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Summary 
 
How species adapt to novel or changed environments is a fundamental question in 
evolutionary biology. When human activities are the main drivers of the environmental 
changes, there is an added responsibility to document their effect on contemporary species. 
Anthropogenic climate change is affecting natural habitats and biodiversity on a massive 
scale, and many species have responded to climate warming by expanding their range to 
higher latitudes or altitudes. To counteract the negative impact of habitat destruction and 
alteration, conservation efforts have also worked on restoring habitat, which in some cases 
opens up the possibility for colonisation outside of a species’ range. Range expansion and 
colonisation may have major effects on populations in terms of genome-wide differentiation 
and diversity at range edges, and local adaptation may present itself both phenotypically and 
genomically.  
 
This thesis explores these processes in the reed warbler (Acrocephalus scirpaceus). The reed 
warbler has sparked interest in scientific communities for decades, especially its coevolution 
with the brood-parasitic common cuckoo (Cuculus canorus), and in more recent times, its 
response to climate change. The reed warbler has been described as a climate winner, and its 
recent range expansion northwards into Fennoscandia is thought to be climate-driven. 
Interestingly, reed warblers also recently colonised a novel habitat near its southern range 
edge, following habitat restoration of wetland in Malta. From the beginning of the reed 
warblers' colonisation of Malta, the birds were monitored and sampled, adding up to a time-
series dataset of 19 years. The goal of Paper I was to explore this dataset to see how the 
nascent population developed over time, and to assess the success of the colonisation. In 
Paper IA, we found that the birds had undergone a decrease in body mass through the 19 
years, following a trajectory consistent with a population ascending an adaptive peak, an 
Ornstein–Uhlenbeck process (OU). We corroborated this finding with estimates of individual 
survival and mean population fitness, suggesting that the reduction in body mass is a local 
adaptation to the new Maltese environment. Though we only used samples from birds in the 
breeding season, it is difficult to exclude the possibility of migrants in the dataset, which may 
inflate body mass estimates. The body mass of resident birds also fluctuates throughout the 
season. Controlling for possible seasonal sampling effects is therefore important, and in 
Paper IB, we controlled for seasonality in three different ways. With all approaches, the OU-
model fits better than the neutral model, further strengthening our original conclusion of 
adaptive evolution. For this study, we amplified eight microsatellite markers, which we used 
to estimate effective population size (Ne) and FIS. The molecular Ne estimate corroborated the 
independent Ne estimate from the OU model, lending support to the model's validity. 
According to the FIS estimate and compared to published estimates of other populations, the 
Maltese population shows signs of inbreeding, which could potentially reduce the 
adaptability of this population in the future. However, our findings document rapid adaptive 
phenotypic change following colonisation, demonstrating the reed warbler's high potential for 
adaptation.    
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To increase our knowledge of the reed warbler's adaptability and population dynamics, and to 
set the southwards colonisation into context with the range expansion northwards, we wanted 
to investigate genomic data. As an aid to Paper III, and also to provide a tool for numerous 
future studies, the goal of Paper II was to create a high-quality chromosome-length genome 
assembly of the reed warbler. We utilised three different sequencing methods to achieve this: 
PacBio, 10x and Hi-C. The genome assembly was carefully curated and annotated, and it will 
serve as a genomic resource for future studies, thereby taking part in the goal of assembling 
the genomes of all bird species. The genome assembly enabled us to utilise reference-based 
mapping of RAD sequences in Paper III, and to learn more about specific genes and their 
function. An interesting additional finding in Paper II relates to the synteny between the reed 
warbler genome and the genomes of closely related species. We found evidence for two 
independent macrochromosomal fusions in the reed warbler genome which are not present in 
the great tit (Parus major) or garden warbler (Sylvia borin) genomes. Further studies should 
investigate the ubiquity of these fusions and see if they are shared with other members of the 
Acrocephalus genus, and possibly look into the consequences of such fusions.   
 
The goal of Paper III was to investigate the genomic consequences of range expansion and 
colonisation. To achieve this, we used RAD sequencing of 10 populations in Europe from 
north to south, including both the northern range edge (Finland and Norway) and the southern 
range edge, using a subset of the Maltese individuals from Paper I. We found low levels of 
population structuring, and no apparent loss in genome-wide diversity at the range edges. We 
found that isolation by environment is much stronger than isolation by distance amongst the 
reed warbler populations, and we identified disparity in precipitation variability as the main 
barrier of gene flow. We found no evidence that the loci involved in population divergence 
and adaptation in the core populations are the same that are involved in adaptation at the 
range edges, suggesting partly novel variation at the range edges. Using three genome scan 
methods to identify signs of selection, we found 49 SNPs putatively under selection, of which 
33 were located in introns of 28 unique genes. Most of these are correlated with differences 
in temperature and precipitation variables. Some genome scan outliers also show signs of 
being part of nascent selective sweeps. These results suggest that in the reed warbler, 
contemporary range expansion has had little effect on molecular diversity and has been 
rapidly followed by local adaptation to climatic conditions, which could further corroborate 
the rapid pace at which colonisation of novel environments has occurred both northwards and 
southwards. We found reduced heterozygosity in the Maltese population using microsatellite 
markers in Paper I, indicating inbreeding. We did not find similar results in Paper III using 
RAD-seq, at least not compared to the other populations studied. However, there were high 
relatedness levels within the population. Continued monitoring is important to ensure the 
well-being of this recently established population.  
 
This thesis has contributed to the increase of our knowledge of the genomic and phenotypic 
consequences of range expansion and colonisation, including rapid adaptation to local 
climate. Further, it has provided a high-quality chromosome-level genome assembly which 
can be used for various future studies, like studies of comparative genomics, chromosomal 
rearrangements in birds, or more in-depth studies of the reed warbler. 
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1 Introduction 
 
1.1 Range expansion 
 
The geographic areas occupied by species naturally change through time, and species may 
shift, expand or contract their range depending on population dynamics and how they are 
affected by their surrounding environment. Range expansions have been well documented 
across taxa through evolutionary times by fossil records, and phylogeographical studies have 
used molecular markers to trace historical expansions of species. For instance, humans have 
undergone a massive range expansion starting 45 to 60 thousand years ago from Africa, 
resulting in human occupation of almost all of the Earth’s habitable regions (Henn et al. 
2012), and serve as a classical example of range expansion. The reasons for this formidable 
expansion are not clear, but hypotheses include cultural advances supporting extreme 
demographic growth and neuro-anatomical changes in the ancestral population, as well as 
responses to climatic fluctuations at later stages (Henn et al. 2012).  
 
Many studies have focused on population dynamics that took place during the Quaternary 
and especially after the last glacial maximum (about 20 000 years ago). The ranges of species 
have shifted repeatedly following major climatic oscillations (Hewitt 2000). During glacial 
periods when ice sheets and permafrost covered much of Europe and North America, species 
survived in southern refugia, and in interglacial periods they expanded their ranges 
northwards (Emerson and Hewitt 2005). Climatic conditions are often crucial in determining 
where a species is found, and when the opportunity arises that a species' niche becomes 
available, range expansion may occur.   
 
The ecological niche of a species has been described as an abstract mapping of population 
dynamics onto an environmental space, where the axes are the abiotic and biotic factors that 
influence birth and death rates of the species in question (Hutchinson 1978; Holt 2009). A 
population should persist in a habitat with conditions that are within the species' niche, and 
may spread to previously uninhabited areas where conditions are similar. Thus, a species can 
track its original niche, or undergo "niche drift" (Jezkova et al. 2011), but species may also be 
capable of adapting to a novel niche if driven to it (Mestre et al. 2020; Lustenhouwer and 
Parker 2022). For example, when climate warmed after the last glacial maximum, it was 
found that the desert horned lizard Phrynosoma platyrhinos expanded its climatic niche 
towards warmer and drier climates, to enable it to expand its range and persist in a desert 
habitat (Jezkova et al. 2016).  
 
Factors like population growth, population density and intraspecific competition may drive 
range expansions (Skellam 1951; McLeod and MacDonald 1997; Excoffier et al. 2009; Van 
Petegem et al. 2017). High population density and limited breeding opportunities should 
increase reproductive competition, and drive expansion (Williams et al. 1994). Individual 
traits such as aggressive behaviour may then also facilitate range expansion (Hudina et al. 
2014). Relative brain size is another individual trait which may facilitate expansion (Fristoe 
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et al. 2017). Interestingly, the evolution of larger brains was found to pre-date and facilitate 
the colonisation of novel habitats rather than the other way around in several bird species 
(Fristoe et al. 2017).  
 
The scale and speed of range expansions may differ greatly. Classic diffusion theory depicts a 
symmetrical expansion from a central point, and the speed of the expansion is determined by 
the reproductive rate and dispersal in the population (Skellam 1951). However, changing 
environmental conditions and complex landscapes may create more complicated expansion 
dynamics (e.g., Urban et al. 2008; Fraser et al. 2015). The range expansion of American mink 
(Neovison vison) in Scotland was found to vary spatially and temporally related to landscape 
heterogeneity, and suitable habitats were colonised much more quickly than less suitable 
habitats (Fraser et al. 2015). The speed of the post-glacial range expansion across Europe and 
North America differed between species and was probably much slower in some regions, 
particularly in the tropics (Hewitt 2000). 
 
Recent human activities, in particular human-induced climate change, is having a major 
impact on contemporary ecosystems, and has increased the speed of many range expansions 
(Chen et al. 2011). Many species are threatened with extinction, and either have to adapt in 
situ or shift their range to persist. Across taxa, species are shifting their range to higher 
latitudes or altitudes (e.g., Parmesan and Yohe 2003; Thomas 2010), largely matching the 
documented global warming (Chen et al. 2011). Climate may affect range boundaries directly 
as births and deaths may be affected by variables such as cold, heat or drought, or indirectly 
through changes in species interactions or habitat structure (Thomas 2010). However, some 
species do not follow the expected direction in range expansion due to climate change, which 
may be due to physiological constraints in the species or different drivers of change such as 
habitat loss (Chen et al. 2011). One study found that the association between climate and the 
distribution of 68 of 100 European bird species is to some extent random (Beale et al. 2008). 
However, the influence of climate was greater in northern areas, and the lack of association in 
Beale et al. (2008) may reflect a greater human impact on habitats in more southern regions. 
Range shifts to higher latitudes have been shown to be greatest where the climate has warmed 
the most (Chen et al. 2011).  
 
To counteract the negative impact of habitat destruction and alteration due to human 
activities conservation efforts have been made to restore habitat. For example, many 
pollinators are at risk from habitat loss and the use of pesticides, but restoring habitat and 
planting flowering shrubs and hedgerows have been found to increase pollinator species 
richness and abundance (M'Gonigle et al. 2015). Habitat restoration does not always lead to 
successful colonisations, and habitat quality and proximity to source populations may be 
important factors in determining colonisation success (WallisDeVries and Ens 2010). 
However, in some cases habitat restoration open the possibility of small-scale range 
expansions.  
 
 



 9 

1.2 What limits range expansion?  
 
Range expansion requires dispersal of individuals to occupy new locations, which then have 
to successfully survive and reproduce there. In some cases, a species range is limited by 
geographic barriers and may rapidly invade a novel habitat when they are introduced (Sakai 
et al. 2001; Van Kleunen et al. 2016; Winkler et al. 2019). For example, the cane toad (Bufo 
marinus) was introduced to Australia in 1935 to control crop pests and it subsequently spread 
throughout tropical and subtropical areas (Phillips et al. 2007). The toads are highly toxic, 
and Australian predators such as snakes have no evolutionary history with these toxins and 
die if they attempt to eat them (Smith and Phillips 2006), which likely facilitated their spread. 
Species may spread into novel habitats through intentional or unintentional human activities 
(for example through ballast water; Sakai et al. 2001), but normally they spread by natural 
means.   
 
