibilities in which SUSY can be realized in
nature. Therefore, we need to make some simplifying assumptions on the values
of the parameters and/or relations between them, in order to reduce the number
of free parameters to a more feasible set. Typically, we design and optimize
searches for so-called simplified models. The analyses presented in this thesis
consider simplified models where the decay chains of the sparticles are fully
determined, and the only two free parameters of the models are the mass of
the sparticles produced in the proton collision, which are assumed to be the
next-to-lightest SUSY particles (NLSPs), and the mass of the lightest SUSY
particle (LSP). Another alternative could be to fix the LSP mass (e.g., a massless
LSP), and consider the branching fraction for NLSP decays to different SM
particles as a free parameter instead.

If a given simplified model has a decay chain that allows different lepton or
jet multiplicities (number of particles/objects) in the final state, searches will
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typically also be carried out separately for each final state multiplicity.

5.2 Optimization of expected signal sensitivity

Once we know the signal model we are searching for and what kind of signatures
it is expected to leave in the detectors, we can start to define a set of object and
event selection criteria that optimize the sensitivity to the signal in question.
Effectively, we want to increase the “signal-to-noise” ratio, where SM background
processes that produce the same final state particles/objects as the signal, take
the role of the “noise” in the event selection.

5.2.1 Monte Carlo

In this thesis, all sensitivity and signal region optimization studies are carried out
using background estimates taken purely from Monte Carlo (MC) simulations.
For the final statistical analysis, however, we can get more accurate modeling for
some of the background contributions, such as the fake and non-prompt lepton
backgrounds, using data-driven methods. But the data-driven estimates require
a lot more work, compared to taking the estimates straight from simulation,
and therefore MC samples are much more convenient to use when searching for
approximately optimal event and object selections.

The way we optimize the signal sensitivity is to look at histograms of simulated
event variables, such as the lepton and jet multiplicities, their transverse momenta,
their combined masses, their angular separations, and so on, and identify variables
that behave differently for signal and background. E.g., SUSY signal events
typically tend to have higher values of missing transverse energy compared to
the SM background processes. By requiring that the events have large Emiss

T , we
can effectively cut away most of the background events and still keep most of
the signal events.

5.2.2 Expected significance

The figure of merit that we want to optimize is the signal sensitivity or expected
significance of measuring a signal-induced excess of events on top of the SM
background. Given an expected number of background and signal events, B and
S, respectively, the significance is a measure of how consistent, or rather how
inconsistent, a measurement of S +B is with the background-only hypothesis,
where S = 0, given an estimated uncertainty on the number of background
events.

In the final statistical analysis, we use a profile likelihood ratio test statistic,
and may run pseudo-experiments in order to map out the expected test-statistic
distribution for repeated experiments. However, in the process of optimizing the
signal regions, it is overly tedious to search for optimal cuts by re-running the
full statistical calculation every time we try a new selection or cut. Instead, we
make use of a heuristic function to estimate the approximate significance, which
is considered a satisfactory compromise for this purpose.
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Optimization of expected signal sensitivity

The heuristic function we make use of is called BinomialExpZ1 [149, 150, 151],
as implemented numerically in RooStats [153], and takes three input arguments:
the expected number of signal (S) and background (B) events, along with the
relative uncertainty on the background (∆B/B) in the signal region. This method
assumes the background uncertainty has a Gaussian distribution, and we choose
a flat 30% systematic uncertainty as a rough, conservative estimate in all studies,
i.e., ∆B/B = 0.3. The function calculates a significance, or Z-value, in one-tailed
Gaussian standard deviations, from a hypothesis test of background-only vs.
signal-plus-background. In References [149, 150, 151], this is referred to as the
ZN-value, where the subscript N refers to the normal (Gaussian) distribution
assumed for the mean background estimate B.

Analytically, we may express the calculation of the Z-value as follows:

ZN(S,B,∆B/B) =
√

2 erf−1(1− 2pN), (5.2)

where erf is the error function, and the pN-value is calculated by

pN =
∫ ∞

0
dbG(b;B,∆B)

∞∑
n=S+b

P (n; b), (5.3)

where G(b;B,∆B) denotes a Gaussian distribution with expectation value B
and standard deviation ∆B, and P (n; b) denotes a Poisson distribution with
expectation value b. The sum calculates the p-value of a Poisson distribution
for values equal to or more extreme than n = S + b, where there essentially is a

1The term binomial in BinomialExpZ is derived from the so-called “on/off” problem in
gamma-ray astronomy, which in HEP is encountered when we have a number of signal-plus-
background events in a signal region, SR (“on signal source”), and a number of background-
only events in a signal-free or sideband/control region, CR (“off signal source”) [149, 150,
151]. The joint probability P (non, noff;µon, µoff) for a given measurement of non and noff
events in the two regions can either be modeled as a product of Poisson probabilities with
separate expectation values µon and µoff, or alternatively as a product of a combined Poisson
probability with expectation value µtot = µon + µoff for measuring the total yield ntot, with a
binomial probability characterized by the ratio of the two Poisson means, λ ≡ µoff/µon. The
binomial parameter, i.e., the probability of an event falling into the SR or on-region, is then
ρ = µon/µtot = 1/(1 + λ). Under the background-only hypothesis, i.e., µon = µS + µB = µB ,
we get λ = µoff/µB ≡ τ . Since all information about the on/off-division of events is captured
in the binomial probability, the p-value for the test of the background-only hypothesis can be
calculated as a one-tailed binomial probability sum:

pBi =
ntot∑
j=non

Bi(j|ntot; ρ). (5.1)

RooStats calculates this sum numerically by use of the incomplete beta function [152].
Using the relation that τ = µoff/µB , where the point estimates of µoff and µB can be

expressed as noff and µ̂B = B, with uncertainties √noff and ∆B, respectively, we now have a
relation between the formulation of the on/off problem in terms of τ and the “Gaussian-mean
background” problem in terms of the relative uncertainty ∆B/B, namely τ = B/(∆B)2. This
is in fact what the BinomialExpZ function does internally. It translates the relative background
uncertainty to a value for τ , and calculates the p-value, pN = pBi, in terms of the incomplete
beta function.
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Bayesian integral over a Gaussian prior on the expected background yield B, over
all possible background yields b. Numerically, the Poisson sum is calculated by
use of the regularized, incomplete beta function [152], which allows non-integer
values for S and b, which is frequently encountered when using scaled MC events
to estimate expected event yields.

The convention in HEP is to exclude signal models at 95% C.L. The Z-value
obtained from BinomialExpZ is strictly speaking an estimate of the expected
“discovery significance” (Zdisc), i.e., how consistent S+B is with B-only, given an
estimate of the uncertainty in the background, ∆B. In order to evaluate exclusion
potential (Zexcl), assuming no excess above B, we would instead need to consider
how consistent B-only is with S + B, given an estimate of the uncertainty
in the signal-plus-background yield, ∆(S + B). Under the assumption that
∆(S +B) ≈ ∆B, we may consider the Z-value as a rough estimate of expected
exclusion significance as well. This assumption may not always hold in practice,
but in general the Z-value has proven to also be a useful measure of exclusion
sensitivity, which is shown in comparisons of expected exclusion limits, obtained
from Z-values, with the observed exclusion limits presented in Chapter 6 and 7.

The 95% percentile of a one-tailed Gaussian deviation translates to Z ≈ 1.64.
Thereby, we roughly expect to be able to exclude signal hypotheses (sparticle
masses) at 95% C.L. (p-value ≤ 0.05) if the Z-value exceeds 1.64.

5.2.3 Signal regions

Since the event kinematics may vary quite a bit for different signal hypothesis,
most notably w.r.t. the size of the mass-difference (or mass-splitting) between
the sparticles involved in the simplified model, we optimize multiple sets of event
selection which target different mass-splitting regions. We typically start by
defining a selection that optimizes our sensitivity to large mass-splittings, or the
high-mass region in terms of the pair-produced particles we can reach, where the
production cross-section for the sparticles is the limiting factor rather than the
mass-splitting itself. To cover the opposite case, we also design a selection which
targets small mass-splittings, or the low-mass region, where low-pT objects in
the final state is the limiting factor. The overlap between the two regions also
shows behavior that is different compared to each of the two extremes, so a third
set of selections is designed, called the intermediate-mass region, to cover the
transition between the low-pT and high-pT final state regimes.

Additionally, we may also add a category to select events with initial state
radiation, where one of the incoming protons radiate a jet or a gluon that
recoils against the rest of the event, and can boost the final state objects of
small mass-splitting scenarios to higher transverse momenta. Such a selection is
considered for the analysis in Chapter 7.

Yet another event selection may be defined to target off-shell decays of the
next-to-lightest supersymmetric particle (NLSP) to the LSP, where the mass of
an intermediate particle is too heavy to be produced in the given model, but
can still contribute via suppressed off-mass-shell production. This scenario is
considered in the analysis presented in Chapter 8.
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Each such set of selection criteria, which is used to optimize the sensitivity
to a certain signal scenario, we call a signal region, or SR for short.

5.3 Background modeling

When we have defined a set of signal regions, we want to make sure that we
have modeled the background in these regions sufficiently well.

5.3.1 Control regions

To this end, we define control regions, or CRs, from a trade-off of three main
objectives: (i) to select events dominated by a specific background process, (ii)
to be reasonably close to the SR(s), but at the same time have negligible signal
contamination, and (iii) to have high statistics (large number of events) in order
to constrain the background normalization of a given process in the SR(s). We
usually make dedicated CRs for the main background processes in each SR.

Then, we fit normalization factors for the main backgrounds to the experimen-
tal data in the CRs and SRs simultaneously, to correct for possible mis-modeling
in the normalization of these backgrounds. Another advantage of doing such
a fit, is the cancellation of a number of systematic uncertainties related to the
normalization of the backgrounds.

5.3.2 Validation regions

After the simultaneous fit of the background to data in the CRs and SRs, the
resulting background estimates are extrapolated to and validated in regions
closer to the SRs. These are called validation regions or VRs. After validation,
the background estimates from the CRs are finally extrapolated to the SRs.

In cases where a specific background process is found to be sufficiently well
modeled, either directly from MC (e.g., with normalization factors consistent
with 1 within uncertainties) or by construction from a data-driven estimate, we
may skip the fit to data in a CR, and simply validate the background modeling
in a VR directly.

5.3.3 Data-driven estimates

If the shapes of the background distributions in MC are not matching the
corresponding distributions in data closely enough, we may instead need to use
data-driven methods to extract the shapes of the distributions directly from
the experimental data. This can be done by defining CRs dominated by the
background process in question, using appropriate methods to estimate the sizes
and shapes of the background contributions in the regions and subtract off any
contamination in the CRs from other backgrounds that we are more confident in
the modeling of (e.g., from MC). Then we take the remainder as our data-driven
estimate of this background. The CR estimates are then extrapolated to VRs
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to check the validity in regions which are independent from where they were
extracted, and finally they are extrapolated to the SRs.

5.4 Systematic uncertainties

In addition to statistical uncertainties on the number of events from limited-
sized datasets, there are also a number of other uncertainties which we refer
to as systematic uncertainties. We can broadly put them in three categories:
(i) experimental uncertainties related to the reconstruction and calibration of
experimental measurements, (ii) theoretical uncertainties on parameters that
enter the Monte Carlo simulations, and (iii) uncertainties from data-driven
background estimates.

5.4.1 Experimental uncertainties

A large number of systematic uncertainties arise all the way from resolution
effects in the various sub-detector systems, reconstruction of the momenta of
particle tracks from hits in multiple detector layers, the assignment of energy
deposits in the calorimeters to different reconstructed objects, calibration of the
energy of objects across different energy scales and sub-detectors, and so on.
Every type of reconstructed particle or object, such as electrons and photons,
muons, hadronic jets, taus and Emiss

T , have their associated uncertainties, which
we need to account for in the statistical analysis, in order to get results which
are as unbiased as possible.

So-called kinematic uncertainties, related to the reconstruction and calibration
of energy scale and resolution of the individual objects, are provided by combined
performance groups in terms of 1 σ up- and down-variations, which can be applied
to the analysis by the use of dedicated software tools. We produce one set of
analysis ntuples for each systematic variation, which then have propagated the
effect of the given systematic variation through to the final analysis output.

There are also uncertainties related to the reconstruction efficiencies of
different aspect of the events, such as particle identification, flavor tagging,
triggers, and so on, which can be applied as 1σ up- and down-variations in
terms of event weights. For these efficiency uncertainties, it suffices to store the
weights in the nominal (main) ntuple, without the need for an extra copy of the
ntuple for each variation.

See Section 8.5.1 for more details on the implementation in the full Run 2
analysis.

5.4.2 Theoretical uncertainties

In order to produce the MC simulations, we need to put in numbers for quantities
such as the parton distribution function (PDF) of the colliding protons, the
coupling strengths, the cross-sections for particles involved in the interactions,
etc., which are theoretical parameters with associated uncertainties. The cross-
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sections are, e.g., affected by which order in perturbation theory they have been
calculated to, and the renormalization and factorization used.

Estimates for 1σ up- and down-variations on the PDF, coupling strengths
and the renormalization and factorization scales are provided by the physics
modeling group in terms of event weights.

See Section 8.5.2 for more details on the implementation in the full Run 2
analysis.

5.4.3 Data-driven background modeling uncertainties

When we extract a background estimate directly from the data, we need some
way of quantifying the uncertainties on these estimates. This can, e.g., be done
by estimating the same background by two different data-driven methods, and
take the difference in the final estimates as the uncertainty on the method we
choose to use in the end. Another way of estimating the uncertainty is to vary the
control region selections systematically up and down, and take the corresponding
difference as a measure of the uncertainty on the data-driven background estimate.
One can also combine different sources/estimates of uncertainties in quadrature,
if several uncorrelated sources are expected to contribute.

5.5 Statistical analysis

For the final statistical interpretation we use the HistFitter framework [154],
which has become the primary tool for statistical data analysis in searches for
supersymmetry performed by ATLAS.

We supply HistFitter with the set of all analysis ntuples, including both
the nominal estimates and all the systematic variations, which in some cases
are given in terms of simple event weights to multiply the nominal estimates
with and in other cases in terms of additional ntuples. HistFitter then makes
histograms for each control, validation and signal region, before making use of
the HistFactory package to define probability density functions (PDFs) for these
regions.

The likelihood function used to do fits of the background to data in the
CRs and SRs, consists of a Poisson factor for each CR and SR, typically along
with factors putting Gaussian constraints on the nuisance parameters, the latter
representing the systematic variations in the fit. The fits are performed using
the RooFit [155] package.

Finally, HistFitter makes use of RooStats [153] to perform hypothesis tests,
first for checking the compatibility of the data with the background-only hypoth-
esis, and then, if no significant excess has been observed, for setting limits on the
signal model in question. The test statistic considered by the LHC experiments
is the profile likelihood ratio, where the CLs [156] method is used for the purpose
of exclusion. The calculations and interpretations of the hypothesis tests are
carried out in a frequentist fashion, i.e., by calculating frequentist test statistics
and p-values for the hypotheses.
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For more detailed information about the HistFitter analysis for the full Run
2 dataset, see Section 8.6.

5.6 Overview of analysis chapters

The following chapters present studies and results that are part of analysis efforts
performed by the ATLAS working group on searches for electroweak production of
sparticles in final states with two leptons. The results presented in Chapter 6 and
7 are sensitivity studies that each laid ground for respective ATLAS publications.
The analysis presented in Chapter 8 represents my contributions to an ATLAS
paper that was, at the time of writing, just recently published, whereas the
multivariate analysis presented in Chapter 9 is only considered a feasibility study,
and will not be part of an ATLAS publication.

The focus of these chapters will primarily be on the parts of the analyses that
I have been directly involved in myself. The main outcomes of the publications
will also be presented, but for a full review you will be referred to the respective
papers.

Chapter 6 describes the first study I was involved in, just after the start of
the LHC Run 2 in 2015. The task was to check if we expected to surpass our
sensitivity to chargino-pair production with decays via sleptons or sneutrinos into
two leptons and Emiss

T in the final state, with the luminosity we expected to have
for the summer conferences in 2016. This chapter therefore focuses mostly on
the sensitivity studies that led up to the following publication, but also presents
the final exclusion limits obtained for this signal model with 13.3 fb−1 of data.

Chapter 7 describes my next involvement, where I moved on to do a similar
sensitivity study, but then for chargino-neutralino production with decays via
SM gauge bosons into two leptons, two jets and Emiss

T in the final state, with
the luminosity we expected to have for the spring conferences of 2017. The work
also included optimization of the signal regions used in the previous iteration of
this analysis, to accommodate the larger amount of data. The published results
from the first two years of Run 2, which amounted to 36.1 fb−1 of data collected
by ATLAS, is also presented.

Chapter 8 describes the work I have done on the analysis of the full Run 2
dataset. The targeted signal model is again the chargino-neutralino production
with decays via SM gauge bosons into final states with two leptons, two jets and
Emiss

T . This time I was more involved in the whole process from maintaining
common analysis code, producing new MC samples, developing signal, control
and validation regions, to estimating the systematic unertainties and performing
the statistical interpretation in the end. Results corresponding to 139 fb−1 of
integrated luminosity are presented.

Finally, in Chapter 9, I describe a feasibility study on the use of machine
learning techniques in an attempt to increase the expected sensitivity to the same
simplified model as discussed in the two previous chapters, with the luminosity of
the Run 2 dataset. The studies only show expected sensitivity in the multivariate
analysis signal regions, and do only unblind data in loose validation regions.
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Chapter 6

Search for χ̃±1 χ̃
∓
1 production

At 10:40 in the morning on June 3, 2015, the LHC finally declared stable beams,
after the accelerator team and the associated experiments had spent the last
27 months making upgrades and preparations for proton-proton collisions at
the unprecedented center-of-mass energy of 13 TeV [157]. This marked the
start of the LHC Run 2 and the exploration of so far uncharted territory. The
approximate doubling of the collision energy, up from 7 and 8 TeV in Run 1,
gave hopes of discovering new and heavier particles, that had previously been
out of reach.

In particular, there was great anticipation tied to whether supersymmetric
particles would be discovered in this new energy range. From a naturalness
point of view, the supersymmetric partners of the heavier SM particles, like the
higgsino, wino, bino, stop and stau, are expected to be found at the TeV-scale
in order to keep the loop corrections to the higgs mass at an acceptable level.
Otherwise, SUSY would not be as natural and attractive a solution to the
hierarchy problem as many people in the community have hoped for. To many,
the LHC Run 2 is a make-or-break for whether supersymmetry is likely to be
realized in nature or not.

With these questions in the back of our minds, we began the search for signs
of supersymmetric signals in the fresh datasets, with anticipation and excitement.

6.1 Signal model

My first task was to look for production of chargino-pairs, χ̃±1 χ̃∓1 , decaying to the
lightest neutralino, χ̃0

1, via a charged slepton, ˜̀, or a sneutrino, ν̃. This process
leads to events with two leptons (electrons or muons) and missing transverse
energy, Emiss

T , in the final state – the latter arising because the neutrinos, ν, and
the χ̃0

1 will escape detection. A diagram of this process is shown in Figure 6.1.
The signal process we are looking for in this case is a simplified model, where

a set of restricting assumptions have been made on the masses and possible
decays of the sparticles involved. The chargino is assumed to be pure wino,
whereas the the lightest neutralino is taken to be pure bino and the lightest
SUSY particle. We assume that R-parity is conserved, which makes the χ̃0

1 stable
and unable to decay further to SM particles. The sleptons are taken to be the
superpartners of the left-handed leptons, i.e. ẽL, ν̃e,L, µ̃L and ν̃µ,L, with a mass
halfway between the χ̃±1 and the χ̃0

1, m˜̀L,ν̃L = (mχ̃±
1

+mχ̃0
1
)/2.
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Figure 6.1: Chargino-pair production with decays via sleptons or sneutrinoes
into two leptons and two lightest neutralinos.

6.2 Event and object selection

The event and object selections which are common to all analyses presented in the
thesis, were introduced in Section 4.5. There is, however, an additional selection
on forward jets used for the publication of the final analysis in Reference [158],
that is unique to this chapter, and is explained below. However, I did not apply
a selection on forward jets in my sensitivity studies.

As there are no hadronic jets involved in the hard-scatter process of this
simplified model, we would like to reject (veto) events with significant, high-pT
jet activity. Because we collide protons, there will to some extent always be
QCD-processes involved, be it elastic scattering or soft pileup-activity from other
quark, anti-quark and/or gluon interactions taking place in the same bunch
crossing. Therefore, we need to have a set of signal jet definitions as well, in
order to register whether high-pT jets most likely have been produced in the
hard-scatter event.

We define three categories of hadronic signal jets: (i) central light-flavor jets,
which correspond to the jet definitions in Section 4.5.2.3 and 4.5.3.3; (ii) central
b-jets, which correspond to the b-jet definitions in Section 4.5.2.4 and 4.5.3.3; and
unique to this analysis, a third category of (iii) forward jets, which means they
are measured in the forward regions of the ATLAS detector with 2.4 < |η| < 4.5,
and additionally need to satisfy pT > 30 GeV.

6.3 Sensitivity studies

As a member of the working group in ATLAS, searching for electroweak produc-
tion of SUSY particles in events with two or three leptons plus Emiss

T , my role
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was to investigate how sensitive we expected to be to chargino-pair production
with decays via sleptons, with the amount of data we expected to have in time
for the summer conferences in 2016. The outcome of this study would help us
understand whether we expected to surpass the sensitivity of Run 1 with the
data collected by ATLAS during the spring of 2016, or whether we would need
to wait for more data. It would essentially tell us whether this particular signal
model was worth pursuing for the first publication.

For these studies, we used Monte Carlo (MC) simulated samples both for
the signal process and for all relevant SM background processes that can give
two leptons in the final state. The MC samples are described in more detail in
Section 4.3.4 and 4.3.5, respectively.

The signal regions considered for these sensitivity studies are given in table 6.1,
and are based on the ones used in the previous 8 TeV-iteration of this analysis
[159]. This entails selecting events with two oppositely charged leptons, split in
two categories according to whether the two leptons are of the same lepton flavor,
e+e− or µ+µ− (SF), or of different lepton flavors, e+µ− or µ+e− (DF). The
reason for this separation is the distinct difference in background composition
between the two categories. In addition, the invariant mass of the two leptons,
m``, is required to not be within 10 GeV of the Z-mass, in order to reject leptons
from backgrounds involving Z-bosons, such as Z + jets, ZZ and WZ events.
Furthermore, a lower Emiss

T cut on 40 GeV throws away a significant part of the
SM backgrounds in general, while retaining most of the SUSY events, and finally
we also veto any signal jets. Then we are left with the so-called stransverse mass,
mT2, which is defined in Section 3.2.2.2.

The stransverse mass turns out to be the most sensitive variable to this
signal model. It is very efficient at rejecting background processes involving the
W -boson, like WW diboson production, and processes involving top quarks, like
single-top and tt̄ production, with subsequent t→W + b decays, since leptons
+ Emiss

T from a W -boson result in a characteristic kinematic endpoint at the
W -mass. The signal models, on the other hand, give rise to a similar endpoint
at values of mT2 equal to the mass-difference between χ̃±1 and χ̃0

1. This makes
the stransverse mass an excellent discriminant between signal and background
for mT2 > mW ≡ 80.4 GeV. For these studies, I consider four different regions
given by mT2 > 90, 120, 150 and 180 GeV, respectively, which target increasing
mass-differences between χ̃±1 and χ̃0

1.
Distributions of the variables that are involved in the signal region definitions

are shown for the same flavor leptons in Figure 6.2 through 6.5, and for different
flavor leptons in Figure 6.6. The red lines mark the cut-values, and the arrows
point towards the region(s) that are kept. The cuts are applied sequentially,
in the order the figures are shown, where the later figures have the cuts from
previous figures applied. E.g., the Emiss

T -distributions are shown after the cuts
on m`` have been applied, and so on.

At the time, we did not know how much data would be collected by the ATLAS
detector in time for the publication. I therefore show expected sensitivities for
two integrated luminosity scenarios: 6 fb−1 in Figure 6.7 and 10 fb−1 in Figure 6.8.
In each case, an approximate one-tailed Gaussian ZN-significance is shown on
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6. Search for χ̃±1 χ̃∓1 production

(a) e+e− (b) µ+µ−

(c) Enlarged legend. C1 is short for the
lightest chargino, χ̃±1 , where ”C1C1, (200,
150) GeV“ denotes the chargino-pair pro-
duction signal where the mass of the light-
est chargino is m

χ̃±
1

= 200 GeV and the
mass of the lightest neutralino (the LSP)
is mχ̃0

1
= 150 GeV.

Figure 6.2: SFOS leptons before cut on m``. The red lines indicate where the
cuts on m`` are going to be applied, and the arrows point towards the regions
that will be kept, i.e., the events between the red lines will be rejected.
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(a) e+e− (b) µ+µ−

Figure 6.3: SFOS leptons after cut on m`` has been applied. The red lines
indicate that we are going to make a cut at Emiss

T = 40 GeV, and the arrow
points towards the region (to the right of the line) that will be kept, i.e., we
keep events with Emiss

T > 40 GeV.

(a) e+e− (b) µ+µ−

Figure 6.4: SFOS leptons after the cuts on m`` and Emiss
T have been applied.

The red lines and arrows indicate that we are only going to keep events with no
signal jets.
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6. Search for χ̃±1 χ̃∓1 production

Table 6.1: Signal region definitions that target χ̃±1 χ̃∓1 production with decays
via sleptons to final-states with two opposite-sign (OS) leptons and missing
ET. There are separate selections for same-flavor (SF) and different-flavor (DF)
lepton events, i.e., e+e−/µ+µ− and e+µ−/µ+e−, respectively.

SR2`
leptons (e, µ) SFOS DFOS
|m`` −mZ | [GeV] > 10 −
Emiss

T [GeV] > 40
central light jets 0
mT2 [GeV] > 90, 120, 150, 180

(a) e+e− (b) µ+µ−

Figure 6.5: SFOS leptons after the cuts on m``, Emiss
T and the signal jet veto

have been applied. The red lines and arrows indicate the four cuts on mT2, which
make up four separate signal regions: (i) mT2 > 90 GeV, (ii) mT2 > 120 GeV,
(iii) mT2 > 150 GeV and (iv) mT2 > 180 GeV. The four SRs are not mutually
exclusive, and cannot be statistically combined.
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(a) No cut on m`` for DF events, because
the Z-boson does not decay to DF leptons

(b) Before appliying the cut Emiss
T >

40 GeV

(c) After the cut on Emiss
T , but before the

cut on the number of signal jets, which is
a veto on all signal jets

(d) After the cuts on Emiss
T and the number

of signal jets, but before the cuts on mT2

Figure 6.6: Distributions of events with DFOS leptons, with the value and
direction of each cut indicated in the figures, in the order the cuts are applied
(from top left to bottom right). The final cuts, applied to mT2 in (d), define
the four separate signal regions for DFOS events: (i) mT2 > 90 GeV, (ii) mT2 >
120 GeV, (iii) mT2 > 150 GeV and (iv) mT2 > 180 GeV. The four SRs are not
mutually exclusive, and cannot be statistically combined.
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6. Search for χ̃±1 χ̃∓1 production

the z-axis, in the mass-plane of χ̃±1 on the x-axis and χ̃0
1 on the y-axis, for all

the simulated signal mass hypotheses that has a non-zero expected significance.
There is one significance plot for each of the four mT2-regions listed in Table 6.1,
and plotted for SFOS leptons in Figure 6.5 and for DFOS leptons in Figure 6.6d.
For the calculation of the ZN-significances (see Section 5.2.2 for more details), a
30% flat systematic uncertainty has been assumed on the background yield. A
specific χ̃±1 ,χ̃0

1 mass hypothesis can be excluded at 95% confidence level (CL) if
the significance exceeds a value of 1.64. This would correspond to a test-statistic
that falls in the most extreme 5% of a one-tailed Gaussian distribution, that can
be generated from repeated (pseudo-)experiments of the signal-plus-background
hypothesis. We can therefore put a lower limit on the χ̃±1 ,χ̃0

1-masses by tracing a
line along the 1.64 contour in these plots, and interpret this line as the expected
lower limit on the χ̃±1 ,χ̃0

1-masses at 95% CL. The lower-limit bounds on these
masses obtained by ATLAS at 8 TeV [159], are indicated in the plots as a curved,
dashed line. Mass points lying inside of this contour have therefore already been
ruled out for this signal model.

Already with 6 fb−1 of integrated luminosity, as shown in Figure 6.7, each
of the points lying inside of the previous exclusion contour reach well beyond
expected exclusion significance in at least one of the four mT2-regions. Going
beyond the already excluded mass-points, the mT2 > 90 GeV region shows some
sensitivity to the low mass-splitting (150, 50) GeV mass-point (∆m = 100 GeV),
with a significance of 0.4, which is still quite far from exclusion sensitivity. The
mT2 > 120 GeV regions shows exclusion sensitivity to the (500, 1) GeV mass-
point, while the mT2 > 150, 180 GeV regions are able to increase the sensitivity
to the higher χ̃±1 -masses. ThemT2 > 150 GeV is expected to exclude all the three
mass-points with a χ̃±1 -mass of 500 GeV, while the mT2 > 180 GeV region gains
even more sensitivity to the higher-mass-splitting scenarios (∆m ≥ 400 GeV), at
the cost of becoming less sensitive to the lower and medium mass-splitting cases
(∆m < 400 GeV).

Moving on to the higher-luminosity scenario with 10 fb−1, shown in Fig-
ure 6.8, the sensitivity has increased slightly across the board. Most notably, the
mT2 > 180 GeV region has reached expected exclusion sensitivity to χ̃±1 -masses
of 600 GeV, namely the (600, 1) and (600, 100) GeV points.

The conclusion was thereby that we already expected to improve these limits
with 6 fb−1 of integrated luminosity, which was a conservative estimate of the
amount of data we expected to have in time for the summer conferences in 2016.
The improvements in sensitivity are due to the increase in center-of-mass energy,
up from 8 TeV in Run 1 to 13 TeV in Run 2. These results therefore supported
the plan to target this signal model in the first Run 2 publication.

6.4 First results with Run 2 data

By the summer of 2016, ATLAS had recorded about 13 fb−1 of integrated
luminosity from proton-proton collisions, which also passed the data quality
requirements necessary for use in physics analysis.
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Figure 6.7: Expected sensitivity of SR2` with 6 fb−1, where the z-axis shows the
expected Z-value in terms of a one-tailed Gaussian standard deviation. Only the
mass-points with a Z-value greater than 0 are shown in the plots. The straight,
dotted line indicates the line where χ̃±1 and χ̃0

1 have equal masses, whereas the
curved, dashed line indicates the exclusion limit obtained by ATLAS in the LHC
Run 1 at 8 TeV. Mass-points with a Z ≥ 1.6 are expected to be excluded with
the given integrated luminosity.
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Figure 6.8: Expected sensitivity of SR2` with 10 fb−1, where the z-axis shows the
expected Z-value in terms of a one-tailed Gaussian standard deviation. Only the
mass-points with a Z-value greater than 0 are shown in the plots. The straight,
dotted line indicates the line where χ̃±1 and χ̃0

1 have equal masses, whereas the
curved, dashed line indicates the exclusion limit obtained by ATLAS in the LHC
Run 1 at 8 TeV. Mass-points with a Z ≥ 1.6 are expected to be excluded with
the given integrated luminosity.
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6.4.1 Preliminary results

Figure 6.9 shows three plots of mT2 in the signal region SR2` of Table 6.1, with a
preliminary dataset of 12.7 fb−1. The figure is split into subfigures according to
the three lepton flavor combinations (a) e±e∓, (b) µ±µ∓ and (c) e±µ∓, with all
cuts applied except for those on mT2. All backgrounds are taken directly from
MC, except for the contribution from fake and non-prompt leptons, which was
derived by use of the data-driven Matrix Method (see Section 4.4). No fits to
data in control regions have been carried out for these plots, and only statistical
uncertainties are taken into account in the error bars for the data points and in
the hatched areas, where the latter shows the total uncertainty of all the stacked
background sources. The data is found to be consistent with the background, as
no significant excess is seen above the SM prediction. Simulated signal models
with masses of (400, 200) and (500, 1) GeV have also been overlaid in order to
visualize the expected contribution from these scenarios, if they were realized in
nature.

6.4.2 Published results

Corresponding mT2-distributions for the full analysis are split into SF and
DF events and shown in Figure 6.10a and 6.10b, respectively. The number of
estimated background events before (MC exp.) and after the simultaneous fit
to data in the CRs and SRs (Fitted), are along with the number of observed
events shown for each SR in Table 6.2. The SRs are denoted SR2`A, -B and -C,
according to their stransverse mass cuts,mT2 > 90, 120 and 150 GeV, respectively.
The total background is further split into five categories: diboson processes with
same flavor and different flavor lepton final-states, denoted VVSF and VVDF,
respectively, processes involving top quarks such as tW , tt̄ and tt̄V , denoted Top
Quark, the remaining smaller background processes taken directly from MC (not
fitted to the data) such as Higgs, Z+ jets, V γ and triboson, denoted Others, and
finally, the data-driven estimates of fake and non-prompt lepton backgrounds,
denoted as Reducible. The plots in Figure 6.10 and the yields Table 6.2 include
both statistical and systematic uncertainties on the expected/fitted number of
background events in the SRs.

