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Abstract 
 

In order to mitigate dangerous effects of global warming, transitioning to a sustainable, low 
emission energy system is necessary. The cost of solar photovoltaics (PV) has declined 
rapidly in recent years, and the technology is expected to play an important role in this 
transition. To facilitate efficient use of resources, we should pursue further reductions in costs 
as well as improvements in the performance of PV installations. Accurate methods for 
predictions and evaluation of PV performance can be used in various ways to reduce costs 
and improve performance. PV performance predictions and evaluation are for example 
necessary to ensure optimized design of systems and to evaluate potential for improvements 
in loss reduction.  

To efficiently reduce costs and improve PV performance, the methods for performance 
evaluation and prediction should be easy to implement and automate. However, PV 
performance depend on system design and operating conditions, and the type of losses that 
are most prominent can vary between installations. Additionally, there are factors not related 
to the performance that can impact the measured output of PV systems and the performance 
evaluation, for example the quality of the measured data. Consequently, as multiple different 
parameters should be considered in the evaluation and prediction of PV performance, 
development of standardized methodologies is challenging. 

The main topic of this work is methodologies for PV performance evaluation, i.e. 
identification and quantification of loss mechanisms. The aim of the research is to contribute 
to the development of standardized methodologies. The main loss mechanisms studied in this 
work are component faults and snow shading. The analysis uses data collected from PV 
installations in Norway with a total capacity of ~3.7 MW. Both PV performance and the 
methodology for performance analysis are less studied for operating conditions found at 
higher latitudes compared to the operating conditions found closer to the equator. In the first 
part of this work, established methodology for performance evaluation are assessed on output 
data from commercial PV monitoring systems for the case of fault detection. First, factors 
impacting the calculated performance metrics are classified through analysis of the periods 
with large degree of noise or systematic trends in performance metrics, or estimated large 
performance gains or losses. Second, methodology to handle the effects of these losses and 
impact factors on the performance metrics are discussed, and the use of filtering is 
specifically evaluated. With targeted filtering, improved sensitivity in a fault detection 
analysis is achieved.  

Through this initial evaluation of factors impacting performance evaluation at high 
latitude locations, it is identified that there is a need for improved methods to identify and 
predict the potentially large energy losses caused by snow. To contribute to this, we describe 
the effect of snow on PV monitoring output parameters, evaluate existing snow loss models, 
and suggest improvements to the commonly used Marion snow loss model. The improved 
suggestion gives a reduction in modeling error of 23 percentage points for the studied dataset 
compared to the default implementation of the Marion model.  
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1 Introduction 
1.1 Motivation and background 
In August 2021, IPCC published their first major review of climate change research since 
2013, and it was announced as a “code red for humanity” [1]. The language of the report is 
dramatic and clear, stating that “it is unequivocal that human influence has warmed the 
atmosphere, oceans and land” and that this warming is “already affecting many weather and 
climate extremes in every region across the globe” [2]. This warming is mostly caused by 
greenhouse gas emissions caused by burning fossil fuels. There is hope that if these emissions 
are greatly reduced, the climate can stabilize. UN Secretary General António Guterres 
summarized the findings of the report like this: “If we combine forces now, we can avert 
climate catastrophe. But, as today's report makes clear, there is no time for delay and no room 
for excuses.” [3]. Reducing greenhouse gas emissions is, however, challenging. The burning 
of fossil fuels has not only produced global warming, but it has also provided access to cheap 
energy which has played an important role in economic development and growth [4]. To 
maintain our living standard, enable growth in developing countries, and at the same time 
reduce emissions, the creation of a more sustainable energy system is expected to play a key 
role [5,6]. Development of a sustainable energy system necessitates replacement of fossil 
fuels with low emission technologies, and improvements of the energy efficiency, flexibility, 
and storage abilities in the system [7].  

To change the energy system fast enough to avoid serious global warming is, however, 
no easy task. Nuclear energy requires large investments and long construction times, and 
development is additionally limited by discussions on safety and waste handling. Energy 
generation using renewable energy technologies will depend on the availability of the natural 
resources utilized in the different technologies. Central renewable energy technologies such 
as wind and solar are additionally highly weather dependent, resulting in intermittent energy 
generation. This intermittency introduces multiple challenges and a need for increased 
flexibility in our energy systems, which often is designed around the characteristics of fuel 
based thermal power [7]. Additionally, construction of new energy infrastructure can 
introduce conflicts related to land use, for example with food production [8]. New 
infrastructure projects can in many cases also negatively impact the local environment and 
nature [9]. Change in land use often leads to habitat loss, which is considered the main reason 
to biodiversity loss [10,11]. As underlined in [11], the decline in biodiversity is now faster 
than at any time in history, which ultimately can impact human quality of life. The impact on 
the local environment is also often a central reason for development of social resistance, 
which in multiple occasions has canceled or delayed energy infrastructure projects [12]. 
Developing a new, low emission energy system without destroying too much nature or 
creating too much conflict, and at the same time ensuring energy security, is consequently a 
complex task with many considerations to balance. No technology presents a simple, quick 
solution alone. To avoid infrastructure development on the most vulnerable areas and to 
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ensure a resilient energy system, major investments in a range of different technologies are 
necessary.  

Solar photovoltaics (PV) is one of the technologies that will play an important role in 
a low emission energy system [13]. While the technology is not new itself, it is quite recent 
that PV entered the market as a competitive option. The competitiveness of PV has been 
driven by an extraordinary price reduction primarily caused by increasing production 
volumes of PV modules [14] and strong industrial competition. From 2010 to 2020, the 
annual PV module production increased by a factor of seven, giving a total global annual 
production of PV module capacity of approximately 140 GW in 2020. While it took almost 
six decades to reach 100 GW of installed PV capacity in 2012, it is expected that 1 TW of 
PV is installed by 2022. This makes PV the fastest-growing power generation source of the 
last decade [13]. Rapid growth in PV installations is seen all over the world [15], also in 
northern regions with lower annual irradiation, as seen in Figure 1 (although with a total 
capacity significantly lower than in the largest PV markets).  

 

 

Figure 1: Increase in installed PV capacity from 2010 to 2020 in northern countries. Data 
from [16]. For easier comparison of growth, the absolute PV capacity for Canada is 
divided by two. 

PV do require large areas [17], but PV installations do not require a specific type of 
area. PV can be built on roofs, on water [18], and on land that cannot be used in other ways, 
such as deserts [19] and landfills [20]. Both the PV system and the solar module itself can 
additionally be designed in many ways. There are examples of PV system designs adapted to 
co-localization with farming [21], and solar modules designed for incorporation in building 
elements (BIPV) [22]. This flexibility enables large-scale installation of PV without building 
in vulnerable areas. Additionally, because of its modularity and the relatively simple system 
design, PV can be installed rapidly and in a large range of sizes (giving a relatively low 
investment threshold) and is not significantly limited by lack of expertise. 
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Even though PV has become a cheap and competitive technology, further reductions in 
costs and improvements in the performance of PV installations may contribute to a successful 
transition to a low emission energy system. Historically, most of the research related to PV 
performance improvements have been focused on improvements in the solar cell efficiency. 
With the maturing of the technology, an increasing amount of research on other ways to 
improve PV performance is performed. Identification and quantification of losses in a PV 
system can play a role in improving PV performance and reducing costs in multiple ways, 
and evaluation and prediction of the PV system performance are therefore now important 
research topics [23,24]. Evaluating PV performance through identification and quantification 
of losses is necessary to identify if there is potential for improvements and to document that 
the systems are working as intended. Based on performance evaluations of existing systems, 
we can identify which losses we can expect in a system and determine how (and how long) 
different technologies work in the field and under different conditions. Identification and 
quantification of system losses in existing systems is additionally essential input to 
performance predictions. Predicting the performance of future systems is necessary to find 
the optimal design and to evaluate cost- and energy-efficiency. Improved understanding of 
the performance of a system will additionally reduce the uncertainty in expected energy 
generation, which again can reduce the risk and the investment cost of the project [25]. 
Performance predictions are also important for forecasting of the energy generation from PV, 
which is expected to be necessary for energy systems with a large share of PV. 

1.2 Knowledge gaps within PV performance analysis  
In the beginning of this research project, the initial plan was to contribute to improvements 
in PV performance evaluation methodology by developing advanced models for PV systems 
that could enable automatic detection of performance losses based on output data from the 
monitoring system. This was not a new idea, considering the number of publications on this 
and similar topics. However, despite the amount of research on this topic, there is still a lack 
of standardized methods to accurately evaluate different PV performance aspects. Studies 
have shown that because of choices done in the analysis process different analysts can achieve 
different results in for example estimation of degradation rate [26] and in estimation of total 
performance loss rate (PLR) [27]. The same analyst dependency on the result is seen for PV 
performance predictions [28]. Before developing advanced methods for performance loss 
detection, we found that we therefore first should study the cause for this lack of standardized 
methods, and focus on the following question: Why is it so difficult to determine performance 
losses in a PV system?  

A central part of the answer to this question is that there are many parameters impacting 
PV performance. Additionally, there are multiple factors that is not related to PV 
performance, for example related to data quality, that can impact the output data of a PV 
monitoring system and performance metrics calculations. When different analysts get varying 
results in for example a degradation rate estimation, it may be because 1) they consider 
different losses and parameters affecting the performance analysis, and 2) they choose to 
handle the losses and the effects caused by these parameters in different ways. To develop 
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methods for accurate and reproducible performance evaluation, we therefore need improved 
understanding and documentation of which factors that impact both the performance and the 
performance evaluation in various operating conditions and system designs. We also need 
improved understanding of which solutions that can be used to handle the effect of the 
different factors efficiently. 

Many of the factors affecting performance and performance evaluation are widely 
discussed in the literature. Typically, the discussed effects are related to losses that are 
common in regions where the installed PV capacity has been large for a long time, i.e. at 
lower latitudes and in warm climates. Losses caused by soiling [29] and component 
degradation [30] and which factors that impact the evaluation of these losses are for example 
frequently investigated. For regions with a more recent entry of PV installations, there is less 
knowledge about how the operating conditions specific to these regions influence 
performance and performance evaluation. For locations at high latitudes with cold climate, 
such as in Norway, it is expected that snow, cloudy weather, and irradiance with low intensity 
and high angle of incidence will affect both performance and performance evaluation. But in 
what manner and by how much are not necessarily well documented or known. This 
introduces uncertainties in the predictions of expected output. Uncertainties in expected 
output can results in PV systems not being installed, or increase the risk and consequently 
often the cost of the investment. Inaccurate predictions of PV performance can also have 
financial consequences if the expected energy generation is overestimated. In 2021, it was 
for example discovered that the PV installation at the University in Tromsø, Norway, 
generated significantly less energy than expected, because losses caused by snow were not 
considered [31]. Because of this underproduction, the system owner required compensations 
from the system installer. 

1.3 Thesis scope and methodology 
The main topic of this work is methodology for performance evaluation. Improved 
performance evaluation is also essential for improved performance predictions. The aim is to 
contribute to the development of standardized methodology for performance evaluation by 
investigating various factors impacting PV performance evaluations and assess solutions that 
can handle the effect of these factors. The work is concentrated on effects found in cold 
climates and at high latitude, and the presented analysis is based on monitoring data from 
multiple Norwegian PV installations. In addition to an investigation of which factors that 
affects performance evaluation in these conditions, particular attention is paid to the effect of 
snow, which can significantly impact PV performance in cold climates and challenge 
accurate identification of other losses. The overall methodology of this project is based on 
the following main principles: First the problem areas were identified through evaluation of 
existing solutions. Second, improved solutions are suggested and evaluated. Following this 
methodology, the following research questions were identified: 

– What are the factors impacting performance evaluations of PV systems in high latitude, 
cold climate locations?  
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– What are possible solutions to handle these impact factors? 

– What is the effect of snow in PV systems?  

– Can losses caused by snow be identified and predicted? 

The overall aim of discussing these questions, is to contribute to improved PV performance 
evaluations and predictions specifically in high latitude, cold climate locations. However, 
several of the different discussed aspects are transferable to other operating conditions, and I 
therefore hope the work also can be useful for reducing costs and improving PV performance 
in a more general context.  

1.4 Thesis structure 
This thesis summarizes my work as a Ph.D. student and consists of seven papers and six 
introductory chapters. In this first chapter, I describe the motivation for this work, the overall 
aim of the research, and summarize the papers. The purpose of chapter 2-5 is to contextualize 
the research described in the papers this thesis is based on. An overview of these four chapters 
and which of the papers that contribute to the main discussions in these chapters are given in 
Figure 2.  

 

 

Figure 2: Overview of the four chapters where the research is contextualized, and how the 
published papers relate to the topics discussed in these chapters.  

Chapter 2 provides a description of the PV systems evaluated in this work and an 
overview of the analyzed datasets. Chapter 3 describes why we need to know how a PV 
system perform and which parameters that impact PV system performance. Chapter 4 
introduces the methodology for evaluation of PV system performance, and the various 
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challenges related to accurate and reproducible performance evaluation, as well as possible 
solutions. The contributions of the thesis papers on identification and handling of factors 
impacting performance evaluation are also described. Chapter 5 gives an overview of how 
snow affects both PV performance and performance evaluation and prediction. Description 
as well as prediction of snow losses in PV systems are discussed, and our work on these 
topics is summarized.  

1.5 Summary of papers 
This section summarizes the papers this thesis is bases on, listed in List of papers. I was the 
main author of all the papers. I was responsible for the main idea, data processing and 
analysis, and writing the text. 

– Paper I investigates the possibility for evaluating the quality of the sensor data from 
the PV monitoring system based on analyzing the measured output. Analyzing PV 
monitoring data is a central part of the methodology in the papers of this thesis, and the 
work presented in this paper is an important contribution to this analysis. The main 
contribution of this paper is validation of the use of clear sky modeling to evaluate 
irradiance data quality.   

– Paper II investigates and identifies the root cause of detected performance deviations 
for a PV system in Norway. The paper also discusses how filtering can be used to 
improve condition monitoring and fault detection by removing expected 
losses/deviations in performance metrics. Having an overview of effects that need to 
be considered in analysis of PV monitoring data is an important first step to develop 
standardized methods for performance evaluation and fault detection. We also evaluate 
how typical filters suggested in the literature perform in the operating conditions typical 
for Norway.  

– Paper III builds on Paper II and continues the evaluation of the root cause of the 
detected performance deviations and the assessment of filtering as a solution to process 
performance metrics for use in fault detection. In this paper, both the dataset and the 
set of performance metrics evaluated are extended. In addition to strengthening the 
conclusions from Paper II, we find that using machine learning to model expected 
output can contribute to improved fault detection.  

– Paper IV investigates the effect of snow on PV systems, and both snow loss modeling 
and filtering are tested. The effect of snow is described by evaluation of signatures in 
monitoring data and simulations of IV curves. In the testing of existing snow loss 
models, we find that the model suggested by [32] yields best results, and we suggest 
additional improvements. Based on the snow signatures and the snow loss modeling 
results, new strategies for snow loss filtering are suggested.  

– Paper V extends the work on snow loss modeling, and validates the findings from 
Paper IV. On an extended dataset with multiple different systems in different climatic 
conditions, the Marion snow loss model with the suggested improvements are tested. 
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Testing snow loss modeling on multiple systems in different operating conditions are 
essential to demonstrate the applicability of the snow loss model. 

– Paper VI is an extended version of paper V. The validation datset is expanded, and it 
is also evaluated if the data signatures described in Paper IV are valid for the extended 
dataset. An additional contribution of this paper, is a review of the literature relevant to 
describe the accumulation and clearing of snow on PV modules.  

– Paper VII aims to estimate snow loss for PV systems in Norway. Modeled snow loss 
is used to complement historical data, and the paper discusses how snow loss modeling 
could be employed to give improved understanding of typical and extreme snow loss 
values as well as inter-annual variation in monthly and annual loss for locations where 
long time series of historical data are not available. The paper also discusses how snow 
loss modeling should be implemented in yield predictions of future PV systems.  
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2 PV systems  
This chapter provides a description of the PV systems evaluated in this work. The aim is not 
to describe how the different components (solar cells, bypass diodes, inverters, maximum 
power point trackers, etc.) work or how they are impacted by irradiance and temperature. 
This is explained in detail in for example [33,34]. The aim is additionally not to describe all 
the components of a PV system, but to focus on the main components and concepts relevant 
for the research. Section 2.1 gives a general description of the analyzed PV systems, while 
Section 2.2 presents the details for the analyzed systems, such as geographical location, 
installed capacity, available sensor data and length of the time series. 

2.1 General system description 
Energy generating systems based on solar cells exists in multiple forms. In addition to the 
variation in solar cell technology, PV systems can specifically be designed for different 
applications. PV applications/technologies expected to play a role in the future [15], include 
for example floating and building integrated PV, PV specially adapted to agriculture, PV 
systems with trackers, or systems with bifacial PV modules. It is not uncommon that systems 
adapted for a specific application or different PV technologies have specific losses or gains, 
and procedures for PV performance evaluations and predictions for these PV applications 
and technologies are also needed. In this work, however, the main focus is on performance 
evaluation of a very basic type of PV systems: grid-connected, fixed tilt systems with 
monofacial modules, installed on roofs (flat or tilted, as illustrated in Figure 3). The focus is 
on the output of the PV modules, and the analysis is therefore limited to the DC side of the 
system.  

 

  

Figure 3: PV installations on tilted and flat roofs. 

Additionally, only PV monitoring that relates to continuous data collection from 
permanent sensors is considered, and the discussed methodologies for performance 
evaluation builds on analysis of this type of data. Other types of monitoring techniques for 
use in PV performance evaluation campaigns do exist, such as imaging and IV-curve 
measurements. A comprehensive overview of the different techniques is given in [35].  
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While there are large variations in components and design of PV systems, the systems 
studied in this work, in similarity with most grid-connected systems, are based on the 
principles described in Figure 4. As illustrated in the figure, arrays of PV modules are 
connected to an inverter and a monitoring system. 

 

 

Figure 4: Overview of the PV system and central components in the PV array and in the 
monitoring system. The list of sensors in the monitoring system is based on [36]. 

2.1.1 PV array 
Figure 4 gives an illustration of a typical PV array [34]. The modules have crystalline silicon 
(c-Si) solar cells and three bypass diodes. This is one of the most common types of module 
technologies in existing PV installations, and the type of module installed in the systems 
studied in this work. A PV array typically consists of series connected PV modules. The 
strings of series connected modules can additionally be connected in multiple parallels. The 
array of PV modules is then connected to an inverter. In addition to its main task – to convert 
the PV module output from DC to AC – the inverter typically also does the maximum power 
point tracking (MPPT) on the PV array and measure the system DC and AC output.  
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2.1.2 Monitoring system and sensors 
Because the inverter measures the output of the system, it is often also a central part of the 
monitoring system. Whether the installation has additional sensors measuring influential 
parameters or not, is a question about cost efficiency. Sensors are added if they are expected 
to add more value than cost. How many sensors that are part of the monitoring system as well 
as the quality of the sensors will also depend on their benefit for the system. For a larger 
system, the cost of a comprehensive monitoring system can be a small share of the total cost, 
and the value of documenting system performance or detecting performance deviations can 
be large. For a smaller system, an advanced monitoring system is less likely to be cost 
efficient.  

The irradiance and the temperature of the solar cell are, in addition to the electrical 
characteristics of the solar cell and module, the main parameters influencing the PV output. 
The main purpose of most sensors in a PV monitoring system is therefore to estimate these 
two parameters. Figure 4 presents a list of the sensors suggested in the IEC standard 
Photovoltaic system performance – Part 1: Monitoring (IEC 61724-1:2021). The list is here 
divided in two types of sensors, 1) sensors measuring parameters specific for the system, and 
2) sensors measuring parameters specific for the location. The parameters specific for the 
system include plane of array irradiance, module/cell temperature and the effect of soiling on 
reducing solar cell irradiance. The plane of array irradiance (POA) for the system is typically 
measured with either a thermopile pyranometer or a reference device. In this work, the 
reference device installed at multiple of the analyzed systems is a reference cell, where the 
main component of the sensor is a small solar cell. While the pyranometer measures all the 
irradiance in the PV array plane, i.e. shortwave radiation (approximately 300 – 2800 nm) in 
a field of view of 180 , the reference cell aims to measure the effective irradiance, i.e. the 
irradiance the solar cells can utilize after spectral and reflection losses. The module or cell 
temperature is either measured with a sensor on the rear side of the PV modules, or by 
measuring the temperature of the reference cell. Soiling sensors are less common and mainly 
relevant for locations where large soiling losses are expected. The parameters specific for the 
location that influence PV energy generation listed in Figure 4 include global horizontal 
irradiance (GHI), ambient air temperature, wind, humidity and precipitation. For large PV 
plants or scientific systems, many or all these parameters can be measured on site. Nearby 
weather stations or estimates based on satellite data are also commonly used sources for these 
types of data. 

 

2.2 Datasets evaluated in this thesis 
Different types of datasets are used in the work presented in this thesis, but all are from PV 
systems located in Norway. The evaluated systems are quite representative of the PV 
installations we find in Norway, including large commercial systems on flat roofs with 
east/west oriented modules with 10˚ tilt, installations on tilted roofs (both residential systems 
and larger buildings), and smaller research systems. The studied installations are typically 
located in an area where the climate is, according to the Köppen-Geiger classification [37], 
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warm summer humid continental climate (Dfb). However, many of the systems are located 
in areas bordering to oceanic climate (Cfb) or subarctic climate (Dfc), and a few are also 
located within these climate zones.  