Dispersal propensities vary greatly between species. An individual's ability to disperse 
depends on its morphology, size and endurance, but dispersal propensity may also be related 
to behavioural aspects (Saastamoinen et al. 2018), such as exploratory behaviour, foraging 
behaviour and migratory restlessness (Zera and Brisson 2012). Dispersal propensities are also 
determined by population dynamics and species characteristics. A comparison of a variety of 
bird species found several trends which may explain increased dispersal (Paradis et al. 1998). 
Species living in wet habitats disperse further than species living in dry habitats, which may 
be explained by greater patchiness of wet habitats. Migrant species disperse further than 
resident ones, and dispersal distances are lower among abundant species and among species 
with large geographical ranges. Within a species, population density may be a major factor in 
determining dispersal. Density-dependent dispersal may both be positive, if competition 
induces emigration, or negative if for instance social crowding effects impede free movement 
(Matthysen 2005). High site fidelity may also impose competition between individuals for 
limited resources, and if site fidelity is strong, it can prevent the metapopulation from 
occupying all potential available sites (Matthiopoulos et al. 2005). On the other hand, high 
site fidelity could aid in sustaining a small population at the range edge (Smith and Summers 
2005). However, increased dispersal has been shown to result in accelerating rates of range 
expansion (Travis et al. 2009). Increased dispersal should be favoured during range 
expansion for example to get a colonisation advantage, to avoid inbreeding depressions or as 
a way of bet-hedging that some offspring survive in a patchy environment with different 
extinction probabilities (Hargreaves and Eckert 2014).  
 
Although a species may be physically able to reach an uninhabited area, they may still be 
limited by various abiotic and biotic factors such as a lack of suitable habitat, differing 
climatic conditions, lack of prey items, or novel competitors and natural enemies (e.g., 
Sexton et al. 2009). Climate has long been regarded as having primary control over terrestrial 
species’ ranges (Merriam 1894; Grinnell 1914), and distribution boundaries are often 
significantly associated with various climatic variables (Gaston 2003; Sexton et al. 2009). 
Indeed, this is why species are expected to shift their distributions under climate change.  
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Species expanding into new habitats will frequently encounter resident competitors. An 
experimental study using flour beetles Tribolium castaneum and Tribolium confusum, 
showed that interspecific competition between these two species significantly slowed down 
range expansion (Legault et al. 2020).  
 
The expanding population has to maintain high fitness, both in terms of survival and 
reproduction, and the relative fitness of dispersing individuals will influence subsequent 
population growth. During range expansion, it is important for a species to maintain their 
adaptive potential, and species may be able to quickly adapt to novel environments either by 
adaptive evolution (Bonnet et al. 2022), or by plastic responses (Hoffmann and Sgrò 2011). 
However, if adaptive potential is not maintained, this may limit range expansion (Colautti et 
al. 2010; González-Martínez et al. 2017; Szűcs et al. 2017).  
 
It can be difficult to determine what limits a species' range and what drives range expansion, 
as many complex processes are at work simultaneously. Individual traits such as dispersal 
ability and aggressive behaviour may be important, but population-level factors such as 
population density, intra- and interspecific competition or genetic diversity may offer more 
explanatory power (Crawford and Whitney 2010), and may in turn influence site fidelity and 
dispersal. 
 
 
 
1.3 Possible consequences of range expansion  
 
The genomic consequences of range expansions can be substantial. At the expanding range 
edge, populations undergo serial founder events, where each new colonisation creates a 
population bottleneck. When effective population sizes are small and rates of genetic drift are 
high, genetic diversity such as heterozygosity is expected to be reduced at the expansion front 
(Austerlitz et al. 1997; Wegmann et al. 2006; Excoffier et al. 2009). In the historic human 
range expansion out of Africa, it is thought that a very large number of small bottlenecks and 
limited subsequent gene flow have shaped the observed pattern of decreased genetic diversity 
along colonisation routes (Prugnolle et al. 2005). A number of empirical studies of 
contemporary range expansions in various species have also reported a reduction of genetic 
diversity towards the edge of the expansion front (Hill et al. 2005; Eckert et al. 2008; Colautti 
et al. 2010; White et al. 2013). 
 
With small population sizes and limited gene flow, the risk of inbreeding and possible 
inbreeding depressions increases (Frankham et al. 2002). Population fitness may be 
negatively affected by the expression of recessive deleterious alleles, as well as the increased 
homozygosity and decrease in genetic diversity. Low levels of genetic diversity is thought to 
be one of the biggest challenges for populations colonising new habitat (Godefroid et al. 
2011), and increased genetic diversity has been found to greatly increase colonisation success 
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(Crawford and Whitney 2010). Loss of genetic variation may constrain a population from 
adapting to changes in the environment, increasing the risk of extinction (Keller and Waller 
2002; Frankham 2005; Willi et al. 2006). If selection is less efficient, strongly deleterious 
alleles may persist and reach high frequencies at range edges (Peischl and Excoffier 2015), 
through the process known as allele surfing (Klopfstein et al. 2006). However, empirical 
studies of contemporary species introductions indicates that reductions in genetic diversity 
associated with small population sizes during colonisation is less common than theory would 
suggest (e.g., Kolbe et al. 2004). Multiple introductions into the same area, or gene flow 
between populations may reduce the loss of genetic diversity, and mitigate possible 
inbreeding depressions. In particular, long-distance dispersal may preserve genetic diversity 
at range edges (Ray and Excoffier 2010; Berthouly-Salazar et al. 2013).  
 
Although gene flow increases genetic diversity, which is essential for local adaptation, 
theoretical studies suggest that gene flow between different populations may inhibit local 
adaptation or cause maladaptations at range edges (Kirkpatrick and Barton 1997). When the 
environment changes rapidly in space, gene flow from an environmentally diverse part of the 
range may hinder local adaptation. However, gene flow between similar environments may 
facilitate local adaptation during range expansion by introducing new alleles that are locally 
beneficial (Sexton et al. 2011). Partially restricted gene flow due to environmental differences 
has been found to explain patterns of genetic differentiation between populations in many 
species, and to have positive effects on fitness at range edges (Kottler et al. 2021). 
Immigrants from climatically different environments may be selected against or mating could 
be non-random (Sexton et al. 2014). 
 
Another possible consequence of range expansion is an increase in genetic structuring in the 
metapopulation (Austerlitz et al. 1997; Wegmann et al. 2006; Excoffier et al. 2009). The 
same processes that decrease genetic diversity in edge populations (bottlenecks, drift, etc.) 
may also lead to an increase in population structure. Many empirical studies have found this 
pattern following range expansion (Vandepitte et al. 2012; Swaegers et al. 2015). However, 
range expansions are not always connected with an increase in population structure; some 
studies find loss in genetic diversity at range edges, but no populations structuring (e.g., 
Garroway et al. 2011), whereas others find no loss in genetic diversity at range edges despite 
clear population structuring (Rózsa et al. 2016; Dayton et al. 2017; Heppenheimer et al. 
2018). This suggest that the relationship between range expansion and population structure is 
complex and can be hard to predict. For instance, population structure in migratory whiskered 
tern (Chlidonias hybrida hybrida) was found to be caused by differences in wintering 
distribution and seasonal migratory route (Dayton et al. 2017). 
 
At the range edges of an expanding species, strong selection pressure may act on the 
colonising populations, for example in dispersal capacity (Hill et al. 2011) or related to novel 
environmental conditions (Hoffmann and Sgrò 2011). Rapid and significant phenotypic 
changes can take place after colonisation, and its effects are of interest for both scientific and 
conservation purposes. Adaptive evolution of traits that increase survival and reproduction in 
new environments will facilitate establishment and increase the number of colonists (García-
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Ramos and Rodríguez 2002). Phenotypic plasticity may be important in determining 
colonisation success (Donohue 2005; Chevin and Lande 2011), as it may allow more 
colonising individuals to survive and establish a population that can then become locally 
adapted to the new environmental conditions. Adaptive evolution and phenotypic plasticity 
are not mutually exclusive, and may also interact (e.g., Kelly 2019). Plasticity can be 
positively selected during the initial stage of encountering a novel environment (Wang and 
Althoff 2019), and plastic responses themselves can evolve and contribute to climatic 
adaptation. For example, in populations of cabbage white butterfly (Pieris rapae), plastic 
responses were found to evolve rapidly depending on different temperature regimes 
(Kingsolver et al. 2007). One way in which plasticity may evolve is through a process called 
genetic accommodation (West-Eberhard 2003), where increased plasticity evolves if the most 
plastic genotype brings phenotypes closest to the new adaptive optimum (Bock et al. 2018; 
Kelly 2019).  
 
It can be difficult to determine whether changes in traits have evolved (are genetic) or have 
occurred through plasticity. Some studies fail to prove directly that trait changes have 
evolved, but find evidence indicative of the change being adaptive. For example, Van 
Buskirk et al. (2010) found that several bird species have exhibited steadily decreasing body 
size, consistent with an adaptive response to warmer climate. Common garden experiments, 
reciprocal transplant experiments or studies using multigenerational pedigree data may 
provide more direct evidence of evolution (Duckworth and Kruuk 2009; Hereford 2009; 
Hoffmann and Sgrò 2011). Duckworth and Kruuk (2009) used a multigeneration pedigree 
and long-term data on lifetime fitness of western bluebirds (Sialia mexicana), and found a 
significant genetic correlation between aggression and dispersal, concordant with consistent 
selection for coexpression of these behaviours. An experimental study of red flour beetles 
demonstrated that rapid evolution drove both population growth and expansion speed (Szűcs 
et al. 2017), and a study of house finches (Carpodacus mexicanus) involving cross-foster 
exchanges of freshly laid eggs found rapid evolution of eggshell structure in response to 
novel environmental conditions after colonisation (Stein and Badyaev 2011). A recent study 
found that the amount of additive genetic variance in relative fitness is larger than previously 
thought, suggesting species should be able to adapt quickly to environmental change (Bonnet 
et al. 2022).  
 
As natural selection acts on phenotypic traits, changes in allele frequencies of genetic loci 
underlying those traits can shift the population toward a local optimum. Selection for 
beneficial alleles may lead to selective sweeps (Storz et al. 2004; Melo et al. 2020). In a 
selective sweep, newly advantageous alleles as well as the linked neutral alleles become fixed 
in a population, and local genetic diversity decreases (Hohenlohe et al. 2010). These marks of 
selection in the genome can be analysed to aid our understanding of species' evolution.  
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1.4 The value of a genomic resource  
 
Having access to a high-quality genome assembly for a focal species can contribute greatly to 
increasing our knowledge of many research question regarding its ecology and evolutionary 
past. A genome assembly can be used for comparative studies to for instance compare 
genomic structure between species. In the study of genomic consequences of range 
expansion, a genome assembly provides the opportunity for reference-based mapping of 
markers to investigate population genomics and genome-wide diversity. Genome-scale data 
also makes it possible to identify some of the loci responsible for adaptive differences among 
populations, through different approaches. For instance, differentiation outlier methods 
identify loci with unusually high genetic differentiation among populations, and genetic-
environment association methods identify correlations between local population allele 
frequencies and local environments (Hoban et al. 2016). Analyses of extended haplotype 
homozygosity may detect recent selective sweeps in the genome (Sabeti et al. 2002). An 
annotated genome enables the investigation of the function of genes associated with loci or 
haplotypes putatively under selection.  
 
From the first projects to sequence and assemble the genomes of model species, the number 
of published vertebrate genomes has increased greatly in the past decade (Rice and Green 
2019). Sequencing costs have decreased drastically in recent times (e.g., Goodwin et al. 
2016), making genome sequencing and assembly ever more accessible (Ekblom and Wolf 
2014). Still, each sequencing method has its limitations. For instance, Illumina reads are 
relatively short, but contain few errors (Glenn 2011), whereas sequencing methods creating 
much longer reads such as PacBio contain more errors (Rhoads and Au 2015). Several 
sequencing methods may be needed to produce a high-quality genome assembly (Richards 
and Murali 2015). Combining short Illumina reads with long-read sequencing such as PacBio 
and chromosome conformation capture techniques, such as Hi-C, may help span and resolve 
repetitive regions and therefore improve genome assemblies (Elbers et al. 2019).  
 
In this thesis, we sequence and assemble the genome of the reed warbler (Acrocephalus 
scirpaceus) as an aid to study the genomic consequences of range expansion.  
 