The dominant systematic uncertainties affecting the number of events are
listed for each SR in Table 6.3. The statistical uncertainties arise from the finite
number of events in the MC samples used to derive the background predictions,
and range from 5% in SR2`A (DF) to 25% in SR2`C (DF), relative the number
of background events in the respective SRs. The jet energy scale (JES) and
resolution (JER) are the dominant experimental uncertainties, and range from
3% in SR2`C (DF) to 18-28% in SR2`C (SF). Other experimental uncertainties,
such as those related to measurements and modeling of leptons, Emiss

T , triggers
and pile-up, are found to be negligible. Theory uncertainties related to the
renormalization, factorization and resummation scales used to generate the
diboson MC samples also have a significant impact on this analysis, ranging from
15% in SR2`A (DF) to 66% in SR2`C (DF). Uncertainties have been assigned

97



6. Search for χ̃±1 χ̃∓1 production

0 50 100 150 200 250 300 350 400

E
ve

nt
s/

20
 G

eV

1−10

1

10

210

310

410

510

610

710 Data
Z+jets
VV
V+gamma
Single top
tt
+Vtt

W+jets
VVV
Higgs
DY
Fakes
Total SM
C1C1, (500,1) GeV
C1C1, (400,200) GeV

-1 = 13 TeV, 12.7 fbs

SR2L     ee

 [GeV]T2m
0 50 100 150 200 250 300 350 400

D
at

a/
S

M

0

0.5

1

1.5

2

(a) e±e∓

0 50 100 150 200 250 300 350 400

E
ve

nt
s/

20
 G

eV

1−10

1

10

210

310

410

510

610

710 Data
Z+jets
VV
V+gamma
Single top
tt
+Vtt

W+jets
VVV
Higgs
DY
Fakes
Total SM
C1C1, (500,1) GeV
C1C1, (400,200) GeV

-1 = 13 TeV, 12.7 fbs

SR2L     mm

 [GeV]T2m
0 50 100 150 200 250 300 350 400

D
at

a/
S

M

0

0.5

1

1.5

2

(b) µ±µ∓

0 50 100 150 200 250 300 350 400

E
ve

nt
s/

20
 G

eV

1−10

1

10

210

310

410

510

610

710 Data
Z+jets
VV
V+gamma
Single top
tt
+Vtt

W+jets
VVV
Higgs
DY
Fakes
Total SM
C1C1, (500,1) GeV
C1C1, (400,200) GeV

-1 = 13 TeV, 12.7 fbs

SR2L     em

 [GeV]T2m
0 50 100 150 200 250 300 350 400

D
at

a/
S

M

0

0.5

1

1.5

2

(c) e±µ∓

(d) Enlarged legend. C1 is short for the
lightest chargino, χ̃±1 , where ”C1C1, (500,
1) GeV“ denotes the chargino-pair produc-
tion signal where the mass of the light-
est chargino is m

χ̃±
1

= 500 GeV and the
mass of the lightest neutralino (the LSP)
is mχ̃0

1
= 1 GeV.

Figure 6.9: mT2-distributions of data compared to background in SR2` with
12.7 fb−1, where all cuts except the ones on mT2 have been applied. The
plots show the distributions of opposite sign (a) dielectron, (b) dimuon and (c)
electron-muon events. The pink line shows the expected contribution from the
simulated signal with mχ̃±

1
= 500 GeV and mχ̃0

1
= 1 GeV (∆m ≈ 500 GeV), and

correspondingly the green line which shows contributions from the signal with
mχ̃±

1
= 400 GeV and mχ̃0

1
= 200 GeV (∆m = 200 GeV). The bottom plot shows

the ratio of data over the sum of stacked backgrounds in each histogram bin. In
both the top and the bottom plot, the error bars on the data points and the
hatched area, which represents the total uncertainty on the stacked backgrounds,
correspond to statistical uncertainties only.
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(a) SF events in SR2` (b) DF events in SR2`

Figure 6.10: The mT2-distributions of (a) SF and (b) DF events in the signal
region SR2`, with 13.3 fb−1. Diboson backgrounds (V V ) have been fitted and
normalized to data in dedicated CRs. The background uncertainties, shown as
hatched areas in the top plot and in gold areas in the bottom plot, include both
statistical and systematic uncertainties. From Reference [158].

to the data-driven background estimates for the fake and non-prompt lepton
backgrounds as well. A 30% systematic uncertainty is assigned to account for
potential differences in the light-flavor, heavy-flavor and conversion probabilities
between the CRs and SRS, and another 15% uncertainty to account for possible
pile-up dependence. Even though the modeling uncertainties on the reducible
background estimates are large, the total contribution from fakes are so small
in the SRs that the effect on the total background uncertainties are negligible,
nonetheless.

6.4.3 Exclusion limits

Since there are no significant deviations from the SM expectations found in the
SRs, we can proceed to set model-independent exclusion limits on any form of
BSM signal above the SM backgrounds, given the observed data. Table 6.4 lists
the observed exclusion limits on the visible signal cross-section, 〈εσ〉95

obs, and the
number of signal events S95

obs in each of the SRs, at 95% CL. The number of
signal events that we expected to exclude at 95% with 13.3 fb−1, in addition to
the p-value under the background-only hypothesis, CLB, are also given in the
table. The largest deviation from the background-only hypothesis is observed in
SR2`A, with CLB , i.e., only 17% of repeated experiments are expected to give a
more extreme value.

We also want to set model-dependent limits in the context of the simplified
SUSY model introduced in Section 6.1. In Figure 6.11 the expected exclusion
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Table 6.2: Yield tables for the observed and expected number of events in the
various SRs. For the backgrounds, the expected event yields are shown both
before (MC exp.) and after a simultaneous fit of the diboson backgrounds to data
in SRs and dedicated CRs (Fitted). Both statistical and systematic uncertainties
are included in the table. From Reference [158].

Region SR2`A (SF) SR2`A (DF) SR2`B (SF) SR2`B (DF) SR2`C (SF) SR2`C (DF)

Observed events 56 55 19 8 9 2

Fitted bkg events 70± 12 57.6± 8.5 20.7± 5.0 8.5± 3.6 10.2± 3.3 3.1± 2.3

Fitted VVSF events 56± 11 −− 19.1± 5.0 −− 9.5± 3.2 −−
Fitted VVDF events −− 30.1± 7.9 −− 7.8± 3.6 −− 3.0± 2.3
Fitted Top Quark events 10.6± 4.0 25.1± 8.7 0.42± 0.16 0.44± 0.24 0.01± 0.00 0.01± 0.01
Fitted Others events 1.51± 0.46 0.90± 0.08 0.71± 0.29 0.23± 0.03 0.53± 0.26 0.13± 0.03
Fitted Reducible events 2.32± 0.80 1.53± 0.52 0.48± 0.17 0.00± 0.29 0.16± 0.06 0.00± 0.23

MC exp. SM events 56± 14 56± 12 15.8± 5.0 8.1± 3.3 7.7± 2.9 3.0± 2.1

MC exp. VVSF events 41.2± 10.2 −− 14.2± 4.7 −− 7.0± 2.8 −−
MC exp. VVDF events −− 28.7± 6.3 −− 7.4± 3.3 −− 2.8± 2.1
MC exp. Top Quark events 10.6± 4.1 25.1± 8.9 0.42± 0.17 0.44± 0.24 0.01± 0.00 0.01± 0.01
MC exp. Others events 1.51± 0.48 0.90± 0.09 0.71± 0.30 0.23± 0.03 0.53± 0.27 0.13± 0.03
MC exp. Reducible events 2.32± 0.80 1.53± 0.52 0.48± 0.17 0.00± 0.29 0.16± 0.06 0.00± 0.23

Table 6.3: Systematic uncertainties in the various SR2` regions. From Refer-
ence [158].

Systematic SR2`A (SF) SR2`A (DF) SR2`B (SF) SR2`B (DF) SR2`C (SF) SR2`C (DF)

Statistical uncertainty 8% 5% 9% 12% 12% 25%
Jet Energy Scale/Resolution 13-23% 12% 16-26% 3-8% 18-28% 3%
Theory 15% 21% 21% 39% 28% 66%
Reducible closure < 1% < 1% < 1% –% < 1% –%

Table 6.4: Table showing the model-independent exclusion limits, for each SR, on
the observed visible signal cross-section 〈εσ〉95

obs, and the observed and expected
limit on the number of signal events, S95

obs and S95
exp, respectively, all at 95%

CL. The CLB , i.e., the one-tailed Gaussian p-value under the background-only
hypothesis, is also shown. From Reference [158].

Signal Region 〈εσ〉95
obs[fb] S95

obs S95
exp CLB

SR2`-A 1.89 25.1 35+13
−10 0.17

SR2`-B 1.24 16.5 17.0+7.1
−2.8 0.41

SR2`-C 0.87 11.6 12.7+3.0
−4.1 0.36

contour from 10 fb−1 in themT2 > 150 GeV region is compared with the observed
exclusion contour from 13 fb−1 publication [158], both taken at 95% CL. The
expected exclusion plot in Figure 6.11 has been obtained by use of the HistFitter
package to calculate the expected significance for each signal point and to
interpolate between them, in order to get smoother contours. These estimates
are slightly more optimistic than those obtained in the previous and simpler
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significance plot for the same mT2-region. The observed exclusion contour from
the publication is obtained by the same signal regions as described in section 6.3,
except the additional veto on forward jets, there is no requirement on Emiss

T , and
the mT2 > 180 GeV region is not part of the analysis.

In the published analysis, the expected significance for each mass-point is
calculated for each of the three mT2 SR-cuts, and the SR with the highest
expected significance is chosen for that point. Figure 8 in the publication shows
which region gave the best significance for each mass-point. The mT2 > 90 GeV
region (called SR2`A in the publication) gave highest expected sensitivity to
the points with ∆m ≤ 100 GeV, the region with mT2 > 120 GeV (SR2`B) gave
highest sensitivity for 100 GeV ≤ ∆m ≤ 300 GeV, whereas the region with
mT2 > 150 GeV (SR2`C) gave the highest expected significance for points with
∆m ≥ 500 GeV.

The expected exclusion contour in Figure 6.11a, which only considers the
mT2 > 150 GeV cut, should then be comparable in the high-mass region of
Figure 6.11b, i.e. for high χ̃±1 -mass where the sensitivity is largely limited
by the production cross-section of the χ̃±1 . The expected contour from the
sensitivity study with 10 fb−1, extends up to mχ̃±

1
of 600 GeV, whereas the

expected contour from the full, published analysis with 13.3 fb−1, which includes
systematic uncertainties and fits to data in CRs, reaches a slightly higher limit
of approximately 625 GeV. The corresponding exclusion reach for χ̃0

1-masses are
240 and 270 GeV, respectively. Given that the expected limits of the publication
were found using 13.3 fb−1 compared to 10 fb−1 considered in my results, the
expected exclusion from the sensitivity study turned out to be in good agreement
with the final and more advanced results from the publication.

The CMS collaboration has also published interpretations for the same
simplified model, with 35.9 fb−1 of pp collision data collected by the CMS
detector [161]. The expected and observed exclusion contours are shown in
Figure 6.12. With 35.9 fb−1 of integrated luminosity, they managed to exclude
χ̃±1 -masses up to 800 GeV and χ̃0

1-masses up to 330 GeV.

6.5 Summary

My sensitivity studies showed that we expected to go beyond the Run 1 sensitivity
to chargino-pair production with decays via sleptons into two leptons and Emiss

T ,
already with 6 fb−1 of Run 2 data at 13 TeV. The dataset available for the
summer conferences of 2016 amounted to 13.3 fb−1, which significantly improved
the exclusion limits in the mass-plane of the lightest neutralino and the lightest
chargino compared to the ATLAS limits of Run 1. The lower limit on the mass of
the lightest chargino was raised from roughly 475 GeV to 625 GeV for a massless
lightest neutralino.

ATLAS has since then published updated results for the same simplified
model with the full Run 2 dataset of 139 fb−1 [162]. A plot of mT2 in the new
signal regions are shown in Figure 6.13a, which make use of binned SRs to take
advantage of the mT2-shape of the targeted simplified model. The corresponding
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(a) Expected exclusion limits with mT2 >
150 GeV and 10 fb−1

(b) Expected and observed exclusion limits
with mT2 > 90, 120, 150 GeV and 13.3 fb−1

Figure 6.11: (a) Expected exclusion contour with 10 fb−1 (red line) compared
to (b) the expected and observed exclusion contours with 13.3 fb−1 from the
publication in Reference [158]. The plot in (a) uses only significances obtained
from the mT2 > 150 GeV region. The Run 1 limit for non-compressed mass-
splitting scenarios is denoted by the curved, dashed line [159], whereas the line of
equal masses for χ̃±1 and χ̃0

1 is denoted with a straight, dotted line. The plot in
(b) uses the highest significance found for each mass-point out of the three SRs
with mT2 > 90, 120, 150 GeV. The Run 1 limits for compressed mass-splitting
searches, which make use of initial state radiation (ISR) jets to boost low-pT
leptons, are highlighted by the leftmost blue, curved line [160], whereas the
rightmost blue line illustrates the Run 1 limits for non-compressed searches [159].

Figure 6.12: Expected and observed exclusion contours with 35.9 fb−1 from the
CMS collaboration. The figure is taken from Reference [161].

102



Summary

(a) Signal regions binned in mT2
(b) Exclusion limits

Figure 6.13: The signal regions split into all four combinations of SF/DF and
0/1 jet selections, each of them binned in mT2, are shown in (a), and the
corresponding exclusion limits obtained from them, with the full Run 2 dataset
of ATLAS, are shown in (b). From Reference [162].

expected and observed exclusion limits with 139 fb−1 are shown in Figure 6.13b,
where the lower limit on the lightest chargino is increased all the way up to
roughly 1 TeV for a massless lightest neutralino.

In the fall of 2016, I moved on to work on a new final-state, namely two
leptons and jets in addition to missing transverse energy. In particular, the
search for this final-state is motivated by pair-production of the lightest chargino
along with the next-to-lightest neutralino, with decays via the SM gauge bosons
W and Z. Chapter 7 presents the work I did on signal region optimization, along
with the published ATLAS results for this final-state with the full pp-collision
dataset of 2015+2016, which amounted to 36.1 fb−1.
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Chapter 7

Search for χ̃±1 χ̃
0
2 production: Data

from 2015 and 2016
At 06:02 in the morning on December 5, the LHC experiments recorded the
last collision events of 2016 – the end of a remarkably successful year for the
LHC [163]. From April to the end of October, ATLAS and CMS recorded about
40 fb−1 of integrated luminosity, which amounts to 60% more data than the
original expectation of 25 fb−1. The projected and recorded luminosities are
shown as functions of time in Figure 7.1. In total, all four LHC experiments
recorded roughly 6.5 million billion (6.5 × 1015) collisions during this period.
This became possible because of the extraordinary availability of the LHC and
its injectors, which meant that the LHC was in ”collision mode“ almost 50% of
the time.

In the final four weeks of the 2016 data-taking, the LHC switched colli-
sion mode from colliding protons on protons to colliding protons on lead ions.
This took place with the record-breaking center-of-mass energy of 8.16TeV for
asymmetric collisions.

Out of the 40 fb−1 pp-dataset recorded by ATLAS, 36.1 fb−1 were in the end
found to pass all the data quality requirements needed in order to be used for
physics analysis. The following chapter describes the search for pair-production
of the lightest chargino, χ̃±1 , along with the next-to-lightest neutralino, χ̃0

2, using
the full 2015 and 2016 dataset.

7.1 Signal model

For the full 2015 and 2016 dataset, I moved on to consider another electroweak
SUSY scenario, namely the pair-production of the lightest chargino, χ̃±1 , along
with the next-to-lightest neutralino, χ̃0

2. We assume that χ̃±1 and χ̃0
2 are mass-

degenerate, i.e., mχ̃±
1

= mχ̃0
2
, and that the lightest neutralino, χ̃0

1, is the lightest
SUSY particle (LSP). Further we assume that χ̃±1 decays with 100% branching
fraction (BF) to a W boson and a χ̃0

1, where the W decays hadronically (i.e.,
into a quark-anti-quark pair), and that χ̃0

2 decays with 100% BF to a Z boson
and a χ̃0

1, where the Z decays leptonically (i.e., into two opposite sign electrons
or muons). This simplified model is illustrated in figure 7.2.

The SM gauge bosons are in this chapter further assumed to decay on-
shell, which means that the mass-difference between χ̃±1 /χ̃0

2 and the lightest
SUSY particle, χ̃0

1, is greater than or equal to the mass of each of the gauge
bosons. Since the Z boson is heavier than the W (roughly 91.2 and 80.4 GeV,
respectively) the condition for on-shell gauge boson decays therefore becomes
∆m(χ̃±1 /χ̃0

2, χ̃
0
1) ≡ mχ̃±

1 /χ̃
0
2
−mχ̃0

1
≥ mZ .
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2 production: Data from 2015 and 2016

Figure 7.1: The projected luminosity for the 2016 data-taking (dotted, green
line) compared to the actual amount recorded in 2016 (solid, green line). The
integrated luminosity provided by the LHC in the previous years of Run 1
(2011 and 2012) and Run 2 (2015) are also shown by separate lines. From
Reference [163].
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Figure 7.2: Chargino-neutralino production with decays via the W and Z bosons
into two leptons, two jets and two lightest neutralinos (LSPs).
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As in the χ̃±1 χ̃∓1 case, we assume that R-parity is conserved, so that χ̃0
1

is stable and cannot decay further to SM particles. The weakly interacting
χ̃0

1 therefore escapes detection, and leads to a significant amount of missing
transverse energy, Emiss

T , in the event.

7.2 Event and object selection

The object definitions used in the following studies are the same as those described
in section 6.2, except that the forward jet veto has been abandoned in favor of
using the Jet Vertex Tagger (JVT) to reject pile-up events instead.

7.3 Signal region optimization

The previous ATLAS search for this model was published back in 2014 [159],
using 20.3 fb−1 of data from pp-collisions at

√
s = 8 TeV. The signal region (SR)

called SR-Zjets, given in Table 1 of Reference [159], was used to target the
signal model in Figure 7.2, and was also used as a starting point for the studies
described in this section.

7.3.1 Updated SR definitions for
√
s = 13 TeV

Table 7.1 shows my updated set of cuts for the same model, here called SR2`-
jets, that tries to accommodate the higher collision energy and larger statistics
obtained in the new dataset. The following cuts have been kept as they were
in the 8 TeV analysis: (i) events are required to have exactly two same-flavor
(SF) opposite-sign (OS) leptons (electrons or muons), which pass the signal
lepton requirements1; (ii) at least two non-b-tagged jets measured in the central
parts of the detector, with |η| < 2.4, which pass the signal jet requirements;
(iii) no central b-tagged jets; (iv) the dilepton invariant mass, m``, must be
within 10 GeV of the Z-mass, i.e., consistent with an on-shell Z-boson; (v) the
dilepton pT, i.e., the pT of the Z, is required to be at least 80 GeV, so that the
reconstructed Z has a significant recoil against the rest of the event; and finally,
(vi) the anglular separation between the two leptons is required to be in the
range 0.3 < ∆R < 1.5 (in units of radians), which indicates the two leptons are
boosted in a common direction.

The cuts that are modified compared to the Run 1 analysis, are as follows.
Instead of an asymmetric W -mass window requirement for the W -candidate jets,
of [50, 100] GeV, where mW ≈ 80.379 GeV, we make it a symmetric mW±20 GeV
mass-window. The reason for the wider W -mass window compared to that of
the Z-mass, is that the jet energy resolution is larger than the energy and pT
resolution of the leptons. The final, and most sensitive variable to this signal

1Events with 2 signal leptons and ≥ 3 baseline leptons, are rejected, i.e., the events
should have exactly 2 baseline leptons, where they both also need to pass the signal lepton
requirements.
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Table 7.1: Signal region definitions that target χ̃±1 χ̃0
2-production via hadronically

decaying W and a leptonically decaying Z bosons, to final-states with two
opposite-sign leptons, at least two jets and Emiss

T .

SR2`-jets
leptons (e, µ) SFOS
central light jets ≥ 2
central b-jets 0
|m`` −mZ | [GeV] < 10
|mjj −mW | [GeV] < 20
pT,`` [GeV] > 80
∆R`` (0.3, 1.5)
Emiss,rel

T [GeV] > 80, 150, 200, 250

model, is the so-called ‘relative Emiss
T ”, or Emiss,rel

T , which is defined as

Emiss,rel
T =

{
Emiss

T if ∆φ`,j ≥ π/2
Emiss

T × sin ∆φ`,j if ∆φ`,j < π/2
, (7.1)

where ∆φ`,j is the azimuthal angle ∆φ between the pmiss
T (the direction of Emiss

T )
and the closest signal lepton or jet. The aim of this variable is to suppress the
contribution from “fake Emiss

T ”, which arises from significantly mis-measured
jets or leptons. In addition to the Emiss,rel

T cut of > 80 GeV, which was applied
in the previous analysis, I added three additional regions with Emiss,rel

T cuts of
> 150, 200 and 250 GeV, in order to gain sensitivity to higher χ̃±1 ,χ̃0

2-masses.

7.3.2 Optimization of cuts by Z-value

Plots of the five last variables in Table 7.1 are shown in Figure 7.3 and 7.4.
The vertical lines indicate where the cuts are applied to that variable, with the
arrows pointing towards the region(s) that is (are) kept. The cuts are applied
sequentially, so that each plot has the cuts on all preceding variables applied. The
distribution of Emiss,rel

T , the final variable of SR2`-jets, is shown in Figure 7.4,
and has all SR-cuts applied except for a cut on Emiss,rel

T . The colors of the
horizontal lines and arrows correspond to the color of the signal mass-point they
are most relevant for. Three different signal mass-points are superimposed in
the plots using dashed lines. These are the (mχ̃±

1 ,χ̃
0
2
, mχ̃0

1
) = (400, 200), (450,

50) and (600, 0)GeV mass-points, shown in orange, purple and turquoise, with
mass-splittings ∆m = 200, 400 and 600 GeV, respectively.

The expected significance (ZN, see Section 5.2.2) for each of the three bench-
mark signal points are shown in the lower panel of Figure 7.3 and 7.4, as a
function of lower-cut value. That is, each bin in the lower panel shows the
expected significance when all events to the left of that bin, in the upper plot, are
rejected, and the number of signal and background events of the bin in question
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and all bins to the right are summed up and given as inputs to the calculation
of the Z-value.

The Z-values in the lower panels are therefore only helpful for guiding choices
on where to place lower-cuts, and are not representative for choosing upper-
cuts or ranges (combination of lower- and upper-cuts). Neither of the plots in
Figure 7.3 show any sensitivity to signal at all (ZN ≈ 0), because the signals are
still completely swamped in background. The ZN-values are actually slightly
negative in these plots. This is an artefact of the BinomialExpZ calculation,
which, e.g., calculates a continuous p-value from a binomial distribution with
a fractional number of events, using the regularized incomplete beta function.
Negative values occur in cases with very few signal events (typically less than
one) in combination with a large relative background uncertainty. In the analyses
of this thesis, I have set the relative background uncertainty to be 0.3 (30%).
In the case of one background event, ZN goes negative when the number of
signal events go below roughly 0.4. In the case of 10 background events, ZN
goes negative when the number of signal events go below roughly one. In these
cases, the BinomialExpZ calculation is a bit too conservative with respect to
calculations using only integer limits for summing p-values from the binomial
distribution. For a more detailed discussion, see Reference [164].

For choosing the cut-ranges of m``, mjj , pT,`` and ∆R`` in Figure 7.3, the
upper panels, i.e., the distributions of the variables themselves, are more helpful
for comparing the behavior of the various signal models and the backgrounds.
The cuts are chosen so that regions with peaks in the signal distributions are
kept, and regions with large background contributions and small contributions
from signal are rejected.

The sudden spike in W + jets contributions to the [300, 320)GeV bin of (b)
is most likely due to one event with a large event weight. This is known to occur
for MC events generated by Sherpa in rare parts of phase space. In any case,
this event is rejected by the mjj cut.

Based on Figure 7.3c alone, it appears that it would be beneficial to cut even
harder on pT,`` than the lower-cut at 80 GeV, which is indicated on the plot.
However, it was found that the subsequent cuts on ∆R`` and Emiss,rel

T manage
to reject much of the same background as a harder cut on pT,`` would, and we
settled for 80 GeV, which is consistent with the previous publication from Run 1.

Figure 7.4 shows the Emiss,rel
T -distributions of the expected signal and back-

ground after all cuts of SR2`-jets have been applied, except for the cuts on
Emiss,rel

T itself. By comparison with the distributions of Figure 7.3, it is clear
that the preceding cuts have been very effective in reducing the background
contributions to the event selection, so that we become sensitive to the various
benchmark signal points shown in the plot. We also see that Emiss,rel

T is a very
good discriminator for separation of signal and background, where background
contributions tend towards lower values and signal tends towards larger values.

We can also notice that the expected significance for each of the signal
models peak at different cut-values. The larger the mass-splitting, the higher
is the optimal cut. However, some caution should be taken in following these
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significance plots too high in cut-value. The reason for this is that a proper
significance calculation would require at least three expected signal events
in order to exclude that model at 95% CL, given zero observed events. We
would also like to have a certain amount of background statistics left in the
signal region, typically no less than 1 event, in order to have confidence in the
background modeling. Such considerations have not been taken into account in
these approximate significance estimates, and is one of the reasons why we do
not necessarily choose to cut at the peak of these distributions.

Another consideration to make, when choosing the cut-values, is that we only
look at a few benchmark points in the optimization studies, in order to monitor
how different mass-hypotheses behave under different cuts. There are, however,
many more signal-points that get evaluated using these four, or so, signal regions,
and we should try to find a compromise between optimal sensitivity to one specific
benchmark point and a good coverage over a collection of mass-hypotheses.

7.3.3 Expected significance with 36.5 fb−1

The approximate expected significance, with the anticipated luminosity of
36.5 fb−1, across the whole signal grid, is shown in each of the four Emiss,rel

T SRs
in Figure 7.5. Similarly to the mT2-regions for the chargino-pair production in
Figure 6.7 and 6.8, we also here see that the lower Emiss,rel

T -cuts are favorable
for lower mass-splitting scenarios, while the opposite is true for higher cuts on
Emiss,rel

T .
The upper left plot of Figure 7.5, shows the ZN-significance for each signal

mass point in the SR with Emiss,rel
T > 80 GeV. Only the signal mass hypothesis

with (250, 50)GeV, which reaches ZN = 2.2, has ZN > 1.6, and is thereby
expected to be excluded at 95% CL.

The upper right plot of Figure 7.5, however, which shows the expected
significances for the SR with Emiss,rel

T > 150 GeV, results in expected exclusion
for 13 signal mass points, up to mχ̃±

1 /χ̃
0
2

= 500 GeV and mχ̃0
1

= 150 GeV.
Next, the SR with Emiss,rel

T > 200 GeV, shown on the lower left, reaches
expected exclusion sensitivity for 18 signal mass points, all the way up to
mχ̃±

1 /χ̃
0
2

= 550 GeV and mχ̃0
1

= 200 GeV. It thereby increases the sensitivity to
intermediate and high mass-splitting points. However, the sensitivity to the
mass points on the ∆m = 150and200 GeV diagonal, e.g., the (250, 100) and
(250, 50)GeV points, are reduced from ZN = 1.1 to 0 and ZN = 3.1 to 1.2,
respectively.

The final SR, with Emiss,rel
T > 250 GeV, shown on the lower right, continues

to improve sensitivity to the high- and the upper part of the intermediate-
∆m regions, but less so compared to the increase from Emiss,rel

T > 150 GeV to
Emiss,rel

T > 200 GeV. The sensitivity to mass points with ∆m ≤ 300 GeV are
reduced in this case.

The best performing SRs in the different mass-splitting regions then turned
out to be:

• Emiss,rel
T > 150 GeV for ∆m ≤ 200 GeV,
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(a) Dilepton invariant mass, m`` (b) Dijet invariant mass, mjj

(c) Transverse momentum of the dilepton
system, pT,``

(d) Angular separation between the two
leptons, ∆R``

Figure 7.3: Plots of sequentially applied cuts in SR2`-jets. See Figure 7.4 for an
enlarged view of the plot legend.
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Figure 7.4: Distribution of Emiss,rel
T in SR2`-jets, with all cuts applied except the

cut on Emiss,rel
T . The vertical lines indicate the four cut-values applied to Emiss,rel

T ,
where the arrows point towards the region being kept, and the colors signify
which benchmark signal point they are most relevant for. The benchmark points
correspond to the following mass-hypotheses: (mχ̃±

1 ,χ̃
0
2
,mχ̃0

1
) = (400, 200)GeV

in orange, (450, 50)GeV in purple and (600, 0)GeV in turquoise.

• Emiss,rel
T > 200 GeV for 250 GeV ≤ ∆m ≤ 350− 400 GeV, and

• Emiss,rel
T > 250 GeV for ∆m ≥ 350− 400 GeV.

The SR with Emiss,rel
T > 80 GeV did not achieve better sensitivity than the other

SRs for any of the grid points.
In Figure 7.6, the expected significance with 36.5 fb−1 for the whole grid is

shown for the most aggressive Emiss,rel
T -region, and compared with the observed

exclusion limits with 36.1 fb−1 [165]. An expected 95% C.L. exclusion contour in
the left plot (not drawn) would correspond to a significance value of 1.6. Looking
at the left plot, we expect to exclude χ̃±1 ,χ̃0

2-masses up to around 550 GeV, given
a massless χ̃0

1, and χ̃0
1-masses up to 200 GeV, given a χ̃±1 ,χ̃0

2-mass of 500 GeV.
This corresponds very well with the expected exclusion contour in the high-mass
region of the right plot, where the expected significances have been calculated
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Figure 7.5: Expected exclusion significance, ZN-value, shown on the z/color-axis,
in the mass-plane of mχ̃±

1 ,χ̃
0
2
on the x-axis and mχ̃0

1
on the y-axis. The results

correspond to 36.5 fb−1 of integrated luminosity, using the SR2`-jets region
in Table 7.1, where each plot uses a distinct lower-cut value on Emiss,rel

T , as
indicated above each plot. The dotted, black lines indicate the lines of equal
masses, mχ̃±

1 ,χ̃
0
2

= mχ̃0
1
.

113



7. Search for χ̃±1 χ̃0
2 production: Data from 2015 and 2016

3.5 3.4 2.5 2.0 1.3 0.7

3.2 3.1 2.6 2.0 1.4 1.0

0.2 2.0 3.1 2.4 1.8 1.4 0.6

0.8 2.2 2.4 1.9 1.4 1.1

0.6 1.8 1.4 1.1 0.6

0.6 1.0 1.2 1.1 0.8

0.3 0.9 1.0 0.6

0.1 0.6 0.7

0.0 0.4

 [GeV]C1,N2m

100 200 300 400 500 600 700

 [G
eV

]
N

1
m

0

50

100

150

200

250

300

350

400

450

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

3.5 3.4 2.5 2.0 1.3 0.7

3.2 3.1 2.6 2.0 1.4 1.0

0.2 2.0 3.1 2.4 1.8 1.4 0.6

0.8 2.2 2.4 1.9 1.4 1.1

0.6 1.8 1.4 1.1 0.6

0.6 1.0 1.2 1.1 0.8

0.3 0.9 1.0 0.6

0.1 0.6 0.7

0.0 0.4-1 = 13 TeV, 36.5 fbs

ee+mm

 > 250 GeVmiss,rel
TE

(a) SR2`-jets with Emiss,rel
T > 250 GeV and

36.5 fb−1

(b) 2`+jets SRs of Ref. [165] with 36.1 fb−1

Figure 7.6: The expected exclusion significance, ZN, in the mass-plane of mχ̃±
1 ,χ̃

0
2

and mχ̃0
1
with 36.5 fb−1, using the SR2`-jets region selection with Emiss,rel

T >
250GeV, is shown in (a). The expected and observed exclusion contours at
95% CL with 36.1 fb−1 of data, from Reference [165] (conference paper with
preliminary results), are shown in (b). In (a), the dotted, black line indicates
the line of equal masses, mχ̃±

1 ,χ̃
0
2

= mχ̃0
1
, and the signal points with ZN > 1.6

are expected to be excluded at 95% CL.

using the more thorough and robust CLs-method, including properly estimated
systematic uncertainties. The observed exclusion contour covers even higher
masses than the expected exclusion contour with 36.1 fb−1. This is because the
observed number of events in data was lower than the background expectation.

7.3.4 Published analysis

For the analysis of the 2015+2016 data, there were analysts from two different
institutes within the same working group who showed interest in studying the
same signal model and final-state, and had slightly different approaches to the
problem. I based my studies on the approach taken by the previous search
for electroweak production of χ̃±1 χ̃0

2 in final-states with two leptons and jets.
The other institute was also working on searches for production of the same
sparticles in strong interactions, with two leptons and typically more hadronic
activity compared to the electroweak interactions. Whereas I made use of the
Emiss,rel

T variable, which is a combination of Emiss
T and the angular separation,

∆φ(pmiss
T , X), between the direction of pmiss

T and other objects, X, their approach
was to separate these two variables and consider them independently.

In order to harmonize our efforts and end up with one common result, we
compared the sensitivities of the two approaches, and concluded that they roughly
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achieved equivalent results. We then decided to go for the approach of treating
the two quantities separately, for a simpler and more intuitive interpretation of
the analysis.

The final SR definitions [166], which were further refined after the harmoniza-
tion efforts, are listed in Table 7.2. The SR2-int and SR2-high regions, which
target intermediate and high mass-splittings, respectively, are quite similar to
my initially proposed cuts in Table 7.1. The event topology is similarly selected
by requiring events with at least two non-b-tagged jets, and two SFOS leptons
and two highest-pT jets with invariant masses close to the Z and W masses,
respectively. The pT of the dilepton (Z) system must be > 80 GeV, where
the two leptons have a rather low opening-angle between them of ∆R`` < 1.8
(which is slightly less constraining compared to 0.3 < ∆R`` < 1.5 in Table 7.1).
SR2-int also requires Emiss

T > 150 GeV and SR2-high Emiss
T > 250 GeV, where

Emiss,rel
T ≈ Emiss

T in the intermediate and high-mass-splitting cases, where the
jet mis-measurements and fake Emiss

T contributions are much lower compared to
the low-mass-splitting case.

SR2-int and SR2-high additionally introduce a pT cut on the dijet (W ) system
of > 100 GeV, a requirement of a rather low angular separation also between the
two pT-leading jets of ∆Rjj < 1.5, i.e., so that they are boosted in a common
direction, and finally requiring the angular separation between the pmiss

T and the
W (dijet system) in the transverse plane to be 0.5 < ∆φ(pmiss

T ,W ) < 3.0.
The most prominent differences between the SRs in Figure 7.7 and Table 7.2

are the selections related to the low-mass-splitting scenarios, where the mass-
splitting between χ̃±1 /χ̃0

2 and χ̃0
1 is approximately equal to the mass of the Z

boson, and the signal therefore becomes kinematically similar to the SM diboson
backgrounds. Here, two sets of orthogonal regions are defined, one for events
with exactly two non-b-tagged jets, where both are assumed to originate from
the W , called SR2-low-2J, and one region for events with 3-5 non-b-tagged jets,
called SR2-low-3J. In the latter region, the two jets which are closest to the
pmiss

T in the transverse plane (smallest ∆φ(pmiss
T , jet)) are assumed to originate

from the W boson, and the remaining signal jets of the event are taken to be
initial-state-radiation (ISR), which recoil against the pair-produced sparticles
and boost the otherwise low-pT final-state particles to higher pT. As the two low-
mass-splitting SRs are orthogonal, they are combined in the statistical analysis,
but their background contributions are predicted and validated independently.

