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Abstract

In order to mitigate dangerous effects of global warming, transitioning to a sustainable, low
emission energy system is necessary. The cost of solar photovoltaics (PV) has declined
rapidly in recent years, and the technology is expected to play an important role in this
transition. To facilitate efficient use of resources, we should pursue further reductions in costs
as well as improvements in the performance of PV installations. Accurate methods for
predictions and evaluation of PV performance can be used in various ways to reduce costs
and improve performance. PV performance predictions and evaluation are for example
necessary to ensure optimized design of systems and to evaluate potential for improvements
in loss reduction.

To efficiently reduce costs and improve PV performance, the methods for performance
evaluation and prediction should be easy to implement and automate. However, PV
performance depend on system design and operating conditions, and the type of losses that
are most prominent can vary between installations. Additionally, there are factors not related
to the performance that can impact the measured output of PV systems and the performance
evaluation, for example the quality of the measured data. Consequently, as multiple different
parameters should be considered in the evaluation and prediction of PV performance,
development of standardized methodologies is challenging.

The main topic of this work is methodologies for PV performance evaluation, i.e.
identification and quantification of loss mechanisms. The aim of the research is to contribute
to the development of standardized methodologies. The main loss mechanisms studied in this
work are component faults and snow shading. The analysis uses data collected from PV
installations in Norway with a total capacity of ~3.7 MW. Both PV performance and the
methodology for performance analysis are less studied for operating conditions found at
higher latitudes compared to the operating conditions found closer to the equator. In the first
part of this work, established methodology for performance evaluation are assessed on output
data from commercial PV monitoring systems for the case of fault detection. First, factors
impacting the calculated performance metrics are classified through analysis of the periods
with large degree of noise or systematic trends in performance metrics, or estimated large
performance gains or losses. Second, methodology to handle the effects of these losses and
impact factors on the performance metrics are discussed, and the use of filtering is
specifically evaluated. With targeted filtering, improved sensitivity in a fault detection
analysis is achieved.

Through this initial evaluation of factors impacting performance evaluation at high
latitude locations, it is identified that there is a need for improved methods to identify and
predict the potentially large energy losses caused by snow. To contribute to this, we describe
the effect of snow on PV monitoring output parameters, evaluate existing snow loss models,
and suggest improvements to the commonly used Marion snow loss model. The improved
suggestion gives a reduction in modeling error of 23 percentage points for the studied dataset
compared to the default implementation of the Marion model.
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Preface
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energy infrastructure (project number 80381), popularly known as VAK. In addition to the
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This thesis consists of 7 papers, and 6 introductory chapters. The introductory chapters
aim to contextualize the papers, relate the papers to each other, and provide relevant
background information. All the papers are based on joint work with colleagues. The overall
topic is development of methodology for performance evaluation of PV systems. The effect
of high latitude conditions and snow on the PV performance evaluations is specifically
studied.
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1 Introduction

1.1 Motivation and background

In August 2021, IPCC published their first major review of climate change research since
2013, and it was announced as a “code red for humanity” [1]. The language of the report is
dramatic and clear, stating that “it is unequivocal that human influence has warmed the
atmosphere, oceans and land” and that this warming is “already affecting many weather and
climate extremes in every region across the globe” [2]. This warming is mostly caused by
greenhouse gas emissions caused by burning fossil fuels. There is hope that if these emissions
are greatly reduced, the climate can stabilize. UN Secretary General Antonio Guterres
summarized the findings of the report like this: “If we combine forces now, we can avert
climate catastrophe. But, as today's report makes clear, there is no time for delay and no room
for excuses.” [3]. Reducing greenhouse gas emissions is, however, challenging. The burning
of fossil fuels has not only produced global warming, but it has also provided access to cheap
energy which has played an important role in economic development and growth [4]. To
maintain our living standard, enable growth in developing countries, and at the same time
reduce emissions, the creation of a more sustainable energy system is expected to play a key
role [5,6]. Development of a sustainable energy system necessitates replacement of fossil
fuels with low emission technologies, and improvements of the energy efficiency, flexibility,
and storage abilities in the system [7].

To change the energy system fast enough to avoid serious global warming is, however,
no easy task. Nuclear energy requires large investments and long construction times, and
development is additionally limited by discussions on safety and waste handling. Energy
generation using renewable energy technologies will depend on the availability of the natural
resources utilized in the different technologies. Central renewable energy technologies such
as wind and solar are additionally highly weather dependent, resulting in intermittent energy
generation. This intermittency introduces multiple challenges and a need for increased
flexibility in our energy systems, which often is designed around the characteristics of fuel
based thermal power [7]. Additionally, construction of new energy infrastructure can
introduce conflicts related to land use, for example with food production [8]. New
infrastructure projects can in many cases also negatively impact the local environment and
nature [9]. Change in land use often leads to habitat loss, which is considered the main reason
to biodiversity loss [10,11]. As underlined in [11], the decline in biodiversity is now faster
than at any time in history, which ultimately can impact human quality of life. The impact on
the local environment is also often a central reason for development of social resistance,
which in multiple occasions has canceled or delayed energy infrastructure projects [12].
Developing a new, low emission energy system without destroying too much nature or
creating too much conflict, and at the same time ensuring energy security, is consequently a
complex task with many considerations to balance. No technology presents a simple, quick
solution alone. To avoid infrastructure development on the most vulnerable areas and to



ensure a resilient energy system, major investments in a range of different technologies are
necessary.

Solar photovoltaics (PV) is one of the technologies that will play an important role in
a low emission energy system [13]. While the technology is not new itself, it is quite recent
that PV entered the market as a competitive option. The competitiveness of PV has been
driven by an extraordinary price reduction primarily caused by increasing production
volumes of PV modules [14] and strong industrial competition. From 2010 to 2020, the
annual PV module production increased by a factor of seven, giving a total global annual
production of PV module capacity of approximately 140 GW in 2020. While it took almost
six decades to reach 100 GW of installed PV capacity in 2012, it is expected that 1 TW of
PV is installed by 2022. This makes PV the fastest-growing power generation source of the
last decade [13]. Rapid growth in PV installations is seen all over the world [15], also in
northern regions with lower annual irradiation, as seen in Figure 1 (although with a total
capacity significantly lower than in the largest PV markets).
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Figure 1: Increase in installed PV capacity from 2010 to 2020 in northern countries. Data
from [16]. For easier comparison of growth, the absolute PV capacity for Canada is
divided by two.

PV do require large areas [17], but PV installations do not require a specific type of
area. PV can be built on roofs, on water [18], and on land that cannot be used in other ways,
such as deserts [19] and landfills [20]. Both the PV system and the solar module itself can
additionally be designed in many ways. There are examples of PV system designs adapted to
co-localization with farming [21], and solar modules designed for incorporation in building
elements (BIPV) [22]. This flexibility enables large-scale installation of PV without building
in vulnerable areas. Additionally, because of its modularity and the relatively simple system
design, PV can be installed rapidly and in a large range of sizes (giving a relatively low
investment threshold) and is not significantly limited by lack of expertise.



Even though PV has become a cheap and competitive technology, further reductions in
costs and improvements in the performance of PV installations may contribute to a successful
transition to a low emission energy system. Historically, most of the research related to PV
performance improvements have been focused on improvements in the solar cell efficiency.
With the maturing of the technology, an increasing amount of research on other ways to
improve PV performance is performed. Identification and quantification of losses in a PV
system can play a role in improving PV performance and reducing costs in multiple ways,
and evaluation and prediction of the PV system performance are therefore now important
research topics [23,24]. Evaluating PV performance through identification and quantification
of losses is necessary to identify if there is potential for improvements and to document that
the systems are working as intended. Based on performance evaluations of existing systems,
we can identify which losses we can expect in a system and determine how (and how long)
different technologies work in the field and under different conditions. Identification and
quantification of system losses in existing systems is additionally essential input to
performance predictions. Predicting the performance of future systems is necessary to find
the optimal design and to evaluate cost- and energy-efficiency. Improved understanding of
the performance of a system will additionally reduce the uncertainty in expected energy
generation, which again can reduce the risk and the investment cost of the project [25].
Performance predictions are also important for forecasting of the energy generation from PV,
which is expected to be necessary for energy systems with a large share of PV.

1.2 Knowledge gaps within PV performance analysis
In the beginning of this research project, the initial plan was to contribute to improvements
in PV performance evaluation methodology by developing advanced models for PV systems
that could enable automatic detection of performance losses based on output data from the
monitoring system. This was not a new idea, considering the number of publications on this
and similar topics. However, despite the amount of research on this topic, there is still a lack
of standardized methods to accurately evaluate different PV performance aspects. Studies
have shown that because of choices done in the analysis process different analysts can achieve
different results in for example estimation of degradation rate [26] and in estimation of total
performance loss rate (PLR) [27]. The same analyst dependency on the result is seen for PV
performance predictions [28]. Before developing advanced methods for performance loss
detection, we found that we therefore first should study the cause for this lack of standardized
methods, and focus on the following question: Why is it so difficult to determine performance
losses in a PV system?

A central part of the answer to this question is that there are many parameters impacting
PV performance. Additionally, there are multiple factors that is not related to PV
performance, for example related to data quality, that can impact the output data of a PV
monitoring system and performance metrics calculations. When different analysts get varying
results in for example a degradation rate estimation, it may be because 1) they consider
different losses and parameters affecting the performance analysis, and 2) they choose to
handle the losses and the effects caused by these parameters in different ways. To develop
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methods for accurate and reproducible performance evaluation, we therefore need improved
understanding and documentation of which factors that impact both the performance and the
performance evaluation in various operating conditions and system designs. We also need
improved understanding of which solutions that can be used to handle the effect of the
different factors efficiently.

Many of the factors affecting performance and performance evaluation are widely
discussed in the literature. Typically, the discussed effects are related to losses that are
common in regions where the installed PV capacity has been large for a long time, i.e. at
lower latitudes and in warm climates. Losses caused by soiling [29] and component
degradation [30] and which factors that impact the evaluation of these losses are for example
frequently investigated. For regions with a more recent entry of PV installations, there is less
knowledge about how the operating conditions specific to these regions influence
performance and performance evaluation. For locations at high latitudes with cold climate,
such as in Norway, it is expected that snow, cloudy weather, and irradiance with low intensity
and high angle of incidence will affect both performance and performance evaluation. But in
what manner and by how much are not necessarily well documented or known. This
introduces uncertainties in the predictions of expected output. Uncertainties in expected
output can results in PV systems not being installed, or increase the risk and consequently
often the cost of the investment. Inaccurate predictions of PV performance can also have
financial consequences if the expected energy generation is overestimated. In 2021, it was
for example discovered that the PV installation at the University in Tromse, Norway,
generated significantly less energy than expected, because losses caused by snow were not
considered [31]. Because of this underproduction, the system owner required compensations
from the system installer.

1.3 Thesis scope and methodology

The main topic of this work is methodology for performance evaluation. Improved
performance evaluation is also essential for improved performance predictions. The aim is to
contribute to the development of standardized methodology for performance evaluation by
investigating various factors impacting PV performance evaluations and assess solutions that
can handle the effect of these factors. The work is concentrated on effects found in cold
climates and at high latitude, and the presented analysis is based on monitoring data from
multiple Norwegian PV installations. In addition to an investigation of which factors that
affects performance evaluation in these conditions, particular attention is paid to the effect of
snow, which can significantly impact PV performance in cold climates and challenge
accurate identification of other losses. The overall methodology of this project is based on
the following main principles: First the problem areas were identified through evaluation of
existing solutions. Second, improved solutions are suggested and evaluated. Following this
methodology, the following research questions were identified:

— What are the factors impacting performance evaluations of PV systems in high latitude,
cold climate locations?



- What are possible solutions to handle these impact factors?
- What is the effect of snow in PV systems?
- Can losses caused by snow be identified and predicted?

The overall aim of discussing these questions, is to contribute to improved PV performance
evaluations and predictions specifically in high latitude, cold climate locations. However,
several of the different discussed aspects are transferable to other operating conditions, and |
therefore hope the work also can be useful for reducing costs and improving PV performance
in a more general context.

1.4  Thesis structure

This thesis summarizes my work as a Ph.D. student and consists of seven papers and six
introductory chapters. In this first chapter, I describe the motivation for this work, the overall
aim of the research, and summarize the papers. The purpose of chapter 2-5 is to contextualize
the research described in the papers this thesis is based on. An overview of these four chapters
and which of the papers that contribute to the main discussions in these chapters are given in
Figure 2.

Chapter 2: PV systems
System and dataset description.

Chapter 3: PV system performance
Introduction to PV systems losses and parameters influencing PV performance.

Chapter 4: PV system Chapter 5: Snow losses in PV
performance evaluation systems

Introduction to state of the art. Description | Introduction to state of the art. Description
and discussion of thesis contribution: and discussion of thesis contribution:

1. What are the factors impacting performance | 3. Whatis the effect of snow in PV systems?
evaluations of PV systems in high latitude, cold | Paper I-IV, VI-VII

climate locations?

Paper I-llI

2. What are possible solutions to handle these 4. Can losses caused by snow be identified
impact factors? and predicted

Paper I-lll Paper IV-VII

Figure 2: Overview of the four chapters where the research is contextualized, and how the

published papers relate to the topics discussed in these chapters.

Chapter 2 provides a description of the PV systems evaluated in this work and an
overview of the analyzed datasets. Chapter 3 describes why we need to know how a PV
system perform and which parameters that impact PV system performance. Chapter 4
introduces the methodology for evaluation of PV system performance, and the various
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challenges related to accurate and reproducible performance evaluation, as well as possible
solutions. The contributions of the thesis papers on identification and handling of factors
impacting performance evaluation are also described. Chapter 5 gives an overview of how
snow affects both PV performance and performance evaluation and prediction. Description
as well as prediction of snow losses in PV systems are discussed, and our work on these
topics is summarized.

1.5 Summary of papers

This section summarizes the papers this thesis is bases on, listed in List of papers. 1 was the
main author of all the papers. I was responsible for the main idea, data processing and
analysis, and writing the text.

- Paper I investigates the possibility for evaluating the quality of the sensor data from
the PV monitoring system based on analyzing the measured output. Analyzing PV
monitoring data is a central part of the methodology in the papers of this thesis, and the
work presented in this paper is an important contribution to this analysis. The main
contribution of this paper is validation of the use of clear sky modeling to evaluate
irradiance data quality.

- Paper II investigates and identifies the root cause of detected performance deviations
for a PV system in Norway. The paper also discusses how filtering can be used to
improve condition monitoring and fault detection by removing expected
losses/deviations in performance metrics. Having an overview of effects that need to
be considered in analysis of PV monitoring data is an important first step to develop
standardized methods for performance evaluation and fault detection. We also evaluate
how typical filters suggested in the literature perform in the operating conditions typical
for Norway.

- Paper III builds on Paper II and continues the evaluation of the root cause of the
detected performance deviations and the assessment of filtering as a solution to process
performance metrics for use in fault detection. In this paper, both the dataset and the
set of performance metrics evaluated are extended. In addition to strengthening the
conclusions from Paper II, we find that using machine learning to model expected
output can contribute to improved fault detection.

- Paper IV investigates the effect of snow on PV systems, and both snow loss modeling
and filtering are tested. The effect of snow is described by evaluation of signatures in
monitoring data and simulations of IV curves. In the testing of existing snow loss
models, we find that the model suggested by [32] yields best results, and we suggest
additional improvements. Based on the snow signatures and the snow loss modeling
results, new strategies for snow loss filtering are suggested.

- Paper V extends the work on snow loss modeling, and validates the findings from
Paper IV. On an extended dataset with multiple different systems in different climatic
conditions, the Marion snow loss model with the suggested improvements are tested.



Testing snow loss modeling on multiple systems in different operating conditions are
essential to demonstrate the applicability of the snow loss model.

Paper VI is an extended version of paper V. The validation datset is expanded, and it
is also evaluated if the data signatures described in Paper IV are valid for the extended
dataset. An additional contribution of this paper, is a review of the literature relevant to
describe the accumulation and clearing of snow on PV modules.

Paper VII aims to estimate snow loss for PV systems in Norway. Modeled snow loss
is used to complement historical data, and the paper discusses how snow loss modeling
could be employed to give improved understanding of typical and extreme snow loss
values as well as inter-annual variation in monthly and annual loss for locations where
long time series of historical data are not available. The paper also discusses how snow
loss modeling should be implemented in yield predictions of future PV systems.






2 PV systems

This chapter provides a description of the PV systems evaluated in this work. The aim is not
to describe how the different components (solar cells, bypass diodes, inverters, maximum
power point trackers, etc.) work or how they are impacted by irradiance and temperature.
This is explained in detail in for example [33,34]. The aim is additionally not to describe a//
the components of a PV system, but to focus on the main components and concepts relevant
for the research. Section 2.1 gives a general description of the analyzed PV systems, while
Section 2.2 presents the details for the analyzed systems, such as geographical location,
installed capacity, available sensor data and length of the time series.

21 General system description

Energy generating systems based on solar cells exists in multiple forms. In addition to the
variation in solar cell technology, PV systems can specifically be designed for different
applications. PV applications/technologies expected to play a role in the future [15], include
for example floating and building integrated PV, PV specially adapted to agriculture, PV
systems with trackers, or systems with bifacial PV modules. It is not uncommon that systems
adapted for a specific application or different PV technologies have specific losses or gains,
and procedures for PV performance evaluations and predictions for these PV applications
and technologies are also needed. In this work, however, the main focus is on performance
evaluation of a very basic type of PV systems: grid-connected, fixed tilt systems with
monofacial modules, installed on roofs (flat or tilted, as illustrated in Figure 3). The focus is
on the output of the PV modules, and the analysis is therefore limited to the DC side of the
system.

Figure 3: PV installations on tilted and flat roofs.

Additionally, only PV monitoring that relates to continuous data collection from
permanent sensors is considered, and the discussed methodologies for performance
evaluation builds on analysis of this type of data. Other types of monitoring techniques for
use in PV performance evaluation campaigns do exist, such as imaging and IV-curve
measurements. A comprehensive overview of the different techniques is given in [35].



While there are large variations in components and design of PV systems, the systems
studied in this work, in similarity with most grid-connected systems, are based on the
principles described in Figure 4. As illustrated in the figure, arrays of PV modules are
connected to an inverter and a monitoring system.

Monitoring system

PV array

X strings of PV Mea§urementof sy Stem
specific parameters, e.g.

« Plane of array irradiance

* Module/cell temperature

« Soiling ratio

modules in parallel

] Inverter
- DCJ/AC conversion
i ~ - MPPT

X PV modules in series + Measure system
L output: DC and

AC voltage,
current, power

f

C-Si PV modules with 3
bypass diodes

Figure 4: Overview of the PV system and central components in the PV array and in the
monitoring system. The list of sensors in the monitoring system is based on [36].

211 PV array

Figure 4 gives an illustration of a typical PV array [34]. The modules have crystalline silicon
(c-Si) solar cells and three bypass diodes. This is one of the most common types of module
technologies in existing PV installations, and the type of module installed in the systems
studied in this work. A PV array typically consists of series connected PV modules. The
strings of series connected modules can additionally be connected in multiple parallels. The
array of PV modules is then connected to an inverter. In addition to its main task — to convert
the PV module output from DC to AC — the inverter typically also does the maximum power
point tracking (MPPT) on the PV array and measure the system DC and AC output.
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2.1.2 Monitoring system and sensors

Because the inverter measures the output of the system, it is often also a central part of the
monitoring system. Whether the installation has additional sensors measuring influential
parameters or not, is a question about cost efficiency. Sensors are added if they are expected
to add more value than cost. How many sensors that are part of the monitoring system as well
as the quality of the sensors will also depend on their benefit for the system. For a larger
system, the cost of a comprehensive monitoring system can be a small share of the total cost,
and the value of documenting system performance or detecting performance deviations can
be large. For a smaller system, an advanced monitoring system is less likely to be cost
efficient.

The irradiance and the temperature of the solar cell are, in addition to the electrical
characteristics of the solar cell and module, the main parameters influencing the PV output.
The main purpose of most sensors in a PV monitoring system is therefore to estimate these
two parameters. Figure 4 presents a list of the sensors suggested in the IEC standard
Photovoltaic system performance — Part 1. Monitoring (IEC 61724-1:2021). The list is here
divided in two types of sensors, 1) sensors measuring parameters specific for the system, and
2) sensors measuring parameters specific for the location. The parameters specific for the
system include plane of array irradiance, module/cell temperature and the effect of soiling on
reducing solar cell irradiance. The plane of array irradiance (POA) for the system is typically
measured with either a thermopile pyranometer or a reference device. In this work, the
reference device installed at multiple of the analyzed systems is a reference cell, where the
main component of the sensor is a small solar cell. While the pyranometer measures all the
irradiance in the PV array plane, i.e. shortwave radiation (approximately 300 — 2800 nm) in
a field of view of 180°, the reference cell aims to measure the effective irradiance, i.e. the
irradiance the solar cells can utilize after spectral and reflection losses. The module or cell
temperature is either measured with a sensor on the rear side of the PV modules, or by
measuring the temperature of the reference cell. Soiling sensors are less common and mainly
relevant for locations where large soiling losses are expected. The parameters specific for the
location that influence PV energy generation listed in Figure 4 include global horizontal
irradiance (GHI), ambient air temperature, wind, humidity and precipitation. For large PV
plants or scientific systems, many or all these parameters can be measured on site. Nearby
weather stations or estimates based on satellite data are also commonly used sources for these
types of data.

2.2 Datasets evaluated in this thesis

Different types of datasets are used in the work presented in this thesis, but all are from PV
systems located in Norway. The evaluated systems are quite representative of the PV
installations we find in Norway, including large commercial systems on flat roofs with
east/west oriented modules with 10° tilt, installations on tilted roofs (both residential systems
and larger buildings), and smaller research systems. The studied installations are typically
located in an area where the climate is, according to the Koppen-Geiger classification [37],
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warm summer humid continental climate (Dfb). However, many of the systems are located
in areas bordering to oceanic climate (Cfb) or subarctic climate (Dfc), and a few are also
located within these climate zones.

The installations studied in this thesis have variations in both array configuration and
instrumentation. Table 1 presents an overview of the different system types in the dataset,
with information about installed capacity, start of time series, instrumentation and system

configuration. For every system type the table summarizes in which papers data from the
given category is used. Figure 5 shows the position of the installations, illustrating the
geographical distribution.

Table 1: Overview of the datasets studied in this thesis.

10° tilt,
Varies ~east/west. Array:
Commercial 33 MW between: Reference cells 3 strings in One/multiple
systems, flat G s stems) 2(\;‘1 4 ’ (POA + cell parallel per systems used
roof Y 2017 temperature). MPPT, a couple | in Paper I-VII
of MPPT per
inverter.
No local Tilt and
Residential instrumentation orientation follow | Multiple/all
estaentia 24 kW 2018 or sriumentation, building. Array: | systems used
systems, tilted only data from . :
(5 systems) 2019 one or two strings | in Paper V-
roof’ nearby weather
stations used per MPPT/ Vil
' inverter.
Tilt and
Commercial Pyranometer . .
system, tilted 70 kW 2014 (POA), module Olzfilllé?::on g:l};m‘v Paper |
roof temperature. unkr%(.)wn ¥
Reference el | 28 i, ~south,
LT 4 kW 2016 module and open rack. 1 Paper I, IV
system ambicent module per
optimizer/MPPT.
temperature.
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Figure 5: Overview of locations for the installations studied in this work.
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3 PV system performance

This chapter describes the effects impacting PV performance and provides the foundation for
further discussions on PV system performance evaluations, i.e. description and
documentation of how the systems work and identification and quantification of system
losses. In this work, the term performance is not used to describe how much energy a PV
system will generate, as this is most of all dependent on the available solar resource. The aim
of this chapter is to describe 1) the motivation for research on PV system performance, and
2) which parameters that impact PV system performance. A special focus is given to how the
operating conditions typical for Norway are affecting PV system performance.

3.1 PV system performance research motivation

As described in Chapter 1, identification and documentation of the losses in PV systems are
essential for assessing the potential for performance improvements and for predictions of PV
energy generation, which both can contribute to reduction in costs and in increase in the
performance of PV installations.

3.1.1 Performance improvement assessments

Assessment of the potential for PV system performance improvements, can both include
identification of losses that can be corrected in the operation phase, and losses that can be
avoided in the design or planning phase of future systems. This requires accurate
quantification of both the losses and the cost of correcting the losses. Many of the losses in
PV systems today, could in theory have been removed or significantly reduced in the design
phase or through efficient operation and maintenance (O&M). To do this would in most
cases be classified as over-engineering, and probably neither be cost nor energy efficient. For
the sake of cost and energy efficiency, i.e. using our resources in the best possible way, we
do accept a certain level of losses. Certain losses are also unavoidable. The only losses and
faults we want to correct are the ones that are avoidable or recoverable in a cost-efficient
manner. However, the line between acceptable/unavoidable losses  and
correctable/avoidable losses is moving with technology development, labor costs, energy
prices, etc., and is dependent on operating conditions. For example, in a satellite, there are
few other options for energy generation and challenging to repair broken components. The
willingness to invest in efficiency and reliability is therefore high. In the case of a residential
system, on the other hand, the house owner will not wish to pay more for the system than
what she can save on the electricity bill. Competing with other energy sources in a sustainable
energy system additionally requires consideration of energy payback time and the
environmental impact of the potential improvement. To evaluate the potential for
improvements can hence be a complex calculation, and accurate identification and
quantification of losses would aid this process.

3.1.2 Predictions of energy generation
Identification of losses in PV systems are also necessary to improve predictions of PV energy
generation. Estimations of losses in a system for various operating conditions are essential
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input in the prediction of PV system energy generation on both short and long time-horizons.
Hence, estimations of the PV system performance are important input to the models of PV
output used in for example PV forecasts and yield estimations. PV forecasting is predictions
of PV energy generation in the near future and its importance is expected to increase with an
increasing share of PV in energy systems and grids [38]. Yield estimations, which are
predictions of how much energy a certain PV system will generate in its lifetime, are
necessary for designing and dimensioning of the system. Yield estimations are also necessary
for estimations of techno-economic KPIs for a system, such as levelized cost of electricity
(LCOE) and return on investment (ROI), and in system life cycle analysis (LCA). Both
improved accuracy of forecasting and yield estimations can reduce system costs. In multiple
energy markets, errors in the forecasts of energy delivered to the grid can have a cost and
reducing forecasting errors is consequently expected to reduce this cost [39]. Accurate yield
estimations will ensure optimal system design with respect to energy generation and eventual
matching with load profile. Additionally, accurate yield estimations reduce the uncertainty in
calculated KPIs and can result in reduced risk and uncertainty in the investment phase, which
can reduce the investment cost [25].

3.2 Parameters affecting PV system performance

A wide range of loss mechanisms impacts PV performance. The type and severity of losses
in a system is additionally affected by operating conditions (including local weather and
environment) and system design (including technology choice) — which are the parameters
that impact the amount of lost energy, and O&M - which are the routines and practices
implemented to reduce and correct losses for an existing system.

3.21 Loss mechanisms

Table 2 presents an overview of different PV system loss mechanisms often described in the
literature. The loss mechanisms are divided in four categories: pre-cell losses, component
losses, system losses, and degradation and failures. Pre-cell losses are defined as losses
caused by effects giving reduced solar cell irradiance. Component losses are expected for all
the components in the system that is used for energy conversion or transmission. The quality
of the components can, however, impact the magnitude of the losses. The system loss
category is here defined as losses that occur because different components are connected. For
example, if modules with different capacity are series connected, the module with the lowest
capacity will limit the output of the string, giving mismatch losses. In an energy system, PV
output can be curtailed if the output exceeds the needs of the system. Losses due to
component degradation and failure are expected and considered in the estimation of expected
lifetime of the components. All components will experience wear and tear that can give
degradation in their performance, and ultimately failure. However, not all cases of component
failure and degradation are within the expectations. This can originate from a weakness
within the component, or it can be caused by operating conditions that are harsher than the
components are dimensioned for.
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Table 2: Overview of commonly described loss mechanisms in PV systems [40—43], and

range of reported annual losses estimated in performance evaluations or used in yield

modeling.

Loss mechanism

Range of expected/reported annual losses

Pre-cell losses: irradiance attenuation

Reflection 0-10% [41,44]
Shading 0-4% [40,41]
Snow 0-30% [45]
Soiling 0-7% [40-43,46]

Component losses

etc.

PV module

Conversion ~80% (~20% c-Si module efficiency)  [15]
Thermal 0-15% [41]
DC/AC wiring, connections 0-7% [40,41]
Inverter 1-3% [41]
Inverter efficiency

MPPT efficiency

Sizing losses, clipping

Transformer 1-2% [41]
System losses

Mismatch 0-2% [40-42]
Curtailment 0-13% [47]
Degradation and failures

Module faults and degradation:

PID, LID, delamination, cracked cells, corrosion, | Median annual overall degradation rate:  [30]
discoloration of laminate, broken 0.5%

interconnects/solder bonds, frame breakage,

junction box failures, backsheet failures, etc.

[48,49]

Inverter faults and downtime Depends on repair time [50]
Faults in other components: connections, cables, | Depends on repair time [50]
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The table also shows a range of reported expected annual loss for the different
mechanisms, based on results from performance evaluations and reports on loss values
commonly used in yield modeling. The wide range of reported or expected annual loss can
be related to 1) the fact that there can be large variation in the loss caused by different loss
mechanisms for different systems and in different operating conditions, and 2) limited
documentation of certain loss mechanisms can give variation in what different PV modelers
expect in losses for a given loss mechanism.