The installations studied in this thesis have variations in both array configuration and 
instrumentation. Table 1 presents an overview of the different system types in the dataset, 
with information about installed capacity, start of time series, instrumentation and system 
configuration. For every system type the table summarizes in which papers data from the 
given category is used. Figure 5 shows the position of the installations, illustrating the 
geographical distribution. 

Table 1: Overview of the datasets studied in this thesis.  

System type Installed 
capacity 

Start of 
time 
series 

Instrumentation Configuration Paper 

Commercial 
systems, flat 

roof 

3.3 MW  
(6 systems) 

Varies 
between: 

2014-
2017 

Reference cells 
(POA + cell 
temperature). 

10  tilt, 
~east/west. Array: 

3 strings in 
parallel per 

MPPT, a couple 
of MPPT per 

inverter. 

One/multiple 
systems used 
in Paper I-VII 

Residential 
systems, tilted 

roof 

24 kW  
(5 systems) 

2018 or 
2019 

No local 
instrumentation, 
only data from 
nearby weather 
stations used. 

Tilt and 
orientation follow 
building. Array: 

one or two strings 
per MPPT/ 

inverter. 

Multiple/all 
systems used 
in Paper V-

VII 

Commercial 
system, tilted 

roof 
70 kW  2014 

Pyranometer 
(POA), module 

temperature.  

Tilt and 
orientation follow 
building. Array: 

unknown. 

Paper I 

Research 
system 4 kW 2016 

Reference cells 
(POA, GHI), 
module and 

ambient 
temperature. 

28  tilt, ~south, 
open rack. 1 
module per  

optimizer/MPPT. 

Paper I, IV 
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Figure 5: Overview of locations for the installations studied in this work. 
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3 PV system performance 
This chapter describes the effects impacting PV performance and provides the foundation for 
further discussions on PV system performance evaluations, i.e. description and 
documentation of how the systems work and identification and quantification of system 
losses. In this work, the term performance is not used to describe how much energy a PV 
system will generate, as this is most of all dependent on the available solar resource. The aim 
of this chapter is to describe 1) the motivation for research on PV system performance, and 
2) which parameters that impact PV system performance. A special focus is given to how the 
operating conditions typical for Norway are affecting PV system performance.   

3.1 PV system performance research motivation 
As described in Chapter 1, identification and documentation of the losses in PV systems are 
essential for assessing the potential for performance improvements and for predictions of PV 
energy generation, which both can contribute to reduction in costs and in increase in the 
performance of PV installations.  

3.1.1 Performance improvement assessments 
Assessment of the potential for PV system performance improvements, can both include 
identification of losses that can be corrected in the operation phase, and losses that can be 
avoided in the design or planning phase of future systems. This requires accurate 
quantification of both the losses and the cost of correcting the losses. Many of the losses in 
PV systems today, could in theory have been removed or significantly reduced in the design 
phase or through efficient operation and maintenance (O&M). To do this would in most 
cases be classified as over-engineering, and probably neither be cost nor energy efficient. For 
the sake of cost and energy efficiency, i.e. using our resources in the best possible way, we 
do accept a certain level of losses. Certain losses are also unavoidable. The only losses and 
faults we want to correct are the ones that are avoidable or recoverable in a cost-efficient 
manner. However, the line between acceptable/unavoidable losses and 
correctable/avoidable losses is moving with technology development, labor costs, energy 
prices, etc., and is dependent on operating conditions. For example, in a satellite, there are 
few other options for energy generation and challenging to repair broken components. The 
willingness to invest in efficiency and reliability is therefore high. In the case of a residential 
system, on the other hand, the house owner will not wish to pay more for the system than 
what she can save on the electricity bill. Competing with other energy sources in a sustainable 
energy system additionally requires consideration of energy payback time and the 
environmental impact of the potential improvement. To evaluate the potential for 
improvements can hence be a complex calculation, and accurate identification and 
quantification of losses would aid this process. 

3.1.2 Predictions of energy generation 
Identification of losses in PV systems are also necessary to improve predictions of PV energy 
generation. Estimations of losses in a system for various operating conditions are essential 
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input in the prediction of PV system energy generation on both short and long time-horizons. 
Hence, estimations of the PV system performance are important input to the models of PV 
output used in for example PV forecasts and yield estimations. PV forecasting is predictions 
of PV energy generation in the near future and its importance is expected to increase with an 
increasing share of PV in energy systems and grids [38]. Yield estimations, which are 
predictions of how much energy a certain PV system will generate in its lifetime, are 
necessary for designing and dimensioning of the system. Yield estimations are also necessary 
for estimations of techno-economic KPIs for a system, such as levelized cost of electricity 
(LCOE) and return on investment (ROI), and in system life cycle analysis (LCA). Both 
improved accuracy of forecasting and yield estimations can reduce system costs. In multiple 
energy markets, errors in the forecasts of energy delivered to the grid can have a cost and 
reducing forecasting errors is consequently expected to reduce this cost [39]. Accurate yield 
estimations will ensure optimal system design with respect to energy generation and eventual 
matching with load profile. Additionally, accurate yield estimations reduce the uncertainty in 
calculated KPIs and can result in reduced risk and uncertainty in the investment phase, which 
can reduce the investment cost [25]. 

3.2 Parameters affecting PV system performance 
A wide range of loss mechanisms impacts PV performance. The type and severity of losses 
in a system is additionally affected by operating conditions (including local weather and 
environment) and system design (including technology choice) – which are the parameters 
that impact the amount of lost energy, and O&M - which are the routines and practices 
implemented to reduce and correct losses for an existing system.  

3.2.1 Loss mechanisms 
Table 2 presents an overview of different PV system loss mechanisms often described in the 
literature. The loss mechanisms are divided in four categories: pre-cell losses, component 
losses, system losses, and degradation and failures. Pre-cell losses are defined as losses 
caused by effects giving reduced solar cell irradiance. Component losses are expected for all 
the components in the system that is used for energy conversion or transmission. The quality 
of the components can, however, impact the magnitude of the losses. The system loss 
category is here defined as losses that occur because different components are connected. For 
example, if modules with different capacity are series connected, the module with the lowest 
capacity will limit the output of the string, giving mismatch losses. In an energy system, PV 
output can be curtailed if the output exceeds the needs of the system. Losses due to 
component degradation and failure are expected and considered in the estimation of expected 
lifetime of the components. All components will experience wear and tear that can give 
degradation in their performance, and ultimately failure. However, not all cases of component 
failure and degradation are within the expectations. This can originate from a weakness 
within the component, or it can be caused by operating conditions that are harsher than the 
components are dimensioned for. 
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Table 2: Overview of commonly described loss mechanisms in PV systems [40–43], and 
range of reported annual losses estimated in performance evaluations or used in yield 
modeling. 

Loss mechanism Range of expected/reported annual losses  

Pre-cell losses: irradiance attenuation 

Reflection 0–10% [41,44] 

Shading 0–4%  [40,41] 

Snow 0–30%  [45] 

Soiling 0–7%  [40–43,46] 

Component losses  

PV module  
Conversion 
Thermal 

 
~80% (~20% c-Si module efficiency)      [15] 

                              0–15%                                  [41] 

DC/AC wiring, connections  0–7% [40,41] 

Inverter 
Inverter efficiency 
MPPT efficiency 
Sizing losses, clipping 

1–3% [41] 

Transformer 1–2%  [41] 

System losses 

Mismatch 0–2% [40–42] 

Curtailment 0–13%  [47] 

Degradation and failures 

Module faults and degradation:  
PID, LID, delamination, cracked cells, corrosion, 
discoloration of laminate, broken 
interconnects/solder bonds, frame breakage, 
junction box failures, backsheet failures, etc. 
[48,49] 

 
Median annual overall degradation rate: 

0.5 % 

 
[30] 

Inverter faults and downtime Depends on repair time [50] 

Faults in other components: connections, cables, 
etc. 

Depends on repair time [50] 
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The table also shows a range of reported expected annual loss for the different 
mechanisms, based on results from performance evaluations and reports on loss values 
commonly used in yield modeling. The wide range of reported or expected annual loss can 
be related to 1) the fact that there can be large variation in the loss caused by different loss 
mechanisms for different systems and in different operating conditions, and 2) limited 
documentation of certain loss mechanisms can give variation in what different PV modelers 
expect in losses for a given loss mechanism.  

3.2.2 The effect of system design, operating conditions and O&M on losses 
System design and operating conditions are expected to influence the type and severity of the 
losses in a system. Table 3 gives examples of how operating conditions and system design 
can influence both the cause and the magnitude of the loss for the loss mechanisms listed in 
the pre-cell category in Table 2. Shading of the modules is caused by objects blocking the 
direct irradiance of the PV modules. The magnitude of shading losses will depend on both 
how the system is designed to handle partial shading (array configuration, bypass diodes), 
and the diffuse/direct shares of the irradiance. The accumulation of soiling on the module 
surfaces will primarily depend on available sources for dust and dirt in the environment [46]. 
Precipitation can give natural removal of soiling. Humidity, wind, ambient temperature, and 
module tilt and surface are also expected to impact the soiling process [51]. While 
accumulation of snow cover is primarily occurring after snowfall, the natural clearing of snow 
is impacted by multiple different parameters related to weather and snow conditions, and 
system design [45]. For cases with partial snow cover, the energy loss will depend on how 
well the system responds to partial shading. The reflection losses will depend on the glass 
and cell surface technologies and their anti-reflection properties, as well as the angle of 
incidence of the irradiance which relates to both solar position relative to the module plane 
and the diffuse/direct share.  

The same complexity with many parameters impacting the loss is also observed for 
many of the other loss mechanisms. For example, both the ambient temperature and 
irradiance influence the temperature of a module and consequently thermal losses. But 
potential heat sources in the system and if the system design enables natural cooling of the 
modules are also influential [52]. The development of faults and degradations relates both to 
the robustness of the different components, and the stress they experience, which typically 
closely relates to the operating conditions [53].  

Reduction and correction of losses 
For several loss mechanisms, the energy losses can only be avoided or corrected in the design 
or installation phase of the system, by for example choosing efficient and reliable 
components, adapting the design to the shading scene, or choosing a mounting ensuring 
efficient ventilation. For certain loss mechanisms, however, it is possible to reduce the energy 
loss by efficient O&M. O&M are today considered important to keep the performance of a 
PV installation on a high level [54]. Loss reducing measures typically implemented in O&M 
include reducing the shading by soiling, snow or vegetation, and replacement of faulty 
components [55]. As discussed in Section 3.1.1, estimation of the need for corrective 
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measures is a complex calculation. In addition to accurate identification and quantification 
of these losses, the cost and gain to correct them, as well as safety or reliability related issues 
connected to the relevant loss mechanism, also requires consideration.  

Table 3: Examples of the effects of operating conditions and system design on the cause 
and magnitude of the energy loss for the different loss mechanisms in the pre-cell loss 
category. 

Loss 
mechanism 

Operating conditions System design 

Cause Magnitude Cause Magnitude 

Shading  Diffuse/direct share of 
irradiance 

Shading 
objects 

Array configuration, bypass 
diodes 

Soiling Soiling 
sources 

Precipitation, wind, 
humidity, ambient 
temperature 
 

 Module tilt, surface coatings 

Snow Snow 
fall 

Temperature, 
irradiance, type of snow 

 Tilt, array/module/system 
configuration, module 
technology  

Reflection  Diffuse/direct share of 
irradiance, solar 
position 

Glass/cell 
surface 

Glass/cell surface technology 
 

 

3.3 The effect of Norwegian conditions on PV performance 
Because operating conditions can have a large impact on losses, the loss mechanisms that are 
most prominent in different geographical regions can vary. In this work the studied dataset 
consists of data from PV installations Norway, and the aim is to focus on how the operating 
conditions specific for Norway impact PV performance and performance evaluation.  

3.3.1 Characterization (and prevalence) of the Norwegian conditions 
Within Norway, there are significant variations in both climate and irradiance conditions. 
Certain qualities can, however, be generalized, and are additionally transferable to other 
geographical regions. The typical aspects of Norwegian conditions relevant for PV are: 1) 
high latitudes, which affect the irradiance conditions (solar position and irradiance level), and 
2) a climate characterized by large seasonal variations, low temperatures and precipitation 
the whole year, including snow in the winter. The climate zones in the studied dataset (Dfb, 
Dfc and Cfb, according to the Köppen-Geiger classification [37]) cover well the areas in 
Norway with highest population density, and where most PV systems therefore are installed. 
Most of the studied systems are, however, located at latitudes below 62 , and the more 
extreme high latitude conditions are thus not represented. 
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Figure 6: Map of the world illustrating which areas that are located above 58  (marked 
with white lines), the latitude of the southern point of Norway (marked in red). 

 

 

 

Figure 7: Köppen-Geiger climate classification based on historical (1980-2016) climate 
data. Figure from [37]. 

 



21 
 

Figure 6 illustrates which areas that are located at the same latitude as Norway, and 
Figure 7 shows the geographical distribution of the different climate zones according to the 
Köppen-Geiger classification. From these figures, it can be observed that the combination of 
high latitude and climate we find in Norway is also representative for large areas in Sweden, 
Finland, Canada, Alaska and Russia. Warm summer humid continental (Dfb) and oceanic 
(Cfb) climates (barely visible in Norway on the map but represented in the coastal and near-
coastal areas) are additionally represented in large areas at slightly lower latitudes in Europe 
and Northern America. The effects of high latitude on the irradiance conditions increases 
with increasing latitude but are expected to be noticeable in all the mentioned areas.  

3.3.2 Impact of Norwegian conditions on PV 
As described in [56], the type of irradiance and the climatic conditions in the northern 
countries impact PV energy generation and performance in various ways. Because of the tilt 
in the Earth’s axis of rotation and its round shape, a high latitude position gives large variation 
in the day length through the year and low solar elevation. The interannual variations in day 
length introduces large interannual variation in the solar resource. It additionally has an 
impact on how the angle of incidence (AOI) of the PV module irradiance varies through the 
year. For fixed tilt systems, high AOI values for longer periods of the year/day are typical. 
Low solar elevation gives reduced irradiance and increased air mass, i.e. the optical length 
through the atmosphere of the Earth. The air mass affects both the intensity and the spectrum 
of the solar irradiance. The climate affects PV through low temperatures, overcast weather 
and precipitation. Overcast weather reduces the irradiance level and increases share of direct 
and diffuse irradiance [57]. Precipitation includes both rain and snow. Figure 8 shows how 
the daily mean solar elevation (for elevation >0), the daily mean TMY temperature and the 
weekly TMY irradiation of Oslo, Norway, compares to Hamburg, Germany and Milan, Italy. 
Oslo has lower temperature and solar elevation values than Hamburg and Milan, but the 
irradiation is similar to the irradiation of Hamburg. 

The described operating conditions will affect PV energy generation both through 
affecting the available solar resource and the PV system performance. The efficiency of the 
PV modules drops at lower irradiance levels and the efficiency of the inverter drops when the 
generated power is much lower than the nominal capacity of the inverter. High angle of 
incidence of the irradiance leads to increased surface reflection and reduced solar cell 
irradiance. Lower temperatures will on the other hand give reduction in thermal losses, and 
frequent rain keeps the PV modules clean, reducing soiling losses. Snow blocking the 
irradiance can give very high losses, but if the modules are snow free, the increased POA 
caused by increased reflections from the ground can give performance gains. There are, 
however, still significant knowledge gaps with respect to both understanding and 
consequently also predicting the effect of snow. The effect of snow on PV performance is 
therefore given particular consideration in this work, and Chapter 5 is dedicated to this topic. 
Figure 9 shows how losses caused by reflection and temperature compare for Oslo, Hamburg 
and Milan. While the thermal losses are lower for Oslo, the reflection losses are higher,  
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Figure 8: Daily mean solar elevation (for elevation >0), daily mean TMY temperature and 
weekly TMY irradiation of Oslo, Hamburg, and Milan. Solar elevation calculated with 
pvlib python [58]. TMY data from [59]. 

 

Figure 9: Daily reflection losses (at clear sky irradiance) and monthly temperature losses 
relative to STC for a system with a) 10  tilt, oriented east, and b) 30  tilt, oriented south, 
located in Oslo, Hamburg and Milan. The reflection losses are modeled with the pvlib [58] 
implementation of the model described in [60], and the temperature losses are estimated 
from TMY data [59] with a temperature coeffcient of -0.004. 
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especially when the modules are not oriented South. The reflection losses are estimated for 
clear sky conditions, and is thus expected to represent the maximum reflection loss. 

In addition to the described losses, which closely correlates to variations in operating 
conditions, the climatic and irradiance conditions will also influence the wear and tear of the 
different components, i.e. how fast they degrade and ultimately fail. It is commonly known 
that climatic conditions play a major role in degradation [48,61]. High temperature, humidity 
and UV are for example expected to give increased degradation. Both analyses based on field 
data [62] and degradation models [53] shows higher degradation rates in hotter climates.  
Modeling of the degradation mechanisms related to temperature, irradiance and humidity, 
confirms that lower degradation rates caused by these stressors are expected at high latitude 
locations [53]. On the other hand, snow is an additional stressor that can impact degradation 
rates. Periods with increased mechanical load because of snow can contribute to increased 
degradation and failures, especially if the PV modules are installed with insufficient 
mechanical support. Is has been observed that snow loads have resulted in both cell and 
module fracture [63]. However, the effect of the cracks on PV performance is not necessarily 
large [63]. Additionally, it is complex to estimate what type of snow cover that gives a load 
that can lead to cracks. The mechanical load of a snow cover will depend on both the 
temperature and the homogeneity of the snow cover [64]. Published field data indicates low 
degradation rates in high latitude/snow climates, but more data is still required to robustly 
conclude on this [62].  

While the theory on the effect of the operating conditions found in Norway on PV 
performance is well known, there is still a need for studies on existing PV systems providing 
detailed information on how significant these effects are. Compared to regions at lower 
latitudes which has had higher PV installation numbers for a longer time, the available data 
for such evaluations in Norway and similar locations have been limited. Several of the 
existing performance studies on PV systems in Norway and Sweden are focused on reporting 
the total system performance for different technologies. Studied technologies include 
building applied PV, both BIPV systems and systems on flat and tilted roofs [65–69], dual-
axis tracker systems [70], and bifacial PV systems [56,71–73]. Shading, snow, and inverter 
outages are identified as influential loss mechanisms [65–67,72]. It has been found for two 
different Norwegian installation that the degradation rate is well below 0.5% per year  
[74,75], the median degradation rate reported by [62] for PV installations worldwide. Ref. 
[57] models how the measured irradiance and temperature in different locations in Norway 
impact the effective efficiency for different module technologies. Field data on comparing 
different module technologies for the given operating conditions is provided in [56,76], 
where CIGS and c-Si modules are compared.  
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4 Methodology for evaluating PV system 
performance 

To evaluate PV performance based on the measured data in the monitoring system, a 
performance metric is typically calculated. How this metric is best defined and evaluated, 
depends on the application, i.e. if the aim is to determine the overall system performance or 
identification and quantifications of specific losses. Evaluating PV performance is, however, 
not straightforward. Various factors can impact both PV performance and the evaluation 
itself. These factors are not necessarily the same in all systems and operating conditions. A 
consequence of this is that methods to evaluate different performance aspects can be adapted 
to specific operating conditions or system designs, which gives a range of methods available 
for different tasks. To enable fast and easy implementation of performance analysis in 
automatic systems, we need standardized methods and procedures with broad applicability. 

This chapters describes existing methodology for performance evaluation and discusses 
challenges and solutions. Section 4.1 describes the methodology for performance evaluations 
of PV systems based on monitoring data. Section 4.1.1 describes commonly used 
performance metrics and Section 4.1.2 discusses how the metrics are evaluated and used in 
different applications. In Section 4.1.3, standardized procedures for PV performance 
evaluations are discussed. In Section 4.2 factors impacting performance evaluation are 
classified, and potential methods to handle these impact factors are discussed in Section 4.3. 
The last two sections also describe how our research contributes to the classification and 
handling of impact factors.   

4.1 Performance evaluation based on monitoring data 

4.1.1 Performance metrics 
Both PV system losses and PV energy generation are highly dependent on operating 
conditions and system design. Within the performance metrics used to quantify and evaluate 
PV performance, the output of the system is therefore typically compared to a reference or a 
yield target [77]. This section describes three different types of commonly used references 
and gives examples of how these reference types are used in the performance metrics defined 
in the IEC standard Photovoltaic system performance – Part 1: Monitoring (IEC 61724-
1:2021). The performance metrics defined in this IEC standard are often implemented in PV 
system monitoring software. The three references are 1) other systems or system units, 2) 
impactful parameters and 3) model of the system or system units/components. 

Other systems or system units/components 
The electrical output (current, voltage, power, energy) of a PV module, PV array or inverter 
can be compared with other units of the same type within a system [77] or to the output of 
other systems [78]. If the units are not identical, this is done by normalizing the output to the 
rated capacity of the units. For the ratio between energy output (Eout) and the power rating 
(P0) for a PV system, array or module, the terms yield, energy yield, or specific yield are 
commonly used. In the IEC standard [36], the final system yield (Yf) is defined as: 
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.  (1) 

 
When comparison of output is used as a performance metric, the required similarity in design 
and operating conditions for the compared arrays or systems, depend on the application of 
the performance evaluation. For an evaluation of the overall system performance, it is 
sometimes useful to compare the yield of systems or arrays with different designs or operating 
conditions. To use comparisons of array specific yield to detect component faults within a 
system, the compared arrays should have the same configuration (tilt angle and orientation) 
and operating conditions (irradiance and temperature).  