 
1.5 The study system 
 
The Eurasian reed warbler (Acrocephalus scirpaceus) is a long-distance migrant passerine 
nesting in wetland habitats, and wintering in sub-Saharan Africa. They breed mainly in 
common reed Phragmites australis (hereafter "reed") or bulrush (Typha sp.), building their 
nests in between the vegetation above the water. There are four subspecies of the reed 
warbler, of which the nominal subspecies A. scirpaceus scirpaceus is the focal subspecies in 
this study. This subspecies breeds in most of Europe, Northern Africa and western Asia 
Minor (Figure 1, Cramp and Brooks 1992; Arbabi et al. 2014). The reed warbler expanded 
throughout Europe after the last glacial maximum (Arbabi et al. 2014), as temperatures 
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increased and suitable habitat became available, and has successively expanded its 
distribution towards the north and north-east into Fennoscandia during the 20th century 
(Järvinen and Ulfstrand 1980; Røed 1994; Stolt 1999; Brommer et al. 2012). Reed warblers 
colonised Finland in the 1920s (Järvinen and Ulfstrand 1980), and had already started 
expanding in Sweden earlier than that (Stolt 1999). In Norway, the reed warbler was first 
seen in 1937, and first recorded breeding in 1947 (Røed 1994), and has particularly expanded 
from the 1970’s (Shimmings and Øien 2015). This northwards expansion is likely driven by 
recent climate warming, since recent changes in temperature have increased productivity in 
the northern range margin (Eglington et al. 2015; Meller et al. 2018), and there is a strong 
positive relationship between the presence of reed warblers and temperature in the northern 
part of Europe (Virkkala et al. 2005; Davies 2019). An increase in the amount of reed beds, 
likely due to eutrophication and climate change, also facilitated the expansion (Altartouri et 
al. 2014). 
 
Interestingly, reed warblers very recently colonised Malta, which is at the southern border of 
the reed warbler breeding distribution, with a warm and dry climate. There was a lack of 
suitable habitat there until the early 1990’s, when a wetland area was restored and conserved, 
containing both reed beds and tamarisk groves (Tamarix sp.). From around 1995 and 
onwards, Malta has sustained a small breeding population of reed warblers. 
 
To what extent the range expansions and new climatic selection pressures have influenced the 
population structure and the genomic composition of the reed warbler is not yet known. Most 
previous studies have focused on ecological questions, at most using a few genetic markers. 
In studies using microsatellites as genetic markers, genetic differentiation has been found to 
be generally low between reed warbler populations, but moderate levels of differentiation 
have been connected to for instance migratory behaviour (Procházka et al. 2011) and wing 
shape (Kralj et al. 2010). Genetic diversity has also found to be similar between different reed 
warbler populations (Procházka et al. 2011; Arbabi et al. 2014). 
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Figure 1. Approximate breeding range of the reed warbler in Europe.  
 
 
2 Aims 
 
The overall aim of this thesis is to study contemporary range expansions. A lot is known 
about historic range expansions, and many phylogeographical studies have aimed at 
reconstructing the history of for instance the human expansion out of Africa, but there is still 
a large knowledge gap of the phenotypic and genomic consequences of contemporary range 
expansions. The current speed of range expansions due to human-induced factors such as 
climate change and alterations of habitat may have major consequences for contemporary 
species.  
 
The reed warbler is an ideal study system to increase our knowledge of contemporary range 
expansions, since they have expanded their range both northwards and southwards likely due 
to different human-induced factors, namely climate change and habitat restoration. These 
expansions differ in scale, and the expansion northwards is more progressive whereas the 
colonisation southwards is more abrupt. In both cases, I focus on how locally adapted the 
new populations are and if I detect signals of rapid adaptation at the phenotypic and genomic 
level, because to be successful, a range expansion needs to improve the overall population 
fitness. 
 
The goal of Paper I was to investigate the colonisation of Malta in terms of phenotypic 
changes and population fitness. In Paper II we created a high-quality chromosome-length 
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genome assembly of the reed warbler as an aid to Paper III, but also to assess the synteny 
between the reed warbler genome and the genomes of closely related species. The goal of 
Paper III was to investigate the genomic consequences of range expansion and colonisation, 
looking at population differentiation and diversity and identifying signs of selection.  
 
 
 
3 Paper summaries 
 
3.1 Paper I 
 
A) Rapid adaptive phenotypic change following colonization of a newly restored habitat 
B) Reply to ‘Inconclusive evidence for rapid adaptive evolution’ 
 
In Paper I, we wanted to investigate potential evolutionary changes through 19 years of 
study of the reed warblers after they colonised Malta, and to assess the success of the 
colonisation. In Paper IA, we used the average body mass of individuals caught in each year, 
along with corresponding sample sizes and standard deviations as input in a time series 
analysis. We compared the goodness of fit of a neutral (unbiased random walk) and an 
adaptive Ornstein-Uhlenbeck (OU) model to our data.  
 
Body mass is a plastic trait, and though diurnal variation in body mass was limited through 
our sampling design, we did not account for the seasonal variation. Especially in the 
beginning and end of the breeding period (May and August), body mass estimates may be 
higher since the birds gain weight in preparation for migration, and there could be a higher 
probability of heavy migrant birds being included in the sampling. To correct for seasonal 
body mass variation and exclude the effect from potential migrants being present in the 
dataset, we repeated the same analyses, but we first corrected for seasonality in three different 
ways through ANCOVA models in Paper IB. We regressed capture date on the natural 
logarithm of body mass, having year as a factor. In the first ANCOVA model, capture date 
was measured as “days away from the centre of the breeding season (July 1st)”. In the second 
model, capture date was implemented as “days after May 1st” as a quadratic term (with the 
linear term also included in the model). The third model was a linear mixed-effect model with 
log body mass as the dependent variable, year as a fixed effect and month of capture as a 
random factor. We used the predicted mean and variance from each model as input in the 
time-series analysis to compare the neutral and the adaptive model. In both Paper IA and 
Paper IB, we found that the adaptive OU model consistently fits our data significantly better 
that the neutral model, meaning the decrease in body mass is consistent with adaptive 
evolution. In Paper IB, we also ran the time-series analysis on juvenile birds, corrected for 
seasonality with the first ANCOVA model, and found they had also undergone a decrease in 
average body mass consistent with adaptive evolution. We further corroborate our results 
with analyses of ecological and molecular microsatellite data. We estimated individual 
survival and mean population fitness using field observations and mark-recapture data. In 



 17 

Paper IA, we found that individual survival is correlated with body mass, and more than half 
of the variation in mean population fitness is explained by variation in body mass. In Paper 
IB, we investigated the possibility that variation in capture date biased these results in a 
variety of ways, but we did not find any signs of bias. In Paper IA, we used the 
microsatellite data to estimate effective population size (Ne) and FIS. The molecular Ne 
estimate corroborated an independent Ne estimate from the OU model, lending support to the 
OU model's validity. According to the FIS estimate and compared to published estimates of 
other populations, the Maltese population show signs of inbreeding, which could potentially 
reduce the adaptability of this population in the future. However, our results demonstrate the 
reed warbler's high potential for adaptation and to our knowledge, the study constitutes one of 
the most rapid cases of adaptive evolution documented in the context of habitat restoration.  
 
 
3.2 Paper II  
 
A chromosome-level genome assembly of the reed warbler (Acrocephalus scirpaceus) 
 
The goal of Paper II was to create a high-quality chromosome-length genome assembly of 
the reed warbler, both to provide a tool for numerous future studies, and as an aid to Paper 
III, to utilise the genome assembly to investigate the genomic consequences of range 
expansion. We used a combination of three different sequencing methods to assemble the 
reed warbler genome; PacBio, 10x and Hi-C. We first assembled the long-read PacBio 
sequencing data and then scaffolded this assembly with 10x and Hi-C reads. We polished the 
assembly with PacBio reads and then with 10x reads for two rounds, and the assembly was 
then decontaminated and manually curated using the gEVAL browser (Chow et al. 2016; 
Howe et al. 2021). Curation identified and confirmed 29 autosomes and the Z and W 
chromosomes, to which 98.6% of the assembly sequences were assigned. The completeness 
of the assembled genome was found to be high; BUSCO analysis showed that 95.7% of 
BUSCO genes were complete. We softmasked repeats and annotated the genome assembly 
using the Comparative Annotation Toolkit (CAT) (Fiddes et al. 2018). We annotated 14,645 
protein-coding genes, and a BUSCO analysis of the protein sequences indicated 97.5% 
completeness. We aligned the reed warbler assembly against the great tit (Parus major) and 
the garden warbler (Sylvia borin) genome assemblies, and created circos plots to assess 
synteny. We found unequivocal evidence of two separate macrochromosomal fusions in the 
reed warbler genome, in addition to the previously identified fusion between chromosome Z 
and a part of chromosome 4A in the Sylvioidea superfamily. The genome assembly enabled 
us to utilise reference-based mapping of RAD sequences in Paper III, and to learn more 
about specific genes and their function. The interesting additional finding of the two 
macrochromosomal fusions in the reed warbler genome which are not present in the great tit 
or garden warbler genomes warrant future research. 
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3.3 Paper III 
 
Genomic consequences of range expansion and colonisation in the reed warbler 
(Acrocephalus scirpaceus) 
 
The results in Paper I demonstrated the reed warbler's high adaptive potential following 
colonisation. To set this southwards colonisation into context with the range expansion 
northwards, and to increase our knowledge of the reed warbler's adaptability and population 
dynamics, we wanted to investigate genomic data across its breeding range. The goal of 
Paper III was to investigate the genomic consequences of range expansion and colonisation. 
To achieve this, we used RAD sequencing of 10 populations in Europe from north to south, 
including both the northern range edge (Finland and Norway) and the southern range edge, 
using a subset of the Maltese individuals from Paper I. The reads were aligned to the reed 
warbler genome assembly from Paper II and subsequently analysed. We investigated 
population structure looking at both SNPs and haplotypes, and compared genome-wide 
diversity between populations. We also assessed the role of selection in divergence between 
populations across the species range with three different genome scan analyses as well as 
analyses of extended haplotype homozygosity. We found low levels of population 
structuring, and no apparent loss in genome-wide diversity at the range edges. We found that 
isolation by environment is much stronger than isolation by distance amongst the reed 
warbler populations, and we identified disparity in precipitation variability as the main barrier 
of gene flow. We found no evidence that the loci involved in population divergence and 
adaptation in the core populations are the same that are involved in adaptation at the range 
edges, suggesting partly novel variation at range edges. We found several SNPs putatively 
under selection, most of which are correlated with differences in temperature and 
precipitation variables. Some genome scan outliers also show signs of being part of nascent 
selective sweeps. These results suggest that in the reed warbler, contemporary range 
expansion has had little effect on molecular diversity and has been rapidly followed by local 
adaptation to climatic conditions, which could further corroborate the rapid pace at which 
colonisation of novel environments has occurred both northwards and southwards.  
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4 Main findings and discussion 
 
 
4.1 Rapid adaptive phenotypic change following colonisation 
 
Over a period of 19 years (1996–2014) after colonising a restored wetland habitat in Malta, 
we found that the population of reed warblers had undergone a decrease in body mass, 
following a trajectory consistent with a population ascending an adaptive peak, a so-called 
Ornstein–Uhlenbeck (OU) process (Paper IA and Paper IB). An OU process models how a 
trait evolves towards a new optimum; the trait shows directional change in the beginning of 
the time series as the population ascends the adaptive peak, followed by a ‘stationary phase’ 
where the trait is subjected to stabilizing selection (Lande 1976). The observed evolutionary 
trajectory of body mass in our dataset in Paper IA followed the expected pattern of an OU 
process, and the OU model outperformed the neutral model of an unbiased random walk by 
several bias-corrected Akaike Information Criterion (AICc) units. The relative support for the 
neutral model with genetic drift as an evolutionary driver was correspondingly weak (<1%). 
In Paper IA, however, we did not account for capture date, and body mass fluctuates 
throughout the season as the birds breed, moult and accumulate fat to prepare for migration. 
Also, in the beginning and end of the breeding season (May and August), there is a higher 
probability that the dataset may include some migrant birds, which are heavier than resident 
breeding birds. To investigate the possibility that variations in capture date and possible 
migrants in the dataset may have biased our results, we controlled for capture date in three 
different ways in Paper IB. With all three approaches, the OU model always fitted the data 
significantly better than the neutral model, further strengthening our original conclusion of 
adaptive evolution. Interestingly, even juveniles, born and ringed on site, exhibited a decrease 
in mean annual body mass corrected for capture date over the study period, and these data 
also showed a much better fit to an OU model than to a neutral model (Paper IB). We further 
corroborated our results with analyses of field observations and mark-recapture data.  
 
The yearly estimates of mean population fitness (proportion of breeding adults) increased as 
the population approached the adaptive optimum, and more than 58% of the variation in 
mean population fitness was explained by variation in body mass (Paper IA). The mean 
annual variation in body mass decreased as mean population fitness increased, suggesting 
that body mass had been under strong selection. Body mass also correlated with our estimate 
of survival. Recaptured individuals (after at least 21 days) had a significantly lower body 
mass than individuals never recaptured, and their average body mass was extremely close to 
the adaptive optimum from the OU model (Paper IA). The proportion of birds recaptured 
and not recaptured were not significantly different in June/July than they were in 
May/August, suggesting that our survival estimates were not merely artifacts of including 
migrants (Paper IB). Furthermore, juvenile birds recaptured as adults were significantly 
lighter than the ones not recaptured (Paper IB). Most importantly, we also corroborate the 
validity of the OU model by comparing the estimate of effective population size (Ne) from 
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the OU model with an independent estimate of Ne based on molecular data, and we found the 
two estimates were very similar (Paper IA).  
 