3.2.2 The effect of system design, operating conditions and O&M on losses
System design and operating conditions are expected to influence the type and severity of the
losses in a system. Table 3 gives examples of how operating conditions and system design
can influence both the cause and the magnitude of the loss for the loss mechanisms listed in
the pre-cell category in Table 2. Shading of the modules is caused by objects blocking the
direct irradiance of the PV modules. The magnitude of shading losses will depend on both
how the system is designed to handle partial shading (array configuration, bypass diodes),
and the diffuse/direct shares of the irradiance. The accumulation of soiling on the module
surfaces will primarily depend on available sources for dust and dirt in the environment [46].
Precipitation can give natural removal of soiling. Humidity, wind, ambient temperature, and
module tilt and surface are also expected to impact the soiling process [S1]. While
accumulation of snow cover is primarily occurring after snowfall, the natural clearing of snow
is impacted by multiple different parameters related to weather and snow conditions, and
system design [45]. For cases with partial snow cover, the energy loss will depend on how
well the system responds to partial shading. The reflection losses will depend on the glass
and cell surface technologies and their anti-reflection properties, as well as the angle of
incidence of the irradiance which relates to both solar position relative to the module plane
and the diffuse/direct share.

The same complexity with many parameters impacting the loss is also observed for
many of the other loss mechanisms. For example, both the ambient temperature and
irradiance influence the temperature of a module and consequently thermal losses. But
potential heat sources in the system and if the system design enables natural cooling of the
modules are also influential [52]. The development of faults and degradations relates both to
the robustness of the different components, and the stress they experience, which typically
closely relates to the operating conditions [53].

Reduction and correction of losses

For several loss mechanisms, the energy losses can only be avoided or corrected in the design
or installation phase of the system, by for example choosing efficient and reliable
components, adapting the design to the shading scene, or choosing a mounting ensuring
efficient ventilation. For certain loss mechanisms, however, it is possible to reduce the energy
loss by efficient O&M. O&M are today considered important to keep the performance of a
PV installation on a high level [54]. Loss reducing measures typically implemented in O&M
include reducing the shading by soiling, snow or vegetation, and replacement of faulty
components [55]. As discussed in Section 3.1.1, estimation of the need for corrective
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measures is a complex calculation. In addition to accurate identification and quantification
of these losses, the cost and gain to correct them, as well as safety or reliability related issues
connected to the relevant loss mechanism, also requires consideration.

Table 3: Examples of the effects of operating conditions and system design on the cause
and magnitude of the energy loss for the different loss mechanisms in the pre-cell loss

category.
Loss Operating conditions System design
mechanism
Cause Magnitude Cause Magnitude
Shading Diffuse/direct share of | Shading | Array configuration, bypass
irradiance objects diodes
Soiling Soiling | Precipitation, wind, Module tilt, surface coatings
sources | humidity, ambient
temperature
Snow Snow Temperature, Tilt, array/module/system
fall irradiance, type of snow configuration, module
technology
Reflection Diffuse/direct share of | Glass/cell | Glass/cell surface technology
irradiance, solar surface
position

3.3 The effect of Norwegian conditions on PV performance
Because operating conditions can have a large impact on losses, the loss mechanisms that are
most prominent in different geographical regions can vary. In this work the studied dataset
consists of data from PV installations Norway, and the aim is to focus on how the operating
conditions specific for Norway impact PV performance and performance evaluation.

3.3.1  Characterization (and prevalence) of the Norwegian conditions

Within Norway, there are significant variations in both climate and irradiance conditions.
Certain qualities can, however, be generalized, and are additionally transferable to other
geographical regions. The typical aspects of Norwegian conditions relevant for PV are: 1)
high latitudes, which affect the irradiance conditions (solar position and irradiance level), and
2) a climate characterized by large seasonal variations, low temperatures and precipitation
the whole year, including snow in the winter. The climate zones in the studied dataset (Dtb,
Dfc and Ctb, according to the Koppen-Geiger classification [37]) cover well the areas in
Norway with highest population density, and where most PV systems therefore are installed.
Most of the studied systems are, however, located at latitudes below 62°, and the more
extreme high latitude conditions are thus not represented.
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Figure 6: Map of the world illustrating which areas that are located above 58° (marked
with white lines), the latitude of the southern point of Norway (marked in red).

mm Af m BSh w Cwa = Cfc = Dwa = Dfb
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mm BWh == Csb Cfa mm Dsc == Dwd = ET

Figure 7: Koppen-Geiger climate classification based on historical (1980-2016) climate
data. Figure from [37].
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Figure 6 illustrates which areas that are located at the same latitude as Norway, and
Figure 7 shows the geographical distribution of the different climate zones according to the
Koppen-Geiger classification. From these figures, it can be observed that the combination of
high latitude and climate we find in Norway is also representative for large areas in Sweden,
Finland, Canada, Alaska and Russia. Warm summer humid continental (Dfb) and oceanic
(Cfb) climates (barely visible in Norway on the map but represented in the coastal and near-
coastal areas) are additionally represented in large areas at slightly lower latitudes in Europe
and Northern America. The effects of high latitude on the irradiance conditions increases
with increasing latitude but are expected to be noticeable in all the mentioned areas.

3.3.2 Impact of Norwegian conditions on PV

As described in [56], the type of irradiance and the climatic conditions in the northern
countries impact PV energy generation and performance in various ways. Because of the tilt
in the Earth’s axis of rotation and its round shape, a high latitude position gives large variation
in the day length through the year and low solar elevation. The interannual variations in day
length introduces large interannual variation in the solar resource. It additionally has an
impact on how the angle of incidence (AOI) of the PV module irradiance varies through the
year. For fixed tilt systems, high AOI values for longer periods of the year/day are typical.
Low solar elevation gives reduced irradiance and increased air mass, i.e. the optical length
through the atmosphere of the Earth. The air mass affects both the intensity and the spectrum
of the solar irradiance. The climate affects PV through low temperatures, overcast weather
and precipitation. Overcast weather reduces the irradiance level and increases share of direct
and diffuse irradiance [57]. Precipitation includes both rain and snow. Figure 8 shows how
the daily mean solar elevation (for elevation >0), the daily mean TMY temperature and the
weekly TMY irradiation of Oslo, Norway, compares to Hamburg, Germany and Milan, Italy.
Oslo has lower temperature and solar elevation values than Hamburg and Milan, but the
irradiation is similar to the irradiation of Hamburg.

The described operating conditions will affect PV energy generation both through
affecting the available solar resource and the PV system performance. The efficiency of the
PV modules drops at lower irradiance levels and the efficiency of the inverter drops when the
generated power is much lower than the nominal capacity of the inverter. High angle of
incidence of the irradiance leads to increased surface reflection and reduced solar cell
irradiance. Lower temperatures will on the other hand give reduction in thermal losses, and
frequent rain keeps the PV modules clean, reducing soiling losses. Snow blocking the
irradiance can give very high losses, but if the modules are snow free, the increased POA
caused by increased reflections from the ground can give performance gains. There are,
however, still significant knowledge gaps with respect to both understanding and
consequently also predicting the effect of snow. The effect of snow on PV performance is
therefore given particular consideration in this work, and Chapter 5 is dedicated to this topic.
Figure 9 shows how losses caused by reflection and temperature compare for Oslo, Hamburg
and Milan. While the thermal losses are lower for Oslo, the reflection losses are higher,
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Figure 8: Daily mean solar elevation (for elevation >0), daily mean TMY temperature and
weekly TMY irradiation of Oslo, Hamburg, and Milan. Solar elevation calculated with
pvlib python [58]. TMY data from [59].
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Figure 9: Daily reflection losses (at clear sky irradiance) and monthly temperature losses
relative to STC for a system with a) 10° tilt, oriented east, and b) 30° tilt, oriented south,
located in Oslo, Hamburg and Milan. The reflection losses are modeled with the pvlib [58]
implementation of the model described in [60], and the temperature losses are estimated
from TMY data [59] with a temperature coeffcient of -0.004.
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especially when the modules are not oriented South. The reflection losses are estimated for
clear sky conditions, and is thus expected to represent the maximum reflection loss.

In addition to the described losses, which closely correlates to variations in operating
conditions, the climatic and irradiance conditions will also influence the wear and tear of the
different components, i.e. how fast they degrade and ultimately fail. It is commonly known
that climatic conditions play a major role in degradation [48,61]. High temperature, humidity
and UV are for example expected to give increased degradation. Both analyses based on field
data [62] and degradation models [53] shows higher degradation rates in hotter climates.
Modeling of the degradation mechanisms related to temperature, irradiance and humidity,
confirms that lower degradation rates caused by these stressors are expected at high latitude
locations [53]. On the other hand, snow is an additional stressor that can impact degradation
rates. Periods with increased mechanical load because of snow can contribute to increased
degradation and failures, especially if the PV modules are installed with insufficient
mechanical support. Is has been observed that snow loads have resulted in both cell and
module fracture [63]. However, the effect of the cracks on PV performance is not necessarily
large [63]. Additionally, it is complex to estimate what type of snow cover that gives a load
that can lead to cracks. The mechanical load of a snow cover will depend on both the
temperature and the homogeneity of the snow cover [64]. Published field data indicates low
degradation rates in high latitude/snow climates, but more data is still required to robustly
conclude on this [62].

While the theory on the effect of the operating conditions found in Norway on PV
performance is well known, there is still a need for studies on existing PV systems providing
detailed information on how significant these effects are. Compared to regions at lower
latitudes which has had higher PV installation numbers for a longer time, the available data
for such evaluations in Norway and similar locations have been limited. Several of the
existing performance studies on PV systems in Norway and Sweden are focused on reporting
the total system performance for different technologies. Studied technologies include
building applied PV, both BIPV systems and systems on flat and tilted roofs [65-69], dual-
axis tracker systems [70], and bifacial PV systems [56,71-73]. Shading, snow, and inverter
outages are identified as influential loss mechanisms [65-67,72]. It has been found for two
different Norwegian installation that the degradation rate is well below 0.5% per year
[74,75], the median degradation rate reported by [62] for PV installations worldwide. Ref.
[57] models how the measured irradiance and temperature in different locations in Norway
impact the effective efficiency for different module technologies. Field data on comparing
different module technologies for the given operating conditions is provided in [56,76],
where CIGS and c-Si modules are compared.
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4 Methodology for evaluating PV system
performance

To evaluate PV performance based on the measured data in the monitoring system, a
performance metric is typically calculated. How this metric is best defined and evaluated,
depends on the application, i.e. if the aim is to determine the overall system performance or
identification and quantifications of specific losses. Evaluating PV performance is, however,
not straightforward. Various factors can impact both PV performance and the evaluation
itself. These factors are not necessarily the same in all systems and operating conditions. A
consequence of this is that methods to evaluate different performance aspects can be adapted
to specific operating conditions or system designs, which gives a range of methods available
for different tasks. To enable fast and easy implementation of performance analysis in
automatic systems, we need standardized methods and procedures with broad applicability.

This chapters describes existing methodology for performance evaluation and discusses
challenges and solutions. Section 4.1 describes the methodology for performance evaluations
of PV systems based on monitoring data. Section 4.1.1 describes commonly used
performance metrics and Section 4.1.2 discusses how the metrics are evaluated and used in
different applications. In Section 4.1.3, standardized procedures for PV performance
evaluations are discussed. In Section 4.2 factors impacting performance evaluation are
classified, and potential methods to handle these impact factors are discussed in Section 4.3.
The last two sections also describe how our research contributes to the classification and
handling of impact factors.

4.1 Performance evaluation based on monitoring data

411 Performance metrics

Both PV system losses and PV energy generation are highly dependent on operating
conditions and system design. Within the performance metrics used to quantify and evaluate
PV performance, the output of the system is therefore typically compared to a reference or a
yield target [77]. This section describes three different types of commonly used references
and gives examples of how these reference types are used in the performance metrics defined
in the IEC standard Photovoltaic system performance — Part 1: Monitoring (IEC 61724-
1:2021). The performance metrics defined in this [EC standard are often implemented in PV
system monitoring software. The three references are 1) other systems or system units, 2)

impactful parameters and 3) model of the system or system units/components.

Other systems or system units/components

The electrical output (current, voltage, power, energy) of a PV module, PV array or inverter
can be compared with other units of the same type within a system [77] or to the output of
other systems [78]. If the units are not identical, this is done by normalizing the output to the
rated capacity of the units. For the ratio between energy output (Eout) and the power rating
(Po) for a PV system, array or module, the terms yield, energy yield, or specific yield are
commonly used. In the IEC standard [36], the final system yield (Y7) is defined as:
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Ye = Eoue/Po- (D

When comparison of output is used as a performance metric, the required similarity in design
and operating conditions for the compared arrays or systems, depend on the application of
the performance evaluation. For an evaluation of the overall system performance, it is
sometimes useful to compare the yield of systems or arrays with different designs or operating
conditions. To use comparisons of array specific yield to detect component faults within a
system, the compared arrays should have the same configuration (tilt angle and orientation)
and operating conditions (irradiance and temperature).

Impactful parameters (such as irradiance, temperature)

Solar irradiance is the parameter that most of all affects the energy output of a PV system.
The irradiation (H) in the plane of the PV array (Hpoa) is therefore a natural parameter to
include when evaluating PV performance. For comparison of PV yield to plane of array
irradiation, the term performance ratio (PR) [36] is commonly used [78,79]:

PR = (Eout/PO)/(HPOA/Gref)- (2)

Grer 1s the reference irradiance (G) at which Py is determined. For standard test conditions
(STC), Greris 1000 W/m?. For comparison of instantaneous values, energy can be replaced
with power (Pout) and irradiation with irradiance (Groa). As temperature has high impact on
the PV system output, the temperature corrected performance ratio (PR’1) has also been
suggested for performance evaluations [80]. For temperature correction with respect to the
STC temperature of 25 °C (stc), this is defined in [36] as:

PR'y50c = (E/(Po * (1 + ¥(Trmoa — Tsrc))))/(Gpoa/ Gref)- 3)

The material dependent module power temperature coefficient y, determines the loss or gain
in power caused by temperature changes. Comparison with an impactful parameter could also
be done for other system output parameters: temperature could for example be used as a
reference for output voltage, and irradiance could be used as a reference for output current.
The performance ratio is commonly used to quantify the system performance and the total
losses in the system [78], and comparing for example voltage and current to other influential
parameters have been suggested to identify different loss mechanisms [79].

Model of the system or system units/components
A model of the output of the system or system components is another potential reference for
the measured output. The term performance index (PI) is defined in [36] as:

PI = Measured output/Expected output. 4)
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A wide range of models for the expected output of PV systems exists, from models of the
different components to full system models. Both physical and empirical/machine learning
models are suggested [27,77,81,82]. The losses that should be included in the model will
depend on the application/purpose of the performance evaluation. For example, to evaluate
if the system works as planned, all the expected losses accounted for in the dimensioning of
the system should be included. Quantification of the energy loss caused by one specific loss
mechanism requires accurate estimations of all other losses.

4.1.2 Evaluation of performance metrics

While the calculation of the described performance metrics is straightforward, the evaluation
of the performance metrics to determine potential for improvements and identify specific loss
mechanisms can be done in various ways. This section describes how the references described
in the Section 4.1.1 could be utilized if the aim is 1) estimation of system performance, or 2)
identification of loss mechanisms.

All the suggested references can be used to guantify the overall system performance.
The choice of reference will, however, impact the type of information achieved from the
performance evaluation. The system yield will for example describe how a specific system
with the given design and given operating conditions compares to other systems. With the
performance ratio, the effect of varying solar resource is removed, and all the losses in the
system are quantified. If other expected losses are considered the loss estimation will be more
specific. For example, the temperature losses could be corrected for. Including an increasing
number of weather effects impacting PV performance, results in an improved description of
how the systems work independent of weather conditions. A detailed model of the system
with all expected losses enables comparisons between expected performance and actual
performance.

To identify different loss mechanisms, for example the mechanisms previously
described in Table 2, and detect potential for improvements in system performance,
comparing the output to one reference alone is not always enough. Often multiple variables
must be considered to identify different loss mechanisms. This can be relevant for both
detection and diagnosis of performance loss. With losses of a few percent, for example caused
by module faults and degradation, detecting the performance deviation in itself can be
challenging. A typical parameter that is often used to detect the losses caused by module fault
and degradation, is the development of the performance metric with time. For example, to
both identify and quantify the total performance loss because of faults and degradation, the
development of the performance metrics over multiple years can be evaluated [27,83]. We
show in [84] that calculation of the cumulative energy losses over time can give fast detection
of faults that give small relative losses. If the performance loss caused by a component fault
is not gradually increasing, but the onset is more abrupt, the component fault can be identified
by detecting steps in the performance metric time series [85].

Describing signatures or fingerprints in the data is an approach that is commonly used
to identify specific loss types [79,86]. Often, multiple parameters can be evaluated to identify
or detect one specific loss mechanism, and there are multiple pathways that can be followed
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to answer the relevant questions. The suitability of the different signatures will depend on
data availability (and the quality of the available data), and the system design and operating
conditions. The influence of system design and operating conditions follows from the fact
that both can impact the energy losses related to different loss mechanisms, as previously
illustrated in Table 3.

To show an example of how signatures in the time series data can be used to identify
different loss mechanisms, Figure 10 illustrates the difference in the response in the
monitoring data timeseries for shading caused by snow and shading caused by a fixed object.
The plane of array irradiance is here used as a reference for the expected current output, as
these quantities are expected to be directly correlated. The snow shading loss is here gradually
recovered with time, related to how fast the snow melts. The shading loss caused by a fixed
object occurs at a specific time of the day and is larger at clear sky conditions. As described
in Section 3.2.2., the energy loss caused by shading from a fixed object will depend on solar
position, and it will increase with increasing direct irradiance. This means that shading can
be identified by relating the losses detected in for example PR 't or P/ with solar position and
clear sky index. Shading can also be identified by comparing the output power or current with
areference, such as an irradiance measurement or another PV module/array and evaluate how
the differences change with time. Snow will give large losses with similarity to both full and
partial shading, but how snow losses develop with time is following the development of snow
cover, which is related to various weather parameters. Identification of snow losses will be
further discussed in Chapter 5.
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Figure 10: lllustration of the difference response in the monitoring data timeseries for
shading caused by snow and shading caused by fixed objects.
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4.1.3 Standardized performance evaluation methodology

A consequence of the multiple possible pathways in performance evaluation, in combination
with variations in available output data from monitoring systems, is that it is challenging to
develop standard analysis procedures to either estimate overall system performance, or to
quantify specific losses. The IEC technical specification /EC TS 61724-3:2016 Photovoltaic
system performance — Part 3: Energy evaluation method suggests a procedure for comparing
the actual energy generation of a system with the expected energy generation for the given
weather and irradiance conditions. However, in this procedure there are many choices that
must be made and many effects to consider that are dependent on the system and the purpose
of the evaluation. Due to the need for evaluating the available input data and the
methodology, an accurate performance evaluation of a PV system will require an experienced
analyst. Relying on a human analyst does, however, open for variation in interpretation of the
data. In a study where a group of different analysts were given the task of estimating the PV
degradation rate in the same dataset, the obtained results had significant variations [26]. In
this study, the authors evaluate many of the choices that could be made in a degradation rate
estimation. Specifically, decisions related to data filtering can have large implications on the
results. It has been shown that the results of an estimation of total PLR [27,87] and a module
degradation analysis [88] can vary with use of filtering, performance metrics, and models of
the expected output. It has also been shown that the output of yield predictions can depend
on both the modeling tool and the modeler [28]. More standardized procedures for evaluation,
and also prediction, of PV performance are clearly needed. Standardized procedures would
give analyses with improved repeatability and enable less experienced analysts to do the
evaluation as well as automation and implementation of the analysis in monitoring platforms.
This could give cheaper and faster evaluation of PV system performance.

There are examples in the literature of work contributing to standardized methodologies
for PV system performance evaluation. These standardized methods are typically targeted for
specific applications, such as fault detection or degradation rate estimation. Standardized
procedures for fault detection or degradation estimation are for example suggested in [84,88—
90] where steps for processing the data, calculation and evaluation of performance metrics
are suggested. RdTools is a framework developed to enable robust [83] and reproducible [26]
degradation rate estimation, where data filtering and a year-on-year analysis procedure are
central elements. Ref. [91] suggests estimating degradation rate using an unsupervised
machine learning approach based on estimating, based on the measured power, what the clear
sky power output would have been and then calculate the change in this estimated signal from
year to year. This methodology utilizes the systematic trend in the clear sky irradiance
through the day and the year. Together with the suggested automatic cleaning procedure [92],
the method is fully automatic and requires only power output data.

Ref. [27] tests several procedures for performance loss estimation on multiple different
datasets with the aim of standardizing performance loss rate estimation. The procedures
typically include data cleaning and filtering, choice of performance metrics and statistical
evaluation of the metric. The authors conclude that a perfect procedure that can be used for
all systems is probably not existing, and they recommend that the choice of filters,
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performance metrics, etc., should be adapted to the dataset characteristics. To adapt
procedures to different datasets, the different effects in a dataset that can impact the
performance analysis should be well known, as well as the methods to handle these effects
in different operating conditions and with different system designs. The authors of ref. [27]
also suggest that the performance loss rate could be estimated through an ensemble approach,
where multiple different procedures are used, and the average output value is used as the
estimate. A potential issue with this approach is that if there are losses or other factors
impacting the performance loss rate calculation that are not targeted by most of the methods,
this could bias the result. To use this approach, it is therefore also important that the effects
that potentially could impact the performance evaluation in different datasets is well known,
as well as how the different procedures handle these effects and losses. To identify impact
factors, and implement methods that efficiently handle these impact factors, can aid the
development of standardized performance evaluation procedures with broad applicability.

4.2 Classification of factors impacting performance evaluation
The aim of this section is to classify the factors that have an impact on PV performance
evaluation. Performance evaluation and identification of loss mechanisms are not only
challenged by the large number of parameters influencing PV performance, as described in
Chapter 3, but also that there are multiple parameters affecting the calculated performance
metric that are not related to PV performance. In the papers included in this thesis, factors
that affect fault detection in the studied Norwegian installations are analyzed and classified.
Based on these results, summarized in Section 4.2.1, a broader classification is discussed in
Section 4.2.2. The discussion in 4.2.2 is added to generalize the classification, both with
respect to operating conditions and aim for performance evaluation, and to put the results into
a broader context and compare with the existing literature.

4.21 Thesis contribution

In Paper I-1II, we have done an evaluation of which factors that impact performance
evaluation of systems in the operating conditions typical for Norway, described in Section
3.1.1. The performance evaluation case discussed in the papers is mainly fault detection. In
Paper I, we discuss data quality challenges in PV monitoring systems, and how this impacts
performance evaluation in general. The data quality effects discussed are drifts and shifts in
the irradiance measurements, misalignment of irradiance sensor, and detachment of module
temperature sensor. In Paper II and III we identify different factors that impact the calculated
performance metric time series by introducing noise, offset or systematic trends. These
effects include expected losses not considered in the performance metrics or factors that give
similar signals as performance losses or gains. In Paper 11l we categorize these factors in the
following three categories: 1) invalid data, 2) data quality and availability, and 3) unstable
periods. Table 4 presents the identified factors in the different categories for the case of fault
detection. The invalid data category includes mechanisms introducing large losses or factors
that give a signal similar to large losses. These types of signals are a significant challenge for
fault detection because the related impact on the performance metric typically is much larger
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than the impact of other loss mechanisms. The data quality and availability category
summarizes factors that can give systematic trends or offsets in the performance metrics
because of the data quality, or because the availability of input data are not sufficient to
include these effect. The unstable periods category include factors introducing noise in the
performance metric time series.

Table 4: Summary of factors impacting fault detection and/or performance evaluation
identified/described in Paper I-111.

Invalid data Data quality and availability Unstable periods
Sensor/monitoring Lacking quantification of expected system Irradiance with low
system downtime losses because of insufficient system data intensity and AOI, low

avilability solar elevation
Snow
L Systematic differences in irradiance in PV Rapid, large changes in
Clipping L L
array and/or between PV array and irradiance | irradiance
Curtailment sensor (shading, variations in tilt angles)
Drift/shifts in irradiance measurements
Detachment of module temperature sensor

These types of impact factors are also previously described in the literature for different
types of performance evaluations (fault detection, degradation and performance loss rate
estimation, evaluation of overall system performance, etc.) [27,79,83,89,93]. For example, it
is not surprising that periods with high angle of incidence (~ 60°) and low intensity of the
irradiance (~ 200 W/m?) would be challenging. These conditions result in losses that are
difficult to accurately quantify, as well as increased measurement uncertainties [94]. In
analyses where the aim is to identify losses caused by for example faults or degradation,
periods with irradiance with low irradiance and high angle of incidence are typically filtered
out [27]. This filtering is done because the related noise gives a stronger signal in the
calculated performance metric than the faults or the degradation.

The main challenge in the studied dataset is, however, the prevalence of many of these
factors. As discussed in Section 3.3.2, periods with large share of irradiance with low
intensity and high angle of incidence can last for longer periods and will be more severe at
the studied locations than at locations at lower latitudes. Snow can also give large losses for
long periods. Clipping and curtailment are highly dependent on system design and grid
operation but could be expected to be prevalent in locations like Norway. With large
variations in irradiance through the year and low electricity prices in the summer, it can be
beneficial not to optimize the system for the few summer months with highest irradiance, and
systems can therefore be designed with expected clipping losses.

The effect on the performance evaluation of systematic differences in irradiance within
a PV array and between PV array and irradiance sensor because of small variations in tilt
angles are not widely discussed in the literature. For PV modules that are installed on racks
on the ground or on flat roofs, all the modules will not always have the exact same tilt because
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the surface they are installed on not always will be completely flat. To measure the effective
plane of array irradiance of an array with small variations in tilt will be difficult. Additionally,
even if the modules have the exact same tilt, the irradiance sensor can be inaccurately
installed with respect to tilt and orientation. Ref. [36] recommends a sensor alignment
accuracy of 1° in a high accuracy monitoring system. Figure 11 shows the relative difference
between the daily clear sky irradiation of planes with respectively 1- and 2-degrees difference
for Oslo, Hamburg and Milan, and how this difference varies through the year. In the figure
we observe a seasonal variation in the difference, and that this variation is largest for Oslo
and low tilt angles. The difference will be largest at clear sky when the share of direct
irradiation is at maximum, and the figure consequently illustrates the maximum difference in
irradiation for the given tilt angles. The seasonal variation in the irradiation difference
between two planes with small deviations in tilt, is expected to give a seasonal effect on a
performance metric when the utilized irradiance has a tilt that deviates from the PV arrays.
Figure 12 shows how the PPI of a system can vary through the day when the irradiance sensor
has a tilt that is 1 and 2 degrees steeper than the tilt of the PV array. The systems are modeled
with no losses, and the PPIs are thus expected to be equal to 1. Despite the small absolute
differences in irradiation between the different planes, the effect when comparing to the PV
output is large. Because of the deviations in tilt in the irradiance, the performance metric
indicates performance gains or losses in the morning and in the afternoon. We see that this
trend is stronger for the day with clear sky conditions.
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Figure 11: The relative difference between the daily clear sky irradiation of two south faced
planes with respectively 1 or 2 degrees difference.
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Figure 12: The calculated power performance index of a system located in Oslo with
moduels with 10° tilt oriented East, calculated with the irradiance (G) of planes with a tilt
(t) of 10, 11 and 12 degrees. No losses are included, and the PPI is thus expected to be
equal to 1.

4.2.2 General classification

The categorization of impact factors presented in the previous section is specifically targeted
for fault detection. However, these impact factors could be classified more broadly to also
enable implementation in other types of performance evaluations. Generally, the discussed
factors were either related to:

- Data quality (drift/shifts in irradiance measurements, detachment of module
temperature sensor).

- Non representative references used in the performance metrics (systematic irradiance
differences in the system caused by small variations in tilt, rapid changes in irradiance).

- Expected losses not (accurately) considered in the performance metric (snow,
curtailment, clipping, shading, irradiance with low intensity and high angle of
incidence).

This section elaborates further on these three categories. This is done to generalize the
classification of factors impacting performance evaluation, with respect to both operating
conditions and aim for performance evaluation, and to put the results into context and
compare with the existing literature. While classification of factors impacting performance
evaluation is not widely discussed in the literature, many of the different factors are
previously evaluated. Table 5 summarizes the impact factors found in our work supplemented
with factors described in the literature and gives examples of how the factors can impact the
calculated performance metric. The categorization is not considered to be absolute, and the
impact factors can in several cases fit into more than one category.

33



Table 5: Overview of the different factors impacting performance evaluation, and common

consequences of these factors in the calculated performance metric and the data analysis.

Cause

Possible effects on performance metric

Data quality

Missing data

Erroneous data, e.g. stale or unphysical values,
duplicated data, incorrect time stamp

Non calibrated sensors

Temperature sensor with poor thermal contact

Drift or shifts in irradiance measurements

Soiling/shading on irradiance sensor

Sensor uncertainties

Holes in time series

Erroneous results because logged data not
representative for measured physical quantity
or time stamp

Missing information on uncertainty in
performance metric

Measured module temperature systematically
too low, giving systematic trends in
performance metric

Drift or shifts in performance metric

Indication of performance gain, systematically
and/or random (depending on soiling types)

Noise, offset in performance metric time series

Non-ideal references

Choice of sensor
Placement of sensor

Inadequate reference model

Noise, offset, systematic trends in performance
metric time series if measured or modeled value
is not representative for the quantity it
represents

Inaccurate quantification of expected
losses

Noise, offset, systematic trends in performance
metric time series

The typical effect these factors can have on the performance evaluation, is to induce

noise, shifts, offsets or systematic trends in the calculated performance metrics. Parts of these

signals in the performance metrics will be related to actual losses, but other parts of the

signals can be related to data quality issues or the use of non-representative references used
in the performance metric. Figure 13 shows daily PRt for three years, and 5-minute PRt

values for six days for one of the studied systems. For both time resolution, we observe noise

and systematic trends. On high time resolution there is a daily systematic trend, and on lower

time resolution we observe a seasonal systematic trend. The seasonal trend is a commonly

observed systematic trend in calculated performance metrics [88].
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Figure 13: PR’t with daily and 5 minute time resolution for one of the studied systems,
illustrating possible variation in the performance metric through the year and through the
day.