The dominant source of background in all the SRs is diboson processes, which
make up nearly all of the background contributions in the SR2-int and SR2-high
regions. In the SR2-low regions, the background composition is more mixed,
with larger contributions from other sources such as Z + jets, processes involving
top quarks and fake and non-prompt (FNP) leptons.

Given sub-optimal modeling of the fake Emiss
T contributions from Z + jets

processes in MC simulations, this background is instead estimated by a data-
driven approach. Using γ+ jets events in data to measure the shape of the Emiss

T
distribution, the resulting Emiss

T template is normalized to data in an SR-like
control region with Emiss

T < 100 GeV. See Reference [166] for more details about
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Table 7.2: Signal region definitions used for the preliminary conference results in
Reference [165] and the final published analysis with 36.1 fb−1 in Reference [166].

2`+jets signal region definitions
SR2-int SR2-high SR2-low-2J SR2-low-3J

nnon-b-tagged jets ≥ 2 2 3–5
m`` [GeV] 81–101 81–101 86–96
mjj [GeV] 70–100 70–90 70–90
Emiss

T [GeV] > 150 > 250 > 100 > 100
pZT [GeV] > 80 > 60 > 40
pWT [GeV] > 100
mT2 [GeV] > 100
∆R(jj) < 1.5 < 2.2
∆R(``) < 1.8
∆φ(pmiss

T ,Z) < 0.8
∆φ(pmiss

T ,W ) 0.5–3.0 > 1.5 < 2.2
Emiss

T /pZT 0.6−−1.6
Emiss

T /pWT < 0.8
∆φ(pmiss

T ,ISR) > 2.4
∆φ(pmiss

T ,jet1) > 2.6
Emiss

T /pISR
T 0.4–0.8

|η(Z)| < 1.6
pjet3

T [GeV] > 30

the γ + jets template method.
The contributions from FNP leptons are estimated by the data-driven Matrix

Method, whereas the remaining sources of background, including diboson and
top quark processes, are taken directly from MC.

In addition to the VRs used to validate the modeling of the Z + jets and
FNP leptons backgrounds, a “tight” and “loose” VR selection are defined for
each SR, in order to validate the overall modeling of the backgrounds in these
SRs. See Reference [166] for more information about the VR definitions. No
CRs are used to constrain the backgrounds in the likelihood fit of this analysis,
i.e., only SRs are involved in the fit.

The dominant systematic uncertainties in the SRs come from the modeling
of diboson events, which range from approximately 30 to 40%, and from uncer-
tainties associated with the data-driven Z + jets estimates, which amount to
about 42% in SR2-int, 71% in SR-high and 64% in the combined SR2-low.

Figure 7.7 shows the Emiss
T -distributions for events in the four SRs defined

in Table 7.2. Among the most noteworthy features in these plots are perhaps
the lack of observed events in the SR2-high region with Emiss

T > 250 GeV, in
Figure 7.7a, and the excesses of observed events in the Emiss

T ∈ [100, 125) and
[200, 225)GeV bins of Figure 7.7b.
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(a) SR2-int and SR2-high (b) SR2-low-2J and SR2-low-3J

Figure 7.7: Distributions of Emiss
T for events in (a) SR2-int and SR2-high, and

in (b) SR2-low-2J and SR2-low-3J. From Reference [166].

Table 7.3: The expected number of background events (Total SM), with sys-
tematic uncertainties, along with the observed number of events in each of the
SRs. The lower part of the table shows the total SM background split into
contributions from sub-components. From Reference [166].

SR2- int high low (combined)

Observed 2 0 11

Total SM 4.1+2.6
−1.8 1.6+1.6

−1.1 4.2+3.4
−1.6

V V 4.0± 1.8 1.6± 1.1 1.7± 1.0
Top 0.15± 0.11 0.04± 0.03 0.8± 0.4
FNP 0.0+0.2

−0.0 0.0+0.1
−0.0 0.7+1.8

−0.7
Z + jets 0.0+1.8

−0.0 0.0+1.2
−0.0 1.0+2.7

−1.0
Other – – –

The number of expected background events (Total SM) and the number
of observed events in the SRs of Table 7.2 are shown in Table 7.3. The total
SM background is also split into the sub-components from dibosons (V V ),
top quarks, fake and non-prompt lepton sources (FNP), Z + jets and other
background processes. As one can see from Figure 7.7a, there are no observed
events in SR2-high, where 1.6 was expected. In SR2-low, however, a sizable
excess of 11 event are observed, where 4.2 events were expected. This translates
to a p-value of 0.06, which corresponds to a 1.6σ (one-tailed Gaussian) excess,
as can be seen in Figure 7.8.

In the absence of observed excesses in SR2-int and SR2-high, model-independent
upper limits are set on the visible cross-section for any beyond-SM (BSM) signal,
〈εσ〉95

obs, and on the expected and observed upper limits on the number of BSM
signal events, S95

exp and S95
obs, respectively, all calculated at 95% C.L., which are
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Table 7.4: Model-independent limits on beyond-SM signal with 36.1 fb−1. From
Reference [166].

Signal channel Region Nobs Nexp 〈εσ〉95
obs[fb] S95

obs S95
exp p(s=0) Z

2`+jets SR2-int 2 4.1+2.6
−1.8 0.13 4.5 5.6+2.2

−1.4 0.5 0
SR2-high 0 1.6+1.6

−1.1 0.09 3.1 3.1+1.4
−0.1 0.5 0

SR2-low 11 4.2+3.4
−1.6 0.43 15.7 12+4

−2 0.06 1.6

Figure 7.8: Expected and observed exclusion limits on the simplified SUSY
model in the mass-plane of χ̃±1 /χ̃0

2 and χ̃0
1, where both the hadronic (2`+jets)

and leptonic (3`) decay modes of the W have been combined to produce stronger
exclusion limits in the same mass-plane. From Reference [166].

shown in Table 7.4. The p-value under the background-only hypothesis is also
shown in the next-to-last column (p(s = 0)), and the corresponding Z-value is
given in the last column. The p-values are cut at 0.5 wherever the observed
number is lower than the expected number of events, in order to avoid negative
Z-values.

Finally, expected and observed, model-dependent lower limits on the masses
of χ̃±1 /χ̃0

2 and χ̃0
1 in the simplified model are illustrated in Figure 7.8. As

opposed to the exclusion plot in Figure 7.6b, from the conference paper of
Reference [165], which shows the contributions from the 2`+jets channel only,
the exclusion contours of Figure 7.8, from the journal publication, are derived
from a combination of both the hadronic (2`+jets) and leptonic (3`) decay
modes of the W boson. This results in slightly modified expected and observed
exclusion contours, where the 3` channel in particular adds sensitivity in the
low-mass-splitting region.

Figure 7.9 shows corresponding results from the CMS collaboration for the
same simplified model, with 35.9 fb−1 of integrated luminosity collected by the
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Figure 7.9: Expected and observed exclusion contours with 35.9 fb−1 of integrated
luminosity from the CMS collaboration. The figure is taken from Reference [167].

CMS detector. The limits are based on the 2`+jets channel only. The expected
and observed exclusion contours are consistent with the ATLAS results. Both
experiments observe less events than expected in the high-mass-splitting regime,
and are thereby able to set stronger exclusion limits than expected.

7.4 Summary

My proposed SR selections for targeting pair-production of χ̃±1 χ̃0
2, with decays

via W and Z bosons into 2`+ jets+Emiss
T in the final state, using the full dataset

taken by ATLAS in 2015 and 2016, are listed in Table 7.1 and were shown to be
correspondingly sensitive to the simplified signal model as the SRs used for the
publications [165, 166], listed in Table 7.2.

The high- and intermediate-mass-splitting regions, SR2-high and SR2-int,
yielded less observed events than were expected, and thereby set stronger exclu-
sion limits on the χ̃±1 /χ̃0

2 and χ̃0
1 masses than the expectation. The lower-limit

on the mass-degenerate χ̃±1 and χ̃0
2 was raised from a mass of 425 GeV with the

8 TeV ATLAS data, up to 580 GeV with the 13 TeV data, for a massless χ̃0
1 LSP.

Similarly, the 8 TeV results from ATLAS excluded χ̃0
1-masses up to 160 GeV for

χ̃±1 /χ̃0
2-masses of 350 GeV, which are extended up to 220 GeV for χ̃±1 /χ̃0

2-masses
of 500 GeV with 13 TeV data taken by ATLAS. The low-mass-splitting region,
SR2-low, on the other hand, resulted in a 1.6σ excess in the observed data
compared to the expectation from background contributions.

Similar local excesses, of up to 3.0σ, were also observed in the low-mass-
splitting regions of Reference [168], which utilized so-called recursive jigsaw
reconstruction to target the event topologies of the same simplified SUSY model
as presented in this chapter. This caused quite a bit of excitement in SUSY

119



7. Search for χ̃±1 χ̃0
2 production: Data from 2015 and 2016

circles, and anticipation of more data to either confirm the observed excesses as
a real signal or rather as a statistical fluctuation.

In the following chapter, Chapter 8, I present the analysis of the full Run 2
dataset of ATLAS, which amounted to 139 fb−1, in search for the same signal
model.
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Chapter 8

Search for χ̃±1 χ̃
0
2 production: The

complete Run 2 dataset
On December 3, 2018, the final collisions of the LHC Run 2 took place, which
ended three and a half years of impressively high performance delivered by the
particle accelerators and injectors [169]. The LHC had then provided 160 fb−1

of proton-proton collisions since June 2015, where the instantaneous luminosity
reached up to 2× 1034 cm−2 s−1 during 2017 and 2018, which is twice the beam
intensity the LHC was designed to deliver at the interaction points. The LHC
had also shown great versatility by colliding protons on lead-ions, lead on lead,
and on October 12, 2017, for the first time, fully stripped Xenon-ions were
collided, in order to gain more insight into the exotic Quark Gluon Plasma phase
that existed in the very early universe.

Figure 8.1 shows the accumulated luminosity per year for the full Run 1 and
Run 2. The final year, 2018, provided more integrated luminosity than any of
the preceding years, which is a testament to the ever improving performance
and the stability of the LHC.

The distributions of the estimated average number of pileup interactions per
bunch crossing is shown for each Run 2 year in Figure 8.2. ATLAS recorded
collisions with up to 70 interactions per bunch crossing both in 2017 and 2018,
due to the LHC team’s ability to squeeze the proton beams more than the
preceding years of data-taking. The year-averaged mean number of pileup
interactions seen by the ATLAS detector was 13.4 in 2015, 25.1 in 2016, 37.8

Figure 8.1: Integrated luminosity accumulated per year of the LHC Run 2 (2015
to 2018), as well as the LHC Run 1 (2011 and 2012). From Reference [170].
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Figure 8.2: Integrated luminosity recorded by ATLAS as a function of the mean
number of interactions per bunch crossing (pile-up), split by year of the LHC
Run 2. From Reference [171].

in 2017 and 36.1 in 2018. By combining the data collected in the full Run 2
dataset, we get a total average of 33.7 pileup interactions per bunch crossing.

8.1 Signal model and scope of work

For the analysis with the complete Run 2 dataset, I continued working on the
same signal model as described in Section 7.1, namely search for pair-production
of χ̃±1 χ̃0

2 in final-states with two leptons, jets and Emiss
T , with intermediate

decays via W and Z bosons.
The initial plan was for me to mainly work on a multivariate analysis, using

methods such as boosted decision trees or neural networks, to investigate the
possibility of gaining sensitivity compared to the more traditional cut-based
analysis methods. However, it turned out that we were missing people in the
working group that could develop the cut-based analysis with the full Run 2
dataset, which was considered the main priority, and should establish a baseline
to compare the multivariate analysis against. My focus was therefore quickly
shifted towards development of the cut-based analysis, with the multivariate
analysis as more of a lower-priority side-project.

Also this time, I was involved in defining and optimizing signal regions,
with accompanying control and validation regions. In addition, I became more
involved in the development of common analysis software within the working
group, production of common analysis ntuples along with requests and production
of Monte Carlo samples for background and signal processes.

From January to December 2019, I was asked to be one of two analysis
contacts for the working group targeting electroweak and strong production of
the above mentioned SUSY scenario. My role was then to keep in touch with
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the conveners of the SUSY subgroups managing searches for electroweak and
strong production in ATLAS, as well as taking part in leading the efforts within
the working group itself.

8.2 Event and object selection

The objects selected for the full Run 2 analysis are in most respects equal to
those selected for the 2015+2016 analysis, but there are a few updates that will
be addressed here. The changes are mostly related to new object working points
(WPs), which correspond to optimized selection efficiencies for targeted regions
of phase space.

In order to improve the efficiency of high-quality leptons in a high-pile-up
environment, new isolation WPs were designed for both electrons [147, 172]
and muons [173]. We therefore moved to the recommended Tight isolation
requirements for high-pT electrons and muons, which make use of a multivariate
track-to-vertex-association score to determine how many tracks come from the
same interaction vertex as the leptons in question.

New Emiss
T WPs also became available, with new sets of requirements put

on the objects that go into the vector pT sum [174]. We studied the impact of
the so-called Loose and Tight Emiss

T WPs [175] on our signal sensitivity. The
Loose WP definition was more similar to the Emiss

T calculation used for the
2015+2016 analysis, but as the impact of moving from one WP to the other
was shown not to significantly affect our sensitivity, we decided to go with the
general recommendation of using the Tight Emiss

T WP, which was designed to be
more robust against pile-up.

8.3 Emiss
T significance

Emiss
T , the negative vector sum of the momenta and/or energies of reconstructed

physics objects and low-momentum tracks, is one of the most important variables
for distinguishing SUSY processes from SM backgrounds. Usually, a hard cut on
Emiss

T is very efficient at rejecting the backgrounds, while keeping most of the
expected signal. However, as discussed earlier, so-called “fake” Emiss

T may arise
from significantly mis-measured jets or leptons. Hence, SM backgrounds such
as Z + jets, which in reality should not yield both two leptons and Emiss

T in the
same process, may contribute to significant amounts of reconstructed Emiss

T in
the signal regions.

For the early Run 2 analysis, targeting production of a χ̃±1 χ̃0
2-pair with decays

via W and Z into 2`+ jets + Emiss
T in the final state, as discussed in Chapter 7,

this issue was addressed by considering Emiss,rel
T instead, which effectively rejects

any Emiss
T component which is parallel with the jet or lepton that is closest to

the direction of the reconstructed pmiss
T , in the transverse plane.

For the full Run 2 analysis we consider yet another approach to mitigate the
effect of artificially large contributions from the important Emiss

T -variable. This

123



8. Search for χ̃±1 χ̃0
2 production: The complete Run 2 dataset

involves making an estimate of the relative uncertainty in the Emiss
T -calculation.

We call this variable the Emiss
T significance.

A simple way to estimate this significance is to take the square root of the
sum of hard (reconstructed objects) or total (soft + hard) transverse energy
in the event, commonly labeled HT and ET, respectively, as an estimate of
the uncertainty in the reconstructed Emiss

T . This proxy significance is then
defined as Emiss

T /
√
HT or Emiss

T /
√
ET. However, these definitions assume an

Emiss
T -resolution which is purely calorimeter-dependent.
In order to get a better handle on the actual uncertainties involved in

the calculation of the Emiss
T , an object-based Emiss

T significance [176] has been
developed that uses the energy/momentum resolutions of all contributions to
the calculation. This includes both the hard inner detector tracks of jets and
leptons, in addition to the soft tracks not associated to reconstructed physics
objects, which also enter into the Emiss

T -calculation.
The object-based Emiss,sig

T is formally defined as a hypothesis test, where
the likelihood of the measured 2-dimensional Emiss

T , given a non-zero true pinv
T

from invisible objects, is compared to the corresponding likelihood, given a true
invisible pT of zero:

(Emiss,sig
T )2 = 2 ln

(
maxpinv

T 6=0 L(Emiss
T |pinv

T )
maxpinv

T =0 L(Emiss
T |pinv

T )

)
. (8.1)

If we assume that the measurement of each object or energy deposit is indepen-
dent, that the measurements have Gaussian errors and that the total momentum
should sum to zero (momentum conservation), we can express this as

(Emiss,sig
T )2 = 2 ln

(
L(Emiss

T |Emiss
T )

L(Emiss
T |0)

)
(8.2)

= (Emiss
T )T

(∑
i

Vi

)−1

(Emiss
T ), (8.3)

where Vi is the 2× 2 covariance matrix of measurement i.
Alternatively, we can rewrite the above expression in a form that resembles

the simpler event-based versions of Emiss
T significance:

Emiss,sig
T = |Emiss

T |
σ(Emiss

T ) , (8.4)

where σ(Emiss
T ) represents the magnitude of the uncertainty in the Emiss

T and
incorporates the individual object-based measurement resolutions, with possible
correlations between measurements in the two dimensions of the transverse plane.

In Figure 8.3, the sensitivity to four benchmark signal mass-hypotheses are
shown in the lower panels, using the regular Emiss

T itself on the left and the object-
based Emiss

T significance on the right. As we can see from the plots, the Emiss
T

significance is a little more sensitive to the benchmark signal scenarios, in particu-
lar for the medium mass-splitting point, at (mχ̃±

1 ,χ̃
0
2
,mχ̃0

1
) = (500, 200) GeV. This
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T in a preselection region
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(b) Emiss,sig
T in a preselection region

Figure 8.3: (a) Regular Emiss
T vs. (b) object based Emiss

T significance for stacked
SM backgrounds in filled histograms compared to various combinations of signal
masses shown by superimposed lines. Preselection cuts (SRpreewk) requiring
exactly two same-flavor opposite-sign electrons or muons, at least 2 signal jets,
at most one b-tagged jet, m`` ∈ (71, 91)GeV, mjj ∈ (60, 111)GeV, Emiss

T >

100 GeV and Emiss,sig
T > 6 have been applied to the dataset before plotting.

Notice, in particular, how the Z-value (in the lower panels) of the intermediate
mass-splitting point with (mχ̃±

1 ,χ̃
0
2
,mχ̃0

1
) = (500, 200) GeV, shown in turquoise,

increases significantly in the right plot compared to the plot on the left. The
lower panels show the calculated Z-value as a function of lower cut, i.e., events
to the right of a given cut in the upper panel are kept. The relative uncertainty
on the background (∆B/B) used in the calculation is 30%. At least three signal
events and at least one background event is required in order for a given cut/bin
to get a non-zero Z-value.

is mostly the case due to the effective suppression of fake Emiss
T contributions,

which generally have larger uncertainties in the Emiss
T calculation compared

with the contributions from real Emiss
T . This effectively shifts the higher values

of Emiss
T from non-diboson backgrounds, most prominently Z + jets and tt̄, to

lower values in Emiss
T significance, as compared to the diboson backgrounds,

without noticably affecting the signal contributions. Thus, we can increase the
signal significance (Z-value), especially for intermediate mass-splitting scenarios,
by using Emiss

T significance instead of Emiss
T alone. From the lower panel of

Figure 8.3, we can see that the maximum Z-value for the (500, 200) GeV sample
(turquoise) increases from roughly 1.1 using Emiss

T in (a), to 1.7 when using Emiss
T

significance in (b) instead.
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8.4 Conventional signal regions

We consider the mχ̃±
1 /χ̃

0
2
,mχ̃0

1
-plane in three distinct parts, according to the

mass-difference between the two sparticles, as the final-state kinematics change
significantly from the small-∆m to the large-∆m portion of the phase space.

The large-∆m regions are typically where the SUSY signals are most dis-
tinguishable from the SM backgrounds. Therefore, I start by describing the
event and object selections optimized for maximum sensitivity to the large
mass-splittings, along with regions to validate the backgrounds in these signal
regions, before continuing on to the intermediate and small mass-splitting regions,
where the SUSY signals become increasingly difficult to distinguish from the
backgrounds.

8.4.1 High-∆m regions

The kinematics of large mass-splitting scenarios are characterized by high-pT
final-state objects and large Emiss

T . The high-mass signal regions, called SR-High,
which are defined in Table 8.1, therefore target large values of Emiss

T and Emiss,sig
T ,

along with relatively small angular jet separation, ∆Rjj , from the collimated
decay products of the W . In order to make use of shape differences between
signal and backgrounds in Emiss,sig

T and ∆Rjj , we define four SR-High bins:
∆Rjj ∈ (0, 0.8) called SR-High-8 and ∆Rjj ∈ (0.8, 1.6) called SR-High-16, which
both are further split into two Emiss,sig

T bins, where Emiss,sig
T ∈ (18, 21) and

Emiss,sig
T ≥ 21, with region names suffixed by -a and -b, respectively. Plots after

the Emiss,sig
T > 18 cut has been applied, are shown for SR-High-8 and SR-High-16

in Figure 8.4a and 8.4b, respectively.
In order to select event topologies consistent with the signal model, we require

that the events have two same-flavor (SF) leptons with opposite-sign (OS) electric
charges, and at least two hadronic jets. The leptons need to have pT > 25 GeV
in order to be on the trigger efficiency plateau, and jets to have pT > 30 GeV to
suppress events where the jets come from other hadronic activity, such as elastic
scattering and pile-up events.

All high-mass regions must also have Emiss
T > 100 GeV in order to suppress

SM backgrounds in general, and have mT2 > 80 GeV in order to suppress
backgrounds involving the W -boson, such as WW and tt̄. The two highest-pT
jets in each event are required to make up an invariant mass between 60 and
110 GeV, to be consistent with coming from aW -boson. By requiring the number
of b-tagged jets (classified at 77% efficiency) to be less than or equal to 1, we
reject most of the backgrounds involving top quarks, such as tt̄ and tW .

After the cuts on Emiss,sig
T and mT2, the backgrounds left in in SR-High are

dominated by ZZ-contributions. This allows us to relax the dilepton invariant
mass-window from m`` ∈ (80, 100)GeV, as is used for the intermediate and low-
mass regions, to m`` ∈ (70, 110)GeV, to increase statistics without decreasing
the signal purity, thereby increasing the sensitivity. A similar argument can be
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made for the inclusion of up to one b-tagged jet, as the rate of ZZ decaying into
b-quarks is rather low.

We can see from Figure 8.4a that we have significant sensitivity to the
(500, 200) GeV mass-point with the cut at Emiss,sig

T > 18, while there is more to
gain for the (600, 0) GeV point by cutting harder, e.g., around Emiss,sig

T > 21.
However, we can also notice the differences in shape of the distributions between
the falling background and the two mentioned signal mass-points with peaks
at different positions above Emiss,sig

T > 18. By binning this region in the two
18 < Emiss,sig

T < 21 and Emiss,sig
T > 21 bins, we can exploit part of these

differences in shape, in addition to the differences in total event yields.
The lower significance panel in Figure 8.4a shows similar behavior as well,

but there is more background and less signal in general in the ∆Rjj ∈ (0.8, 1.6)
region than there was in the more boosted ∆Rjj ∈ (0, 0.8) region. Since the two
regions are orthogonal (non-overlapping), we can add them both simultaneously
to the likelihood fit in the end, and sensitivity in any region will contribute to
the overall sensitivity to the various signal points.

The background modeling in the SR-High bins are validated in two validation
regions, which are defined in Table 8.1. VR-High is designed to validate the
mjj sidebands, with dijet invariant masses off the W -resonance and with mjj >
20 GeV to stay within the bounds of the MC background simulations, whereas
VR-High-R also includes events with ∆Rjj > 1.6. The Emiss,sig

T distributions in
the two VRs are plotted in Figure 8.5a and 8.5b, respectively. The VRs are highly
dominated by diboson contributions, as are the SRs, and there does not seem to
be any systematic mis-modeling in the yields or shapes of the backgrounds in
these regions.

The default jet reconstruction algorithm uses a clustering radius of R = 0.4
to reconstruct single jets. In cases where the W of the event is highly energetic,
also referred to as a “boosted W”, its decay products become highly collimated.
At sufficiently high boost, the two daughter jets become so collimated that
the reconstruction algorithm is unable to tell them apart, and consequently
reconstructs them as a single jet. A separate signal region, called SR-High-4 has
been defined to cover the cases where there is only one signal jet in the event,
but where this jet has a mass consistent with the W -mass. The distributions of
Emiss,sig

T and the mass of the leading jet in SR-High-4 are plotted in Figure 8.6a
and 8.6b, respectively. The level of background in this region is low, and the
signals mentioned earlier in this section are clearly visible above the background
in the high Emiss,sig

T region. It is also striking to see the clear peak in the leading
jet mass at the pole mass of the W boson.

A dedicated validation region, called VR-High-4, is checking the background
modeling in these one-jet cases, in the sidebands of the W -resonance. Plots of
Emiss,sig

T and the mass of the pT-leading jet are shown in Figure 8.7a and 8.7b,
respectively. These plots show fairly good overall modeling of the backgrounds,
which also here are dominated by dibosons. SR-High-4 and VR-High-4 are
defined in Table 8.1 as well.
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Table 8.1: Signal and validation regions (SRs and VRs, respectively) targeting
high-∆m scenarios. Common-High denotes the cuts that are common to all the
regions listed below.

Common-High
Leptons 2 SFOS, pT > 25 GeV

Emiss
T [GeV] > 100
mT2 [GeV] > 80
m`` [GeV] (71, 111)
nb-tags ≤ 1

SR-High SR-High-4
VR-High VR-High-R VR-High-4

njets ≥ 2 ≥ 2 1 1
mj(j) [GeV] (60, 110) > 20, /∈ (60, 110) > 20 (60, 110) > 20, /∈ (60, 110)

∆Rjj (0, 0.8, 1.6) < 1.6 > 1.6 − −
Emiss,sig

T (18, 21,∞) (18,∞) (12,∞) (12,∞)
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(a) Emiss,sig
T in SR-High-8 (∆Rjj ∈ (0, 0.8))
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(b) Emiss,sig
T in SR-High-16 (∆Rjj ∈

(0.8, 1.6))

Figure 8.4: Emiss,sig
T for various signal hypotheses (lines) compared to the SM

background (stacked, filled histograms) in the (a) SR-High-8 and (b) SR-High-16
regions. The lower panels show the calculated Z-value as a function of lower cut,
i.e., events to the right of a given cut in the upper panel are kept. The relative
uncertainty on the background (∆B/B) used in the calculation is 30%. At least
three signal events and at least one background event is required in order for a
given cut/bin to get a non-zero Z-value. (The Z-values shown in the lower panel
for bins to the left of the SR, i.e., Emiss,sig

T < 18, are superfluous, as they all get
the same integrated number of signal and background events as the left-most
bin in the SR.)
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Figure 8.5: Emiss,sig
T in data (black dots) compared to the SM background

(stacked, filled histograms) in the VR-High and VR-High-R regions. The statisti-
cal uncertainty of the data points are indicated by black error bars, whereas the
statistical uncertainty on the combined SM backgrounds are shown by hatched
areas. The lower panels show the ratio of the number of data to background
events for each bin in the upper panel.

8.4.2 Intermediate-∆m regions

As we move to signal models where the χ̃0
1 is closer in mass to the χ̃±1 and

χ̃0
2 compared to the high-∆m regions, i.e., with smaller ∆m, there is not as

much Emiss
T being produced in the events. The intermediate ∆m regions aim to

capture the change in kinematics that follow from the smaller mass-splittings,
yet without being significantly constrained by low final-state momenta. This
predominantly means targeting higher LSP masses.

In this region of phase space, the background is no longer dominated by
pure ZZ-contributions, and therefore we move from allowing one b-tagged jet
in SR-High to vetoing b-jets altogether. By the same argument, we also move
to a narrower dilepton invariant mass window, only allowing m`` of ±10 GeV
away from the Z-mass, instead of ±20 GeV for SR-High. These are the standard
selections that we also use for SR-Low, to be discussed in Section 8.4.3.

The signal regions targeting intermediate ∆m are called SR-Int and are
defined in Table 8.2. The main difference w.r.t. the SR-High regions is that
they cover lower values of Emiss,sig

T , namely Emiss,sig
T between 12 and 18. Two

bins in Emiss,sig
T are defined to capture shape differences between the signal and

the background. SR-Int-a covers Emiss,sig
T ∈ (12, 15), whereas SR-Int-b covers

Emiss,sig
T ∈ (15, 18). Additionally, both of the SR-Int bins require a hard jet,

where the leading (highest-pT) jet of the event must have pT > 60 GeV.
Figure 8.8 shows plots of Emiss,sig

T and mjj for various benchmark signal
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(a) Emiss,sig
T in SR-High-4 (R = 0.4)
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(b) mj1 in SR-High-4 (R = 0.4)

Figure 8.6: (a) Emiss,sig
T and (b) the mass of the leading jet for various signal

hypotheses (lines) compared to the SM background (stacked, filled histograms)
in the SR-High-4 region. The lower panels show the calculated Z-value as a
function of lower cut, i.e., events to the right of a given cut in the upper panel
are kept. The relative uncertainty on the background (∆B/B) used in the
calculation is 30%. At least three signal events and at least one background
event is required in order for a given cut/bin to get a non-zero Z-value. (The
Z-values shown in the lower panel for bins to the left of the SR, i.e., Emiss,sig

T < 12
and mj1 < 60GeV, are superfluous, as they all get the same integrated number
of signal and background events as the left-most bin in the SR.)

mass-points compared to the expected SM background in SR-Int. By comparison
with the plots of SR-High in Figure 8.4 and SR-High-4 in Figure 8.6, we can see
that SR-Int has more background and is most sensitive to the (500, 200) GeV
mass-point, with ∆m = 300 GeV, among the benchmark signal points.

The background in SR-Int is dominated by diboson processes (WZ and
ZZ), with small contributions from top and Z + jets. We define control regions
for diboson and tt̄, which allow dedicated normalization factors to be fitted to
the regions dominated by these processes. CR-VZ looks in the mjj-sideband
regions of the W -resonance, in the already diboson-dominated phase space,
and drops the pT-cut on the leading jet. In order to obtain a control region
pure in top-processes, CR-tt requires at least one b-tagged jet, and looks in the
lower Emiss,sig

T -sideband with values between 9 and 12, to get sufficient statistics.
Figure 8.9a and 8.9b show Emiss,sig

T in CR-ZZ and CR-tt, respectively, which
confirm that the regions are dominated by dibosons in the first case and by tt̄ in
the second, and that the regions have reasonably high statistics.

The modeling of the SM background in SR-Int is validated in VR-Int, which
has a reversed pT-cut on the leading jet compared to SR-Int, i.e., looks in the
lower sideband at pT(j1) < 60 GeV. Plots of Emiss,sig

T and mjj in VR-Int are
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Figure 8.7: (a) Emiss,sig
T and (b) the mass of the leading jet in data (black dots)

compared to the SM background (stacked, filled histograms) in the VR-High-4
region. The statistical uncertainty of the data points are indicated by black error
bars, whereas the statistical uncertainty on the combined SM backgrounds are
shown by hatched areas. The lower panels show the ratio of the number of data
to background events for each bin in the upper panel.

Table 8.2: Signal, validation and control regions (SR, VR and CRs, respectively)
targeting intermediate-∆m scenarios. Common-Int denotes the cuts that are
common to all the regions listed below.

Common-Int
Leptons 2 SFOS, pT > 25 GeV

Emiss
T [GeV] > 100
mT2 [GeV] > 80
m`` [GeV] ∈ (81, 101)
njets ≥ 2

SR-Int
VR-Int

CR-VZ CR-tt
nb-tags 0 0 0 ≥ 1

mjj [GeV] (60, 110) (60, 110) > 20, /∈ (60, 110) > 20
pT(j1) [GeV] > 60 < 60 − > 60
E

miss,sig
T (12, 15, 18) (12, 18) (12, 18) (9, 12)

shown in Figure 8.10a and 8.10b, respectively. The modeling looks decent, taking
the relatively low statistics of the region into account.

8.4.3 Low-∆m regions

The low-∆m regions target mass-splittings approximately equal to, or somewhat
larger than, the masses of the SM gauge bosons that mediate the sparticle decays.
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Figure 8.8: (a) Emiss,sig
T and (b) mjj for various signal hypotheses (lines) com-

pared to the SM background (stacked, filled histograms) in the SR-Int region.
The lower panels show the calculated Z-value as a function of lower cut, i.e.,
events to the right of a given cut in the upper panel are kept. The relative
uncertainty on the background (∆B/B) used in the calculation is 30%. At least
three signal events and at least one background event is required in order for
a given cut/bin to get a non-zero Z-value. (The Z-values shown in the lower
panel for bins to the left of the SR, i.e., Emiss,sig

T < 12 and mjj < 60 GeV, are
superfluous, as they all get the same integrated number of signal and background
events as the left-most bin in the SR.)

The signal in this region of phase space is characterized by soft decay products,
and therefore becomes kinematically similar to the SM backgrounds.

The SR-Low regions, defined in Table 8.3, continue to go even lower in
Emiss,sig

T , and are separated in two bins: SR-Low-a with Emiss,sig
T ∈ (6, 9) and

SR-Low-b with Emiss,sig
T ∈ (9, 12).

This region of phase space cuts heavily into SM territory, and especially
Z + jets becomes a large source of background. By restricting the number of
signal jets to exactly two, instead of two or more, the Z + jets background is
reduced. Additionaly, restricting the angular separation of the leptons, ∆R`` < 1,
the collimated leptons from the energetic Zs produced in the SUSY events are
kept, whereas both Z + jets and tt̄ are further reduced.

A plot of Emiss,sig
T in SR-Low is shown in Figure 8.11a. From the lower panel

of the plot, we see that this region shows some sensitivity to the (200, 100) GeV
mass-point, but that it is far from reaching expected exclusion significance.

The modeling of the backgrounds in SR-Low is checked in VR-Low, which is
a higher-end sideband in ∆R`` to SR-Low. Figure 8.12 shows a plot of Emiss,sig

T
in VR-Low, which indicates fairly good modeling of the background, given the
limited statistics.

An additional low-mass region, called SR-Low-2, is designed to pick up some
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Figure 8.9: Emiss,sig
T in data (black dots) compared to the SM background

(stacked, filled histograms) in the (a) CR-ZZ and (b) CR-tt regions. The
statistical uncertainty of the data points are indicated by black error bars,
whereas the statistical uncertainty on the combined SM backgrounds are shown
by hatched areas. The lower panels show the ratio of the number of data to
background events for each bin in the upper panel.
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Figure 8.10: (a) Emiss,sig
T and (b) mjj in data (black dots) compared to the SM

background (stacked, filled histograms) in the VR-Int region. The statistical
uncertainty of the data points are indicated by black error bars, whereas the
statistical uncertainty on the combined SM backgrounds are shown by hatched
areas. The lower panels show the ratio of the number of data to background
events for each bin in the upper panel.
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Table 8.3: Signal, validation and control regions (SRs, VRs and CRs, respectively)
targeting low-∆m scenarios. Common-Low denotes the cuts that are common
to all the regions listed below.