These results suggest that the reed warbler's colonisation of Malta represent one of the most 
rapid cases of adaptive evolution ever documented in the context of habitat restoration. Body 
mass is a plastic trait, but has been found to be significantly heritable in several passerine bird 
species (Charmantier et al. 2004; Rønning et al. 2007), and to be a highly evolvable trait 
(Teplitsky et al. 2014). Seasonal variation in body mass alone is an insufficient explanation 
for the decrease in body mass we observe in the Maltese population (Paper IB), and if the 
trait change were solely due to plasticity, the new population would immediately have 
reached the new optimal trait value, as the reaction norm for the trait in the founding 
population would have had to cover the optimal trait value. A recent long-term study of 
several species of birds and mammals found that most populations harbour much higher 
levels of additive genetic variance in fitness than previously estimated, indicating that 
adaptive evolution often operates at a substantial pace from generation to generation (Bonnet 
et al. 2022). The fact that we found a similar reduction in body mass consistent with adaptive 
evolution for juveniles as well may seem counter-intuitive, if one assumes that heavier 
juveniles should have higher survival than lighter juveniles because they are better fed and 
have greater body reserves. There is on average a positive effect of juvenile body mass on 
survival in bird species, though less pronounced than for mammal species (Ronget et al. 
2018). However, these positive effects may be more pronounced for sedentary birds in colder 
regions, where higher body reserves may be beneficial during winter (Ringsby et al. 1998), or 
when food availability is low (Lee et al. 1991). Also, being too heavy may negatively affect 
flight performance and increase predation risk (Bonter et al. 2013), and perhaps a leaner body 
aids thermoregulation in the warm and dry Maltese environment (discussed more below).  
  
4.2 Climate-driven northwards range expansion 
 
In Paper III, we confirmed the range expansion northwards into Fennoscandia (Järvinen and 
Ulfstrand 1980; Røed 1994; Stolt 1999; Brommer et al. 2012) with a range expansion 
statistical analysis. The strongest signals from the analysis identified Norway and Finland as 
furthest away from the estimated point of origin of the range expansion. Reed warblers 
colonised Finland in the 1920s (Järvinen & Ulfstrand 1980), and was first recorded breeding 
in Norway in 1947 (Røed 1994), expanding particularly from the 1970’s (Shimmings and 
Øien 2015). This northwards range expansion is likely climate-driven. Since climate has 
warmed in Northern Europe (IPCC 2022), and the presence of Phragmites reed beds have 
increased in the northern range (Altartouri et al. 2015), reed warblers may have more easily 
been able to track their existing niche. There is a strong positive relationship between the 
presence of reed warblers and temperature in the northern part of Europe (Virkkala et al. 
2005; Davies 2019), and the recent increase in temperature have increased productivity in the 
northern range margin (Eglington et al. 2015; Meller et al. 2018). Climate change has been 
found to drive polewards or upwards range shifts across taxa (Parmesan and Yohe 2003; 
Thomas 2010). Our results also support this hypothesis, since climatic variables of 
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temperature and precipitation correlated with several loci putatively under selection, and 
served as the strongest explanatory variables for genomic differentiation among the reed 
warbler populations (Paper III).    
 
Although population structure is weak between the reed warbler populations, Norway and 
Finland clearly cluster together, and are very little differentiated from each other (Paper III). 
Long-distance dispersal events probably aided the expansion northwards, but climatic 
differences act as a barrier of gene flow in the reed warbler populations. However, gene flow 
between similar environments may have facilitated local adaptation during range expansion 
by introducing new alleles that were locally beneficial (Sexton et al. 2011).     
 
 
4.3 Climatic barriers of gene flow 
 
Compared to the other populations sampled, Malta is the most genetically different, although 
levels of population structure are still low (Paper III). In Paper III, we found that isolation 
by environment (IBE) best explained genomic differentiation between the populations, to a 
much higher extent than isolation by distance (IBD). Disparity in precipitation seasonality, 
meaning how much precipitation fluctuates throughout the year, had by far the highest effect, 
explaining by itself 34% of the variance in FST. In comparison, geographic distance explained 
only 4% of the variance in genome-wide differentiation. We found several loci under 
selection based on three genome scan analyses, and most of these were correlated with 
climatic predictors, both temperature variables and in particular precipitation variables 
(Paper III).  
 
Malta clearly has the highest precipitation seasonality of all populations, and it gets very dry 
in the warmest, driest quarter. In the driest month, there is practically no precipitation. It is 
probable that climatic variables are strong drivers of local adaptation, which in turn acts as a 
barrier of gene flow. Isolation by environment has been found to better explain the patterns of 
genetic differentiation between populations than isolation by distance, and to have positive 
effects on fitness at range edges (Kottler et al. 2021). Immigrants from climatically different 
environments may be selected against or mating could be non-random (Sexton et al. 2013). 
Prolonged periods of drought have been shown to negatively affect productivity in reed 
warblers in Spain, likely due to decreased availability of insects (Jiménez et al. 2018). 
However, egg laying and nestling mortality may be negatively affected by heavy rain in the 
breeding season (Halupka et al. 2008; Vafidis et al. 2016). Both precipitation and temperature 
have been shown to drive selection in reed warblers, for example in wing length 
(Nowakowski 2000), migration strategy (Chamorro et al. 2019) and egg coloration (Avilés et 
al. 2007).  
 
It is likely that climatic conditions were the main drivers of the decrease in body mass found 
in Paper I. Body mass should decrease with increasing temperatures (Lima 1986; Yom-Tov 
2001), in accordance with Bergmann's rule. Lower body mass has been interpreted as an 
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adaptation to warmer climates, as the relatively larger body surface areas of smaller 
individuals serve as efficient heat dissipators (Yom-Tov 2001). Smaller-bodied individuals 
are able to retain water at higher temperatures than large-bodied individuals (Gardner et al. 
2011). Body mass also correlates strongly with metabolic rate, and in hot climates a lower 
resting metabolic rate could be advantageous, also in poorer environments. Other ecological 
factors linked to climatic variation, such as resource availability, may also affect body mass 
(Eglington et al. 2015). However, rising temperatures have previously been shown to 
correlate with a decrease in body mass (Salewski et al. 2010; Van Buskirk et al. 2010), which 
strongly point towards a thermoregulation hypothesis.  
 
 
4.4 Novel genomic variation at range edges 
 
We found that divergence between the core populations explain essentially nothing of the 
variation in divergence between edge populations, suggesting it is not the same loci involved 
in divergence between edge populations as between core populations (Paper III). Looking at 
the first principal component of a PCA of only the genome scan outlier loci, Malta is on the 
opposite end from Finland and Norway, meaning it is likely that conditions on range edges 
drives differentiation through selection. One of the outlier loci found by two of the three 
genome scan analyses and correlating with all climatic variables tested had relatively 
balanced allele frequencies only in Finland and Norway, whereas the other populations were 
fixed for one of the alleles. The private allele present in Finland and Norway may be a new 
mutation, which has arisen either independently in the two populations, or in one and 
transferred via gene flow. Another possibility is that this variant is present in the range core, 
but at a very low frequency which has not been captured by our sampling, and that the variant 
has been picked up by selection during founder events. According to the iHS analysis, the 
outlier is involved in a recent selective sweep. However, this should be interpreted with 
caution (discussed in Paper III). As an experiment, we used the Hi-C data used for the reed 
warbler genome assembly from Paper II to determine the significance of interactions 
between SNPs and transcription start sites of genes, and to see if the fraction of significant 
interactions for the genome scan outlier loci was significantly higher than random sets of loci. 
However, we did not find such an effect for our outliers.   
 
 
4.5 Genomic diversity and inbreeding 
 
In Paper III, we found very similar levels of genomic diversity amongst our population, 
meaning the Maltese population has had no apparent loss in genomic diversity after 
colonisation. However, in Paper I we found that Malta had significantly higher levels of 
inbreeding (FIS) compared to other reed warbler populations. Malta had 12% fewer 
heterozygotes than expected under Hardy–Weinberg equilibrium, and the average value of 31 
sites from Procházka et al. (2011) was <5%. These estimates were based on microsatellite 
data, and the FIS estimates based on RAD-seq in Paper III are all higher than equivalent sites 
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in Procházka et al. (2011). Microsatellites have a much higher mutation rate and typically 
produce higher heterozygosity estimates than RAD loci (Sunde et al. 2020). Depending on 
the ratio of observed and expected number of heterozygotes, FIS estimates may be lower for 
microsatellites than for RADs, but may also be higher (Hodel et al. 2017). It is difficult to 
know how much differences in study design affects the results, but it is possible that the high 
mutation rate in microsatellites allows for earlier detection of possible inbreeding occurring 
in Malta. We found in Paper III that several of the individuals from Malta had high 
relatedness between each other, which showed up in various analyses of population structure. 
However, values of allelic richness and nucleotide diversity were consistently high in all 
populations.  
 
Range expansion should in theory decrease genetic diversity at the range edge due to repeated 
founder events and strong genetic drift at the expansion front, unless gene flow remains high 
(Ray et al. 2003; Excoffier 2004; Excoffier et al. 2009). Despite high site fidelity and 
recruitment rates, reed warblers are also capable of long-distance dispersal events (Paradis et 
al. 1998), and especially juveniles may disperse far away from their natal site (Bulyuk et al 
2000; Mukhin 2004). Long-distance dispersal is thought to be an important factor in 
preserving genetic diversity at range edges during range expansion (Ray and Excoffier 2010, 
Berthouly-Salazar et al. 2013, Engler et al. 2015), and our results support this hypothesis. 
High genetic diversity may increase the adaptive potential in an expanding species, or 
increase the chance that individuals already are pre-adapted to the new area, thus increasing 
the success of colonisation (Crawford and Whitney 2010). Plasticity may also boost adaptive 
potential during range expansion. Reed warblers have shown behavioural plasticity for 
example in response to rapid changes in brood parasitism risk (e.g., Thorogood and Davies 
2013). 
 
4.6 Success of the southern colonisation and northern range expansion  
 
It is likely that Malta was colonised by a large, genetically variable source population in the 
southern part of the range. Malta was on average identified as a source population by the 
range expansion statistic analysis in Paper III, meaning it was equally close or closer to the 
estimated point of origin of the range expansion in pairwise comparisons. This probably 
facilitated the colonisation and their ability to adapt to the novel environment (Paper I). The 
relatively weak population structure and the similar levels of genomic diversity between 
populations found in Paper III suggests high gene flow, or that there has not been enough 
time for divergence. Site fidelity in reed warblers is high (Paradis et al. 1998; Ceresa et al. 
2016), and we found high recruitment rate in the Maltese population in Paper I, and 
considering the restricted size of the wetland in Malta, inbreeding may potentially become an 
increasing problem in the future.   
 
We found no apparent loss in genome-wide diversity in the northern range edge (Paper III). 
Although none of the populations differed significantly from the others, Norway had the 
lowest number of observed heterozygotes, and amongst the highest FIS values. The 
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heterozygosity values for Finland could be slightly inflated by a minor batch effect, but 
accounting for that, they are most likely not lower than the values for Norway.  
 
 
4.7 Genome assembly of the reed warbler - additional findings 
 
In addition to utilising the reed warbler genome assembly for Paper III, the assembly 
allowed us to discover unequivocal evidence of two novel macrochromosomal fusions in the 
reed warbler genome (Paper II). The reed warbler chromosome 6 is a fusion of great tit 
chromosomes 7 and 8, and reed warbler chromosome 8 is a fusion of great tit chromosomes 6 
and 9 (Figure 2). Interestingly, these chromosomes are not fused in the garden warbler 
genome, but correspond to the great tit chromosomes. This suggests that the fusions evolved 
relatively recently, perhaps at the base of the Acrocephalidae branch within Sylvioidea, but 
further research is needed to determine this. We furthermore confirm the previously 
identified neo-sex chromosome (Pala et al. 2012; Sigeman et al. 2020), a fusion between the 
ancestral chromosome Z and a part of chromosome 4A (according to chromosome naming 
from the zebra finch). This fusion is thought to have occurred at the base of the Sylvioidea 
branch (Pala et al. 2012) and is shared with all species of Sylvioidea studied so far (Sigeman 
et al. 2020). In Paper III, we found several outliers with the genome scan analyses that were 
located on chromosome 6 and 8 (8 outliers out of 49 were located on either of these). We 
know for instance that the role of inversions in local adaptation may be very important (Barth 
et al. 2017), especially in the face of gene flow (Schaal et al. 2022).  
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Figure 2. Circos plot showing the synteny between the reed warbler (on the right side, denoted with the prefix as 
[Acrocephalus scirpaceus]) and the great tit (left side, prefix pm [Parus major]) genome assemblies. The reed 
warbler chromosome 6 is a fusion of great tit chromosomes 7 and 8, whereas reed warbler chromosome 8 is a 
fusion of great tit chromosomes 6 and 9 (see Paper II for details). The reed warbler chromosome Z corresponds 
to great tit chromosome Z, and a part of great tit chromosome 4A. 
 