Impactful parameters (such as irradiance, temperature) 
Solar irradiance is the parameter that most of all affects the energy output of a PV system. 
The irradiation (H) in the plane of the PV array (HPOA) is therefore a natural parameter to 
include when evaluating PV performance. For comparison of PV yield to plane of array 
irradiation, the term performance ratio (PR) [36] is commonly used [78,79]: 

 
 . (2) 

 
Gref is the reference irradiance (G) at which P0 is determined. For standard test conditions 
(STC), Gref is 1000 W/m2. For comparison of instantaneous values, energy can be replaced 
with power (Pout) and irradiation with irradiance (GPOA). As temperature has high impact on 
the PV system output, the temperature corrected performance ratio (PR’T) has also been 
suggested for performance evaluations [80]. For temperature correction with respect to the 
STC temperature of 25  (TSTC), this is defined in [36] as: 

 
.  (3) 

 
The material dependent module power temperature coefficient , determines the loss or gain 
in power caused by temperature changes. Comparison with an impactful parameter could also 
be done for other system output parameters: temperature could for example be used as a 
reference for output voltage, and irradiance could be used as a reference for output current. 
The performance ratio is commonly used to quantify the system performance and the total 
losses in the system [78], and comparing for example voltage and current to other influential 
parameters have been suggested to identify different loss mechanisms [79].  

Model of the system or system units/components 
A model of the output of the system or system components is another potential reference for 
the measured output. The term performance index (PI) is defined in [36] as: 
 

 (4) 
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A wide range of models for the expected output of PV systems exists, from models of the 
different components to full system models. Both physical and empirical/machine learning 
models are suggested [27,77,81,82]. The losses that should be included in the model will 
depend on the application/purpose of the performance evaluation. For example, to evaluate 
if the system works as planned, all the expected losses accounted for in the dimensioning of 
the system should be included. Quantification of the energy loss caused by one specific loss 
mechanism requires accurate estimations of all other losses.  

4.1.2 Evaluation of performance metrics  
While the calculation of the described performance metrics is straightforward, the evaluation 
of the performance metrics to determine potential for improvements and identify specific loss 
mechanisms can be done in various ways. This section describes how the references described 
in the Section 4.1.1 could be utilized if the aim is 1) estimation of system performance, or 2) 
identification of loss mechanisms.  

All the suggested references can be used to quantify the overall system performance. 
The choice of reference will, however, impact the type of information achieved from the 
performance evaluation. The system yield will for example describe how a specific system 
with the given design and given operating conditions compares to other systems. With the 
performance ratio, the effect of varying solar resource is removed, and all the losses in the 
system are quantified. If other expected losses are considered the loss estimation will be more 
specific. For example, the temperature losses could be corrected for. Including an increasing 
number of weather effects impacting PV performance, results in an improved description of 
how the systems work independent of weather conditions. A detailed model of the system 
with all expected losses enables comparisons between expected performance and actual 
performance. 

To identify different loss mechanisms, for example the mechanisms previously 
described in Table 2, and detect potential for improvements in system performance, 
comparing the output to one reference alone is not always enough. Often multiple variables 
must be considered to identify different loss mechanisms. This can be relevant for both 
detection and diagnosis of performance loss. With losses of a few percent, for example caused 
by module faults and degradation, detecting the performance deviation in itself can be 
challenging. A typical parameter that is often used to detect the losses caused by module fault 
and degradation, is the development of the performance metric with time. For example, to 
both identify and quantify the total performance loss because of faults and degradation, the 
development of the performance metrics over multiple years can be evaluated [27,83]. We 
show in [84] that calculation of the cumulative energy losses over time can give fast detection 
of faults that give small relative losses. If the performance loss caused by a component fault 
is not gradually increasing, but the onset is more abrupt, the component fault can be identified 
by detecting steps in the performance metric time series [85]. 

Describing signatures or fingerprints in the data is an approach that is commonly used 
to identify specific loss types [79,86]. Often, multiple parameters can be evaluated to identify 
or detect one specific loss mechanism, and there are multiple pathways that can be followed 
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to answer the relevant questions. The suitability of the different signatures will depend on 
data availability (and the quality of the available data), and the system design and operating 
conditions. The influence of system design and operating conditions follows from the fact 
that both can impact the energy losses related to different loss mechanisms, as previously 
illustrated in Table 3. 

To show an example of how signatures in the time series data can be used to identify 
different loss mechanisms, Figure 10 illustrates the difference in the response in the 
monitoring data timeseries for shading caused by snow and shading caused by a fixed object. 
The plane of array irradiance is here used as a reference for the expected current output, as 
these quantities are expected to be directly correlated. The snow shading loss is here gradually 
recovered with time, related to how fast the snow melts. The shading loss caused by a fixed 
object occurs at a specific time of the day and is larger at clear sky conditions. As described 
in Section 3.2.2., the energy loss caused by shading from a fixed object will depend on solar 
position, and it will increase with increasing direct irradiance. This means that shading can 
be identified by relating the losses detected in for example PR’T or PI with solar position and 
clear sky index. Shading can also be identified by comparing the output power or current with 
a reference, such as an irradiance measurement or another PV module/array and evaluate how 
the differences change with time. Snow will give large losses with similarity to both full and 
partial shading, but how snow losses develop with time is following the development of snow 
cover, which is related to various weather parameters. Identification of snow losses will be 
further discussed in Chapter 5.  

 

Figure 10: Illustration of the difference response in the monitoring data timeseries for 
shading caused by snow and shading caused by fixed objects. 
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4.1.3 Standardized performance evaluation methodology 
A consequence of the multiple possible pathways in performance evaluation, in combination 
with variations in available output data from monitoring systems, is that it is challenging to 
develop standard analysis procedures to either estimate overall system performance, or to 
quantify specific losses. The IEC technical specification IEC TS 61724-3:2016 Photovoltaic 
system performance – Part 3: Energy evaluation method suggests a procedure for comparing 
the actual energy generation of a system with the expected energy generation for the given 
weather and irradiance conditions. However, in this procedure there are many choices that 
must be made and many effects to consider that are dependent on the system and the purpose 
of the evaluation. Due to the need for evaluating the available input data and the 
methodology, an accurate performance evaluation of a PV system will require an experienced 
analyst. Relying on a human analyst does, however, open for variation in interpretation of the 
data. In a study where a group of different analysts were given the task of estimating the PV 
degradation rate in the same dataset, the obtained results had significant variations [26].  In 
this study, the authors evaluate many of the choices that could be made in a degradation rate 
estimation. Specifically, decisions related to data filtering can have large implications on the 
results. It has been shown that the results of an estimation of total PLR [27,87] and a module 
degradation analysis [88] can vary with use of filtering, performance metrics, and models of 
the expected output. It has also been shown that the output of yield predictions can depend 
on both the modeling tool and the modeler [28]. More standardized procedures for evaluation, 
and also prediction, of PV performance are clearly needed. Standardized procedures would 
give analyses with improved repeatability and enable less experienced analysts to do the 
evaluation as well as automation and implementation of the analysis in monitoring platforms. 
This could give cheaper and faster evaluation of PV system performance. 

There are examples in the literature of work contributing to standardized methodologies 
for PV system performance evaluation. These standardized methods are typically targeted for 
specific applications, such as fault detection or degradation rate estimation. Standardized 
procedures for fault detection or degradation estimation are for example suggested in [84,88–
90] where steps for processing the data, calculation and evaluation of performance metrics 
are suggested. RdTools is a framework developed to enable robust [83] and reproducible [26] 
degradation rate estimation, where data filtering and a year-on-year analysis procedure are 
central elements. Ref.  [91] suggests estimating degradation rate using an unsupervised 
machine learning approach based on estimating, based on the measured power, what the clear 
sky power output would have been and then calculate the change in this estimated signal from 
year to year. This methodology utilizes the systematic trend in the clear sky irradiance 
through the day and the year. Together with the suggested automatic cleaning procedure [92], 
the method is fully automatic and requires only power output data.  

Ref. [27] tests several procedures for performance loss estimation on multiple different 
datasets with the aim of standardizing performance loss rate estimation. The procedures 
typically include data cleaning and filtering, choice of performance metrics and statistical 
evaluation of the metric. The authors conclude that a perfect procedure that can be used for 
all systems is probably not existing, and they recommend that the choice of filters, 
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performance metrics, etc., should be adapted to the dataset characteristics. To adapt 
procedures to different datasets, the different effects in a dataset that can impact the 
performance analysis should be well known, as well as the methods to handle these effects 
in different operating conditions and with different system designs. The authors of ref. [27] 
also suggest that the performance loss rate could be estimated through an ensemble approach, 
where multiple different procedures are used, and the average output value is used as the 
estimate. A potential issue with this approach is that if there are losses or other factors 
impacting the performance loss rate calculation that are not targeted by most of the methods, 
this could bias the result. To use this approach, it is therefore also important that the effects 
that potentially could impact the performance evaluation in different datasets is well known, 
as well as how the different procedures handle these effects and losses. To identify impact 
factors, and implement methods that efficiently handle these impact factors, can aid the 
development of standardized performance evaluation procedures with broad applicability.    

4.2 Classification of factors impacting performance evaluation  
The aim of this section is to classify the factors that have an impact on PV performance 
evaluation. Performance evaluation and identification of loss mechanisms are not only 
challenged by the large number of parameters influencing PV performance, as described in 
Chapter 3, but also that there are multiple parameters affecting the calculated performance 
metric that are not related to PV performance. In the papers included in this thesis, factors 
that affect fault detection in the studied Norwegian installations are analyzed and classified. 
Based on these results, summarized in Section 4.2.1, a broader classification is discussed in 
Section 4.2.2. The discussion in 4.2.2 is added to generalize the classification, both with 
respect to operating conditions and aim for performance evaluation, and to put the results into 
a broader context and compare with the existing literature.  

4.2.1 Thesis contribution 
In Paper I-III, we have done an evaluation of which factors that impact performance 
evaluation of systems in the operating conditions typical for Norway, described in Section 
3.1.1. The performance evaluation case discussed in the papers is mainly fault detection. In 
Paper I, we discuss data quality challenges in PV monitoring systems, and how this impacts 
performance evaluation in general. The data quality effects discussed are drifts and shifts in 
the irradiance measurements, misalignment of irradiance sensor, and detachment of module 
temperature sensor. In Paper II and III we identify different factors that impact the calculated 
performance metric time series by introducing noise, offset or systematic trends. These 
effects include expected losses not considered in the performance metrics or factors that give 
similar signals as performance losses or gains. In Paper III we categorize these factors in the 
following three categories: 1) invalid data, 2) data quality and availability, and 3) unstable 
periods. Table 4 presents the identified factors in the different categories for the case of fault 
detection. The invalid data category includes mechanisms introducing large losses or factors 
that give a signal similar to large losses. These types of signals are a significant challenge for 
fault detection because the related impact on the performance metric typically is much larger 
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than the impact of other loss mechanisms. The data quality and availability category 
summarizes factors that can give systematic trends or offsets in the performance metrics 
because of the data quality, or because the availability of input data are not sufficient to 
include these effect. The unstable periods category include factors introducing noise in the 
performance metric time series.   

Table 4: Summary of factors impacting fault detection and/or performance evaluation 
identified/described in Paper I-III. 

Invalid data Data quality and availability Unstable periods 

Sensor/monitoring 
system downtime 

Snow 

Clipping 

Curtailment 

Lacking quantification of expected system 
losses because of insufficient system data 
avilability 

Systematic differences in irradiance in PV 
array and/or between PV array and irradiance 
sensor (shading, variations in tilt angles) 

Drift/shifts in irradiance measurements 

Detachment of module temperature sensor 

Irradiance with low 
intensity and AOI, low 
solar elevation 

Rapid, large changes in 
irradiance 

 
These types of impact factors are also previously described in the literature for different 

types of performance evaluations (fault detection, degradation and performance loss rate 
estimation, evaluation of overall system performance, etc.) [27,79,83,89,93]. For example, it 
is not surprising that periods with high angle of incidence (~ 60 ) and low intensity of the 
irradiance (~ 200 W/m2) would be challenging. These conditions result in losses that are 
difficult to accurately quantify, as well as increased measurement uncertainties [94]. In 
analyses where the aim is to identify losses caused by for example faults or degradation, 
periods with irradiance with low irradiance and high angle of incidence are typically filtered 
out [27]. This filtering is done because the related noise gives a stronger signal in the 
calculated performance metric than the faults or the degradation.  

The main challenge in the studied dataset is, however, the prevalence of many of these 
factors. As discussed in Section 3.3.2, periods with large share of irradiance with low 
intensity and high angle of incidence can last for longer periods and will be more severe at 
the studied locations than at locations at lower latitudes. Snow can also give large losses for 
long periods. Clipping and curtailment are highly dependent on system design and grid 
operation but could be expected to be prevalent in locations like Norway. With large 
variations in irradiance through the year and low electricity prices in the summer, it can be 
beneficial not to optimize the system for the few summer months with highest irradiance, and 
systems can therefore be designed with expected clipping losses. 

 The effect on the performance evaluation of systematic differences in irradiance within 
a PV array and between PV array and irradiance sensor because of small variations in tilt 
angles are not widely discussed in the literature. For PV modules that are installed on racks 
on the ground or on flat roofs, all the modules will not always have the exact same tilt because 
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the surface they are installed on not always will be completely flat. To measure the effective 
plane of array irradiance of an array with small variations in tilt will be difficult. Additionally, 
even if the modules have the exact same tilt, the irradiance sensor can be inaccurately 
installed with respect to tilt and orientation. Ref. [36] recommends a sensor alignment 
accuracy of 1  in a high accuracy monitoring system. Figure 11 shows the relative difference 
between the daily clear sky irradiation of planes with respectively 1- and 2-degrees difference 
for Oslo, Hamburg and Milan, and how this difference varies through the year. In the figure 
we observe a seasonal variation in the difference, and that this variation is largest for Oslo 
and low tilt angles. The difference will be largest at clear sky when the share of direct 
irradiation is at maximum, and the figure consequently illustrates the maximum difference in 
irradiation for the given tilt angles. The seasonal variation in the irradiation difference 
between two planes with small deviations in tilt, is expected to give a seasonal effect on a 
performance metric when the utilized irradiance has a tilt that deviates from the PV arrays. 
Figure 12 shows how the PPI of a system can vary through the day when the irradiance sensor 
has a tilt that is 1 and 2 degrees steeper than the tilt of the PV array. The systems are modeled 
with no losses, and the PPIs are thus expected to be equal to 1. Despite the small absolute 
differences in irradiation between the different planes, the effect when comparing to the PV 
output is large. Because of the deviations in tilt in the irradiance, the performance metric 
indicates performance gains or losses in the morning and in the afternoon. We see that this 
trend is stronger for the day with clear sky conditions. 

 

 

Figure 11: The relative difference between the daily clear sky irradiation of two south faced 
planes with respectively 1 or 2 degrees difference.   
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Figure 12: The calculated power performance index of a system located in Oslo with 
moduels with 10  tilt oriented East, calculated with the irradiance (G) of planes with a tilt 
(t) of 10, 11 and 12 degrees. No losses are included, and the PPI is thus expected to be 
equal to 1.  

4.2.2 General classification 
The categorization of impact factors presented in the previous section is specifically targeted 
for fault detection. However, these impact factors could be classified more broadly to also 
enable implementation in other types of performance evaluations. Generally, the discussed 
factors were either related to:  

– Data quality (drift/shifts in irradiance measurements, detachment of module 
temperature sensor).  

– Non representative references used in the performance metrics (systematic irradiance 
differences in the system caused by small variations in tilt, rapid changes in irradiance). 

– Expected losses not (accurately) considered in the performance metric (snow, 
curtailment, clipping, shading, irradiance with low intensity and high angle of 
incidence). 

This section elaborates further on these three categories. This is done to generalize the 
classification of factors impacting performance evaluation, with respect to both operating 
conditions and aim for performance evaluation, and to put the results into context and 
compare with the existing literature. While classification of factors impacting performance 
evaluation is not widely discussed in the literature, many of the different factors are 
previously evaluated. Table 5 summarizes the impact factors found in our work supplemented 
with factors described in the literature and gives examples of how the factors can impact the 
calculated performance metric. The categorization is not considered to be absolute, and the 
impact factors can in several cases fit into more than one category.  
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Table 5: Overview of the different factors impacting performance evaluation, and common 
consequences of these factors in the calculated performance metric and the data analysis. 

Cause Possible effects on performance metric 

Data quality  

Missing data Holes in time series 

Erroneous data, e.g. stale or unphysical values, 
duplicated data, incorrect time stamp 

Erroneous results because logged data not 
representative for measured physical quantity 
or time stamp 

Non calibrated sensors Missing information on uncertainty in 
performance metric 

Temperature sensor with poor thermal contact 

 

Measured module temperature systematically 
too low, giving systematic trends in 
performance metric 

Drift or shifts in irradiance measurements Drift or shifts in performance metric 

Soiling/shading on irradiance sensor Indication of performance gain, systematically 
and/or random (depending on soiling types) 

Sensor uncertainties Noise, offset in performance metric time series 

Non-ideal references  

Choice of sensor 

Placement of sensor 

Inadequate reference model 

Noise, offset, systematic trends in performance 
metric time series if measured or modeled value 
is not representative for the quantity it 
represents 

Inaccurate quantification of expected 
losses 

Noise, offset, systematic trends in performance 
metric time series 

 
The typical effect these factors can have on the performance evaluation, is to induce 

noise, shifts, offsets or systematic trends in the calculated performance metrics. Parts of these 
signals in the performance metrics will be related to actual losses, but other parts of the 
signals can be related to data quality issues or the use of non-representative references used 
in the performance metric. Figure 13 shows daily PR’T for three years, and 5-minute PR’T 
values for six days for one of the studied systems. For both time resolution, we observe noise 
and systematic trends. On high time resolution there is a daily systematic trend, and on lower 
time resolution we observe a seasonal systematic trend. The seasonal trend is a commonly 
observed systematic trend in calculated performance metrics [88].  
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Figure 13: PR’T with daily and 5 minute time resolution for one of the studied systems, 
illustrating possible variation in the performance metric through the year and through the 
day. 

Data quality 
Poor data quality is a potential weak link in any data analysis. To avoid this, well-performing 
monitoring system should be implemented from the start. This necessitates both the sensors, 
installation, and maintenance to be of a certain quality. The list of requirements to achieve a 
high-quality monitoring system enabling thorough PV performance analysis is long 
(including various high-quality sensors and continuous maintenance), as for example 
described in the IEC standard for PV monitoring [36]. Because of the additional costs and 
that the exact cost of high-quality data is not known, the quality of data in existing PV 
installation is varying. If the data quality is not ensured from the beginning and additionally 
properly maintained, it must be considered in the analysis. Consequently, methods for 
recognizing and handling quality issues in the data is typically necessary. 

Common data quality issues in PV monitoring data, is described in for example 
[36,89,95,96]. Potential issues in PV monitoring data include lack of sensor maintenance, 
non-functioning logging, communication or sensors, or conditions giving biases or noise in 
the sensor data. Quality issues connected to lack of maintenance of sensors are for example 
lacking sensor calibration and irradiance sensors that are not cleaned. Non-functional sensors 
or logging can result in missing data, unphysical values, duplicated data or stale values. Errors 
or missing information related to time stamps is another potential issue. This includes lacking 
information on time zone, daylight saving time or method for time sampling (for example 
description of what the time stamp represents: the beginning, end or the middle of the logging 
interval). Inaccurate time synchronization is another potential time-related issue. Irradiance 



36 
 

sensors have expected uncertainties linked to for example time lag, drift, and angular 
response, as well as temperature related zero offsets that can give positive readings at 
nighttime [97,98]. Additionally, they can be installed inadequately, for example with 
inaccurate tilt angle or in a location with shading [96]. For module temperature sensors 
attached to the rear side of the module, it has been observed that they can have poor thermal 
contact and detach from the module temperature surface [79]. 

If data quality issues are not detected and handled, they can have large impact on the 
result of the system performance quantification and loss identification. As discussed in [99], 
data quality issues giving errors in the irradiance and module temperature measurement can 
introduce severe errors in the performance evaluation. For estimations of the overall system 
performance the irradiance measurement is often essential, and errors in the irradiance value 
would consequently give erroneous results. In analysis of how the performance evolve with 
time, shifts or drifts in the irradiance measurements can be misinterpreted as faults or 
degradation in the PV system, or mask degradation in the system. Detached temperature 
sensors will lead to underestimation of the module temperature which again may lead to 
underestimation of temperature losses and give an over-optimistic estimation of expected 
output. Periods of missing data can reduce the robustness of the analysis, as the basis for 
evaluation is reduced. 

Non-ideal references 
Another issue that can challenge accurate performance evaluations, is that the reference used 
in the performance metric is not representative for the evaluated system. This can be an issue 
related to reference measurement or to the reference model. The suitability of the reference 
measurement is to a certain degree related to data quality. The sensors in the monitoring 
system must be designed to correctly give a representative estimate of the conditions of the 
module, both with respect to sensor suitability and sensor placement/installation. This is 
relevant for sensors measuring both system and location specific parameters, but as system 
specific parameters are the most common measurements used in our research, these are the 
parameters discussed in this section. Another potential challenge with comparing the output 
to a reference, is how well the reference follows the target output under fast changes in 
operating conditions, for example under conditions with fast moving clouds. 