Data quality

Poor data quality is a potential weak link in any data analysis. To avoid this, well-performing
monitoring system should be implemented from the start. This necessitates both the sensors,
installation, and maintenance to be of a certain quality. The list of requirements to achieve a
high-quality monitoring system enabling thorough PV performance analysis is long
(including various high-quality sensors and continuous maintenance), as for example
described in the IEC standard for PV monitoring [36]. Because of the additional costs and
that the exact cost of high-quality data is not known, the quality of data in existing PV
installation is varying. If the data quality is not ensured from the beginning and additionally
properly maintained, it must be considered in the analysis. Consequently, methods for
recognizing and handling quality issues in the data is typically necessary.

Common data quality issues in PV monitoring data, is described in for example
[36,89,95,96]. Potential issues in PV monitoring data include lack of sensor maintenance,
non-functioning logging, communication or sensors, or conditions giving biases or noise in
the sensor data. Quality issues connected to lack of maintenance of sensors are for example
lacking sensor calibration and irradiance sensors that are not cleaned. Non-functional sensors
or logging can result in missing data, unphysical values, duplicated data or stale values. Errors
or missing information related to time stamps is another potential issue. This includes lacking
information on time zone, daylight saving time or method for time sampling (for example
description of what the time stamp represents: the beginning, end or the middle of the logging
interval). Inaccurate time synchronization is another potential time-related issue. Irradiance
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sensors have expected uncertainties linked to for example time lag, drift, and angular
response, as well as temperature related zero offsets that can give positive readings at
nighttime [97,98]. Additionally, they can be installed inadequately, for example with
inaccurate tilt angle or in a location with shading [96]. For module temperature sensors
attached to the rear side of the module, it has been observed that they can have poor thermal
contact and detach from the module temperature surface [79].

If data quality issues are not detected and handled, they can have large impact on the
result of the system performance quantification and loss identification. As discussed in [99],
data quality issues giving errors in the irradiance and module temperature measurement can
introduce severe errors in the performance evaluation. For estimations of the overall system
performance the irradiance measurement is often essential, and errors in the irradiance value
would consequently give erroneous results. In analysis of how the performance evolve with
time, shifts or drifts in the irradiance measurements can be misinterpreted as faults or
degradation in the PV system, or mask degradation in the system. Detached temperature
sensors will lead to underestimation of the module temperature which again may lead to
underestimation of temperature losses and give an over-optimistic estimation of expected
output. Periods of missing data can reduce the robustness of the analysis, as the basis for
evaluation is reduced.

Non-ideal references
Another issue that can challenge accurate performance evaluations, is that the reference used
in the performance metric is not representative for the evaluated system. This can be an issue
related to reference measurement or to the reference model. The suitability of the reference
measurement is to a certain degree related to data quality. The sensors in the monitoring
system must be designed to correctly give a representative estimate of the conditions of the
module, both with respect to sensor suitability and sensor placement/installation. This is
relevant for sensors measuring both system and location specific parameters, but as system
specific parameters are the most common measurements used in our research, these are the
parameters discussed in this section. Another potential challenge with comparing the output
to a reference, is how well the reference follows the target output under fast changes in
operating conditions, for example under conditions with fast moving clouds.

Different sensors will give different information, impacting how suitable a sensor is for
a specific task. As presented in Section 2.2, the plane of array irradiance in the systems
evaluated in this work is either measured by a pyranometer or a reference cell. While the
pyranometer is measuring the total irradiance in the plane of array, the reference cell is
designed to measure the effective irradiance, i.e. the irradiance the solar cells can utilize
[97,100]. The aim of the reference cell is thus to measure the irradiance after reflection and
spectral losses, and with the same time response as a solar cell. A pyranometer, on the other
hand, has nearly uniform sensitivity for all the wave lengths within its measurement range
and the angular response is almost constant. Also, its measurable response to irradiance is a
few seconds slower than a solar cell. Irradiance measured by a reference cell could thus be a
better reference device for cases where we want to consider reflection and spectral losses
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accurately in the performance evaluation. A prerequisite here is, however, that the reference
cell is matched with the relevant PV technology. While the spectral responses of crystalline
silicon cells are expected to be quite similar, there could potentially be variations in the
quality of the antireflective properties of the cell, glass or both. Multiple methods for
developing anti-reflecting coatings for PV modules exists, as described in the literature [101].
With differences in reference cell technology and the installed PV modules, unknown
deviations between target and reference can occur (affecting the suitability of the reference
cell as a reference measurement).

Cell/module temperature measurements can also be performed in different ways. The
cell temperature for the systems evaluated in this work is either measured by sensors on the
rear side of a module or integrated in a reference cell. The rear side sensor is not measuring
the actual cell temperature, but it is measuring the actual operating conditions of the module.
To get an accurate value of the expected cell temperature, the expected difference between
these two temperatures should be modeled [100]. In the reference cell the cell temperature is
directly measured, but the cell has significant deviations in design compared to the PV
modules, and the operating temperature could therefore be different.

Issues related to the placement or installation of the sensor are relevant for both in-
plane irradiance sensors and module/cell temperature sensors. Section 4.2.1 presented the
issue of deviations in tilt between the irradiance sensor and the PV array, and variations in
exact tilt within the PV array. A similar issue is relevant for the module/cell temperature
measurement. Temperature variations within the system are expected, and the temperature
sensor should thus be placed in a location that gives a good indication of what the system
overall is experiencing.

If the non-representative sensor measurements are used as input to a model, this will
consequently also impact how representative the model will be for the PV system output.
Models can also be less suitable as a reference if the effect of influential parameters and
expected losses are not correctly considered, as further discussed in the end of this section.
Another potential issue with a reference model or reference measurement in performance
evaluations, is the difference in temporal response between the reference and the target. This
can be crucial for situations with rapid changes in irradiance under cloudy conditions. Moving
clouds are a challenge due to potential inhomogeneous shading effects, the time lag of the
pyranometer, and the efficiency with which the MPPTs responds to the varying conditions.

Sensor measurements that are not adequate references of the irradiance or temperature
of the PV modules, can lead to both offset, systematic trends and noise in the performance
metric time series. Fast changes in irradiance, are for example expected to give noise in the
performance metric. One severe effect of using non-representative references in performance
metrics is that the performance metrics indicate losses or gains in the system that are not real,
as previously illustrated in Figure 12. Slight differences in tilt between the array and the
irradiance sensor or the reference array, are expected to be one of the causes of seasonal
variations in performance metrics, illustrated by the relative irradiation differences between
different planes in Figure 11. In general, with a reference model that is not accurately
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considering all expected losses, the basis to evaluate if the system is under or over performing
is thin.

Unconsidered or inaccurately quantified losses

The co-existence of several different loss mechanism is a major challenge when seeking to
identify and quantify specific loss mechanisms. To estimate the effect of one loss mechanism,
accurate quantitative knowledge of other losses is required. For example, to evaluate the
effect of snow, it is necessary to consider other common wintertime losses such as losses
caused by irradiance with low intensity and high incident angles or shading. Accurate
consideration of other loss mechanisms is particularly relevant for identification of small
losses, for example caused by soiling, degradation or module faults. The authors of [102,103]
find that improved estimation of soiling and degradation losses can be achieved if the effect
of both is considered in the analysis. Typical challenges are loss mechanisms that are difficult
to accurately quantify, such as losses related to low intensity irradiance, high angle of
incidence, cloudy conditions and temperature. Accurate estimation of reflection loss can for
example be challenging when the angle of incidence is above 60°, as the resulting loss is
increasingly sensitive to changes in AOI above this limit [60]. Accurate calculations of these
types of losses require more detailed input information than what is typically available. This
can include information about exact tilt angles, overview of the non-uniformity in irradiance
and temperature, and exact information on how all the components respond to the different
conditions. Inaccurate estimation of these losses yield uncertainty that can lead to noise in
the data and hide the signals related to recoverable losses such as soiling and module faults.
Methods for accurate modeling of the expected losses are not only necessary for performance
evaluation of historical data. Estimations of these types of losses are also required to predict
performance of future systems.

4.3 Potential solutions for improved performance evaluation
When a comprehensive understanding of how various effects impact performance evaluation
is established, effective solutions to handle these effects can be discussed. This section
presents methods for improving performance evaluation through handling the impact factors
discussed in Section 4.2.

4.3.1 Previous work

Various strategies to handle different effects in the data are suggested in the literature.
Filtering is perhaps the most common, and also the simplest, solution suggested. Another
solution, typically used to handle systematic trends in the performance metrics, is more
detailed modeling and trend correction. A third approach is to utilize data signatures or
performance metrics to evaluate the data that are less impacted by the discussed impact
factors.

Filtering
The principle of filtering is to remove the periods where the performance metric fails to
represent the quantity it is determined to measure. This could for example be periods with
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erroneous input data, noise in the performance metrics, or temporary losses that are not
relevant for the effect under study. Filtering could thus be used to handle factors related data
quality, non-ideal references, and losses that are challenging to properly quantify. Data
cleaning with filtering is typically an important step in suggested procedures for degradation
and performance loss analysis [27,88]. The first step is often removal of data quality issues
such as non-physical values, invalid readings and periods with missing or duplicated data
[36,89,96]. For analyses where the aim is to identify small losses caused by for example
soiling, degradation and faults, it is also often suggested to remove periods with-irradiance
with low intensity or high angle of incidence, or cloudy conditions [27,83,99,104,105]. In
these conditions the output of the PV array can be difficult to predict, because the related
expected losses can be difficult to quantify accurately. Which other effects that are filtered
out, typically depend on the aim of the analysis. In degradation analysis for example, shading,
clipping, curtailment, downtime, and outliers in the calculated performance metrics are often
also removed [83,99,105].
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Figure 14: lllustration of the effect on the output of the performance metric calculation of
filtering out periods with low irradiance and periods with large changes in irradiance
caused by partly cloudy weather.

Figure 14 shows the effect of filtering out periods with low irradiance and large
variation in irradiance caused by partly cloudy weather on the output of the performance ratio
calculation for one of the studies systems. We observe less variation in the output value,
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which would make it easier to identify changes caused by component degradation or faults.
However, for this example based on data from a Norwegian PV system, we now lack data for
large parts of the year.

However, as discussed in [27] the implementation of filtering can be influenced by the
preferences of the analyst, and the role and the effect of filtering are not always discussed
when implemented in performance evaluation. It is not uncommon that one filter is used to
remove multiple effects. For example, a low irradiance filter can be used to remove the effect
of low irradiance, high angle of incidence and shading. If not carefully considered, filtering
can easily remove more data than necessary. If the aim is to evaluate the overall performance
of the system, it is critical that it is only issues related to data quality and non-ideal references
that are removed, and not periods with central performance losses. A common challenge
introduced with filtering, is when long time periods are removed, giving holes in the time
series. Imputation of data has been considered to solve this problem [96]. While imputation
of modeled sensor data is considered as a valid substitution, imputation of modeled power
data will mostly be relevant for cases where the estimation of how much energy that is
generated is central. For evaluation of PV performance, the measured PV array output will
be essential, and imputation of modeled power data should therefore be carefully considered.

To improve the filtering process, efforts to identify and filter specific effects are needed.
For clipping, for example, a recent contribution in this regard was made by [106]. More
automated methods to find the optimal filtering thresholds to reduce the uncertainty in the
performance estimation, such as suggested by [88] for degradation rate estimation, is another
pathway for improving the filtering process.

Modeling and correction of losses and trends

Another method to handle losses that are not properly quantified in the performance metric
is to develop improved models to consider the relevant loss mechanisms. This could be either
through physical models, or through empirical approaches, such as machine learning. The
use of statistical methods and machine learning to achieve improved PV modeling is gaining
more attention. Statistical methods and machine learning can also be used to correct for
systematic trends in data, irrelevant of if they are caused by losses that are not properly
quantified or non-ideal references giving for example seasonal trends in the data.

Ref. [105] reduces the uncertainty in an estimation of PLR by including physical
modeling of the effects caused by variations in the solar spectrum, a mechanism that rarely
is included in performance analysis, in the PV output model. In our related work presented
in [76], the aim is to compare the performance of two different PV technologies in Norwegian
operating conditions. Filtering out low light conditions is thus not an option. To enable
comparison at given conditions, the performance metrics is corrected for the losses caused
by irradiance with low intensity and high angle of incidence. The analysis shows, however,
that while the correction for irrelevant losses improves the basis of comparison, it is
challenging to obtain sufficient accuracy.

Using statistical methods, such as seasonal trend decomposition [107], to quantify and
correct for systematic trends is often suggested to handle the seasonal trend often observed
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in performance metric time series. This has for example been suggested for development of
fault detection algorithms [84], degradation rate [108] and PLR estimation analyses [27,109].
Figure 15 shows the effect on the output of the performance metric calculation of correcting
for the seasonal trend. The seasonal trend is quantified using seasonal trend decomposition
[107]. We observe that the systematic trend is reduced, giving a nearly constant performance
metric through most of the year. The large losses in the wintertime that occurs every year,
but in a more random manner (assumed to be caused by snow), are not successfully corrected.
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Figure 15: Illustration of the effect on the output of the performance metric calculation of
correction for the seasonal trend. The seasonal trend is quantified using seasonal trend
decomposition.

Tailored use of performance metrics and data signatures

Another way to handle the discussed impact factors, is to utilize performance metrics or data
signatures that avoid the effect of these factors. A method suggested to handle systematic
seasonal trends in data, not sorting under neither filtering nor modeling/correction is the year-
on year method used to estimate degradation trends [83]. This method is implemented in the
open-source library RdTools that is commonly used in degradation analysis. In this method,
calculated performance metric values from the same day of the year are compared to each
other, reducing the effect of potential systematic seasonal trends. In the suggested approach,
extensive use of filtering is additionally applied. This gives a more stable comparison because
it compares days under the same condition, but a weakness is that the filtering can reduce the
number of comparable days from year to year. As shown in our related work [75] where the
aim is degradation rate estimation in Norwegian conditions, it is quite common that whole
days are filtered out, challenging comparison of one day of the year to the same day the next
year. To improve on this, improved versions of the year-on-year method are tested and
developed in this paper. The improved methods enable estimation of the rate of change not
only from one year to the next, but by considering the rate of change in the whole analysis
period. In [83], it is also suggested to use modeled clear sky irradiance as a reference in the
performance metrics instead of measured irradiance, and only evaluate clear sky periods. This
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removes the challenge of sensor data quality but requires long periods with clear sky weather.
Another way to avoid the impact of poor irradiance sensor data quality, is to use yield
comparison of similar/identical PV arrays, as we do in [84,90].

A commonly used method to reduce noise in the calculated performance metric, is to
aggregate the data and reduce the temporal resolution of the performance metric [27,84]. If
the performance metric is only impacted by random noise or if the noise is caused by effects
giving large relative differences between the output and the reference in the performance
metrics but small absolute differences, this can be an efficient solution. However, if there are
systematic trends in the performance metric time series, aggregation could conceal these
effects.

4.3.2 Thesis contribution

In the work presented in this thesis, methods for evaluating sensor data quality and the use of
filtering to handle different performance evaluation impact factors are tested. Additionally, it
is evaluated how different performance metrics are impacted by the discussed factors. In
Paper I, we show that comparison with clear sky irradiance modeling can be used to identify
drift and shift in the irradiance sensor measurements, in addition to misalignment of the
sensor. This discussion is partly continued in Paper II and 111, where we find that the statistical
clear sky fitting algorithm proposed by [92] can be used to find deviations between the tilt
angle of the irradiance sensor and the effective tilt angle of the PV arrays. In Paper I we also
assess if the relationship between irradiance, ambient temperature and module temperature
can be used to identify detachment of the module temperature sensor.

Paper II and 111 evaluate the use of filtering to improve the sensitivity in fault detection.
Paper II shows that filtering with low irradiance thresholds commonly used in the literature
and clear sky filtering do not solve the challenges we have with noise in the performance
metric time series for the studied high latitude, cold climate datasets. In paper Il and III it is
found that filtering thresholds directly aimed at the origin of the noise and systematic trends
in the performance metric time series give more stable performance metrics that are more
suitable to use in fault detection. This shows that the optimal filtering thresholds depend on
operating conditions. This further supports the need for development of filtering threshold
optimization methods and other methods to select filters tailored to the specific effects and
the purpose of the analysis.

In Paper Il we also evaluate how different commonly used performance metrics
perform in a fault detection analysis and handle the impact factors discussed in Section 4.2.
The tested performance metrics are array Y comparison, PR ’25.c and PPI based on both
physical and machine learning modeling. The results show that choosing the right
performance metric based on the quality and condition of the available input data can also be
a strategy to handle the impact factors, as suggested in the end of Section 4.3.1. For example,
for situations where the irradiance sensor is not a representative reference or has quality
issues, yield comparisons between the individual units of the system can be efficient.
Machine learning can improve modeling of the expected output of the system, especially for
cases where all the parameters needed to physically model all losses in the system are not
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known. In Paper III, we see that with machine learning the estimation of the expected output
in situations with shading and with deviations in tilt between the irradiance sensor and the
PV array is improved compared to using a physical model.

4.3.3 Discussion

The main responses in the calculated performance metrics caused by the factors discussed in
Section 4.2 are erroneous data, noise and systematic trends or offsets. The two preceding
sections discuss how these effects can be handled to improve and develop standardized
methodology for performance evaluation. In general, filtering appears to be an efficient
method to handle errors and noise in the data, i.e. effects that is difficult to model. Correction
based on physical models or statistical methods could be used to handle systematic trends or
offsets. As also discussed, filtering and correction can be bypassed if performance metrics or
data signatures that are not impacted by the relevant impact factors are utilized. In addition
to handling the factors impact performance metric calculation, improved identification of
different loss mechanisms and detailed description of the signatures in the data for the specific
loss mechanism would also be necessary for improved performance evaluation methodology.

There are two main pathways to develop strategies to handle the factors impacting the
performance evaluation. Either the methods could be target at directly handling the different
factors, or the aim of the methods could be to handle the resulting signals in the data. In Paper
II and III we suggest handling the impact factors directly by using filtering that is specifically
targeted for the different impact factors. For example, the conditions where irradiance with
low intensity and high AOI give noise in the data are specifically identified and removed.
Development of analysis procedures based on this strategy requires methods for accurate
identification of the various impact factors. For the other pathway, where the goal to a larger
degree is to handle the signal in the performance metric, the methods could for example be
targeted at reducing noise and systematic trends in general. One example is optimization
methods for finding the filtering thresholds for different parameters (for example intensity
and angel of incidence of the irradiance, or clear sky index) that gives minimal noise in the
performance metrics. Seasonal trend decomposition to quantify and correct for the effects
giving seasonal trends in data or machine learning modeling (as discussed in Paper III) are
other potential methods for handling the more systematic signals in the performance metrics.
With seasonal decomposition all the effects introducing a seasonal trend in the performance
metric is corrected for simultaneously, the same way as all the losses in the system are
estimated as one effect with a machine learning model.

For both pathways, in-depth knowledge of the impact factors in the dataset, methods
accurately targeting these factors, as well as a clear aim for the analysis are required. For
example, we do not want to correct for or remove losses we want to quantify. When using
methods for selecting filters and filtering thresholds based on optimization methods, it will
be critical that the optimization is done on the parameters that actually introduce noise in the
data. Machine learning modeling requires proper data cleaning. The automatic methods can
easily fail if there are issues giving stronger signals in the data than the ones we try to correct
for. For example, to use seasonal decomposition if there are stronger signals in the data than
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the seasonal signal, can give a correction that introduce new deviations and biases in the data.
Solving all the issues with targeted correction and filtering for different effects, on the other
hand, can give a very complex and time-consuming analysis.

However, we find that focusing on how to specifically handle the impact factors in the
data is in general a promising strategy for improved performance evaluation. In our related
work presented in [84] a data processing procedure for fault detection in larger PV plants is
suggested. This procedure is based on using array yield comparison as a performance metric
to avoid irradiance sensor quality issues. Effects giving noise and erroneous data are filtered
out, and seasonal correction of the performance metric time series is utilized. In [85] it is
found that with this performance metric calculation and processing, loss as small as the power
loss caused by activation of bypass diodes in PV modules can be detected from the output
data of a larger PV array.
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5 Snow losses in PV systems

The assessment of factors impacting PV performance evaluation in high latitude cold climate
conditions presented in Chapter 4, shows that snow is an important factor to consider because
of its potential large effects on PV performance. This chapter presents the challenges snow
introduce to in PV performance evaluations, and potential solutions. In addition to this, the
chapter discusses how snow should be considered in PV performance predictions. Methods
for identification and prediction of snow losses are essential in order to handle snow in
performance evaluations and prediction. Section 5.1 describes the impact of snow on
performance evaluation and predictions, while Sections 5.2. and 5.3. summarize previous
work and the contributions of this thesis on snow loss identification and prediction,
respectively.

5.1 The impact of snow on PV performance and performance
analysis

5.1.1 The prevalence of snow losses

Snow can cause severe and long-lasting shading of PV modules that result in large power
losses. Daily and monthly energy losses due to snow of up to 100 % and annual losses of
more than 30 % have been reported [45]. There are, however, large variations in the reported
snow loss values. The energy loss correlates with the lost irradiance, which again depends on
how often and for how long the PV modules are covered by snow. Excluding areas with
permanent snow cover (such as Antarctica and Greenland) and mountainous areas, snow is
typically found in the northern hemisphere [110]. As illustrated in Figure 16, the lower
latitude limit where snowfalls are expected will vary with continent. With increasing latitude,
the number of days with ground snow covers generally increases. From the figure, it is
observed that snowfalls are expected in significant PV markets [15] such as China, Japan,
EU and USA. It is, however, anticipated that global warming will cause less snow in the
future. In Norway, shorter snow seasons, reduction in snow depth and increase in snowline
elevation are expected [111]. Figure 17 shows the historical monthly mean snow water
equivalent (SWE) for a location in Eastern Norway compared to modeled SWE for the period
2030-2050 based on two different emission scenarios. SWE is a measure of the amount of
liquid water stored in a snowpack. The reductions in SWE for the modeled values illustrate
the expected reduction in snow depth and length of snow season.

5.1.2 Applications of snow loss estimation and identification

Because of the large potential losses, snow is an essential parameter in performance
evaluation and prediction. Often the loss is accepted, but as active and passive snow clearing
are possible, the loss can also be correctable or avoidable. Snow loss could for example be
reduced through system design or O&M. Snow loss estimations are therefore useful in both
predictions of system output, optimization of system design, and for efficiently implementing
corrective measures in O&M. Additionally, identification of snow losses is essential in
performance analysis where separation between different loss mechanisms is necessary.
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Figure 16: The lower latitude limit where temporary snow covers (lasting a few days) and

seasonal snow covers (lasting for months) is found, according to [110].
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Figure 17: Monthly mean snow water equivalent for a location in Eastern Norway for 1)
historical data, 2) modeled data for 2030-2050 given the RCP4.5 emission scenario, and 3)
modeled data for 2030-2050 given the RCP8.5 emission scenario [112,113]. Data from

[114].

Snow loss estimation

As discussed in Section 3.1.2, estimations of expected PV system losses are necessary for
predictions of PV energy generation, which again is necessary in multiple different
applications. With its potential large impact, snow losses are no exception to this. Because
energy losses in PV systems related to snow are expected to vary with both snow and weather
conditions, as well as system design [45], historical data from one system will not necessarily
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be transferable to other systems. A snow loss model is therefore preferred. Additionally, a
model enables inclusion of the potential effect of reduction in snow caused by global warming
on PV snow losses.

Estimations of snow loss is also important when evaluating the potential for reducing
the losses caused by snow. Snow losses can be reduced by designing the system to induce
increased passive clearing, for example by increased tilt, use of frameless [115] or bifacial
modules [116], or ice phobic surface coating [117]. Alternatively, or additionally, snow
losses can be reduced by active snow clearing as a part of O&M of the system, for example
by manual shoveling or heating [118]. The estimation of potential snow losses is important
input to the evaluation of the cost of not clearing and the gain of actively clearing the snow.
Estimation of natural snow cover development is particularly important. When would the
snow have been cleared off the modules if no active measures were implemented? Is it
snowing soon again, making the active snow clearing useless? If the snow is not cleared now,
will it freeze to the modules and persist for a long time? The cost of not clearing the snow is,
however, not only related to lost energy generation, but also the potential damage of the
system and/or the roof caused by the mechanical load.

Identification of snow losses

Identification of snow losses is essential in analysis of loss mechanisms. Because of the large
and non-systematic losses, snow could for example have a large impact on the output of a
degradation analysis or in a monitoring system designed for fault detection. If snow is not
separated from failures in a monitoring system, alarms indicating component failure can be
issued when the actual issue is temporary snow. This could give reduced trust in the
monitoring system from the operators. A consequence of this could be that serious system
issues are not tended to because they are assumed to be caused by snow. Identification of
snow losses in PV monitoring data can also provide more knowledge with respect to snow
cover and resulting losses based on historical data. Such data could be important input to
development and validation of snow loss models.

Method development challenges

From the discussion in the previous sections, it can be concluded that it is essential with
reliable methods for 1) identification of snow in PV monitoring data, and 2) predictions of
snow losses for a given system under given weather conditions. However, neither identifying
snow in PV monitoring data nor predicting the presence of snow cover and resulting loss are
trivial. As we discuss in Paper IV, because of the potential varying coverage and
transmittance of snow, snow can shade PV modules in multiple different ways, which
consequently can give multiple different snow shading responses in the measured output.
Which response a given snow cover leads to in measured parameters in a PV system can also
depend on the module orientation/bypass diodes and the array configuration, i.e. how many
modules that are series and parallel connected to the same MPPT. Figure 18 shows how a
partial snow cover on the lower part of the module, a typical situation if the snow slides down
the modules, will shade relative to the module substrings and the bypass diodes. The
challenge of estimating the resulting loss in PV parameters due to a given snow cover will
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complicate both the identification and prediction of snow losses. Additionally, as we describe
in Paper VI, the process of natural accumulation and clearing of snow on PV systems depend
on a large range of weather, snow, and installation parameters, and are consequently also
difficult to predict. The impact of multiple different parameters on the snow clearing can give
complex snow shedding patterns, as shown in Figure 19. An additional challenge for
development of methods based on monitoring data, is that snow also can impact the sensor
values. For example, the irradiance sensor can also be covered by snow.

Landscape orientation:
snow cover parallel to
substring current

Portrait orientation:
snow cover orthogonal
to substring current

Partial snow cover

Figure 18: lllustration of how a partial snow cover on the lower part of the module will

shade relative to the module substrings and the bypass diodes.

Figure 19: Partial snow shedding at the PV test facilities at IFE, Kjeller, Norway.

5.2 Identification of snow losses

5.2.1 Previous work

Because of the potential large and long-lasting losses, how to identify and handle snow has
been discussed in various performance analysis studies. Filtering out outliers [27,88] or
removing periods with low performance ratios are potential methods to handle snow in
performance evaluation. This will remove most snow events, but also other types of large
losses, and will not be accurate enough for detailed snow identification. This type of filter
can be used in for example a degradation rate analysis, but will fall short in for example fault
detection, as it could not separate between snow losses and severe component failures, one
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of the most important fault a monitoring system should detect. To improve the snow
identification, other parameters have been included, giving more detailed description of the
signature in the data caused by snow. Ref. [119] suggests identifying snow losses by detection
of power losses in periods with temperatures close to or below freezing. In the snow detection
algorithm suggested in [120] for larger power plants, it is added that the power loss should
be identified in most of the arrays, and the irradiance and power should in general be low.
The development in plant and array values of PR’ is further tracked to confirm that it follows
the characteristic for snow loss recovery (snow loss recovery is expected to be gradual). The
snow event is closed when the PR’ returns to normal for most of the arrays, and ambient
temperatures above 20°C. The snow detection suggested by [120], do enable more detailed
snow identification than just considering power loss and/or ambient temperature. The method
does, however, to a certain degree appear to be adapted to the system configurations and
weather type of the studied systems. For example, it requires comparable arrays, and the
temperature threshold giving most accurate closing of snow events and the characteristics of
snow loss recovery could be expected to vary with the weather and snow conditions. To
efficiently implement this, a thorough description of the characteristic of snow loss recovery
could additionally be useful.

In this work, the focus is on methods to identify snow cover using parameters typically
measured in a PV plant. However, methods using dedicated measurements to identify snow
also exist. Imaging [121] is a promising method, as this can give a good overview of the total
snow coverage, including its non-uniformity. This method requires automatic image
processing and analysis, and a model for translating the estimated snow cover to resulting
power loss. A potential challenge for this method is semitransparent snow covers. Other
methods have also been introduced, such as weight sensors [118]. We have also found that
the Kipp & Zonen Dust IQ soiling sensor can be used in snow identification [122]. A
challenge with point measurements is, however, the potentially large non-uniformity of snow.
A point measurement is not necessarily representative for the snow coverage, especially in
the melting period, but it can be a useful measurement to include in snow cover detection.

5.2.2 Thesis contribution

Improved understanding on how snow influences PV monitoring data for both different snow
conditions and system design, enable improved separation of snow loss from other types of
losses and development of general identification methods with broad applicability. A more
comprehensive understanding would give a better basis to decide if results from one system,
with its specific system design and snow conditions, can easily be transferred to another
system, or when adjustments are needed. The main contribution of the work in this thesis on
this topic, is analysis of signatures in PV monitoring data caused by snow. In Paper II and
111, we describe how snow can give large and varying losses in PV systems and consequently
have a significant impact on fault detection. In Paper VII we quantify the magnitude and the
interannual variation in the snow losses for many of the systems in the studied dataset. The
effect of snow on the output parameters in the monitoring system, i.e. the snow signatures in
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PV monitoring data, is described in more detail in Paper I, IV and V1. In addition, we discuss
how the snow signature can be used to improve performance analysis.