 
5 Concluding remarks and future perspectives 
 
The reed warbler has provided a unique opportunity to investigate genomic and phenotypic 
consequences of range expansions of different scales and due to different anthropogenic 
drivers. This thesis has provided valuable insights for understanding human-mediated range 
expansion and colonisation in a highly mobile species, and we have studied contemporary 
evolution both at the phenotypic and genomic level, integrating ecology and evolution in an 
innovative way. 
 
We found in Paper I that the reed warblers had undergone rapid adaptive phenotypic change 
following colonisation at the southern range edge. It is difficult to definitively prove 
evolution without an experimental study design or access to pedigree data, but we have 
shown that adaptive evolution is the most likely explanation for the colonising reed warblers' 
decrease in body mass observed in Paper I. Our results in Paper III support the hypothesis 
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that highly mobile species are likely to retain high levels of genomic diversity at range edges 
and maintain low population structure (Ray and Excoffier 2010; Berthouly-Salazar et al. 
2013). This likely makes the range expansion process more successful, and may have 
contributed to the rapid adaptation found in Paper I.  
 
Our results point to climatic variables as a key driving force of adaptation in the reed warbler, 
and supports the hypothesis that the northwards range expansion is climate-driven (Paper 
III). The success of range expansions in the reed warbler is likely aided by its high mobility 
and its retainment of high genome-wide diversity which may have boosted its adaptability. 
Although gene flow is partly restricted by differences in climate, gene flow from similar 
environments may have helped during range expansion. Future studies may investigate more 
directly genes linked to for instance thermoregulation, metabolism or expansion-facilitating 
traits. We found several candidate genes under selection (Paper III), but more research is 
needed to establish the phenotypic effect of these loci in the reed warbler, and studies of 
transcriptomics may be needed to see if the loci are expressed.  
 
A high-quality genome assembly for non-model species is a very useful tool for in-depth 
evolutionary studies, and the reed warbler genome assembly from Paper II enabled us to 
gain important knowledge of the genomic consequences of range expansion in Paper III. 
The reed warbler genome assembly (Paper II) will serve as a tool for future studies in for 
instance population genomics and comparative genomics. Our finding of the fusions in the 
reed warbler genome (Paper II) is interesting and should be investigated at a deeper level. 
Further research is needed to determine the evolutionary age of these fusions, especially 
because they are not present in the garden warbler genome, suggesting they are relatively 
new. Studies could also focus on determining the effects of such fusions on the species.  
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Contemporary evolution, or evolutionary changes observa-
ble over less than a few hundred generations, has been
documented for a variety of species1,2. The threespine

stickleback (Gasterosteus aculeatus), for example, has shown
extraordinary abilities to undergo adaptive evolution within a few
decades following natural colonization of novel habitats3,4.
Evolutionary changes are often associated with shifts in the
environment, as changes in adaptive optima cause new selective
pressures to operate, resulting in phenotypic evolution5,6. These
shifts in the environment are often brought on by climate change
and various human activities, which have detrimental effects
on many species7,8. Contemporary evolution is therefore
often connected with conservation biology1,9. Many different
conservation strategies are put to use, such as habitat restoration
and assisted colonization, though they may not always work as
well as intended10. When a population relocates to a new habitat,
which may constitute a shift from its geographic range, new
selection pressures may cause unforeseen evolutionary changes.
One of the biggest challenges for populations colonizing new or
restored habitat is their relatively low level of genetic diversity11.
When effective population sizes are small, genetic variation is
rapidly lost due to high rates of genetic drift, and the risk of
inbreeding increases12. Loss of genetic variation may in return
constrain a population from adapting to changes in the
environment, increasing the risk of extinction13–15. The extent
to which natural populations are able to colonize and rapidly
adapt to novel habitats in connection with conservation projects
has rarely been studied16.

In this study, we follow a population of reed warblers
(Acrocephalus scirpaceus) in Is-Simar nature reserve (Fig. 1a) in
Malta from 1996 to 2014. Is-Simar was originally a waterlogged
marsh, but was drained for agricultural purposes, and later used
as a dump. In 1992, it became a special protection area belonging
to the NATURA 2000 network and Birdlife Malta began
transforming it into a nature reserve of 0.58 km2 by restoring
this lost wetland habitat. Is-Simar currently contains the highest
number of Phragmites reed beds of the Maltese islands, in
addition to tamarisk groves (Tamarix sp.), which are both
suitable breeding habitats for reed warblers (Fig. 1b). Indeed, it
was rapidly visited by numerous reed warbler migrants, and
within 2 years, they had established a small breeding population.
We show that the population has adapted to this restored habitat
very rapidly, despite a small population size. There has been a
decrease in body mass in the population, which correlates with an
increase in mean population fitness and higher individual
survival. Our results have important implications for conserva-
tion biology and evolution, especially regarding the potential
success of habitat restoration in relation to a species’ ability to
rapidly adapt to a new environment.

Results
Time-series analysis. Through the course of 19 years, the
population has gone through a decrease in body mass consistent
with a model of adaptive evolution (Fig. 1c). The adaptive nature
of this trend is strongly supported, as it fits an Ornstein–
Uhlenbeck (OU) process17 that outperforms the neutral model of
an unbiased random walk by several Akaike Information
Criterion (AICc) units (Table 1). The relative support for the
neutral model with genetic drift as an evolutionary driver is
correspondingly weak (o1%). An OU process models how a trait
evolves towards a new optimum; the trait shows directional
change in the beginning of the time series as the population
ascends the adaptive peak, followed by a ‘stationary phase’ where
the trait is subjected to stabilizing selection. The trait fluctuates
around the optimum due to genetic drift, plasticity and

unmeasured direct and indirect selective forces acting on the
trait. The observed evolutionary trajectory of body mass follows
the expected pattern of a population ascending an adaptive peak
(Fig. 1c). Initially, the decrease in mean body mass is substantial,
but the changes become progressively smaller and more non-
directional when the population is close to the new optimum.

The rate of evolutionary change that occurred before the
population reached the adaptive optimum is substantial (1.478
haldanes over the first 6 years). This corresponds to a very rapid
change, but it is within the normal range of evolutionary rates
measured in populations affected by human-induced environ-
mental changes9. The alpha parameter (a) from the OU model
(Table 1) represents the strength of the restraining force around
the optimum6. This parameter can be used to express the
phylogenetic half-life (ln (2)/a), which is the expected amount of
time it takes for the population to evolve halfway from the
ancestral state to the optimal phenotype18. In our case, the
phylogenetic half-life is 1.76, meaning that the population is
estimated to have evolved halfway to the optimal body mass in
42 years. This is, as far as we know, the fastest rate of adaptation
ever recorded using time series data.

The estimated adaptive optimum was reached after B7 years
(Fig. 1c). This gradual change in the initial phase of directional
selection followed by stabilization around the new optimum
suggests that the population has undergone adaptive evolution, as
this pattern would not be expected by adaptive plasticity alone. If
the trait change were solely due to plasticity, the new population
would immediately have reached the new optimal trait value, as
the reaction norm for the trait in the founding population would
have had to cover the optimal trait value. However, without direct
evidence of heritability, the heritable and environmental compo-
nents of phenotypic change cannot be partitioned definitively.
While some studies on contemporary evolution have found
evidence for adaptive evolution19,20, others have pointed towards
an important role of plasticity21. However, we are not aware of
any studies that have found evidence for phenotypic changes of a
plastic nature that would fit an OU model as is the case here.

Ecological and molecular data analysis. We further corroborate
our results with analyses of field observations and mark-recapture
data. The yearly estimates of mean population fitness (proportion
of breeding adults) increased as the population approached the
adaptive optimum (Fig. 2a). More than 58% of the variation in
mean population fitness was explained by variation in body mass
(Fig. 2a). The mean annual variation in body mass decreased as
mean population fitness increased, suggesting that body mass has
been under strong selection in this population (Supplementary
Fig. 1). Also, individuals with a lower body mass survive better than
heavier individuals, as can be seen from mark-recapture data
(Fig. 2b). Recaptured individuals were much closer to the adaptive
optimum of body mass than individuals not recaptured, the latter
group being well above the optimal value. These results confirm
that the decrease in body mass is an adaptation to the Maltese
environment, and that this evolutionary change has resulted in a
more successful breeding population. Body mass remained
significantly correlated with recapture rate throughout the years
(analysis of variance (ANOVA): P¼ 0.007), and there was no sig-
nificant year effect (ANOVA: P¼ 0.588). Hence, selection remains
fairly constant over time, despite slowing evolutionary rates.

We estimated an average mean-standardized selection gradient
across years for body mass to be equal to " 0.39 (linear
regression: P¼ 0.006), which is consistent with a significant but
moderate amount of directional selection on body mass22. Body
mass has been found to be significantly heritable in the great reed
warbler (Acrocephalus arundinaceus) as in many other passerine
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bird species23, and to be a highly evolvable trait23. In our data set,
annual mid-parent and offspring body mass is significantly
correlated irrespective of annual fluctuations in body mass, which
supports the assumption that body mass has a significant
heritable component in our population (Supplementary Fig. 2).
Migrants presumably coming from Italy24 have an average body
mass that is very close to the initial body mass of the Maltese

population in 1996 (Supplementary Fig. 3). This suggests that
evolution of body mass has occurred in situ in Malta and is not
the result of biased immigration.

Assuming that the fluctuations in body mass during the
stationary phase are caused by genetic drift, we can estimate
effective population size (Ne) from the OU model. This Ne
estimate represents an important investigation of the reliability of
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Figure 1 | Evolution of body mass towards an adaptive optimum. (a) The Is-Simar nature reserve is situated on the island of Malta, in the Mediterranean
Sea. Restoration of the wetland began in 1992, where a network of pools, canals and islands were created and vegetation replanted. Shortly after, in 1994, it
was colonized by reed warblers (Acrocephalus scirpaceus). (b) Reed warblers nest in reed beds (Phragmites) or Tamarix trees (almost exclusively in the latter
at Is-Simar) and usually lay three to five eggs, which are incubated by both parents. (c) The evolution of log body mass over time (years; N¼ 392). Vertical
error bars signify one standard error. The expected evolutionary trajectory of the best-fit adaptive model (OU) is shown as a line, with a 95% probability
interval around in brown. The adaptive optimum (y) for log body mass is 2.42. No samples available for year 2003.

Table 1 | Estimates of model fit for a neutral and an adaptive model of evolution for mean body mass.

Trait Model logL K AICc Akaike weights LRT

Body mass Neutral 30.45 2 " 56.10 0.002
Adaptive 36.73 4 "62.38 0.998 12.55, P¼0.002

Neutral evolution was modelled as an unbiased random walk, and adaptive evolution was modelled as an Ornstein–Uhlenbeck (OU) process. For the OU model, the adaptive optimum (y) for log body
mass is 2.42, the step variance (s2

step) is 0.0004 and the alpha (a), the strength of the restraining force around the optimum, is 0.39. The log-likelihood (logL), number of parameters (K), bias-corrected
Akaike Information Criterion (AICc) and Akaike weights suggest that the adaptive model is the more likely model. A likelihood ratio test (LRT), which tests the significance of the improved fit of the
adaptive over the neutral model, with the latter treated as the null model, confirmed that indeed the observed changes in body mass are of an adaptive nature. The LRT statistic is distributed as a w2, with
two degrees of freedom.
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the model as it can be compared with an independent molecular
estimate of Ne (Table 2). Both estimates of Ne are very similar,
and also close to an ecological estimate of Ne (based on the
number of breeding pairs observed in the field). Such a consistent
match suggests that the OU model portrays the adaptive
evolution of body mass in an accurate way.