Different sensors will give different information, impacting how suitable a sensor is for 
a specific task. As presented in Section 2.2, the plane of array irradiance in the systems 
evaluated in this work is either measured by a pyranometer or a reference cell. While the 
pyranometer is measuring the total irradiance in the plane of array, the reference cell is 
designed to measure the effective irradiance, i.e. the irradiance the solar cells can utilize 
[97,100]. The aim of the reference cell is thus to measure the irradiance after reflection and 
spectral losses, and with the same time response as a solar cell. A pyranometer, on the other 
hand, has nearly uniform sensitivity for all the wave lengths within its measurement range 
and the angular response is almost constant. Also, its measurable response to irradiance is a 
few seconds slower than a solar cell. Irradiance measured by a reference cell could thus be a 
better reference device for cases where we want to consider reflection and spectral losses 
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accurately in the performance evaluation. A prerequisite here is, however, that the reference 
cell is matched with the relevant PV technology. While the spectral responses of crystalline 
silicon cells are expected to be quite similar, there could potentially be variations in the 
quality of the antireflective properties of the cell, glass or both. Multiple methods for 
developing anti-reflecting coatings for PV modules exists, as described in the literature [101]. 
With differences in reference cell technology and the installed PV modules, unknown 
deviations between target and reference can occur (affecting the suitability of the reference 
cell as a reference measurement).  

Cell/module temperature measurements can also be performed in different ways. The 
cell temperature for the systems evaluated in this work is either measured by sensors on the 
rear side of a module or integrated in a reference cell. The rear side sensor is not measuring 
the actual cell temperature, but it is measuring the actual operating conditions of the module. 
To get an accurate value of the expected cell temperature, the expected difference between 
these two temperatures should be modeled [100]. In the reference cell the cell temperature is 
directly measured, but the cell has significant deviations in design compared to the PV 
modules, and the operating temperature could therefore be different.  

Issues related to the placement or installation of the sensor are relevant for both in-
plane irradiance sensors and module/cell temperature sensors. Section 4.2.1 presented the 
issue of deviations in tilt between the irradiance sensor and the PV array, and variations in 
exact tilt within the PV array. A similar issue is relevant for the module/cell temperature 
measurement. Temperature variations within the system are expected, and the temperature 
sensor should thus be placed in a location that gives a good indication of what the system 
overall is experiencing.  

If the non-representative sensor measurements are used as input to a model, this will 
consequently also impact how representative the model will be for the PV system output. 
Models can also be less suitable as a reference if the effect of influential parameters and 
expected losses are not correctly considered, as further discussed in the end of this section. 
Another potential issue with a reference model or reference measurement in performance 
evaluations, is the difference in temporal response between the reference and the target. This 
can be crucial for situations with rapid changes in irradiance under cloudy conditions. Moving 
clouds are a challenge due to potential inhomogeneous shading effects, the time lag of the 
pyranometer, and the efficiency with which the MPPTs responds to the varying conditions.  

Sensor measurements that are not adequate references of the irradiance or temperature 
of the PV modules, can lead to both offset, systematic trends and noise in the performance 
metric time series. Fast changes in irradiance, are for example expected to give noise in the 
performance metric. One severe effect of using non-representative references in performance 
metrics is that the performance metrics indicate losses or gains in the system that are not real, 
as previously illustrated in Figure 12. Slight differences in tilt between the array and the 
irradiance sensor or the reference array, are expected to be one of the causes of seasonal 
variations in performance metrics, illustrated by the relative irradiation differences between 
different planes in Figure 11. In general, with a reference model that is not accurately 
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considering all expected losses, the basis to evaluate if the system is under or over performing 
is thin. 

Unconsidered or inaccurately quantified losses 
The co-existence of several different loss mechanism is a major challenge when seeking to 
identify and quantify specific loss mechanisms. To estimate the effect of one loss mechanism, 
accurate quantitative knowledge of other losses is required. For example, to evaluate the 
effect of snow, it is necessary to consider other common wintertime losses such as losses 
caused by irradiance with low intensity and high incident angles or shading. Accurate 
consideration of other loss mechanisms is particularly relevant for identification of small 
losses, for example caused by soiling, degradation or module faults. The authors of [102,103] 
find that improved estimation of soiling and degradation losses can be achieved if the effect 
of both is considered in the analysis. Typical challenges are loss mechanisms that are difficult 
to accurately quantify, such as losses related to low intensity irradiance, high angle of 
incidence, cloudy conditions and temperature. Accurate estimation of reflection loss can for 
example be challenging when the angle of incidence is above 60 , as the resulting loss is 
increasingly sensitive to changes in AOI above this limit [60]. Accurate calculations of these 
types of losses require more detailed input information than what is typically available. This 
can include information about exact tilt angles, overview of the non-uniformity in irradiance 
and temperature, and exact information on how all the components respond to the different 
conditions. Inaccurate estimation of these losses yield uncertainty that can lead to noise in 
the data and hide the signals related to recoverable losses such as soiling and module faults. 
Methods for accurate modeling of the expected losses are not only necessary for performance 
evaluation of historical data. Estimations of these types of losses are also required to predict 
performance of future systems. 

4.3 Potential solutions for improved performance evaluation 
When a comprehensive understanding of how various effects impact performance evaluation 
is established, effective solutions to handle these effects can be discussed. This section 
presents methods for improving performance evaluation through handling the impact factors 
discussed in Section 4.2. 

4.3.1 Previous work 
Various strategies to handle different effects in the data are suggested in the literature. 
Filtering is perhaps the most common, and also the simplest, solution suggested. Another 
solution, typically used to handle systematic trends in the performance metrics, is more 
detailed modeling and trend correction. A third approach is to utilize data signatures or 
performance metrics to evaluate the data that are less impacted by the discussed impact 
factors. 

Filtering 
The principle of filtering is to remove the periods where the performance metric fails to 
represent the quantity it is determined to measure. This could for example be periods with 
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erroneous input data, noise in the performance metrics, or temporary losses that are not 
relevant for the effect under study. Filtering could thus be used to handle factors related data 
quality, non-ideal references, and losses that are challenging to properly quantify. Data 
cleaning with filtering is typically an important step in suggested procedures for degradation 
and performance loss analysis [27,88].  The first step is often removal of data quality issues 
such as non-physical values, invalid readings and periods with missing or duplicated data 
[36,89,96]. For analyses where the aim is to identify small losses caused by for example 
soiling, degradation and faults, it is also often suggested to remove periods with irradiance 
with low intensity or high angle of incidence, or cloudy conditions [27,83,99,104,105]. In 
these conditions the output of the PV array can be difficult to predict, because the related 
expected losses can be difficult to quantify accurately. Which other effects that are filtered 
out, typically depend on the aim of the analysis. In degradation analysis for example, shading, 
clipping, curtailment, downtime, and outliers in the calculated performance metrics are often 
also removed [83,99,105].  

 

 

Figure 14: Illustration of the effect on the output of the performance metric calculation of 
filtering out periods with low irradiance and periods with large changes in irradiance 
caused by partly cloudy weather. 

Figure 14 shows the effect of filtering out periods with low irradiance and large 
variation in irradiance caused by partly cloudy weather on the output of the performance ratio 
calculation for one of the studies systems. We observe less variation in the output value, 
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which would make it easier to identify changes caused by component degradation or faults. 
However, for this example based on data from a Norwegian PV system, we now lack data for 
large parts of the year. 

However, as discussed in [27] the implementation of filtering can be influenced by the 
preferences of the analyst, and the role and the effect of filtering are not always discussed 
when implemented in performance evaluation. It is not uncommon that one filter is used to 
remove multiple effects. For example, a low irradiance filter can be used to remove the effect 
of low irradiance, high angle of incidence and shading. If not carefully considered, filtering 
can easily remove more data than necessary. If the aim is to evaluate the overall performance 
of the system, it is critical that it is only issues related to data quality and non-ideal references 
that are removed, and not periods with central performance losses. A common challenge 
introduced with filtering, is when long time periods are removed, giving holes in the time 
series. Imputation of data has been considered to solve this problem [96]. While imputation 
of modeled sensor data is considered as a valid substitution, imputation of modeled power 
data will mostly be relevant for cases where the estimation of how much energy that is 
generated is central. For evaluation of PV performance, the measured PV array output will 
be essential, and imputation of modeled power data should therefore be carefully considered. 

To improve the filtering process, efforts to identify and filter specific effects are needed. 
For clipping, for example, a recent contribution in this regard was made by [106]. More 
automated methods to find the optimal filtering thresholds to reduce the uncertainty in the 
performance estimation, such as suggested by [88] for degradation rate estimation, is another 
pathway for improving the filtering process. 

Modeling and correction of losses and trends 
Another method to handle losses that are not properly quantified in the performance metric 
is to develop improved models to consider the relevant loss mechanisms. This could be either 
through physical models, or through empirical approaches, such as machine learning. The 
use of statistical methods and machine learning to achieve improved PV modeling is gaining 
more attention. Statistical methods and machine learning can also be used to correct for 
systematic trends in data, irrelevant of if they are caused by losses that are not properly 
quantified or non-ideal references giving for example seasonal trends in the data. 

Ref. [105] reduces the uncertainty in an estimation of PLR by including physical 
modeling of the effects caused by variations in the solar spectrum, a mechanism that rarely 
is included in performance analysis, in the PV output model. In our related work presented 
in [76], the aim is to compare the performance of two different PV technologies in Norwegian 
operating conditions. Filtering out low light conditions is thus not an option. To enable 
comparison at given conditions, the performance metrics is corrected for the losses caused 
by irradiance with low intensity and high angle of incidence. The analysis shows, however, 
that while the correction for irrelevant losses improves the basis of comparison, it is 
challenging to obtain sufficient accuracy. 

Using statistical methods, such as seasonal trend decomposition [107], to quantify and 
correct for systematic trends is often suggested to handle the seasonal trend often observed 
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in performance metric time series. This has for example been suggested for development of 
fault detection algorithms [84], degradation rate [108] and PLR estimation analyses [27,109]. 
Figure 15 shows the effect on the output of the performance metric calculation of correcting 
for the seasonal trend. The seasonal trend is quantified using seasonal trend decomposition 
[107]. We observe that the systematic trend is reduced, giving a nearly constant performance 
metric through most of the year. The large losses in the wintertime that occurs every year, 
but in a more random manner (assumed to be caused by snow), are not successfully corrected. 

 

Figure 15: Illustration of the effect on the output of the performance metric calculation of 
correction for the seasonal trend. The seasonal trend is quantified using seasonal trend 
decomposition. 

Tailored use of performance metrics and data signatures 
Another way to handle the discussed impact factors, is to utilize performance metrics or data 
signatures that avoid the effect of these factors. A method suggested to handle systematic 
seasonal trends in data, not sorting under neither filtering nor modeling/correction is the year-
on year method used to estimate degradation trends [83]. This method is implemented in the 
open-source library RdTools that is commonly used in degradation analysis. In this method, 
calculated performance metric values from the same day of the year are compared to each 
other, reducing the effect of potential systematic seasonal trends. In the suggested approach, 
extensive use of filtering is additionally applied. This gives a more stable comparison because 
it compares days under the same condition, but a weakness is that the filtering can reduce the 
number of comparable days from year to year. As shown in our related work [75] where the 
aim is degradation rate estimation in Norwegian conditions, it is quite common that whole 
days are filtered out, challenging comparison of one day of the year to the same day the next 
year. To improve on this, improved versions of the year-on-year method are tested and 
developed in this paper. The improved methods enable estimation of the rate of change not 
only from one year to the next, but by considering the rate of change in the whole analysis 
period. In [83], it is also suggested to use modeled clear sky irradiance as a reference in the 
performance metrics instead of measured irradiance, and only evaluate clear sky periods. This 
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removes the challenge of sensor data quality but requires long periods with clear sky weather. 
Another way to avoid the impact of poor irradiance sensor data quality, is to use yield 
comparison of similar/identical PV arrays, as we do in [84,90].  

A commonly used method to reduce noise in the calculated performance metric, is to 
aggregate the data and reduce the temporal resolution of the performance metric [27,84]. If 
the performance metric is only impacted by random noise or if the noise is caused by effects 
giving large relative differences between the output and the reference in the performance 
metrics but small absolute differences, this can be an efficient solution. However, if there are 
systematic trends in the performance metric time series, aggregation could conceal these 
effects.  

4.3.2 Thesis contribution 
In the work presented in this thesis, methods for evaluating sensor data quality and the use of 
filtering to handle different performance evaluation impact factors are tested. Additionally, it 
is evaluated how different performance metrics are impacted by the discussed factors. In 
Paper I, we show that comparison with clear sky irradiance modeling can be used to identify 
drift and shift in the irradiance sensor measurements, in addition to misalignment of the 
sensor. This discussion is partly continued in Paper II and III, where we find that the statistical 
clear sky fitting algorithm proposed by [92] can be used to find deviations between the tilt 
angle of the irradiance sensor and the effective tilt angle of the PV arrays. In Paper I we also 
assess if the relationship between irradiance, ambient temperature and module temperature 
can be used to identify detachment of the module temperature sensor. 

Paper II and III evaluate the use of filtering to improve the sensitivity in fault detection. 
Paper II shows that filtering with low irradiance thresholds commonly used in the literature 
and clear sky filtering do not solve the challenges we have with noise in the performance 
metric time series for the studied high latitude, cold climate datasets. In paper II and III it is 
found that filtering thresholds directly aimed at the origin of the noise and systematic trends 
in the performance metric time series give more stable performance metrics that are more 
suitable to use in fault detection. This shows that the optimal filtering thresholds depend on 
operating conditions. This further supports the need for development of filtering threshold 
optimization methods and other methods to select filters tailored to the specific effects and 
the purpose of the analysis.  

In Paper III we also evaluate how different commonly used performance metrics 
perform in a fault detection analysis and handle the impact factors discussed in Section 4.2. 
The tested performance metrics are array Yf comparison, PR’25⸰C and PPI based on both 
physical and machine learning modeling. The results show that choosing the right 
performance metric based on the quality and condition of the available input data can also be 
a strategy to handle the impact factors, as suggested in the end of Section 4.3.1. For example, 
for situations where the irradiance sensor is not a representative reference or has quality 
issues, yield comparisons between the individual units of the system can be efficient. 
Machine learning can improve modeling of the expected output of the system, especially for 
cases where all the parameters needed to physically model all losses in the system are not 
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known. In Paper III, we see that with machine learning the estimation of the expected output 
in situations with shading and with deviations in tilt between the irradiance sensor and the 
PV array is improved compared to using a physical model.  

4.3.3 Discussion 
The main responses in the calculated performance metrics caused by the factors discussed in 
Section 4.2 are erroneous data, noise and systematic trends or offsets. The two preceding 
sections discuss how these effects can be handled to improve and develop standardized 
methodology for performance evaluation. In general, filtering appears to be an efficient 
method to handle errors and noise in the data, i.e. effects that is difficult to model. Correction 
based on physical models or statistical methods could be used to handle systematic trends or 
offsets. As also discussed, filtering and correction can be bypassed if performance metrics or 
data signatures that are not impacted by the relevant impact factors are utilized. In addition 
to handling the factors impact performance metric calculation, improved identification of 
different loss mechanisms and detailed description of the signatures in the data for the specific 
loss mechanism would also be necessary for improved performance evaluation methodology. 

There are two main pathways to develop strategies to handle the factors impacting the 
performance evaluation. Either the methods could be target at directly handling the different 
factors, or the aim of the methods could be to handle the resulting signals in the data. In Paper 
II and III we suggest handling the impact factors directly by using filtering that is specifically 
targeted for the different impact factors. For example, the conditions where irradiance with 
low intensity and high AOI give noise in the data are specifically identified and removed. 
Development of analysis procedures based on this strategy requires methods for accurate 
identification of the various impact factors. For the other pathway, where the goal to a larger 
degree is to handle the signal in the performance metric, the methods could for example be 
targeted at reducing noise and systematic trends in general. One example is optimization 
methods for finding the filtering thresholds for different parameters (for example intensity 
and angel of incidence of the irradiance, or clear sky index) that gives minimal noise in the 
performance metrics. Seasonal trend decomposition to quantify and correct for the effects 
giving seasonal trends in data or machine learning modeling (as discussed in Paper III) are 
other potential methods for handling the more systematic signals in the performance metrics. 
With seasonal decomposition all the effects introducing a seasonal trend in the performance 
metric is corrected for simultaneously, the same way as all the losses in the system are 
estimated as one effect with a machine learning model. 

For both pathways, in-depth knowledge of the impact factors in the dataset, methods 
accurately targeting these factors, as well as a clear aim for the analysis are required. For 
example, we do not want to correct for or remove losses we want to quantify. When using 
methods for selecting filters and filtering thresholds based on optimization methods, it will 
be critical that the optimization is done on the parameters that actually introduce noise in the 
data. Machine learning modeling requires proper data cleaning. The automatic methods can 
easily fail if there are issues giving stronger signals in the data than the ones we try to correct 
for. For example, to use seasonal decomposition if there are stronger signals in the data than 
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the seasonal signal, can give a correction that introduce new deviations and biases in the data. 
Solving all the issues with targeted correction and filtering for different effects, on the other 
hand, can give a very complex and time-consuming analysis.  

However, we find that focusing on how to specifically handle the impact factors in the 
data is in general a promising strategy for improved performance evaluation. In our related 
work presented in [84] a data processing procedure for fault detection in larger PV plants is 
suggested. This procedure is based on using array yield comparison as a performance metric 
to avoid irradiance sensor quality issues. Effects giving noise and erroneous data are filtered 
out, and seasonal correction of the performance metric time series is utilized. In [85] it is 
found that with this performance metric calculation and processing, loss as small as the power 
loss caused by activation of bypass diodes in PV modules can be detected from the output 
data of a larger PV array. 
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5 Snow losses in PV systems 
The assessment of factors impacting PV performance evaluation in high latitude cold climate 
conditions presented in Chapter 4, shows that snow is an important factor to consider because 
of its potential large effects on PV performance. This chapter presents the challenges snow 
introduce to in PV performance evaluations, and potential solutions. In addition to this, the 
chapter discusses how snow should be considered in PV performance predictions. Methods 
for identification and prediction of snow losses are essential in order to handle snow in 
performance evaluations and prediction. Section 5.1 describes the impact of snow on 
performance evaluation and predictions, while Sections 5.2. and 5.3. summarize previous 
work and the contributions of this thesis on snow loss identification and prediction, 
respectively. 

5.1 The impact of snow on PV performance and performance 
analysis 

5.1.1 The prevalence of snow losses 
Snow can cause severe and long-lasting shading of PV modules that result in large power 
losses. Daily and monthly energy losses due to snow of up to 100 % and annual losses of 
more than 30 % have been reported [45]. There are, however, large variations in the reported 
snow loss values. The energy loss correlates with the lost irradiance, which again depends on 
how often and for how long the PV modules are covered by snow. Excluding areas with 
permanent snow cover (such as Antarctica and Greenland) and mountainous areas, snow is 
typically found in the northern hemisphere [110]. As illustrated in Figure 16, the lower 
latitude limit where snowfalls are expected will vary with continent. With increasing latitude, 
the number of days with ground snow covers generally increases. From the figure, it is 
observed that snowfalls are expected in significant PV markets [15] such as China, Japan, 
EU and USA. It is, however, anticipated that global warming will cause less snow in the 
future. In Norway, shorter snow seasons, reduction in snow depth and increase in snowline 
elevation are expected [111]. Figure 17 shows the historical monthly mean snow water 
equivalent (SWE) for a location in Eastern Norway compared to modeled SWE for the period 
2030-2050 based on two different emission scenarios. SWE is a measure of the amount of 
liquid water stored in a snowpack. The reductions in SWE for the modeled values illustrate 
the expected reduction in snow depth and length of snow season. 

5.1.2 Applications of snow loss estimation and identification  
Because of the large potential losses, snow is an essential parameter in performance 
evaluation and prediction. Often the loss is accepted, but as active and passive snow clearing 
are possible, the loss can also be correctable or avoidable. Snow loss could for example be 
reduced through system design or O&M. Snow loss estimations are therefore useful in both 
predictions of system output, optimization of system design, and for efficiently implementing 
corrective measures in O&M. Additionally, identification of snow losses is essential in 
performance analysis where separation between different loss mechanisms is necessary. 
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Figure 16: The lower latitude limit where temporary snow covers (lasting a few days) and 
seasonal snow covers (lasting for months) is found, according to [110]. 

 

  

Figure 17: Monthly mean snow water equivalent for a location in Eastern Norway for 1) 
historical data, 2) modeled data for 2030-2050 given the RCP4.5 emission scenario, and 3) 
modeled data for 2030-2050 given the RCP8.5 emission scenario [112,113]. Data from 
[114]. 

Snow loss estimation 
As discussed in Section 3.1.2, estimations of expected PV system losses are necessary for 
predictions of PV energy generation, which again is necessary in multiple different 
applications. With its potential large impact, snow losses are no exception to this. Because 
energy losses in PV systems related to snow are expected to vary with both snow and weather 
conditions, as well as system design [45], historical data from one system will not necessarily 
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be transferable to other systems. A snow loss model is therefore preferred. Additionally, a 
model enables inclusion of the potential effect of reduction in snow caused by global warming 
on PV snow losses. 