In Paper I we evaluate how well the relation between measured module temperature
and irradiance work as a snow cover identifier. The correlation between irradiance and
module temperature is well known, but when the modules are covered by snow, it is expected
that the impact of the irradiance on the module temperature will be reduced. When the
irradiance is high and the module temperature sensor is measuring the temperature of snow-
covered cells, identification of snow based on this relation works quite well, as the module
temperature is much lower than what would have been expected at the given irradiance. For
situations with lower irradiance, evaluating this relation is not equally efficient, as the
absolute difference between the measured temperature and the expected temperature at the
given irradiance is small. We also conclude that partial snow shading can be challenging.
Because the module temperature sensor gives a point measurement, it can potentially measure
the temperature of the part of the module that is not covered.

In Paper IV the assessment of snow signatures in PV monitoring data is extended. We
analyze the effect of full and partial snow cover on time-series of module temperature, DC
current, voltage and power for a small system with portrait-oriented modules and a large-
scale system with landscape-oriented modules. The analysis is supported by simulations of
IV curves for snow covered PV modules in both landscape and portrait orientation (see Figure
18 for description on how partial snow cover is expected to be different for the two
orientations), where both the transmittance and coverage of the snow cover are varied. The
identified possible responses in output data for different types of snow covers are summarized
in Table 6. In Paper VI, the most typical snow signatures in an expanded dataset are
identified, marked in bold in the table. When the losses in all the parameters are not close to
100 %, the response in the electrical parameters is mostly characterized by large loss in
current and typically much lower losses in voltage, both for systems with modules in
landscape and portrait orientation. From the large current losses, it seems that the typical
snow cover on the systems is impacting most module substrings in the array, and/or that there
is a large degree of semitransparent snow covers. Semitransparent and partial snow covers
explain the lower voltage losses. It is concluded that the non-uniformity in snow
transmittance and coverage, as well as the array configuration, impacts the output of the
system in the situations where the snow cover is not full and opaque.

Based on the identified signatures in PV monitoring data caused by snow, improved
snow filtering in fault detection is discussed. In the fault detection study presented in Paper
111, the noise caused by snow is removed by filtering out all periods with snow on the ground.
This removes almost all the data impacted by snow, but it also removes large parts of the data
where there are no snow losses, reducing the period where fault detection is possible. With
the aim of developing more accurate filters, Paper IV discusses the inclusion of snow
signatures, as well as using snow loss modeling to indicate the probability of snow cover
instead of measured snow on the ground. The signature included in the snow detection
evaluation is voltage loss, as the modules are installed in landscape orientation. This will not
separate snow from all types of losses (for example other loss mechanisms that leads to
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voltage loss), but it will reduce the amount of data removed compared to take away all the
data when there is snow on the ground. Together with the snow loss modeling, 97 % of the
data with significant snow losses are removed, but there is still potential to reduce the number
of false positives. We conclude that using the snow signatures is useful, but adding more
signatures is required to develop automated snow detection that is both accurate and enables
separation of snow from faults.

Table 6: Overview of the expected response in PV monitoring output parameters for
different types of snow cover, as described in Paper 1V. The typical response found in the
validation study (evaluating electrical parameters) presented in Paper VI is marked with
bold font.

Partial

Partial, opaque semitransparent

Full, Full, semi-
opaque | transparent

Portrait | Landscape | Portrait | Landscape

<< i . .
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While the identified snow signatures are not implemented in automated snow detection,
we have made use of the to improve the loss identification in the performance analysis of a
bifacial system [73] and in estimation of soiling losses on a farm [122]. In both cases the
snow signatures are useful to identify and quantify the snow losses for the two system types,
and to separate the snow losses from losses caused by shading or irradiance with low intensity
and high angle of incidence. Because the bifacial solar cells also can utilize the rear side
irradiance, and typically will not experience snow shading on the rear side, the snow
signatures of bifacial systems are expected to be different than for monofacial systems. Still,
the identified data signatures from the studied monofacial systems appear to be useful in
identification of snow losses.
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In the work presented in the preceding sections, the aim has been to describe what snow
looks like in PV monitoring data, and how this knowledge can be used. However, the studied
datasets may not include all potential variations, and the description is not expected to be
exhaustive with respect to the dependency on system design and weather/snow conditions.
Other measurements and data signatures, for example how the different parameters develop
over time, can also be relevant. More detailed current and voltage data, for example IV
curves, is expected to provide more information on the impact of snow covers on PV
modules/arrays. More detailed data on the snow coverage (for example snow cover images
and transmittance measurements/estimates) and data spanning a greater set of different snow
conditions could also provide additional information.

5.3 Prediction of snow losses

5.3.1 Previous work

Multiple models for predicting snow cover and/or snow loss based on weather and system
parameters have been described in the literature [45]. Most of the suggested models,
according to the overview of PV snow loss models given in [45], are based on making
empirical correlations directly between influential parameters and snow loss. In the model
suggested by Marion et al. [32], the modeling is to a larger extent based on physical processes.
In the Marion model empirical correlations and physical considerations are used to 1)
estimate when snow accumulates on the PV modules, and 2) when and 3) how fast the snow
clears of the modules. This is used to estimate the snow coverage, and from the number of
shaded module substrings, the power loss is calculated.

A typical limitation of the suggested models is that they are developed using data from
one system, and often the time series used are short — about one or two winters. Additionally,
few validations of the models are published [123]. Exceptions do however exist, the Marion
model [32] is for example developed based on data from multiple systems and is also
evaluated in other studies [123,124]. In general, the lack of validation on a larger dataset can
mean that the models are biased because they will be strongly connected to how snow
accumulates/clears off the studied system and the specific types of snow conditions
represented in the dataset. This means that the models will not necessarily be transferable to
other systems and other snow conditions. While developing a model that can handle all
system configurations and a// snow conditions indeed is very ambitious, a model should be
developed for broad applicability. Building general models using a fully empirical approach,
requires large amounts of data and good measurements/estimates of all the potential
influencing factors, covering the different potential combination of system design and snow
conditions. The model development studies do, however, often give valuable information on
which processes and parameters that can be important for snow accumulation and clearing.

5.3.2 Thesis contribution
To contribute to improved and generalized snow loss modeling, we have tested existing snow
loss models, identified which types of models that seem to be most promising for
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generalization, identified room for improvements and used this to suggest improved models.
We have also studied how snow loss modeling should be used in yield estimations for future
systems.

In Paper IV we test four of the snow loss models [32,125-127] proposed in the
literature. The evaluated models are chosen because they are of varying complexity and
utilize commonly available input parameters. We find the Marion model [32] to be the most
promising. With just some adjustments to the empirical coefficients used in the model, we
achieve a satisfactory fit with the snow power losses estimated for the studied system. A
potential explanation for why this model may be more suitable for generalization is that it
aims to predict the different processes in snow accumulation and snow clearing separately,
as described in the previous section. Additionally, the separation in the model of different
processes makes modifications easier. Models based directly on empirical correlations are to
a larger extent describing the conditions in the test dataset, and if these conditions are not
general, the model will also not be general.

In Paper IV we find that the Marion snow loss model could be improved by using
empirical snow clearing rate coefficients estimated for the specific system design, to consider
how the system design can impact snow accumulation and clearing. For the system evaluated
in the paper we also find that different snow clearing rates should be used for thin and thick
snow covers, to better include how snow clearing and accumulation can vary for different
snow conditions. The results are validated for multiple roof mounted systems (smaller
residential systems and large-scale commercial systems) in Paper V and VI. Figure 20 shows
for one snow season how the snow coverage modeled with the suggested improvements to
the Marion model follows the loss estimated from the monitoring data for the system used to
test the model in Paper IV. The snow coverage is not expected to be directly correlated to the
energy snow loss, as the activation of bypass diodes also will have an impact and the snow
coverage is not expected to be exactly the same for all modules. The snow coverage is still
included here instead of the modeled loss (which is based on how many bypass diodes that
are expected to be covered, and therefore is either 0, 33 %, 66 % or 100 %) to give more
detailed description of the prediction. Figure 21 shows the performance of the model on the
extended dataset in Paper VI for monthly and annual losses. There are two types of system
configurations in the dataset: residential systems on tilted roofs with portrait-oriented
modules, and commercial systems on flat roofs on with landscape-oriented modules. Within
the same type, the same set of snow clearing coefficients are used to the test the model
applicability. It is found that separate snow clearing coefficients for thin and thick snow
covers better include the effect of varying snow condition, giving good results for the same
type of systems independent of climate zone. The large modeling errors for some of the
systems in Figure 21, is either related to small absolute losses, or that the systems had
additional parameters impacting snow clearing, such as heat leakage from the building or
shading. This complicates snow loss modeling. The PV installations had the same design, but
the overall systems were not similar in all the parameters that impact snow clearing.
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Figure 20: Daily values of energy loss estimated from data and modeled snow coverage for
one snow season. The snow coverage is modeled with the suggested improvements to the
Marion model.
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Figure 21: Annual and monthly snow loss modeled with the proposed improvements in the
Marion model compared to losses estimated from the output data.

In Paper VII we further discuss how snow loss modeling could be applied in yield
modeling of future systems, as there are many choices here that need evaluation. Which input
data that should be used is a central concern, as a typical meteorological year (TMY) that is
commonly used in PV yield estimation is not necessarily a typical snow year nor give a good
estimate with respect to year-on-year variations. We describe a procedure using long time
series of weather data and snow loss modeling, which gives both a typical monthly/annual
loss value, and a range of typical variation. An example of how this could be implemented is
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presented in [128], where we use the monthly typical values as input to a PVsyst simulation
as part of an energy system dimensioning analysis.

Compared to describing and identifying the effect of snow in PV monitoring data, there
are probably even more unanswered questions related to PV snow loss modeling. For
example, how accurately can snow loss modeling be done with the weather data that typically
is available? Which parameters (including system, snow, and weather parameters) have
significant influence on snow cover and resulting losses, and should be specifically included
in the model? Which system parameters should be similar to use snow clearing rate
coefficients extracted from one system to another system? The work in this thesis only
focuses on data from roof mounted systems. But what about ground mounted systems, where
the rear side is open, and the module temperature might be influenced by for example wind?
There are indications that ground mounted systems shed snow faster than roof mounted
systems [32]. There is additionally limited research on how snow will impact the yield of
systems with trackers or bifacial modules, both technologies that are increasingly common.
It is assumed that systems with tracking (especially if the tracking algorithm is adapted with
the aim of active snow clearing) [123,126,129] or bifacial [116] will have less snow losses,
but more data confirming to which extent this is expected is needed. It is clear that a range of
parameters significantly impacts snow loss, and more data is necessary to identify the most
critical parameters for different types of system designs and to extend the validations.
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6 Conclusions and further work

6.1 Conclusions

In order to obtain accurate predictions of PV energy yield or to identify the optimal system
design, predictions of the system performance under given operating conditions are essential.
Performance evaluations of existing systems can give valuable information on which losses
that should be included in the performance predictions, and additionally determine the
potential for improved performance. Accurate methods to predict and evaluate performance
could thus contribute to cost reductions and performance increases for PV installations. The
main topic of the work presented in this thesis is methodology for PV performance
evaluations. The study includes assessment of methodology for performance evaluation of
PV systems for a dataset consisting of installations located in Norway, and classification of
factors impacting the evaluation. The identified main categories of the factors impacting the
evaluation is: 1) data quality, 2) the use of non-representative references in the performance
metric calculation, and 3) inaccurate quantification of expected losses. For example, small
variations in tilt between the PV array and irradiance sensor are found to give a seasonal trend
in the calculated performance metrics, illustrating the potential effect of non-representative
references utilized in performance metrics. For the evaluated dataset, especially snow and the
irradiance conditions specific for the Norwegian conditions can result in losses that are
difficult to accurately quantify and include in performance evaluation.

Additionally, this thesis describes an assessment of methodologies for improving and
standardizing performance analyses by handling these identified impact factors. In the
published papers, we test filtering of the effects caused by the impact factors, and how the
impact factors affect different performance metrics. We find that the sensitivity in a fault
detection analysis is improved when specifically targeting the different effects with filtering.
We also find that the choice of performance metric can be used to avoid certain impact
factors. For example, yield comparison of identical units can be used for fault detection in a
larger PV plant if there are irradiance data quality issues. Machine learning can be used to
achieve improved modeling of expected PV array output in systems with shading or
variations in array/sensor tilt caused by for example topography variations.

From the assessment of performance evaluation methodologies, we find that improved
methods to identify and predict snow losses in PV systems are necessary in both performance
evaluations and predictions. To contribute to improved snow identification, we describe the
effect of snow on various parameters measured in PV monitoring systems. It is found that
snow give specific signatures in DC current and voltage time series. Combined with weather
data it is therefore possible to separate snow losses from other types of losses. However, the
potential non-uniformity in snow coverage and transmittance, combined with how various
system designs can impact the shading response of the system, result in a wide range of
potential snow signatures, complicating automatic snow identification. We additionally
evaluate existing snow loss models, and suggest an improvement to the commonly used
Marion snow loss model. The improved model results in a reduction in modeling error of 23
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percentage points for the studied dataset compared to the default implementation of the
Marion model.

1. What are the factors impacting performance evaluations of PV systems in high
latitude, cold climate locations?

Paper |: Evaluation of sensor data quality issues.

Paper Il, I Identification of root cause factors for deviations in calculated performance
metrics.

2. What are possible solutions to handle these impact factors?

Paper |: Suggestion of methods for evaluation of sensor data quality based on analysis of
monitoring data.

Paper Il, Ill: Testing og targeted filtering of the effects caused by factors impacting
performance evaluation. Evaluation of method for quantification of the effect of tilt variations
on PV output/measured irradiance.

Paper IlI: Evaluation of performance metric choice and machine learning based modeling for
improved fault detection.

3. What is the effect of snow in PV systems?

Paper |: Description of the relationship between snow cover and PV module temperature
measurements.

Paper Il, Ill: Description of the effect of snow on a fault detection analysis.

Paper |V: Description of how snow cover impacts measured PV monitoring data
parameters.

Paper VI: Validation of results in Paper IV.
Paper VII: Estimation of snow losses for a set of PV systems in Norway.
4. Can losses caused by snow be identified and predicted?

Paper |V: Evaluation of existing snow loss models. Suggestion of improvements to the
Marion snow loss model.

Paper V, VI: Evaluation of the improved Marion model on extended dataset.

Figure 22: Overview of how the published papers contributes to answering the research
questions outlined in the first chapter.

Figure 22 summarizes how the published papers contribute to answering the research
questions outlined in the first chapter. The studied dataset used in the evaluation of impact
factors is limited to one type of system design and with the same type of monitoring system.
Consequently, the classification of factors impacting performance evaluation is not expected
to be exhaustive, although the identified impact factors are anticipated to be central also for
other types of systems in similar operating conditions. The evaluation of methods to handle
impact factors could also be extended. As indicated in Section 4.3, there are more methods
that could be evaluated. Thus, the presented work does not aim to present a final solution for
improved performance evaluation, but rather to contribute to improved understanding on how
improved performance evaluation could be achieved. The work presented in this thesis
contributes to improved understanding of the effect of snow in PV systems and proves that
snow losses can be identified and predicted. However, more data and in-depth analysis is
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required to evaluate the broadness of applicability and enable automatic snow identification
and accurate snow loss modeling. While this work identifies and validates improvements to
a well-established snow loss model, multiple aspects that appears to be influential for snow
losses and could further improve snow loss modeling are also identified.

6.2 Further work

The results from this work could be generalized and given wider applicability if a variety of
additional datasets are analyzed in the same way. A larger number of datasets could give a
more general evaluation of performance analysis impact factors and snow signatures, and a
more solid validation of the suggested methodology for predicting snow losses. Additionally,
various methods to handle different performance evaluation impact factors should be further
assessed and developed. To further improve snow loss predictions, more work should also be
done on determining parameters that influence snow cover development and evaluating the
importance of the different parameters. Central points of interest for further work are:

—  Extension of classification of performance evaluation impact factors and suggestions
and validation of solutions to handle the impact factors. A wide evaluation of impact
factors and solutions to handle them, may help to identify the factors that have the most
impact on the analysis for different system designs and operating conditions.
Additionally, an extended evaluation may help identify which factors that are typical
and which factors that only occur in very specific situations. A broad validation of
methods for handling the impact factors, would identify for which system designs and
operating conditions the methods are applicable, aiding development of standardized
and automated performance analysis.

—  Loss identification in existing systems. Improved methodology to identify and quantify
losses in PV systems enable a broad analysis of system losses and performance loss
rate in existing systems, which could be used to improve the prediction of performance
for future systems.

- Use more detailed data to describe the effect of snow on PV. Detailed data on snow
coverage/transmittance and PV module (IV-curves) would give improved and more
detailed understanding of the effect of snow on PV modules. This could quantify the
variation in the output caused by different types of snow shading and improve both
identification and prediction of snow loss.

- Validate snow signatures and develop snow identification algorithms. Broad
identification of snow signatures in PV monitoring data on multiple different datasets
with different monitoring output would enable separation between general, typical
snow signatures and typical cases. This could facilitate development of general snow
identification algorithms with broad applicability.

- Evaluation of influential parameters to improve snow loss modeling. To improve snow
loss modeling, an assessment of the different parameters (system design, snow and
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weather conditions) that impact on snow coverage and the resulting loss is useful.
Based on this, the most central parameters could be identified, and directly
implemented in the snow loss modeling. Additionally, it is necessary with broad
validation of the models for different system designs and different snow conditions.
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The aim of this work is to develop and test new methods for quality control of data from commercial monitoring
systems for small and medium sized PV installations. Such installations often have limited or non-existent
maintenance of their monitoring systems. Quality issues in e.g. irradiance and temperature measurements will cause
errors in the analysis of the PV system performance and might lead to non-optimal maintenance of the system. To
determine the condition of the sensors and the monitoring system based on the measured data itself is therefore
essential to improve performance analysis algorithms and to understand historical data from these types of PV
systems, and consequently this is of significant economical and practical value. In this work, we use data from both
commercial and research systems in Norway to assess the robustness of the methods in a real-world scenario. We
demonstrate that drift and deviations in the sensitivity of irradiance sensors, in addition to misalignment of the
sensors, can be accurately quantified and detected based on comparison with clear sky irradiance modeling.
Furthermore, we show that analysis of temperature data potentially can be used to detect snow cover of modules, in
addition to identification of detached temperature sensors.

Keywords: monitoring, PV system, data quality

1 INTRODUCTION

Regulations and irradiation conditions greatly
influence the size and type of PV systems installed in a
given market. In Norway, as in other northern climates,
moderate solar irradiance and incentives for self-
consumption has resulted in a market dominated by
relatively small PV systems with installed capacity less
than 1 MWp. Moderately sized commercial systems
constitute a significant fraction. Typically, these systems
have a simple monitoring system, measuring both
electrical and environmental data. Most commonly, the
electrical data is collected from the inverter, the plane of
array (POA) irradiance is measured by a reference cell,
and there are sensors measuring ambient temperature and
the module temperature. In addition to the typically low
accuracy of commercial monitoring solutions [1,2], often
very little maintenance is performed on these systems, as
the cost of maintenance of distributed monitoring systems
may exceed the expected benefit if local personnel are
not available. In most cases, necessary maintenance like
cleaning of the irradiance sensors and visual inspection of
the system and sensors is not performed, and the sensors
are not regularly recalibrated. Drift in sensors, dirty
irradiance sensors and detached module temperature
sensors can lead to significant misinterpretation of the PV
system performance, and consequently also suboptimal or
unnecessary maintenance of the PV system. The
distribution of the systems, combined with little local
competence and small economic incentives, makes
increased manual supervision an unrealistic solution. A
more realistic path ahead is quality control of the sensor
data based on data analysis. In addition to saving money
by reducing the need for maintenance, this approach also
enables validation of the quality of historical data for any
system, independent of previous monitoring system
maintenance routines.

Data-based evaluation of the condition of the sensors
and the monitoring system is not widely discussed in the
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literature. The quality control work done today is mostly
limited to detecting abnormal points (i.e. outliers and data
exceeding physical possible limits) [3—5], as opposed to
detecting permanent changes in the measurement over
longer periods. In this work we suggest a new data-based
method for detecting changes in the quality or accuracy
of the irradiance measurements. We also discuss a
method for quality control of module temperature
measurements and how this method can be used to
identify snow cover on the modules. Analysis is
performed using data from commercial PV systems in
addition to scientific test sites to assess the robustness of
the methods in a real-world scenario.

The challenge of missing maintenance and
supervision of irradiance sensors is also discussed by
Jordan et al. [6], who proposed to calculate PV system
degradation based on clear sky irradiance simulations
instead of measured irradiance. However, ground
measurements provide valuable additional information on
the performance of the PV system under cloudy
conditions and enable a more comprehensive analysis of
PV systems. This is particularly important for locations
with few clear sky days.

In this work we use clear sky irradiance simulations
to assess the reliability and quality of the measured
irradiance. This has previously been suggested by Reno
et al. [7], but is to our knowledge not tested before. The
method is assessed for both high and low-quality
irradiance sensors.

A relatively common problem with measurements of
module temperature, is detachment of temperature
sensors, which are normally attached to the back sheet of
the module. This could be detected by monitoring the
difference between the module and the ambient
temperature. To our knowledge, this method has not been
tested beyond the observations presented by Woyte et al.
[8]. In this work we test this method for two different
types of PV installation, and assess it for a new
application; snow detection. The possibility of detecting
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snow coverage using measurement equipment that
already exists on-site, could improve both the monitoring
algorithms for PV system fault detection and the energy
generation forecasts by separating snow events from
other failures. Additionally, it will also simplify the
analysis of historical data, with respect to estimation of
performance and validation of snow loss models. In
previous studies, the probability of snow cover on PV
modules is estimated by detecting when the PV
production is low relative to irradiance or estimated
irradiance in combination with evaluation of other
parameters, including ambient temperature [9],
predictions of snow depth and temperature [10], and
satellite observations [11]. Using ambient temperature
alone will not separate snow events from e.g. total black
outs or other serious failures [12]. The aim of this work is
to increase the accuracy of snow detection at a specific
location by also using the module temperature sensor
data.

2 METHODS

2.1 Test of irradiance measurements based on clear sky
irradiance simulations

Global horizontal clear sky irradiance is simulated
using the Ineichen and Perez clear sky model based on
zenith angle, air mass, elevation and Linke Turbidity
[13]. The model error has been shown to have low
dependency of time of the day and day of the year
compared to other clear sky models [7]. The simulated
clear sky irradiance is then transposed to a tilted plane by
calculating beam, reflected and diffuse irradiance in the
plane. The sky diffuse irradiance is calculated using the
isotropic sky model [14], where the sky diffuse irradiance
in the plane of the PV array is found using the diffuse
horizontal irradiance, the tilt angle of the plane of array,
and the assumption that the sky is a uniform source of
irradiance. Periods with measured irradiance equivalent
to clear sky conditions, i.e. a smooth irradiance curve,
was detected using the algorithm proposed by Reno and
Hansen, which compares GHI time series statistics to the
Ineichen clear sky model [15]. The length of the clear sky
time periods selected are at least two hours, to optimize
between amount of data and correct selection of clear sky
periods. All models are implemented in compliance with
the methods in the Matlab version of the PV_LIB
Toolbox [16], using the default Link turbidity values
provided by SoDa in the clear sky modeling.

The modeled clear sky irradiance is in this case used
as a reference, and the measured data is compared to the
modeled results in the periods with irradiance equivalent
to clear sky conditions. The relative difference (AF)
between measured (/meas) and modeled irradiance (/cs) is
given by:

Al'= (!meas T !Cs)frfmea_s' (1)

To evaluate how the measurements change relative to
the model from year to year, a scaling factor (a) is
estimated for every year by minimizing RMSE between
measured and clear sky irradiance, given by [15]:

RMSE(a) = Iz:’:i{axr:m—:cs):

@
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2.2 Method for detection of sensor detachment and snow

The difference in module and ambient temperature is
strongly correlated with the irradiance (Eq. 3) [17].
Hence, by monitoring this correlation, signatures of
temperature sensor detachment can be identified [8]. We
have tested this method for two different installation
configurations, by investigating the changes in linear
regression fits of hourly values of temperature difference
and irradiance for different weeks. Additionally, we have
tested if the same approach can be used for snow cover
detection.

Tamb =Ix eﬁ+b>(Wi'ndspsed

Tmod’ - (3 )
Where a and b are coefficients compensating for site
specific configurations.

2.3 Measurement sites

The proposed method for quality control of irradiance
sensors was tested for the uncorrected raw data, given as
10-minute averages, measured by an old pyranometer
installed at the supervised weather station at the
Norwegian University of Life Sciences. The method was
also tested on a commercial flat roof PV system, where
the POA irradiance was measured by tilted reference cell
and given in 5-minute averages. The tilt of the system
and the reference cell is 10°, and the orientation of the
modules is south-east and north-west.

The method for detection of sensor detachment is
tested for two different types of PV installations: South-
orientated modules installed in an open-rack
configuration with a tilt of 28°, and modules installed on
a roof with a tilt of 35°. The module temperatures are
measured by a resistant thermometer attached to the back
sheet of the modules, and the POA irradiance is measured
by reference cells. For the rack installation, the ambient
temperature sensor is installed under the modules, and for
the tilted roof installation the ambient temperature is
measured by a weather station at the same location.

For both systems, the same approach is tested for
snow cover identification. Additionally, snow cover
identification is tested for the flat roof system used in the
irradiance quality control tests. For this system, the cell
temperature of a reference cell is used as an estimation of
module temperature, the ambient temperature is
measured by a PT-1000 element, and irradiance is
measured by a ventilated pyranometer. Normally, the
reference cell is covered by snow in the same period as
the modules because of the low tilt angles, and the
pyranometer is less affected, most likely because of the
ventilation and a more elevated installation position. Both
roof installations are commercial systems, while the open
rack system is a scientific test site. Hourly averages are
used in the analysis.

3 RESULTS AND DISCUSSION

3.1 Quality control of irradiance measurements

The irradiance measurement control method was
tested on raw data from the pyranometer at the
Norwegian University of Life Sciences. As presented in
Figure 1, the relative difference between measured and
modeled irradiance is scattered and high, especially in
periods with low irradiance. In periods with low
irradiance and high angle of incidence, the relative errors
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of both the measurements and the modeled results is
probably higher [7,18].

To improve the analysis, the periods with low
irradiance were filtered out. The difference between
measured irradiance and modeled clear sky irradiance
when the measured irradiance was more than 500 W/m?
is given as a function of time in Figure 2. The sensor was
recalibrated and adjusted in 2008, after this there were no
significant changes in sensitivity for two years, followed
by a decrease in sensitivity by 1% per year in a four-year
period (2010-2014). The pyranometer was replaced in
2014, which lead to an increase in the sensitivity of the
irradiance measurements at the site of 6%. All these
alterations were detectable through comparison with clear
sky modeling. The shift in measured irradiance relative to
the modeled irradiance at the time of the sensor
adjustment and the pyranometer replacement is clearly
shown in Figure 2. After the sensor replacement, the
scaling factor @ also increased by 6 percentage points.
The analysis indicates a degradation of the sensor of 1%
per year in the period 2010-2014, the same as the
independent instrument calibration, based on a reduction
of @ of 1 percentage point per year.

100
2011
2012
50 2013
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=
-100 ==
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Irradiance [mez]
Figure 1: Relative difference between  GHI

measurements and clear sky irradiance modeling at
different irradiance levels.

We observe that the modeled irradiance is slightly
biased and most of the time is lower than the measured
irradiance, as expected for higher latitudes when using
the Ineichen and Perez model [7]. Additionally, the
variations between single points is high, indicating that
this method cannot be applied for quality control of
individual measurements. However, the ability of the
method to indicate drift or other permanent changes in
the irradiance measurements over time is remarkable.

It is well known that pyranometers are subject to a
thermal offset during clear sky periods [19]. This
introduce a bias in the comparison between the clear sky
model and the measurements. However, as it is the
change and not the absolute value that is of importance,
this effect is assumed negligible in this context. A more
relevant challenge is changes in atmospheric conditions
with respect to transmission and scattering. Changes in
air pollution are one of the major contributions to what is
referred to as global brightening and dimming, which
may have an effect of a magnitude that might influence
long time PV performance analysis [18]. More practical
challenges related to this method for commercial
systems, is the low time resolution data these types of
systems often have, and potentially also the number of
clear sky hours through the year at the specific location.

3.2 Quality control of tilted reference cell measurements
The quality control method for irradiance
measurements was also tested for tilted reference cells
measuring the POA irradiance of a PV system in a north-
west, south-east configuration with a tilt of 10°.
Reference cells are, as mentioned earlier, common for
medium sized PV systems with monitoring. The
uncertainties are however higher than when pyranometers
are used. The relative difference between the
measurements and the clear sky modeling for irradiance
above 500 W/m? is presented in Figure 3. The scaling
factor between the measured and modeled irradiance is
approximately constant from year to year for the
irradiance measured in the north-west direction, with a
reduction of less than 0.1 percentage points. This is lower
than expected degradation for a c-Si reference cell [8].
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Sensor adjustment . Sensor replacement
20 = [
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Figure 2: Relative difference between GHI measurements and clear sky irradiance modeling at measured irradiance above
500 W/m?. Time of adjustment of the sensor, pyranometer replacement, and the period where 1 % decrease per year was

measured is marked.

2085



35th European Photovoltaic Solar Energy Conference and Exhibition

It should be noted that the north-west orientation
results in lower irradiance and fewer data points with
irradiance values above 500 W/m?. This could potentially
affect the robustness of this result. For the irradiance
measured in the south-east direction, the difference
between measured and modeled irradiance appeared to be
season dependent. It was found that this sensor was
misaligned, which could be an explanation for this
behavior.

This misalignment also gave a shift between the
position of the measured and modeled irradiance curves
(as well as the PV power curve), as shown in Figure 4. A
consequence of this was unlikely high performance ratios
for the PV system in the morning, as the irradiance sensor
measured less irradiance than what the PV modules
received, and opposite in the evening.
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Figure 3: Relative difference between POA

measurements and clear sky irradiance modeling at
measured irradiance above 500 W/m>.
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Figure 4: Measured and modeled irradiance with
temporal shift in curves because of misalignment of
Sensor.