Common-Low
Leptons 2 SFOS, pT > 25 GeV

Emiss
T [GeV] > 100
m`` [GeV] ∈ (81, 101)
njets 2
nb-tags 0

SR-Low SR-Low-2
VR-Low VR-Low-2

CR-Z
mjj [GeV] (60, 110) (60, 110) (60, 110) > 20, /∈ (60, 110) > 20, /∈ (60, 110)
mT2 [GeV] > 80 > 80 < 80 < 80 > 80

∆R`` < 1 (1, 1.4) < 1.6 < 1.6 −
∆φ(p``,Emiss

T
) − − < 0.6 < 0.6 −

Emiss,sig
T (6, 9, 12) (6, 12) (6, 9) (6, 9) (6, 9)

remaining sensitivity formT2 < 80 GeV, in cases where there is angular alignment
of the transverse momentum of the two-lepton system with the Emiss

T . This
behavior is suppressed in the processes that produce the fake Emiss

T in Z + jets
events. This region only covers Emiss,sig

T between 6 and 9, and extends the cut
on the lepton angular separation from 1 to 1.6. A plot of Emiss,sig

T in SR-Low-2
is shown in Figure 8.11b, and shows far better sensitivity to the (200, 100) GeV
mass-point than the corresponding plot for SR-Low.

The background modeling in SR-Low-2 is validated in the mjj-sidebands of
the W -resonance. Figure 8.12b indicates that the backgrounds are reasonably
well modeled for Emiss,sig

T in VR-Low-2 as well.
Since Z+jets is the dominant background for the SR-Low-regions, a dedicated

control region is defined to allow for a normalization factor for the Z + jets
background to be fitted to data. The control region CR-Z considers the lower
Emiss,sig

T bin of SR-Low and the mjj-sidebands off the W -resonance. Figure 8.13
shows plots of Emiss,sig

T and mjj in CR-Z.

8.4.4 Off-shell regions

When the mass-splitting between the χ̃±1 /χ̃0
2 and the χ̃0

1 becomes so small that
it goes below the (pole) masses of the W and Z bosons that mediate the decays,
the bosons must be produced as virtual particles with lower masses, i.e., off
their mass-shells. Then, there is no longer a clear dijet resonance at the W -mass
to separate signal events from events with other jet activity, and therefore we
do not consider an mjj cut in the off-shell case. On the other hand, because
we require exactly two leptons, the dilepton invariant mass still makes a solid
discriminant. In fact, it now becomes the most powerful feature of the event,
as we should see a kinematic edge (or endpoint) in the m``-distribution at the
mass corresponding to the mass-splitting of the mother and daughter sparticles.
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Figure 8.11: Emiss,sig
T for various signal hypotheses (lines) compared to the SM

background (stacked, filled histograms) in the (a) SR-Low and (b) SR-Low-2
regions. The lower panels show the calculated Z-value as a function of lower cut,
i.e., events to the right of a given cut in the upper panel are kept. The relative
uncertainty on the background (∆B/B) used in the calculation is 30%. At least
three signal events and at least one background event is required in order for
a given cut/bin to get a non-zero Z-value. (The Z-values shown in the lower
panel for bins to the left of the SR, i.e., Emiss,sig

T < 6, are superfluous, as they all
get the same integrated number of signal and background events as the left-most
bin in the SR.)

The signal region SR-OffShell has two bins, SR-OffShell-a and SR-OffShell-b,
with m`` ∈ (12, 40) and ∈ (40, 71) GeV, respectively. The upper cut at 71 GeV is
chosen to avoid the Z-mass resonance at 91 GeV.

As the dominant backgrounds in the off-shell regions are diboson and tt̄,
the mT2-cut is raised from 80 to 100 GeV to suppress any slightly-above-pole-
mass W s produced in tt̄ processes. In order to boost the sensitivity of the
otherwise very soft (low-pT) final-state particles, we require a hard leading jet,
with pT > 100 GeV, recoiling against the Emiss

T , with ∆φ(j1, Emiss
T ) > 2. In the

case of three or more signal jets in the event, the leading jet(s) are interpreted
as likely coming from initial state radiation (ISR).

The distribution of Emiss,sig
T in SR-OffShell is shown in Figure 8.14a. The

plot indicates that the region is close to expected exclusion sensitivity for the
(150, 90) GeV mass-point, with ∆m = 60 GeV.

A control region, CR-DY, is defined in the lower mT2- and Emiss,sig
T -sidebands

in order to fit a normalization factor for the Z∗/γ∗-background (Drell-Yan).
Figure 8.15 shows the distributions of Emiss,sig

T and m`` in CR-DY.
The total background modeling is validated in VR-OffShell, which is a lower

sideband to SR-OffShell in mT2, and is plotted for Emiss,sig
T in Figure 8.14b. Also

here, the modeling looks decent, given the limited statistics.
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Figure 8.12: Emiss,sig
T in data (black dots) compared to the SM background

(stacked, filled histograms) in the (a) VR-Low and (b) VR-Low-2 regions. The
statistical uncertainty of the data points are indicated by black error bars,
whereas the statistical uncertainty on the combined SM backgrounds are shown
by hatched areas. The lower panels show the ratio of the number of data to
background events for each bin in the upper panel.
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Figure 8.13: (a) Emiss,sig
T and (b) mjj in data (black dots) compared to the

SM background (stacked, filled histograms) in the CR-Z region. The statistical
uncertainty of the data points are indicated by black error bars, whereas the
statistical uncertainty on the combined SM backgrounds are shown by hatched
areas. The lower panels show the ratio of the number of data to background
events for each bin in the upper panel.
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Table 8.4: Signal, validation and control regions (SRs, VR and CR, respectively)
targeting off-shell scenarios. Common-OffShell denotes the cuts that are common
to all the regions listed below.

Common-OffShell
Leptons 2 SFOS, pT > 25 GeV

Emiss
T [GeV] > 100
njets ≥ 2
nb-tags 0

SR-OffShell
VR-OffShell

CR-DY
mT2 [GeV] > 100 (80, 100) < 100
pT(j1) [GeV] > 100 > 100 −
∆φ(j1, E

miss
T ) > 2 > 2 −

E
miss,sig
T > 9 > 9 (6, 9)

m`` [GeV] (12, 40, 71) (12, 71) (12, 71)
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Figure 8.14: Emiss,sig
T for various signal hypotheses (lines), compared to the

SM background (stacked, filled histograms) in the (a) SR-OffShell and (b) VR-
OffShell regions. The values for the experimental data are also shown (black
dots) in (b). In (a), the lower panel shows the calculated Z-value as a function
of lower cut, i.e., events to the right of a given cut in the upper panel are kept.
The relative uncertainty on the background (∆B/B) used in the calculation is
30%. At least three signal events and at least one background event is required
in order for a given cut/bin to get a non-zero Z-value. (The Z-values shown in
the lower panel for bins to the left of the SR, i.e., Emiss,sig

T < 9, are superfluous,
as they all get the same integrated number of signal and background events
as the left-most bin in the SR.) In (b), the statistical uncertainty of the data
points are indicated by black error bars, whereas the statistical uncertainty on
the combined SM backgrounds are shown by hatched areas. The lower panel
shows the ratio of the number of data to background events for each bin in the
upper panel.
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Figure 8.15: (a) Emiss,sig
T and (b) m`` in data (black dots) compared to the SM

background (stacked, filled histograms) in the CR-DY region. The statistical
uncertainty of the data points are indicated by black error bars, whereas the
statistical uncertainty on the combined SM backgrounds are shown by hatched
areas. The lower panels show the ratio of the number of data to background
events for each bin in the upper panel.

8.4.5 Discovery regions

The signal regions described in the previous sections are optimized for sensitivity
to the specific simplified signal models that motivate the search. In particular,
single variables, such as Emiss,sig

T and m``, are split in multiple bins to exploit
the shape of the specific signal models. They are therefore meant for setting
signal specific exclusion limits, if no significant excess is found in the data.

However, first we need to check whether the observed data are consistent
with the background expectation or not. In that case, we want to look for any
deviation in the total number of observed events compared to the expected SM
background, without making any assumptions on the shape of the deviation.
Therefore, we can only use single-bin regions, with a simple count of observed
and expected events in the region.

We call these regions discovery regions, and they are based on the signal
regions described earlier. The discovery regions are defined in Table 8.5.

8.5 Systematic uncertainties

In addition to the statistical uncertainties, related to the limited number of
events in the observed data and the estimated backgrounds, we also have to
account for other possible sources of uncertainties, related to the theoretical
models being applied in the simulation of background and signal processes, and
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Table 8.5: The model-independent discovery regions and which signal regions
they are based on.

Discovery region Derived from
DR-High SR-High-8 (with Emiss,sig

T bins combined)
DR-Int SR-Int (with Emiss,sig

T bins combined)
DR-Low SR-Low (with Emiss,sig

T bins combined)
DR-OffShell SR-OffShell (with m`` bins combined)

uncertainties in scales and resolutions of the experimental measurements and
event reconstruction.

8.5.1 Theory uncertainties

8.5.1.1 Renormalization and factorization scales

The inclusive proton-proton cross-section into any final state, pp → X, to
nth order in perturbation theory, can be factorized [177] into a perturbative
QCD (pQCD) part, σ̂(n), dealing with the high-energy (short-range) partonic
interactions between the quarks and/or gluons inside the protons, and a non-
perturbative part, given by the Parton Density Functions (PDFs), describing the
distribution of quarks and gluons as function of longitudinal proton momentum
fraction, x, dealing with the lower energy (long-range) hadronic interactions
between the protons:

σ(n) = PDF (x1, µF)⊗ PDF (x2, µF)⊗ σ̂(n)(x1, x2, µR), (8.5)

where

σ̂(n) = σ̂(0) + αsσ̂
(1) + α2

sσ̂
(2) + . . .+ αns σ̂

(n) +O(αn+1
s ). (8.6)

The PDFs capture all low-energy (long-distance) radiation up to some factor-
ization scale, µF, whereas the perturbative expansion in αs, which is small for
high-energy (short-distance) interactions, captures the contributions above µF.
The hard scatter cross-section, σ̂(n), is given in terms of αs(µR), which has been
renormalized at some renormalization scale, µR.

The PDFs are given at a certain energy scale, Q, but can be translated to
other energy scales by the DGLAP1 equations [178, 179, 180]:

dPDF (x,Q2)
d logQ2 = P (αs, z)PDF (x/z,Q2), (8.7)

where

P (αs, z) = αsP
(LO) + α2

sP
(NLO) + . . . (8.8)

1Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
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is a splitting function, expanded in a series of increasing number of quark and/or
gluon splits, e.g., q → q + g, where z is the momentum fraction of the initial
state quark taken by the final state quark, and the gluon takes the remaining
fraction, 1− z.

The strong coupling constant, αs, is usually specified in terms of experimental
measurements taken at Q = mZ , where MC generators run the coupling to the
energy scale of a given generated process by using the Renormalization Group
Equation (RGE):

dαs(Q)
d logQ2 = −α2

s(Q)[b0 + b1αs(Q) + . . .], (8.9)

where b0 and b1 are model-dependent constant coefficients. See, e.g., chapter 9
of Reference [181].

The cross-section, the PDFs and the running of αs are all expanded in
series of αs, and the truncation of these series at nth order therefore neglects
contributions of order αn+1

s . Since αs is a function of the energy scale, we can
estimate the systematic uncertainties arising from these truncations by varying
the renormalization and factorization scales, µR and µF, up and down by a factor
of 2, both individually and together:

{µR, µF} × {0.5, 0.5}, {1, 0.5}, {0.5, 1}, {1, 1}, {2, 1}, {1, 2}, {2, 2}. (8.10)

The result of each of the variations above are evaluated in terms of the
cross-section (or number of events) in each bin, i.e., CR, VR and SR, of the
analysis. The uncertainty from energy scale dependence is taken as the envelope
of all scale variations in each bin/region, i.e.

δµR,µFσ = max
i

[|σ(µR,i, µF,i)− σ(µR,0, µF,0)|], (8.11)

where i represents an index on the set of scale variations, and µR,0 and µF,0
represent the nominal renormalization and factorization scales, respectively.

8.5.1.2 Choice of parton distribution function

In addition to the missing higher order uncertainties in the DGLAP evolution,
which are estimated by the scale variations described above, there are also
uncertainties tied to how the PDFs are estimated from fits to experimental data.

There exist multiple sets of PDFs obtained by different collaborations [101].
They have obtained their estimates from fits to different experimental datasets,
each with their own experimental uncertainties. There are also systematic
uncertainties related to the functional form of these fits.

MC samples are generated with a certain choice of PDF, but typically also
come with event weights that can be applied to the nominal (unweighted)
events in order to obtain the outcome of using other (variations of) PDFs. The
systematic uncertainty arising from different choices of PDFs is estimated by
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the standard deviation from the average in the ensemble of the Nmem variations
provided [101]:

δPDFσ =

√√√√ 1
Nmem − 1

Nmem∑
k=1

(
σ(k) − 〈σ〉

)2
, (8.12)

where the average over all the Nmem PDF variations is calculated by

〈σ〉 = 1
Nmem

Nmem∑
k=1

σ(k). (8.13)

8.5.1.3 Implementation of theory uncertainties

The theory uncertainties w.r.t. variations in (renormalization and factorization)
scale and choice of PDF are calculated from so-called LHE3 (Les Houches event
version 3) [182, 183] weights provided with the MC samples. There are separate
LHE weights for every systematic up and down variation.

Systematic uncertainties in scale and PDF are estimated on a region-by-region
basis for the three main sources of backgrounds: diboson, tt̄ and Z + jets. The
uncertainties are expressed as fractional uncertainties in terms of their difference
from the nominal value in the corresponding region divided by the nominal value.

Since the low-mass DY process is a small background to our regions in general,
we have used nearby Z + jets uncertainties to estimate the size of the theory
systematics for low-mass DY in the off-shell regions.

The smaller backgrounds, where the estimates are taken directly from MC
simulations, are assigned global uncertainties on their total production cross-
sections. All Higgs boson samples are assigned a conservative 10% uncertainty,
based on the tt̄H cross-section uncertainty in Reference [184]. A 13% uncer-
tainty is similarly taken from Reference [184] and applied to the Top Other
samples, which consist predominantly of tt̄V . The triboson (V V V ) are assigned
a 32% uncertainty based on comparisons between Sherpa and VBFNLO in
Reference [185].

8.5.2 Experimental uncertainties

Comparisons are carried out between data measurements and corresponding
predictions from simulation, and uncertainties are quantified to account for
the discrepancies. In large, we have three kinds of experimental uncertainties:
(i) discrepancies in kinematic variables, i.e., energy scale and resolution of the
physics objects; (ii) discrepancies in efficiencies, related to the proportion of
physics objects which are reconstructed, identified, isolated and triggered; and
(iii) uncertainties tied to data-driven estimates, when MC simulations do not
model the experimental data sufficiently well.
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8.5.2.1 Uncertainties on kinematic variables

Kinematic uncertainties are related to the experimental measurements and the
subsequent reconstruction of the energies and momenta of objects, where up
and down variations of each source of uncertainty are implemented as separate
versions of the dataset (separate ntuples/TTrees). This includes uncertainties
related to the energy scale and resolution of, most prominently, jets, but also
electrons/photons and muons, uncertainties related to the identification of these
objects, and also uncertainties in the Emiss

T soft track terms, which are not
matched to any reconstructed object.

Integrated luminosity The uncertainty on the integrated luminosity measure-
ments for the full ATLAS Run 2 dataset, after all data quality requirements have
been applied, amounts to 1.7% [49]. This uncertainty is included as a nuisance
parameter in the likelihood fit for processes that are not normalized to data.

Jet energy scale (JES) and resolution (JER) The four-momenta of the re-
constructed jets, both in data and MC, go through a series of calibration steps
in order to better match the reconstructed four-momenta at particle-level in
simulation. In addition, so-called in situ measurements of jets in both data
and MC are made after the simulation-based calibrations, where remaining
differences between data and MC are corrected by corresponding calibrations to
jets in data only.

The modeling of jets in simulation, and the numerous in situ measurements
and calibrations, all bring sources of statistical and systematic uncertainties.
In total, 125 different uncertainty terms have been quantified for the full JES
uncertainty [186], where several of the terms are uncertainties in bins of pT and/or
η. Since several of these terms are negligible to some analyses, several reduced
uncertainty schemes have been derived to allow for simplified descriptions with
a minimum loss of correlation information.

98 of these terms, or nuisance parameters, are pT-dependent uncertainties
from the absolute in situ analyses, and can be reduced by way of an eigenvector
decomposition of the covariance matrix of these components. The resulting
eigenvectors with the largest eigenvalues are kept as new, effective nuisance
parameters, where the remaining terms are combined into a single, residual
nuisance parameter.

We make use of the so-called category reduction, which combines the pT-
dependent in situ uncertainty components in terms of which of the following
categories they belong to: detector, statistical, modeling or mixed. This reduces
the in situ uncertainties to 15 effective nuisance parameters, and 30 JES nuisance
parameters in total. The final 15 JES parameters are related to intercalibrations
between η-regions, jet flavor composition and response, various contributions
from pile-up and modeling of “punch-through” of jets beyond the hadronic
calorimeter in MC.
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The JER uncertainty, relative to the jet pT, can for calorimeter-based resolu-
tion be parametrized by three terms:

σ(pT)
pT

= N

pT
⊕ S
√
pT
⊕ C, (8.14)

where N , S and C are parameters to be measured or fitted, and represent
noise, stochastic and constant terms, respectively. The noise term consists of
contributions that are independent of pT-scale, such as electronic noise to the
measured signal from the detector front-end electronics, and contributions from
pile-up. The stochastic term contains contributions from statistical fluctuations,
which scales as 1/√pT. The constant term contains fluctuations which are
constant fractions of the pT, such as energy depositions in passive material, the
starting point of the hadron showers and the non-uniformities of response across
the calorimeter.

Similar eigenvalue decompositions are also carried out to reduce the number
of JER uncertainty components. We make use of the so-called SimpleJER
reduction, where the 34 original nuisance parameters are reduced to 8 effective
nuisance parameters.

The pT of the jets in MC are smeared to match the JER in data, and the
smearing is applied differently for each systematic (nuisance parameter) variation
according to the following expression:

σ2
smear,i = (σnom + |σNP,i|)2 − σ2

nom, (8.15)

where σnom is the nominal JER and σNP,i represents the systematic variation
by nuisance parameter NPi. When the JER is smaller in data than in MC, the
difference is accounted for as an additional nuisance parameter:

σNP, data-MC = σdata
nom − σMC

nom. (8.16)

Emiss
T track soft term (TST) As the systematic variations applied to the

reconstructed, hard objects in the events also get propagated to the reconstructed
Emiss

T , the effect of systematic uncertainties from hard objects on Emiss
T are taken

care of simultaneously. However, the soft tracks not associated to reconstructed
objects, fall outside the scope of the object-based systematic variations. Therefore,
separate track soft term (TST) systematics need to be added.

Since

pmiss
T = −(phard

T + psoft
T ) (8.17)

an event with no pmiss
T should give

psoft
T = −phard

T . (8.18)

In practice, however,the measurements of these quantities will not be completely
equal, due to detector resolution effects.
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In order to fully cover these effects, three components are considered [175]:
(i) the parallel scale, psoft

|| , i.e., the mean value of the parallel projection of psoft
T

along phard
T ; (ii) the parallel resolution, σ||, i.e., the root-mean-square (RMS) of

psoft
|| ; and (iii) the transverse resolution, σ⊥, i.e., the root-mean-square (RMS)
of the perpendicular component of psoft

T with respect to phard
T . The transverse

scale is not considered, as it has been shown to be consistent with zero in both
data and MC.

These quantities are measured in bins of phard
T both in data and multiple

combinations of MC generators and parton shower models, and the maximal
difference (envelope) between any of the MC models and data are taken as a
measure of the corresponding systematic uncertainty.

The resolution uncertainties are applied to MC by smearing each event’s psoft
||

and psoft
⊥ by Gaussians of width equal to σsoft

|| and σsoft
⊥ , respectively. The scale

variations on psoft
|| are applied as psoft

|| ±∆L, where ∆L represents the maximal
difference between data and MC in the corresponding phard

T -bin.

Electrons and photons Electron and photon objects are reconstructed from
clusters of energy depositions in the EM calorimeter, where an electron has a
reconstructed track matched to the cluster, whereas a photon does not. Correc-
tions to the electron and photon energies are added on top of the measurements
from the cluster depositions, in order to take into account energy lost to material
placed before the EM calorimeter, to the neighboring calorimeter cells of the
reconstructed cluster and energy lost beyond the EM calorimeter [147, 187]. To
this end, an algorithm trained on simulated Z → ee events are used to calibrate
the absolute energy scale of both data and MC. In order to reduce remaining
differences between data and MC, additional corrections are applied to data,
such as intercalibrations of calorimeter layers, corrections to pile-up induced
energy-shifts and improvements to the uniformity of the energy response.

Residual differences in energy scale between data and MC, in multiple bins
of η indexed by i, are parametrized in terms of αi as

Edata = EMC(1 + αi), (8.19)

and the differences in energy resolution, in terms of ci, as[
σ(E)
E

]data
=
[
σ(E)
E

]MC
⊕ ci, (8.20)

where ⊕ represents a sum in quadrature. After extracting fitted values of αi and
ci on the Z → ee invariant mass spectrum of data and MC, the energy scale in
data is corrected to match MC by use of αi, whereas MC is corrected to match
the energy resolution of data by use of ci.

Multiple systematic uncertainties [147, 187] are evaluated by how much they
affect the values of αi and ci. This includes uncertainties tied to the method,
the mass range, the event and object selection used to extract the parameters,
binned in both ET and η.
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In total, more than 60 systematic variations are available related to the
energy calibration. However, since the systematic uncertainties from electrons
and photons are typically negligible in the SUSY searches presented here, we make
use of a simplified correlation model, where only two nuisance parameters are
considered, one for energy scale and one for energy resolution. For the simulated
SUSY processes, an additional nuisance parameter modeling the uncertainty in
the energy scale for the fast simulation of the calorimeter response is accounted
for.

Muons The final muon objects, also referred to as combined muons (CB),
are reconstructed using hits in both the inner detector (ID) and the muon
spectrometer (MS). A muon momentum calibration is applied to CB muons in
MC, in order for the pMC,ID

T - and pMC,MS
T -distributions of simulated muons to

match the corresponding distributions of muons in data, pdata,ID
T and pdata,MS

T ,
respectively.

The corrected MC momentum for CB muons, pcor,CB
T , is obtained from the

following combination of corrected ID- and MS-track momenta:

pcor,CB
T = f · pcor,ID

T + (1− f) · pcor,MS
T , (8.21)

where the relative fraction, f , is constrained to be equal to the corresponding
fraction before the correction:

pMC,CB
T = f · pMC,ID

T + (1− f) · pMC,MS
T . (8.22)

The corrected momentum, pcor,CB
T , is calculated as a function of the η and φ

of the simulated muons, and includes correction to both the momentum scale
and resolution. See Equation 5 of Reference [138] for the full expression.

The momentum scale correction consists of separate ID and MS terms that
correct for inaccuracies in the description of the magnetic field integral and the
dimension of the detectors in the direction perpendicular to the magnetic field.
An additional term is added to account for inaccuracies in the MC modeling of
energy loss in material between the interaction point and the MS.

In order to account for differences in the momentum resolution found in data
and MC, the MC momenta are smeared using the following parametrization of
the relative pT-resolution:

σ(pT)
pT

= r0

pT
⊕ r1 ⊕ r2 · pT, (8.23)

where ⊕ denotes a sum in quadrature. The parameter of the first term, r0,
accounts mainly for fluctuations of the energy loss in the traversed material. The
second parameter, r1, accounts for the contributions from multiple scattering,
local magnetic field inhomogeneities and local, radial displacements of the hits.
The third and final parameter, r2, describes intrinsic resolution effects caused by
residual misalignment of the MS. The first term is found to be negligible both
for the ID and the MS.
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Systematic variations (nuisance parameters) are provided for the momentum
resolution of the ID and the MS separately, and for the momentum scale combined.
Two additional systematic variations are also added to account for a charge-
dependent sagitta2 bias.

8.5.2.2 Uncertainties on efficiency corrections

Efficiency uncertainties are related to the scale factor corrections that account for
differences in the reconstruction efficiencies of data and MC, where up and down
variations of each source of uncertainty are implemented as weights to be applied
to the nominal dataset. This includes uncertainties in the pileup reweighting
procedure, the jet-to-vertex tagger, jet flavor tagging, trigger efficiencies, and the
identification, isolation and reconstruction efficiencies of electrons and muons.

The tag-and-probe method is used for measuring efficiencies of quantities
such as object reconstruction, identification, isolation and triggering. It is based
on selecting a high-quality (tight selection) tag object along with a relatively
unbiased (loose selection) probe object to be used for evaluation of the selection
in question.

Take for example a measurement of the efficiency of a single-electron trigger.
First, we select a high-quality electron as tag, which is matched to the single-
electron trigger in question and passes stringent identification and isolation
requirements. Then, we need to have a second electron in the event, to be the
probe, with a looser set of requirements when it comes to identification as an
electron and isolation. The two electrons additionally need to satisfy a collective
requirement, such as having opposite electric charge and making up an invariant
mass consistent with a resonance, e.g., Z or J/ψ. If these requirements hold,
the probe should be comparable with the tag, and thereby also, in principle,
have fired the same trigger. The trigger is most likely not 100% efficient, i.e.,
some of the probes will fail to fire the trigger in question for various reasons.
The efficiency of the trigger can therefore be calculated by dividing the number
of probes that fired the trigger by the number of tags, which are necessarily
required to have fired the trigger:

εtrig =
Nprobe

trig

N tag
trig

. (8.24)

Jet-vertex-tagger The jet-vertex-tagger (JVT) [188] and the forward-JVT
(fJVT) [189] are algorithms designed to measure how likely it is that a jet
belongs to the primary vertex (hard-scatter) of the event, or conversely most
likely belongs to a pile-up interaction. The efficiencies of these discriminators
are measured using tag-and-probe on Z + jets events, with the leading jet as
the probe. Differences in the efficiencies in data and MC are corrected for by

2The sagitta of a curved particle track is a measure of how much the curve deviates from a
straight line at its center, in terms of the orthogonal distance from the imagined straight line
to the center of the arc.
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applying scale factors to the MC events. Systematic uncertainties have been
determined by way of one nuisance parameter for JVT and one for fJVT.

b-tagging A (gradient) boosted decision tree, called MV2, is applied to all
selected jets in order to identify jets from b-hadrons. This model is trained on
simulated tt̄ events with at least one reconstructed lepton, in order to target
t→Wb, where the W decays leptonically, while also keeping a sufficiently large
fraction of c-jets. The b-tagging efficiency is measured [190] both in MC, making
use of MC truth information before and after jet reconstruction, and in data, by
performing a simultaneous fit to dileptonic tt̄ regions enriched in bb, bq, qb and qq
jets (quark-anti-quark pairs), where q represents a light flavor jet (u, d, s, c) and
the jet pair is pT-ordered. The bb-selection works as a signal region in which to
measure the b- and light-flavor-jet efficiencies, and the other three regions work
as control regions to constrain the light-flavor-jet contributions. The fraction of
c-jets in the light-flavor-jet contribution is taken from MC.

The identification of b-hadrons therefore contains statistical uncertainties
from the limited number of MC events used for the measurements, and from
the fit of the b-, c- and light-flavor-jet contributions to the bb-enriched region in
data.

Also systematic uncertainty variations from the kinematics of jets, leptons,
pile-up, etc., are propagated through the analysis and quantified in terms of
how each of them affect the b-tagging efficiency. There are also systematic
contributions from physics modeling and theory uncertainties related to the MC
simulations, and from fake and non-prompt lepton contributions in the data
measurements.

An eigenvector decomposition of the total covariance matrix is performed in
order to reduce the number of effective nuisance parameters, down to up and
down variations on the b-, c- and light-flavor efficiencies, and on the extrapolation
of the c- and light-flavor-jet contributions to the bb-enriched region.

Electrons The efficiency of the electron reconstruction, identification, isolation
and charge identification are measured using tag-and-probe in Z → ee and
J/ψ → ee events. Differences in the efficiencies measured in data and MC, in
bins of pT and η, are corrected for by applying scale factors to events in MC
containing electrons. Systematic uncertainties are derived by varying different
aspects of the method used to measure the efficiencies, such as event and object
selection and background modeling. Since previous iterations of the analysis
presented here have shown negligible impact from lepton systematic uncertainties,
we only consider a simplified set of six nuisance parameters.

There are also two additional nuisance parameters covering differences in the
dielectron trigger efficiencies between data and MC. These have been obtained
by varying the quality requirements on the tag and probe muons, and the
requirements on events to be considered for the background subtraction method
used in the efficiency measurements [191].
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Muons Variations of the tag-and-probe method are used to measure the efficien-
cies of the muon reconstruction, identification, isolation and vertex association,
separately, in Z → µµ and/or J/ψ → µµ events. Differences in efficiencies
between data and MC are corrected by applying scale factors to the MC events
containing muons. Systematic uncertainties from the determination of these
efficiencies are quantified by varying different aspects of the methods used to
measure the efficiencies, such as event and object selection, uncertainties from
background estimation, and so on. We consider eight nuisance parameters related
to muon reconstruction, identification, isolation and vertex association in our
analysis.

Additionally, there are two nuisance parameters quantifying uncertainties
related to dimuon trigger matching efficiencies in data and MC. The uncertainties
are derived by, e.g., considering two different pile-up selections, correlations
between tag-and-probe muons and the effect of varying the Z-mass window by
±5 GeV [192].

8.5.3 Uncertainties in data-driven fake/non-prompt lepton
estimates

The MC simulations do not model the fake and non-prompt (FNP) lepton
contributions in data sufficiently accurate, and the so-called Matrix Method
(MM) is used to extract these contributions from data instead. Using the tag-
and-probe method, four control regions are defined to measure: (i) the rate of
prompt leptons passing the baseline selection that also pass the signal selection,
referred to as the real efficiency, and the rate of non-prompt leptons from (ii)
decays of heavy-flavor jets, (iii) photon conversions into e+e− and (iv) decays
of light-flavor jets or light-flavor jets incorrectly identified as (fake) electrons,
passing the baseline selection that also pass the signal selection, collectively
referred to as fake rates. Given that prompt leptons are well modeled by MC,
and the difficulty of constructing a control regions sufficiently pure in light-flavor
FNP leptons, the efficiencies/rates of these regions are taken directly from MC,
using truth matching. The efficiencies/rates are measured separately for electrons
and muons, and in bins of pT and η. The contribution from each of the three
sources of FNP leptons mentioned above to the so-called fake weights, are finally
measured in signal-like regions for each of the following scenarios: off-shell, low-,
intermediate- and high-∆m. Contamination from prompt/real leptons to each
of the control regions are estimated by MC, and subtracted from the total to
give the FNP leptons estimate in data.

Several kinds of uncertainties come along with the estimates described above.
The MC scale factors, to correct for differences in reconstruction, identification
and isolation efficiencies between data and MC, have associated uncertainties that
are taken into account for the FNP estimates. The real lepton contamination in
the control regions used to extract the fake rates, are subtracted from the region,
and a 10% systematic uncertainty is assigned to the subtracted MC yields. For
the fake weights, the relative fraction of each of the three FNP sources are varied
up and down by one standard deviation, and if a given event enters multiple
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control regions, the minimum and maximum (envelope) weights in these regions
are used as uncertainty for the given event. The statistical uncertainties on
the real efficiency and the fake rates are also propagated through to the FNP
estimates. Finally, all sources of uncertainty are combined to give one nuisance
parameter which is used in the likelihood fit.

8.5.4 Uncertainties implemented in HistFitter

HistFitter creates histograms for each of the up and down variations described
above, either directly from each ntuple for the kinematic uncertainties, or by
multiplying the nominal ntuple with the different sets of weights for the efficiency
uncertainties. We then obtain estimates for how the number of events in each
analysis bin/region changes with respect to every systematic variation, i.e., how
large effect each of these variations have on our analysis.

8.6 Statistical analysis

8.6.1 The likelihood function

In HistFitter, the likelihood function is built from a product of Poisson factors,
P , for each bin/region, i, considered in the fit, along with factors, C, constraining
the nuisance parameters representing the systematic uncertainties:

L(n,θ0|µsig,µp,θ) = PSR × PCR × Csyst (8.25)

=
∏
i∈SR

P (ni|λi(µsig,µp,θ)) (8.26)

×
∏
i∈CR

P (ni|λi(µsig,µp,θ)) (8.27)

× Csyst(θ0,θ). (8.28)

The likelihood is a function of the vector, n, of observed data yields (counts)
in each CR and SR, ni, considered in the fit, and of the vector, θ0 consisting
of auxiliary measurements of the nuisance parameters. This construct gives a
measure of the likelihood for the observed data (n,θ0) given the fit parameters
of the model (µsig,µp,θ), where λi(µsig,µp,θ) is the expected event count in
bin/region i. The event count λi is a function of µsig, which is a scale factor
representing the signal strength; µp, which is a vector holding normalization
factors for the most important background processes (p); and θ, which is a vector
holding the location/size of the nuisance parameters.

The nuisance parameters, θj , are typically considered to be Gaussian dis-
tributed around their expectation values, θ0

j , with standard deviations, ±σθj ,
represented by θj = ±1 in the standardized Gaussian factors which constrain
the corresponding nuisance parameters in the likelihood fit. In the case where
all nuisance parameters are taken to be independent, Csyst is simply the product
of Gaussian factors, G, for each systematic uncertainty, j, in the set of all
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systematic uncertainties considered, S, having unit widths:

Csyst(θ0,θ) =
∏
j∈S

G(θ0
j − θj). (8.29)

8.6.2 Maximum likelihood fit to data

8.6.2.1 The profile likelihood ratio

For the hypothesis tests, we follow the LHC standard of choosing the profile
likelihood ratio to be our test statistic:

qµsig = −2 ln L(µsig,
ˆ̂
θ)

L(µ̂sig, θ̂)
(8.30)

In order to calculate the test statistic, we need to perform two separate
maximum likelihood fits. To get the denominator, L(µ̂sig, θ̂), we allow all model
parameters to float, in order to obtain the maximum likelihood estimates (MLEs)
µ̂sig and θ̂, given the data. To get the numerator, L(µsig,

ˆ̂
θ), we keep the signal

strength µsig fixed at a constant value depending on the type of fit, and let the
remaining model parameters float to find the profiled MLEs of the nuisance
parameters, ˆ̂

θ, given the data and the specific value of µsig.