Discussion
We suggest that reed warblers with a lower body mass could be
better suited for the hot and dry Maltese environment. Body mass
should decrease with increasing temperature25–29, in accordance

with Bergmann’s rule. Lower body mass has been interpreted as an
adaptation to warmer climates, as the relatively larger body surface
areas of smaller individuals serve as efficient heat dissipators27.
Smaller-bodied individuals are able to retain water at higher
temperatures than large-bodied individuals30. Other ecological
factors linked to climatic variation, such as resource availability,
may also affect body size31. However, rising temperatures have
previously been shown to correlate with a decrease in body
mass19,32, which strongly point towards a thermoregulation
hypothesis. The reed warbler has been singled out as a species
that is very sensitive to global warming, which has resulted in a
recent range shift northwards31. Malta is the southernmost
location within the European reed warbler distribution33, and it
has a dry subtropical Mediterranean climate, which is likely to have
imposed a strong selective pressure on colonizers.

Is-Simar, the reed warbler’s main breeding site in Malta, is
small (5.8 hectares), meaning that the maximum number of
breeding pairs is constrained (5–8 pairs). However, the
probability of recruitment is high, with an estimated 10.6% of
ringed nestlings recaptured as breeding adults over the 19 years of
our study. This high recruitment rate has probably played an
important role in the adaptive process, especially in the early
stages of the colonization event. The founder population on
Is-Simar most likely consisted of individuals from a large,
genetically variable source population in Southern Europe.

With small effective population sizes, the possibilities for
adaptation should be constrained15 and directional selection is
expected to deplete genetic variation. However, this population
has managed to reach its adaptive optimum very rapidly, despite
its small size. The FIS-value from Table 2 signifies that there are
currently 12% fewer heterozygotes than expected under Hardy–
Weinberg equilibrium, indicating that the population is inbred.
This value is well above the average FIS for other European
populations (FIS Malta¼ 0.123, average FIS in Europe33 (N
populations¼ 31)¼ 0.05 (s.d.¼ 0.04), t¼ " 10.31, Po0.001).
This may have other detrimental effects for the population in
the future, as inbreeding, for the same set of microsatellite loci in
other warbler species, has been shown to be correlated with
fitness34,35 (reproductive output).

Furthermore, after correcting for variation due to sampling
error in trait means after the population has reached the
optimum, only B13% of the stationary variance in body mass
is left unexplained (observed stationary variance¼ 0.000692,
corrected stationary variance (±S.E.)¼ 0.000092±0.00014). This
may indicate very strong stabilizing selection for the optimal body
size in the stationary phase with little effect of drift or plasticity,
an interpretation supported by the very rapid rate of adaptation
(half-life) estimated in this system. Another possibility is that the
optimum is non-stationary, which means that part of the trait
fluctuations during the stationary phase shows how the popula-
tion is tracking the optimum’s movement across years. However,
to our knowledge, the environmental conditions in terms of
habitat and resources have remained stable since the restoration
was completed in 1994, with relatively few competitors or
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Figure 2 | Fitness and body mass in the Maltese reed warbler population.
(a) Linear regression of mean population fitness (proportion of breeding
adults each year (N years¼ 16)) against the yearly distance from the
adaptive optimum for body mass (y) estimated from the OU model. As the
population evolved towards the optimum, the mean population fitness
increased significantly (linear regression: P¼0.009) and overall, 58.7% of
the variation in mean population fitness can be explained by variation in the
distance from the adaptive optimum for body mass. (b) The effect of body
mass on survival. Individuals marked and recaptured have a significantly
lower body mass than individuals that are marked but never recaptured
(total N¼ 198). The dashed line corresponds to the adaptive optimum (y)
for body mass estimated from the OU model. The mean-standardized
selection gradient is equal to "0.39 (linear regression: P¼0.006).

Table 2 | Estimates of effective populations size (Ne) from
three independent methods.

Ne (field) Ne (OU) Ne (molecular) FIS

7.75 (2–16) 23.39 (4.68–32.75) 23.60 (14.10–51) 0.123 (P¼0.01)

Field, harmonic mean of number of breeding pairs with the range shown in parentheses.
OU, Ne1/4h2s2 p/s2 step, where h2 is the trait heritability (set to 0.5, with 0.1–0.7 shown in
parentheses), s2 p is the phenotypic variance of the sample and s2 step is the step variance.
molecular, linkage disequilibrium method with Ne estimator with 95% confidence intervals
shown in parentheses.
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predators24 and a relatively stable climate over the years24. Since
we do not possess any pedigree data that would have allowed for a
quantitative genetic assessment of the changes observed here, we
cannot exclude a possible role of plasticity. Although an adaptive
plastic process alone is unlikely to generate a reaction norm
consistent with an OU model, we acknowledge that at least part
of the changes we report here may be of a plastic nature.

The population has so far shown high potential for adaptation,
but increased inbreeding could reduce the adaptability of the
population. Inbreeding may amplify tendencies to deviate from
the optimum and lead to maladaptation, which would threaten
the future of this minuscule but evolutionary successful popula-
tion. We therefore recommend further restoration of this wetland
habitat allowing for a larger population, thus decreasing the risk
of inbreeding depression36 and the impact of genetic drift.

Our study may represent one of the most rapid cases of
adaptive evolution ever documented in the context of habitat
restoration. It also demonstrates the importance of population
monitoring in evolutionary and conservation biology, as the
success of a conservation project may be difficult to predict
and depend largely on the evolutionary potential of the focal
population or species.

Methods
Sampling. From 1996 to 2014 (except for 2003 where data is not available),
we sampled a total of 392 adult reed warblers during the breeding season
(May–August), as part of the BirdLife Malta project. All birds included in the main
analyses (unless otherwise stated) were resident individuals captured during the
breeding season when no migration occurs. Birds were ringed with unique ID rings
and body mass recorded to nearest 0.1 g using a digital scale. All measurements
took place during the morning hours between 06:00 and 10:00 to minimize daily
variation in body mass. We estimated the minimum number of breeding pairs
through the intensive monitoring of nests and other frequent field observations
during the entire breeding season. We also captured migrants stopping over for
several days in the population during autumn migration (September–October) to
investigate differences in body mass with local residents. All sampling and handling
of birds was in compliance with ethical regulations, and permits for sampling were
obtained from the local authorities (BirdLife Malta).

DNA extraction. In 2014, we sampled blood from 18 individuals. DNA was
extracted from the blood samples using DNeasy Blood & Tissue kit (Qiagen),
and subsequently genotyped. We amplified eight microsatellites previously used for
reed warblers33; Aar4, Aar5, Aar8, Ase34, Ase58, Pca3, Pdom1 and POCC2
(Supplementary Table 1).

Statistical analyses. To investigate evolutionary changes through our time series
of 19 years (N¼ 392), we used the average body mass of individuals caught in each
year, along with corresponding sample sizes and standard deviations. If individuals
were captured and measured more than once, we used the average across mea-
surements. The average difference between two measurements at two different time
points was non-significant (ANOVA: " 0.0268 g; df¼ 204; P¼ 0.765). We com-
pared the goodness of fit of a neutral (unbiased random walk) and an adaptive
(OU) model to our data using the PaleoTS package6 in R. We used bias-corrected
AICc as a measure of model fit, and to show the relative support for the two models
we used Akaike weights (transformations of the AICc scores to make them sum to
one). We also conducted a log-likelihood ratio test using the log-likelihood
estimates from the models.

To investigate the relationship between mean population fitness (proportion of
breeding adults each year) and body mass, we conducted a linear regression
analysis. We plotted mean population fitness to the population distance from the
adaptive optimum of body mass (estimated from the OU model). We also
estimated the correlation between s.d. in body mass and mean population fitness.
Both these estimates should be expected to be negative if natural selection is acting
on body mass. From recapture data over the entire study period (N¼ 198), we
distinguished between individuals recaptured after a minimum of 21 days (but also
taking in account individuals recaptured the following seasons) and individuals
never recaptured, and used this as a proxy for individual survival, which we
acknowledge could also be partially affected by other factors such as emigration,
although our estimates on recruitment rate suggest very high philopatry. We
subsequently estimated the mean-standardized selection gradient for body mass.
To investigate whether there is any temporal variation in selection during the study
period, we conducted a linear model of recapture probability where both body mass
and year of capture were included as covariates.

We calculated different estimates of Ne. From field data, we estimated Ne using
the harmonic mean of the number of breeding pairs observed in the field across
years. We further followed the procedure as described by Hunt et al.6 to estimate
Ne using the parameter estimates from the OU model. Ne¼ h2s2

p/s2
step, where h2

is the trait heritability, s2
p is the phenotypic variance of the samples and s2

step is
the step variance, which is estimated from the model fit. We solved the equation
with three different values of h2 (0.1, 0.5 and 0.7). Since we do not have pedigree-
based information to calculate heritability, we estimated the correlation between
annual mid-parent and offspring body mass to assess the plausibility of a
significant additive component of genetic variation for body mass, irrespective
of environmental variation across years. Finally, we used NeEstimator (v2.01)37 to
estimate Ne from our molecular data, using the linkage disequilibrium method38.

Data availability. Data are available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.hj30r.
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CORRESPONDENCE

Reply to ‘Inconclusive evidence for rapid adaptive
evolution’
Camilla Lo Cascio Sætre1, Charles Coleiro2, Martin Austad2, Mark Gauci2, Glenn-Peter Sætre1,

Kjetil Lysne Voje1 & Fabrice Eroukhmanoff1

In our study1, we showed that a newly founded population of
reed warblers in Malta had undergone a decrease in body mass
through 19 years, following a trajectory consistent with a popu-
lation ascending an adaptive peak, an Ornstein–Uhlenbeck pro-
cess (OU)2. Neto et al.3 claim that our result is an artifact of
including migrants in the dataset, which inflated the average body
mass in the initial years. Controlling for possible seasonal effects
is important, which we thank Neto et al.3 for pointing out. We
now control for season in three different ways and the OU-model
always fits better than the neutral model, further strengthening
our original conclusion of adaptive evolution.

In Malta, the autumn migration mainly takes place in Sep-
tember, and spring migrants arrive in April or early May4. We
think limiting our data to mid-June to mid-July, as Neto et al.3

suggest, is unreasonably restricted for capturing local birds. We
chose to include the entire breeding season (May–August)4, as it
has been described in several other studies5–7. We cannot exclude
the possibility that there are some migrants in our dataset, but we
investigate possible biases in our sampling design. The ratio of
birds captured in the center of the breeding season (June and
July) to birds captured in May and August, where the possibility
of migrants is greater, shows no apparent trend throughout the
years (Supplementary Figure 1). However, body mass is sig-
nificantly correlated with capture date (linear regression: R2=
0.23, P < 2e−16; Supplementary Figure 2). Thus, we agree there is
a need to correct for capture date in our models.

We controlled for capture date in three different ways, and in
all three cases, the OU-model outcompeted the Random walk
(neutral) model (see Supplementary Table 1, Fig. 1). In fact, some
of the new results show an even larger difference in relative model
fit than in our initial study.

Interestingly, mean annual body mass of juveniles corrected for
seasonality also exhibits a negative trend over the study period,
and these data also show a much better fit to an OU-model than
to a neutral model (Supplementary Table 2, Supplementary Fig-
ure 3). Juveniles were born and ringed on site and the observed
trend can therefore not be explained by the potential inclusion of
migrants. Furthermore, juveniles recaptured as adults were

significantly lighter than the ones not recaptured (mean ± SD of
those not recaptured: 12.23 ± 2.23 g, mean ± SD of those recap-
tured: 10.93 ± 1.87 g, linear model: Estimate ± SE=−1.30 ± 0.41,
P = 0.0016.).

Also, when running a linear regression of body mass
throughout the years within each month for adult birds, there is a
significantly negative trend within June, July and August (Sup-
plementary Table 3). This demonstrates that body mass decreased
significantly from 1996 to 2014, without the possibility for
migrants to influence the pattern, as the probability of capturing
migrants in June or July is negligible. We acknowledge that
without further experimental data, we cannot know the exact
mechanisms behind the decrease in body mass, nor why it is
apparent both in adults and juveniles.

In order to investigate whether our estimates of survival in the
population could have been affected by the inclusion of migrants,
we compared birds captured in June/July to birds captured in
May/August in terms of proportion recaptured and proportion
not recaptured. The proportions were not significantly different
from each other (Supplementary Table 4; two-tailed Fisher’s exact
test, P = 0.18), suggesting that our survival estimates are not
merely artifacts of including migrants.