3.3 Control of module temperature sensor detachment
The linear relationship between module and ambient
temperature difference and irradiance is presented in
Figure 5-6 for two different types of installations. Data
was selected from four different weeks and different
months and years to highlight some important aspects:
The correlation between the temperature difference and
the irradiance is almost linear and it typically has
relatively small variations from year to year and month to
month for the ground mounted open rack system, and to
some degree also for the roof mounted system. This
indicates that it is possible to detect detachment of the
module temperature sensor by monitoring changes in the
slope. If detached, or partially detached, the module
temperature sensor measure a value closer to ambient
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temperature, and the slope would be less steep or zero.
The scattering of the data points is greater for the close
roof mounted system and this system also experience the
highest temperature difference. One natural explanation
for this is the cooling effect of the wind, which is not
taken into account in the analysis. Lack of rear side
ventilation or heat leakage from the building itself may
also be influential. The slope of the regression lines of the
close roof mounted system is twice as steep as for the
rack mounted system, in agreement with the experimental
results of King et al. [17].

Ground mounted rack
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Figure 5: Absolute difference between module and
ambient temperature as a function of measured
irradiance. Data from four different weeks is shown.
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Figure 6: Absolute difference between module and
ambient temperature as a function of measured
irradiance. Data from four different weeks is shown.

3.4 Use of temperature sensors for snow detection

Snow cover on the PV modules will, like the sensor
detachment, have an effect on the slope of the
temperature/irradiance regression line. As presented in
Figure 8-10, when snow is covering the modules, the
correlation between the temperature difference and the
irradiance will change substantially, as the module
surface and back sheet will be significantly less heated.
For the rack mounted system the measured module
temperature is lower than the measured ambient
temperature. The difference is increasing with increasing
irradiance and ambient temperature. For the roof systems,
the module temperature is higher than the ambient, most
likely because the snow has an isolating effect.

Generally, it might not be possible to separate
situations with partly snow-covered modules from
situations with low irradiance, or situations when snow is
covering the irradiance sensor. The figure showing the
snow-covered modules at the tilted roof system,
illustrates how it can be challenging to separate periods
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with low irradiance from periods with snow cover.
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Figure 7: Absolute difference in measured module
temperature and ambient temperature as a function of
irradiance for weeks where snow is covering the modules
compared to a week with normal production.
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Figure 8: Absolute difference in measured module
temperature and ambient temperature as a function of
irradiance for weeks where snow is covering the modules
compared to a week with normal production.
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Figure 9: Absolute difference in measured module
temperature and ambient temperature as a function of
irradiance for weeks where snow is covering the modules
compared to a week with normal production.

The main limitation with this method is its
dependency of undisturbed irradiance measurements.
Low irradiance situations might also be challenging, as
the modules do not heat up as much as under normal
operation. To give more robust snow detection
algorithms, the difference in module and ambient
temperature should be combined with PV efficiency data,
and potentially also estimated irradiance to both indicate
if the sensor is covered by snow and replace the
irradiance measurement data.
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The placement of the temperature sensors is of
importance, as this will define the ability to detect partly
covered modules, and give different temperature
difference characteristics (i.e. positive, negative or zero).
The temperature difference characteristics can also be
studied through night time values.

4 CONCLUSION

In this work, a method for detection of permanent
changes in irradiance measurements has been tested, as
well as a method for detection of module temperature
sensor detachment and how the latter can be used to
improve detection of snow cover on the PV modules.

Quality control of irradiance measurements based on
data anlaysis has been performed for different PV
systems with high and low-accuracy irradiance sensors.
We show that by using this approach it is possible to
accurately detect both abrupt changes, as well as slow
gradual changes such as the yearly drift of 1%.

A method for detection of module temperature
sensors detachment and snow cover was tested for typical
commercial installation configurations in Nordic
climates, including open rack mounted, close roof
mounted and tilted flat roof mounted systems. The linear
relationship between temperature differences and
irradiance proved to be stable enough to indicate sensor
detachment and snow cover. The robustness of this
method might depend on reliable irradiance
measurements, sensor placement and installation
configuration. Periods with low irradiance and partly
snow-covered modules appeared to be challenging.
However, in combination with other methods, the
presented results show that the use of module
temperature sensor increase the confidence and accuracy
of forecasting and fault diagnostics with respect to snow
cover events.

REFERENCES

[1] M. Fanni, L., Giussani, M., Marzoli, M., &
Nikolaeva-Dimitrova, How accurate is a commercial
monitoring system for photovoltaic plant?, Prog.
Photovoltaics Res. Appl. 22 (2014) 910-922.

[2] M.B. Strobel, T.R. Betts, G. Friesen, H.G. Beyer, R.
Gottschalg, Uncertainty in Photovoltaic performance
parameters - dependence on location and material, Sol.
Energy Mater. Sol. Cells. 93 (2009) 1124-1128.

[3] C. Ventura, G.M. Tina, Utility scale photovoltaic
plant indices and models for on-line monitoring and fault
detection purposes, Electr. Power Syst. Res. 136 (2016)
43-56.

[4] I. Moradi, Quality control of global solar radiation
using sunshine duration hours, Energy. 34 (2009) 1-6.

[5] IEC 61724:1 Photovoltaic system Performance -
Monitoring, 2017.

[6] D.C. Jordan, C. Deline, S.R. Kurtz, G.M. Kimball,
M. Anderson, Robust PV Degradation Methodology and
Application, IEEE J. Photovoltaics. (2017) 1-7.

[71 MJ. Reno, C.W. Hansen, J.S. Stein, Global
horizontal irradiance clear sky models: implementation
and analysis., (2012).

[8] A. Woyte, M. Richter, D. Moser, M. Green, S. Mau,
H.G. Beyer, Analytical Monitoring of Grid-connected
Photovoltaic Systems, 2014.



35th European Photovoltaic Solar Energy Conference and Exhibition

[9]1 S. Stettler, P. Toggweiler, E. Wiemken, W.
Heydenreich, a de Keizer, W. van Sark, S. Feige, M.
Scheider, G. Heilscher, E. Lorenz, Failure detection
routine for grid-connected PV systems as part of the
PVSAT-2 project, 20th Eur. Photovolt. Sol. Energy Conf.
(2005) 2490-2493.

[10] E. Lorenz, D. Heinemann, C. Kurz, Local and
regional photovoltaic power prediction for large scale
grid integration: Assessment of a new algorithm for snow
detection, Prog. Photovoltaics Res. Appl. 20 (2011) 760—
769.

[11] G. Wirth, M. Schroedter-Homscheidt, M.
Zehner, G. Becker, Satellite-based snow identification
and its impact on monitoring photovoltaic systems, Sol.
Energy. 84 (2010) 215-226

[12] E. Lorenz, J. Betcke, A. Drews, A.C. de Keizer,
S. Stettler, M. Scheider, S. Bofinger, H.G. Beyer, W.
Heydenreich, E. Wiemken, W. van Sark, P. Toggweiler,
G. Heilscher, D. Heinemann, Intelligent performance
check of pv system operation based on satellite data,
2007.

[13] P. Ineichen, R. Perez, A new airmass
independent formulation for the linke turbidity
coefficient, Sol. Energy. 73 (2002) 151-157.

[14] P.G. Loutzenhiser, H. Manz, C. Felsmann, P.A.
Strachan, T. Frank, G.M. Maxwell, Empirical validation
of models to compute solar irradiance on inclined
surfaces for building energy simulation, Sol. Energy. 81
(2007) 254-267.

[15] M.J. Reno, C.W. Hansen, Identification of
periods of clear sky irradiance in time series of GHI
measurements, Renew. Energy. 90 (2016) 520-531.

[16] J.S. Stein, W.F. Holmgren, J. Forbess, C.W.
Hansen, PVLIB: Open source photovoltaic performance
modeling functions for Matlab and Python, Proc. 43rd
IEEE Photovolt. Spec. Conf. (2016) 3425-3430.

[17] D.L. King, J.A. Kratochvil, W.E. Boyson,
Photovoltaic array performance model, Online. 8 (2004)
1-19.

[18] C. Reise, B. Miiller, Uncertainties in PV
System Yield Predictions and Assessments, 2018.

[19] G.S. Hernandez, A. Serrano, M.L. Cancillo,
J.A. Garcia, Pyranometer thermal offset: Measurement
and analysis, J. Atmos. Ocean. Technol. 32 (2015) 234—
246.

2088



Paper Il
Performance evaluation of monitoring

algorithms for photovoltaic systems

M.B. @gaard, A. Skomedal, and J.H. Sel]

In: Proceedings of the 36th European Photovoltaic Solar Energy Conference and
Exhibition (2019), pp. 1632-1636.

DOI: 10.4229/EUPVSEC20192019-5CV.4.30






36th European Photovoltaic Solar Energy Conference and Exhibition

PERFORMANCE EVALUATION OF MONITORING ALGORITHMS FOR PHOTOVOLTAIC SYSTEMS

Mari B. @gaard"'?, Asmund Skomedal® and Josefine H. Selj'?
"Department of Technology Systems, University of Oslo, Gunnar Randers vei 19, 2007 Kjeller, Norway
2Department of renewable energy systems, Institute for Energy Technology, Instituttveien 18, 2007 Kjeller, Norway
*Corresponding author. E-mail: mari.ogaard@ife.no, Tel.: +47 976 356 08

ABSTRACT: Monitoring solutions for commercial photovoltaic (PV) systems are becoming increasingly widespread,
but often performs poorly, especially in locations with varying weather conditions. In this work two standard
performance metrics commonly used in PV system monitoring, temperature corrected performance ratio and specific
yield, have been calculated and evaluated for real-world conditions. The data is collected from eight inverters of 13-18
kW, each, installed at a commercial large-scale PV system in Norway. The results show that naive use of the tested
performance metrics give unreliable monitoring with high variation in the PV system performance estimation, often
resulting in false alarms. Very low solar elevation and irradiance, snow and technical irregularities in the installation
are the primary causes of false alarms in the monitoring. It is shown that for certain climates standard filtering
approaches are not sufficient to solve these problems, and that site-specific filtering of data gives more stable
monitoring output, entailing more data and less variation.

Keywords: PV systems, Monitoring, Performance, Rooftop

1 INTRODUCTION

With the recent year’s increased focus on operation
and maintenance of photovoltaic (PV) systems, an
extensive number of algorithms and performance metrics
have been proposed to improve the PV system monitoring
solutions [1]. From very basic to more advanced — the aim
of the algorithms is to detect when the PV system is
deviating from normal operation and identify faults. The
more advanced solutions are also targeting failure
diagnosis. Despite that the demand for PV monitoring
solutions is growing rapidly, the algorithms are still not
sufficiently sophisticated to handle the noise and
variations in real-world data in a satisfactory manner,
resulting in noise also in the monitoring output. The noise
originates from different issues that are difficult to capture
in generalized algorithms, like certain weather conditions
and differences in e.g. installation configurations, data
quality and measurement availability. Consequently,
analysis and estimations based on real-world data in
commercial systems often conceal faults and degradation,
and lead to frequent false alarms when used in monitoring.
From an operational point of view, false alarms are just as
problematic as undetected faults, as it reduces the trust in
the monitoring system.

Common approaches to handle the noise in PV system
performance estimates are filtering, such as clear sky
filtering or irradiance value filtering [2—5], or lowering the
time resolution. Although this can be useful for some
applications, information which may be necessary to do
advanced fault diagnosis (e.g. detecting faults impacting
the low light performance of the PV modules [6]) or day
to day monitoring in areas with challenging weather
conditions may be lost. Lowering the time resolution by
aggregating over longer periods of time introduce
unknown uncertainties and increase the reaction time of
the algorithm.

In this work, we evaluate two standard performance
metrics commonly used in PV system monitoring:
temperature corrected performance ratio (PRrc) and
specific yield (Yy) inverter comparison. This is done by
testing the methods on data from a commercial PV system
located in Norway, where the PV modules are exposed to
diverse types of challenging weather conditions (e.g.
snow, high frequency of cloudy weather), and large
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variations in irradiation conditions throughout the year.
The evaluation is conducted by calculating the metrics and
assessing the periods where there are large deviations from
the expected constant values. The effect of removing the
main issues identified in the evaluation of the unstable
periods is compared to standard filtering approaches. To
efficiently remove the main issues, a new snow detection
method was developed. As discussed in our previous work
[7], there is a lack of methods for robust data-based snow
detection in PV systems in periods with partial melting.
The aim of the described analysis is to improve the
monitoring methods for commercial PV systems. This is
done by providing an understanding of the current
limitations, particularly with respect to noise and
applicability in climates with large variations in weather.
The evaluation allows for a further assessment of how
these methods can be improved, and how they eventually
should be modified for different types of PV installations
in different climates to work more efficiently. This lays a
foundation and identify a direction for the development of
improved methods and efficient filtering strategies in
performance analysis and fault detection for PV systems.

2  METHODS

2.1 Dataset

The data is collected from a 135 kW, PV system,
located in the South-Eastern part of Norway (59.9 °N /
10.8 °E). The PV modules are East oriented, with an
azimuth of 112° and a tilt of around 10°, and they are
installed on an approximate flat roof. The roof has a tilt of
1-2° in the North-South direction, meaning half of the PV
modules has the same tilt North, and the other half has the
same tilt South. The module type is IBC Solar PolySol 250
CS. The PV modules are connected to eight different
inverters, and the PV capacity for each inverter varies from
13 to 18 kWy. Plane of array (POA) irradiance is measured
by a crystalline silicon reference cell. The temperature of
the reference cell is measured, and it is used as an estimate
of the PV module temperature.

Data from September 2014 to April 2018 is used,
logged with 5 minutes averages. Night time values, i.e.
logged values of 0 for current or irradiance, are not
included in the analysis.
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2.2 Performance metrics

Two basic performance metrics commonly used in
monitoring are tested: Specific yield (Y7 inverter
comparison:

Yf comparison = Y}"DC inverter x / YfDC median all inverters

and temperature corrected performance ratio (PRrc):
PRr¢c = (Yrpe /(A + ¥ (Toa — Tsrc))) / Y

Yy is the specific yield — the energy generated in a given
time interval, divided by the rated power of the system. Y
is the POA insolation in the same time interval divided by
the reference irradiance 1000 W/m? [8]. vy is the material
dependent maximum power temperature coefficient. For
the given technology this coefficient is -0.43%/ °C. Toa is
the estimated PV module temperature, and Tsrc is the
reference temperature 25°C. In the specific yield
comparison, the inverter energy output is compared to the
median inverter energy. In this way, weather conditions
are inherently accounted for, and sensor data quality is not
an issue. Using the median instead of the mean reduces the
influence of faulty inverters in the comparison, should
there be any.

2.3 Evaluation of performance metrics

The performance metrics are tested on the dataset by
calculating the parameters on an hourly basis. Hourly
averaged performance parameters are commonly used to
provide a balance between resolution and stability. Here it
is also used to enable separation between different effects
influencing the behavior of the performance metrics. The
assumption is that the metrics are stable under normal
operation, while changes in the performance will lead to a
decrease. However, this is not always a correct
assumption: In some periods the metrics are unstable,
giving very varying or unexpected results that are not
caused by faults. These periods are qualitatively assessed
to explain the large variations.

The standard deviation (o) of the performance metrics
can be used to quantify the variation in the metric under
normal operation for a given system, as discussed in our
previous work [9]. With lower variation in the metrics
during normal operation conditions, the performance
metric has a higher sensitivity for detecting abnormal
situations. The standard deviation can hence be used to
measure the stability and accuracy of the performance
metrics.

To quantify the impact of the different effects causing
periods with large variation in the hourly performance
metrics, the standard deviation in the metrics is calculated
before and after filtering out the effects. This is compared
to the change in standard deviation after applying standard
filtering to the metrics. The standard filtering approaches
used is low irradiance and clear sky filter. The clear sky
detection algorithm described in [10] as implemented in
pvlib [11] is used for clear sky filtering. The python
version of pvlib is also used in the estimation of the POA
clear sky irradiance used in the clear sky detection
algorithm, and for the estimation of solar elevation.

To evaluate if there are any differences in irradiance
conditions between the inverter strings and between the
inverter strings and the irradiance sensor due to e.g.
slightly different installation angles or hard shadowing, the
clear sky signal was estimated for the irradiance sensor and
for each string using the statistical clear sky fitting
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algorithm proposed by [12]. Using this algorithm, the clear
sky current and irradiance for each day through the year
was estimated using the measured current and irradiance
data. For the inverters, the current values were used instead
of the power values to focus on the irradiance signal and
exclude temperature effects.

3 RESULTS AND DISCUSSION

3.1 Performance evaluation using unprocessed data

The specific yield inverter comparison and the
temperature corrected performance ratio for one inverter,
using unfiltered hourly data, are presented in Figure 1. The
trends are similar for all the inverters. The variation in the
specific yield comparison and the temperature corrected
performance ratio is large, both relatively (Figure 1) and
absolutely (Figure 2). The average standard deviation of
the Yy inverter comparison of the 8 inverters is 0.38. For
PRrc itis 0.25. These large variations in the estimation of
the normal state of the PV system challenge efficient use
of these performance metrics for fault detection and
performance evaluation. Fault detection is normally based
on detecting when a system is operating outside normal
conditions, such large variations will hence produce false
alarms and result in low sensitivity [9].
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Figure 1: Variation during normal operation in Yy
comparison (top) and in PR7c (bottom) using hourly data
from one inverter.

3.2 Performance evaluation using standard filtering

To reduce the variation and increase the accuracy in
PV performance analysis, it is common to filter out the low
irradiance and/or applying a clear sky filter. In [2] a low
irradiance threshold of 200 W/m? and a clear sky filter is
proposed to remove time periods of poor or variable solar
resource conditions to get a stable degradation estimate.
The same irradiance threshold is also applied by [3] for
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fault detection, and also in this work it is observed that
clear sky days have lower variation in the estimates of the
current and power under normal conditions. The average
standard deviation for all the inverters and the remaining
data after applying the same irradiance threshold and a
clear sky filter on the calculated Yy comparison and the
PRic, are given in Table I. The filtered results for the PRrc
are also visualized in Figure 3.

Filtering the data with the standard approach reduces
the standard deviation of the data. However, the number of
data points are also drastically reduced and not all large
variations are removed. Adding the clear sky filter in
addition to the low irradiance threshold increases the
variation due to the large reduction in data points — also
the ones that are stable. Hence, naive filtering is not a
global solution for all monitoring. Here the methods are
both imprecise and too strict, leaving too little data to base
the monitoring on.

Yr DC inverter x

T T T T T

0.0 0.2 0.4 0.6 0.8
median Y; DC

Y TC

1.0

Figure 2: Absolute comparison between the inverter Yr

and the median Y7 (top) and between Yyrc and Y (bottom).

Table I: The average standard deviation (o) of the two
metrics for all inverters, without filters, and after
consecutively removing low irradiance (< 200 W/m?) and
cloudy periods [11]. Remaining data after filtering is also
given.

Avgao Yy Avgo  Remaining

comparison  PRrc data
Raw data 0.38 0.25 100 %
Low irradiance 0.16 0.17 38 %
Cloudy periods 0.21 0.21 6%
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Figure 3: PR7c using hourly data from one inverter, after
consecutively removing (top) low irradiance (< 200 W/m?)
and (bottom) cloudy periods.

3.3 Evaluation of time periods with large variations

To better understand when the monitoring methods do
not work, the time periods with large variations have been
analyzed. The explanations for the largest variations can
be divided into three major categories, discussed in the
following subsections.

3.3.1 Snow

Snow is a well-known challenge in PV system
monitoring in Northern climates. For the tested
performance metrics, a full snow cover is unproblematic.
With zero production, there are no variation between the
inverters and consequently no variations in relative
inverter performance. When the irradiance sensor is
covered in snow, no low PR values will be calculated. The
main challenge in PV system monitoring, is the melting
period. When the snow is melting, the inverters and the
irradiance sensor might receive different irradiance.
Additionally, the inverters might have partial snow covers,
giving signatures similar to faults.

To remove data from periods with snow covered PV
modules, a new snow detection method was developed.
Using local snow depth estimation from the Norwegian
Water Resources and Energy Directorate [13], and power
and irradiance data for the system, the variation in DC
voltage for the system under normal conditions and for
snow melting periods was found. In periods with partial
snow cover, the DC voltage of each string has increased
variation compared to normal operation, and there is larger
variation between different inverters. A threshold for DC
voltage variation was determined empirically. The periods
with full snow cover and partial snow cover was
accordingly removed based on a combination of snow
depth data and the DC voltage variation limit for normal
operating conditions.
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3.3.2 Morning/evening effects

As expected, there were large relative variations in Yy
and PRrc in the morning and evening. One of the main
explanations for this is variations in low light behavior of
the PV modules and inverters. Both the low irradiance and
the increased share of diffuse light in the morning and
evening will influence variation in PV module behavior.
Additionally, small variations in PV module tilts, as
discussed in depth in the next section, can lead to
significant differences in the angle of incidence of the
incoming light, and consequently a variation in reflected
and received irradiance. By relating the Yy and PRrc to
irradiance level and solar elevation, it was found that for
this specific system, these effects were most prominent for
irradiance values < 50 W/m? and solar elevation < 10°. A
general algorithm for estimating the optimal filtering
threshold of these values for different locations is
proposed in [9].

3.3.3 Physical irregularities in the installation

Due to physical limitations in PV system installations
such as variations in roof inclination, topography, objects
shadowing the PV modules, different PV modules/inverter
strings might receive different irradiance, resulting in
different energy output. This can also affect the irradiance
sensor. Also, other technical irregularities in the
installation and variations in local climate can lead to
variation for a PV system in e.g. temperature and soiling
patterns. For this system, particularly two installation
specific irregularities influence the monitoring output: the
modules in one of the strings had a different tilt angle from
the rest, and there was a difference in the tilt of the
modules and the POA irradiance sensor. The effect of each
of these aspects of the installation are explained in the
following.

The variation in received irradiance on the different
inverter strings are illustrated in Figure 4, using the DC
current. As shown in this figure, inverter 6 has a current
curve with a clearly different shape than the other
inverters. This is due to the 1-2° tilt in the North and the
South direction of the roof (while the PV modules are
faced East). Where the rest of the inverters have PV
modules that is both tilted slightly towards South and
North, inverter 6 has only South tilted modules. This leads
to significant variation in irradiance conditions, also on an
hourly basis, between inverter 6 and the rest of the
inverters and weakens the basis for comparison.
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Figure 4: The DC current for each inverter during one
clear day (5 minute averages), illustrating the variation in
received irradiance for the inverter strings.
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For the PRrc values, it was observed especially high values
in the morning, and very low values in the afternoon. This
was found to be because of the tilt of the reference cell,
which was 1-2° lower than the average tilt of PV-modules.
Additionally, it had a 1-2° tilt towards South.
Consequently, there are several hours the reference cell is
not measuring a representative irradiance for the PV
system. Difference in tilt between reference cell and the
PV modules is an issue that will influence most irradiance
based performance metrics.

These effects were filtered out based on deviations
between the estimated clear sky behavior [12] for each
inverter and between the inverters and the reference cell.

3.4 Effect of the identified issues on the performance
metric variation
The effect of consecutively removing the issues
identified and described in Section 3.3, are shown for each
inverter in Figure 5, and for the average of all the inverters
in Table II. The percentage of remaining data after
removing the effects is also given in the table.
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Figure 5: The standard deviation of the two metrics for
each inverter, where the effects leading to unstable periods
are consecutively removed.

Compared to the results of the standard filtering approach
presented in Table I, the wvariation is significantly
decreased and at the same time less data is removed. In the
comparison of the specific yield, removing periods where
there were large variations in incoming irradiance because
of physical deviations was only relevant for inverter 6, as
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this is the only inverter that has significantly different
installation configurations compared to the other inverters.
For the PRrc, removing this effect influence the variation
for all the inverters because the irradiance sensor has
different tilt angles than all the PV module strings.

Table II: The average standard deviation of the two
metrics for all inverters, where the effects leading to
unstable periods are consecutively removed. Remaining
data after filtering is also given.

Avgo Yr Avg o Remaining
comparison  PRrc data
Raw data 0.38 0.25 100 %
Snow 0.21 0.19 84 %
Low solar elevation  0.08 0.09 63 %
Very low irradiance  0.04 0.08 58 %
Physical irregularities 0.03 0.04 Inverter
specific

4 CONCLUSIONS

The results show that naive use of standard
performance metrics such as specific yield and
temperature corrected performance ratio in a monitoring
system for PV installations, give unreliable results with
high variation in the PV system performance estimation.
This will both reduce the sensitivity and the fault detection
ability of the monitoring system and typically result in
false alarms. Very low solar elevation and irradiance,
snow and technical irregularities in the installation are the
primary causes of the high variation in the monitoring
output. It is shown that for certain climates standard
filtering is not sufficient to solve these problems, and that
site-specific filtering of data gives more stable monitoring
output, entailing more data and less variation.
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ARTICLE INFO ABSTRACT

Keywords: Reliable monitoring of PV systems is essential to establish efficient maintenance routines that minimize the
Photovoltaic systems levelized cost of electricity. The existing solutions for affordable monitoring of commercial PV systems are
Monitoring however inadequate for climates where snow and highly varying weather result in unstable performance me-
Filtering

trics. The aim of this work is to decrease this instability to enable more reliable monitoring solutions for PV
systems installed in these climates.

Different performance metrics have been tested on Norwegian installations with a total installed capacity of
3.3 MW: (i) comparison of specific yield, (ii) temperature corrected performance ratio, and (iii) power perfor-

Performance metric testing
Machine learning
High latitude climates

mance index based on both physical modelling and machine learning. The most influential effects leading to
instability are identified as snow, low light, curtailment, and systematic irradiance differences over the system.
The standard deviation of all the performance metrics is reduced when filters targeting these four effects are
applied. Compared to general low irradiance or clear sky filtering, a greater reduction in the variation of the
metrics is achieved, and more data remains in the useful dataset. The most suitable performance metrics are
comparison of specific yield and performance index based on machine learning modelling.

The analysis highlights two paths to accomplish increased reliability of PV monitoring systems without in-
creased hardware costs. First, better reliability can be achieved by selecting a suitable performance metric.
Second, the variability of the performance metric can be reduced by utilizing filters that specifically target the

origin of the variability instead of using standard literature thresholds.

1. Introduction
1.1. PV system monitoring

With recent years’ increased focus on operation and maintenance of
photovoltaic (PV) systems related to its more important role in cost
reduction (Klise et al., 2014; Whaley, 2016), numerous algorithms and
performance metrics have been proposed to improve monitoring of PV
installations (Daliento et al., 2017; Livera et al., 2019; Triki-Lahiani
et al., 2018). The aim of these algorithms is to detect periods when the
PV system is deviating from normal operation and identify faults. The
existing solutions for affordable monitoring of commercial PV systems
are however often inadequate for high latitude climates, as snow and
highly varying weather result in unstable performance metrics.

PV system monitoring is typically based on a comparison between
the production data directly acquired from the inverter and a yield
target (Daliento et al., 2017). Examples of this is yield comparison of
similar units (Skomedal et al., 2019), performance ratio (PR) with or
without temperature correction (Dierauf et al., 2013; IEC, 2017; Woyte

etal., 2014), and comparison with physical or data driven models of the
system (Daliento et al., 2017). Due to the many parameters influencing
PV energy generation (Fouad et al., 2017) which challenge accurate
physical modelling, and the increasing amount of acquired data, ma-
chine learning have gained increased attention in PV system monitoring
research in recent years (Daliento et al., 2017; Rodrigues et al., 2017;
Triki-Lahiani et al., 2018).

Competitive solutions for automated monitoring of PV systems must
have high sensitivity and fast detection, and at the same time minimize
false alarms. This demands frequent and accurate performance esti-
mation. Exact performance estimation is however challenging. Certain
weather and irradiance conditions, seasonal soiling, shading, early
system degradation, clipping or intentional curtailment, problems with
data quality or lack of measurement availability (Jordan et al., 2017;
Kurtz et al., 2013) can lead to errors or noise in the performance as-
sessment. Noise will reduce the useful information that may be ex-
tracted from monitoring of commercial PV systems. It may lead to false
alarms or conceal faults because the sensitivity of the fault detection is
reduced. This causes challenges for implementation of generalized
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monitoring algorithms for commercial PV systems without extensive
documentation and/or comprehensive instrumentation. This challenge
is even greater for high latitude locations where seasonal soiling and
variable irradiance conditions are especially prominent. Due to the
drastic cost reductions for PV installations in recent years, the PV in-
stallation rate is rapidly increasing also in continental and subarctic
climate zones. Consequently, the need for reliable monitoring solutions
for these conditions is also increasing. For development of monitoring
algorithms with high performance under difficult conditions, it is ne-
cessary to study the effect of data quality, snow cover, low light con-
ditions and applied filtering more closely and subsequently investigate
how the various monitoring methods need to be adjusted to different
installation and weather conditions.

1.2. Data quality

In the PV monitoring standard IEC 61724-1, it is recommended to
check for unphysical and missing values, and compare similar mea-
surements to detect and remove erroneous PV system data caused by
poor data quality (IEC, 2017). In the literature, more advanced methods
are suggested, like assessment of expected relationships between mea-
surements. Examples are calculations of the nominal operating cell
temperature (NOCT) to evaluate irradiance and temperature measure-
ments (Ransome, 2008) and relating temperature measurements to ir-
radiance to detect detachment of module temperature sensors (Woyte
et al.,, 2014). @gaard et al. (2018) suggest comparison of irradiance
measurements to modelled clear sky irradiance.

Dong et al. (2017) suggest to evaluate if fault characteristics are
influenced by external factors, such as solar position, to detect variation
caused by shading. For a location with a high share of clear days and
direct light, this approach could be used to identify both deviations
caused by shading and irradiance variations caused by differences in
module tilt angles due to topography. For locations with larger share of
diffuse light and cloudy weather, the correlation of these deviations
with angle of incidence will be less clear.