8.6.2.2 Test for discovery

The first hypothesis we would like to test, is whether the observed data is
consistent with the test statistic distribution, given only contributions from SM
background processes, f(q0|0), at some pre-determined confidence level (CL).
This is called the background-only hypothesis. In this case the signal strength
parameter, µsig, is equal to 0, which gives the following version of the test
statistic:

q0 = −2 ln L(0, ˆ̂θ)
L(µ̂sig, θ̂)

. (8.31)

The compatibility of the observed data with the background-only hypothesis
can be quantified in terms of the integral over f(q0|0) for more extreme (higher)
values than the observed value, q0,obs. I.e., the p-value of getting a test statistic
at least as far away from the expectation value as what is observed, given only
background contributions. This can be formulated mathematically as:

p0 =
∫ ∞
q0,obs

f(q0|0) dq0. (8.32)

If p0 < 2.87× 10−7, which corresponds to at least a 5σ one-sided Gaussian
deviation from the expectation, we discard the background-only hypothesis, as
is conventional in high-energy physics experiments. Otherwise, we cannot claim
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Table 8.6: Post-fit normalization factors from a background-only fit to data in
the CRs and SRs, including all systematic uncertainties.

Norm factor Post-fit value
µZ 1.2± 0.2
µDY 0.9± 0.2
µVZ 0.92± 0.08
µtt 0.99± 0.08

discovery of a new signal according to our standards, and we will instead proceed
to set corresponding exclusion limits on the cross-section and/or mass of any
new particle involved, given the observed data.

Parameters of the model-independent fit Each of the four control regions
CR-VZ, CR-tt, CR-Z and CR-DY are designed to contain events of high purity
in their respective background processes: diboson, tt̄, Z + jets and Z∗/γ∗ + jets.
Their objective is to constrain the floating normalization factors in simultaneous
fits to data in all CRs, for each of these four processes: µVZ, µtt, µZ and µDY.

Figure 8.16 shows the post-fit results for all the floating parameters in a fit to
data in all CRs and SRs, including the profiled uncertainties on these parameters.
There are four categories of parameters: (i) background normalization factors,
represented by the letter µ, (ii) uncertainty on the luminosity measurement,
labeled "Lumi", (iii) statistical uncertainties in the fitted regions, represented
by the letter γ, and (iv) the size of the theoretical and experimental systematic
uncertainties in the fitted regions, represented by the letter α.

Table 8.6 shows the resulting normalization factors obtained by the fit. The
post-fit values show that all four normalization factors are consistent with unity
within uncertainties, which thereby indicate that no significant mis-modeling is
found in the initial normalization of the dominant backgrounds.

Since the background normalization factors are consistent with one, and
there are reasonably large numbers of events in the control regions, the size of
the statistical uncertainties in the control regions are not significantly affected
by the fit. The statistical uncertainties in the signal regions are not significantly
altered either, but there are larger uncertainties associated with the corrections
from the fit due to lower statistics in the SRs compared to the CRs. This is
reflected in the sizes of the error bars of the SR γ factors in the pull plot. The
most striking pull among the statistical uncertainties comes from the SR-Low-2
region. Large statistical uncertainty from low statistics and highly weighted
Z + jets events in this region, combined with the post-fit normalization factor of
1.2 for Z + jets, leads to a decrease in the relative statistical uncertainty in the
region. Even though the relative statistical uncertainty is reduced by about 30%
after the fit, the uncertainty in this reduction is still large enough to include
unity in the 1σ interval.

The majority of the remaining systematics, associated with theoretical pre-
dictions and event kinematics, are also mostly unaffected by the fit, and are
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consistent with their pre-fit estimates within one standard deviation. There are,
however, some systematics that are more affected than others, most notably those
that parametrize the jet energy resolution and scale (JER and JES, respectively),
the e/γ energy scale, the electron charge-ID, the FNP-weights and the jet flavor
composition.

Both the JES and JER have some parameters which are pulled to lower and
others which are pulled to higher values. Sensitivity to the jet related parameters
comes from the various jet selections applied to the control and signal regions.
The e/γ energy scale and the electron charge-ID parameters are all pulled to
lower values, which is also the case for the FNP-weight, whereas the jet flavor
composition is pulled upwards. In order to get some clues to the causes of these
pulls, it may be informative to look at their correlations with other parameters.

Correlations of the fitted parameters Figure 8.17 shows a correlation matrix
between the most dominant systematic uncertainties in the fit. The α-parameters
hardly show any correlation among themselves, which is by design. The obvious
exceptions are the complete self-correlations shown on the diagonal.

Moderate anti-correlations can be seen between the normalization factors.
This is a result of the same backgrounds contributing to multiple CRs, where
the normalization factor of one process may decrease when another one increases
in order to fit the data.

There are also moderate anti-correlations seen between the normalization
factors and the statistical uncertainties in the CRs. Increased background
contribution results in decreased relative statistical uncertainty in the CRs.

The fake and non-prompt weight parameter is negatively correlated with all
the normalization factors, due to becoming less important relative to the total
background when other background sources become more important.

The jet flavor composition parameter turns out to be positively correlated
with the Z + jets normalization factor, where the value of the latter is largely
controlled by the fit of the Z + jets background to data in CR-Z. This CR
makes use of a b-jet veto in order to reject top backgrounds. Since the initial
background estimates from MC in CR-Z underestimated the data in the region,
the up-scaling of the Z + jets background driven by this region, may therefore
also have inflated the effect of the heavy flavor jet contributions in the region.

A rather large number of moderate correlations is observed between the
statistical uncertainty in the SR-Low-2 region with various kinematic parameters.
This is most likely due to the large statistical uncertainty in the region, caused
by low number of events and some highly weighted Z + jets events. These
correlations are therefore not of great significance.

Numbers of events after the fit Figure 8.18 shows the post-fit background
estimates compared to the observed data in all control, validation and signal
regions, after a simultaneous fit to the CRs and SRs have been carried out. The
control region yields show a successful fit of the backgrounds to the data, but
with a small excess of observed events in CR-Z.
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Figure 8.16: Post-fit pull plot of the normalization factors (µ), the size of
statistical uncertainties (γ) and the theory, kinematic and efficiency parameters
related to systematic uncertainties (α), with profiled uncertainties on the fitted
parameters. The normalization factors and statistical uncertainties (shown in
blue) are expressed relative to their pre-fit values (value of 1 means no deviation),
whereas the systematic uncertainties (shown in black) are expressed as differences
w.r.t. their nominal values/expectations (value of 0 means no deviation).
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Figure 8.17: Post-fit correlations between the free parameters of the fit, including
normalization factors, statistical and systematic uncertainties.

The validation regions, with the background normalization factors extrapo-
lated from the fits to the CRs and SRs, generally show background predictions in
good agreement with the data. VR-High, validating the background predictions
near SR-High, has the largest gap between observation and prediction, with a
slightly less than 2σ excess.

No significant excesses are observed in the signal regions. There are, however,
a few moderately large downward fluctuations in the number of observed events
compared to what was expected. Most noteworthy, no events are observed in
the SR-High-8-a and -b regions, where 2.21± 0.23 and 1.57± 0.56 events were
expected, respectively. These correspond to roughly 2σ deviations each.

More detailed summaries of the observed and expected number of events
after the maximum likelihood fit are given for the CRs in Table 8.7, the VRs in
Table 8.8 and 8.9, and the SRs in Table 8.10, 8.11 and 8.12.

Uncertainties on the numbers of events after the fit The dominant system-
atic uncertainties in each SR varies from region to region. For SR-High-4, which
uses a single jet with mass consistent with the Z-mass, the jet mass scale is by
far the most important uncertainty, and amounts to 30-40% of the expected
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Figure 8.18: Post-fit pull plot of the observed number of events in all CRs, VRs
and SRs compared to the expected number of background events in the regions.

Table 8.7: The number of observed (data) events compared with the expected
number of background events in the regions used to control and constrain
the background modeling in the signal regions. All statistical and systematic
uncertainties are included.

CR-ZZ CR-tt CR-Z CR-DY
Observed events 194 424 159 90
Total exp. bkg. events 192.26± 12.54 424.23± 20.62 150.82± 12.40 90.00± 9.54

Diboson events 173.17± 14.28 21.13± 2.99 33.19± 3.65 12.18± 1.63
Top events 9.01± 1.10 352.52± 23.73 1.15± 0.28 23.75± 4.23
Z/γ∗ events 5.31+6.14

−5.31 48.67± 10.26 114.65± 13.42 52.52± 11.01
Other events 4.76+1.45

−0.92 1.90± 0.93 1.83± 0.33 1.56+1.07
−0.65

Table 8.8: The number of observed (data) events compared with the expected
number of background events in the regions validating the background modeling
near the high-∆m signal regions. All statistical and systematic uncertainties are
included.

VR-High-4 VR-High VR-HighR
Observed events 49 24 64
Total exp. bkg. events 43.20± 8.23 17.03± 1.85 61.50± 5.67

Diboson events 35.06± 7.53 16.05± 1.83 57.72± 5.74
Top events 5.84± 1.02 0.62± 0.09 1.66± 0.24
Z/γ∗ events 1.71± 1.15 0.06± 0.02 0.44± 0.17
Other events 0.59± 0.09 0.30± 0.08 1.69+0.69

−0.46
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Table 8.9: The number of observed (data) events compared with the expected
number of background events in the regions validating the background modeling
near the intermediate, low and off-shell-∆m signal regions. All statistical and
systematic uncertainties are included.

VR-Int VR-Low VR-Low-2 VR-OffShell
Observed events 15 45 55 68
Total exp. bkg. events 17.15± 2.04 51.22± 9.02 63.79± 7.33 63.00± 6.06

Diboson events 15.17± 1.98 24.35± 2.93 24.33± 3.04 18.71± 2.22
Top events 0.92± 0.40 1.96± 0.79 12.32± 2.06 43.69± 5.29
Z/γ∗ events 0.37+0.51

−0.37 23.48± 8.70 20.81± 5.71 0.00± 0.00
Other events 0.70+0.16

−0.09 1.53+0.32
−0.24 6.34± 1.73 0.60+0.39

−0.25

Table 8.10: The number of observed (data) events compared with the expected
number of background events in the high-∆m signal regions. All statistical and
systematic uncertainties are included.

SR-High-4 SR-High-8-a SR-High-8-b SR-High-16-a SR-High-16-b
Observed events 1 0 0 4 3
Total exp. bkg. events 0.87± 0.34 2.21± 0.23 1.57± 0.56 3.85± 0.73 3.54± 0.93

Diboson events 0.82± 0.32 2.04± 0.23 1.48± 0.56 3.29± 0.61 2.88± 0.72
Top events 0.03± 0.01 0.12± 0.03 0.03± 0.02 0.14± 0.05 0.40± 0.02
Z/γ∗ events 0.00± 0.02 0.02± 0.02 0.02± 0.02 0.02± 0.02 0.02± 0.01
Other events 0.02± 0.00 0.02± 0.00 0.01± 0.00 0.40+0.39

−0.34 0.02+0.69
−0.56

Table 8.11: The number of observed (data) events compared with the expected
number of background events in the intermediate- and low-∆m signal regions.
All statistical and systematic uncertainties are included.

SR-Int-a SR-Int-b SR-Low-a SR-Low-b SR-Low-2
Observed events 24 14 10 8 8
Total exp. bkg. events 20.38± 1.69 10.20± 1.11 17.06± 3.45 13.48± 2.49 9.68± 3.35

Diboson events 17.96± 1.71 9.52± 1.04 5.33± 1.65 9.04± 1.20 3.91± 2.31
Top events 1.57± 0.42 0.25± 0.05 0.03± 0.01 0.12± 0.03 0.03± 0.02
Z/γ∗ events 0.41± 0.32 0.25+0.31

−0.25 9.96± 2.84 3.78± 2.02 3.79± 3.41
Other events 0.44± 0.05 0.19± 0.04 1.41± 0.35 0.06± 0.00 0.48± 0.25

Table 8.12: The number of observed (data) events compared with the expected
number of background events in the off-shell signal regions. All statistical and
systematic uncertainties are included.

SR-OffShell-a SR-OffShell-b
Observed events 6 15
Total exp. bkg. events 9.50± 1.44 11.21± 1.32

Diboson events 5.55± 0.81 7.20± 0.81
Top events 1.99± 0.57 3.125± 0.93
Z/γ∗ events 0.56+1.27

−0.56 0.60± 0.25
Other events 1.41± 0.41 0.30+0.11

−0.07
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background yield in the region.
In SR-High-8-a, i.e., with ∆Rjj < 0.8 and 18 < Emiss,sig

T < 21, the two domi-
nant uncertainties are from the diboson normalization factor and the statistical
uncertainty from the MC samples, corresponding to approximately 8 and 7%
of the background expectation, respectively. The neighboring bin, SR-High-8-
b, with ∆Rjj < 0.8 and Emiss,sig

T > 21, on the other hand, is dominated by
uncertainties in the determination of the e/γ and jet energy scales (JES) of
approximately 20% each, and the statistical uncertainty from the MC samples
of about 10-15%.

SR-High-16-a, with ∆Rjj < 1.6 and 18 < Emiss,sig
T < 21, the most important

uncertainties come from the MC statistics of about 15% and from the FNP
weights of about 10%. The diboson normalization factor also corresponds to an
uncertainty roughly 8% of the background expectation in the region. SR-High-
16-b, with Emiss,sig

T > 21, is dominated by the same sources of uncertainty, but
here the MC statistics and the FNP weights amount to roughly 20% each, with
the diboson normalization factor staying the same at 8%.

Moving on to the intermediate mass-splitting regions with more statistics, the
dominant uncertainty in both SR-Int-a with 12 < Emiss,sig

T < 15, and SR-Int-b
with 15 < Emiss,sig

T < 18, is the diboson normalization factor of about 8% in
both regions.

Whereas the high and intermediate mass-splitting SRs are dominated by one
source of background, namely diboson, the low mass-splitting SRs get sizeable
contributions from both diboson and Z + jets. This fact also leads to higher
numbers of significant uncertainty contributions of comparable sizes. In SR-Low-
a, with 6 < Emiss,sig

T < 9, the most dominant sources of uncertainty are jet flavor
composition and electron charge ID of roughly 10-15% each. There are also
sizeable contributions from the jet energy resolution (JER), MC statistics and
the Z+jets normalization factor of slightly under 10% each. The uncertainties in
the neighbouring bin, SR-Low-b, with 9 < Emiss,sig

T < 12, are somewhat smaller,
where six of the ten largest uncertainties come from JER, however none of them
contribute more than 10% of the expected background in the region, and most
of them are closer to 5%.

The final low mass-splitting SR, SR-Low-2, which is the only region with
mT2 < 80 GeV, the dominant uncertainty, by far, is the MC statistics, which
amounts to about 30% of the total background expectation. There are, however,
also smaller contributions from JER, especially from the Z + jets background,
of around 10% in size.

Finally, the off-shell SRs have relatively modest uncertainty contributions,
mostly from JER and MC statistics, and none of them larger than 10% of the
expected number of background events in the region.

8.6.2.3 Test for exclusion

Since no significant excesses are observed on top of the background expectations,
we formulate a new hypothesis test: is a given signal strength, µsig, consistent with
the test statistic distribution, f(qµsig |µsig), given the observed value, qµsig,obs,
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at some pre-determined CL? Similar to the discovery test, we quantify the
compatibility between the test statistic distribution, given background plus the
specific signal strength, and the observed value of the test statistic, in terms of a
p-value, pµsig , of obtaining at least as extreme (higher) test statistic values than
the one observed. I.e., the expected fraction of the distribution that is more
background-like (non-signal-like) than the value observed. This can be expressed
as:

pµsig =
∫ ∞
qµsig,obs

f(qµsig |µsig) dqµsig . (8.33)

The HEP standard is to set exclusion limits at 95% CL, which means that
pµsig < 0.05, or equivalently, at least 1.64σ one-sided Gaussian deviations from
the expectation, are excluded, given the observed data. We use the slightly more
conservative requirement that CLs < 0.05, where the CLs-value is defined as

CLs ≡
pµsig

1− p0
. (8.34)

A range of signal strengths are scanned to find the specific µsig that gives
CLs = 0.05. This becomes the upper limit on the signal strength. We can then
exclude all larger signal strengths, for which CLs < 0.05.

The expected exclusion limits from the conventional SRs, with the full
Run 2 dataset, are illustrated with dashed lines in Figure 8.19. The yellow
band indicates the uncertainty in the exclusion limits w.r.t. the up- and down
variations in the statistical and systematic uncertainties. For a massless LSP, this
corresponds to the expectation of excluding χ̃±1 /χ̃0

2 masses below about 750 GeV,
whereas we expect to exclude LSP masses below about 10 GeV for a χ̃±1 /χ̃0

2
mass of 100 GeV. In terms of mass-splittings, this means that the exclusion
sensitivity ranges from ∆m ≈ 750 GeV down to the start of the off-shell regime at
∆m ≈ 90 GeV. In the end, I did not include the off-shell region in my exclusion
fits. However, this region is covered by the final ATLAS publication, presented
in the next section (8.7).

The results presented in this section have been produced by me for this thesis.
They are derived using the common analysis framework and ntuples produced
by the working group I have been a part of, but they do not fully represent
the final product of the ATLAS publication. The differences w.r.t. the ATLAS
publication are discussed in the following section.

8.7 Published analysis

At the time of delivery of the thesis, the complete ATLAS Run 2 analysis has
been submitted to the European Physical Journal C, and has been published as
a pre-print in Reference [193].

As mentioned in the previous section, there are some differences in the
analysis of the publication w.r.t. what I have presented so far in this chapter.
Probably the most notable difference is the addition of exclusion limits for both
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Figure 8.19: Expected 95% CL exclusion contour with the full Run 2 dataset.
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mZ ≈ 91 GeV, have not been considered in the calculation of the exclusion
contour.

model-independent and model-dependent signals. Another important difference
is the addition of more systematic uncertainties, such as uncertainties to account
for differences between the nominal and alternative MC samples for the most
important background processes, and experimental uncertainties in the modeling
of jet masses. The latter is an especially important addition for the boosted
high-∆m SR, where we assume that the two jets from the decay of the W boson
have effectively merged into a single reconstructed jet, with ∆R < 0.4, and
this jet has a mass consistent with the mass of the W boson. I have previously
referred to this region as SR-High-4, whereas the publication has renamed this
region to SR-1J-High-EWK. Apart from the different name, the region definitions
are otherwise identical.

The publication also modified the treatment of the renormalization and
factorization scale uncertainties and the PDF uncertainties somewhat w.r.t.
what I have described in Section 8.5.1.1 and 8.5.1.2. Instead of taking the
envelope of the various combinations of µR and µF variations as a single nuisance
parameter, three nuisance parameters where added, one for µR, one for µF
and one for the correlation between the two, µRµF. For the PDF uncertainties,
instead of using the sample mean and variance of the ensemble of PDF variations,
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the publication makes use of an alternative prescription which uses quantiles of
reweighted samples.

Since the publication also presents search regions for strong production of
sparticles with the same final-state, the search regions that target electroweak
production of sparticles get an “EWK”-suffix appended to the names I have
referred to in this chapter. The region definitions are otherwise identical to what
I have presented in Table 8.1, 8.2, 8.3 and 8.4.

The publication also includes an additional electroweak SR, called SR-``bb-
EWK, which targets a gauge-mediated SUSY breaking (GMSB) model with
pair-production of higgsino NLSPs, where the higgsinos decay via Higgs or Z
bosons into gravitino LSPs.

The expected and observed event yields in the electroweak SRs are presented
in Table 8.13 and 8.14.

Table 8.13: Breakdown of expected and observed yields in the electroweak search
High and ``bb signal regions after a simultaneous fit to the SRs and CRs. All
statistical and systematic uncertainties are included. The table and caption are
taken from Reference [193].

SR-High_16a-EWK SR-High_8a-EWK SR-1J-High-EWK SR-``bb-EWK

Observed events 4 0 1 0

Total exp. bkg. events 3.9± 0.7 2.00± 0.23 0.85± 0.34 0.58± 0.20

Diboson events 3.2± 0.6 1.86± 0.22 0.80± 0.31 0.13± 0.03
Top events 0.00+0.01

−0.00 0.0± 0.0 0.03+0.04
−0.03 0.05+0.08

−0.05
Z + jets events 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
Other events 0.7± 0.4 0.15± 0.07 0.02+0.04

−0.02 0.39± 0.16

SR-High_16b-EWK SR-High_8b-EWK

Observed events 3 0

Total exp. bkg. events 3.4± 0.9 2.00± 0.33

Diboson events 2.5± 0.6 1.94± 0.33
Top events 0.0± 0.0 0.0± 0.0
Z + jets events 0.0± 0.0 0.0± 0.0
Other events 0.9± 0.7 0.06± 0.04

Distributions of the expected background and signal yields along with the
observed number of events in the most discriminating signal-vs-background
variables, for five of the SRs, are shown in Figure 8.20. The observed data seems
to fit well with the background expectations, with some notable deviations, in
particular for the SR-High_8-EWK and SR-``bb-EWK, where no events are
observed.

The yields in the electroweak CRs, VRs and SRs after a simultaneous
background-only fit to the CRs and SRs are summarized in their single-bin form
in Figure 8.21. A measure of the significance of the deviation between observation
and background expectation in each region is also shown in the lower panel of
the plot. This figure corresponds to the one shown in Figure 8.18, but where
Figure 8.21 has the additional systematic uncertainties outlined above included
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Figure 8.20: Observed and expected distributions in five EWK search regions
after a simultaneous fit to the SRs and CRs. In the top row, left-to-right, are
Emiss,sig

T in SR-High_8-EWK and mbb in SR-``bb-EWK. In the middle row,
left-to-right, are Emiss,sig

T in SR-Int-EWK and Emiss,sig
T in SR-Low-EWK. In the

bottom row is m`` in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB
signal models, where the numbers in the brackets indicate the masses, in GeV,
of the χ̃±1 and χ̃0

2 or the mass of the χ̃±1 and branching ratio to the Higgs boson
respectively. All statistical and systematic uncertainties are included in the
hatched bands. The last bin includes the overflow. The figures and caption are
taken from Reference [193].
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Table 8.14: Breakdown of expected and observed yields in the electroweak search
Int, Low, and OffShell signal regions after a simultaneous fit to the SRs and
CRs. All statistical and systematic uncertainties are included. The table and
caption are taken from Reference [193].

SR-Int_a-EWK SR-Low_a-EWK SR-Low-2-EWK SR-OffShell_a-EWK

Observed events 24 10 8 6

Total exp. bkg. events 22.8± 3.5 12.8± 3.4 9± 4 9.2± 1.7

Diboson events 16.5± 1.7 7.3± 1.3 4.0± 2.1 4.9± 1.3
Top events 4± 4 0.06+0.14

−0.06 1.0+1.2
−1.0 1.4± 0.7

Z + jets events 2.1± 0.7 3.7± 3.3 4± 4 1.2± 1.2
Other events 0.44± 0.13 1.7± 0.4 0.58± 0.3 1.6± 0.4

SR-Int_b-EWK SR-Low_b-EWK SR-OffShell_b-EWK

Observed events 14 8 15

Total exp. bkg. events 10.1± 1.0 10.5± 2.5 12.5± 1.9

Diboson events 9.2± 1.0 8.6± 1.2 6.1± 1.5
Top events 0.22± 0.13 0.0± 0.0 2.8± 1.4
Z + jets events 0.51± 0.31 1.3+2.2

−1.3 3.1± 1.4
Other events 0.19± 0.08 0.70± 0.11 0.54± 0.24

as nuisance parameters in the fit. The additional uncertainties modifies the
post-fit results somewhat, but not significantly and do not alter the conclusions.

The results after performing signal-plus-background fits to data in the the
CRs and a (model-independent) single-bin discovery region (DR), separately for
each DR in turn, are shown in Table 8.15. The DRs are defined in Table 8.5.
There are no significant excesses observed above the expected SM background.
In fact, only one of the DRs have an excess of observed events, which is DR-
Int-EWK, with 35± 4 background events expected and 38 events observed in
the data. This corresponds to a 0.8σ excess, which is not considered significant.
The remaining four DRs all have less events observed than expected, with DR-
High-EWK having the largest deficit, where 3.9± 0.5 background events were
expected and none events were observed in the data. This corresponds to a -2.8σ
deficit. Table 8.15, however, caps p-values at 0.5, i.e., significance (Z) values of
0σ.

The expected and observed exclusion contours obtained from simultaneous
model-dependent signal-plus-background fits to the CRs and the SRs are shown
in Figure 8.22. The contours for the χ̃±1 /χ̃0

2 model is shown on the left and for
the GMSB model on the right. The expected exclusion contour shown previously
in Figure 8.19 is consistent with the left plot in Figure 8.22, apart from the
additional expected exclusion in the off-shell region (the dent in the contour at
the lower left) of the latter, which was not considered in the former. Additionally,
the observed exclusion contour is added as a red line in Figure 8.22. Due to
deficits in the off-shell and, in particular, in the high-∆m region (the rightmost
part of the contour), the observed exclusion limits are stronger than expected.
We expected to exclude χ̃±1 and χ̃0

2 masses up to 750 GeV, whereas the observed
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Figure 8.21: The observed and expected yields in the control regions (left),
validation regions (middle), and signal regions (right) of the EWK search after a
simultaneous fit to the SRs and CRs. The hatched band includes the statistical
and systematic uncertainties of the background prediction in each region. The
significance of the difference between the observed data and the expected yield
in each region is shown in the lower panel using the profile likelihood method
of Reference [194]; the colours black, grey, and red separate the CRs, VRs, and
SRs, respectively. For the cases where the expected yield is larger than the
data, a negative significance is shown. The figure and caption are taken from
Reference [193].

limit extended all the way up to 820 GeV. In terms of χ̃0
1 masses, we expected

to exclude masses up to 300 GeV, but ended up excluding χ̃0
1 masses up to

380 GeV. These limits extend significantly beyond the previous limits shown in
gray, obtained with 36.1 fb−1, as presented in Chapter 7.

The addition of an SR targeting small enough mass-splittings between χ̃±1 /χ̃0
2

and χ̃0
1 that the Z boson needs to be produced off-shell, extends the exclusion

contour into a region of phase space that the two lepton searches of ATLAS have
not covered before. In fact, the exclusion contour goes as low as to exclude two
mass-points with ∆m = 10 GeV, namely the mχ̃±

1 /χ̃
0
2,χ̃

0
1
= (100, 90) and (110,

100)GeV mass-points.
The exclusion contours for the GMSB model, shown on the right in Figure 8.22,

shows the χ̃0
1 (NLSP) mass on the x-axis and the branching fraction (B or BF)

of χ̃0
1 to a Higgs (h) boson and a gravitino on the y-axis (the alternative is χ̃0

1 to
a Z boson and a gravitino). χ̃0

1 pair-production with 100% BF to Z, i.e., 0% BF
to h, is excluded up to χ̃0

1 masses of 890 GeV, whereas we reach exclusion all the
way up to about 94% for χ̃0

1 to h for an χ̃0
1 mass of 450 GeV.

The CMS collaboration has also published exclusion limits with their full Run
2 dataset. The expected and observed exclusion limits with 137 fb−1 of integrated
luminosity are shown in Figure 8.23. They expected to exclude χ̃±1 /χ̃0

2-masses up
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Table 8.15: Model-independent upper limits on the observed visible cross-section
in the five electroweak search discovery regions, derived using pseudo-experiments.
Left to right: background-only model post-fit total expected background, with
the combined statistical and systematic uncertainties; observed data; 95% CL
upper limits on the visible cross-section (〈Aεσ〉95

obs) and on the number of signal
events (S95

obs ). The sixth column (S95
exp) shows the expected 95% CL upper limit

on the number of signal events, given the expected number (and ±1σ excursions
of the expectation) of background events. The last two columns indicate the
confidence level of the background-only hypothesis (CLb) and discovery p-value
with the corresponding Gaussian significance (Z(s = 0)). CLb provides a measure
of compatibility of the observed data with the signal strength hypothesis at the
95% CL limit relative to fluctuations of the background, and p(s = 0) measures
compatibility of the observed data with the background-only hypothesis relative
to fluctuations of the background. The p-value is capped at 0.5. The table and
caption are taken from Reference [193].

Signal Region Total Bkg. Data 〈Aεσ〉95
obs [fb] S95

obs S95
exp CLb p(s = 0) (Z)

DR-OffShell-EWK 22.1± 2.7 21 0.10 14.3 12.3+4.7
−3.1 0.68 0.50 (0.0)

DR-Low-EWK 22± 4 18 0.08 10.8 15.3+5.7
−4.0 0.09 0.50 (0.0)

DR-Int-EWK 35± 4 38 0.15 20.9 17.5+5.9
−3.9 0.73 0.23 (0.8)

DR-High-EWK 3.9± 0.5 0 0.02 3.0 5.6+2.2
−1.5 0.00 0.50 (0.0)

DR-``bb-EWK 0.51± 0.20 0 0.02 3.0 3.0+1.3
−0.0 0.19 0.50 (0.0)
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Figure 8.22: Expected and observed exclusion contours from the EWK analysis
for the C1N2 model (left) and GMSB model (right). The dashed line indicates
the expected limits at 95% CL and the surrounding band shows the 1σ variation
of the expected limit as a consequence of the uncertainties in the background
prediction and experimental uncertainties of the signal (±1σexp). The red dotted
lines surrounding the observed limit contours indicate the variation resulting
from changing the signal cross-section within its uncertainty (±1σSUSY

theory). The
grey-shaded areas indicate observed limits on these models from the two-lepton
channels in Reference [195] and Reference [196]. The figures and caption are
taken from Reference [193].

164



Summary

Figure 8.23: Expected and observed exclusion limits from the CMS collaboration
with 137 fb−1 of integrated luminosity, in the 2`+jets channel. The figure is
taken from Reference [197].

to 640 GeV and χ̃0
1-masses up to 250 GeV. The observed limits ended up being

stronger, excluding χ̃±1 /χ̃0
2-masses up to 750 GeV and χ̃0

1-masses up to 350 GeV.
Figure 8.24 shows exclusion limits obtained by CMS for the GMSB model

with 100% BF for χ̃0
1 to a Z boson and a gravitino in (a) and with 50% BF for

χ̃0
1 to a Z boson or a Higgs boson and a gravitino in (b). From Figure 8.24a

we can see that the observed exclusion limit (black line) surpasses (excludes)
the signal cross-section times 100%BF to Z (magenta line) for all χ̃0

1 masses
below 800 GeV, whereas Figure 8.24a shows that all χ̃0

1 masses below 520 GeV
are excluded for cross-section times 50% BF for χ̃0

1 to a Z or a H.

8.8 Summary

My sensitivity studies show that the expected exclusion limits in the plane of
χ̃±1 /χ̃0

2- and χ̃0
1-masses, extracted from events with two leptons, jets and Emiss

T ,
are significantly improved using the complete Run 2 dataset with 139 fb−1, as
demonstrated in Figure 8.19, compared to the previous iteration of the Run 2
analysis using 36.1 fb−1, shown in Figure 7.8.

In the high χ̃±1 /χ̃0
2-mass region, i.e., for large mass-splittings, the expected

exclusion contour moves from 530 GeV with 36.1 fb−1 to 750 GeV with 139 fb−1.
The highest expected exclusion reach for the χ̃0

1-mass moves from 200 GeV at
mχ̃±

1 ,χ̃
0
2
≈ 500 GeV with 36.1 fb−1, to about 300 GeV at mχ̃±

1 ,χ̃
0
2
≈ 650 GeV with

139 fb−1. The latter corresponds to the reach of the intermediate mass-splitting
region. In the low mass-splitting region, we reach exclusions close to mass-
splittings similar in size to the mass of the Z-boson, i.e., ∆m ≈ 90 GeV. My
exclusion fits do not include the off-shell mass-points, i.e., with ∆m < 90 GeV,
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Figure 8.24: CMS exclusion limits at 95% CL for electroweak pair-production
cross-section (σ) for χ̃0

1 χ̃
0
1 times (a) 100% branching fraction (B) for χ̃0

1 to a Z
boson and a gravitino, or (b) 50% branching fraction to a Z boson or a Higgs
boson and a gravitino, as a function of χ̃0

1 mass. The figures are taken from
Reference [197].

and therefore the expected exclusion contour does not represent our actual
exclusion potential in the off-shell region.

The complete ATLAS publication shows that also the observed exclusion
limits are significantly improved w.r.t. the analysis with 36.1 fb−1 of data. Due
to no observed events in the high-∆m SRs, the exclusion limits become even
stronger than expected, and reaches all the way up to χ̃±1 and χ̃0

2 masses of
820 GeV, compared to the expectation of 750 GeV. The observed exclusion limit
for χ̃0

1 masses reaches up to 380 GeV, compared to the expectation of 300 GeV.
In addition, the ATLAS publication also incorporates exclusion fits for off-shell
mass points, which extends the exclusion contour into new regions of phase space
compared to previous ATLAS two lepton searches. Mass-splittings between the
NLSPs and LSPs as low as 10 GeV are excluded by the off-shell SR.

In the following, and final, analysis chapter, I present the multivariate
analysis studies I have performed using the XGBoost algorithm, to investigate
the possibility of gaining expected sensitivity to the same signal model targeted
in this chapter, with the integrated luminosity of the complete Run 2 dataset.

166



Chapter 9

Multivariate signal region
optimization

The conventional approach to signal region optimization is to manually look for or
create variables that best separate the behavior of signal and background events.
Then, sequential cuts are applied to these, one after the other, where the cut on
each variable is typically chosen based on the behavior in that variable alone.
Therefore, we may end up cutting away events that look background-like in one
variable, but may look signal-like in another. Such univariate cuts are often
referred to as rectangular cuts, and may make a sub-optimal separation/decision-
boundary between signal and background in the multidimensional space of event
variables.

A more sophisticated approach to this problem is to consider multiple variables
simultaneously, sometimes called multivariate analysis (MVA). From a cut-based
analysis point of view, one may think of it as correlating the cuts on multiple
variables, so that a cut on one variable effectively becomes a function of the
other variables we choose to include. We can, e.g., be more lenient on the Emiss

T
cut, i.e., allow for lower values of Emiss

T , given that other variables of the event
show signal-like behavior.

Many methods exist for performing MVA. In high-energy physics (HEP), the
application of boosted decision trees (BDTs) to optimize and define signal regions
have been around for some time. BDT analyses have in several cases shown
enhanced sensitivity, compared to traditional cut-based analyses, to challenging
signal scenarios. Notable examples are the first evidence of single top quark
production by the D0 experiment [198] in 2008, and the subsequent observations
of the same process by the D0 [199] and CDF [200] experiments the year after,
all making use of BDT discriminators.