Estimations of snow loss is also important when evaluating the potential for reducing 
the losses caused by snow. Snow losses can be reduced by designing the system to induce 
increased passive clearing, for example by increased tilt, use of frameless [115] or bifacial 
modules [116], or ice phobic surface coating [117]. Alternatively, or additionally, snow 
losses can be reduced by active snow clearing as a part of O&M of the system, for example 
by manual shoveling or heating [118]. The estimation of potential snow losses is important 
input to the evaluation of the cost of not clearing and the gain of actively clearing the snow. 
Estimation of natural snow cover development is particularly important. When would the 
snow have been cleared off the modules if no active measures were implemented? Is it 
snowing soon again, making the active snow clearing useless? If the snow is not cleared now, 
will it freeze to the modules and persist for a long time? The cost of not clearing the snow is, 
however, not only related to lost energy generation, but also the potential damage of the 
system and/or the roof caused by the mechanical load.  

Identification of snow losses  
Identification of snow losses is essential in analysis of loss mechanisms. Because of the large 
and non-systematic losses, snow could for example have a large impact on the output of a 
degradation analysis or in a monitoring system designed for fault detection. If snow is not 
separated from failures in a monitoring system, alarms indicating component failure can be 
issued when the actual issue is temporary snow. This could give reduced trust in the 
monitoring system from the operators. A consequence of this could be that serious system 
issues are not tended to because they are assumed to be caused by snow. Identification of 
snow losses in PV monitoring data can also provide more knowledge with respect to snow 
cover and resulting losses based on historical data. Such data could be important input to 
development and validation of snow loss models. 

Method development challenges 
From the discussion in the previous sections, it can be concluded that it is essential with 
reliable methods for 1) identification of snow in PV monitoring data, and 2) predictions of 
snow losses for a given system under given weather conditions. However, neither identifying 
snow in PV monitoring data nor predicting the presence of snow cover and resulting loss are 
trivial. As we discuss in Paper IV, because of the potential varying coverage and 
transmittance of snow, snow can shade PV modules in multiple different ways, which 
consequently can give multiple different snow shading responses in the measured output. 
Which response a given snow cover leads to in measured parameters in a PV system can also 
depend on the module orientation/bypass diodes and the array configuration, i.e. how many 
modules that are series and parallel connected to the same MPPT. Figure 18 shows how a 
partial snow cover on the lower part of the module, a typical situation if the snow slides down 
the modules, will shade relative to the module substrings and the bypass diodes. The 
challenge of estimating the resulting loss in PV parameters due to a given snow cover will 
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complicate both the identification and prediction of snow losses. Additionally, as we describe 
in Paper VI, the process of natural accumulation and clearing of snow on PV systems depend 
on a large range of weather, snow, and installation parameters, and are consequently also 
difficult to predict. The impact of multiple different parameters on the snow clearing can give 
complex snow shedding patterns, as shown in Figure 19. An additional challenge for 
development of methods based on monitoring data, is that snow also can impact the sensor 
values. For example, the irradiance sensor can also be covered by snow. 

 

 

Figure 18: Illustration of how a partial snow cover on the lower part of the module will 
shade relative to the module substrings and the bypass diodes. 

 

  

Figure 19: Partial snow shedding at the PV test facilities at IFE, Kjeller, Norway. 

5.2 Identification of snow losses  

5.2.1 Previous work 
Because of the potential large and long-lasting losses, how to identify and handle snow has 
been discussed in various performance analysis studies. Filtering out outliers [27,88] or 
removing periods with low performance ratios are potential methods to handle snow in 
performance evaluation. This will remove most snow events, but also other types of large 
losses, and will not be accurate enough for detailed snow identification. This type of filter 
can be used in for example a degradation rate analysis, but will fall short in for example fault 
detection, as it could not separate between snow losses and severe component failures, one 
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of the most important fault a monitoring system should detect. To improve the snow 
identification, other parameters have been included, giving more detailed description of the 
signature in the data caused by snow. Ref. [119] suggests identifying snow losses by detection 
of power losses in periods with temperatures close to or below freezing. In the snow detection 
algorithm suggested in [120] for larger power plants, it is added that the power loss should 
be identified in most of the arrays, and the irradiance and power should in general be low. 
The development in plant and array values of PR’ is further tracked to confirm that it follows 
the characteristic for snow loss recovery (snow loss recovery is expected to be gradual). The 
snow event is closed when the PR’ returns to normal for most of the arrays, and ambient 
temperatures above 20 C. The snow detection suggested by [120], do enable more detailed 
snow identification than just considering power loss and/or ambient temperature. The method 
does, however, to a certain degree appear to be adapted to the system configurations and 
weather type of the studied systems. For example, it requires comparable arrays, and the 
temperature threshold giving most accurate closing of snow events and the characteristics of 
snow loss recovery could be expected to vary with the weather and snow conditions. To 
efficiently implement this, a thorough description of the characteristic of snow loss recovery 
could additionally be useful.  

In this work, the focus is on methods to identify snow cover using parameters typically 
measured in a PV plant. However, methods using dedicated measurements to identify snow 
also exist. Imaging [121] is a promising method, as this can give a good overview of the total 
snow coverage, including its non-uniformity. This method requires automatic image 
processing and analysis, and a model for translating the estimated snow cover to resulting 
power loss. A potential challenge for this method is semitransparent snow covers. Other 
methods have also been introduced, such as weight sensors [118]. We have also found that 
the Kipp & Zonen Dust IQ soiling sensor can be used in snow identification [122]. A 
challenge with point measurements is, however, the potentially large non-uniformity of snow. 
A point measurement is not necessarily representative for the snow coverage, especially in 
the melting period, but it can be a useful measurement to include in snow cover detection. 

5.2.2 Thesis contribution 
Improved understanding on how snow influences PV monitoring data for both different snow 
conditions and system design, enable improved separation of snow loss from other types of 
losses and development of general identification methods with broad applicability. A more 
comprehensive understanding would give a better basis to decide if results from one system, 
with its specific system design and snow conditions, can easily be transferred to another 
system, or when adjustments are needed. The main contribution of the work in this thesis on 
this topic, is analysis of signatures in PV monitoring data caused by snow. In Paper II and 
III, we describe how snow can give large and varying losses in PV systems and consequently 
have a significant impact on fault detection. In Paper VII we quantify the magnitude and the 
interannual variation in the snow losses for many of the systems in the studied dataset. The 
effect of snow on the output parameters in the monitoring system, i.e. the snow signatures in 
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PV monitoring data, is described in more detail in Paper I, IV and VI. In addition, we discuss 
how the snow signature can be used to improve performance analysis. 

In Paper I we evaluate how well the relation between measured module temperature 
and irradiance work as a snow cover identifier. The correlation between irradiance and 
module temperature is well known, but when the modules are covered by snow, it is expected 
that the impact of the irradiance on the module temperature will be reduced. When the 
irradiance is high and the module temperature sensor is measuring the temperature of snow-
covered cells, identification of snow based on this relation works quite well, as the module 
temperature is much lower than what would have been expected at the given irradiance. For 
situations with lower irradiance, evaluating this relation is not equally efficient, as the 
absolute difference between the measured temperature and the expected temperature at the 
given irradiance is small. We also conclude that partial snow shading can be challenging. 
Because the module temperature sensor gives a point measurement, it can potentially measure 
the temperature of the part of the module that is not covered.  

In Paper IV the assessment of snow signatures in PV monitoring data is extended. We 
analyze the effect of full and partial snow cover on time-series of module temperature, DC 
current, voltage and power for a small system with portrait-oriented modules and a large-
scale system with landscape-oriented modules. The analysis is supported by simulations of 
IV curves for snow covered PV modules in both landscape and portrait orientation (see Figure 
18 for description on how partial snow cover is expected to be different for the two 
orientations), where both the transmittance and coverage of the snow cover are varied. The 
identified possible responses in output data for different types of snow covers are summarized 
in Table 6. In Paper VI, the most typical snow signatures in an expanded dataset are 
identified, marked in bold in the table. When the losses in all the parameters are not close to 
100 %, the response in the electrical parameters is mostly characterized by large loss in 
current and typically much lower losses in voltage, both for systems with modules in 
landscape and portrait orientation. From the large current losses, it seems that the typical 
snow cover on the systems is impacting most module substrings in the array, and/or that there 
is a large degree of semitransparent snow covers. Semitransparent and partial snow covers 
explain the lower voltage losses. It is concluded that the non-uniformity in snow 
transmittance and coverage, as well as the array configuration, impacts the output of the 
system in the situations where the snow cover is not full and opaque. 

Based on the identified signatures in PV monitoring data caused by snow, improved 
snow filtering in fault detection is discussed. In the fault detection study presented in Paper 
III, the noise caused by snow is removed by filtering out all periods with snow on the ground. 
This removes almost all the data impacted by snow, but it also removes large parts of the data 
where there are no snow losses, reducing the period where fault detection is possible. With 
the aim of developing more accurate filters, Paper IV discusses the inclusion of snow 
signatures, as well as using snow loss modeling to indicate the probability of snow cover 
instead of measured snow on the ground. The signature included in the snow detection 
evaluation is voltage loss, as the modules are installed in landscape orientation. This will not 
separate snow from all types of losses (for example other loss mechanisms that leads to 
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voltage loss), but it will reduce the amount of data removed compared to take away all the 
data when there is snow on the ground. Together with the snow loss modeling, 97 % of the 
data with significant snow losses are removed, but there is still potential to reduce the number 
of false positives. We conclude that using the snow signatures is useful, but adding more 
signatures is required to develop automated snow detection that is both accurate and enables 
separation of snow from faults. 

Table 6: Overview of the expected response in PV monitoring output parameters for 
different types of snow cover, as described in Paper IV. The typical response found in the 
validation study (evaluating electrical parameters) presented in Paper VI is marked with 
bold font. 

 
Full, 

opaque 
Full, semi-

transparent 
Partial, opaque Partial 

semitransparent 

Portrait Landscape Portrait Landscape 

Module 
temperature 

<< Normal operating 
temperature Typically < Normal operating temperature 

DC current 
loss 100 % Large1 100 % 0/Large2 Large 0-large3 

DC voltage 
loss 100 % 0 Large Large-

medium2 
Negative 

loss 0-large3 

Power loss 100 % Large1 100 % Large-
medium2 Large Medium-

large3 

PV plant No output All inverters 
have large loss 

Large losses in many/all inverters. There may 
be large variations in power, current, voltage 

and module temperatures. 
1Depending on snow transmittance. 
2Depending on snow coverage/number of covered module substrings. 
3Depending on snow transmittance and coverage. 

 
While the identified snow signatures are not implemented in automated snow detection, 

we have made use of the to improve the loss identification in the performance analysis of a 
bifacial system [73] and in estimation of soiling losses on a farm [122]. In both cases the 
snow signatures are useful to identify and quantify the snow losses for the two system types, 
and to separate the snow losses from losses caused by shading or irradiance with low intensity 
and high angle of incidence. Because the bifacial solar cells also can utilize the rear side 
irradiance, and typically will not experience snow shading on the rear side, the snow 
signatures of bifacial systems are expected to be different than for monofacial systems. Still, 
the identified data signatures from the studied monofacial systems appear to be useful in 
identification of snow losses.  
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In the work presented in the preceding sections, the aim has been to describe what snow 
looks like in PV monitoring data, and how this knowledge can be used. However, the studied 
datasets may not include all potential variations, and the description is not expected to be 
exhaustive with respect to the dependency on system design and weather/snow conditions. 
Other measurements and data signatures, for example how the different parameters develop 
over time, can also be relevant. More detailed current and voltage data, for example IV 
curves, is expected to provide more information on the impact of snow covers on PV 
modules/arrays. More detailed data on the snow coverage (for example snow cover images 
and transmittance measurements/estimates) and data spanning a greater set of different snow 
conditions could also provide additional information.  

5.3 Prediction of snow losses 

5.3.1 Previous work 
Multiple models for predicting snow cover and/or snow loss based on weather and system 
parameters have been described in the literature [45]. Most of the suggested models, 
according to the overview of PV snow loss models given in [45], are based on making 
empirical correlations directly between influential parameters and snow loss. In the model 
suggested by Marion et al. [32], the modeling is to a larger extent based on physical processes. 
In the Marion model empirical correlations and physical considerations are used to 1) 
estimate when snow accumulates on the PV modules, and 2) when and 3) how fast the snow 
clears of the modules. This is used to estimate the snow coverage, and from the number of 
shaded module substrings, the power loss is calculated.  

A typical limitation of the suggested models is that they are developed using data from 
one system, and often the time series used are short – about one or two winters. Additionally, 
few validations of the models are published [123]. Exceptions do however exist, the Marion 
model [32] is for example developed based on data from multiple systems and is also 
evaluated in other studies [123,124]. In general, the lack of validation on a larger dataset can 
mean that the models are biased because they will be strongly connected to how snow 
accumulates/clears off the studied system and the specific types of snow conditions 
represented in the dataset. This means that the models will not necessarily be transferable to 
other systems and other snow conditions. While developing a model that can handle all 
system configurations and all snow conditions indeed is very ambitious, a model should be 
developed for broad applicability. Building general models using a fully empirical approach, 
requires large amounts of data and good measurements/estimates of all the potential 
influencing factors, covering the different potential combination of system design and snow 
conditions. The model development studies do, however, often give valuable information on 
which processes and parameters that can be important for snow accumulation and clearing.   

5.3.2 Thesis contribution 
To contribute to improved and generalized snow loss modeling, we have tested existing snow 
loss models, identified which types of models that seem to be most promising for 
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generalization, identified room for improvements and used this to suggest improved models. 
We have also studied how snow loss modeling should be used in yield estimations for future 
systems.  

In Paper IV we test four of the snow loss models [32,125–127] proposed in the 
literature. The evaluated models are chosen because they are of varying complexity and 
utilize commonly available input parameters. We find the Marion model [32] to be the most 
promising. With just some adjustments to the empirical coefficients used in the model, we 
achieve a satisfactory fit with the snow power losses estimated for the studied system. A 
potential explanation for why this model may be more suitable for generalization is that it 
aims to predict the different processes in snow accumulation and snow clearing separately, 
as described in the previous section. Additionally, the separation in the model of different 
processes makes modifications easier. Models based directly on empirical correlations are to 
a larger extent describing the conditions in the test dataset, and if these conditions are not 
general, the model will also not be general.    

In Paper IV we find that the Marion snow loss model could be improved by using 
empirical snow clearing rate coefficients estimated for the specific system design, to consider 
how the system design can impact snow accumulation and clearing. For the system evaluated 
in the paper we also find that different snow clearing rates should be used for thin and thick 
snow covers, to better include how snow clearing and accumulation can vary for different 
snow conditions. The results are validated for multiple roof mounted systems (smaller 
residential systems and large-scale commercial systems) in Paper V and VI.  Figure 20 shows 
for one snow season how the snow coverage modeled with the suggested improvements to 
the Marion model follows the loss estimated from the monitoring data for the system used to 
test the model in Paper IV. The snow coverage is not expected to be directly correlated to the 
energy snow loss, as the activation of bypass diodes also will have an impact and the snow 
coverage is not expected to be exactly the same for all modules. The snow coverage is still 
included here instead of the modeled loss (which is based on how many bypass diodes that 
are expected to be covered, and therefore is either 0, 33 %, 66 % or 100 %) to give more 
detailed description of the prediction. Figure 21 shows the performance of the model on the 
extended dataset in Paper VI for monthly and annual losses. There are two types of system 
configurations in the dataset: residential systems on tilted roofs with portrait-oriented 
modules, and commercial systems on flat roofs on with landscape-oriented modules. Within 
the same type, the same set of snow clearing coefficients are used to the test the model 
applicability. It is found that separate snow clearing coefficients for thin and thick snow 
covers better include the effect of varying snow condition, giving good results for the same 
type of systems independent of climate zone. The large modeling errors for some of the 
systems in Figure 21, is either related to small absolute losses, or that the systems had 
additional parameters impacting snow clearing, such as heat leakage from the building or 
shading. This complicates snow loss modeling. The PV installations had the same design, but 
the overall systems were not similar in all the parameters that impact snow clearing. 
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Figure 20: Daily values of energy loss estimated from data and modeled snow coverage for 
one snow season. The snow coverage is modeled with the suggested improvements to the 
Marion model. 

 

Figure 21: Annual and monthly snow loss modeled with the proposed improvements in the 
Marion model compared to losses estimated from the output data. 

In Paper VII we further discuss how snow loss modeling could be applied in yield 
modeling of future systems, as there are many choices here that need evaluation. Which input 
data that should be used is a central concern, as a typical meteorological year (TMY) that is 
commonly used in PV yield estimation is not necessarily a typical snow year nor give a good 
estimate with respect to year-on-year variations. We describe a procedure using long time 
series of weather data and snow loss modeling, which gives both a typical monthly/annual 
loss value, and a range of typical variation. An example of how this could be implemented is 
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presented in [128], where we use the monthly typical values as input to a PVsyst simulation 
as part of an energy system dimensioning analysis.  

Compared to describing and identifying the effect of snow in PV monitoring data, there 
are probably even more unanswered questions related to PV snow loss modeling. For 
example, how accurately can snow loss modeling be done with the weather data that typically 
is available? Which parameters (including system, snow, and weather parameters) have 
significant influence on snow cover and resulting losses, and should be specifically included 
in the model? Which system parameters should be similar to use snow clearing rate 
coefficients extracted from one system to another system? The work in this thesis only 
focuses on data from roof mounted systems. But what about ground mounted systems, where 
the rear side is open, and the module temperature might be influenced by for example wind? 
There are indications that ground mounted systems shed snow faster than roof mounted 
systems [32]. There is additionally limited research on how snow will impact the yield of 
systems with trackers or bifacial modules, both technologies that are increasingly common. 
It is assumed that systems with tracking (especially if the tracking algorithm is adapted with 
the aim of active snow clearing) [123,126,129] or bifacial [116] will have less snow losses, 
but more data confirming to which extent this is expected is needed. It is clear that a range of 
parameters significantly impacts snow loss, and more data is necessary to identify the most 
critical parameters for different types of system designs and to extend the validations. 
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6 Conclusions and further work 
6.1 Conclusions 
In order to obtain accurate predictions of PV energy yield or to identify the optimal system 
design, predictions of the system performance under given operating conditions are essential. 
Performance evaluations of existing systems can give valuable information on which losses 
that should be included in the performance predictions, and additionally determine the 
potential for improved performance. Accurate methods to predict and evaluate performance 
could thus contribute to cost reductions and performance increases for PV installations. The 
main topic of the work presented in this thesis is methodology for PV performance 
evaluations. The study includes assessment of methodology for performance evaluation of 
PV systems for a dataset consisting of installations located in Norway, and classification of 
factors impacting the evaluation. The identified main categories of the factors impacting the 
evaluation is: 1) data quality, 2) the use of non-representative references in the performance 
metric calculation, and 3) inaccurate quantification of expected losses. For example, small 
variations in tilt between the PV array and irradiance sensor are found to give a seasonal trend 
in the calculated performance metrics, illustrating the potential effect of non-representative 
references utilized in performance metrics. For the evaluated dataset, especially snow and the 
irradiance conditions specific for the Norwegian conditions can result in losses that are 
difficult to accurately quantify and include in performance evaluation.  

Additionally, this thesis describes an assessment of methodologies for improving and 
standardizing performance analyses by handling these identified impact factors. In the 
published papers, we test filtering of the effects caused by the impact factors, and how the 
impact factors affect different performance metrics. We find that the sensitivity in a fault 
detection analysis is improved when specifically targeting the different effects with filtering. 
We also find that the choice of performance metric can be used to avoid certain impact 
factors. For example, yield comparison of identical units can be used for fault detection in a 
larger PV plant if there are irradiance data quality issues. Machine learning can be used to 
achieve improved modeling of expected PV array output in systems with shading or 
variations in array/sensor tilt caused by for example topography variations. 

From the assessment of performance evaluation methodologies, we find that improved 
methods to identify and predict snow losses in PV systems are necessary in both performance 
evaluations and predictions. To contribute to improved snow identification, we describe the 
effect of snow on various parameters measured in PV monitoring systems. It is found that 
snow give specific signatures in DC current and voltage time series. Combined with weather 
data it is therefore possible to separate snow losses from other types of losses. However, the 
potential non-uniformity in snow coverage and transmittance, combined with how various 
system designs can impact the shading response of the system, result in a wide range of 
potential snow signatures, complicating automatic snow identification. We additionally 
evaluate existing snow loss models, and suggest an improvement to the commonly used 
Marion snow loss model. The improved model results in a reduction in modeling error of 23 
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percentage points for the studied dataset compared to the default implementation of the 
Marion model. 

 

 

Figure 22: Overview of how the published papers contributes to answering the research 
questions outlined in the first chapter.   

Figure 22 summarizes how the published papers contribute to answering the research 
questions outlined in the first chapter. The studied dataset used in the evaluation of impact 
factors is limited to one type of system design and with the same type of monitoring system. 
Consequently, the classification of factors impacting performance evaluation is not expected 
to be exhaustive, although the identified impact factors are anticipated to be central also for 
other types of systems in similar operating conditions. The evaluation of methods to handle 
impact factors could also be extended. As indicated in Section 4.3, there are more methods 
that could be evaluated. Thus, the presented work does not aim to present a final solution for 
improved performance evaluation, but rather to contribute to improved understanding on how 
improved performance evaluation could be achieved. The work presented in this thesis 
contributes to improved understanding of the effect of snow in PV systems and proves that 
snow losses can be identified and predicted. However, more data and in-depth analysis is 
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required to evaluate the broadness of applicability and enable automatic snow identification 
and accurate snow loss modeling. While this work identifies and validates improvements to 
a well-established snow loss model, multiple aspects that appears to be influential for snow 
losses and could further improve snow loss modeling are also identified. 
 