1.3. Snow cover

Snow cover is a common seasonal soiling issue in high latitude lo-
cations, with high impact on PV system data. Handling snow covers in a
monitoring system is important, as a full snow cover looks like an in-
verter breakdown, whereas a partial snow cover, leading to partial
shading, can give power losses and changes in the maximum power
point (Belhachat and Larbes, 2015) similar to serious PV module fail-
ures (Tsanakas et al., 2016). Snow cover is easy to identify by visual
inspection, but it is not easily detected by an automated monitoring
system without extra sensors. When analyzing historical data, snow
cover is usually easily detected, as it can be characterized as transitory
periods in the wintertime with no power production or low efficiency.
In real time automated monitoring, it is challenging to predict the
onset, duration and shading effect of the snow cover. To our knowledge,
there are no reliable algorithm for detection of full and partial snow
covers for real time monitoring presented in the literature.

1.4. Low light conditions

It is well known that low light conditions lead to noise in PV system
analysis (Belluardo et al., 2015; Jordan et al., 2017; Reich et al., 2012).
Typically, calculations of performance metrics result in high levels of
noise in the morning and evening. Both the module and the inverter
efficiencies are unstable under these conditions, as they are very sen-
sitive to changes at low irradiance and power, and reflection losses are
highly sensitive to changes in angle at high angle of incidence. Ad-
ditionally, at lower irradiance levels a higher variation in module ef-
ficiencies could be anticipated, due to a potential variation in cell shunt
resistance, as shown by Grunow et al. (2004). As discussed by Louwen
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et al. (2017), higher air mass, increased amount of diffuse irradiance
and resulting spectral variation also impact efficiency, and hence in-
creased instability at low light conditions. Reduced accuracy in irra-
diance measurements (Reise and Miiller, 2018) and inverter measure-
ments at lower irradiance/power levels, could give additional
contributions to noise

1.5. Filtering

To reduce the uncertainty caused by noise at low irradiance con-
ditions, filtering based on irradiance and clearness level is commonly
used (Belluardo et al., 2015; Camus et al., 2018; Jordan et al., 2017;
Reich et al.,, 2012; Silvestre et al., 2016). Moser et al. (2014) ad-
ditionally filter out periods with high wind speed to ensure uniform
temperature conditions, to further reduce uncertainties. To remove
periods with clipping, Jordan et al. (2017) recommend to remove data
where the power is > 99% of the maximum, and Meftah et al. (2019)
suggest an upper irradiance limit.

Optimal filtering thresholds will depend on the system technology
and the purpose of the analysis. Although methods to find optimal fil-
tering thresholds to reduce noise in different datasets have been sug-
gested, (Jordan and Kurtz, 2014; Skomedal et al., 2019) there are no
standardized methods for data handling and filtering in PV system
analysis. This is unfortunate, as recent studies on PV system perfor-
mance loss (Curran et al., 2019) and degradation (Jordan et al., 2019;
Jordan and Kurtz, 2014), show that different filtering and data handling
methods can lead to differences in the loss estimate of more than one
percentage point. This emphasizes a strong need for standardized
methods. The effect of the applied filters will also depend on the spe-
cific dataset and operating environment of the PV system. In high la-
titude locations, typical filtering approaches like irradiance thresholds
and clear sky filters can remove too much data rendering day-to-day
monitoring difficult, while still not adequately reducing the noise
(@gaard et al., 2019).

1.6. Aim and approach

To identify areas of improvement of PV monitoring solutions in high
latitude climates, we have tested four different PV system monitoring
approaches (Y; comparison, PR’stc, PPI with physical and machine
learning based modelling) using data from six commercial PV systems
in Norway. The locations of the systems span various climate zones
(Beck et al., 2018), but they are generally exposed to highly variable
weather including long periods with low light conditions and snow. It is
well known that snow (Andrews and Pearce, 2012; Marion et al., 2013)
and low light conditions (Westbrook et al., 2012) constitute a challenge
for accurate modelling of the PV energy generation. In the presented
work, the challenges of PV system monitoring at high latitude locations
have been evaluated, and the effect of applying tailored filters to re-
move specific conditions that generate noise is studied and compared to
standard, more general filters used in PV monitoring. To enable de-
tection of shading and irradiance differences caused by topography
variations in locations with few clear sky days, we propose to use the
statistical clear sky fitting algorithm suggested by Meyers et al. (2018).
Based on this, improved methods for monitoring of PV systems in cli-
mates with highly variable weather and irradiance conditions is sug-
gested.

2. Methodology
2.1. Dataset

The data in this study are taken from commercial PV systems on
approximately flat roofed buildings, representing many of the larger

systems in the Nordic countries. The modules are mounted with a tilt
angle of ~ 10° in an east/west configuration. A such low tilt angle is not
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optimal for high latitude locations with respect to maximum produc-
tion, but is typically used in installations on flat roof systems also in
these types of locations to maximize roof coverage and to achieve a
more even production distribution through the year. The exact or-
ientation depends on the orientation of the building. Production data is
collected from the inverters, and temperature and irradiance data are
collected from the monitoring system of the installations. The sampling
interval of the data logging is 5 min, and DC inverter data measured at
maximum power point tracker level (MPPT) is used to increase gran-
ularity. The effective irradiance incident on the PV modules, i.e. the
irradiance the modules can utilize (King et al., 2004; Stein and Farnung,
2017), is measured with a crystalline silicon reference cell in the plane
of the PV modules. The irradiance measurements are controlled for
shifts and degradation by comparison to modelled clear sky irradiance
and the statistical clear sky method described in Section 2.3.1. Mea-
surements of the reference cell temperature is used as an approximation
for solar cell temperature. The cell temperature measurements are va-
lidated against module back sheet temperature measurements and
thermography of the modules. The measurement uncertainty of the
irradiance is + 5 W/m? + 2.5% of measured value, and for the
temperature it is 1 K. The inverters register curtailment and clipping
events. Snow depth data is collected for each location from seNorge.no
(NVE, 2019).

Relevant technical and geographical information about the systems
are given in Table 1. For each location, the typical meteorological year
(TMY) irradiance and ambient temperature is presented in Fig. 1a and
b, respectively. System 4 and the west oriented part of systems 1a and
1b lack temperature measurements and are excluded when temperature
measurements are required to estimate performance metrics. As typical
for systems at these coordinates, the yearly global horizontal irradiation
is below 1000 kWh,/m?, most of the energy is generated at temperatures
around 10-20 °C, and the total share of diffuse light can reach 50%
(Imenes and Selj, 2017).

2.2. Performance metrics

Specific yield, performance ratio and power performance index are
well known metrics to evaluate the performance of a PV system. The
power performance index is the ratio of measured to modelled power,
and both physical and statistical models can be used. In this work, the
physical PVWatts model, the single diode model, and as an example of a
machine learning model, a commonly used random forest regressor
(Pedregosa et al., 2011) is selected.

To identify the conditions and effects which lead to the highest level
of noise in the performance metrics, environmental and inverter para-
meters in the “noisy” time periods are evaluated. Sequentially, the
identified noise-generating effects are removed from the dataset, and
the procedure is repeated. Unphysical values are utilized to identify
effects leading to bias in the performance metrics. Finally, a set of re-
commended filtering parameters is found. The effect of the suggested
filters is quantified by the standard deviation of the metrics and by the
percentage of remaining data points and energy. This will be compared
to more general approaches: irradiance thresholding and clearness fil-
tering. The filtering values from Jordan et al. (2017) (apparent clear sky
conditions and irradiance threshold of 200 W/m?) is used.

Table 1
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2.2.1. Yield comparison

The specific yield (Yy) is the energy generated over a given time
interval, divided by the rated power of the system (Woyte et al., 2014).
For systems with multiple power measurements of units with identical
configuration, comparing the specific yield of the different units allows
for a monitoring system where weather conditions are inherently ac-
counted for. The specific yield for each unit (MPPT measurement) in the
system, Y pc, is compared to the median specific yield of all units, Yinc:

(€8]

Using the median instead of the mean reduces the influence of
outliers (i.e. anomalous MPPTs) in the comparison, reducing the risk of
a biased result.

~
Yirel = Y e/ Yene

2.2.2. Temperature corrected performance ratio

To evaluate the yield for one unit over time, or to compare the yield
of systems in different locations, the performance ratio corrected to
standard test conditions (STC) temperature (PR’syc) can be used
(Daliento et al., 2017). PR’s1¢ is defined as the specific yield normalized
to irradiance and temperature at STC (IEC, 2017), and is given by:

PR ¢ = (Yppo/(1 + ¥ (Teenn — Tire)))/ (Groa/ Grer) 2)

Here, Gpoa is the measured plane of array irradiation in the same
time interval as the specific yield, G, the reference irradiance 1000 W/
m?, T.qy is the estimated PV module temperature, Tstc is the reference
temperature of 25 °C, and vy is the material dependent module power
temperature coefficient. For the module technologies used at the five
sites studied (different generations of mono- and multi-crystalline si-
licon) vy varies from —0.423 to —0.43%/°C.

2.2.3. Power performance index
The power performance index (PPI) is a comparison between ex-
pected and measured power (IEC, 2017):

3

The expected DC power output is simulated using both physical
modelling and machine learning based modelling.

For the physical modelling, the single diode and the PVWatts
models are used. The single diode model (Corkish et al., 2013) is
commonly employed in PV modelling for monitoring (Daliento et al.,
2017). The PVWatts DC power model (Dobos, 2014) is a simpler model
with fewer module specific inputs. Similarly to PR’src, it uses Gpoa,
Teen, ¥ and the nominal capacity (Ppco) to model the expected DC
power output:

Poc = (Groa/Grer) X Poco(1 + ¥ (Teen — Tsrc))

PPI = PDCmeasured/PDCexpecled

4

For the single diode model, module datasheet values is used as input
to the System Advisor Model (SAM) (Blair et al., 2011) to estimate the
diode ideality factor, light generated current, dark reverse saturation
current, shunt resistance and series resistance at reference conditions,
and the parameter for adjustment to temperature coefficient for short
circuit current. These parameters are used as inputs to the CEC model
described by Dobos (2012), together with the measured effective irra-
diance and cell temperature to estimate the photocurrent, saturation
current, shunt resistance and thermal cell voltage under the different

Detailed information of the various PV plants investigated in this study. (#MPPTs = number of MPPTs in each direction).

Plant Region Coordinates [°N, °E] Altitude [m a.s.l.] Azimuth angles[°] Installed capacity [kW] # MPPTs Time period

la Eastern Norway 59.59, 10.74 80 112/292 371 11 09-2014 - 09-2019
1b Eastern Norway 59.59, 10.74 80 112/292 222 7 11-2016 - 09-2019
2 Eastern Norway 59.94, 10.87 126 128/308 471 15 12-2016 - 09-2019
3 Central Norway, inland 60.89, 10.92 158 122/302 421 12 06-2017 - 09-2019
4 Central Norway, coast 63.34, 10.37 154 111/291 931 7 07-2017 - 09-2019
5 Western Norway 60.40, 5.47 62 105/285 886 28 09-2017 - 09-2019
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Fig. 1. Yearly variation in a) weekly global horizontal TMY irradiation, and b) weekly average TMY ambient temperature. TMY data from PVGIS (Huld et al., 2012).
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Fig. 2. The irradiance dependency of the difference between the modeled
power using the single diode model and the PVWatts model.

measured conditions. The expected power output for each module is
estimated by solving the single diode equation based on the parameters
estimated with the CEC model, as implemented in pvlib (F. Holmgren
et al., 2018). An important difference between these models is that the
single diode model includes the effect of the irradiance intensity on the
PV efficiency. Fig. 2 reports the values of the difference in modeled
power using the two models against irradiance. The single diode model
estimates a lower power value at low irradiance, and up to 1% higher at
irradiance levels around 500 W/m?. This is in agreement with the re-
sults presented by Dobos et al. (2019). The total constant losses (Lota1)
for the physical models are estimated using the PVWatts system loss
model (Dobos, 2014):

Lot (%) = 100(1 — TL;(1 — L; (5)
where L; is the contribution from the individual loss mechanism (i) in
percent. The modelled results are used for instant comparison with
measured power values, and varying losses such as soiling, shading,
snow and availability are therefore not included. The following loss
mechanism values are used: Wiring = 2%, connections = 0.5% and
light induced degradation = 1.5%.

For the machine learning based model, a Random Forest (RF) re-
gressor based on the sklearn library in Python (Pedregosa et al., 2011)
is trained on historical irradiance and, when available, solar cell tem-
perature data with power output per MPPT as model targets. According
to Rodrigues et al. (2017), irradiance and temperature are the most
common condition describing input features used in PV system mod-
eling with machine learning. Only times with logged production data
are used, and the data is split into a training set and a test set (80%
training set, 20% test set). The regressor performance is evaluated on

1048

the test set using normalized root mean square error (nRMSE) as a
metric:

nRMSE = /ZL} & —yI)Z/y.

2.3. Methods used in filtering

(6)

2.3.1. Clear sky modelling and detection

The clear sky detection algorithm described by Reno and Hansen
(2016) as implemented in pvlib python (F. Holmgren et al., 2018) is
used for clear sky filtering. The pvlib python library is also used in the
estimation of the POA clear sky irradiance used in the clear sky de-
tection algorithm, and for the estimation of solar elevation, using the
system configuration data as input. The clear sky curves for the irra-
diance sensors and each inverter string are also estimated with a more
empirical approach: using the statistical clear sky fitting algorithm
proposed by Meyers et al. (2018). With this algorithm, the clear sky
current and irradiance for each day through the year are estimated
based on the measured current and irradiance data. For the inverters,
the current values are used instead of the power values in order to focus
on the irradiance signal and exclude temperature effects. The fitted
clear sky curves are used to detect systematic irradiance differences
between the different inverters and the irradiance sensor. These dif-
ferences are quantified by the ratio of the clear sky curve of the inverter
to the median inverter clear sky curve or to the scaled irradiance curve.
Additionally, the degradation application (Meyers et al., 2019) of the
statistical clear sky fitting algorithm was used to control the irradiance
measurements for drift.

2.3.2. Snow filtering

External snow depth measurements, often available from local
weather measurements, are used for filtering out periods with snow on
the modules. To ensure that periods with partial snow covers are re-
moved from the data, all periods with snow on the ground (snow
depth > 0 m) are removed. This removes more data than necessary as
PV modules typically get snow free before the ground, but noise and
potential false alarms are significantly reduced.

3. Results and discussion

3.1. Identification of conditions and effects leading to noise in performance
evaluation

Based on the analysis procedure described in Section 2.2., effects
and conditions leading to noise, bias or difficulty in performance metric
implementation are identified. The filters and filtering thresholds used
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to remove the different effects, and their impact on the dataset are
presented and discussed in Section 3.2. The effects are categorized in
the following categories: invalid data, data quality and availability, and
unstable conditions. The invalid data category contains data where
performance metric calculations yield illegitimate results. Effects
leading to bias or systematic errors in the performance metrics are
placed in the data quality and availability category. Noise generating
situations are classified as unstable conditions.

3.1.1. Invalid data

The output considered as invalid in the performance evaluation, are
zero output and an output wrongfully suggesting failures. Zero output is
typically caused by downtime in monitoring measurements or com-
munication. The main conditions giving false failures signatures in the
production data, are snow and inverter induced power reduction. The
power reduction is caused by both curtailment and inverter power
clipping.

For monitoring algorithms based on yield comparisons on inverter/
string level, full snow cover is not problematic as this will give the same
behavior for all inverters/strings. Partial snow covers, however, may
yield large relative differences due to (random) partial shading of the
system, often with hard and uneven shading. These snow covers are
difficult to predict, since they are influenced by several parameters and
snow melting is stochastic by nature. This might be even more relevant
for irradiance-based monitoring metrics: When the irradiance sensor is
experiencing the same snow cover as the PV modules, the monitoring
system will not report anomalous behavior. If the irradiance sensor is
not covered, the resulting deviation between expected and actual pro-
duction will lead to alarms. The PR’sr¢ values from one of the systems
in a period of snow melting are presented in Fig. 3, showing the large
variations partial snow covers may inflict, especially between irra-
diance sensor and modules. On 21 March, both the PR’sy¢ and the ir-
radiance are zero due to full snow cover. When the snow melts, the
PR’s1c values increase until normal operation is reached, while the
difference between the inverters only is large in the periods with sub-
stantial melting.

For performance evaluation based on machine learning, snow and
curtailment are especially challenging. If not removed from the training
data, these effects will perturb the correlations between irradiance,
temperature and production. When the model attempts to accom-
modate these perturbations, the model might lose nuances at normal
operation, potentially reducing the accuracy of the machine learning
algorithm also in periods without snow or curtailment. As reported in
Table 2, the nRMSE is indeed reduced when time periods with snow and
curtailment are removed from the training and testing data set.

3.1.2. Data quality and availability
We find that systematic differences in irradiance level between
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Table 2

The nRMSE of the machine learning model for the six systems for three different
training datasets: raw data, dataset filtered for snow, and dataset filtered for
snow and curtailment.

nRMSE [%] la 1b 2 3 4 5

Raw data 12.8 15.1 21.8 44.2 26.6 24.3
Snow filter 8.8 12.5 18.9 33.7 20.5 16.7
Snow + curtailment filter 8.8 125 10.9 13.7 18.7 16.3

different inverter strings, or between inverter strings and irradiance
sensor, lead to solar position dependent errors for all the systems. This
is especially prominent under clear conditions. The differences in ir-
radiance are caused by shading and different tilt angles of the PV
modules and/or the irradiance sensor. Such local and varying differ-
ences in irradiance affect the basis for accurate comparison for specific
time periods during clear days. Both the variation in tilt of the modules
and the sensor vary mainly with the roof topography. Minor errors in
the installation of the irradiance sensor could also give similar results.
Fig. 4 shows how such local differences in irradiance impact the DC
current of certain strings over a time period of one day. “System 1a” is a
system where the modules in the strings of one the inverters have a
slightly different tilt than the other strings. “System 1b” is a system with
inhomogeneous shading conditions, where one inverter is experiencing
more shading than the other inverters. For both systems, inverter 1 is an
example of a normal inverter, and inverter 2 is the deviating inverter.
The relative DC current of the inverters is also shown in Fig. 4. For the
deviating inverters in the two systems, a difference in the absolute and
relative current compared to the other inverters depending on time of
the day is clearly visible. This reflects the difference in irradiance of the
inverters.

The estimated clear sky current signal based on the statistical clear
sky algorithm for the inverters is plotted together with the measured
clear sky current in Fig. 4. We see that the measured and modelled
values overlap well, except for the beginning and the end of the day.
Hence, for most of the day, we can use these estimated curves to
identify time periods where there are systematic irradiance differences
between the modules. Fig. 5 shows that even with large share of diffuse
conditions, like at the tested systems, we get deviations through the
year because of irradiance differences. The figure shows a boxplot with
weekly values of relative current for one year for two normal inverters
(top) and the two deviating inverters (bottom) in system la and 1b.
Even though the weekly median relative current values of the deviating
inverters are close to one in both cases, we see that the variation in the
values is much larger than for the normal inverters. This implies that
the deviations we see in Fig. 4 are present through the year.

Comparison with estimated clear sky signal also enables identifi-
cation of systematic irradiance differences between the inverter strings

- 800
|
1.50 + | - 700
, {3 ﬁ A
1.25 A T | i 1 | i - 600
i ,f g Tl 1 2 ! l i
., 1-00 7 g 1 - I Nu 1 ,nﬂ M : l 1 _5003
G i S O ! - 400 g
& 075 + g 1l (o 1ol l 3
[ S 1 | =
i R S : L 300 5
558 n ! % R - I | s
‘ I iy o 141 LA L 200 —
| Ty i F ﬁ ! i
0.25 A&‘ . f 't ! I ) v! 1 . i
| 1 { U
0.00 =sﬁ=eg.ﬁ.=.._”.4!ga_!.=a&-.mda = = = = = = Lo
T T T T T T T T
Mar 21 Mar 23 Mar 25 Mar 27 Mar 29 Mar 31 Apr 02 Apr 04 Apr 06
= Inverter 1 = Inverter 2 = |nverter 3 = Inverter 4 = Inverter 5 = = |rradiance

Fig. 3. Measured irradiance and PR’syc for different inverters for a system where the snow cover on the modules is melting during a time period of 18 days.
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Fig. 4. Absolute (left) and relative (right) clear sky current values for one day, representing the clear sky irradiance for different inverter strings, for a system where
one string has modules with a slightly different tilt than the rest of the strings (1a), and a system where one string is differently shaded than the other two (1b).
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and the irradiance sensors, which give unstable results for the PR’src
and the PPI based on physical modelling. PR’sy¢ and PPI are typically
also impacted by other irradiance data sensor issues, like shifts, soiling
and degradation. When the degradation application of the statistical
clear sky algorithm was applied to the longer time series in the tested
datasets however, no significant degradation in the irradiance sensors
was detected in these cases. Temperature data quality issues may also
have negative impact on these metrics. A general example of this, is that
temperature measurements typically are point measurement and may
not be representative for the whole system. Physical system modelling
is additionally influenced by availability of system data challenging
accurate estimations of balance of systems (BOS) losses, i.e. constant
losses in cables and connectors, or the production dependent losses of
the inverter. These losses vary between installations due to different
configurations. The machine learning model automatically takes these
losses into account, and is to a larger degree able to handle the effect of
non-representative temperature measurements. Degradation in the ir-
radiance sensor will however also impact the quality of the machine
learning based model. Immunity to sensor data quality issues are one of
the strengths of monitoring systems based on comparison of specific
yield.

3.1.3. Unstable periods

As previously mentioned, it is well known that low light conditions
lead to noise in PV system analysis. The resulting noise in the morning
and evening is normally filtered out by removing low irradiance per-
iods. The noise in this period is however not only due to low irradiance:
high angles of incidence may cause additional instability in this period.

Fig. 6, shows how high (> 0.1, noisy data) and low (< 0.1) stan-
dard deviation in the specific yield comparisons of system la correlate
to irradiance and solar elevation angle. We use solar elevation as an
indicator of angle of incidence instead of using the actual angle of in-
cidence. Calculating the angle of incidence explicitly, and using it as a
basis for filtering, requires accurate definitions in the system config-
uration input data, specifically tilt and azimuth angles. The histograms
show all the data except snow periods, with the scatterplot showing a
randomly selected sample of these data. It is clear that a typical low
irradiance filter (< 200 W/m?) would remove data points that do not
have particularly high standard deviation. Replacing in this case the
200 W/m? low irradiance filter with a 50 W/m? filter and a solar ele-
vation angle threshold of 20° will remove most of the noisy data, while
a larger set of useful data remains. Therefore, a more detailed filtering
procedure, specifically removing the conditions leading to instability,
can lead to an increase in data points without increasing the noise. The
trend is representative for all the tested systems, although there are
some differences in the optimal filtering thresholds. The differences can
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Elevation [°]
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i
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Fig. 6. Comparison of irradiance and solar elevation conditions for time stamps
where there is a standard deviation in the yield comparison in system la
of > 0.1 and < 0.1. All data are shown in the histograms, a randomly se-
lected sample of the data is shown in the scatterplot.
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Table 3

Overview of the different identified noise generating effects and their influence on different performance metrics.

PPI: Statistical modelling

PPI: Physical modelling

PR’stc

Yield comparison

Challenge

Low/zero values, potentially over longer time periods (weeks)

Low values, potentially for multiple hours a day

Noise if partial snow cover

Snow

Invalid data

Noise if not equal for all inverters

Clipping, Curtailment

Estimation for every system necessary

Inaccurate estimation if differences between inverters and irradiance sensor

Bias/shifts depending on degradation type

Inaccurate estimations if not equal for all inverters

Constant system losses

Data quality and availability

Inaccurate estimation if differences between inverters

Systematic differences in irradiance
Degradation in irradiance data

Low light conditions

Noise

Unstable periods

Noise, short time period

Rapid, large irradiance changes

Solar Energy 207 (2020) 1045-1054
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be partially explained by inverter sizing. The inverter efficiency is not
directly related to irradiance, but with power and inverter capacity
ratio, hence, undersized inverters would reach a stable efficiency at
lower irradiance conditions than oversized inverters.

Other types of conditions observed to give unstable performance
metrics in the datasets, are fast and large changes in irradiance tran-
sitions caused by moving clouds. With rapidly changing irradiance, the
efficiency of the maximum power point tracker (MPPT) may decrease
(Sanchis et al., 2007), or the moving clouds may lead to uneven shading
and mismatch in the system (Lappalainen and Valkealahti, 2017), re-
sulting in unpredictable losses. These losses will however last for very
short time periods.

3.2. Impact of the identified effects on the performance evaluation methods

An overview of all the identified effects which generate noise or
errors in the performance estimations discussed in Section 3.1 is given
in Table 3. A qualitative assessment of their influence on the different
performance metrics is provided.

The impact of consecutively filtering out the effects with largest
contribution to noise (snow, low light conditions, curtailment and
periods with systematic differences in irradiance levels) on the standard
deviation of the performance metrics is presented in Fig. 7. Rapid ir-
radiance changes give less contribution to noise, because it only affects
short time periods. The constant system losses introduce no variability,
but a bias in the metrics, especially for the PPI based on physical
modelling. This can be corrected for by learning from the data, but not
filtered out. The filters presented in Table 4 are used for removing data,
based on the findings presented in previous sections. For the irradiance
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Table 4
Filters used in the standard filtering approach and the system specific filtering
approach.

Parameter Filters

Standard

Irradiance Gpoa > 200 W/m?

Clear sky pvlib detect_clearsky

System specific

Snow Snow depth > O m

Irradiance difference Iciear sky, mnverter/Iciear sky, reference < % 0.025
Low light

Irradiance Gpoa > 50 W/m?

Solar elevation Solar elevation angle > 20°

+

difference filtering, a 2.5% difference between the inverters clear
sky current and the clear sky median inverter current or the scaled clear
sky measured irradiance is set. As the filtering is performed con-
secutively and the parameters are not independent, this does not
quantify the noise generation of the different parameters. The variation
in all the metrics is significantly reduced when the filters for removing
snow periods and low light conditions are applied. The performance
index based on machine learning modelling especially experienced
large variations at low light conditions due to frequent underestimation
of the power in these periods. The results are compared to more stan-
dard filtering approaches based on irradiance and clearness level in
Table 5. We see that a filter for low light conditions based on the
parameters in Table 4 in combination with a snow filter gives lower
variation and more data than a standard irradiance or clear sky filter.
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Fig. 7. Variation in median standard deviation in different performance metrics for the different MPPTs in all the systems, showing the effect when different filters
(snow, low light conditions, curtailment, irradiance difference) is consecutively applied. The box extends from the first to the third quartile values of the data, with a
line on the median. The whiskers extend to maximum 1.5 multiplied the interquartile range, and outliers are shown as circles.
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Table 5

Solar Energy 207 (2020) 1045-1054

Median standard deviation and share of remaining data points and energy for the system specific filtering (consecutively applied) compared to more standard
filtering strategies: 200 W/m? irradiance cut off and clear sky filtering. For the irradiance difference filter there is especially large system variations in how much of

the data that are removed.

Filters Median standard deviation

Median

Ys rel PR’stc PPI: PVWatts PPI: Single diode PPI: Machine learning Remaining data points Remaining energy
None (raw data) 0.23 0.36 0.38 0.39 3.44 100% 100%
Standard filtering
Irradiance > 200 W/m? 0.14 0.17 0.18 0.18 0.17 34% 76%
Clear sky 0.22 0.36 0.38 0.38 0.45 14% 20%
Specific filtering
Snow 0.18 0.32 0.33 0.34 2.57 94% 98%
Low light 0.06 0.13 0.14 0.14 0.09 47% 83%
Curtailment 0.05 0.10 0.10 0.11 0.06 43% 69%
Irradiance difference 0.04 0.08 0.08 0.08 0.06 - 3-58%

The clear sky filter especially removes large amounts of data under the
given climatic conditions.

The variations in the metrics are further reduced by adding filters
for systematic irradiance differences, curtailment and inverter clipping.
Some of the systems had poor tilt angle match between irradiance
sensor and the modules, resulting in removal of a large share of the data
when the irradiance difference filter is applied for the irradiance-based
performance metrics. Only the machine learning model can handle the
systematic irradiance differences caused by shading and the difference
in tilt between different PV modules and the irradiance sensor. Fig. 7
shows that the irradiance difference filter does not have the same im-
pact on reduction of the standard deviation for the machine learning
based PPI as for the other performance metrics. Traditional low irra-
diance filtering or clear sky filtering is not sufficient in situations of
irradiance differences and curtailment. In some cases, irradiance dif-
ferences caused by shading and topography variations will be most
prominent at low irradiance levels, and inadvertently be removed at
low irradiance filtering. These effects will however be more prominent
at clear sky, and curtailment and inverter clipping are more likely to
occur at high energy generation and irradiance.

The yearly PR’stc values using data filtered for irradiance difference
vary from 0.68 to 0.93. In the winter months we see significant losses
for all the systems due to both snow and low light condition, and in the
summer some of the systems have significant curtailment losses.

4. Conclusions

Five effects that reduce the stability of the monitoring systems are
identified: (i) Snow, (ii) curtailment & clipping, (iii) systematic irra-
diance differences over the system, (iv) low light conditions and (v)
rapid changes in irradiance. The four first are most influential, as they
might impact longer time periods. The standard deviation of all the
performance metrics are significantly reduced when narrowly targeted
filters for these four effects are applied. Compared to general low ir-
radiance or clear sky filtering, the reduction in standard deviation of
the metrics is greater, while more data remains in the useful dataset.
Difficulty in estimating the constant system losses for different in-
stallation and sensor data quality issues may also introduce bias in some
of the performance metrics.

More efficient filtering of low light conditions can be achieved by
filtering with respect to both solar elevation and irradiance to directly
address the issues leading to noise. To detect periods with systematic
differences in irradiance between different units, statistical clear sky
fitting can be employed.