More recently, deep neural networks have also been demonstrated in searches
for exotic particles, where, e.g., Reference [201] found that deep neural nets were
able to learn high-level representations from low-level kinematic input variables,
which in some cases performed better than shallow methods (BDT and shallow
neural net) did by using hand-crafted, high-level input features calculated from
physics knowledge.

In what follows, I will start by introducing the XGBoost algorithm (Section
9.1), which is used to fit the models presented in this chapter. The concept of
binary classification is then presented (Section 9.2) in the context of separating
signal from background, before explaining the typical machine learning method-
ology of training, validating and testing the models on separate samples of the
dataset (Section 9.3). Then, I move on to the actual data analysis, by first dis-
cussing the preselection of events that go into the training of the models (Section
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9.4), before presenting the training and test performance of the models that
target the low, intermediate and high mass-splitting signal scenarios (Sections
9.5, 9.6 and 9.7, respectively), on a few selected benchmark signal mass points.
Finally, the performance of the XGBoost models are summarized in terms of
their expected exclusion sensitivity in the full grid of signal mass hypotheses
(Section 9.8), and the chapter is concluded by a summary of the feasibility study
with future prospects (Section 9.9).

9.1 The XGBoost algorithm

The XGBoost [202] algorithm, for training classification and regression trees
(CARTs), quickly became one of the most popular and powerful machine learning
(ML) methods on the Kaggle website [203] for ML competitions, after it was
used by several of the highest scoring contestants in the Higgs Boson Machine
Learning Challenge (HiggsML) [204], hosted by the ATLAS collaboration on
the same website. The developers of XGBoost were awarded the HEP meets
ML Award [205] for creating a model that was considered to be the most useful
for the ATLAS experiment, in terms of accuracy, simplicity, performance and
robustness. In recent years, it has become one of the most widely used and
highest performing ML methods on structured (tabular) data, which are data
that fit a predefined model and are therefore relatively straightforward to read
in and analyze. In addition, the data points, such as particle collision events,
can often (to a good approximation) be taken to be independent and identically
distributed (i.i.d.).

For so-called unstructured data, such as images, audio or text, where the
data points (pixels, audio samples or words) are correlated in space and/or
time, deep neural networks such as convolutional neural networks (CNNs) for
images and recurrent neural networks (RNNs) for audio or text sequences, have
special network architectures and perception mechanisms that capture the nature
of these data better than decision trees. Such methods have still found very
effective applications in HEP. For example, by treating the energy depositions
in the calorimeter cells as if they were pixels of an image, one can use CNNs to
tell apart shower shapes of jets initiated by quarks and gluons [206]. Another
example is using an RNN to read in the sequence of pT-ordered jets in each
event, to accommodate the fact that the number of jets, and thereby the length
of the sequence, varies from event to event. The RNN maps these sequences to a
fixed number of output values, which further can be fed to a regular feedforwad
neural net for classification, that takes a fixed number of inputs. This method is
in use to tag jets which originate from a hadronic decay of a tau lepton [207].

One of the strengths of deep learning is that these models can learn high-level,
non-linear representations from low-level inputs. For particle experiments, this
means that we in principle should not need to calculate high-level, multi-particle
quantities, such as invariant masses, angular separations or Emiss,sig

T of an event,
because the deep neural net should be able to learn similar representations
directly from the low-level detector measurements of single particles, given
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enough training examples and appropriate architecture and parameter values.
Just because deep neural nets have the ability to learn high-level features, does
not mean that we do not benefit from adding high-level features as inputs. That
may speed up the learning significantly, as the network does not need to learn
those representations by itself. They may also be very useful in preselecting
relevant events for the training.

Because BDTs cannot learn high-level features from low-level features, it is
more important to supply them with informative and discriminatory variables
than for neural nets. Since we already have a solid theoretical understanding
and description of the mechanics of the particle interactions, with mathematical
models to calculate high-level variables which can separate signal from back-
ground well, the added complexity and challenges of tuning and designing a
well-functioning deep neural net may in many cases not be worth the struggle,
nor significantly increase the sensitivity compared to the simpler BDTs. The
BDTs are also more transparent and easier to interpret than the black-box model
of neural nets.

As much as I am fascinated by the abilities of deep neural networks, the
XGBoost model appeared to be a more promising starting point for MVA
exploration. In the following I will try to give a short introduction to decision
trees in general and the XGBoost algorithm in particular.

9.1.1 Decision trees and adaptive boosting

A decision tree can be represented graphically like a flowchart with a tree
structure, which holds a set of tests for the input to be evaluated on. An example
is shown in Figure 9.1. Every internal node in the tree corresponds to a binary
(yes/no) test, and the input will continue along one of two branches out from the
test node, determined by whether the input passes the test or not. An arbitrary
number of tests, with accompanying branch splits, can be added to the tree.
The outcome of the final test in the tree will end up in a terminal node, called
a leaf, that assigns the input to a real value for a regression task, or a certain
class probability or label for a classification task.

A single decision tree tends to overfit on the training set, and is therefore not
able to generalize well to new, unseen data. In machine learning jargon this is
referred to as producing a large variance (overfitting). By restricting the decision
tree to be shallow, i.e., restricting the depth (number of decisions) that can be
included in a single tree, we can reduce the variance. However, the decision tree
would then typically be less precise in its predictions, which in machine learning
jargon is referred to as giving large bias (underfitting). This is known as the
bias-variance trade-off.

The concept of boosting, most commonly applied in terms of the adaptive
boosting algorithm, known as AdaBoost (the default model for ROOT’s TMVA
[208] BDTs), makes use of an ensemble of decision trees, where events (data
points) that were previously misclassified, or were assigned predictions different
from their true values, will be given larger weight in the training/growing of
subsequent trees, in proportion to the size of their errors. This will in turn lead
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Figure 9.1: A visual representation of a decision tree for binary classification,
separating signal, S, from background, B. The variables of an event enter the
tree in the root node. The first test in this tree is whether the value of the
variable xi in the given event is less or greater than the cut/threshold value c1.
If xi is greater than c1, the event will follow the right path, otherwise it will go
to the left. Next, the event’s value for the variable xj will be evaluated against
the value c2 if xi < c1 or against c3 if xi > c1. In practice, xj may represent
a different variable on each side of the tree, and a variable may enter at mulitple
levels of the tree, e.g., evaluate whether the variable is greater than a certain
value, but smaller than another. The event continues down the branches of the
tree until it reaches a terminal node, called a leaf, which labels the event as either
signal- or background-like. In practice, each leaf node is assigned a value between
0 and 1, where 0 represents background and 1 signal. The value (weight) of each
leaf is tuned during the training process. All events which end up in a given leaf
node are assigned the value (weight) of that node. When multiple trees are used
in the training and evaluation, each event is passed down all the trees and the
value it gets from each tree is added together to a total score (total weight) for
that event. One could then choose to label all events with a total score of less
than 0.5 to be classified as background, and all event with a score greater than
0.5 are classified as signal. In the work of this thesis, I consider this threshold
to be a tunable cut value that defines the signal region, i.e., events which end
up with a total score greater than the cut value is considered highly signal-like
and falls in the signal region, whereas the rest of the events are considered less
signal-like and are rejected from the statistical analysis. The figure is taken from
Reference [208].
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to a greater loss/cost of getting these events wrong again, and effectively makes
the optimizer focus more on getting these hard cases right. By also restricting
each decision tree to be a weak learner, typically only 2 or 3 levels deep, each
tree will only be a little better than random guessing. But combined with other
trees (typically of the order of a hundred), which are forced to be different by
the boosting mechanism, the final combined “forest” of trees typically end up
being a much stronger classifier than any single tree – both with less variance
than a single strong learner and less bias than a single weak learner.

9.1.2 Gradient boosting

A more recent concept is that of gradient boosting, which makes use of a loss
function that can be minimized by gradient descent, similar to how artificial
neural networks are trained. The loss function is parametrized in terms of the
so-called weights (trainable parameters) of the model, and the gradient of the
loss function is then calculated w.r.t. small variations in these weights.

For neural networks, there is one weight, wij , associated with every input, xi,
to a specific node in the network, here denoted by an index j. The corresponding
output of this node, oj , can be calculated by

oj = ϕ

(∑
i

wijxi

)
= ϕ

(
xTw

)
, (neural network node) (9.1)

where ϕ is some non-linear activation function. During training, these weights
are varied in order to up- or down-weight the contribution from each input in
a way that minimizes the loss. These weights are numbers that can be varied
continuously throughout the training process.

For decision trees, however, the corresponding weights are the score values
associated with the different end nodes, or leaves, of each tree. That is, the
value given to every event ending up in a certain leaf after having traversed the
tree. A decision tree is grown by scanning all the variables in the input data,
searching for the most powerful cut to distinguish signal from background. Then,
a split is made on this variable that gives two child nodes or leaves, one for
signal-like events and one for background-like events. Then, given the decision
on the most powerful variable, the algorithm continues to scan the variables
again for the possibility of making additional splits on the newly grown leaves.
The process continues either until the maximum allowed depth of the tree has
been reached, or there is no more progress to be made within the constraints set
for the learning process. This means that each decision tree can learn a different
structure, and possibly also have a different number of leaves, thereby potentially
giving a different number of weights (trainable parameters) in each tree.

We can think of a decision tree as a function, f , that maps the variable
(feature) vector of an event, x, to a certain leaf in the tree, j. The event’s path
through the decision tree is represented by the function q(x), and the associated
output score/value of that leaf is represented by the weight wq(x) → wj . The
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decision tree’s mapping from input to a leaf output can then be expressed as

f(x) = wq(x), q : Rm → T, w ∈ RT , (9.2)

where m is the number of input variables (dimensions) of the event, and T is
the number of leaves in the given tree [202].

The predicted output value of event i, ŷi, is then calculated by summing up
the weights given to this event in all the trees in the ensemble:

ŷi = φ(xi) =
K∑
k=1

fk(xi) =
K∑
k=1

wk,q(xi), (9.3)

where K is the number of additive functions/trees in the ensemble, and each
new weight attempts to get the predicted value ŷi closer to the true target value,
yi.

Whereas neural networks minimize the loss function w.r.t. a fixed number
of weights, by performing gradient descent on (ideally) a convex loss function,
gradient boosted decision trees perform so-called functional gradient descent on
a convex set of functions, that is, the loss function is a convex functional of the
tree functions.

In order to optimize a classifier by gradient descent, we need to define a
differentiable loss function which is suitable for the task at hand. For binary
classification, the so-called logarithmic loss or binary cross-entropy is typically
used:

L(yi, ŷi) = −yi ln ŷi − (1− yi) ln(1− ŷi), (9.4)

where yi denotes the true binary class label of an event with index i, 0 for
background and 1 for signal, while ŷ denotes the value predicted by the model,
which can take on values in the interval [0, 1].

Since the logarithm of a value between 0 and 1 is negative, the value of the
loss function will always be positive, or 0 if ŷ = 1, since ln 1 = 0. Also, since the
true class label, y, is always either 0 or 1, only one of the two terms in the loss
function will survive in any given case.

E.g., if the given event is a signal event, the true value is yi = 1. Let us say
that the model predicts a value ŷi = 0.5. The corresponding loss is then

L(1, 0.5) = −1 · ln 0.5− (1− 1) · ln(1− 0.5) (9.5)
≈ −1 · (−0.69) = 0.69. (9.6)

If instead the predicted value is ŷi = 0.9, the corresponding loss is

L(1, 0.9) = −1 · ln 0.9− (1− 1) · ln(1− 0.9) (9.7)
≈ −1 · (−0.11) = 0.11, (9.8)

which is lower than for the first prediction. The optimizer of the algorithm will
therefore use the gradient of the loss function w.r.t. the weights to take the
predicted values closer to their true values, and thereby reduce the loss.
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The full loss function at the tth iteration (after t trees have been added to
the ensemble), summing over all the n input events, can be expressed as

L(t) =
n∑
i=1

L(yi, ŷ(t)
i ) (9.9)

=
n∑
i=1

L(yi, ŷ(t−1)
i + ft(xi)), (9.10)

where ft represents the tth decision tree, which is added as a correction to the
prediction after iteration t− 1, ŷ(t−1)

i .
The trick is to use a Taylor expansion of the loss function L(yi, φ(xi)) to

second order (the loss function therefore needs to be twice differentiable) in
terms of small corrections f(xi) around the predicted loss value ŷ(t−1)

i after t− 1
iterations, and apply this correction in the tth iteration to get:

L(t) ≈
n∑
i=1

[
L(yi, ŷ(t−1)

i ) + ∂L(yi, φ(xi))
∂φ(xi)

∣∣∣∣
φ(xi)=ŷ(t−1)

i

ft(xi) (9.11)

+1
2
∂2L(yi, φ(xi))

∂φ(xi)2

∣∣∣∣
φ(xi)=ŷ(t−1)

i

f2
t (xi)

]
(9.12)

≡
n∑
i=1

[
L(yi, ŷ(t−1)

i ) + gift(xi) + 1
2hif

2
t (xi)

]
, (9.13)

where gi denotes the first order gradient of the loss function for event i, and hi
denotes the corresponding second order gradient, or hessian, for this particular
event.

Expressing the loss function in terms of the weights instead, gives:

L(t) ≈
n∑
i=1

[
L(yi, ŷ(t−1)

i ) + giwt,q(xi) + 1
2hiw

2
t,q(xi)

]
. (9.14)

Since the term L(yi, ŷ(t−1)
i ) is constant and does not depend on the trees/weights,

we can drop it for the expression to be minimized, which results in:

L̃(t) ≈
n∑
i=1

[
giwt,q(xi) + 1

2hiw
2
t,q(xi)

]
. (9.15)

Instead of expressing the total loss as an explicit sum over all events, we can
sum over all the leaves of the tree, with an implicit sum over all events that fall
in each leaf. In order to write this compactly, we define the instance (event) set
Ij = {i|q(xi) = j} that holds all events which are mapped to the leaf with index
j. We can then express the total loss as a sum over the contributions from each
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leaf as:

L̃(t) ≈
T∑
j=1

∑
i∈Ij

gi

wj + 1
2

∑
i∈Ij

hi

w2
j

 (9.16)

≡
T∑
j=1

[
Gjwj + 1

2Hjw
2
j

]
, (9.17)

where the sum of gradients and hessians in leaf j in the last expression has been
replaced with Gj and Hj , respectively, and the tree index t on the weights now
has been dropped for simplicity.

For a fixed tree structure q(xi), we can calculate the optimal weight value
for each leaf by differentiating L̃(t) w.r.t. the weights wj , and set ∂L̃(t)/∂wj = 0
to find an expression for wj that minimizes the loss:

∂L̃(t)

∂wj
= Gj +Hjwj

!= 0, (9.18)

where the optimal weight value, w∗j , is

w∗j = −Gj
Hj

. (9.19)

The optimal weight therefore chooses a value that moves in the opposite
direction to that of the gradient of the loss. E.g., if we vary the weight slightly
upwards in the positive direction, and the gradient of the loss is also positive, we
choose to go in the opposite direction (given by the negative sign in front), where
the loss decreases. This resembles the standard, stochastic gradient descent
method, where we would move down the slope of the gradient averaged over the
events.

Here, however, we also use second order gradient information, which effectively
adjusts the size of the weight update (step length) by dividing by the summed
hessian values of each event in the leaf. This is in fact the same as Newton’s
method of finding the minimum of a function, and is in the context of decision
trees also known as Newton boosting. By also using curvature information in the
weight update, we will generally achieve a faster convergence to a local or global
minimum, compared to only using the gradient, by taking a more direct path
toward the minimum.

9.1.3 Regularized gradient boosting

One of the key developments of XGBoost compared with most traditional tree
boosting algorithms, is that it adds more options for regularizing the tree struc-
ture and the corresponding weights during the learning process. Regularization is
commonly used in the training of neural networks, but, except for simple pruning
techniques, has not been applied as extensively to the training of decision trees
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until more recently, with XGBoost being among the first and few to implement
this.

Regularization means to add constraints to the learning algorithm or to add
a penalty to the loss function for learning very complex models or very large
weights. It thereby aims to control what and how much the model can learn,
and to avoid overfitting to the training set.

There are two basic algorithmic hyperparameters that constrain how much
the model can learn: n_estimators, which corresponds to the number of trees
that will be trained, i.e., the number of boosting iterations; and max_depth
(default: 6), which corresponds to the maximum number of levels (successive
number of tests) that a tree can grow before it stops.

In addition to the above constraints on the learning algorithm, XGBoost
can add three regularization parameters to the loss function that handle tree
structure: alpha (α), which adds a penalty on the absolute value (L1 norm) of the
weights, |wj |, also known as L1 regularization; lambda (λ), which adds a penalty
on the square (L2 norm) of the weights, w2

j , also known as L2 regularization;
and gamma (γ), which adds a penalty on the number of leaves (terminal nodes)
of the tree, T . The corresponding regularization terms to be added to the loss
function are then:

Ω(ft) = α|wj |+
1
2λw

2
j + γT, (9.20)

where α (default: 0), λ (default: 1) and γ (default: 0) are hyperparameters1 to
be set prior to the training.

We then add the regularization terms to the loss function, where the combi-
nation of loss and regularization is called a cost or objective function:

L̃(t) ≡
T∑
j=1

[
Gjwj + 1

2Hjw
2
j + α|wj |+

1
2λw

2
j

]
+ γT (9.21)

=
T∑
j=1

[
Gjwj + 1

2(Hj + λ)w2
j + α|wj |

]
+ γT. (9.22)

The optimal weight, given the regularization constraints, then becomes:

w∗j =


−Gj+αHj+λ if Gj < −α,
−Gj−αHj+λ if Gj > α,

0 else.
(9.23)

1Hyperparameters are fixed during the training and define constraints of the model.
Decision tree algorithms typically perform well with the default values of the hyperparameters,
but one can often obtain significant gains in performance of the model if the hyperparameters
are tailored to the specific task at hand. A common approach is to train the model multiple
times with different combinations of hyperparameters, and select the combination that resulted
in the best model performance (e.g., lowest loss or highest accuracy).
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Equivalently, we can express the optimal weight as:

w∗j = −Tα(Gj)
Hj + λ

, (9.24)

where

Tα(Gj) =


Gj + α if Gj < −α,
Gj − α if Gj > α,

0 else.
(9.25)

If we plug the optimal weight back into the cost function, we get an expression
for how much the cost is reduced by adding the new tree, also known as the
structure score:

L̃(t) = −1
2

T∑
j=1

T 2
α(Gj)
Hj + λ

+ γT. (9.26)

We can then evaluate whether a new split would be beneficial or not by
adding the structure scores of the new left and right nodes, L and R, respectively,
and subtract off the structure score we get if we do not make the split. The
corresponding gain, that is, the negative of the difference in the cost reduction,
is then equal to:

gain = 1
2

[
T 2
α(GL)
HL + λ

+ T 2
α(GR)
HR + λ

− T 2
α(GL+R)
HL+R + λ

]
− γ. (9.27)

The γ parameter therefore effectively sets a lower limit on how much loss
reduction is required in order to allow a split to be made.

9.1.4 Shrinkage

Another parameter that can be used to avoid overfitting is the so-called shrinkage,
or learning_rate parameter, also called eta (η, default: 0.3). The shrinkage
parameter is multiplied with the weights after boosting, i.e., after the tree
structure and weights have been settled. This effectively reduces the size of each
update, so that each tree has less effect on the prediction. This results in a more
controlled path, that is less likely to be affected by random fluctuations in the
training set, but on the other hand leads to slower learning, and thereby the
need for more trees to converge to a local or global minimum.

9.1.5 Subsampling of rows and columns

In order to promote diversity in the different trees of the ensemble, XBGoost
offers the option to randomly select a subsample of the rows (events) and columns
(variables) for the training of any given tree.

The act of subsampling rows, or events, with replacement, is known as
bagging (bootstrap aggregating) [209], and has been widely used in different
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areas of statistical modeling. Each tree will therefore be trained on a different
subset of the events in the training set, where the size of the subsample is a
hyperparameter to be determined before the training starts. In XGBoost, this
parameter is called subsample and is given as the fraction of the events in the
full dataset to be sampled (default: 1, i.e., 100% of the events).

The concept of randomly subsampling columns, or features/variables, is a
more recent implementation in training of decision trees. It has become very
popular through the Random Forests [210] algorithm, which implements subsam-
pling of both rows and columns. In XGBoost, there are three hyperparameters
for subsampling of columns: colsample_bytree, colsample_bylevel and
colsample_bynode (default: 1, for all three), which corresponds to fractions of
the columns to be subsampled for each tree, for each level in the tree and for
each node in the tree, respectively. These column subsampling methods can be
combined, and will then work in a cumulative manner. I.e., only columns that
pass the subsampling by tree are passed to the subsampling by level, and only
the columns that pass the subsampling by level are passed to the subsampling
by node.

9.1.6 Pruning

The default way of constructing a tree is to first build the tree level by level
until the maximum depth has been reached, and then to prune the leaves of the
tree if necessary.

The first pruning criterium, in fact, enters already in the build process,
or the initial growing of the tree. This is yet another hyperparameter, called
min_child_weight (default: 1), and corresponds to the minimum required sum
of weights in a leaf. If a split is made that results in one of the leaves not
satisfying the minimum required sum of weights, the two leaves from this split
are pruned, and the split that produced them will therefore be removed.

After the build step, the algorithm will iterate through all the nodes in the
tree and check if the gain of each split is greater than the minimum required split
loss set by the gamma (γ) parameter, also known as min_split_loss (default:
0). If the loss reduction does not meet this requirement, the split along with its
leaves will be pruned away.

9.2 Binary classification

We formulate the problem in terms of binary classification, where we have events
coming from two classes: (i) background, assigned the class label 0 (also referred
to as the negative class, N), and (ii) signal, assigned the class label 1 (also
referred to as the positive class, P ). The output of the model is a real value
between 0 and 1, and the objective for the algorithm is to optimize the weights
of the model to estimate a number that is as close to the true class label of
each event as possible. One can interpret this as estimating some sort of pseudo-
probability that a given event is a signal event, as a function of the variables of
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the event and the weights of the model. This is in principle the same as logistic
regression.

The simplest way to assign a predicted class label to a given event is to say
that if the output of the model is less than 0.5, then we assign the event to the
background class (0), otherwise, we assign it to the signal class (1). With a
decision boundary in place between the two classes, we can count the number of
events that the model gets right and wrong in each class. Figure 9.2 shows an
illustration of the MVA output distributions of two classes (the positive class
shown in red and the negative in blue colors) and how the decision boundary
(shown in green) separates which data points (events) get assigned to each class.
Given a chosen decision boundary, we can count the number of true and false
positives and negatives (TP , FP , TN and FN , respectively), and calculate
the corresponding true and false positive and negative rates (TPR = TP/P ,
FPR = FP/P , TNR = TN/N and FNR = FN/N , respectively). Since
FPR = 1−TPR and FNR = 1−TNR, we have an overcomplete scenario with
four figures of merit for a two dimensional problem. Therefore, the performance
of the MVA model can be completely specified by any pair of the aforementioned
metrics. One possible choice is to plot a ROC-curve in terms of the true positive
rate (TPR), i.e., the signal efficiency,

signal efficiency = TP

P
= TP

TP + FN
, (9.28)

and the true negative rate (TNR), i.e., the background efficiency,

background efficiency = TN

N
= TN

TN + FP
. (9.29)

We are more interested in getting the relatively few expected signal events
right, than getting the many background events right. That is, we are willing to
sacrifice background efficiency for as high signal efficiency, also called recall, as
possible:

recall = signal efficiency. (9.30)

We also want to maximize the ratio of signal to background events that are
assigned to the signal class (the signal region), i.e., we value high true signal
purity in the signal region, also called precision, more than high true background
purity2 in the background class:

precision = TP

TP + FP
. (9.31)

The concepts of precision and recall are illustrated in Figure 9.3.
These principles can be used to find where to put the decision boundary, or

cut in the output distribution, to decide which events get assigned to the signal
2Background purity = TN/(TN+FN), where TN denotes true negative events (background

correctly classified as background) and FN denotes false negative events (signal falsely classified
as background).
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Figure 9.2: The upper left plot shows an example of two overlapping MVA
output distributions (bell curves), where the left-most distribution consists of
data points (events) from the negative class, N , with true value Y = 0, and
the right-most distribution consists of data points (events) from the positive
class, P , with true value Y = 1. The MVA model calculates a predicted output
value, Ŷ , for each data point, based on the feature (variable) values of the data
point. The decision boundary, shown in green, is used to assign a class label to
each data point, depending on which side of the boundary the data point falls.
The decision boundary is a free parameter for us to determine, depending on
the performance of the model with the given hyperparameters and dataset, and
which data points are most important for us to get right. Given the decision
boundary, there are four numbers that quantify the accuracy of the classifier:
true positives (TP ) and true negatives (TN), which are the number of data
points that are correctly classified, and false positives (FP ) and false negatives
(FN), which are the number of data points that are wrongly classified (fall on
the wrong side of the decision boundary). The upper right plot shows a so-called
confusion matrix, where a balanced and well-performing binary classifier should
have most of the data-points on the TP -TN -diagonal. The bottom plot shows
a Receiver Operating Characteristic (ROC) curve, with the false positive rate
(FPR = FP/P = FP/(TP + FP )) on the x-axis and the true positive rate
(TPR = TP/P = TP/(TP + FP )) on the y-axis. The curve is traced out by
scanning decision boundaries in the entire range of the MVA output, and for each
decision boundary calculate the corresponding TPR and FPR. A ROC curve
following the diagonal indicates an MVA model with no binary classification
skill, as it corresponds to random guessing (right and wrong at an equal rate).
From Reference [211] (the original figure file is licensed under Creative Commons
Attribution-Share Alike 3.0 Unported).
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Figure 9.3: Illustrations of precision and recall in binary classification. These
quantities are relevant when one of the two classes is considered more important
than the other. From Reference [212] (the original figure file is licensed under
Creative Commons Attribution-Share Alike 4.0 International).
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region. Typically, we obtain the highest signal sensitivity by putting the decision
boundary at relatively high output values, e.g., above 0.9. The optimal cut is
found by performing a significance scan over multiple cut-values in the range
between 0.5 and 1..

9.3 Train, validate, test

Since we have a lot more simulated background than signal events available, we
encounter the issue of imbalanced datasets. To avoid that the model effectively
neglects the signal compared to the background events during training, I make
use of so-called class weights or scale_pos_weight, which is the name of the
parameter in the XGBoost library. By setting scale_pos_weight equal to the
ratio of background to signal events in the training set, the signal (positive class)
events are scaled up by this factor, so that the sum of weights for each class
is equal. Even though the decision trees are trained on a lot more background
than signal events, the signal events count a lot more, so the cost of getting
the signal events wrong is much higher, and we thereby effectively achieve a
balanced training scenario.

In order to take event characteristics into account, the signal grid is divided
into three regions according to the size of the mass-splitting, in exactly the same
way as is done for the conventional analysis in Chapter 8. Hence, we are training
separate models for the three mass-splitting scenarios: high, intermediate and
low mass-splittings.

It is common practice to divide the full dataset into three exclusive portions
for use in machine learning: (i) a training set, for weight-optimization on multiple
sets of hyperparameters, (ii) a validation set, for evaluating the performance
of the weights learned during training, which is re-used for every new set of
hyperparameters, and finally, (iii) an independent test set, only used once, for
evaluating the performance of the model with the hyperparameters that showed
the best performance on the validation set. Typically, the training set is chosen
to be larger than the validation and test sets, to get as high statistics as possible
for training.

Since the model optimizes its weights on the training set, it will be biased
toward that portion of the data, i.e., possibly overestimating its classification
performance on those events, and we can therefore not use these events for
estimating the expected signal and background contributions in the signal region.
It is crucial to have an unbiased estimate of the expected background in the
signal region, which will be used to compare the experimentally observed data
counts with and to determine whether we see an excess or not. Together
with the expected background, the expected signal yields are also important
for determining exclusion limits, if no excess is observed. We are then left
with finding a compromise between sufficient training statistics for learning the
optimal weights of the model, and having sufficient test statistics to be used for
the final signal region estimates. Since we are effectively losing luminosity (or
cross-section) to the training set, we need to account for the lost background
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Table 9.1: Event and object selection for the MVA.

Variable Preselection XGBoost
SFOS leptons (pT > 25GeV) 2
central light jets (pT > 30GeV) 2
b-jets (pT > 20GeV, 77% b-tag eff.) 0
m`` [GeV] ∈ (71, 111)
mjj [GeV] ∈ (60, 100)

and signal contributions when comparing with the integrated luminosity of the
observed data. By multiplying by the appropriate correction (scale) factor, we
are also blowing up the statistical uncertainties of the MC events correspondingly,
and thereby decreasing our sensitivity to the signal.

An alternative to the strategy described above, is to train two models instead
of one (for each mass-splitting region), where one of the models are only trained
and validated on events with odd run numbers, and tested on events with even
run numbers, and vice versa for the other model. Since the test events from both
odd and even run numbered events are scored on a model they have not been
trained on, we can combine the test set output from the two models in the end,
and thereby avoid losing any statistics for the final signal region estimates. This
is the approach that has been chosen for the following studies.

9.4 Preselection

In order to select events which are relevant for the signal scenario we are looking
for, I apply a set of event and object level requirements that the events must
satisfy in order to be considered for the MVA. These cuts are listed in Table 9.1.
They are intended to be exclusive enough so that the training will not have to
process lots of events that are not really relevant for the search, but still inclusive
enough to have sufficient training statistics to learn the general features that
distinguish the signal from the backgrounds.

After the preselection cuts have been applied, we are left with about 4× 106

background events and about 6× 104, 9× 104 and 4× 104 signal events in the
low, intermediate and high mass-splitting regions, respectively. This means that
we have roughly 100 times more background events compared to signal events
in each SR. In addition, these datasets are split, roughly in half, according
to whether the run numbers are even or odd, where one half will be used
for training and the other half for testing the performance of the model after
training. This leaves me with about 3× 104, 4.5× 104 and 2× 104 signal events
for training each model in the respective mass-splitting regions, and roughly
2× 106 background events which can be re-used for all three regions.

In order to monitor the performance progress during the training, a validation
set is sampled from the training set before the training starts. In the following
studies, 10% of the training set is set aside for validating the loss on events not
used in the actual model training, after each new tree has been added. Therefore,
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in practice, only 90% of the events in the training set are actually used for the
model optimization.

9.5 Low mass-splitting

The low mass-splitting scenario, characterized by ∆m(χ̃±1 /χ̃0
2, χ̃

0
1) ∼ mZ , and

thereby final states with soft (low-pT) objects, is here taken to consist of signal
models with ∆m < 200 GeV. Due to the low final state momenta, and thereby
also low Emiss

T , we cannot rely on the typical SUSY-signatures, like large Emiss
T ,

to the same extent anymore. The signal events will blend more and more in
with the SM background processes as the Emiss

T value decreases. Therefore we
need to refine the selection and bring in other aspects of the event kinematics,
correspondingly.

We will here try to design a multivariate analysis, using the XGBoost algo-
rithm, to learn a more sophisticated selection model that can make up for some of
the lost sensitivity of the conventional analysis approach compared to the signal
scenarios with more Emiss

T . In the training process, the models will hopefully
learn good values for a number of parameters, here referred to as weights, that
define the behavior or selection of the classification model. However, there are
also a number of parameters that are not being learned by the training routine,
i.e., they are constant during the training, and that have to be set by us. They
are referred to as hyperparameters, and typically pertain to the architecture of
the model and define the scope of what can be learned. The hyperparameters
chosen for the classification model that targets the low mass-splitting region,
is given in Table 9.2, and the choices of values are discussed below. As the
table header indicates, the same hyperparameter values were reused also for the
intermediate and large mass-splitting models.

9.5.1 Hyperparameters

The max_depth of the decision trees, i.e., the maximum number of levels that
can be used in a given tree, is reduced from XGBoost’s default value of 6, to 5.
This restricts the maximum number of decisions in each tree, which reduces the
possibility of overfitting, i.e., learning statistical “noise” in the given training
set, which does not reflect the general behavior of the underlying distributions.

The number of trees, or estimators, to train, where each consecutive tree
tries to correct the mistakes done by the previously trained trees, is here set to
a large enough number so that an early stopping mechanism kicks in before the
specified number of trees is reached. A value of 10,000 is used in the following
studies. What this means is that the loss on a validation set, not used in the
training, is calculated after every new tree has been trained, and if the validation
loss has not decreased in a given number of steps/updates, the training is stopped
in order to avoid further overfitting. The early_stopping_rounds parameter
is here chosen to be 20.

The learning_rate controls how much the weights can be updated compared
to the size of the gradient of the loss function at a given position on the loss-
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manifold. A more conservative value of 0.001 has been chosen here, compared
with the XGBoost default value of 0.3. This slows down the learning, thereby
requiring more steps to reach the optimal solution, but with the aim of achieving
a more well-behaved progression that avoids overfitting or divergence.

The gamma parameter, also know as min_split_loss, is a measure of how
much the loss has to decrease in order to allow another split on a node in the tree
to be made. The default value is 0, so the chosen value of 1000 is a much more
conservative one, that aims to reduce overfitting by making sure that the trees
only learn sizable differences between signal and background, and avoid picking
up dataset specific noise that does not reflect the underlying distributions.

The min_child_weight parameter is a threshold on the sum of instance
weights needed in the child of a node after a new split has been made. This
makes sure that there is a minimum contribution to both children in a split, in
order for the split to be made. The default value of 1 has been used here.

max_delta_step sets an upper limit on the value of a leaf, in order to
restrict the allowed importance of a single decision, to promote contributions
from multiple features. The default value of 0 is chosen here, which turns off
this constraint.

subsample represents the fraction of events in the available training set that
is used for the training of a given tree. This parameter is here set to 0.5, which
means that half of the events in the training set are randomly sampled before
each tree is trained. This choice exposes each tree to a different collection of
events (bagging), which aim to learn different aspects of the dataset and widen
the focus of what is being learned. The default value is 1, which means that all
events in the training set would be considered in the training of every tree.

colsample is similar to subsample, but introduces a random sampling of the
columns of the dataset, that is, which features or variables are being considered
in the training of a given tree. This parameter is chosen to be 0.5, which
then means that each tree only sees half of the variables, and each tree gets a
different, randomly chosen, set of variables to learn from. This also makes the
learning more versatile, and reduces overfitting. The XGBoost default value of
colsample is 1.