6.2 Further work 
The results from this work could be generalized and given wider applicability if a variety of 
additional datasets are analyzed in the same way. A larger number of datasets could give a 
more general evaluation of performance analysis impact factors and snow signatures, and a 
more solid validation of the suggested methodology for predicting snow losses. Additionally, 
various methods to handle different performance evaluation impact factors should be further 
assessed and developed. To further improve snow loss predictions, more work should also be 
done on determining parameters that influence snow cover development and evaluating the 
importance of the different parameters. Central points of interest for further work are: 

– Extension of classification of performance evaluation impact factors and suggestions 
and validation of solutions to handle the impact factors. A wide evaluation of impact 
factors and solutions to handle them, may help to identify the factors that have the most 
impact on the analysis for different system designs and operating conditions. 
Additionally, an extended evaluation may help identify which factors that are typical 
and which factors that only occur in very specific situations. A broad validation of 
methods for handling the impact factors, would identify for which system designs and 
operating conditions the methods are applicable, aiding development of standardized 
and automated performance analysis.  

– Loss identification in existing systems. Improved methodology to identify and quantify 
losses in PV systems enable a broad analysis of system losses and performance loss 
rate in existing systems, which could be used to improve the prediction of performance 
for future systems. 

– Use more detailed data to describe the effect of snow on PV. Detailed data on snow 
coverage/transmittance and PV module (IV-curves) would give improved and more 
detailed understanding of the effect of snow on PV modules. This could quantify the 
variation in the output caused by different types of snow shading and improve both 
identification and prediction of snow loss. 

– Validate snow signatures and develop snow identification algorithms. Broad 
identification of snow signatures in PV monitoring data on multiple different datasets 
with different monitoring output would enable separation between general, typical 
snow signatures and typical cases. This could facilitate development of general snow 
identification algorithms with broad applicability. 

– Evaluation of influential parameters to improve snow loss modeling. To improve snow 
loss modeling, an assessment of the different parameters (system design, snow and 
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weather conditions) that impact on snow coverage and the resulting loss is useful. 
Based on this, the most central parameters could be identified, and directly 
implemented in the snow loss modeling. Additionally, it is necessary with broad 
validation of the models for different system designs and different snow conditions. 
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The aim of this work is to develop and test new methods for quality control of data from commercial monitoring 
systems for small and medium sized PV installations. Such installations often have limited or non-existent 
maintenance of their monitoring systems. Quality issues in e.g. irradiance and temperature measurements will cause 
errors in the analysis of the PV system performance and might lead to non-optimal maintenance of the system. To 
determine the condition of the sensors and the monitoring system based on the measured data itself is therefore 
essential to improve performance analysis algorithms and to understand historical data from these types of PV 
systems, and consequently this is of significant economical and practical value. In this work, we use data from both 
commercial and research systems in Norway to assess the robustness of the methods in a real-world scenario. We 
demonstrate that drift and deviations in the sensitivity of irradiance sensors, in addition to misalignment of the 
sensors, can be accurately quantified and detected based on comparison with clear sky irradiance modeling. 
Furthermore, we show that analysis of temperature data potentially can be used to detect snow cover of modules, in 
addition to identification of detached temperature sensors. 
 
Keywords: monitoring, PV system, data quality 
 

 
1 INTRODUCTION 
 
 Regulations and irradiation conditions greatly 
influence the size and type of PV systems installed in a 
given market. In Norway, as in other northern climates, 
moderate solar irradiance and incentives for self-
consumption has resulted in a market dominated by 
relatively small PV systems with installed capacity less 
than 1 MWp. Moderately sized commercial systems 
constitute a significant fraction. Typically, these systems 
have a simple monitoring system, measuring both 
electrical and environmental data. Most commonly, the 
electrical data is collected from the inverter, the plane of 
array (POA) irradiance is measured by a reference cell, 
and there are sensors measuring ambient temperature and 
the module temperature. In addition to the typically low 
accuracy of commercial monitoring solutions [1,2], often 
very little maintenance is performed on these systems, as 
the cost of maintenance of distributed monitoring systems 
may exceed the expected benefit if local personnel are 
not available. In most cases, necessary maintenance like 
cleaning of the irradiance sensors and visual inspection of 
the system and sensors is not performed, and the sensors 
are not regularly recalibrated. Drift in sensors, dirty 
irradiance sensors and detached module temperature 
sensors can lead to significant misinterpretation of the PV 
system performance, and consequently also suboptimal or 
unnecessary maintenance of the PV system. The 
distribution of the systems, combined with little local 
competence and small economic incentives, makes 
increased manual supervision an unrealistic solution. A 
more realistic path ahead is quality control of the sensor 
data based on data analysis. In addition to saving money 
by reducing the need for maintenance, this approach also 
enables validation of the quality of historical data for any 
system, independent of previous monitoring system 
maintenance routines.  
 Data-based evaluation of the condition of the sensors 
and the monitoring system is not widely discussed in the 

literature. The quality control work done today is mostly 
limited to detecting abnormal points (i.e. outliers and data 
exceeding physical possible limits) [3 5], as opposed to 
detecting permanent changes in the measurement over 
longer periods. In this work we suggest a new data-based 
method for detecting changes in the quality or accuracy 
of the irradiance measurements. We also discuss a 
method for quality control of module temperature 
measurements and how this method can be used to 
identify snow cover on the modules. Analysis is 
performed using data from commercial PV systems in 
addition to scientific test sites to assess the robustness of 
the methods in a real-world scenario. 
 The challenge of missing maintenance and 
supervision of irradiance sensors is also discussed by 
Jordan et al. [6], who proposed to calculate PV system 
degradation based on clear sky irradiance simulations 
instead of measured irradiance. However, ground 
measurements provide valuable additional information on 
the performance of the PV system under cloudy 
conditions and enable a more comprehensive analysis of 
PV systems. This is particularly important for locations 
with few clear sky days. 
 In this work we use clear sky irradiance simulations 
to assess the reliability and quality of the measured 
irradiance. This has previously been suggested by Reno 
et al. [7], but is to our knowledge not tested before. The 
method is assessed for both high and low-quality 
irradiance sensors.  
 A relatively common problem with measurements of 
module temperature, is detachment of temperature 
sensors, which are normally attached to the back sheet of 
the module. This could be detected by monitoring the 
difference between the module and the ambient 
temperature. To our knowledge, this method has not been 
tested beyond the observations presented by Woyte et al. 
[8]. In this work we test this method for two different 
types of PV installation, and assess it for a new 
application; snow detection. The possibility of detecting 
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snow coverage using measurement equipment that 
already exists on-site, could improve both the monitoring 
algorithms for PV system fault detection and the energy 
generation forecasts by separating snow events from 
other failures. Additionally, it will also simplify the 
analysis of historical data, with respect to estimation of 
performance and validation of snow loss models. In 
previous studies, the probability of snow cover on PV 
modules is estimated by detecting when the PV 
production is low relative to irradiance or estimated 
irradiance in combination with evaluation of other 
parameters, including ambient temperature [9], 
predictions of snow depth and temperature [10], and 
satellite observations [11]. Using ambient temperature 
alone will not separate snow events from e.g. total black 
outs or other serious failures [12]. The aim of this work is 
to increase the accuracy of snow detection at a specific 
location by also using the module temperature sensor 
data. 
 
 
2 METHODS 
 
2.1 Test of irradiance measurements based on clear sky 
irradiance simulations 
 Global horizontal clear sky irradiance is simulated 
using the Ineichen and Perez clear sky model based on 
zenith angle, air mass, elevation and Linke Turbidity 
[13]. The model error has been shown to have low 
dependency of time of the day and day of the year 
compared to other clear sky models [7]. The simulated 
clear sky irradiance is then transposed to a tilted plane by 
calculating beam, reflected and diffuse irradiance in the 
plane. The sky diffuse irradiance is calculated using the 
isotropic sky model [14], where the sky diffuse irradiance 
in the plane of the PV array is found using the diffuse 
horizontal irradiance, the tilt angle of the plane of array, 
and the assumption that the sky is a uniform source of 
irradiance. Periods with measured irradiance equivalent 
to clear sky conditions, i.e. a smooth irradiance curve, 
was detected using the algorithm proposed by Reno and 
Hansen, which compares GHI time series statistics to the 
Ineichen clear sky model [15]. The length of the clear sky 
time periods selected are at least two hours, to optimize 
between amount of data and correct selection of clear sky 
periods. All models are implemented in compliance with 
the methods in the Matlab version of the PV_LIB 
Toolbox [16], using the default Link turbidity values 
provided by SoDa in the clear sky modeling.  
 The modeled clear sky irradiance is in this case used 
as a reference, and the measured data is compared to the 
modeled results in the periods with irradiance equivalent 
to clear sky conditions. The relative difference ( ) 
between measured (Imeas) and modeled irradiance (ICS) is 
given by:  
 

   (1) 

 To evaluate how the measurements change relative to 
the model from year to year
estimated for every year by minimizing RMSE between 
measured and clear sky irradiance, given by [15]: 
 

  (2) 

2.2 Method for detection of sensor detachment and snow 
 The difference in module and ambient temperature is 
strongly correlated with the irradiance (Eq. 3) [17]. 
Hence, by monitoring this correlation, signatures of 
temperature sensor detachment can be identified [8]. We 
have tested this method for two different installation 
configurations, by investigating the changes in linear 
regression fits of hourly values of temperature difference 
and irradiance for different weeks. Additionally, we have 
tested if the same approach can be used for snow cover 
detection. 
 

   (3) 

Where a and b are coefficients compensating for site 
specific configurations. 

2.3 Measurement sites 
 The proposed method for quality control of irradiance 
sensors was tested for the uncorrected raw data, given as 
10-minute averages, measured by an old pyranometer 
installed at the supervised weather station at the 
Norwegian University of Life Sciences. The method was 
also tested on a commercial flat roof PV system, where 
the POA irradiance was measured by tilted reference cell 
and given in 5-minute averages. The tilt of the system 
and the reference cell is 10°, and the orientation of the 
modules is south-east and north-west.  
 The method for detection of sensor detachment is 
tested for two different types of PV installations: South-
orientated modules installed in an open-rack 
configuration with a tilt of 28°, and modules installed on 
a roof with a tilt of 35°. The module temperatures are 
measured by a resistant thermometer attached to the back 
sheet of the modules, and the POA irradiance is measured 
by reference cells. For the rack installation, the ambient 
temperature sensor is installed under the modules, and for 
the tilted roof installation the ambient temperature is 
measured by a weather station at the same location. 
 For both systems, the same approach is tested for 
snow cover identification. Additionally, snow cover 
identification is tested for the flat roof system used in the 
irradiance quality control tests. For this system, the cell 
temperature of a reference cell is used as an estimation of 
module temperature, the ambient temperature is 
measured by a PT-1000 element, and irradiance is 
measured by a ventilated pyranometer. Normally, the 
reference cell is covered by snow in the same period as 
the modules because of the low tilt angles, and the 
pyranometer is less affected, most likely because of the 
ventilation and a more elevated installation position. Both 
roof installations are commercial systems, while the open 
rack system is a scientific test site. Hourly averages are 
used in the analysis. 
 
 
3 RESULTS AND DISCUSSION 
 
3.1  Quality control of irradiance measurements 
 The irradiance measurement control method was 
tested on raw data from the pyranometer at the 
Norwegian University of Life Sciences. As presented in 
Figure 1, the relative difference between measured and 
modeled irradiance is scattered and high, especially in 
periods with low irradiance. In periods with low 
irradiance and high angle of incidence, the relative errors 
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of both the measurements and the modeled results is 
probably higher [7,18].   

To improve the analysis, the periods with low 
irradiance were filtered out. The difference between 
measured irradiance and modeled clear sky irradiance 
when the measured irradiance was more than 500 W/m2 
is given as a function of time in Figure 2. The sensor was 
recalibrated and adjusted in 2008, after this there were no 
significant changes in sensitivity for two years, followed 
by a decrease in sensitivity by 1% per year in a four-year 
period (2010-2014). The pyranometer was replaced in 
2014, which lead to an increase in the sensitivity of the 
irradiance measurements at the site of 6%. All these 
alterations were detectable through comparison with clear 
sky modeling. The shift in measured irradiance relative to 
the modeled irradiance at the time of the sensor 
adjustment and the pyranometer replacement is clearly 
shown in Figure 2. After the sensor replacement, the 
scaling factor  also increased by 6 percentage points. 
The analysis indicates a degradation of the sensor of 1% 
per year in the period 2010-2014, the same as the 
independent instrument calibration, based on a reduction 
of  of 1 percentage point per year.  

 
Figure 1: Relative difference between GHI 
measurements and clear sky irradiance modeling at 
different irradiance levels. 

 We observe that the modeled irradiance is slightly 
biased and most of the time is lower than the measured 
irradiance, as expected for higher latitudes when using 
the Ineichen and Perez model [7]. Additionally, the 
variations between single points is high, indicating that 
this method cannot be applied for quality control of 
individual measurements. However, the ability of the 
method to indicate drift or other permanent changes in 
the irradiance measurements over time is remarkable.  
 It is well known that pyranometers are subject to a 
thermal offset during clear sky periods [19]. This 
introduce a bias in the comparison between the clear sky 
model and the measurements. However, as it is the 
change and not the absolute value that is of importance, 
this effect is assumed negligible in this context. A more 
relevant challenge is changes in atmospheric conditions 
with respect to transmission and scattering. Changes in 
air pollution are one of the major contributions to what is 
referred to as global brightening and dimming, which 
may have an effect of a magnitude that might influence 
long time PV performance analysis [18]. More practical 
challenges related to this method for commercial 
systems, is the low time resolution data these types of 
systems often have, and potentially also the number of 
clear sky hours through the year at the specific location. 
 
3.2 Quality control of tilted reference cell measurements 
 The quality control method for irradiance 
measurements was also tested for tilted reference cells 
measuring the POA irradiance of a PV system in a north-
west, south-east configuration with a tilt of 10°. 
Reference cells are, as mentioned earlier, common for 
medium sized PV systems with monitoring. The 
uncertainties are however higher than when pyranometers 
are used. The relative difference between the 
measurements and the clear sky modeling for irradiance 
above 500 W/m2 is presented in Figure 3. The scaling 
factor between the measured and modeled irradiance is 
approximately constant from year to year for the 
irradiance measured in the north-west direction, with a 
reduction of less than 0.1 percentage points. This is lower 
than expected degradation for a c-Si reference cell [8].  

 

 
Figure 2: Relative difference between GHI measurements and clear sky irradiance modeling at measured irradiance above 
500 W/m2. Time of adjustment of the sensor, pyranometer replacement, and the period where 1 % decrease per year was 
measured is marked. 
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It should be noted that the north-west orientation 
results in lower irradiance and fewer data points with 
irradiance values above 500 W/m2. This could potentially 
affect the robustness of this result. For the irradiance 
measured in the south-east direction, the difference 
between measured and modeled irradiance appeared to be 
season dependent. It was found that this sensor was 
misaligned, which could be an explanation for this 
behavior.  
 This misalignment also gave a shift between the 
position of the measured and modeled irradiance curves 
(as well as the PV power curve), as shown in Figure 4. A 
consequence of this was unlikely high performance ratios 
for the PV system in the morning, as the irradiance sensor 
measured less irradiance than what the PV modules 
received, and opposite in the evening. 

 
Figure 3: Relative difference between POA 
measurements and clear sky irradiance modeling at 
measured irradiance above 500 W/m2. 

 
Figure 4: Measured and modeled irradiance with 
temporal shift in curves because of misalignment of 
sensor. 
 
3.3 Control of module temperature sensor detachment 
 The linear relationship between module and ambient 
temperature difference and irradiance is presented in 
Figure 5-6 for two different types of installations. Data 
was selected from four different weeks and different 
months and years to highlight some important aspects: 
The correlation between the temperature difference and 
the irradiance is almost linear and it typically has 
relatively small variations from year to year and month to 
month for the ground mounted open rack system, and to 
some degree also for the roof mounted system. This 
indicates that it is possible to detect detachment of the 
module temperature sensor by monitoring changes in the 
slope. If detached, or partially detached, the module 
temperature sensor measure a value closer to ambient 

temperature, and the slope would be less steep or zero. 
The scattering of the data points is greater for the close 
roof mounted system and this system also experience the 
highest temperature difference. One natural explanation 
for this is the cooling effect of the wind, which is not 
taken into account in the analysis. Lack of rear side 
ventilation or heat leakage from the building itself may 
also be influential. The slope of the regression lines of the 
close roof mounted system is twice as steep as for the 
rack mounted system, in agreement with the experimental 
results of King et al. [17]. 

 
Figure 5: Absolute difference between module and 
ambient temperature as a function of measured 
irradiance. Data from four different weeks is shown. 

 
Figure 6: Absolute difference between module and 
ambient temperature as a function of measured 
irradiance. Data from four different weeks is shown. 
 
3.4 Use of temperature sensors for snow detection 
 Snow cover on the PV modules will, like the sensor 
detachment, have an effect on the slope of the 
temperature/irradiance regression line. As presented in 
Figure 8-10, when snow is covering the modules, the 
correlation between the temperature difference and the 
irradiance will change substantially, as the module 
surface and back sheet will be significantly less heated. 
For the rack mounted system the measured module 
temperature is lower than the measured ambient 
temperature. The difference is increasing with increasing 
irradiance and ambient temperature. For the roof systems, 
the module temperature is higher than the ambient, most 
likely because the snow has an isolating effect.  
 Generally, it might not be possible to separate 
situations with partly snow-covered modules from 
situations with low irradiance, or situations when snow is 
covering the irradiance sensor. The figure showing the 
snow-covered modules at the tilted roof system, 
illustrates how it can be challenging to separate periods 
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with low irradiance from periods with snow cover. 
  

 
Figure 7: Absolute difference in measured module 
temperature and ambient temperature as a function of 
irradiance for weeks where snow is covering the modules 
compared to a week with normal production.  

 
Figure 8: Absolute difference in measured module 
temperature and ambient temperature as a function of 
irradiance for weeks where snow is covering the modules 
compared to a week with normal production.  

 
Figure 9: Absolute difference in measured module 
temperature and ambient temperature as a function of 
irradiance for weeks where snow is covering the modules 
compared to a week with normal production.  
 

The main limitation with this method is its 
dependency of undisturbed irradiance measurements. 
Low irradiance situations might also be challenging, as 
the modules do not heat up as much as under normal 
operation. To give more robust snow detection 
algorithms, the difference in module and ambient 
temperature should be combined with PV efficiency data, 
and potentially also estimated irradiance to both indicate 
if the sensor is covered by snow and replace the 
irradiance measurement data.  

 The placement of the temperature sensors is of 
importance, as this will define the ability to detect partly 
covered modules, and give different temperature 
difference characteristics (i.e. positive, negative or zero). 
The temperature difference characteristics can also be 
studied through night time values. 
 