Neto et al.3 also seem skeptical towards our conclusion since
our results would “constitute an example of exceptionally rapid
adaptive evolution in the wild”. Although we agree evolution was
fast, we do not consider it to be exceptional: the haldanes cal-
culated from our model are within the normal range of evolu-
tionary rates measured in populations affected by human-induced
environmental changes8. The half-life we report is as far as we
know the shortest estimated from an OU-model, but this is due to
the short time interval covered by our data. Also, the estimated
selection gradient is within the normal range9.

Neto et al.3 include a boxplot (Fig. 1 in ref. 3) depicting var-
iation in body mass in adult and first year reed warblers in
Portugal, showing that body mass is highest in April and from
August and onwards. The largest difference between any sample
median in Fig. 1 of ref. 3 represents a difference of 0.105 natural
log units. In comparison, the difference between the initial
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population in our data and the estimated optimum (from the first
ANCOVA model) is 0.23 (0.22 in the original analysis) natural
log units, and the difference between the most extreme sample
means in our data set is even larger. This suggests that seasonal
variation in body mass alone is an insufficient explanation for the
decrease in body mass we observe in the Maltese population.

Neto et al.3 present the body mass distribution of reed warblers
from May to August from their study site in Sweden and point
out that the average body mass in the first years of the population
in Malta exceeds the mass of the heaviest individual in their
Swedish population. It is not clear to us why a single Swedish
population should accurately reflect the whole phenotypic range
of body mass in this species. The data from Portugal presented by
Neto et al.3 are indeed containing birds of similar size to what we
observe in the Maltese population. Yet, the average body masses
of the birds in the initial years were arguably high relative to other
populations. We suggest that this may be a result of biased
colonization, if the founding population consisted of relatively
heavy individuals. Another possibility is that food availability was
particularly high in the initial years, and density-dependent
effects may be a confounding factor. We acknowledge that we
cannot be certain of the origin of the population, and we welcome
research to pinpoint the origin of the Maltese population.

Neto et al.3 claim the pattern of body size reduction is coin-
cidental and speculates that it is an artifact of the inclusion of
migrants in the dataset. We have shown that this is unlikely to be
the case. We fail to see how Neto et al.3 alternative explanation
predicts a trend in body size that is well described by an OU-
process. We also note that Neto et al.3 do not comment on the
fact that the Ne estimated from the OU model parameters

corresponds accurately with our independent molecular estimate
of Ne. Our molecular data stems from individuals that were
definitely locals; either juveniles or nesting adults captured in
June or July. If the data we used in our model selection had been
heavily biased by migrants, we would not expect such a close
correspondence with the molecular estimate.

We acknowledge, as we did in the original publication, that
body mass is a plastic trait. We thank Neto et al.3 for pointing out
that seasonal variation should be corrected for in analyses of body
mass evolution in birds. Doing so puts further strength to our
claim that adaptive evolution is likely an important part of the
observed trend in body mass in the Maltese reed warbler
population.

Methods
Statistical analyses. We analyzed ANCOVA models where we regressed capture
date on log body mass (the dependent variable), having year as a factor. We
assumed a common coefficient for how body mass changes as a function of capture
date due to the modest sample sizes of measured birds per year. In the first
ANCOVA model, capture date was measured as “days away from the center of the
breeding season (July 1st)”. We tested the correlation between the annual body
mass data used in our original publication and the annual body mass data corrected
for seasonal variation with this model, and there is a strong concordance between
both estimates (R2= 0.92; P = 8.29e−10, Fig. 2). In the second ANCOVA model,
capture date was implemented as “days after May 1st” as a quadratic term (with the
linear term also included in the model). The third model is a linear mixed-effect
model implemented using the lme4 package10 where log body mass was the
dependent variable, year was a fixed effect and month (the month birds where
captured) was implemented as a random factor. We note that there are several
other non-linear models we could have used, which may have fitted the data better.
However, we believe it is best to avoid complex, parameter-rich models given our
limited sample size.
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Fig. 1 The evolution of log body mass over time, corrected for seasonal
variation linked to capture date. We regressed capture date (days away
from the center of the breeding season (July 1st)) on log body mass (the
dependent variable), having year a factor. Vertical error bars signify one
standard error. The data reveal a negative trend in body mass consistent
with an OU-model. The dotted line represents the estimated adaptive
optimum (θ) for log body mass (2.35)
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Fig. 2 Regression between uncorrected mean annual estimates of Log body
mass (from Sætre et al.1) and corrected mean annual estimates of log body
mass (the values predicted by the first ANCOVA model, where we
regressed capture date (days away from the center of the breeding season
(July 1st)) on log body mass (the dependent variable), having year a factor).
The data show a strong concordance between both estimates (R2 = 0.92; P
= 8.29e−10)
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For each model, we used the predicted mean and variance to compare the
goodness of fit of a neutral (unbiased random walk) and an adaptive (OU) model
using the PaleoTS package11 in R. We used bias-corrected AICc as a measure of
model fit, and to show the relative support for the two models we used Akaike
weights (transformations of the AICc scores to make them sum to one). We also
conducted a log-likelihood ratio test using the log-likelihood estimates from the
models.

Data availability. The data are available from the Dryad Digital Repository (doi:
10.5061/dryad.kg3hp51).
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Abstract

The reed warbler (Acrocephalus scirpaceus) is a long-distance migrant passerine with a wide distribution across Eurasia. This species
has fascinated researchers for decades, especially its role as host of a brood parasite, and its capacity for rapid phenotypic change in
the face of climate change. Currently, it is expanding its range northwards in Europe, and is altering its migratory behavior in certain
areas. Thus, there is great potential to discover signs of recent evolution and its impact on the genomic composition of the reed
warbler. Here, we present a high-quality reference genome for the reed warbler, based on PacBio, 10!, and Hi-C sequencing. The
genome has an assembly size of 1,075,083,815 bp with a scaffold N50 of 74,438,198 bp and a contig N50 of 12,742,779 bp.
BUSCOanalysisusingaves_odb10asamodel showedthat95.7% ofBUSCOgeneswerecomplete.Wefoundunequivocal evidence
of two separate macrochromosomal fusions in the reed warbler genome, in addition to the previously identified fusion between
chromosome Z and a part of chromosome 4A in the Sylvioidea superfamily. We annotated 14,645 protein-coding genes, and a
BUSCOanalysisof theprotein sequences indicated97.5% completeness. This referencegenomewill serveasan important resource,
and will provide new insights into the genomic effects of evolutionary drivers such as coevolution, range expansion, and adaptations
to climate change, as well as chromosomal rearrangements in birds.

Key words: genome assembly, Hi-C sequencing, long reads, reference genome, Acrocephalus scirpaceus. .

Introduction

The ecology and evolution of the reed warbler (Acrocephalus
scirpaceus) has been of interest for over 40years (Thorogood et
al. 2019) as it is one of the favorite host species of the brood-

parasitic common cuckoo (Cuculus canorus) (Davies and
Brooke 1989; Stokke et al. 2018). Decades of field experiments
have demonstrated behavioral coevolution and spatial and
temporal variation in species interactions (e.g., Thorogood

Significance

The reed warbler (Acrocephalus scirpaceus) has been lacking a genomic resource, despite having been broadly
researched in studies of coevolution, ecology, and adaptations to climate change. Here, we generated a chromo-
some-length genome assembly of the reed warbler, and found evidence of macrochromosomal fusions in its genome,
which are likely of recent origin. This genome will provide the opportunity for a deeper understanding of the evolution
of genomes in birds, as well as the evolutionary path and possible future of the reed warbler.

! The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
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and Davies 2013). However, the reed warbler’s response to
climate change has begun to attract increasing attention.
Reed warblers are experiencing far less severe declines in pop-
ulation size than is typical for long-distance migrants (Both et al.
2010; Vickery et al. 2014). In fact, they are expanding their
breeding range northwards into Fennoscandia (J€arvinen and
Ulfstrand 1980; Røed 1994; Stolt 1999; Brommer et al.
2012), and have generally increased their productivity follow-
ing the rise in temperature (Schaefer et al. 2006; Eglington et
al. 2015; Meller et al. 2018). They are also showing rapid
changes in phenology (Halupka et al. 2008), and migratory
behavior; instead of crossing the Sahara, monitoring suggests
that some reed warblers now remain on the Iberian Peninsula
over winter (Chamorro et al. 2019). Morphological traits such
as body mass and wing shape have been shown to change
rapidly in reed warbler populations, indicating possible local
adaptation (Kralj et al. 2010; Salewski et al. 2010; Sætre et
al. 2017). Genetic differentiation is generally low between reed
warbler populations, but moderate levels of differentiation
have been connected to both migratory behavior (Proch"azka
et al. 2011) and wing shape (Kralj et al. 2010). Reed warblers
thus provide a promising system to study population, pheno-
typic, and genetic responses to climate change.

Although there has been an increasing number of avian
genome assemblies in recent years (e.g., Feng et al. 2020),
many nonmodel species, including the reed warbler, are still
lacking a genome resource. To date, the closest relative to
the reed warbler with a published reference genome is the
great tit (Parus major) (GCA_001522545.3, deposited in
NCBI; Laine et al. 2016), but the unpublished genome of
the garden warbler (Sylvia borin) is available in public data-
bases (GCA_014839755.1, deposited in NCBI). There is also
a genome in preprint from the Acrocephalus genus, the
great reed warbler (A. arundinaceus) (Sigeman, Strandh, et
al. 2020), but the scaffolds are not chromosome length.

Here, we present the first genome assembly of the reed
warbler, based on PacBio, 10!, and Hi-C sequencing, with
descriptions of the assembly, manual curation, and annotation.
This genome will be a valuable resource for a number of studies,
including studies of coevolution, population genomics, adaptive
evolution, and comparative genomics. For reduced-
representation sequencing (e.g., RAD-seq) studies, it will help
produce a more robust SNP set than with a de novo approach
(Shafer et al. 2017). It will facilitate the detection of selective
sweeps, and provide the physical localization of variants (Manel
et al. 2016), thus giving insight into the potential genes involved
in adaptation. Furthermore, the genome will be an important
resource in the study of chromosomal rearrangements in birds.

Results and Discussion

Genome Assembly and Genome Quality Evaluation

We generated 3,810,665 reads with PacBio, with an average
read length of 16 kb at 61! coverage. We further obtained

277,617,608 paired-end reads (2!150) with 10! Genomics,
and 185,974,525 paired-end reads (2!150) with Hi-C, at
83! and 56! coverage, respectively. The final genome as-
sembly was 1.08 Gb in length, and contains 1,081 contigs
(contig N50 of 13 Mb) and 200 scaffolds (scaffold N50 of
74 Mb) (table 1). The completeness of the assembled genome
is high: of the 8,338 universal avian single-copy orthologs, we
identified 7,978 complete BUSCOs (95.7%), including 7,920
single-copy (95.0%), and 58 duplicated BUSCOs (0.7%).
Fifty-nine BUSCOs (0.7%) were fragmented, and 301
BUSCOs (3.6%) were missing.

Genome Annotation

The GC content of the reed warbler genome assembly was
41.9%. The total repeat content of the assembly was
10.94%, with LTR elements as the most common type of
repeat (4.50%) followed by LINEs (4.11%) (table 1).

Using the Comparative Annotation Toolkit, based on a
whole-genome multiple alignments from Cactus, we pre-
dicted 14,645 protein coding genes, with an average
Coding DNA Sequence (CDS) length of 1,782bp, and an av-
erage intron length of 2,918bp (table 1). The annotated genes
had 97.5% completeness (based on predicted proteins).

Synteny Analysis

The reed warbler genome showed high synteny with the great
tit genome, though with some notable differences (fig. 1). The
reed warbler chromosome 6 is a fusion of great tit chromo-
somes 7 and 8, and reed warbler chromosome 8 is a fusion of
great tit chromosomes 6 and 9. Interestingly, these chromo-
somes are not fused in the garden warbler genome (supple-
mentary fig. 1, Supplementary Material online), but
correspond to the great tit chromosomes. This suggests that
the fusions evolved relatively recently, perhaps at the base of
the Acrocephalidae branch within Sylvioidea, but further re-
search is needed to determine this. Hi-C contact maps confirm
that the chromosomes assembled in the reed warbler genome
are unbroken (supplementary fig. 2, Supplementary Material
online). Interchromosomal rearrangements are rare in avian
evolution (Ellegren 2010; Skinner and Griffin 2012), with
some exceptions, such as in the orders Falconiformes
(Damas et al. 2017) and Psittaciformes (Furo et al. 2018). In
fact, in all or most species of Psittaciformes, chicken chromo-
somes 6 and 7, and 8 and 9 are fused (Furo et al. 2018;
Kretschmer et al. 2018)—the same chromosomes involved
in the fusions discovered in the reed warbler genome. We
can only speculate about the significance of this without
more data. Passeriformes, the sister group of Psittaciformes,
exhibit much lower rates of interchromosomal rearrange-
ments, despite being a large, highly diverse order
(Kretschmer et al. 2021). There is still a large knowledge gap
in the cytogenetics of birds (Degrandi et al. 2020), and more
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research is needed to determine the rarity of the fusions we
discovered in the reed warbler genome.