Two regularization terms that are commonly added to loss/cost functions for
neural network training, are so-called L1- and L2-regularization terms, which
add penalties to the L1 (absolute value)- and L2 (squared value)-norms of the
weights that are being learned, respectively. L1-regularization encourages sparse
representations, where less important weights are set to 0, leaving a reduced
number of features that effectively contribute to the decisions. L2-regularization,
on the other hand, also called weight-decay, penalizes large weights more than
L1-terms, because the penalty is proportional to the square of the weights, and
therefore encourages low-value weights, in order to restrict the learning and to
avoid overfitting. XGBoost refers to the coefficient in front of the L1-norm of the
weights as alpha, and, similarly, the coefficient in front of the L2-norm term as
lambda. Here, L1-regularization has been turned off (alpha is set to 0), which
is the XGBoost default value. The L2-regularization, however, is chosen to be
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Table 9.2: Hyperparameter values used in the training of the XGBoost models
of this work.

Hyperparameter XGBoost-low, -int and -high
max_depth 5
estimators 10,000
learning_rate 0.001
early_stopping_rounds 20
gamma 1000
min_child_weight 1
max_delta_step 0
subsample 0.5
colsample_by_tree 0.5
alpha (L1) 0
lambda (L2) 1000

active with the coefficient lambda set to 1000, which puts a significant penalty
on learning large leaf weights.

9.5.2 Learning curves

Figure 9.4 shows the evolution of the model performance during the training
phase, as a function of the number of trees that have been added to the ensemble,
which is calculated after each subsequent tree has been trained and added
to the model. The performance is here given in terms of the total cost (loss
plus regularization terms) on the training set (blue) and the total loss (no
regularization terms) on the validation set (orange). The model trained on even
numbered events is shown on the left, and the model trained on odd numbered
events is shown on the right.

We can see how the performance of the models quickly progresses with the
first 20 trees, or so, before the rates of progress start to flatten out. At some point,
the validation loss, a measure of the generalization error, reaches a minimum,
at which that particular model, with the given hyperparameters, is not able to
do any better. The training loss, however, will just keep on improving as the
model is being overfitted to the training set, which in turn will result in increased
validation loss. Therefore, we would like to stop the training around the point
where the validation loss has its minimum.

In this work, the training is stopped when the validation loss has not improved,
i.e., been reduced, in 20 consecutive trees. From Figure 9.4, we can see that this
happens after roughly 1000 trees have been added to each of the models.

9.5.3 Example of a learned decision tree

The first tree learned by the model trained on even run numbers is visualized
as a graph in Figure 9.5. The root node, i.e., the top node of the tree graph,
represents the best split found by the algorithm on any of the available features.
In Figure 9.5, this turns out to be Emiss,sig

T < 3.21, where events fulfilling this
requirement are found to be more background-like, and events with Emiss,sig

T >
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Figure 9.4: Learning curves of the low-∆m models, which show the performance
progressions (decrease in loss) as functions of the number of trees added to the
models.

3.21 to be more signal-like. After the first split has been determined, the
algorithm moves on to scan for the best split in each of the child nodes. For
events with Emiss,sig

T < 3.21 (left side of the tree), the split that best separates
background and signal is found to be HT,30 < 154 GeV, where events fulfilling
this requirement are more background-like, and events with HT > 154 GeV are
more signal-like (HT,30 represents the scalar sum of the pT of all hadronic jets
with pT > 30 GeV). On the right hand side of the tree, however, for events
with Emiss,sig

T > 3.21, the best split is found using Emiss,sig
T yet again, where

Emiss,sig
T < 5.09 is more background-like and Emiss,sig

T > 5.09 more signal-like.
The tree is five levels deep, which corresponds to the hyperparameter value

set for the training, max_depth = 5. This means that there are at most five
decisions (node splits) along any branch down the tree, where the lowermost
decision nodes have a pair of terminal leaf nodes, each holding the weight assigned
to all events falling into that leaf node.

9.5.4 Training vs. test performance

After the training of a model has completed, all events in the training and the
test set for that model are passed through all the trees of that model, and each
event given a score in the range from 0 to 1, according to how signal-like the
model deems it to be. Figure 9.6 shows the score distribution of the backgrounds
in the training set using filled, stacked histogram bins, and the scores of the test
set backgrounds overlaid on the same plot in dashed lines. The backgrounds are
compared to the full set of signal samples in the low-∆m region, overlaid using
a solid red line for the training set and a dashed red line for the test set events.
Figure 9.6a shows the results of training events with even run numbers and test
events with odd run numbers, whereas Figure 9.6b has training events with odd
and test events with even run numbers.

If the training procedure has been successful in fitting a model to the training
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set, which generalizes well, i.e., without significantly overfitting, the test scores
should lie more or less on top of the training scores. On the other hand, if the
training has failed in picking up characteristics of the underlying event distribu-
tions, i.e., showing significant overfitting to the training set, the distributions of
the test scores will be skewed away from their true values.

The two models show decent skill on average, as the background distributions
peak at low XGBoost values, i.e., close to their true class values of 0. The
same goes for the signal distributions, which peak at high XGBoost scores, i.e.,
close to their true class values of 1. However, both the background and signal
distributions are very wide, which means that the models struggle to recognize
the true origin of relatively large proportions of the events. This can to a great
extent be attributed to the background-like characteristics of the low-∆m signal
samples.

Only minor deviations are observed between training and test scores in the two
models in Figure 9.6, as both the background and signal test-to-training ratios,
with statistical uncertainties, are close to unity, considering that no systematic
uncertainties have been taken into account. The uncertainty bands are most likely
underestimated compared to the true uncertainties in the modeling, which should
include model-dependent uncertainties, such as variations w.r.t. hyperparameter
values, in addition to uncertainties related to the simulation and reconstruction
of the datasets.

The most prominent deviations are observed in the test-to-training ratio
of signal roughly below XGBoost scores of 0.2, in particular in Figure 9.6a.
These events correspond to signal events which have been characterized as
highly background-like, and where the statistics is relatively low. It is, however,
not critical to the analysis of this work that the modeling in the background-
dominated region is sub-optimal, as long as it does not significantly affect the
modeling in the signal-dominated region. The goal here is to find the (class)
decision boundary, i.e., signal region, in the XGBoost score which optimizes the
signal significance. In consequence, the events below the decision boundary, i.e.,
outside of the signal region, are not considered in the final results. The optimal
signal region is typically found at XGBoost scores greater than 0.95, where it
is important to have sufficient confidence in the modeling. One way of getting
confidence in the modeling is to verify that the test results are consistent with
the training results. Test vs. training consistency indicates a model which is
unbiased w.r.t. the training set.

9.5.5 Feature importance

Figure 9.7 shows rankings of the top 20 most important features in the two
models, given in terms of the total gain (see Equation (9.27)) obtained by
making splits in the respective features. There are two features that stand out as
particularly important in both of the trained models, namely Emiss,sig

T and Emiss
T .

This is not surprising, as they are the most powerful variables in the conventional
cut-and-count analyses as well, for separating signal from background. They
obtain between two and three times more total gain compared to the next three
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(a) Model trained on even and tested on odd run numbers
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(b) Model trained on odd and tested on even run numbers

Figure 9.6: XGBoost output scores on the training (filled histograms/lines) and
test (dashed lines) sets, for all backgrounds and the low-∆m signal samples.
The bottom subplots show the bin-wise test-to-training ratio of the sum of
background contributions in black and the sum of low-∆m signal samples in red.
The uncertainty bands represent statistical uncertainties only.
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features on the list, namely the angular separation between the two pT-leading
jets (assumed to be the decay products of the intermediate W -boson in the
signal model), ∆R(j, j); the stransverse mass of the two leptons and the Emiss

T ,
mT2(`, `; 0); and the hadronic pT (scalar sum of the jets with pT > 30 GeV), HT.

Both the model trained on even run numbers and the model trained on odd
run numbers agree on the importance-ordering of the two leading features, with
Emiss,sig

T on top (16-17% gain) followed by regular Emiss
T (14-15% gain). For the

three following features on the list, however, the ordering is different between
the models, although the features show similar importance in terms of total gain
in the two cases, where all three have gains of roughly 7% each.

The remaining features on the top 20 list are also quite consistent between
the two models, both in terms of the size of the gain and the ordering. This gives
additional confidence in the consistency and stability of the models, and indicates
that they are not significantly overfitting to statistical fluctuations in their
respective training sets. They both seem to learn very similar representations,
independently. This may also indicate that the models are, on the one hand, not
significantly limited by low training set statistics, and on the other hand, are
properly constrained by the hyperparameters and regularization terms, so that
they converge toward similar model representations.

9.5.6 Binary classification performance

9.5.6.1 Background efficiency vs. signal efficiency

Figure 9.8 illustrates the performance of the two low-∆m models in terms of
Receiver Operating Characteristic (ROC) curves, here expressed through the
background efficiency (true negative rate) as a function of the signal efficiency
(true positive rate). The ROC curves of the training sets are shown as solid
blue lines, and the corresponding test set curves are shown as dashed blue lines.
The line of no discrimination, i.e., the ROC curve of a model with no skill
in separating signal from background, is shown as a dotted gray line. Each
point along the ROC curve represents the background and signal efficiency at a
particular decision boundary on the axis of the XGBoost score.

A common way to summarize the overall performance of the model, is to scan
decision boundaries in the entire range of possible XGBoost scores, i.e., [0, 1],
and to integrate the performance (background efficiency as a function of signal
efficiency) of the corresponding decision boundaries. This is called the Area
Under the ROC curve (AUC). The AUCs of the training and test set ROC curves
are given in the plot legends. The AUC of a model with no discriminating power
is equal to 0.5, whereas the AUC of a model with perfect discriminating power
is equal to 1. The AUC of the two models on the training sets are calculated to
be 0.918, with slightly lower test set AUCs of 0.910 and 0.913 for the models
trained on even run numbers and on odd run numbers, respectively. These are
decent results with significantly better skill than random guessing, but still with
sizeable overlaps of the signal and background distributions. The small deviation
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Figure 9.7: Top 20 most important features in the low-∆m models, in terms of
the total gain obtained in the full models (all added trees included).
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Figure 9.8: ROC curves for models targeting low-∆m signal: background effi-
ciency vs. signal efficiency.

between training and test set AUCs indicate that no significant overfitting to
the training set is observed.

9.5.6.2 Background rejection vs. signal efficiency

Figure 9.9 gives another interpretation of the model performance, now in terms
of the background rejection as a function of the signal efficiency for the two
models. The background rejection is defined as:

background rejection = 1
1− background efficiency (9.32)

= 1
1− TN/(TN + FP ) (9.33)

= TN + FP

FP
= 1
FPR

, (9.34)

where FPR is the false positive rate, i.e., the rate at which background events
are mis-classified as signal, and thereby enters the signal region.

For example, given a decision boundary where the background efficiency is
equal to 0.9, i.e., 90% or 9 out of 10 background events are correctly classified as
background (true negatives, TN). This means that 1− background efficiency =
1 − 0.9 = 0.1 = 1/10, i.e., 1 out of 10 background events are mis-classified as
signal (false positives, FP ). Then, for every 10 background events there are 1
background event that ends up in the signal region, whereas the remaining 9 are
correctly rejected, i.e., do not end up in the signal region. The corresponding
background rejection therefore becomes

background rejection (bkg. eff. = 0.9)) = TN + FP

FP
(9.35)

= 9 + 1
1 = 10, (9.36)
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Figure 9.9: ROC curves for models targeting low-∆m signal: background re-
jection vs. signal efficiency, where background rejection is equal to 1/(1 −
background efficiency), and represents the number of correctly rejected back-
ground events for every background event that ends up in the signal region (plus
one).

i.e., the total number of background events (negatives, TN + FP ) is 10 times
greater than the number of false positives (FP ). Or equivalently, for every
background event that ends up in the signal region, 9 are correctly rejected.

In Figure 9.9, we can observe that for, e.g., a signal efficiency of 0.5, the
XGBoost-low models obtain a background rejection of roughly 100.

9.5.6.3 Signal precision vs. signal efficiency

A third way of representing the performance of the binary classifiers is by way of
precision-recall (PR) curves, which are shown for the two models in Figure 9.10.
Where the previous ROC curves showed the efficiency of background classification
on one axis and signal classification on the other axis, the PR curve shows two
different aspects of signal classification accuracy, namely the precision and recall
of signal events in the signal region. Recall measures the fraction of signal events
which end up in the signal region, whereas precision measures the fraction of
events in the signal regions which are actually signal.

Where the signal and background efficiencies (true positive and negative rates)
are only concerned with one class distribution each (either the positive (signal)
or the negative (background) class distribution), precision mixes characteristics
from both class distributions, where it measures the fraction of the positive
(signal) and negative (background) class out of the total number of events in
the signal region. Precision is therefore sensitive to class imbalance in the
datasets, unlike the signal and background efficiencies. Consequently, the line of
no discrimination in a precision-recall plot can be drawn at a constant precision
value equal to the ratio of the number of events in the positive class to the number
of events in the negative class. Since I have roughly 100 times more background
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Figure 9.10: Precision vs. recall curves for models targeting low-∆m signal.

than signal events in the training and test sets, a model with no classification
skill would uniformly distribute background and signal events with XGBoost
scores in the interval between 0 and 1. The signal region would therefore also
contain the same uniform distribution in its interval, where there would be
100 times more background than signal events, and consequently give a signal
precision score of 1/100 = 0.01.

E.g., for a signal efficiency, i.e., recall, of 0.5, the XGBoost-low models obtain
a signal precision value of about 0.1.

We can also in a PR plot calculate one number that summarizes the per-
formance of a model, similarly to the AUC for ROC plots. It is calculated in
the same way as AUC, as the area under the PR curve, but is usually referred
to as average precision (AP). The line of no discrimination corresponds to AP
values of 0.004 and 0.005 for the model trained on even run numbers and on odd
run numbers, respectively. The two numbers are slightly different because the
ratio of signal-to-background events for even and odd run numbers are slightly
different.

For the model trained on even run numbers, the AP is calculated to be 0.167
on the training set and 0.160 on the test set. For the other model, trained on
odd run numbers, the AP is found to be 0.165 on the training set and 0.167 on
the test set. The average performance on the training and test sets are thereby
found to be similar also in terms of precision and recall.

9.5.7 Data vs. background

Figure 9.11 shows data compared to expected background and a benchmark
signal from MC, in the XGBoost score interval [0, 0.9], which is completely
dominated by background. Since this analysis is only carried out as a feasibility
study, the data in the interval [0.9, 1], where the signal becomes non-negligible,
is blinded, to avoid observation-bias for anyone who may carry out a similar
analysis in the future. The plots show only results from the test sets of the
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9. Multivariate signal region optimization

two XGBoost models. Figure 9.11a shows the results of events with odd run
numbers only and Figure 9.11b the results of events with even run numbers only,
whereas Figure 9.11c shows the combination of both models, as a sum of the
two histograms.

Only one of the low-∆m signal samples is shown in the plots, namely the
benchmark signal with (m(χ̃±1 , χ̃0

2),m(χ̃0
1)) = (200, 100)GeV.

The lower panel of each plot shows the ratio of the number of data to the
sum of background events per histogram bin. The statistical uncertainty of the
sum of backgrounds in each bin is highlighted by gray bars. The ratio of data
to background is roughly within ±10% of unity, which indicate relatively good
agreement between the data count and the expected background in the unblinded
region. The statistical uncertainties of the total background do not cover the
deviation between data and background fully. However, they are conservative
estimates of the full uncertainties, which would include systematic uncertainties
from the datasets and the MVA procedure.

9.5.8 Benchmark signal vs. background

Finally, in Figure 9.12, we compare the test scores of the backgrounds to the test
scores of the low-∆m signal benchmark, (200, 100)GeV, in the highly signal-like
region, [0.9, 1]. The lower-panel of the plots now show the ZN significance of
the low-∆m benchmark, as a function of the lower-cut on the XGBoost score.
The test set scores of the model trained on even run numbers are shown in
Figure 9.12a and the test scores of the model trained on odd run numbers are
shown in Figure 9.12b, with the bin-wise sum of the two preceding histograms
shown in Figure 9.12c.

Since the test sets of the two models are mutually exclusive, we can add their
output scores to form a common distribution. By scanning multiple decision
values/boundaries on the score axis, we can find which one maximizes the signal
significance. The corresponding score value then defines the lower cut of the
MVA SR for the low-mass-splitting region.

Looking at the lower panel of the combined score distribution in Figure 9.12c,
the significance increases gradually from ZN ≈ 0, at a lower-cut on the XGBoost
score of 0.92, up to ZN ≈ 0.8, at a lower-cut of 0.97 on the XGBoost score. At
least one background event and three signal events are required to calculate the
ZN -value. Otherwise, the ZN -value is set to 0, in order to avoid regions with
unsatisfyingly low background statistics and/or regions where the signal count is
too low to exclude the signal at 95% C.L. This is what happens at the lower-cut
on the XGBoost score at 0.98, where ZN suddenly drops to 0.

The optimal lower-cut is thereby found to be XGBoost score > 0.97 for the
low-∆m signal benchmark, which I use to define the XGBoost-low SR. The
ZN -value for the low-mass benchmark signal point of (200, 100)GeV is 0.71,
which is lower than 1.64. Therefore, we do not expect to exclude this mass
hypothesis at 95% C.L. However, we still make use of the region to evaluate
the signal significance of this benchmark and the other low mass-splitting signal
mass points.
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(c) Combination of both models.

Figure 9.11: Data vs. expected background in the background-dominated
XGBoost score region of [0, 0.9], using the XGBoost-low model. The data points
in the region with XGBoost score > 0.9 are not shown (“blinded”).
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(c) Combination (bin-wise sum) of the test outputs of both models.

Figure 9.12: Low-∆m benchmark signal sample vs. expected background in the
highly signal-like XGBoost score region of [0.9, 1], using the XGBoost-low model.
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Figure 9.13: Learning curves of the intermediate-∆m models, which show the
performance progressions (decrease in loss) as functions of the number of trees
added to the models.

9.6 Intermediate mass-splitting

The same procedure is followed for the intermediate mass-slitting case, but
now training and testing on signal samples with mass-differences in the range
between 200 and 450 GeV. The same set of hyperparameter values used to train
the XGBoost-low models are also used for the training of the intermediate-∆m
models, which are given in Table 9.2.

9.6.1 Learning curves

Figure 9.13 shows the evolution of the cost (loss + regularization terms) for
the training set and the loss only for the validation set, as a function of the
number of decision trees that have been added to the ensemble model, for odd
run number events on the left and even run number events on the right. Whereas
the value of the loss function flattened out around 0.35 for XGBoost-low, we
achieve loss values down to 0.1 for the XGBoost-int models. These are large
improvements in performance, and suggests that the trained models are able to
separate the signal and background distributions a lot better in the intermediate
mass-splitting case than for more compressed signals, as expected.

This choice of hyperparameters shows no significant, visible sign of overtrain-
ing of the models in the plots of the learning curves, since the training and
validation set losses almost lie on top of each other.

9.6.1.1 Training vs. test performance

This fact is also supported by the plots in Figure 9.14, which show comparisons
of the output distributions for the training and test sets, where the dashed lines
of the test set basically lie on top of the filled/solid line histograms of the training
set. Both the signal and background distributions are shifted more toward their
true class values then they were for the low-mass-splitting samples.
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9. Multivariate signal region optimization

Due to the fact that the vast majority of signal events are assigned very
high XGBoost scores, i.e., are recognized as highly signal-like, the statistical
uncertainties in the ratio plots in the lower panels are small in the bins of
XGBoost scores greater than roughly 0.8-0.9. The remaining signal events, which
are assigned less signal-like XGBoost scores, lower than roughly 0.8-0.9, fall
in bins with low statistics, of the order of ten events per bin. This results in
relatively large statistical uncertainties on the signal yield in 80-90% of the full
score interval. However, since we are really only interested in the events which
fall into the highly signal-like region, this is a more desirable outcome than the
corresponding distributions of the XGBoost-low models.

9.6.2 Feature importance

Figure 9.15 shows plots of the top 20 most important variables/features in the
two XGBoost-int models. There are three variables that stand out in both
models. For intermediate mass-splitting signals Emiss

T turns out to be the most
important feature, closely followed by Emiss,sig

T and mT2. They are responsible
for roughly 20% of the total gain each, and 60% of the total gain combined.
For comparison, the three top features in the XGBoost-low models account for
about 38% of the total gain. The intermediate mass-splitting models therefore
obtain better separation from fewer variables compared to the low-mass-splitting
models.

The next features on the list, ranked as 4th and 5th, are ratios of Emiss
T to

the pT of the two jets and two leptons, presumably coming from the W and Z
bosons, respectively. Ranked 6th and 7th are the opening angles of the two jets,
assumed to come from the W , and the pT sum of all hadronic jets.

9.6.3 Binary classification performance

9.6.3.1 Background efficiency vs. signal efficiency

The ROC curves in Figure 9.16 are close to being perfect, with just below 100%
signal and background efficiencies for almost any choice of decision boundary.
This yields AUC scores of around 0.994 for both models, which are very close to
the maximum value of one. However, this gives a somewhat misleading picture
of the signal sensitivity, as it does not take the class-imbalance into account, i.e.,
the fact that there are roughly 100 times more background events than signal
events.

9.6.3.2 Background rejection vs. signal efficiency

Figure 9.17 shows the ROC curves in terms of the background rejection as a
function of signal efficiency. The good separation of the two class distributions
here result in a high background rejection factor for a given signal efficiency. E.g.,
for a signal efficiency of 0.5, we will correctly classify and reject approximately
1000 background events as background for every background event we misclassify
as signal.
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(a) Model trained on even and tested on odd run numbers
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(b) Model trained on odd and tested on even run numbers

Figure 9.14: XGBoost output scores on the training (filled histograms/lines)
and test (dashed lines) sets, for all backgrounds and the intermediate-∆m signal
samples. The bottom subplots show the bin-wise test-to-training ratio of the
sum of background contributions in black and the sum of low-∆m signal samples
in red. The uncertainty bands represent statistical uncertainties only.
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Figure 9.15: Top 20 most important features in the intermediate-∆m models, in
terms of the total gain obtained in the full models (all added trees included).
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Figure 9.16: ROC curves for models targeting intermediate-∆m signal: back-
ground efficiency vs. signal efficiency.
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Figure 9.17: ROC curves for models targeting intermediate-∆m signal: back-
ground rejection vs. signal efficiency, where background rejection is equal to
1/(1− background efficiency), and represents the number of correctly rejected
background events for every background event that ends up in the signal region
(plus one).
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Figure 9.18: Precision vs. recall curves for models targeting intermediate-∆m
signal.

9.6.3.3 Signal precision vs. signal efficiency

The precision-recall curves shown in Figure 9.18 give a more representative
view of the signal sensitivity, compared to the standard ROC curves, because
the number of events from both classes are compared in the signal region. For
a signal efficiency, i.e., recall, of 0.5, the XGBoost-int models obtain a signal
precision value of about 0.9, compared with 0.1 obtained by the XGBoost-low
models. The XGBoost-int models obtain average precisions of about 0.84, which
is a more modest result compared to the AUC of 0.99, but also a lot better than
the average precisions of 0.16 and 0.17 obtained by the XGBoost-low models.

9.6.4 Data vs. background

The data events are compared to the sum of simulated background events in
Figure 9.19, for the highly background-dominated region of XGBoost score in
the interval [0, 0.9]. The agreement looks convincing, especially in Figure 9.19c,
which is the sum of the two histograms above, and thereby has roughly double
the integrated luminosity of each of the summands. The fact that the agree-
ment improves with more data adds confidence in the modeling. The total
background uncertainties are statistical only, and therefore underestimates the
full uncertainties, which should include systematic uncertainties from various
sources.

9.6.5 Benchmark signal vs. background

Figure 9.20 compares the intermediate-∆m benchmark signal, (500, 200)GeV, to
the total background in the highly signal-like region, with XGBoost score > 0.9.
Only events from the test sets of the two XGBoost-int models are considered
here. In the lower panels, the signal significance is shown as a function of signal
region (lower) cuts.
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(c) Combination of both models

Figure 9.19: Data vs. expected background in the background-dominated
XGBoost score region of [0, 0.9], using the XGBoost-int models.
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9. Multivariate signal region optimization

The output from the two XGBoost-int models are combined in Figure 9.20c,
which correspond to the full integrated luminosity of Run 2. Both the distri-
butions of signal events, in the upper panel, and the signal sensitivity, in the
lower panel, peak in the rightmost bin, which correspond to a signal region with
XGBoost score > 0.995. The ZN significance for the (500, 200)GeV mass-point
in this SR is 4.30. Since ZN > 1.64, this SR has sufficient expected sensitivity to
be able to exclude the (500, 200)GeV signal at 95% CL, if no excess is observed
in data.

9.7 High mass-splitting

The final set of MVA models, targeting high mass-splitting scenarios, are trained
and tested on signal mass points with mass-differences greater than or equal to
450 GeV. The same set of hyperparameter values used to train the XGBoost-low
and -int models are also used for the training of the high-∆m models, which are
given in Table 9.2.

9.7.1 Learning curves

The learning curves for the XGBoost-high models are shown in Figure 9.21. The
loss flattens out at around 0.05, which is significantly lower than for XGBoost-low
at around 0.35, and even lower than XGBoost-int with losses slightly above 0.1.
This means that an even greater accuracy is obtained for XGBoost-high than for
any of the others. This is again expected, as this scenario deals with the phase
space where the event topologies and kinematics of the signal differ the most
from the background.

As the training and validation losses end up similar in values, there are no
significant indication of overtraining.

9.7.2 Training vs. test performance

This is backed up by the plots of Figure 9.22, which show comparisons between
the output scores of the training and the test sets. No large deviations between
the solid lines of the training sets and the dashed lines of the test sets are
observed. The distributions are now even more shifted towards their true class
values compared to XGBoost-int, which means even better separation of the
distributions in general.

The vast majority of the signal events are assigned XGBoost scores higher
than 0.98 (the rightmost bin in Figure 9.22), both in the training and test sets.
This means that most high-∆m signal events are recognized as highly signal-like.

The XGBoost-high models show similar results for background, where the
vast majority of background events are recognized as highly background-like,
with XGBoost scores lower than 0.02 (the leftmost bin).
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(c) Combination of both models

Figure 9.20: Intermediate-∆m benchmark signal sample vs. expected background
in the highly signal-like XGBoost score region of [0.9, 1], using the XGBoost-int
model. The data points in the region with XGBoost score > 0.9 are not shown
(“blinded”)
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Figure 9.21: Learning curves of the high-∆mmodels, which show the performance
progressions (decrease in loss) as functions of the number of trees added to the
models.

9.7.3 Feature importance

As for XGBoost-int, the top 20 feature importance plot of the two XGBoost-
high models, shown in Figure 9.23, have Emiss

T , Emiss,sig
T and mT2 as the three

outstanding features. They are also of similar combined importance, accounting
for roughly 60% of the total gain, as was the case for XGBoost-int.

The next features on the list show similar distributions in terms of the size of
the gains, decreasing from roughly 5% gain from the 4th most important feature
and downwards. However, the order of features are slightly different. Where
both of the XGBoost-int models had the ratios of Emiss

T to the pTs of W and Z
ranked higher than the pT of W and Z alone, both the XGBoost-high models
rank the raw pT slightly higher than the ratios. The opening angle of the jets
coming from the W are also valued slightly lower. These differences in gain are,
however, relatively small, and may not be of noteworthy significance.

9.7.4 Binary classification performance

9.7.4.1 Background efficiency vs. signal efficiency

The ROC curves in Figure 9.24 show that one can retain close to 100% background
efficiency for almost any choice of signal efficiency, and vice versa. This indicates
that a large share of the class distributions are almost entirely positioned at, or
very close to, the true class values. The AUC of both the training and test ROC
curves amount to 0.998, which is very close to the maximum value of one.

9.7.4.2 Background rejection vs. signal efficiency

In terms of the background rejection, the ROC curves in Figure 9.25 show that
only about 1 in 10,000 background events will be mis-classified as signal, given a
signal efficiency of 0.5. This is roughly an order of magnitude better than the
XGBoost-int models and two orders of magnitude better than the XGBoost-low
models.
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(a) Model trained on even and tested on odd run numbers.
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(b) Model trained on odd and tested on even run numbers.

Figure 9.22: XGBoost output scores on the training (filled histograms/lines) and
test (dashed lines) sets, for all backgrounds and the high-∆m signal samples.
The bottom subplots show the bin-wise test-to-training ratio of the sum of
background contributions in black and the sum of high-∆m signal samples in
red. The uncertainty bands represent statistical uncertainties only.
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Figure 9.23: Top 20 most important features in the high-∆m models, in terms
of the total gain obtained in the full models (all added trees included).
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Figure 9.24: ROC curves for models targeting high-∆m signal: background
efficiency vs. signal efficiency.
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Figure 9.25: ROC curves for models targeting high-∆m signal: background
rejection vs. signal efficiency, where background rejection is equal to 1/(1 −
background efficiency), and represents the number of correctly rejected back-
ground events for every background event that ends up in the signal region (plus
one).
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Figure 9.26: Precision vs. recall curves for models targeting high-∆m signal.

9.7.4.3 Signal precision vs. signal efficiency

The more representative precision-recall curves of the XGBoost-high models,
which directly compare the numbers of events from both classes in the signal
region, are shown in Figure 9.26. For a signal efficiency, i.e., recall, of 0.5, the
signal precision obtained by the XGBoost-high models is about 0.95, compared
with 0.9 of the XGBoost-int and 0.1 of the XGBoost-low models. The average
precision of the XGBoost-high models are approximately 0.90 on both the
training and test sets, compared with 0.84 of the XGBoost-int and 0.16-0.17 of
the XGBoost-low models.

9.7.5 Data vs. background

Similarly to the data vs. background comparisons of the XGBoost-low and -int
models, the corresponding plots of XGBoost-high in Figure 9.27 show good
agreement between data and the sum of background sources. Also in this
case, the uncertainties on the total background are statistical only, and therefore
underestimates the total uncertainties that would include systematic uncertainties
from the simulations, reconstruction and MVA modeling. The experimental
data are not shown in the score interval [0.9, 1], where the signal could become
non-negligible, if present in the data.

9.7.6 Benchmark signal vs. background

Figure 9.28 shows the score distributions of the background and the high-∆m
benchmark signal, (600, 0)GeV, of the two XGBoost-high models in (a) and (b),
and the sum of them, which amounts to the integrated luminosity of Run 2, in
(c). Both the number of signal events, in the upper panel of (c), and the signal
significance, in the lower panel, peak in the rightmost bin with XGBoost scores
> 0.995. The background in this bin is from dibosons only. The ZN significance
in the XGBoost-high SR, with XGBoost scores > 0.995, is 3.35, which is greater
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(c) Combination of both models

Figure 9.27: Data vs. expected background in the background-dominated
XGBoost score region of [0, 0.9], using the XGBoost-high models. The data
points in the region with XGBoost score > 0.9 are not shown (“blinded”)
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(c) Combination of both models

Figure 9.28: High-∆m benchmark signal sample vs. expected background in
the highly signal-like XGBoost score region of [0.9, 1], using the XGBoost-high
model.

than 1.64. This means that we expect to be able to exclude the (600, 0)GeV
signal at 95% CL, if no excess is observed in the data above the background.
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Expected signal mass exclusions

9.8 Expected signal mass exclusions

With all the six XGBoost models trained, that is, XGBoost-low, -int and -high,
all three with one model trained on events from even run numbers and another
model trained on events from odd run numbers, we can feed all the signal samples
of the full signal mass-grid through the models that correspond to their respective
mass-splittings. The models trained on even run numbers are passed the events
from odd run numbers, and vice versa. The outputs from each model are then
summed together, and the number of signal and background events that fall into
the SRs are collected. With the number of signal and background events in the
SRs in place, the corresponding ZN significance can be calculated, applying a
conservative estimate of 30% systematic uncertainty to the calculation.

Figure 9.29 shows the ZN significance calculated for all samples in the signal
mass-grid, using the XGBoost models in (a) and the single-bin discovery regions
(DRs) from Table 8.5 in (b) for comparison. Whereas the expected exclusion
limits of the conventional analysis, shown in Figure 8.19, make use of shape
fits from multi-bin SRs, the exclusion limits of Figure 9.29 only make use of
simple cut-and-count analysis on single-bin SRs. I will first have a look at the
performance of the single-bin to the multi-bin SRs for the conventional analysis
approach, before addressing the performance of the single-bin XGBoost SRs
w.r.t. the conventional ones.

Comparing the multi-bin results of the conventional analysis in Figure 8.19
with the conventional single-bin results (which make no use of the shape of
the signal and background distributions in the SRs) in Figure 9.29b, the added
sensitivity from multi-bin shape fits are striking. The single-bin DRs obtain
expected exclusion limits up to about 600 GeV in χ̃±1 /χ̃0

2-mass, whereas the
multi-bin SRs reach all the way up to 750 GeV. When it comes to the expected
exclusion reach on the χ̃0

1-mass, the single-bin DRs go up to nearly 200 GeV,
whereas the multi-bin SRs reach just above 300 GeV. The multi-bin SRs also
have better coverage in the more compressed mass-splitting region, where they
obtain expected exclusion sensitivity to the ∆m = 100 GeV points of (100, 0),
(150, 50) and (200, 100)GeV, whereas the single-bin DRs do not reach expected
exclusion at all for these mass-points.

On the other hand, comparing the single-bin DRs, with 139.0 fb−1 of in-
tegrated luminosity, to previously published results which also made use of
single-bin SRs, the expected exclusion limits continue to improve with more
data. The single-bin SR-Zjets, shown in Figure 7(a) of Reference [213], with
20.3 fb−1 of 7 TeV data from LHC Run 1, obtained expected exclusion limits
up to mχ̃±

1 ,χ̃
0
2

= 350 GeV and mχ̃0
1

= 80 GeV, and excluded only one signal
point with ∆m = 150 GeV, none below. The single-bin SRs used to obtain the
expected exclusion limits of Figure 7.6b, with 36.1 fb−1 of 13 TeV data, reached
up to mχ̃±

1 ,χ̃
0
2

= 530 GeV and mχ̃0
1

= 180 GeV. The single-bin DRs do not
improve the expected exclusion reach on the χ̃0

1-mass, but extend the reach on
the χ̃±1 /χ̃0

2-mass from 530 to 600 GeV.
To be fair, the DRs themselves have not been optimized for exclusion potential
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(a) XGBoost-low, -int and -high
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(b) DR-low, -int and -high

Figure 9.29: ZN significance, for each of the signal mass-points in the signal
grid, are given in numbers at the location of the corresponding mass-points.
Interpolation of ZN between the grid points has been carried out to obtain
contours at ZN = 1.64, which correspond to the exclusion limit at 95% CL.
All mass-points within these contours are expected to be excluded at 95% CL,
if no excess is observed in the data above the background. The results from
single-bin XGBoost SRs are shown in (a), and compared to corresponding
results from single-bin DRs (discovery regions) in (b). The DRs are defined in
Table 8.5. In (a), there are also ±1σstat

bkg error bands, which correspond to the
exclusion contours when the number of background events in the SRs have their
statistical uncertainty added (inner dashed line) or subtracted (outer dashed
line). (Uncertainty bands were not calculated for the DR exclusion limits.)
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on the signal model considered in this chapter, in the same way as the previous
single-bin SRs and the multi-bin SRs for the full Run 2 data have been. They are
rather combinations of the multi-bin SRs, to be used for model-independent signal
interpretations. In this comparison, they are only taken as rough indications of
how conventional, single-bin, cut-and-count SRs may compare to multi-bin and
MVA SRs. They may be slightly conservative in terms of expected exclusion
reach for optimized single-bin SRs.