The solutions of the discussed challenges and the specific filtering
approaches are relevant for analysis and monitoring of most PV sys-
tems, when recognizing different effects in the data and efficient fil-
tering is necessary. Automatic detection of periods with irradiance
differences caused by e.g. shading or topography is particularly
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important for robust PV system analysis. The suggested methods will
however be especially important for systems at higher latitudes exposed
to more unstable conditions.

Filtered values of specific yield comparison and power performance
index based on machine learning modelling yielded best results in terms
of a stable metric. PPI based on physical modeling gives inaccurate
results because of insufficient input data to estimate losses and de-
pendency of accurate irradiance measurements. Machine learning
based modeling handled both these challenges and periods with sys-
tematic differences in irradiance more efficiently, showing that data
driven methods might be particularly suitable for challenging weather
conditions and systems with lower grade of uniformity.

The analysis highlights two paths to accomplish increased reliability
of PV monitoring systems without increased hardware costs. First,
better reliability can be achieved by evaluating the availability and the
quality of the input data, then based on this choose a suitable perfor-
mance metric. Second, the variability of the chosen performance metric
can be reduced by utilizing filters that specifically target the origin of
the variability instead of using typical literature thresholds. As this
analysis focuses on challenges and limitations met in monitoring of
commercial PV systems, implementing the suggested solutions in
monitoring software would improve the performance analysis and fault
detection in the system. This could increase the PR and reduce the le-
velized cost of electricity.
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ARTICLE INFO ABSTRACT

Keywords: As cost reductions have made photovoltaics (PV) a favorable choice also in colder climates, the number of PV
Photovoltaic systems plants in regions with snowfalls is increasing rapidly. Snow coverage on the PV modules will lead to significant
Snow

power losses, which must be estimated and accounted for in order to achieve accurate energy yield assessment
and production forecasts. Additionally, detection and separation of snow loss from other system losses is
necessary to establish robust operation and maintenance (O&M) routines and performance evaluations.

Snow loss models have been suggested in the literature, but developing general models is challenging, and
validation of the models are lacking. Characterization and detection of snow events in PV data has not been
widely discussed.

In this paper, we identify the signatures in PV data caused by different types of snow cover, evaluate and
improve snow loss modeling, and develop snow detection. The analysis is based on five years of data from a
commercial PV system in Norway. In an evaluation of four snow loss models, the Marion model yields the best
results. We find that system design and snow depth influence the natural snow clearing, and by expanding the
Marion model to take this into account, the error in the modeled absolute loss for the tested system is reduced
from 23% to 3%. Based on the improved modeling and the identified data signatures we detect 97% of the snow
losses in the dataset. Endogenous snow detection constitutes a cost-effective improvement to current monitoring

Snow loss modeling
Snow detection

PV performance
Soiling

systems.

1. Introduction

Due to a substantial decline in the price of photovoltaic (PV) in-
stallations in recent years, large scale PV plants are increasingly com-
mon in cold climates with wintertime snowfalls (Burnham et al., 2020;
Hashemi et al., 2020; IEA, 2020; Jager-Waldau, 2020). This develop-
ment necessitates robust methods for analyzing PV yield and perfor-
mance, as well as flexible monitoring and forecasting solutions in snowy
conditions. Thus, accurate snow loss modeling and snow detection are
required.

Snow losses are expected to vary significantly with climate, system
configuration and from year to year. At its maximum, it might give
monthly losses up to 100% in the winter season and annual losses above
30% (Pawluk et al., 2019). Consequently, it is an important parameter to
consider in simulation and yield assessment of future PV systems in lo-
cations with snowfalls, as well as in production forecasts and

performance and loss analysis of historical PV data. Snow losses will also
introduce significant challenges in monitoring, giving signatures in the
production data which resemble failures. A full snow cover gives an
electrical response similar to an inverter breakdown. A partial snow
cover leading to partial shading can give electrical losses (Schill et al.,
2015) similar to serious PV module failures (Tsanakas et al., 2016).
When using empirical or machine learning based methods for PV
modeling, snow events in the training data will perturb the correlations
between irradiance, temperature and production. These perturbations
can increase the uncertainty of the models (@gaard et al., 2020).
Recent research has demonstrated that uncertainty in yield estima-
tions (Bosman and Darling, 2018; Marion et al., 2013; Ryberg and
Freeman, 2017; Townsend and Powers, 2011) and forecasting (Lorenz
et al., 2011) can be reduced if snow loss models are included. Despite
this, snow loss models are often not implemented in PV simulation
software. The System Advisor Model (SAM) has implemented the model
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suggested by Marion et al. (Marion et al., 2013; Ryberg and Freeman,
2017), but in other software, snow is either not considered (PVGIS,
2020) or estimated by constant soiling values (PVsyst, 2020; Solargis,
2016), typically not related to the climatic conditions.

In PV monitoring, if at all considered, detection of snow is a more
common approach than snow loss modeling. In the literature, snow
detection methods based on dedicated or external sensors like weight
sensors, web cameras and satellite data have been proposed (Aarseth
et al., 2018; Andrews et al., 2013; Wirth et al., 2010). Ambient tem-
perature (Lorenz et al., 2007) and module temperature (Jgaard et al.,
2018) have been suggested as measurements that can be used to identify
snow-related losses in PV monitoring and failure diagnosis. Except for
this, identifying and characterizing the effects of snow in PV monitoring
data, a prerequisite to separate snow losses from failures and a method
to cost effectively detect snow, is not widely discussed.

Accurate snow loss modeling and robust snow detection are chal-
lenging, because the parameters influencing the snow cover and
resulting PV system loss are manifold. The influential parameters range
from weather conditions (irradiance, temperature, wind, etc.), to
installation and technology specific configurations (tilt, module tech-
nology, ground/roof mounted, etc.) and type of snow. This is chal-
lenging for both physical and empirical models due to the amount of
required input data. Existing snow loss models, use weather data and
technical system configuration to either estimate (i) snow coverage or
(ii) the losses directly (Pawluk et al., 2019). Most of the suggested
methods are based on empirical approaches, including both simple
linear relationships (Pawluk et al., 2019) and machine learning (Bashir
et al., 2020; Hashemi et al., 2020). Validation of the models on other PV
systems is typically lacking (Ryberg and Freeman, 2017). While the
uncertainty for monthly and annual losses often are low compared to the
size of the loss, the uncertainty on daily and higher time resolutions is
high (Andrews and Pearce, 2012; Marion et al., 2013).

In particular, it is the process of natural snow clearing that is difficult
to model. The main mechanisms of natural snow clearing are melting
and sliding, both effects typically connected to ambient temperatures
larger than 0 °C (Pawluk et al., 2019), but sliding at —10 °C has also been
observed (Becker et al., 2006). Friction and adhesion between the snow
and the solar panels are parameters that contribute to the complexity of
natural snow clearing, as both are expected to vary with type of snow
(Andrews et al., 2013; Pawluk et al., 2019). While wet snow has lower
friction, it is also more likely to freeze to the module (Andenzs et al.,
2018; Ross, 1995). Natural snow clearing is thus dependent on how
temperature evolves with time. Additionally, system configurations like
tilt and elements obstructing the path of snow sliding (e.g. the module
frame (Riley et al., 2019), or little empty space below the modules giving
ground/roof interference (Heidari et al., 2015)) will impact natural
snow clearing. Technical system aspects might also impact the heat
transfer to the system and thus the snow melting. Increased melting can
e.g. be caused by absorbed reflected irradiance on the rear side for a
ground mounted bifacial system (Burnham et al., 2019), or by poor roof
insulation for a roof mounted system.

Because different types of modules have different shading response,
snow losses and the signatures in the electrical data will also depend on
type of modules (thin film or crystalline silicon, full or half cells, mon-
ofacial or bifacial), and for the most typical crystalline silicon (c-Si)
module with three bypass diodes: whether the modules are installed in
portrait or landscape orientation. When the snow slides down the tilted
module, it typically shades the lower part, as shown in Fig. 1. This gives
shading orthogonal to the substring current for modules installed in
portrait orientation, and parallel to the substring current for modules
installed in landscape. In the first case, all the substrings in the modules
are impacted, in the second case, the shaded area can be bypassed by the
bypass diodes. This can lead to significantly higher snow-related losses
for modules installed in portrait orientation than modules installed in
landscape orientation under similar partial snow covers (Andenees et al.,
2018; Andrews et al., 2013; van Noord et al., 2017). On the other hand,
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Portrait orientation,
orthogonal snow cover
—

Landscape orientation,l
parallel snow cover

Isubstn'n

Partial snow cover Partial snow cover

Fig. 1. Illustration of portrait and landscape module orientation and how a
partial snow cover typically shades the tilted modules when it is sliding off the
modules. A module installed in portrait is shaded orthogonal to the module
substring current, and a module installed in landscape is shaded in parallel with
the module substring current.

natural snow clearing has been observed to happen faster for modules in
portrait orientation than for modules in landscape orientation (Burnham
et al., 2020). One of the suggested explanations is that the frame im-
pedes sliding more for modules in landscape. Additionally, if the mod-
ules are irradiated but generate no or low current (compared to the
irradiance level), they are expected to be warmer because the energy is
not converted to electricity (Teubner et al., 2019). Because modules in
portrait will generate less current under partial snow cover, they will
become warmer than modules in landscape, aiding the melting process.

The aim of this work is to (i) characterize the effect of snow in PV
monitoring data, (ii) to assess and improve on existing PV snow loss
models, and (iii) to develop snow detection methods for PV monitoring
data. The main focus is on monofacial c-Si technology. To characterize
the impact of different types of snow covers on the measured variables of
a PV system, we have analyzed data from two PV systems in Norway
with regular snow cover in the winter. The identified signatures in PV
monitoring data caused by snow, are assessed by using simulations of
shaded modules and transmittance measurements. The PV monitoring
data is further used for evaluation and improvement of snow loss
models, and both the improved snow loss models and the signatures are
used in development of snow detection.

2. Methodology
2.1. PV monitoring data

The PV monitoring data utilized in this study is primarily from a
commercial 185 kW, roof top PV system. The data from the commercial
system is complemented by detailed studies and experimental data ob-
tained from a 4 kW, ground mounted test system at the Institute for
Energy Technology research facility. The commercial PV system is
installed on a flat roof, the lowest part of the modules nearly touching
the rooftop. The multicrystalline silicon PV modules are oriented East-
West with a tilt of 10°, and installed in landscape orientation. This
system configuration is typical for many of the larger PV systems in the
Nordic countries. A tilt angle of 10° is not optimal for high latitude lo-
cations with respect to maximum production, but is typically used in
installations on flat roof systems also at high latitudes to maximize roof
coverage and to, in combination with the East-West orientation, achieve
a more even production distribution through the year and the day. The
test system has South-oriented crystalline silicon modules with a tilt of
28° installed in portrait orientation (FME Susoltech, 2020). The array
height is two modules for the test system, and one module for the
commercial system. Both systems are located approximately 60° North
and 11° East.

For both systems, 5 years of data are collected. For the commercial



M.B. Ogaard et al.

system, current, voltage and power data are collected from the inverters,
and temperature and irradiance data are collected from the monitoring
system of the installation. The data is logged at 5 min interval, and the
DC inverter data are measured at maximum power point tracker level
(MPPT). Three strings of 24 modules are connected in parallel to one
MPPT. In the test system, the electrical data is measured at module level
by power optimizers, and the recording interval of the data logging is 15
min. The effective in plane irradiance incident on the PV modules, i.e.
the irradiance the modules can utilize (Stein and Farnung, 2017), is in
both cases measured with a crystalline silicon reference cell in the plane
of the PV modules. The measurement uncertainty of the irradiance is =5
W/m? + 2.5% of reading. The module temperature is measured by a
sensor attached to the rear side of the modules. Wind and humidity data
was collected from nearby weather stations (Norsk Klimaservicesenter,
2020). To identify time periods with snow on the reference cells, the
reference cell irradiance measurements are compared to measurements
from irradiance sensors at the systems that are observed to be less
effected by snow: a heated horizontal pyranometer at the commercial
system, and a vertical pyranometer at the test system. To reduce the
effect of snow-covered irradiance sensors on the analysis, the mea-
surements from the heated horizontal pyranometer are used as a
replacement of the in plane irradiance at the commercial system for days
where the daily irradiation measured by the pyranometer irradiation is
more than twice the daily reference cell irradiation.

At the test system, the transmittance of the snow cover on the
modules was measured for different snow cover thicknesses, by
measuring the irradiance on the front and rear side of a full size module
glass with the same tilt as the PV modules, using a spectroradiometer
(Spectral Evolution, PSR-1100F). The measurements were conducted
over 7 days with different snow and irradiance conditions. Observations
of the snow coverage on the modules were collected at the same time by
sample images. Daily estimated snow data for the two locations, based
on interpolated observational data are collected from seNorge.no (NVE,
2019).

2.2. Identification of snow signatures in PV monitoring data

2.2.1. Observed snow signatures

To study the signatures of snow in PV monitoring data, deviations
compared to snow free production for electrical DC data (power,
voltage, current) and module temperature in time periods after snow
falls are evaluated. The evaluation is performed for both modules
installed in landscape and portrait orientation.

The expected power, voltage and current for snow free conditions is
modeled by a single diode model. Module datasheet values and PySAM
(NREL, 2020) are used to estimate the diode ideality factor, light
generated current, dark reverse saturation current, shunt resistance and
series resistance at reference conditions, and the parameter for adjusting
the short circuit current temperature coefficient, as described by Dobos
(2012). These parameters together with the measured effective irradi-
ance and cell temperature are used as inputs to the CEC model (Dobos,
2012), which estimates the photocurrent, saturation current, shunt
resistance and thermal cell voltage. The expected electrical output for
each module is estimated by solving the single diode equation based on
the parameters estimated with the CEC model, as implemented in pvlib
python (Holmgren et al., 2018). The constant system losses are esti-
mated by comparing the modeled power to the measured power under
snow free conditions. Based on this, some differences were observed in
the angular response between the reference cell and the module strings,
giving seasonal variation in the system losses. To compensate for this,
the additional reflection loss of the modules, was modeled with the
ASHRAE IAM model (Holmgren et al., 2018; Souka and Safwat, 1966)
with an IAM adjustment parameter of 0.03. The expected PV module
temperature is modeled by the cell temperature model from the Sandia
Array Performance Model (SAPM) (Holmgren et al., 2018; King et al.,
2004), where the module temperature is estimated based on global

Solar Energy 223 (2021) 238-247

irradiance, ambient temperature, and wind speed.

Uncertainty in PV modeling is typically higher at lower irradiance
and high angles of incidence, as it is challenging to capture all loss ef-
fects under these conditions. This can give a small absolute, but high
relative, overestimation of the expected power and current in the
wintertime, and thus overestimation of the snow losses in these pa-
rameters. Snow on the irradiance sensor can on the other hand lead to
underestimation of both absolute and relative losses. On a monthly basis
for the periods without snow, the mean absolute error in the daily
modeled energy generation for the commercial system is up to 0.1 kWh/
kW, in the summer months and down to 0.02 kWh/kW,, in the winter
months. For both systems, the mean absolute percentage error in daily
modeled energy is 2% for most months, but in the darkest winter months
when the energy generation can be <1 kWh/kW, per day, small de-
viations in the model can give high relative errors, up to 20%. When the
expected energy generation is aggregated for longer time periods, the
days with highest production and lowest uncertainty will dominate and
reduce the relative uncertainty.

2.2.2. Simulated electrical snow signatures

The expected electrical signatures in PV module data for different
snow covers are modeled using circuit simulations in MATLAB Simulink.
A system with the same configuration as the commercial system
described in Section 2.1 is modeled, with 60 cell modules having 3
bypass diodes each. A variable voltage source is used to trace the full IV
curve of the modeled system. Solar cell blocks in Simulink are modeled
by solving the single diode equation, and piecewise linear diodes are
utilized as bypass diodes. The Simulink solar cell single diode parame-
ters are fitted so that 60 cells in series match the IV characteristics of the
commercial system. The simulations are performed for a case where the
cell temperature is 25 °C and the irradiance is 450 W/m?. Snow covers
are simulated as a reduction in irradiance for the covered part of the
modules, and the resulting power, current and voltage from the simu-
lated IV trace are used to calculate electrical losses for different shading
situations. The loss is calculated by comparing the yield of the snow-
covered system with an unshaded, identical system. The covers are
varied in size and transmittance, and the partial covers are modeled both
for portrait and landscape module orientation, i.e. orthogonal and par-
allel to the substring current, respectively. The simulations are not
validated through field data because we have no accurate measures of
snow covers. This means we have no estimates of the performance of the
simulation at low light conditions and what error is introduced by using
the same cell temperature for all simulations, thereby not including the
temperature differences caused by snow cover. The efficiency of the
inverter at low irradiances, the MPPT voltage range of the inverter, and
how the MPPT handles partial shading will also influence the loss in
electrical parameters. We do, however, still believe that the simulations
capture the general behavior at these conditions and help us understand
how different snow covers impact electrical PV measurements.

2.3. Snow loss model evaluation

The calculated snow power loss, i.e. the deviation between the
measured power and the modeled power (Section 2.2.1), is used to
validate snow loss models. The data from the commercial system is used
in the evaluation, as it has multiple identical arrays and is thus expected
to give an insight into eventual loss variations for similar configurations.
The tested models are the models suggested by Andrews and Pearce
(2012), Powers et al. (2010), Townsend and Powers (2011), and Marion
et al. (2013) as implemented in pvlib python (Holmgren et al., 2018;
Ryberg and Freeman, 2017). The three first models aim to estimate the
snow losses based on empirical correlations with different environ-
mental parameters. Andrews and Pearce estimate daily losses based on a
correlation between snow losses and irradiance, temperature, and the
change in snow depth for the two last days. Powers et al. use a corre-
lation between annual snow losses, snow depth and module tilt.
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Townsend and Powers estimate monthly losses using a correlation be-
tween snow losses and humidity, temperature, irradiance, snow fall, and
a ground interference parameter. The Marion model initially estimates
the snow cover, and subsequently calculates the snow loss based on the
snow cover estimate. The model assumes that when the snow starts to
melt, it is cleared by sliding off the modules. Snowfall data are used to
identify the presence of snow, and irradiance and module temperature
are used to identify conditions where snow slides off the modules. Snow
sliding is assumed to happen when:

Tamb > GPOA/m-, (1)
where Tamp is the ambient temperature, Gpoa is the in plane irradiance
and m is an empirically defined value of —80 W/(m? °C). How much the
snow will slide, measured in fractions of the total row height, is deter-
mined by the tilt of the modules and an empirical sliding coefficient (sc):

(2)

For roof mounted systems sc was found to be 0.20 (Holmgren et al.,
2018; Marion et al., 2013). The snow loss is subsequently estimated from
the calculated snow coverage and the number of parallel connected
strings (including module substrings) along the row height, taking into
account whether the modules are installed in portrait or landscape
orientation (Holmgren et al., 2018). If a module substring is partially
covered by snow, the capacity is assumed to be zero (Gilman et al.,
2018). All snowfalls greater than 0 cm are included in the snow loss
modeling.

Snow slide amount = sc*sin(tilt)

3. Results and discussion

The impact of full and different levels of partial snow cover on the PV
monitoring data is presented in Section 3.1.1. The results are assessed
using simulations of shaded strings (Section 3.1.2) and transmittance
measurements (Section 3.1.3). The signatures in the monitoring data
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caused by snow are summarized in Section 3.1.4. Evaluation and
improvement of snow loss modeling is presented in Section 3.2. Based
on the improved model and the snow signatures, a method for snow
detection is proposed in Section 3.3.

3.1. Snow signatures

3.1.1. Observed snow signatures in PV monitoring data

Fig. 2 shows the daily losses in voltage, current and power for a time
period with snow melting where the modules gradually are going from
fully snow covered, through different levels of partial cover, to snow
free. The event is in March/April, in a period with high irradiance,
giving low relative uncertainty in the modeled expected value. The
boxplot shows the variation in the measurements. In the beginning of
the period, when the snow cover is assumed to be full and opaque, the
losses in all electrical parameters are 100%. When the snow cover starts
to melt, the first development is an increase in voltage. For some of the
modules in the test system, voltage gain is registered. As the snow
continues to melt, a stepwise reduction in voltage losses is observed,
while the losses in current and power are gradually reduced. The vari-
ation in losses between different modules/inverters is large for partial
snow cover, reflected in a large spread in the measured loss. For the test
system (portrait orientation), where the loss is measured at module level
and not aggregated for larger subarrays as for the commercial system,
particularly large variations in both current and voltage are seen.

The module temperature is also significantly influenced by snow
cover. Fig. 3 shows how the measured module temperatures in the test
system develop compared to the ambient temperature and the modeled
module temperature during the same melting period as in Fig. 2. The
module temperature is quite stable at full snow cover with less pro-
nounced diurnal variations than the ambient temperature. As the snow
cover melts, the measured module temperatures are more impacted by
irradiance and ambient temperature, and there are large variations be-
tween different module temperature sensors, due to the local variations
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Fig. 2. The measured daily snow losses in voltage, current and power for the two different module orientations in a period where the modules go from fully covered,
through different levels of partial cover, to snow free. The boxplot shows the variation in loss between different inverters/modules. The boxes extend from the first to
the third quartile values of the data, with a line on the median. The whiskers extend to the maximum or minimum value within 1.5 times the interquartile range, and

outliers are not included.
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Fig. 3. Development of the modeled module temperature (Tmodule, modeled), the measured ambient temperature (Tampient, measured), and the range of the measured
module temperatures (Tmod, measured 1-5), il @ snow melting period for the modules installed in portrait orientation.

in snow cover. The observed signatures illustrated in Figs. 2 and 3 are
representative for the time periods after snow falls for the whole dataset.
The electrical signatures for the days where exact snow coverage is
measured through imaging, also support these observations.

3.1.2. Simulated electrical snow signatures

Fig. 4 shows the simulated losses in current, voltage and power as a
function of snow coverage for modules installed in landscape and
portrait orientation. The transmittance of the snow cover is 0 (opaque).
As a function of snow coverage, the loss in current follows a simple
relationship: If at least one cell in all module substrings is covered, the
loss is 100%, and if there is at least one snow-free module substring, the
loss is zero. The voltage loss is dependent on the snow free area (as seen
for modules in portrait orientation with shading orthogonal to the
substring current), but also on activation of bypass diodes (as seen for
the modules in landscape orientation with shading in parallel with the
substring current). As discussed in Section 2.2.2, we can expect addi-
tional electrical losses in the measured data, depending on the inverter
and MPPT efficiency at low irradiance, low voltage and partial shading.
While the trend in the simulated voltage losses looks similar to what is
seen for the measured data in Fig. 2, the losses in current recovers more
gradually in Fig. 2 than what is seen in Fig. 4.

Snow covers with increasing transmittance could explain the gradual
recovery of the current and power losses seen in Fig. 2. Fig. 5 shows the
simulated electrical losses for fully covered modules as a function of
snow transmittance. While the current loss is linearly dependent on the
transmittance, the losses in voltage are almost recovered as soon as the
cells are irradiated.

Fig. 6 gives an example of the combined impact of snow trans-
mittance and coverage, showing how the electrical losses vary with
snow transmittance when half of the module is covered. For modules in

Partial shading,

portrait orientation, the current is still linearly dependent on the
transmittance, but in voltage a gain is observed because 50% of the cells
are fully irradiated. For the modules in landscape orientation, it is seen
that at low transmittance, the shaded module substrings are bypassed
giving zero loss in current and 66% loss in voltage. When the trans-
mittance increases and the current loss in the snow-covered module
substrings are reduced, the bypass diodes are no longer active resulting
in loss in current and zero voltage loss.

While the simulations might explain the trends seen in Fig. 2, they do
not explain the variation in losses between different system units. This
can, however, be explained by nonuniformity of the snow cover on the
system. It is observed that during the process where the snow clears of
the modules, there can be variation in both snow coverage and thick-
ness. The total losses are therefore also influenced by the distribution of
shading and the configuration of series and parallel connections in the
system, as this will affect the maximum power points of the different
subarrays.

The impact of both the snow coverage and transmittance on the
losses, illustrated in Figs. 4-6, together with the potential nonuniformity
of these parameters, explain the trends and the large variations in
measured electrical losses during melting shown in Fig. 2. This shows
that the assumption of an opaque snow cover in all situations, as is often
done in snow loss modeling, is a simplification.

3.1.3. Snow transmittance measurements

To investigate if the transmittance of the snow cover can be high
enough to explain the field data observations shown in Fig. 2 as sug-
gested in Section 3.1.2, the transmittance of the snow cover at different
thicknesses was measured at the test site. As shown in Fig. 7 and dis-
cussed in (Andenas et al., 2018; Perovich, 2007; Skomedal, 2017), at
snow depths less than about 2 cm, transmittance of more than 10%
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Fig. 4. Simulated losses in voltage, current and power at irradiance of 450 W/m? for varying snow coverage with zero transmittance, shown for modules installed in

both portrait and landscape orientation.
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Fig. 6. Simulated losses in voltage, current and power at irradiance of 450 W/m? for 50% snow cover with varying transmittance, shown for modules installed in
both portrait and landscape orientations.

might occur. The optical properties of snow is depending on type of

T ® snow (Andenes et al., 2018), so some variations will be expected, but
600 @ combined with high irradiance, generation of voltage and current is
oy possible at thin snow covers. This is also observed in the electrical
o 50 measurements of the modules. In situations where the measured snow
§ cover transmittance and irradiance are high, normal voltage values and
r‘é" 40 high current losses are measured. Typically, this is seen in the voltage
2 ok ° losses, which for days with snow cover can be very high in the morning
© . .
i - and afternoon, and down to zero in the middle of the day when the
2 20k {: P irradiance is high.
2 °
10 L] . ° 3.1.4. Snow signature overview
. . . . | , . | , To summarize the results discussed in Sections 3.1.1-3.1.3, an
0 0 1 2 3 4 5 6 7 8 overview of the impact of different types of snow cover on measured
Snow depth [cm] system variables and the overall PV plant behavior, is given in Table 1.
A full opaque snow cover leads to 100% loss in all the electrical
Fig. 7. Measured transmittance of the snow cover on a full size test module parameters. This could be interpreted as an inverter breakdown. To

glass as a function of snow depth.

Table 1

separate the two cases, development in additional parameters such as
snow depth and module temperature should be utilized.

When the snow cover is semitransparent and/or partial the situation
is more complex, a wider range of outcomes are possible, and larger

Overview of different PV parameters for a c-Si monofacial system, and how they are affected by different types of snow covers (full or partial, opaque or semi-

transparent) for modules in portrait and landscape orientation.
Full, opaque Full, semitransparent Partial, opaque Partial, semitransparent
Portrait  Landscape Portrait  Landscape

Module temperature << Normal operating temperature Typically < Normal operating temperature
DC current 0 Low™ 0 Normal Low Low-normal*
DC voltage 0 Normal Low Low-medium*  High Low-normal*
Power 0 Low* 0 Low-medium*  Low Low-medium*
PV plant No production  All inverters have low/0* power ~ Many or all of the inverters have low power. There may be large variations in power, current,

voltage, and module temperatures.

" Depending on snow coverage and/or transmittance.
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variation within the PV plant is seen. The response in current, voltage
and module temperature will depend on both transmittance, size and
nonuniformity of the snow coverage, and also on module orientation for
crystalline silicon modules. The voltage will be recovered as soon as the
cells in the modules are irradiated, either because of clearing of the snow
cover or increased transmittance. The maximum current in each module
substring will be limited by the least irradiated cell. If partial snow
covers lead to variations in irradiance for different module substrings,
the bypass diodes in the modules can activate. Because of this, voltage
losses during snow covers are characteristic for systems where the
modules are installed in landscape orientation, and the typical snow
shading is in parallel to the module substrings. No loss in voltage would
require snow covers with both high uniformity and high transmittance,
which is possible, but not very common. How many bypass diodes that
are active depends on the transmittance and uniformity of the snow
cover. For module substrings with snow covers with high transmittance,
active bypass diodes and voltage losses can lead to larger power losses
than when the diodes are not active, as illustrated in Fig. 6. If one shaded
module substring is not bypassed, this gives a loss in current in addition
to the voltage loss, as observed for the commercial system in Fig. 2.

3.2. Snow loss model evaluation

The snow loss models described in Section 2.3 were evaluated for the
commercial system (landscape orientation). The loss was measured for
all the inverters in the system to capture eventual variations in snow
losses for identical system configurations. Due to its small size and se-
vere system shading for some parts of the winter, the test system was not
found suitable for model evaluation.

3.2.1. Evaluation of empirical snow loss models

The models built on empirical correlations between ambient condi-
tions and losses, failed to estimate snow losses satisfactorily, particularly
when there were differences in ambient conditions between the tested
dataset and the dataset the model was based on. For the model suggested
by Andrews and Pearce (2012), the R? of the relationship between the
power loss and the suggested explanatory parameters was 0.24, showing
a low correlation. The snow data in this model is limited to snow fall
data from the two previous days. For the dataset in this study, however,
snow covers can in some cases last longer than a month. For the simple
model for yearly relative losses suggested by Powers et al. (2010), the
modeled losses were 2.3-5% compared to measured losses of
2.2-11.2%. For most years, the difference between measured and
modeled losses was below 1 percentage point, but for the year with
largest losses, the difference was 6.2 percentage points. Different
ambient conditions might also here be influential: in Truckee, Califor-
nia, where the model is developed, the difference in total irradiation
from summer to winter is lower than for the data in this study because of
the difference in latitude. For the Norwegian location, the irradiance
changes a lot through the year, and the time of the snow cover also in-
fluences the total losses, as snow cover in the middle of the winter will
have less impact on the annual losses than a springtime snow cover. The
second model developed by Townsend and Powers (2011), had a mean
absolute error in the estimation of relative monthly snow losses of 23%.