We furthermore confirm the previously identified neo-sex
chromosome (Pala et al. 2012; Sigeman, Ponnikas, et al.
2020), a fusion between the ancestral chromosome Z and a
part of chromosome 4A (according to chromosome naming
from the zebra finch). This fusion is thought to have occurred
at the base of the Sylvioidea branch (Pala et al. 2012) and is
shared with all species of Sylvioidea studied so far (Sigeman,
Ponnikas, et al. 2020). Figure 1 clearly shows that reed war-
bler chromosome Z corresponds to great tit chromosome Z,
plus a part of great tit chromosome 4A, whereas reed warbler
chromosome Z corresponds to garden warbler chromosome Z
(supplementary fig. 1, Supplementary Material online).

Conclusion

In this study, we present the first assembled and anno-
tated genome for the reed warbler A. scirpaceus. We have
accomplished this through utilizing long read PacBio se-
quencing, and scaffolding with paired-end 10! and Hi-C
reads. In addition to the previously identified autosome-
sex chromosome fusion shared by all members of

Sylvioidea, we found unequivocal evidence of two novel
macrochromosomal fusions in the reed warbler genome.
Further research is needed to determine the evolutionary
age of these fusions, especially because they are not pre-
sent in the garden warbler genome, suggesting they are
relatively new. This genome will serve as an important
resource to increase our knowledge of chromosomal rear-
rangements in birds, both their prevalence and their sig-
nificance for avian evolution. Furthermore, the genome
will, through the identification of genetic variants and in-
formation of the function of associated genes, provide a
deeper insight into the evolution of the reed warbler, a
bird which will continue to fascinate researchers for years
to come.

Materials and Methods

Sampling and Isolation of Genomic DNA

Blood was collected from a brachial vein of a female
reed warbler (subspecies A. scirpaceus scirpaceus,
NCBI Taxonomy ID: 126889) in Storminnet, Porvoo
(60"19024.900N, 25"35023.000E), Finland, on May 22, 2019.

Table 1

Summary Statistics of the Reed Warbler Genome Assembly and Annotation

Genome Assembly

Estimated genome size 1.13 Gb

Guanine and cytosine content 41.91%

N50 length (contig) 13 Mb

Longest contig 48 Mb

Total length of contigs 1.07 Gb

N50 length (scaffold) 74.44 Mb

Longest scaffold 153.80 Mb

Total length of scaffolds 1.08 Gb

Complete BUSCOs 95.7%

Transposable Elements Percent (%) Total length

DNA 0.22 2.35 Mb

LINE 4.11 44.2 Mb

SINE 0.09 0.98 Mb

LTR 4.50 48.4 Mb

Unknown 0.55 5.9 Mb

Other (satellites, simple repeats,

low complexity)

1.49 16 Mb

Total 10.94 117.6 Mb

Protein-Coding Genes

Predicted genes 14,645

Average coding sequence length

(bp)

1,782

Average exon length (bp) 284

Average intron length (bp) 2918

Complete BUSCOs 97.5%
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Catching and sampling procedures complied with the Finnish
law on animal experiments and permits were licensed by the
National Animal Experiment Board (ESAVI/3920/2018) and
Southwest Finland Regional Environment Centre (VARELY/
758/2018). Reed warblers were trapped with a mist net,
ringed and handled by E.K. under his ringing license.

The blood (!80 ml) was divided and stored separately in
500 ml ethanol, and in 500 ml SET buffer (0.15M NaCl,
0.05M Tris, 0.001M EDTA, pH 8.0). The samples were imme-
diately placed in liquid nitrogen, and kept at "80 #C when
stored. We performed phenol"chloroform DNA isolation on
the sample stored in SET buffer, following a modified protocol
from Sambrook et al. (1989).

Library Preparation and Sequencing

DNA quality was checked using a combination of a fluoro-
metric (Qubit, Invitrogen), UV absorbance (Nanodrop,
Thermo Fisher) and DNA fragment length assays (HS-50 kb
fragment kit from AATI, now part of Agilent Inc.). The PacBio
library was prepared using the Pacific Biosciences Express li-
brary preparation protocol. DNA was fragmented to 35 kb.
Size selection of the final library was performed using
BluePippin with a 15 kb cut-off. Six single-molecule real-
time (SMRT) cells were sequenced using Sequel Polymerase
v3.0 and Sequencing chemistry v3.0 on a PacBio RS II instru-
ment. The 10$ Genomics Chromium linked-read protocol
(10$ Genomics Inc.) was used to prepare the 10$ library,

FIG. 1.—Circos plot showing the synteny between the reed warbler (on the right side, denoted with the prefix as [Acrocephalus scirpaceus]) and the

great tit (left side, prefix pm [Parus major]) genome assemblies. The reed warbler chromosome 6 is a fusion of great tit chromosomes 7 and 8, whereas reed

warbler chromosome 8 is a fusion of great tit chromosomes 6 and 9 (see Hi-C contact maps in supplementary fig. 2, Supplementary Material online). The

reed warbler chromosome Z corresponds to great tit chromosome Z, and a part of great tit chromosome 4A.
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and due to the reed warbler’s smaller sized genome, only
0.7 ng/ml of high molecular weight DNA was used as input.
A high-throughput chromosome conformation capture (Hi-C)
library was constructed using 50ml of blood, following step 10
and onwards in the Arima Hi-C (Arima Genomics) library pro-
tocol for whole blood. Adaptor ligation with Unique dual
indexing (Illumina) were chosen to match the indexes from
the 10! linked-read library for simultaneous paired-end se-
quencing (150 bp) on the same lane on an Illumina HiSeq X
platform. Both libraries were quality controlled using a
Fragment analyzer NGS kit (AATI) and qPCR with the Kapa
library quantification kit (Roche) prior to sequencing.

The sequencing was provided by the Norwegian
Sequencing Centre (https://www.sequencing.uio.no, last
accessed September 17, 2021), a national technology plat-
form hosted by the University of Oslo and supported by the
“Functional Genomics” and “Infrastructure” programs of the
Research Council of Norway and the South-Eastern Regional
Health Authorities.

Genome Size Estimation and Genome Assembly

The genome size of the reed warbler was estimated by a k-
mer analysis of 10! reads using Jellyfish v. 2.3.0 (Marçais and
Kingsford 2011) and Genome Scope v. 1.0 (Vurture et al.
2017), with a k-mer size of 21. The estimated genome size
was 1,130,626,830 bp.

We assembled the long-read PacBio sequencing data with
FALCON and FALCON-Unzip (falcon-kit 1.5.2 and falcon-
unzip 1.3.5) (Chin et al. 2016). Falcon was run with the fol-
lowing parameters: length_cutoff ¼ #1; length_cutoff_pr ¼
1000; pa_HPCdaligner_option ¼ –v –B128 –M24; pa_da-
ligner_option ¼ –e0.8 –l2000 –k18 –h480 –w8 –s100;
ovlp_HPCdaligner_option¼ –v –B128 –M24; ovlp_daligner_op-
tion ¼ –k24 –e.94 –l3000 –h1024 –s100; pa_DBsplit_option¼
–x500 –s200; ovlp_DBsplit_option ¼ –x500 –s200; falcon_sen-
se_option ¼ –output-multi –min-idt 0.70 –min-cov 3 –max-n-
read 200; overlap_filtering_setting ¼ –max-diff 100 –max-cov
100 –min-cov 2. Falcon-unzip was run with default settings. The
purge_haplotigs pipeline v. 1.1.0 (Roach et al. 2018) was used to
curate the diploid assembly, with -l5, -m35, -h190 for the contig
coverage, and -a60 for the purge pipeline. Next, we scaffolded
the curated assembly with the 10! reads using Scaff10X v. 4.1
(https://github.com/wtsi-hpag/Scaff10X, last accessed
September 17, 2021), and the Hi-C reads using SALSA v. 2.2
(Ghurye et al. 2017). Finally, we polished the assembly (com-
bined with the alternative assembly from Falcon-Unzip), first
with PacBio reads using pbmm2 v. 1.2.1, which uses minimap2
(Li 2018) internally (v. 2.17), and then with 10! reads for two
rounds with Long Ranger v. 2.2.2 (Marks et al. 2019) and
FreeBayes v. 1.3.1 (Garrison and Marth 2012).

Curation

The assembly was decontaminated and manually curated us-
ing the gEVAL browser (Chow et al. 2016; Howe et al. 2021),

resulting in 521 corrections (breaks, joins and removal of er-
roneously duplicated sequence). HiGlass (Kerpedjiev et al.
2018) and PretextView (https://github.com/wtsi-hpag/
PretextView, last accessed September 17, 2021) were used
to visualize and rearrange the genome using Hi-C data, and
PretextSnapshot (https://github.com/wtsi-hpag/
PretextSnapshot, last accessed September 17, 2021) was
used to generate an image of the Hi-C contact map. The
corrections made reduced the total length of scaffolds by
0.5% and the scaffold count by 44.6%, and increased the
scaffold N50 by 20.2%. Curation identified and confirmed 29
autosomes and the Z and W chromosomes, to which 98.6%
of the assembly sequences were assigned.

Genome Quality Evaluation

We assessed the quality of the assembly with the assembla-
thon_stats.pl script (Bradnam et al. 2013) and investigated the
completeness of the genome with Benchmarking Universal
Single-Copy Orthologs (BUSCO) v. 5.0.0 (Sim~ao et al. 2015),
searching for 8,338 universal avian single-copy orthologs
(aves_odb10).

Genome Annotation

We used a repeat library provided by Alexander Suh called
bird_library_25Oct2020 and described in Peona et al. (2020)
to softmask repeats in the reed warbler genome assembly.
Softmasked genome assemblies for golden eagle (Aquila
chrysaetos), chicken (Gallus gallus), great tit (Parus major),
Anna’s hummingbird (Calypte anna), zebra finch
(Taeniopygia guttata), great reed warbler (Acrocephalus arun-
dinaceus), icterine warbler (Hippolais icterina), collared fly-
catcher (Ficedula albicollis), and New Caledonian crow
(Corvus moneduloides) were downloaded from NCBI. The tri-
angle subcommand from Mash v. 2.3 (Ondov et al. 2016) was
used to estimate a lower-triangular distance matrix, and a
Python script (https://github.com/marbl/Mash/issues/9#issue-
comment-509837201, last accessed September 17, 2021)
was used to convert the distance matrix into a full matrix.
The full matrix was used as input to RapidNJ v. 2.3.2
(Simonsen et al. 2008) to create a guide tree based on the
neighbor-joining method. Cactus v. 1.3.0 (Armstrong et al.
2020) was run with the guide tree and the softmasked ge-
nome assemblies as input.

We also downloaded the annotation for chicken, and used
it as input to the Comparative Annotation Toolkit (CAT) v.
2.2.1-36-gfc1623d (Fiddes et al. 2018) together with the hi-
erarchical alignment format file from Cactus. Chicken was
used as reference genome, reed warbler as the target ge-
nome and the AUGUSTUS (Stanke et al. 2008) species param-
eter was set to “chicken.” InterProScan v. 5.34-73 (Jones et
al. 2014) was run on the predicted proteins to find functional
annotations, and DIAMOND v. 2.0.7 (Buchfink et al. 2021)
was used to compare the predicted proteins against
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UniProtKB/Swiss-Prot release 2021_03 (The UniProt
Consortium 2021). AGAT v. 0.5.1 (Dainat 2021) was used
to generate statistics from the GFF3 file with annotations
and to add functional annotations from InterProScan and
gene names from UniProtKB/Swiss-Prot. BUSCO v. 5.0.0
was used to assess the completeness of the annotation.

Synteny Analysis

We aligned the assembly against the great tit (Parus major)
and the garden warbler (Sylvia borin) genome assemblies with
minimap2 v. 2.18-r1015 and extracted only alignments lon-
ger than 5,000 bp. The bundlelinks from circos-tools v. 0.23
was used to merge neighboring links using default options
and a plot was created using circos v. 0.69-8.

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online.
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