Now, we compare the performance of the single-bin ML analysis to the single-
and multi-bin conventional analyses. When it comes to the XGBoost models, the
expected exclusion potential seems to be a lot stronger than the single-bin DRs,
but comparable to the multi-bin SRs. The χ̃±1 /χ̃0

2-mass reach is slightly lower for
the XGBoost models, of roughly 725 GeV, compared to 750 GeV of the multi-bin
SRs. The χ̃0

1-mass reach is, however, slightly better with the XGBoost models, of
roughly 350 GeV, compared to the multi-bin SRs with just above 300 GeV. In the
more compressed mass-splitting region around ∆m = 100 GeV, the XGBoost-low
models only obtain expected exclusion for the (150, 50) mass-point, whereas
the multi-bin SRs also manage to get exclusion sensitivity for the (100, 0) and
(200, 100)GeV mass-points as well.

Given that the XGBoost output distributions for signal and background
events have different shapes for all the models, in particular in the highly signal-
like region (XGBoost scores > 0.9), there may be more signal sensitivity to gain
by performing multi-bin shape-fits on the output distributions, instead of the
simple single-bin cut-and-count SRs considered in this work. As the single-bin
XGBoost SRs show exclusion reach comparable to the multi-bin conventional
analysis SRs, multi-bin shape-fits on the XGBoost output could potentially
become even more powerful than the multi-bin conventional analysis SRs. This
could be a promising topic for future studies.

9.9 Summary

A sensitivity study has been carried out using XGBoost MVA models, performing
binary classification of signal vs. background, to target χ̃±1 χ̃0

2-production in
final states with two leptons, two jets and Emiss

T . Six XGBoost models have been
trained on MC simulated signal and background samples. The two XGBoost-low
models are trained only on the signal samples in the low-∆m category, where
one model is trained on events with even run numbers only and the other on
events with odd run numbers only. The XGBoost-int and -high models are
trained correspondingly on signal samples in the int- and high-∆m categories,
respectively. On final evaluation (test), the signal samples are passed through
the XGBoost model trained on the relevant mass-splitting category, where signal
and bakground events from even run numbers are passed through the model
trained on odd run numbers, and events from odd run numbers are passed
through the model trained on even run numbers. Finally, the XGBoost score
distributions from even and odd run numbers are combined (summed) for each
of the XGBoost-low, -int and -high models.
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9. Multivariate signal region optimization

The expected exclusion contour at 95% CL in the signal mass-grid shows that
single-bin XGBoost SRs obtain significantly higher signal sensitivity compared
to the single-bin DRs of Chapter 8, but are comparable to the performance of the
multi-bin SRs of Chapter 8. This suggests that performing multi-bin shape-fits
on the XGBoost output distributions could potentially expand the exclusion
reach beyond that of the multi-bin SRs of the conventional (non-MVA) analysis.
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Chapter 10

Conclusions

With the proton-proton collision data of the LHC Run 2, we have covered new
ground in the search for the existence of supersymmetric particles. The part of
the full Run 2 dataset which is deemed “good for physics” amounts to 139 fb−1,
collected at a center-of-mass energy of

√
s = 13 TeV. This is more than 5x the

integrated luminosity of the full Run 1 dataset, which consists of 4.7 fb−1 taken
at
√
s = 7 TeV and 20 fb−1 taken at

√
s = 8 TeV.

On the one hand, the nearly doubling of collision energy from Run 1 to Run
2 increases the potential mass reach for heavier particles. On the other hand,
the larger dataset increases the statistical significance of the physics analyses,
and thereby increases the sensitivity to rare events.

The first thesis search involved checking the ATLAS sensitivity to pair-
production of the lightest chargino (χ̃±1 χ̃∓1 ), with decays via sleptons (˜̀) or
sneutrinos (ν̃) into final-states with two leptons (e or µ) and Emiss

T from two
neutrinos (ν) and two lightest neutralinos (χ̃0

1). My findings showed that we
expected to go beyond the Run 1 sensitivity of ATLAS to the same model already
with 6 fb−1 of integrated luminosity in Run 2. The search for this model was
therefore worth targeting for publication with early Run 2 data. The ATLAS
publication [158] with 13.3 fb−1 increased the exclusion limit on the χ̃±1 mass up
to 620 GeV (for a massless χ̃0

1), compared to 480 GeV with the Run 1 data. The
exclusion reach for the χ̃0

1 mass increased from 180 GeV in Run 1 up to 260 GeV
with the early data of Run 2.

For the remainder of thesis work, I moved on to another simplified model,
namely pair-production of the lightest chargino along with the next-to-lightest
neutralino (χ̃±1 χ̃0

2), with decays via W and Z bosons into final-states with
two leptons (e or µ), two light-flavor jets (not b-tagged) and Emiss

T from two
lightest neutralinos (χ̃0

1). The first search with this model involved defining and
optimizing signal regions for publication with the two first years of data-taking in
Run 2 (2015 and 2016). This amounted to 36.1 fb−1 of integrated luminosity and
was the first analysis of this model with Run 2 data. The ATLAS publication
[165, 166] increased the exclusion limit on the χ̃±1 /χ̃0

2 mass from 420 GeV with
Run 1 data to 580 GeV (for a massless χ̃0

1) with the 2015+2016 dataset of Run 2.
The exclusion reach for the χ̃0

1 mass increased from 150 GeV to 230 GeV w.r.t.
the Run 1 limits.

My third search was a continuation of the previous project, but this time
using the full Run 2 dataset (data-taking from 2015 up to and including 2018),
which amounted to 139 fb−1. Much of my contributions were in the form of
preparations for the final analysis, in terms of requesting and producing simulated
samples, developing analysis code, chairing working group meetings and giving
analysis updates in the ATLAS SUSY sub-groups working on electroweak and
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strong production of sparticles. On the analysis side, I continued working on
defining and optimizing signal regions, with accompanying control and validation
regions for background modeling. At the time of writing, the complete ATLAS
publication has been submitted to a journal for peer-review and has been
published as a pre-print [193]. In addition to the increase in statistics w.r.t. to
the previous publication, from 36.1 fb−1 to 139 fb−1, the statistical modeling
also developed from using single-bin to multi-bin signal regions, which make
use of the shape of the background and signal vs. the data distributions. The
expected mass exclusion reach thereby increased from 580 to 750 GeV for χ̃±1 /χ̃0

2
and from 230 to 320 GeV for χ̃0

1. The observed limits ended up being stronger,
due to observing fewer events than expected in several of the signal regions. χ̃±1
and χ̃0

2 masses up to 820 GeV and χ̃0
1 masses below 380 GeV ended up being

excluded.
Finally, I present a sensitivity study using the machine learning algorithm

XGBoost, where I make use of gradient boosted decision trees for binary classi-
fication of background- and signal-like events, using the integrated luminosity
corresponding to the full Run 2 dataset. By making a single cut on each of the
XGBoost distributions, the sensitivity to the signal increases significantly com-
pared to conventional single-bin signal/discovery regions, from 600 to 700 GeV
for χ̃±1 /χ̃0

2 and from 150 to 350 GeV for χ̃0
1. The single-bin XGBoost regions

achieve comparable sensitivity to the conventional multi-bin signal regions, which
suggests that there may be even more sensitivity to gain by considering multi-bin
signal regions also for the XGBoost models.

There are exciting times ahead. The LHC Run 3 is expected to produce
the first pp collisions for physics analysis, at the (yet again) record-breaking
energy of 13.6 TeV, on July 5, 2022, just a couple of weeks after submitting this
thesis. It is planned to be operational until 2026 and produce a new dataset of
similar size to that of Run 2. Run 3 will also be a stepping stone toward the
high-luminosity LHC (HL-LHC) [214], which will become the LHC Run 4, and
is currently expected to be operational from 2029 through 2032 and to produce
a significant increase in the instantaneous luminosity. This will pose great
technological challenges, such as increased radiation exposure for the detectors
and a dramatic increase in demand of data throughput and processing capacity.
In return, this will also significantly increase the event rates, which means more
statistics faster. The HL-LHC is expected to operate at

√
s = 13.6− 14 TeV and

produce more than 10x more data than the LHC Run 1 and Run 2 combined,
namely 3000−4000 fb−1.

Even though some people have started to lose faith in the realization of
Supersymmetry in nature, the more than 100-dimensional parameter space is
so vast that it is practically impossible to reject it with any kind of certainty.
However, what we do know with certainty, is that there are phenomena in nature
we can’t describe with our current knowledge, and that there are in fact more to
be discovered. Will it be dark matter, or maybe something we have not even
thought about yet?
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Appendix A

Authorship qualification
As a member of the ATLAS Collaboration, one has to complete a so-called
qualification task in order to qualify as a signing author of ATLAS publications.
The idea is that an ATLAS member should have made a significant contribution
to the operation of the experiment before being allowed to sign the scientific
results published by the collaboration. For the qualification work to be approved,
the qualifying member should have spent at least 80 full working days on the
task, in principle within the scope of one year.

Given that the high-energy physics group at the University of Oslo is invested
in the software and computing operations in ATLAS, and thereby has expertise
on the topic, it was natural for me to choose a task related to software and
computing.

A.1 Task description

The qualification task assigned to me was to work toward a reproducible Monte
Carlo (MC) simulation setup in heterogeneous environments on the Worldwide
LHC Computing Grid. The task description was formulated as follows:

The reproducibility of various Monte-Carlo production steps is criti-
cal for production in heterogeneous distributed environment. The
divergence of results comes either from software sensitivity to cpu
architecture or from different execution environments and conditions
on the grid. The primary task is to extend the technical validation
platform to cover different architectures and to develop a capability
to execute the payload in targeted distributed environment in a repro-
ducible way. The job execution should set the initial conditions for
various production steps to be the same on per-event basis regardless
of the execution platform.

The description refers to the fact that MC simulations produced by ATLAS
are run on different computing sites (servers) around the world, on different
CPU types, running on different (versions of) operating systems, etc., which
may introduce differences in the simulation outputs depending on where they
are produced.

Simulation outputs from two or more setups and/or grid sites were com-
pared on two levels: (i) bit-wise comparisons, i.e., looking for identical results,
which would be the optimal outcome (fully reproducible), and (ii) statistical
comparisons, which means evaluating the goodness-of-fit between histograms of
simulated physics variables, i.e., whether the simulations reproduce the same
physical distributions (satisfyingly reproducible physics-wise).
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My technical supervisor on the task, working at CERN, was Jose Enrique
Garcia Navarro (Instituto de Fisica Corpuscular (IFIC), Centro Mixto Universi-
dad de Valencia - CSIC), and my local supervisor, working in Oslo, was Eirik
Gramstad (University of Oslo).

A.2 Simulated samples

The physics process considered for the simulations was tt̄-production, which
is a common process in pp-collisions at the LHC. It captures a wide range of
phenomena in the subsequent decays of the top and anti-top quarks, involving
leptons, missing energy from neutrinos and hadronic jets, both in terms of
light-flavor jets and b-jets, where the latter give rise to secondary, displaced
vertices.

The complete process of producing the MC simulation samples can be broken
down into four separate steps:

1. Event generation: An event generator picks a random tree-level process
(and certain higher-order corrections, depending on the setup) per event,
based on the scattering processes available in the setup and the relative
probabilities (scattering amplitudes) of these processes. So-called pile-up
events are simulated separately and overlaid the collision events.

2. Simulation: The particles from the hard-scatter processes of step 1. are
now evolved/simulated from the collision point to the point where they
reach the detectors. This involves hadronization and parton-showering of
the final-state quarks and gluons as well as particle interactions (“hits”)
with the detector material.

3. Digitization and reconstruction: In this step, the detector interaction-
s/hits from the simulation step are converted to digital signals. Then,
the event reconstruction algorithms are run on the detector readouts to
produce reconstructed particles/objects for physics analyses.

4. Merging: Typically, step 2. and 3. are split into multiple jobs that run
in parallel, handling different subsets of the generated events from step 1.
In step 4., the results from each of the jobs in step 3. are merged into one
large dataset.

For the qualification task, we made use of 100.000 pre-generated tt̄-events,
which were common to all comparisons. Step 1. is therefore the same in all
comparisons, and is therefore effectively not part of the evaluation. Since step 4.
only combines the outputs from step 3., the merge step does not include any
form of simulation and therefore does not introduce changes to the data from
step 3. The comparisons therefore only evaluate the effects of the simulation
(step 2.) and the digitazation and reconstruction (step 3.) Only the effects of
one of these steps are varied at a time, where the other is treated identically
(kept constant) between the results being compared.
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A.3 Bit-wise reproducibility

We start by investigating whether we can obtain a fully reproducible simulation
setup on two different Grid sites, i.e., identical simulation outputs, event by
event. This was done by running a Python script called acmd.py, which is part
of the ATLAS software. Commands on the following form were run:

acmd.py diff-root --error-mode resilient <file1> <file2>

which runs a “diff” operation comparing two Root files, <file1> and <file2>.
An additional command-line option --entries <range> was also applied in
order to run the comparisons on smaller chunks of events in the two files.

A.3.1 Toward a reproducible setup

Mainly three simulation settings were applied to facilitate reproducibility on
different Grid sites:

• Use the same math library on all CPU types. The Intel math library was
already set up to be loaded by default in the simulation transform.

• Use a fixed seed to the generator of random numbers. The random seed
offset was disabled in the simulation transform.

• Set reproducible ordering of events in the merging of outputs from mul-
tiprocessing jobs. The Round Robin strategy was used in AthenaMP
[215].

A.3.2 Simulation

The outputs of the simulation step, so-called HITS files, were produced at two
different Grid sites running Intel CPUs, namely Brookhaven Naitonal Laboratory
(BNL) and Rutherford Appleton Laboratory (RAL), from identical inputs.

The data stored in the simulation output files from the two sites only differed
in the information about the CPU time spent on the tasks. The simulated
physics variables were identically reproduced from both sites.

Thereby, the so-called simulation transform was found to be bit-wise com-
patible when run at two different Intel sites.

A.3.3 Digitization

The two sets of HITS files from BNL and RAL in the previous step were then
passed on to the digitization step, which was done at BNL. The outputs from
the digitization process are called Raw Data Output (RDO) files.

The digitization of the HITS files from BNL and RAL were also found to be
identical, except for differences in the CPU time spent on the tasks.

Thereby, the digitization of identical HITS files were found to be bit-wise
compatible when run at the same Grid site.
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A.3.4 Reconstruction

After digitization of the simulation outputs, the RDO files are passed on to the
reconstruction step. Also the reconstruction of the simulations from BNL and
RAL are run at the same site, namely at BNL.

The reconstruction process consists of two substeps: first producing a set of
Event Summary Data (ESD) files with detailed outputs of the reconstruction,
from which higher-level analysis objects are constructed and stored to Analysis
Object Data (AOD) files.

Even though the RDO files from the digitization step had identical physics
values in the two datasets, a few differences arose in the reconstructed data in
the ESD files. The differences were found in the following physics variables:

• MET_EMTopoRegions: mpx, mpy, name, sumet

• MET_LocHadTopoRegions: mpx, mpy, name, sumet

• Muons: rpcHitTime

• MuonSegments: clusterTime

where the two first bullet points represent missing ET (MET) objects calculated
using measurements from the electromagnetic (EM) and hadronic (LocHad)
calorimeters, respectively; with mpx, mpy, name, sumet representing the x- and
y-components, name and total sum of MET, respectively.

A comparison of print-outs of content in the two AOD files are shown in
Figure A.1. The diff view highlights the differences between the two files. One
can see an event with no Emiss

T in the file to the left, but with Emiss
T contributions

in the file to the right.
After the ESD files had been processed into AOD files, the same differences

that were found between the ESDs were found again in the AODs, in addition
to differences in yet another variable:

• HLT_xAOD__TrackParticleContainer-
_InDetTrigTrackingxAODCnv_Electron_L2IDAux:

numberOfSCTSharedHits

which represents the number of shared hits in the semiconductor tracker (SCT)
of the electron high-level trigger (HLT) object.

Figure A.2 shows a summary of the differences found by the Python script
comparing the two AOD files. The number of different values (leaves) per variable
are also given.

This means that the reconstruction step is not completely reproducible when
run on the same Grid site on the same input. However, the number of differences
introduced are fairly small, as only five out of the 2000 (0.25%) events included in
the comparison contain differences in the AOD files, where only a small fraction
of the physics variables of these five events are different.

The findings of this study were reported to the relevant people in ATLAS for
further follow-up.
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Figure A.1: Comparison of print-out logs from selected physics variables in the
AODs, where differences are highlighted in red.

Figure A.2: Summary of the diff after running the Python script on the two AOD
files. The physics variables are framed in, whereas the remaining differences
come from information about the run times.
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A.4 Physics validation framework

For the statistical comparisons of distributions of physics variables, we made use
of an existing framework for performing physics validation. The framework takes
a specific ntuple-format as input, which contains histograms of a wide range of
physical characteristics of the reconstructed physics objects, 5170 histograms
(variables) in total.

The validation framework uses one dataset as reference and performs goodness-
of-fit tests between the reference and each of the other datasets to be compared,
one test for each of the histograms in the ntuples. The chi-square test is used to
measure the goodness-of-fit between the histograms.

A.4.1 Chi-square goodness-of-fit

The chi-square (χ2) value is calculated by summing the squared difference
between the comparison and the reference, divided by the variance1 of the
reference, bin by bin in each histogram:

χ2 =
k∑
i=1

(comparisoni − referencei)2

referencei
, (A.1)

where k denotes the number of bins in the histogram and i is an index running
over the bins, i ∈ {1, 2, ..., k}.

A.4.2 The χ2-distribution

The chi-square distribution is illustrated for various numbers of degrees of
freedom (NDF) in Figure A.3. For a χ2 goodness-of-fit, the NDF is equal to the
number of bins in the given histogram. One can show that the expectation value
for a χ2-distribution is equal to the NDF of that distribution

〈χ2〉 = NDF, (A.2)

with variance

σ2
χ2 = 2×NDF, (A.3)

i.e., each term in the sum of Equation (A.1) on average contributes a value of
one, given that the comparison dataset is consistent with the reference dataset.
What we mean by this is that the comparison histogram has only Gaussian
distributed deviations away from the bin-values of the reference histogram, with
variances equal to the variance of the bins of the reference histogram.

1The number of entries in each bin follows a Poisson distribution, where the standard
deviation is equal to the square-root of the number of entries in the bin, i.e., for the reference
histogram the standard deviation in bin i is σPoisson =

√
referencei. Since the variance is just

the standard deviation squared, the variance of the number of entries in bin i of the reference
histogram is σ2

Poisson =
√
referencei

2 = referencei.
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Figure A.3: Probability density functions (PDFs), fk(x), of chi-square values,
χ2
k (denoted x in the plot), for various numbers of degrees of freedom, k [216].

A.4.3 χ2 per number of degrees of freedom

Since the histograms of the physics variables in the ntuples have varying numbers
of bins, the sizes of the χ2-values are not directly comparable. In order to collect
and compare the χ2-values of all the physics variables in a single histogram, we
divide the χ2-values by their corresponding NDF. Since the expectation value of
χ2 is equal to NDF, we thereby have that〈

χ2

NDF

〉
= 1, (A.4)

with variance

σ2
χ2/NDF = 2 (A.5)

and standard deviation

σχ2/NDF =
√

2 ≈ 1.41. (A.6)

A.4.4 Three regimes

When it comes to comparing two simulated datasets, there are effectively three
distinct χ2/NDF-regimes based on the nature of the deviations:

• Identical: If the two simulations are in fact identical, we expect〈
χ2

NDF

〉
= 0. (A.7)
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• Random errors: If the two simulations are inherently equivalent physics-
wise, except for random errors such as slightly different methods for calcu-
lating the same quantity, we expect the results to be χ2/NDF-distributed
with 〈

χ2

NDF

〉
= 1. (A.8)

• Inherently different: The third and final option is that the two sim-
ulations are inherently different, i.e., that the deviations are not only
random fluctuations about the same expectation value, but rather different
treatments which result in physics results that are not consistent. We then
expect 〈

χ2

NDF

〉
� 1. (A.9)

A.5 Statistical reproducibility

A.5.1 Comparisons of non-equivalent simulations

In order to get a handle on what comparisons of non-equivalent simulations
may look like in terms of χ2/NDF, I produced two pairs of simulations where
the reference and comparison datasets were deliberately produced with different
conditions. Figure A.4 shows comparisons of two simulations produced with
different software versions and different pile-up conditions (black line), and
another comparison of two simulations produced either with or entirely without
the addition of pile-up contributions to the hard-scatter events.

The black histogram clearly shows examples of all the three regimes mentioned
above. The far left bin, with χ2/NDF < 0.05, holds the results of comparisons
between histograms which are identical, or very close to identical, in the datasets
being compared. There is also a broad peak around χ2/NDF = 1, which most
likely stem from distributions that are physics-wise consistent, but has minor
adjustments in the implementation between software versions. Finally, the
far right bin, with χ2/NDF > 1.95, holds the results of comparisons between
distributions which are significantly different, with deviations much greater than
one standard deviation in the reference dataset.

Similar observations can be made for the blue histogram as well, in particular
when it comes to examples of both identical and significantly different distri-
butions in the two datasets being compared. There is, however, not the same
clear peak around χ2/NDF = 1 as was the case for the black histogram. This
may indicate that there are less random fluctuations about the same expectation
values in the two datasets, but rather more systematic deviations. The addition
of pile-up contributions to the events should significantly affect the physics vari-
ables and measurements, and it is not surprising that this shifts the background
levels in a systematic way.
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Figure A.4: Examples of comparisons between datasets produced with different
conditions. The black line shows the histogram of χ2/NDF-values for the
comparisons between two simulations produced with different software versions
(Athena release 19 vs. 21) and different pile-up conditions (mc15c vs. mc16).
The blue line shows the results of comparisons between two simulations produced
at the same computing site (Brookhaven National Lab, BNL), but where the
referance dataset has no pile-up (minimum bias events) overlaid the hard-scatter
events and the comparison dataset does have pile-up. The parentheses in
the legends give two numbers: the first represents the number of values/tests
which fall in the “yellow” region with χ2/NDF ∈ [1.2, 1.5), and the second
number represents the number of values/tests which fall in the “red” region
with χ2/NDF > 1.5. These classifications come as part of the general physics
validation framework, and are not considered explicitly in this work, as we focus
more on the distributions of the 40 bins of the histogram rather than the number
of occurrences of the three classes.

A.5.2 Intel vs. AMD math libraries

Most Grid sites run only on central processing units (CPUs) manufatured by
Intel, but there are also a few sites that make use of AMD CPUs. Both the
Intel and AMD CPUs use the x86 instruction set architecture. However, the
two companies have developed their own math libraries, the Intel Math Kernel
Library (MKL) and the AMD Math Library (LibM), respectively, which are
basic math routines optimized for their own CPUs. Since both the Intel and
AMD CPUs use the same instruction sets, their math libraries can be used
interchangeably, possibly at the cost of somewhat reduced performance.

In order to check if the choice of math library could affect reproducibility on
the Grid, a comparison was made between one simulation produced using the
Intel math library and another using the AMD math library. The simulation
tasks were run on the SiGNET (Slovenian Grid NETwork) site, which is one of
the Grid sites with AMD CPUs.

The results of the comparison are shown in Figure A.5. Most of the tests
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Figure A.5: Effects of using Intel vs. AMD math libraries on comparison of
physics variable histogram.

that are not (close to) identical, i.e., in the far left bin, have χ2/NDF-values
around 1, which indicates differences of random nature. Therefore, the Intel
and AMD math libraries produce results that are either identical or statistically
similar, and should thereby give compatible physics results, but they are not all
identical.

A.5.3 Intel site 1 vs. Intel site 2

Next, we compare the results of simulation (step 2.) run at two Grid sites with
Intel CPUs: Brookhaven National Laboratory (BNL) in the US and Rutherford
Appleton Laboratory (RAL) in the UK. The digitization and reconstruction
(step 3.) is run at BNL in both cases.

A comparison between the two sites, with simulations of the hard-scatter
events only, is plotted in the black histogram of Figure A.6. The vast majority
of variable comparisons produce χ2/NDF-values less than 1, with the 0-0.05 bin
being the most populous. The simulations produced at two different Grid sites
using the same CPUs therefore result in physics variables with either identical
or statistically compatible distributions.

The blue histogram of Figure A.6 shows comparisons between simulations
run at the same two Grid sites, but here with the addition of pile-up interactions
in the hard-scatter events. The addition of pile-up shifts the distribution of
χ2/NDF to somewhat larger values, with more weight around χ2/NDF ≈ 1. This
indicates more randomness in the variable distributions, but without becoming
incompatible physics-wise. This is not surprising, as the pile-up interactions,
which are overlaid the hard-scatter events, are independent of the hard-scatter
interactions and are drawn randomly from a pool of pre-generated minimum-bias
events.
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Figure A.6: Comparison of simulations run at two Grid sites with Intel CPUs
(BNL and RAL), without the addition of pile-up in blue and with the addition
of pile-up in black.

A.5.4 Intel site vs. Intel+AMD site vs. AMD site

After having compared the output of the simulation step (step 2.) at two different
sites running the same CPU type, the next sets of comparisons are between sites
running different types of CPUs. We compare the output from the following sites:
(i) BNL (reference) and RAL (comparison) with Intel CPUs only, (ii) Instituto
Nazionale di Fisica Nucleare (INFN), in Italy, with both Intel and AMD CPUs
(mixed CPU site), and (iii) SiGNET with AMD CPUs only. The digitization
and reconstruction (step 3.) is run at BNL for all simulations.

The comparisons are shown in Figure A.7. The black histogram compares
the output from the two Intel sites, BNL and RAL, the blue histogram compares
an Intel site (BNL) with the mixed Intel and AMD site (INFN), whereas the
pink histogram compares an Intel site (BNL) with the AMD site (SiGNET).

The Intel vs. Intel comparison (black) shows results which are identical or
with differences which are smaller than the standard deviation of the reference
sample (BNL). The Intel vs mixed Intel+AMD comparison (blue) is somewhat
similar in distribution to the pile-up comparisons between Intel sites in Figure A.6
(blue histogram). In a similar manner to how pile-up seems to add physics-wise
compatible randomness to the simulations, the same seems to apply when using
AMD instead of Intel CPUs. The tendency of shifting the χ2/NDF-distribution
toward the value of 1 is even more prominent in the Intel vs. AMD only
comparison (pink), which supports the hypothesis that AMD CPUs produce
simulations that are not all identical to results from Intel CPUs, but that the
distributions of physics variables are statistically compatible.
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Figure A.7: Effect of running simulations on Intel vs. Intel+AMD vs. AMD
sites, on comparison of physics variable histograms.

A.5.5 Comparing step 2. and 3. on Intel and AMD sites

Finally, we compare the output of both the simulation (step 2.) and digitization
and reconstruction (step 3.) when run on sites with different CPU types. The
Grid site with Intel CPUs is RAL and the site with AMD CPUs is SiGNET. All
of the following four permutations are compared: (i) Intel in step 2. + Intel in
step 3. (reference), (ii) Intel+AMD, (iii) AMD+Intel and (iv) AMD+AMD.

The results of these comparisons are shown in Figure A.8: Intel+Intel vs.
Intel+AMD in the black histogram, Intel+Intel vs. AMD+Intel in the blue
histogram and Intel+Intel vs. AMD+AMD in the pink histogram. All three
distributions show identical or statistically compatible simulations. The key
take-away from this figure seems to be that the simulation (step 2.) introduces
more differences compared to the digitization and reconstruction (step 3.), when
run on Grid sites with different types of CPU. I.e., step 2. introduces more
randomness, and is thereby less strictly reproducible, than step 3. However, any
combination will produce sane physics results.

A.5.6 Reproducibility across OS versions

As part of a physics validation of simulations in connection with the upgrade
of operating system at the Grid sites, from Scientific Linux CERN 6 (SLC6)
to Community ENTerprise Linux Operating System 7 (CentOS 7), I produced
simulations on both OSes and compared the resulting physics distributions.
The comparisons are shown in Figure A.9, with differences in the hard-scatter
processes only in (a) and the addition of pile-up interactions in (b).

Without pile-up, in (a), the distributions are either identical or have minor
differences which are significantly smaller than random statistical fluctuations.
With the addition of pile-up, in (b), the distributions are either identical or have
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Figure A.8: Effect of running simulation and digitization+reconstruction on
all permutations of Intel and AMD CPUs, on comparison of physics variable
histograms.

(a) No pile-up (b) With pile-up

Figure A.9: Physics validation of simulations run on the CentOS 7 operating
system, compared with Scientific Linux CERN 6 (SL(C)6).

differences that are consistent with random statistical deviations. In both cases,
the physics results should be statistically similar.

A.6 Conclusions

Three simulation settings have been identified as important in order to facilitate
complete reproducibility of simulation in heterogeneous and distributed envi-
ronments on the Worldwide LHC Computing Grid: (i) make use of the same
(Intel) math library regardless of CPU type at the site, (ii) use a fixed seed to
the random number generator used for the Monte Carlo simulations, and (iii)
use the RoundRobin strategy in AthenaMP for reproducible ordering of events
when merging the outputs from multiple tasks processed in parallel.
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Bit-wise compatibility was achieved when running simulations at two different
Intel sites on the Grid, and digitization at the same Intel site. However, bit-wise
compatibility was partly tampered in the reconstruction step, as a few events
were reconstructed with different physics-related values, given the same input.
These findings were reported to the relevant people in ATLAS for follow-up.

Simulations produced at Grid sites running Intel CPUs were found to give
either identical or statistically consistent distributions of physics variables, but
were not bit-wise compatible.

When running on AMD rather than Intel CPUs, the simulation step was
found to introduce more differences than the digitization and reconstruction step.
The differences were, however, consistent with at most being random fluctuations
with a standard deviation similar to that of the reference (Intel) sample. These
findings were reported to the team working on the ATLAS detector simulations
using the Geant4 toolkit [55].

Simulations produced at different sites on the Grid can thereby not (yet)
be guaranteed to be identical, but they are found to reproduce statistically
consistent distributions of physics variables.
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Appendix B

Triggers
The trigger names contain information about their definition. All of the triggers
listed in Table B.1 and B.2 are so-called high level triggers, and therefore their
names are all prefixed by ’HLT‘.

The next part of the trigger names indicate the type of leptons they trigger
on, the lepton multiplicity and the online pT thresholds. E.g., ’2e12‘ means that
the trigger fires if it finds at least two electrons with ET > 12 GeV, whereas
’mu18_mu8noL1‘ fires if it finds at least one muon with ET > 18 GeV in addition
to at least one other muon with ET > 8 GeV.

Triggers involving electrons [191] also include the name of the so-called
identification working point, at which they decide whether an object passes
certain quality requirements for being an electron or not. E.g., ’lhloose‘ uses the
Loose likelihood-based identification requirements, whereas ’lhvloose‘ makes use
of the Very loose likelihood-based identification requirements. The addition of
the ’nod0‘ label in some cases means that no information about the transverse
impact parameter d0 entered into the likelihood function for identification. Some
of the electron triggers also include the name of the level 1 (L1) trigger which
seeded the HLT. E.g., ’L12EM15VHI‘ indicates that this ’L1‘ trigger was fired by
’2‘ objects in the ’EM‘ calorimeter, with ET > ’15‘GeV, where the ET threshold
is varied (’V‘) with η to account for energy loss, and both hadronic core isolation
(’H‘) and elecromagnetic isolation (’I‘) has been applied.

Some of the triggers involving muons [192] adds a ’noL1‘ label after a low-pT
muon threshold. E.g., ’mu18_mu8noL1‘ indicates that at least one muon with
pT > 18 GeV was found in event information passed from an L1 trigger, by
only looking in a specified region of interest, whereas at least one muon with
pT > 8 GeV was found in a so-called full scan of the whole muon system, a more
CPU intensive search which does not make use of L1 information.

Table B.1: Triggers used in the early Run 2 analyses of the 2015+2016 dataset
only.

Year Type Trigger

2015
ee HLT_2e12_lhloose_L12EM10VH
µµ HLT_mu18_mu8noL1
eµ HLT_e17_lhloose_mu14

2016
ee HLT_2e17_lhvloose_nod0
µµ HLT_mu22_mu8noL1
eµ HLT_e17_lhloose_nod0_mu14
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Table B.2: Triggers used in the analyses of the full Run 2 dataset.

Year Type Trigger

2015

ee HLT_2e12_lhloose_L12EM10VH
HLT_2mu10

µµ HLT_mu18_mu8noL1
HLT_e17_lhloose_mu14

eµ HLT_e7_lhmedium_mu24

2016

HLT_2e15_lhvloose_nod0_L12EM13VH
ee HLT_2e17_lhvloose_nod0

HLT_2mu10
HLT_2mu14
HLT_mu20_mu8noL1µµ

HLT_mu22_mu8noL1
HLT_e17_lhloose_nod0_mu14
HLT_e24_lhmedium_nod0_L1EM20VHI_mu8noL1eµ
HLT_e7_lhmedium_nod0_mu24

2017

HLT_2e17_lhvloose_nod0_L12EM15VHI
ee HLT_2e24_lhvloose_nod0

HLT_2mu14
µµ HLT_mu22_mu8noL1

HLT_e17_lhloose_nod0_mu14
HLT_e26_lhmedium_nod0_mu8noL1eµ
HLT_e7_lhmedium_nod0_mu24

2018

HLT_2e17_lhvloose_nod0_L12EM15VHI
ee HLT_2e24_lhvloose_nod0

HLT_2mu14
µµ HLT_mu22_mu8noL1

HLT_e17_lhloose_nod0_mu14
HLT_e26_lhmedium_nod0_mu8noL1eµ
HLT_e7_lhmedium_nod0_mu24
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