 
4 CONCLUSION 
 
 In this work, a method for detection of permanent 
changes in irradiance measurements has been tested, as 
well as a method for detection of module temperature 
sensor detachment and how the latter can be used to 
improve detection of snow cover on the PV modules. 
 Quality control of irradiance measurements based on 
data anlaysis has been performed for different PV 
systems with high and low-accuracy irradiance sensors. 
We show that by using this approach it is possible to 
accurately detect both abrupt changes, as well as slow 
gradual changes such as the yearly drift of 1%.  
 A method for detection of module temperature 
sensors detachment and snow cover was tested for typical 
commercial installation configurations in Nordic 
climates, including open rack mounted, close roof 
mounted and tilted flat roof mounted systems. The linear 
relationship between temperature differences and 
irradiance proved to be stable enough to indicate sensor 
detachment and snow cover. The robustness of this 
method might depend on reliable irradiance 
measurements, sensor placement and installation 
configuration. Periods with low irradiance and partly 
snow-covered modules appeared to be challenging. 
However, in combination with other methods, the 
presented results show that the use of module 
temperature sensor increase the confidence and accuracy 
of forecasting and fault diagnostics with respect to snow 
cover events. 
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ABSTRACT: Monitoring solutions for commercial photovoltaic (PV) systems are becoming increasingly widespread, 
but often performs poorly, especially in locations with varying weather conditions. In this work two standard 
performance metrics commonly used in PV system monitoring, temperature corrected performance ratio and specific 
yield, have been calculated and evaluated for real-world conditions. The data is collected from eight inverters of 13-18 
kWp each, installed at a commercial large-scale PV system in Norway. The results show that naïve use of the tested 
performance metrics give unreliable monitoring with high variation in the PV system performance estimation, often 
resulting in false alarms. Very low solar elevation and irradiance, snow and technical irregularities in the installation 
are the primary causes of false alarms in the monitoring. It is shown that for certain climates standard filtering 
approaches are not sufficient to solve these problems, and that site-specific filtering of data gives more stable 
monitoring output, entailing more data and less variation. 
Keywords: PV systems, Monitoring, Performance, Rooftop 
 

 
1 INTRODUCTION 
 
 
and maintenance of photovoltaic (PV) systems, an 
extensive number of algorithms and performance metrics 
have been proposed to improve the PV system monitoring 
solutions [1]. From very basic to more advanced  the aim 
of the algorithms is to detect when the PV system is 
deviating from normal operation and identify faults. The 
more advanced solutions are also targeting failure 
diagnosis. Despite that the demand for PV monitoring 
solutions is growing rapidly, the algorithms are still not 
sufficiently sophisticated to handle the noise and 
variations in real-world data in a satisfactory manner, 
resulting in noise also in the monitoring output. The noise 
originates from different issues that are difficult to capture 
in generalized algorithms, like certain weather conditions 
and differences in e.g. installation configurations, data 
quality and measurement availability. Consequently, 
analysis and estimations based on real-world data in 
commercial systems often conceal faults and degradation, 
and lead to frequent false alarms when used in monitoring. 
From an operational point of view, false alarms are just as 
problematic as undetected faults, as it reduces the trust in 
the monitoring system. 
 Common approaches to handle the noise in PV system 
performance estimates are filtering, such as clear sky 
filtering or irradiance value filtering [2 5], or lowering the 
time resolution. Although this can be useful for some 
applications, information which may be necessary to do 
advanced fault diagnosis (e.g. detecting faults impacting 
the low light performance of the PV modules [6]) or day 
to day monitoring in areas with challenging weather 
conditions may be lost. Lowering the time resolution by 
aggregating over longer periods of time introduce 
unknown uncertainties and increase the reaction time of 
the algorithm.  
 In this work, we evaluate two standard performance 
metrics commonly used in PV system monitoring: 
temperature corrected performance ratio (PRTC) and 
specific yield (Yf) inverter comparison. This is done by 
testing the methods on data from a commercial PV system 
located in Norway, where the PV modules are exposed to 
diverse types of challenging weather conditions (e.g. 
snow, high frequency of cloudy weather), and large 

variations in irradiation conditions throughout the year. 
The evaluation is conducted by calculating the metrics and 
assessing the periods where there are large deviations from 
the expected constant values. The effect of removing the 
main issues identified in the evaluation of the unstable 
periods is compared to standard filtering approaches. To 
efficiently remove the main issues, a new snow detection 
method was developed. As discussed in our previous work 
[7], there is a lack of methods for robust data-based snow 
detection in PV systems in periods with partial melting.  
 The aim of the described analysis is to improve the 
monitoring methods for commercial PV systems. This is 
done by providing an understanding of the current 
limitations, particularly with respect to noise and 
applicability in climates with large variations in weather. 
The evaluation allows for a further assessment of how 
these methods can be improved, and how they eventually 
should be modified for different types of PV installations 
in different climates to work more efficiently. This lays a 
foundation and identify a direction for the development of 
improved methods and efficient filtering strategies in 
performance analysis and fault detection for PV systems.  
 
 
2 METHODS 
 
2.1 Dataset 
 The data is collected from a 135 kWp PV system, 
located in the South-Eastern part of Norway (59.9 °N / 
10.8 °E). The PV modules are East oriented, with an 
azimuth of 112  and a tilt of around 10°, and they are 
installed on an approximate flat roof. The roof has a tilt of 
1-2  in the North-South direction, meaning half of the PV 
modules has the same tilt North, and the other half has the 
same tilt South. The module type is IBC Solar PolySol 250 
CS. The PV modules are connected to eight different 
inverters, and the PV capacity for each inverter varies from 
13 to 18 kWp. Plane of array (POA) irradiance is measured 
by a crystalline silicon reference cell. The temperature of 
the reference cell is measured, and it is used as an estimate 
of the PV module temperature. 
 Data from September 2014 to April 2018 is used, 
logged with 5 minutes averages. Night time values, i.e. 
logged values of 0 for current or irradiance, are not 
included in the analysis.   
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2.2 Performance metrics 
 Two basic performance metrics commonly used in 
monitoring are tested: Specific yield (Yf) inverter 
comparison:  
 

 
 
and temperature corrected performance ratio (PRTC): 
 

   
 
Yf is the specific yield  the energy generated in a given 
time interval, divided by the rated power of the system.  Yr 
is the POA insolation in the same time interval divided by 
the reference irradiance 1000 W/m2 [8].  is the material 
dependent maximum power temperature coefficient. For 
the given technology this coefficient is -0.43%/ °C. Tmod is 
the estimated PV module temperature, and TSTC is the 
reference temperature 25°C. In the specific yield 
comparison, the inverter energy output is compared to the 
median inverter energy. In this way, weather conditions 
are inherently accounted for, and sensor data quality is not 
an issue. Using the median instead of the mean reduces the 
influence of faulty inverters in the comparison, should 
there be any. 
 
2.3 Evaluation of performance metrics 
 The performance metrics are tested on the dataset by 
calculating the parameters on an hourly basis. Hourly 
averaged performance parameters are commonly used to 
provide a balance between resolution and stability. Here it 
is also used to enable separation between different effects 
influencing the behavior of the performance metrics. The 
assumption is that the metrics are stable under normal 
operation, while changes in the performance will lead to a 
decrease. However, this is not always a correct 
assumption: In some periods the metrics are unstable, 
giving very varying or unexpected results that are not 
caused by faults. These periods are qualitatively assessed 
to explain the large variations.  
 The standard deviation ( ) of the performance metrics 
can be used to quantify the variation in the metric under 
normal operation for a given system, as discussed in our 
previous work [9]. With lower variation in the metrics 
during normal operation conditions, the performance 
metric has a higher sensitivity for detecting abnormal 
situations. The standard deviation can hence be used to 
measure the stability and accuracy of the performance 
metrics.  
 To quantify the impact of the different effects causing 
periods with large variation in the hourly performance 
metrics, the standard deviation in the metrics is calculated 
before and after filtering out the effects. This is compared 
to the change in standard deviation after applying standard 
filtering to the metrics. The standard filtering approaches 
used is low irradiance and clear sky filter. The clear sky 
detection algorithm described in [10] as implemented in 
pvlib [11] is used for clear sky filtering. The python 
version of pvlib is also used in the estimation of the POA 
clear sky irradiance used in the clear sky detection 
algorithm, and for the estimation of solar elevation.  
 To evaluate if there are any differences in irradiance 
conditions between the inverter strings and between the 
inverter strings and the irradiance sensor due to e.g. 
slightly different installation angles or hard shadowing, the 
clear sky signal was estimated for the irradiance sensor and 
for each string using the statistical clear sky fitting 

algorithm proposed by [12]. Using this algorithm, the clear 
sky current and irradiance for each day through the year 
was estimated using the measured current and irradiance 
data. For the inverters, the current values were used instead 
of the power values to focus on the irradiance signal and 
exclude temperature effects.  
  
 
3 RESULTS AND DISCUSSION 
 
3.1 Performance evaluation using unprocessed data 
 The specific yield inverter comparison and the 
temperature corrected performance ratio for one inverter, 
using unfiltered hourly data, are presented in Figure 1. The 
trends are similar for all the inverters. The variation in the 
specific yield comparison and the temperature corrected 
performance ratio is large, both relatively (Figure 1) and 
absolutely (Figure 2). The average standard deviation of 
the Yf inverter comparison of the 8 inverters is 0.38. For 
PRTC it is 0.25. These large variations in the estimation of 
the normal state of the PV system challenge efficient use 
of these performance metrics for fault detection and 
performance evaluation. Fault detection is normally based 
on detecting when a system is operating outside normal 
conditions, such large variations will hence produce false 
alarms and result in low sensitivity [9].  
 

 

 
 

Figure 1: Variation during normal operation in Yf 
comparison (top) and in PRTC (bottom) using hourly data 
from one inverter. 
 
3.2 Performance evaluation using standard filtering 
 To reduce the variation and increase the accuracy in 
PV performance analysis, it is common to filter out the low 
irradiance and/or applying a clear sky filter. In [2] a low 
irradiance threshold of 200 W/m2 and a clear sky filter is 
proposed to remove time periods of poor or variable solar 
resource conditions to get a stable degradation estimate. 
The same irradiance threshold is also applied by [3] for 
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fault detection, and also in this work it is observed that 
clear sky days have lower variation in the estimates of the 
current and power under normal conditions. The average 
standard deviation for all the inverters and the remaining 
data after applying the same irradiance threshold and a 
clear sky filter on the calculated Yf comparison and the 
PRTC, are given in Table I. The filtered results for the PRTC 
are also visualized in Figure 3. 
 Filtering the data with the standard approach reduces 
the standard deviation of the data. However, the number of 
data points are also drastically reduced and not all large 
variations are removed. Adding the clear sky filter in 
addition to the low irradiance threshold increases the 
variation due to the large reduction in data points  also 
the ones that are stable. Hence, naïve filtering is not a 
global solution for all monitoring. Here the methods are 
both imprecise and too strict, leaving too little data to base 
the monitoring on.  
 

  

 
Figure 2: Absolute comparison between the inverter Yf 
and the median Yf (top) and between Yf TC and Yr (bottom). 
 
 
Table I: The average standard deviation ( )  of the two 
metrics for all inverters, without filters, and after 
consecutively removing low irradiance (< 200 W/m2) and 
cloudy periods [11]. Remaining data after filtering is also 
given. 
 

                          Avg  Yf           Avg        Remaining 
                                comparison       PRTC             data 
Raw data                     0.38               0.25            100 % 
Low irradiance            0.16               0.17            38 % 
Cloudy periods            0.21               0.21            6 % 

 

 
Figure 3: PRTC using hourly data from one inverter, after 
consecutively removing (top) low irradiance (< 200 W/m2) 
and (bottom) cloudy periods. 
 
3.3 Evaluation of time periods with large variations 
 To better understand when the monitoring methods do 
not work, the time periods with large variations have been 
analyzed. The explanations for the largest variations can 
be divided into three major categories, discussed in the 
following subsections. 
 
3.3.1 Snow 
 Snow is a well-known challenge in PV system 
monitoring in Northern climates. For the tested 
performance metrics, a full snow cover is unproblematic. 
With zero production, there are no variation between the 
inverters and consequently no variations in relative 
inverter performance. When the irradiance sensor is 
covered in snow, no low PR values will be calculated. The 
main challenge in PV system monitoring, is the melting 
period. When the snow is melting, the inverters and the 
irradiance sensor might receive different irradiance. 
Additionally, the inverters might have partial snow covers, 
giving signatures similar to faults. 
 To remove data from periods with snow covered PV 
modules, a new snow detection method was developed. 
Using local snow depth estimation from the Norwegian 
Water Resources and Energy Directorate [13], and power 
and irradiance data for the system, the variation in DC 
voltage for the system under normal conditions and for 
snow melting periods was found. In periods with partial 
snow cover, the DC voltage of each string has increased 
variation compared to normal operation, and there is larger 
variation between different inverters. A threshold for DC 
voltage variation was determined empirically. The periods 
with full snow cover and partial snow cover was 
accordingly removed based on a combination of snow 
depth data and the DC voltage variation limit for normal 
operating conditions. 
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3.3.2  Morning/evening effects 
 As expected, there were large relative variations in Yf 
and PRTC in the morning and evening. One of the main 
explanations for this is variations in low light behavior of 
the PV modules and inverters. Both the low irradiance and 
the increased share of diffuse light in the morning and 
evening will influence variation in PV module behavior. 
Additionally, small variations in PV module tilts, as 
discussed in depth in the next section, can lead to 
significant differences in the angle of incidence of the 
incoming light, and consequently a variation in reflected 
and received irradiance. By relating the Yf and PRTC to 
irradiance level and solar elevation, it was found that for 
this specific system, these effects were most prominent for 
irradiance values < 50 W/m2 and solar elevation < 10°. A 
general algorithm for estimating the optimal filtering 
threshold of these values for different locations is 
proposed in [9]. 
 
3.3.3 Physical irregularities in the installation  
 Due to physical limitations in PV system installations 
such as variations in roof inclination, topography, objects 
shadowing the PV modules, different PV modules/inverter 
strings might receive different irradiance, resulting in 
different energy output. This can also affect the irradiance 
sensor. Also, other technical irregularities in the 
installation and variations in local climate can lead to 
variation for a PV system in e.g. temperature and soiling 
patterns. For this system, particularly two installation 
specific irregularities influence the monitoring output: the 
modules in one of the strings had a different tilt angle from 
the rest, and there was a difference in the tilt of the 
modules and the POA irradiance sensor. The effect of each 
of these aspects of the installation are explained in the 
following. 
 The variation in received irradiance on the different 
inverter strings are illustrated in Figure 4, using the DC 
current. As shown in this figure, inverter 6 has a current 
curve with a clearly different shape than the other 
inverters. This is due to the 1-2° tilt in the North and the 
South direction of the roof (while the PV modules are 
faced East). Where the rest of the inverters have PV 
modules that is both tilted slightly towards South and 
North, inverter 6 has only South tilted modules. This leads 
to significant variation in irradiance conditions, also on an 
hourly basis, between inverter 6 and the rest of the 
inverters and weakens the basis for comparison. 
 

 
Figure 4: The DC current for each inverter during one 
clear day (5 minute averages), illustrating the variation in 
received irradiance for the inverter strings. 

For the PRTC values, it was observed especially high values 
in the morning, and very low values in the afternoon. This 
was found to be because of the tilt of the reference cell, 
which was 1-2° lower than the average tilt of PV-modules. 
Additionally, it had a 1-2° tilt towards South. 
Consequently, there are several hours the reference cell is 
not measuring a representative irradiance for the PV 
system. Difference in tilt between reference cell and the 
PV modules is an issue that will influence most irradiance 
based performance metrics. 
 These effects were filtered out based on deviations 
between the estimated clear sky behavior [12] for each 
inverter and between the inverters and the reference cell. 
 
3.4 Effect of the identified issues on the performance 

metric variation 
 The effect of consecutively removing the issues 
identified and described in Section 3.3, are shown for each 
inverter in Figure 5, and for the average of all the inverters 
in Table II. The percentage of remaining data after 
removing the effects is also given in the table.  
 

 
 

 
Figure 5: The standard deviation of the two metrics for 
each inverter, where the effects leading to unstable periods 
are consecutively removed. 
 
Compared to the results of the standard filtering approach 
presented in Table I, the variation is significantly 
decreased and at the same time less data is removed. In the 
comparison of the specific yield, removing periods where 
there were large variations in incoming irradiance because 
of physical deviations was only relevant for inverter 6, as 
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this is the only inverter that has significantly different 
installation configurations compared to the other inverters. 
For the PRTC, removing this effect influence the variation 
for all the inverters because the irradiance sensor has 
different tilt angles than all the PV module strings. 
 
Table II: The average standard deviation of the two 
metrics for all inverters, where the effects leading to 
unstable periods are consecutively removed. Remaining 
data after filtering is also given. 
 

                          Avg  Yf           Avg        Remaining 
                                comparison       PRTC             data 
Raw data                      0.38               0.25            100 % 
Snow                            0.21               0.19            84 %  
Low solar elevation     0.08               0.09             63 % 
Very low irradiance     0.04               0.08             58 % 
Physical irregularities  0.03               0.04          Inverter 
                                                                            specific 
 
 
4 CONCLUSIONS 
 
 The results show that naive use of standard 
performance metrics such as specific yield and 
temperature corrected performance ratio in a monitoring 
system for PV installations, give unreliable results with 
high variation in the PV system performance estimation. 
This will both reduce the sensitivity and the fault detection 
ability of the monitoring system and typically result in 
false alarms. Very low solar elevation and irradiance, 
snow and technical irregularities in the installation are the 
primary causes of the high variation in the monitoring 
output. It is shown that for certain climates standard 
filtering is not sufficient to solve these problems, and that 
site-specific filtering of data gives more stable monitoring 
output, entailing more data and less variation. 
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ABSTRACT: Large PV plants are increasingly common in locations with colder climates where snow can lead to 
significant PV power loss. For these locations, estimates of snow loss is necessary for accurate PV yield modeling. 
Robust estimation of snow loss is, however, challenging. Snow-induced loss is expected to vary with climate, weather, 
and PV plant design. In this work, we estimate snow loss from historical data for a set of PV plants in Norway. To extend 
the snow loss dataset, 12 years of weather data and a modified adaption of the Marion snow loss model are used to 
simulate snow loss for the analyzed PV plants over time. For the historical data, we observe variations in annual losses 
for the same system of more than 10 percentage points. For some of the systems, we find losses in a range from 0 to 100 
% for the same month. As expected, systems with colder climates have higher loss than systems in warmer climates, and 
systems with higher tilt has lower loss than systems with lower tilt. With snow loss modeling we get improved 
understanding of typical and extreme values, and the potential inter-annual variation in monthly and annual snow loss.  

Keywords: PV System, System Performance, Modeling, Soiling, Snow 
 

 
1 INTRODUCTION 
 
 As cost reductions have made photovoltaics (PV) a 
favorable choice also in colder climates, deployment 
rates in regions with snow falls are rapidly increasing [1–
3]. Snow on PV modules may lead to significant power 
loss. For certain locations snow fall can result in zero 
electricity production in the winter season and more than 
30 % annual loss [4]. Consequently, it is an important 
loss mechanism to consider in PV system models to get 
accurate assessments of the expected energy generation 
from PV plants in snow-affected locations. Snow-induced 
PV power loss is expected to vary from year to year, 
between different system configurations and between 
different locations. To get accurate snow losses for a 
specific system, a model taking into account the different 
influential parameters is therefore necessary. Recent 
research has demonstrated that for snow-affected 
locations the uncertainty in yield estimations [5–8] and 
forecasting [9] can be reduced if snow loss models are 
included. Despite this, snow loss models are often not 
implemented in PV simulation software. The System 
Advisor Model (SAM) has implemented the model 
suggested by Marion et al. [5,6], but in other software, 
snow is either not considered [10] or estimated by 
constant soiling values [11] with little guidance on how 
these constant values should be obtained. 
 Accurate snow loss modeling is, however, 
challenging, because the parameters influencing the snow 
cover and resulting PV system loss are manifold. The 
influential parameters range from weather conditions 
(precipitation, temperature, irradiance, wind, etc.), to 
installation and technology specific configurations (tilt, 
module technology/orientation, objects obstructing snow 
sliding etc.) [1,12] and type of snow [4]. Multiple snow 
loss models have been suggested [4], but validation is 
typically lacking [6]. To include all the parameters 
influencing snow cover and resulting loss in a physical 
model is challenging, and most suggested models for PV 
snow loss are based on empirical correlations [4]. 
 In our previous work [13], we show that the snow 
loss model suggested by Marion et al. [3], where 
empirical correlations are used to model natural snow 

clearing, performs better than models where snow loss is 
directly estimated based on empirical correlations 
between power loss and system and weather data. Ryberg 
et al. [6] and van Noord et al. [14] also find acceptable 
correlation between estimated and modeled snow loss 
using the Marion model.  
 To estimate the snow coverage on PV modules, the 
Marion model aims to predict: 1) presence of snow cover 
on PV modules, 2) when snow is cleared off the modules, 
and 3) the snow clearing rate. The separation of these 
three processes in the model, enables improvement of the 
model by developing the modeling of each process by 
either using additional physical modeling or collecting 
more empirical data.  In the model, the snow clearing rate 
is estimated with an empirical snow clearing coefficient. 
Many different parameters related to system design and 
weather/snow conditions are assumed to impact how fast 
the snow is cleared [13]. Frameless modules [15], empty 
space below modules [12] will promote sliding, for 
instance. With more data from different system 
configurations in different climates, we would get 
improved understanding of which parameters that impact 
the snow clearing rate the most, and consequently also 
get better values for the snow clearing coefficient and its 
potential variation.  
 In our evaluation of the model [13], we estimate the 
snow clearing coefficient from the snow loss data for the 
analyzed system, and we observe that for thin snow 
covers, the natural snow clearing rate is faster than the 
clearing rate of thicker covers [13]. By introducing 
separate snow clearing coefficients for thin and thick 
snow covers, reduced error in modeled snow loss is 
achieved. This also seems to make the model more 
general: when using snow depth dependent snow clearing 
coefficients we get better results when we model losses 
for systems with similar technical configurations with the 
same coefficients compared to when we use one single 
coefficient  [16]. For transferability, it is important that 
we can use the same empirical coefficients for systems 
with similar technical configurations. 
 In addition to the challenge of accurate snow loss 
modeling, there is a lack of established guidelines on how 
to take snow losses into account when used in e.g. PV 
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yield modeling or PV system dimensioning. Input data 
for the snow loss estimation, temporal resolution of the 
loss parameter, inter-annual variations and the impact of 
climate change need to be discussed. As pointed out by 
Marion et al. [5], typical meteorological year (TMY) 
values are not sufficient to use as input in snow loss 
modeling for PV yield assessments. Because snow is not 
one of the parameters considered in the derivation of 
TMY, TMY data does not necessarily represent a typical 
snow year. Using a long time series of meteorological 
data, enabling quantification of typical values and the 
inter-annual variability is suggested instead [5]. It is, 
however, important to use recent data. Because of climate 
change, historical snow data might not be representative 
for future snow conditions. In Norway, it is estimated that 
climate change will lead to reductions in snow depth and 
length of snow season, and an increase in snowline 
elevation [17]. Temporal resolution of the snow loss 
parameter is to our knowledge not much discussed in the 
literature. In the simulation tool PVsyst, monthly constant 
snow losses are used for PV simulations [11]. While this 
can be sufficient in assessments of total yield, this will 
not sufficiently describe the potential inter- and intraday 
variation. This variation can be relevant in system 
dimensioning, in particular for hybrid/battery systems.  
 In this work, we estimate the snow loss for a set of 
PV plants in Norway. Two different system designs are 
evaluated: commercial systems with modules installed 
with low tilt angles on flat roofs, and residential systems 
on tilted roofs. The aim of this analysis is to describe the 
variations in both monthly and annual snow losses, with 
respect to both time, location and system configuration, 
and to discuss how this could be included in e.g. PV yield 
modeling. The losses are estimated using both historical 
data and simulations based on longer time series of 
weather data and a modified adaption of the Marion snow 
loss model. 
 