3.2.2. The Marion snow loss model

The empirical models can be used to give rough estimates of the
losses, but for models based on a few datasets, it appears to be difficult to
capture all aspects of snow covers and resulting PV losses and develop
accurate and transferable models. Modeling different aspects of snow
covers and losses separately and aim for modeling of absolute losses, like
in the Marion model, was shown to be a more robust and flexible
approach, yielding more accurate loss estimations. The threshold
defined in Eq. (1). to identify sliding events caused by snow melting,
correlated well with melting events found in the snow data. Most
melting events, and all large melting events, could be predicted by the

Solar Energy 223 (2021) 238-247

conditions defined in Eq. (1). The default sliding coefficient in pvlib
(0.20), estimated for roof mounted systems, was however observed to be
too high. This coefficient is expected to depend on different system and
module designs, because technical aspects can either promote or
obstruct snow sliding (Burnham et al., 2020). Frameless modules (Riley
et al., 2019), empty space below modules (Heidari et al., 2015), and
heating on the rear side of the module (Ross, 1995) (e.g. from reflected
irradiance — in particular for bifacial modules (Burnham et al., 2019), or
the building if roof mounted) will promote sliding, for instance. In the
studied case, where the modules are installed on a flat, well-insulated
roof, and there is no empty space where sliding snow can accumulate
below the modules, high roof interference and a low sliding coefficient is
expected (Heidari et al., 2015). Generally, when the snow depth is
increasing, the empty space below the modules will decrease, giving
increased ground/roof interference. In this case, because the modules
are not elevated, how much the snow can slide down the module surface
will also decrease with increasing snow depth. The top of the modules is
approximately 30 cm above the rooftop. With snow depths above 30 cm,
the system will be fully submerged in snow and there will be no sliding.
Snow depths above 30 cm are rare for the tested system, as shown in
Fig. 10, but the observed snow depths do often lead to situations where
the system is partly submerged in snow, reducing the possibility for
snow sliding. Melting is therefore most likely an important snow
clearing mechanism in the tested system, a process that typically is
slower than sliding for thick snow layers. Fig. 8 shows for different sc
values, for periods with snow depth > 3 cm, how measured snow loss
correlate with modeled snow cover, and the correlation between
measured and modeled daily snow loss. Fig. 8 a) shows how a larger
fraction of the timestamps with measured snow loss correlate with
timestamps with modeled snow cover, both for high and lower measured
snow loss, when using a lower sliding coefficient. As shown in Fig. 8 b),
reducing the sliding coefficient gives a better fit between measured and
modeled daily losses. Here, because the Marion model assumes zero
production from partly covered module substrings and a uniform snow
cover, the modeled loss is stepwise, and the only possible outcomes are
0, 33%, 66% or 100% loss. As shown in Fig. 2, the measured power loss
has a wider range of outcomes. Some of the variations in the measured
losses, can also be caused by the high relative errors in the modeled daily
expected power for parts of the winter periods.

The data show that for thin snow covers, however, snow clearing
happened significantly faster. There is more room for snow to slide down
the module surface, and thin snow covers are also more likely to melt
directly on the module, a process that for thin snow covers is faster than
sliding (Andrews et al., 2013; Pawluk et al., 2019). Additionally, as thin
snow covers have higher transmittance, heating of the module that can
aid the melting is expected (Pawluk et al., 2019). As shown in Fig. 9,
when the measured snow depth is low, the sliding coefficient that most
consistently models 100 or 66% loss in periods with high losses, and 0 or
33% in periods with low losses, is 0.4, which is higher than what was
seen in Fig. 8. For the test system it is also observed that the sliding
coefficient seems to be influenced by the snow conditions. In Fig. 9, it is
also seen that the modeled losses for thin snow covers shows a poorer fit
with measured loss compared to thicker snow covers. Thin snow covers
have also previously been shown to introduce noise in loss modeling
(Andrews and Pearce, 2012). In addition to the challenge of exact esti-
mation of snow coverage, snow transmittance is, as previously dis-
cussed, playing a role for thin snow covers and might challenge the loss
estimation.

As shown in Fig. 10, reducing the sliding coefficient to 0.06
compared to the default sliding coefficient in pvlib of 0.20, gave a better
fit between measured and modeled losses for most years. The exception
is 2017, a year with very low snow depths. Also shown in Fig. 10,
introducing separate sliding coefficients (or more general: snow clearing
coefficients) for snow depths above and below 3 cm yields an even better
fit with the total measured losses. With the default sc the total modeled
absolute snow loss for the five years of data was underestimated by 23%,
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Fig. 9. For periods with snow depths < 3 cm and with four different sliding
coefficients used in snow cover/loss modeling, the variation in daily measured
loss at the different modeled loss values (four possible outcomes: 0, 33, 66 and
100%). The boxes extend from the first to the third quartile values of the data,
with a line on the median. The whiskers extend to the maximum or minimum
value within 1.5 times the interquartile range and outliers are not included.

with the reduced sc (0.06) the losses were overestimated by 11%, and
with the snow depth dependent sc the model overestimated by 3%,
yielding a significant improvement to the model. Relative to the mean
yearly energy generation in the analysis period, the differences in
measured and modeled losses when using the model with snow depth
dependent sc, was between —0.8 and 0.3 percentage points.

It would still be expected that snow loss modeling is still not exact on
high time resolutions even with improved sliding coefficients, both due
to challenges with estimating the snow coverage, the transmittance and
non-uniformity of the snow coverage, and the difficulty of accurately
quantifying the effect the snow has on the PV production. It can, how-
ever, be used to assess the probability of snow cover on the modules and
give reasonable snow loss estimates for yield estimations which are
typically aggregated to lower time resolutions.

3.3. Snow detection

The observed snow signatures in the data and the improved snow
model are promising starting points for building snow detection algo-
rithms for monitoring purposes, failure diagnosis and performance loss
analysis. While snow loss modeling has too low accuracy on high time
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Fig. 10. Measured (plant median) and modeled yearly absolute and relative
snow losses. The relative losses are calculated based on the mean yearly ex-
pected energy generation in the analysis period. The error bar shows the range
of the measured losses in the PV plant. The snow losses are modeled in pvlib
with default sliding coefficient (0.20), reduced sliding coefficient (0.06) and a
snow depth dependent coefficient: 0.4 for snow depth < 3 cm, and 0.06 for
snow depths > 3 cm. The corresponding snow depth measurements are
also shown.

resolutions to directly model losses in monitoring, the improved snow
cover model suggested in Section 3.2 can be used to indicate the pos-
sibility of snow-covered modules, as shown in Fig. 8 a). For the tested
commercial system, the loss in voltage is the signature that in most cases
is connected to snow loss, as discussed in Section 3.1.4. Fig. 11 shows,
for different power loss intervals, how large share of the data that would
be labeled as snow, given a snow detection criterion of: 1) voltage loss
between 10% and 100%, 2) modeled snow cover larger than 0, 3) either
criterion 1 or 2. The data has 5-minute resolution and is taken from
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Fig. 11. Snow detection rate for different intervals of measured snow loss for
the following criteria: 1) voltage loss between 10% and 100%, 2) modeled snow
cover greater than zero, and 3) either 1 or 2. Only data points from periods with
snow on the ground and irradiance above 50 W/m? are considered. Due to the
uncertainty in the modeling of the expected power, 10% is set as the lower limit
of significant snow loss.

periods with irradiance above 50 W/m? and snow on the ground. For the
third criterion, 97% of the snow losses above 10% is labeled as snow.
The detection rate is higher at high snow loss. At full snow covers giving
100% loss, the detection rate is 100%. In periods with a measured power
loss smaller than 10%, i.e. no significant snow loss, 38% of the data
points are labeled as snow, which we interpret as false positives. These
false positives are mostly related to the uncertainty in the snow loss
modeling for thin snow covers and during melting, causing the model to
indicate snow cover in periods where the snow has been cleared. A
consequence of false positives in snow detection could be that actual
system faults are falsely labeled as snow losses. Snow loss modeling is
consequently best used to indicate the probability of snow cover.

To improve snow detection, more of the snow signatures described in
Section 3.1 could be included. The module temperature measurements
and the duration and evolution of the snow signatures could e.g. be
taken into account. Snow losses, especially during snow melting, can
change significantly from day to day and within a day, in a different way
than typical system faults. The results suggest that due to the high rate of
the data with losses that correctly are identified as snow, the snow
detection method will improve fault detection and diagnosis as well as
loss analysis, and that further improvements could be achieved by
including more of the identified snow signatures and by using snow loss
modeling to indicate probability of snow cover.

4. Conclusions

In this paper we describe the effect of different types of snow cover
on PV energy generation, and snow related signatures in PV monitoring
data are identified. In addition to snow coverage and system configu-
ration, transmittance and nonuniformity of the snow cover influence the
total snow losses, increasing the complexity in snow loss modeling.
Existing snow loss models are evaluated. Three of the models are purely
empirical, and power loss is directly estimated based on system and
weather data. In the Marion model empirical correlations are used to
model different effects causing natural snow clearing, and snow
coverage and the resulting loss are modeled separately. We find that the
purely empirical models are less general and flexible than the Marion
model.

For the evaluated system with low tilt modules on a flat roof, the
natural snow clearing rate is observed to be much faster for thin snow
covers (<~2-3 cm) than for thicker snow covers. This difference in the
snow clearing process between thin and thick snow covers is assumed to
be especially large for the evaluated system. This is because there is little
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available space where the snow can slide away, leading to slow snow
clearing for thick snow covers. The evaluated system design is, despite
this, very common in the Nordic countries because it gives increased
roof coverage and more even energy generation throughout the year. By
including the effect of snow depth dependent snow clearing in the
Marion model, we achieve reduced uncertainty in the modeled snow
losses, allowing more accurate energy yield assessment for new PV
systems. We also find that the identified snow data signatures and the
improved Marion snow model can be used to detect and separate snow
losses from other phenomena that affects PV production, such as faults.
This is important for the development of PV in cold climate areas that
are prone to snow.

We discuss how different system designs can promote or obstruct
snow clearing, and we find that for the tested system the snow clearing
rate is lower than for the systems the snow sliding/clearing coefficients
in the Marion model is based on. Future work should therefore include
further validation of the snow clearing coefficients for different system
designs. Additionally, as snow is a complex weather phenomenon,
validation of the improved model and the snow detection for larger
datasets and different environments is necessary. The aspect of the
evolution of the snow data signatures with time should also be further
investigated to improve snow detection.
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ABSTRACT: Large PV plants are increasingly common in locations with colder climates where snow can lead to
significant PV power loss. For these locations, estimates of snow loss is necessary for accurate PV yield modeling.
Robust estimation of snow loss is, however, challenging. Snow-induced loss is expected to vary with climate, weather,
and PV plant design. In this work, we estimate snow loss from historical data for a set of PV plants in Norway. To extend
the snow loss dataset, 12 years of weather data and a modified adaption of the Marion snow loss model are used to
simulate snow loss for the analyzed PV plants over time. For the historical data, we observe variations in annual losses
for the same system of more than 10 percentage points. For some of the systems, we find losses in a range from 0 to 100
% for the same month. As expected, systems with colder climates have higher loss than systems in warmer climates, and
systems with higher tilt has lower loss than systems with lower tilt. With snow loss modeling we get improved
understanding of typical and extreme values, and the potential inter-annual variation in monthly and annual snow loss.

Keywords: PV System, System Performance, Modeling, Soiling, Snow

1 INTRODUCTION

As cost reductions have made photovoltaics (PV) a
favorable choice also in colder climates, deployment
rates in regions with snow falls are rapidly increasing [1—
3]. Snow on PV modules may lead to significant power
loss. For certain locations snow fall can result in zero
electricity production in the winter season and more than
30 % annual loss [4]. Consequently, it is an important
loss mechanism to consider in PV system models to get
accurate assessments of the expected energy generation
from PV plants in snow-affected locations. Snow-induced
PV power loss is expected to vary from year to year,
between different system configurations and between
different locations. To get accurate snow losses for a
specific system, a model taking into account the different
influential parameters is therefore necessary. Recent
research has demonstrated that for snow-affected
locations the uncertainty in yield estimations [5-8] and
forecasting [9] can be reduced if snow loss models are
included. Despite this, snow loss models are often not
implemented in PV simulation software. The System
Advisor Model (SAM) has implemented the model
suggested by Marion et al. [5,6], but in other software,
snow is either not considered [10] or estimated by
constant soiling values [11] with little guidance on how
these constant values should be obtained.

Accurate  snow loss modeling is, however,
challenging, because the parameters influencing the snow
cover and resulting PV system loss are manifold. The
influential parameters range from weather conditions
(precipitation, temperature, irradiance, wind, etc.), to
installation and technology specific configurations (tilt,
module technology/orientation, objects obstructing snow
sliding etc.) [1,12] and type of snow [4]. Multiple snow
loss models have been suggested [4], but validation is
typically lacking [6]. To include all the parameters
influencing snow cover and resulting loss in a physical
model is challenging, and most suggested models for PV
snow loss are based on empirical correlations [4].

In our previous work [13], we show that the snow
loss model suggested by Marion et al. [3], where
empirical correlations are used to model natural snow
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clearing, performs better than models where snow loss is
directly estimated based on empirical correlations
between power loss and system and weather data. Ryberg
et al. [6] and van Noord et al. [14] also find acceptable
correlation between estimated and modeled snow loss
using the Marion model.

To estimate the snow coverage on PV modules, the
Marion model aims to predict: 1) presence of snow cover
on PV modules, 2) when snow is cleared off the modules,
and 3) the snow clearing rate. The separation of these
three processes in the model, enables improvement of the
model by developing the modeling of each process by
either using additional physical modeling or collecting
more empirical data. In the model, the snow clearing rate
is estimated with an empirical snow clearing coefficient.
Many different parameters related to system design and
weather/snow conditions are assumed to impact how fast
the snow is cleared [13]. Frameless modules [15], empty
space below modules [12] will promote sliding, for
instance. With more data from different system
configurations in different climates, we would get
improved understanding of which parameters that impact
the snow clearing rate the most, and consequently also
get better values for the snow clearing coefficient and its
potential variation.

In our evaluation of the model [13], we estimate the
snow clearing coefficient from the snow loss data for the
analyzed system, and we observe that for thin snow
covers, the natural snow clearing rate is faster than the
clearing rate of thicker covers [13]. By introducing
separate snow clearing coefficients for thin and thick
snow covers, reduced error in modeled snow loss is
achieved. This also seems to make the model more
general: when using snow depth dependent snow clearing
coefficients we get better results when we model losses
for systems with similar technical configurations with the
same coefficients compared to when we use one single
coefficient [16]. For transferability, it is important that
we can use the same empirical coefficients for systems
with similar technical configurations.

In addition to the challenge of accurate snow loss
modeling, there is a lack of established guidelines on how
to take snow losses into account when used in e.g. PV
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yield modeling or PV system dimensioning. Input data
for the snow loss estimation, temporal resolution of the
loss parameter, inter-annual variations and the impact of
climate change need to be discussed. As pointed out by
Marion et al. [5], typical meteorological year (TMY)
values are not sufficient to use as input in snow loss
modeling for PV yield assessments. Because snow is not
one of the parameters considered in the derivation of
TMY, TMY data does not necessarily represent a typical
snow year. Using a long time series of meteorological
data, enabling quantification of typical values and the
inter-annual variability is suggested instead [5]. It is,
however, important to use recent data. Because of climate
change, historical snow data might not be representative
for future snow conditions. In Norway, it is estimated that
climate change will lead to reductions in snow depth and
length of snow season, and an increase in snowline
elevation [17]. Temporal resolution of the snow loss
parameter is to our knowledge not much discussed in the
literature. In the simulation tool PVsyst, monthly constant
snow losses are used for PV simulations [11]. While this
can be sufficient in assessments of total yield, this will
not sufficiently describe the potential inter- and intraday
variation. This variation can be relevant in system
dimensioning, in particular for hybrid/battery systems.

In this work, we estimate the snow loss for a set of
PV plants in Norway. Two different system designs are
evaluated: commercial systems with modules installed
with low tilt angles on flat roofs, and residential systems
on tilted roofs. The aim of this analysis is to describe the
variations in both monthly and annual snow losses, with
respect to both time, location and system configuration,
and to discuss how this could be included in e.g. PV yield
modeling. The losses are estimated using both historical
data and simulations based on longer time series of
weather data and a modified adaption of the Marion snow
loss model.

2  METHODOLOGY

2.1 PV system data

Seven PV installations in Norway with a total
installed capacity of 1.6 MWp are analyzed. The
evaluated dataset is the same as the dataset used to
validate the modified snow loss model in [16], but some
of the data series are extended in time. Two different
system types are evaluated: residential systems on tilted
roofs, and commercial large-scale systems on flat roofed
buildings. The commercial systems have modules
installed with low tilt and east/west orientation. This
configuration is not optimal for total annual production in
Norway, but is commonly used on flat roofed buildings
to increase the packing density and reduce the seasonality
of the production profile. The modules are installed in
portrait orientation at the residential systems, and
landscape orientation at the commercial system. All the
PV modules are crystalline silicon. Apart from some
variations in exact orientation, and tilt for the residential
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systems, the installations of the same type are assumed
technically identical. Tilt and length of analysis period
for the systems are given in Table I.

Table I: Module tilt and length of analysis period for
analyzed systems

System ID Tilt Analysis period
Residential systems

R1 26 Jan 2019 — June 2021
R2 40 Jan 2018 — June 2021
R3 24 Jan 2019 — June 2021
Commercial systems

Cl 10 Jan 2015 — June 2021
Cc2 10 Jan 2017 — June 2021
C3 10 Jan 2018 — June 2021
C4 10 Jan 2018 — June 2021

The measured energy of the PV systems is collected
from the inverters. For the commercial systems, the
effective in plane irradiance and the module temperature
is measured by reference cells. The residential systems
have no on-site sensors. For all the locations, snow depth
and snow fall data are collected from seNorge.no [18]
and temperature and global horizontal irradiation (GHI)
data are collected from nearby weather stations [19].

As illustrated in Figure 1, the analyzed systems are
situated in three different geographic regions in Norway
(East, West and Central), and in three different Koppen-
Geiger (KG) [20] climate zones (Humid continental
climate (Dfb), subarctic climate (Dfc) and oceanic
climate (Cfb)). This gives variation in snow and weather
conditions between the locations. Figure 2 shows 16
years of snow depth data for the four different
combinations of geographic region and climate zone.

Koppen-Geiger climate zone
@ Humid continental (Dfb)
® Subarctic (Dfc)

@® Oceanic (Cfb)

Central

Figure 1: Location on the map for the analyzed systems.
The locations are labeled with geographic region and
climate zone is given by the marker color.
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Figure 2: Sixteen years of snow depth data for the four combinations of geographic region and KG climate zone in the

analyzed dataset.

2.2 Estimation of snow loss from historical PV data

To estimate historical snow losses from PV
monitoring data, it is necessary to get an accurate
estimate of what the energy production could have been
if there was no snow. This requires an accurate model
that considers all other losses of the PV system, and an
efficient method to separate snow losses from other
losses. To correctly estimate snow losses, it is especially
important to take into account other wintertime losses
such as losses caused by low irradiance, and high angles
of incidence. These types of losses are typical for high
latitude locations in the wintertime [21], and can
introduce increased uncertainty in PV system modeling if
not properly accounted for.

To estimate expected PV module power output for
the commercial systems, the effective irradiance
measured by the reference cells and the measured module
temperature are used as input to a single diode model in
pvlib python [22] to model PV module power output,
using the procedure described in [13]. For the residential
systems, detailed module data and onsite measurements
are not available. Effective irradiance and module
temperature are modeled in pvlib from measurements of
GHI and ambient temperature from nearby weather
stations. The GHI measurement is decomposed using the
Erbs model [23] to estimate diffuse irradiance, and the
Disc [24] model for direct irradiance. When modeling the
in plane irradiance for the systems, the Hay and Davies’
1980 model [25] is used to determine the in plane diffuse
irradiance from the sky. From the modeled in plane
global irradiance, the effective irradiance is calculated by
adding reflection losses using an incident angle modifier
based on the physical model described in [26]. The
module temperature is modeled using the PVsyst
temperature model [27]. The expected power output from
the modules is modeled using PVWatts [28].

The described PV module power output models do
not take into account all the relevant losses (all other
losses than snow-induced losses) of the systems. From
the energy performance index (EPI) of the system, the
ratio between measured and modeled energy, we observe
that the calculated value is below 1. Additionally, the EP/
has a systematic seasonal component suggesting higher
losses in the winter months, also in periods without snow.
We assume that the significant losses not accounted for in
the model, can be estimated with a constant and a
seasonal component. To accurately find the seasonal
components for the analyzed systems, seasonal trend
decomposition is performed on the daily EPI after
filtering out time periods with snow on the ground (which
introduces a non-systematic seasonal component).
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Seasonal trend decomposition is suggested by [29] as a
method to find and correct the seasonal component in PV
performance metrics. The deviation between 1 and the
median of the seasonally corrected EPI is used as an
estimate of the constant system losses. These two
components are then used to correct the modeled PV
module output to find the expected system output. By this
way aiming to take all other significant losses into
account, the snow loss is then estimated to be the
difference in expected system output and measured
system output in periods where the snow data suggests
snow on the ground.

An additional uncertainty in this methodology is that
snow cover on the irradiance sensors can lead to
underestimation of snow losses. To reduce this
uncertainty, the reference cell measurements from the
commercial systems were controlled and corrected by the
external GHI data. Pyranometers is expected to have
lower risk for full snow cover than reference cells,
because of the shape and elevation of the sensor, and
better ventilation and maintenance.

2.3 Modeling snow loss with the modified Marion model

In the Marion snow loss model [5] the presence of a
new snow cover is assumed to happen after snow fall.
The model further assumes that natural snow clearance
will happen during melting. Melting is predicted to
happen during the following conditions:

Tamb > Groa/m. (1)
Tamb is the ambient temperature, Gproa is the in plane
irradiance and m is an empirically defined value of -80
W/(m? °C). During melting, the snow will be cleared by
sliding or direct melting on the modules [4]. To estimate
the reduction in snow coverage in the melting period,
measured in fractions of the system height, the tilt of the
modules and an empirical snow clearing coefficient (sc)
is used:
Snow slide amount = sc * sin (tilt). 2)

Based on these assumptions, the snow coverage on
the modules is estimated, and the corresponding power
loss calculated. If a module substring is partially covered
by snow, the power output is assumed to be zero. This
way, it is taken into account whether the modules are
installed in portrait or landscape orientation. The pvlib
python [22] implementation of the Marion model is used
in this work to model the relative snow loss. To estimate
the absolute energy loss, the modeled relative snow loss
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is multiplied with the modeled energy output of the
system, modeled using the procedure described in
Section 2.2.

In the development of the snow loss model, Marion et
al. found sc to be 0.20 [5] for roof mounted systems. This
value is the default sc in the implementation of the model
in pvlib python [22] and the PV modeling software SAM
[6]. The snow clearing coefficient is, as previously
discussed, expected to depend on different system and
module designs [13], because technical aspects can either
promote or obstruct natural snow clearing [1]. In our
evaluation of the model, we found that snow clearing is
slower for the systems we have analyzed [13,16]
compared to the validation systems the Marion model is
based on. A possible explanation for the difference is
higher roof interference for the systems that we have
evaluated. In our evaluation of the model we also find
that the rate of snow clearing is influenced by the
thickness of the snow cover [13]. We therefore add a
small modification to the Marion snow loss model by
introducing a snow depth dependent sc. Because the
dataset in this work is the same as in [16], we use the
snow depth dependent snow clearing coefficients from
[16] that gave the best modeling results. As also
described in [16], we use snow depth data from the
ground to separate between thin and thick snow covers
for the commercial system where there is little sliding.
For the residential systems where there is more sliding
and where snow depth data from the ground are less
representative, we use cumulative snow fall data as an
indicator for snow cover thickness.

2.4. Simulation of snow losses for longer time series

To simulate losses for the analyzed systems over
time, to get improved understanding of typical losses, we
use long time series of weather and snow data to model
snow losses, as proposed by [5]. GHI and ambient
temperature data for all the locations from the time period
2005-2016 and the ERAS5 database is collected from
PVGIS [30]. The expected module power output for all
the systems is modeled as described for the residential
systems in section 2.2. System loss of 7 % is added using
the PVWatts system loss function with default loss values
for mismatch, wiring, LID, connections and name plate
rating [28]. Snow losses are then modeled using the same
procedure as described in 2.3.

3 RESULTS

3.1 Snow loss estimated from historical PV data

Figure 3 shows the annual historical snow loss for the
analyzed systems (both system configurations) estimated
from historical PV data. The loss is given relative to the
mean expected annual yield. The mean value is chosen to
avoid variations in the loss caused by variation in the
total annual irradiation. We observe large variations in
snow losses from year to year, and between different
systems.

As expected, we observe that weather, system design
and climate on snow losses seem to impact the snow
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losses. The inter-annual variation in snow losses for the
systems, as well as the variation in losses between
systems located in the same climate zone, but in different
locations (C1 and C3), can be explained by typical
variations in weather between different locations and
different years. C3, R1 and R2 are located in the same
area, but R2 has lower loss than R1 every year, and C3
typically has higher loss than both. This could be
explained by the impact of tilt on the snow clearing, as
snow clearing is inversely proportional with tilt. C1 and
C2 have the same technical configuration and
experiences the same weather as they are co-located, and
their estimated losses are very similar. C4 located in
oceanic climate typically has lower losses than the
identical systems (C1-C3) located in humid continental
climate. R3, located in a subarctic climate, typically has
higher losses than R1, which has almost the same tilt but
is located in a humid continental climate.

Commercial systems
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Figure 3: Annual snow loss for the analyzed systems,
estimated from PV data. The losses are given relative to
mean expected annual yield for the analysis period. The
systems in humid continental climate is plotted in blue,
green represents oceanic climate and orange represents
subarctic climate.

Figure 4 shows the monthly losses for all the full
years in the analysis period. Large variations in the
monthly loss value are observed for several of the
months. For most of the datasets the loss is typically
increasing during late autumn, reaching its highest peak
in midwinter, before it decreases in the spring. The snow
data do, however, not follow the same trend. Typically,
the locations have the most snow in the late winter
months, but this also corresponds with higher
temperatures.
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Figure 4: Monthly snow loss for the analyzed systems in the analysis period (given in the subfigure title), estimated from
historical PV data. The estimated losses for each month is plotted using a boxplot to show the interannual variation. The
box extends from the first to the third quartile values of the monthly loss data, with a line on the median. The whiskers
extend to maximum 1.5 multiplied the interquartile range. Outliers are given as circles.

3.2 Simulated snow loss

Based on the results presented in Figure 3 and Figure
4, it is not always clear what would be the best estimate
for typical annual and monthly snow losses for the
analyzed systems. Especially for the locations with large
snow losses, there can be large variations for the same
month between different years. With potentially large
variations from year to year, estimating typical snow loss
for short time series might give an output that is not
necessarily representative for the system configurations
and the location. Based on this, selecting a representative
snow loss value for e.g. a PVSyst simulation seems
challenging, as long time series for different system
designs and locations would be needed.

Figure 5 and Figure 6 show the correlation between
snow loss estimated from PV data and modeled snow loss
using the modified Marion snow loss model for
respectively annual and monthly losses. Both on the
monthly and annual time scales we observe a linear
relationship between modeled losses and losses estimated
from historical PV data, indicating that the model can be
used to predict the losses on both time scales. Some
uncertainty in the prediction can, however, be expected.
As seen in the figures, there are some deviations between
modeled loss and loss estimated from PV data.

In Figure 7 and Figure 8 the simulated monthly and
annual snow losses for the analyzed systems using 12
years of irradiation and temperature data from PVGIS is
presented. With the longer time series, we get a better
understanding of what is typical losses, and what the
potential variation and the extreme values could be. With
the longer time series, we now see for all of the systems
that the losses are highest during mid-winter. Some of the
systems get higher monthly median losses than what we
observed in Figure 4. This suggests that the years in the
analysis period used to estimate losses from historical
data are not necessarily years that represent the long-term
trend.

Using longer time series and modeling could also
enable estimation of snow losses for locations where PV
data is lacking. Additionally, future snow losses could be
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estimated using output data from climate models giving
data for the future. To avoid the impact of extreme
values, we propose to utilize the median value of the
modeled losses as an estimate of the monthly/annual
snow losses in yield simulations.
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Figure 5: Annual modeled absolute loss compared to
loss values estimated from historical PV data.
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Figure 6: Monthly modeled absolute loss compared to
loss values estimated from historical PV data.
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Figure 7: Monthly simulated losses for the analyzed systems, based on 12 years of PVGIS data and the modified Marion
snow loss model. The simulated losses for each month is plotted using a boxplot to show the interannual variation. The box
extends from the first to the third quartile values of the monthly loss data, with a line on the median. The whiskers extend to
maximum 1.5 multiplied the interquartile range. Outliers are given as circles.

Using simulations to estimate PV systems snow loss
could in addition to the loss value and estimation on
interannual variability, also give realistic production
profiles on daily and hourly timescale, which is useful in
system size optimization and when building synthetic
data series or adding synthetic performance loss for
testing of e.g. fault detection algorithms [29]. The
uncertainty in the modeling on high time resolutions is
likely too high for e.g. monitoring purposes where the
modeled PV output should match measured data, but to
describe how snow losses vary within a day and from day
to day, the modeling is useful.
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Figure 8: Simulated annual snow loss for the analyzed
systems, based on 12 years of PVGIS data and the
modified Marion snow loss model. The losses are given
relative to mean expected annual yield for the analysis
period.

4 CONCLUSIONS

In this work, we estimate annual and monthly snow
loss for a set of PV plants in Norway. In both annual and
monthly losses, we observe large interannual variations,
and we see that systems in colder climates typically have
higher losses than systems in warmer climates. We also

observe that higher tilt gives reduced losses, confirming
previous studies. A modified adaption of the Marion
snow loss model where snow depth is considered in the
snow clearing modeling is used with 12 years of weather
data to simulate losses for a longer time series, to get
improved understanding on the potential interannual
variation in snow losses. We find that snow loss
modeling is a useful tool for estimating monthly or
annual snow losses for use in yield modeling when long
time series of snow loss data for a given type of system in
a given location is not available.
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