 
2 METHODOLOGY 
 
2.1 PV system data 
 Seven PV installations in Norway with a total 
installed capacity of 1.6 MWp are analyzed. The 
evaluated dataset is the same as the dataset used to 
validate the modified snow loss model in [16], but some 
of the data series are extended in time. Two different 
system types are evaluated: residential systems on tilted 
roofs, and commercial large-scale systems on flat roofed 
buildings. The commercial systems have modules 
installed with low tilt and east/west orientation. This 
configuration is not optimal for total annual production in 
Norway, but is commonly used on flat roofed buildings 
to increase the packing density and reduce the seasonality 
of the production profile. The modules are installed in 
portrait orientation at the residential systems, and 
landscape orientation at the commercial system. All the 
PV modules are crystalline silicon. Apart from some 
variations in exact orientation, and tilt for the residential 

systems, the installations of the same type are assumed 
technically identical. Tilt and length of analysis period 
for the systems are given in Table I.  
 
Table I: Module tilt and length of analysis period for 
analyzed systems 
System ID Tilt Analysis period 
Residential systems 
R1 26 Jan 2019 – June 2021 
R2 40 Jan 2018 – June 2021 
R3 24 Jan 2019 – June 2021 
Commercial systems 
C1 10 Jan 2015 – June 2021 
C2 10 Jan 2017 – June 2021 
C3 10 Jan 2018 – June 2021 
C4 10 Jan 2018 – June 2021 

 
 The measured energy of the PV systems is collected 
from the inverters. For the commercial systems, the 
effective in plane irradiance and the module temperature 
is measured by reference cells. The residential systems 
have no on-site sensors. For all the locations, snow depth 
and snow fall data are collected from seNorge.no [18] 
and temperature and global horizontal irradiation (GHI) 
data are collected from nearby weather stations [19].  
 As illustrated in Figure 1, the analyzed systems are 
situated in three different geographic regions in Norway 
(East, West and Central), and in three different Köppen-
Geiger (KG) [20] climate zones (Humid continental 
climate (Dfb), subarctic climate (Dfc) and oceanic 
climate (Cfb)). This gives variation in snow and weather 
conditions between the locations. Figure 2 shows 16 
years of snow depth data for the four different 
combinations of geographic region and climate zone.  
 

 
Figure 1: Location on the map for the analyzed systems. 
The locations are labeled with geographic region and 
climate zone is given by the marker color. 
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2.2 Estimation of snow loss from historical PV data  
 To estimate historical snow losses from PV 
monitoring data, it is necessary to get an accurate 
estimate of what the energy production could have been 
if there was no snow. This requires an accurate model 
that considers all other losses of the PV system, and an 
efficient method to separate snow losses from other 
losses. To correctly estimate snow losses, it is especially 
important to take into account other wintertime losses 
such as losses caused by low irradiance, and high angles 
of incidence. These types of losses are typical for high 
latitude locations in the wintertime [21], and can 
introduce increased uncertainty in PV system modeling if 
not properly accounted for. 
 To estimate expected PV module power output for 
the commercial systems, the effective irradiance 
measured by the reference cells and the measured module 
temperature are used as input to a single diode model in 
pvlib python [22] to model PV module power output, 
using the procedure described in [13]. For the residential 
systems, detailed module data and onsite measurements 
are not available. Effective irradiance and module 
temperature are modeled in pvlib from measurements of 
GHI and ambient temperature from nearby weather 
stations. The GHI measurement is decomposed using the 
Erbs model [23] to estimate diffuse irradiance, and the 
Disc [24] model for direct irradiance. When modeling the 
in plane irradiance for the systems, the Hay and Davies’ 
1980 model [25] is used to determine the in plane diffuse 
irradiance from the sky. From the modeled in plane 
global irradiance, the effective irradiance is calculated by 
adding reflection losses using an incident angle modifier 
based on the physical model described in [26]. The 
module temperature is modeled using the PVsyst 
temperature model [27]. The expected power output from 
the modules is modeled using PVWatts [28]. 
 The described PV module power output models do 
not take into account all the relevant losses (all other 
losses than snow-induced losses) of the systems. From 
the energy performance index (EPI) of the system, the 
ratio between measured and modeled energy, we observe 
that the calculated value is below 1. Additionally, the EPI 
has a systematic seasonal component suggesting higher 
losses in the winter months, also in periods without snow. 
We assume that the significant losses not accounted for in 
the model, can be estimated with a constant and a 
seasonal component. To accurately find the seasonal 
components for the analyzed systems, seasonal trend 
decomposition is performed on the daily EPI, after 
filtering out time periods with snow on the ground (which 
introduces a non-systematic seasonal component).  

Seasonal trend decomposition is suggested by [29] as a 
method to find and correct the seasonal component in PV 
performance metrics. The deviation between 1 and the 
median of the seasonally corrected EPI is used as an 
estimate of the constant system losses. These two 
components are then used to correct the modeled PV 
module output to find the expected system output. By this 
way aiming to take all other significant losses into 
account, the snow loss is then estimated to be the 
difference in expected system output and measured 
system output in periods where the snow data suggests 
snow on the ground. 
 An additional uncertainty in this methodology is that 
snow cover on the irradiance sensors can lead to 
underestimation of snow losses. To reduce this 
uncertainty, the reference cell measurements from the 
commercial systems were controlled and corrected by the 
external GHI data. Pyranometers is expected to have 
lower risk for full snow cover than reference cells, 
because of the shape and elevation of the sensor, and 
better ventilation and maintenance.  
 
2.3 Modeling snow loss with the modified Marion model 
 In the Marion snow loss model [5] the presence of a 
new snow cover is assumed to happen after snow fall. 
The model further assumes that natural snow clearance 
will happen during melting. Melting is predicted to 
happen during the following conditions:  
 

Tamb > GPOA/m. (1) 
 

Tamb is the ambient temperature, GPOA is the in plane 
irradiance and m is an empirically defined value of -80 
W/(m2 °C). During melting, the snow will be cleared by 
sliding or direct melting on the modules [4]. To estimate 
the reduction in snow coverage in the melting period, 
measured in fractions of the system height, the tilt of the 
modules and an empirical snow clearing coefficient (sc) 
is used:  
 

Snow slide amount = sc * sin (tilt). (2) 
 

 Based on these assumptions, the snow coverage on 
the modules is estimated, and the corresponding power 
loss calculated. If a module substring is partially covered 
by snow, the power output is assumed to be zero. This 
way, it is taken into account whether the modules are 
installed in portrait or landscape orientation. The pvlib 
python [22] implementation of the Marion model is used 
in this work to model the relative snow loss. To estimate 
the absolute energy loss, the modeled relative snow loss 

 
Figure 2: Sixteen years of snow depth data for the four combinations of geographic region and KG climate zone in the 
analyzed dataset. 
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is multiplied with the modeled energy output of the 
system, modeled using the procedure described in 
Section 2.2. 
 In the development of the snow loss model, Marion et 
al. found sc to be 0.20 [5] for roof mounted systems. This 
value is the default sc in the implementation of the model 
in pvlib python [22] and the PV modeling software SAM 
[6]. The snow clearing coefficient is, as previously 
discussed, expected to depend on different system and 
module designs [13], because technical aspects can either 
promote or obstruct natural snow clearing [1]. In our  
evaluation of the model, we found that snow clearing is 
slower for the systems we have analyzed [13,16] 
compared to the validation systems the Marion model is 
based on. A possible explanation for the difference is 
higher roof interference for the systems that we have 
evaluated. In our evaluation of the model we also find 
that the rate of snow clearing is influenced by the 
thickness of the snow cover [13]. We therefore add a 
small modification to the Marion snow loss model by 
introducing a snow depth dependent sc. Because the 
dataset in this work is the same as in [16], we use the 
snow depth dependent snow clearing coefficients from 
[16] that gave the best modeling results. As also 
described in [16], we use snow depth data from the 
ground to separate between thin and thick snow covers 
for the commercial system where there is little sliding. 
For the residential systems where there is more sliding 
and where snow depth data from the ground are less 
representative, we use cumulative snow fall data as an 
indicator for snow cover thickness. 
 
2.4. Simulation of snow losses for longer time series 
 To simulate losses for the  analyzed systems over 
time, to get improved understanding of typical losses, we 
use long time series of weather and snow data to model 
snow losses, as proposed by [5]. GHI and ambient 
temperature data for all the locations from the time period 
2005-2016 and the ERA5 database is collected from 
PVGIS [30]. The expected module power output for all 
the systems is modeled as described for the residential 
systems in section 2.2. System loss of 7 % is added using 
the PVWatts system loss function with default loss values 
for mismatch, wiring, LID, connections and name plate 
rating [28]. Snow losses are then modeled using the same 
procedure as described in 2.3.  
 
 
3 RESULTS 
 
3.1 Snow loss estimated from historical PV data 
 Figure 3 shows the annual historical snow loss for the 
analyzed systems (both system configurations) estimated 
from historical PV data. The loss is given relative to the 
mean expected annual yield. The mean value is chosen to 
avoid variations in the loss caused by variation in the 
total annual irradiation. We observe large variations in 
snow losses from year to year, and between different 
systems. 
 As expected, we observe that weather, system design 
and climate on snow losses seem to impact the snow 

losses. The inter-annual variation in snow losses for the 
systems, as well as the variation in losses between 
systems located in the same climate zone, but in different 
locations (C1 and C3), can be explained by typical 
variations in weather between different locations and 
different years. C3, R1 and R2 are located in the same 
area, but R2 has lower loss than R1 every year, and C3 
typically has higher loss than both. This could be 
explained by the impact of tilt on the snow clearing, as 
snow clearing is inversely proportional with tilt. C1 and 
C2 have the same technical configuration and 
experiences the same weather as they are co-located, and 
their estimated losses are very similar. C4 located in 
oceanic climate typically has lower losses than the 
identical systems (C1-C3) located in humid continental 
climate. R3, located in a subarctic climate, typically has 
higher losses than R1, which has almost the same tilt but 
is located in a humid continental climate. 

 
Figure 3: Annual snow loss for the analyzed systems, 
estimated from PV data. The losses are given relative to 
mean expected annual yield for the analysis period. The 
systems in humid continental climate is plotted in blue, 
green represents oceanic climate and orange represents 
subarctic climate. 
 
 Figure 4 shows the monthly losses for all the full 
years in the analysis period. Large variations in the 
monthly loss value are observed for several of the 
months. For most of the datasets the loss is typically 
increasing during late autumn, reaching its highest peak 
in midwinter, before it decreases in the spring. The snow 
data do, however, not follow the same trend. Typically, 
the locations have the most snow in the late winter 
months, but this also corresponds with higher 
temperatures. 
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3.2 Simulated snow loss  
 Based on the results presented in Figure 3 and Figure 
4, it is not always clear what would be the best estimate 
for typical annual and monthly snow losses for the 
analyzed systems. Especially for the locations with large 
snow losses, there can be large variations for the same 
month between different years. With potentially large 
variations from year to year, estimating typical snow loss 
for short time series might give an output that is not 
necessarily representative for the system configurations 
and the location. Based on this, selecting a representative 
snow loss value for e.g. a PVSyst simulation seems 
challenging, as long time series for different system 
designs and locations would be needed. 
 Figure 5 and Figure 6 show the correlation between 
snow loss estimated from PV data and modeled snow loss 
using the modified Marion snow loss model for 
respectively annual and monthly losses. Both on the 
monthly and annual time scales we observe a linear 
relationship between modeled losses and losses estimated 
from historical PV data, indicating that the model can be 
used to predict the losses on both time scales. Some 
uncertainty in the prediction can, however, be expected. 
As seen in the figures, there are some deviations between 
modeled loss and loss estimated from PV data. 
 In Figure 7 and Figure 8 the simulated monthly and 
annual snow losses for the analyzed systems using 12 
years of irradiation and temperature data from PVGIS is 
presented. With the longer time series, we get a better 
understanding of what is typical losses, and what the 
potential variation and the extreme values could be. With 
the longer time series, we now see for all of the systems 
that the losses are highest during mid-winter. Some of the 
systems get higher monthly median losses than what we 
observed in Figure 4. This suggests that the years in the 
analysis period used to estimate losses from historical 
data are not necessarily years that represent the long-term 
trend. 
 Using longer time series and modeling could also 
enable estimation of snow losses for locations where PV 
data is lacking. Additionally, future snow losses could be 

estimated using output data from climate models giving 
data for the future. To avoid the impact of extreme 
values, we propose to utilize the median value of the 
modeled losses as an estimate of the monthly/annual 
snow losses in yield simulations. 

 
Figure 5: Annual modeled absolute loss compared to 
loss values estimated from historical PV data. 

 
Figure 6: Monthly modeled absolute loss compared to 
loss values estimated from historical PV data. 

 

 
 
Figure 4: Monthly snow loss for the analyzed systems in the analysis period (given in the subfigure title), estimated from  
historical PV data. The estimated losses for each month is plotted using a boxplot to show the interannual variation. The 
box extends from the first to the third quartile values of the monthly loss data, with a line on the median. The whiskers 
extend to maximum 1.5 multiplied the interquartile range. Outliers are given as circles. 
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 Using simulations to estimate PV systems snow loss 
could in addition to the loss value and estimation on 
interannual variability, also give realistic production 
profiles on daily and hourly timescale, which is useful in 
system size optimization and when building synthetic 
data series or adding synthetic performance loss for 
testing of e.g. fault detection algorithms [29]. The 
uncertainty in the modeling on high time resolutions is 
likely too high for e.g. monitoring purposes where the 
modeled PV output should match measured data, but to 
describe how snow losses vary within a day and from day 
to day, the modeling is useful. 

 
Figure 8: Simulated annual snow loss for the analyzed 
systems, based on 12 years of PVGIS data and the 
modified Marion snow loss model. The losses are given 
relative to mean expected annual yield for the analysis 
period. 
 
 
4 CONCLUSIONS 
 
 In this work, we estimate annual and monthly snow 
loss for a set of PV plants in Norway. In both annual and 
monthly losses, we observe large interannual variations, 
and we see that systems in colder climates typically have 
higher losses than systems in warmer climates. We also 

observe that higher tilt gives reduced losses, confirming 
previous studies. A modified adaption of the Marion 
snow loss model where snow depth is considered in the 
snow clearing modeling is used with 12 years of weather 
data to simulate losses for a longer time series, to get 
improved understanding on the potential interannual 
variation in snow losses. We find that snow loss 
modeling is a useful tool for estimating monthly or 
annual snow losses for use in yield modeling when long 
time series of snow loss data for a given type of system in 
a given location is not available.  
 
 
5 REFERENCES 
 
[1] L. Burnham, D. Riley, J. Braid, Design 
considerations for photovoltaic systems deployed in 
snowy climates, 37th Eur. Photovolt. Sol. Energy Conf. 
Exhib. (2020) 1626–1631. 
[2] B. Hashemi, A.M. Cretu, S. Taheri, Snow loss 
prediction for photovoltaic farms using computational 
intelligence techniques, IEEE J. Photovoltaics. 10 (2020) 
1044–1052.  
[3] IEA, PVPS Trends in photovoltaic applications 2020, 
2020. 
[4] R.E. Pawluk, Y. Chen, Y. She, Photovoltaic 
electricity generation loss due to snow – A literature 
review on influence factors, estimation, and mitigation, 
Renew. Sustain. Energy Rev. 107 (2019) 171–182.  
[5] B. Marion, R. Schaefer, H. Caine, G. Sanchez, 
Measured and modeled photovoltaic system energy 
losses from snow for Colorado and Wisconsin locations, 
Sol. Energy. 97 (2013) 112–121.  
[6] D. Ryberg, J. Freeman, Integration, validation, and 
application of a PV snow coverage model in SAM, 
Golden, 2017. 
[7] T. Townsend, L. Powers, Photovoltaics and snow: An 
update from two winters of measurements in the Sierra, 

 
Figure 7: Monthly simulated losses for the analyzed systems, based on 12 years of PVGIS data and the modified Marion 
snow loss model. The simulated losses for each month is plotted using a boxplot to show the interannual variation. The box 
extends from the first to the third quartile values of the monthly loss data, with a line on the median. The whiskers extend to 
maximum 1.5 multiplied the interquartile range. Outliers are given as circles. 

38th European Photovoltaic Solar Energy Conference and Exhibition

1086



in: 2011 37th IEEE Photovolt. Spec. Conf., IEEE, 2011: 
pp. 3231–3236.  
[8] L.B. Bosman, S.B. Darling, Performance modeling 
and valuation of snow-covered PV systems: examination 
of a simplified approach to decrease forecasting error, 
Environ. Sci. Pollut. Res. 25 (2018) 15484–15491.  
[9] E. Lorenz, D. Heinemann, C. Kurz, Local and 
regional photovoltaic power prediction for large scale 
grid integration: Assessment of a new algorithm for snow 
detection, Prog. Photovoltaics Res. Appl. 20 (2011) 760–
769. 
[10] PVGIS, Data sources and calculation methods, 
(2020). https://ec.europa.eu/jrc/en/PVGIS/docs/methods 
(accessed December 22, 2020). 
[11] PVsyst, Soiling loss, (2020). 
https://www.pvsyst.com/help/index.html.  
[12] N. Heidari, J. Gwamuri, T. Townsend, J.M. Pearce, 
Impact of snow and ground interference on photovoltaic 
electric system performance, IEEE J. Photovoltaics. 5 
(2015) 1680–1685.  
[13] M.B. Øgaard, B.L. Aarseth, Å.F. Skomedal, H.N. 
Riise, S. Sartori, J.H. Selj, Identifying snow in 
photovoltaic monitoring data for improved snow loss 
modeling and snow detection, Sol. Energy. 223 (2021) 
238–247.  
[14] M. van Noord, T. Landelius, S. Andersson, Snow-
Induced PV Loss Modeling Using Production-Data 
Inferred PV System Models, Energies. 14 (2021) 1574.  
[15] D. Riley, L. Burnham, B. Walker, J.M. Pearce, 
Differences in snow shedding in photovoltaic systems 
with framed and frameless modules, in: 2019 46th IEEE 
Photovolt. Spec. Conf., IEEE, 2019: pp. 558–561.  
[16] M.B. Øgaard, H.N. Riise, J.H. Selj, Modeling Snow 
Losses in Photovoltaic Systems, in: 2021 48th IEEE 
Photovolt. Spec. Conf., 2021. 
[17] T. Saloranta, J. Andersen, Simulations of snow 
depth in Norway in a projected future climate ( 2071-
2100 ), 2018. 
[18] NVE, seNorge, (2019). www.senorge.no. 
[19] Norsk Klimaservicesenter, Observasjoner og 
værstatistikk, (2020). 
https://seklima.met.no/observations/. 
[20] H.E. Beck, N.E. Zimmermann, T.R. McVicar, N. 
Vergopolan, A. Berg, E.F. Wood, Present and future 
köppen-geiger climate classification maps at 1-km 
resolution, Sci. Data. 5 (2018).  
[21] M.B. Øgaard, H.N. Riise, H. Haug, S. Sartori, H. 
Selj, Photovoltaic system monitoring for high latitude 
locations, Sol. Energy. 207 (2020) 1045–1054.  
[22] W.F. Holmgren, C.W. Hansen, M.A. Mikofski, pvlib 
python: a python package for modeling solar energy 
systems, J. Open Source Softw. 3 (2018) 884.  
[23] D.G. Erbs, S.A. Klein, J.A. Duffie, Estimation of the 
diffuse radiation fraction for hourly, daily and monthly-
average global radiation, Sol. Energy. 28 (1982).  
[24] E.L. Maxwell, A quasi-physical model for 
converting hourly Global Horizontal to Direct Normal 
Insolation, Sol. Energy Res. Inst. (1987). 
[25] J.E. Hay, J.A. Davies, Calculation of the solar 
radiation incident on an inclined surface, in: Proc. First 
Can. Sol. Radiat. Data Work., 1980. 
[26] W. De Soto, S.A. Klein, W.A. Beckman, 
Improvement and validation of a model for photovoltaic 
array performance, Sol. Energy. 80 (2006) 78–88.  
[27] PVsyst, Array Thermal losses, (2021). 
https://www.pvsyst.com/help/index.html. 

[28] A.P. Dobos, PVWatts Version 5 Manual, Golden, 
CO (United States), 2014.  
[29] Å.F. Skomedal, M.B. Øgaard, H. Haug, E.S. 
Marstein, Robust and fast detection of small power losses 
in large-scale PV systems, IEEE J. Photovoltaics. 11 
(2021) 819–826.  
[30] T. Huld, R. Müller, A. Gambardella, A new solar 
radiation database for estimating PV performance in 
Europe and Africa, Sol. Energy. 86 (2012) 1803–1815.  
 

38th European Photovoltaic Solar Energy Conference and Exhibition

1087


