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Preface
This thesis is submitted in partial fulfillment of the requirements for the

degree of Philosophiae Doctor at the University of Oslo. The research presented
here is conducted under the supervision of Professor Magne Thoresen and
Professor Arnoldo Frigessi at the Oslo Center for Biostatistics and Epidemiology,
Faculty of Medicine, University of Oslo.

The thesis is a collection of three papers, presented in chronological order.
The common theme to them is the representation and utilization of temporal
and relational hospital Electronic Health Records (EHR) data. The papers are
preceded by an introductory chapter that relates them together and provides
background information and motivation for the work. The first paper is a joint
work with Dr Hadi Fanaee Tork. The other two papers are joint work with Dr
Signe Søvik, Dr Torsten Eken and Dr Silje Bakken Jørgensen.
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Summary

Background

Electronic Health Records (EHR) data contain the medical and treatment
history of patients, and have become widely adopted in hospitals in the
last decade. Hospital EHR data collected during patient visits contain rich
information covering the disease history and progression, medication, procedures
and diagnoses. The availability of large amount of patient data has brought new
opportunities in several research fields, including medicine, epidemiology and
method developments using statistical and artificial intelligence tools. In spite
of the exciting opportunities, using EHR data for research is challenging. EHR
data is inherently multi-modal, longitudinal and noisy. Some EHR data with
timestamps are also relational which can reveal additional structural information
about the system. Effective extraction and representation of hospital EHR data
is a first step to understand the complexity of hospital environment and improve
quality of care.

Aims

There are two closely related aims of the thesis. As EHR data exist in various
formats, there is the need for specific tools for each type of EHR data. The first
aim of the thesis is therefore to develop and experiment with different statistical
and computational methods to extract, integrate and represent information from
hospital EHR data. In this thesis, I explore data mining algorithms (dynamic
time warping), machine learning classification algorithms, network analysis on
sequential relational data, regression problems, prediction and variable selection
algorithms. The second aim is to demonstrate the broad scope of applications of
EHR data in the clinical setting. I used two very different hospital EHR datasets:
the MIMIC III database from the US and the AHUS data from Norway. The
applications are diverse, for instance, clinical event classification and prediction
(paper I and III) could be used for patient risk stratification and early warning.
Understanding patient transfer patterns and associated risk factors (paper II)
could improve hospital management and logistic efficiency.

Paper I

Temporal EHR data is challenging to work on, as the time series for each
clinical feature may be measured at different time frequencies, some more often
(e.g. heart rates) and some less often (e.g. test results). In this paper, we propose
a combination of dynamic time warping (DTW) and tensor decomposition to
represent the unequal time series such that subsequent classification tasks can
be performed. The representation feature matrix is then fed into a classifier
such as logistic regression or support vector machine to carry out clinical event
classification. We demonstrate our method on two cohorts extracted from
an openly accessible database, the MIMIC III, aiming to classify in-hospital
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mortality. Our method yields promising results compared to other machine
learning algorithms commonly used for this application.

Paper II

This paper study the hospital patient transfer patterns at both system
(clinical department) level and individual patient level using EHR. Understanding
intrahospital transfer pattern is a crucial step for hospital capacity management
and infection control. As far as we know, this is the first study that
investigates different types of transfers in a variety of departments, both surgical
(gastrointestinal surgery and orthopaedics) and medical (gastroenterology and
neurology). This is also the first study on patient transfer pattern in a Nordic
hospital. With the detailed description of patient movements, the paper
illustrates the heterogeneity among different types of patients. We quantify
the types and frequencies of transfers, and extract the most common ones at
the department level. In addition, we associate number of transfers with clinical
risk factors to quantify the risk of excessive transfers. These results are relevant
for evidence based method development using simulations to model patient
flow, capacity management and infection control, as we show the complexity of
hospital systems and the necessity to distinguish different categories of patients.
This paper complements the thesis by providing detailed examination of an
interesting type of sequential relational EHR data: the location transitions. It
provides additional knowledge by quantifying how different patients move within
a healthcare facility using graph theory and network analysis.

Paper III

This paper presents a novel framework for predictions in a healthcare setting,
with potential applications in hospital operation optimization using EHR. We
introduce the term "intervenable prediction" in this paper, which is a two step
approach that balance interpretability and prediction accuracy. This serves as
the basis for possible intervention strategies. In the first step, a penalized linear
regression model that induces sparsity is fitted to the data, with the aim to select
variables (risk factors) that can predict the outcome reasonably well. Then in
the second step, we use the residuals from the previous step as the new response,
and use the lagged responses as the new predictors to fit a second regression
model. In this way, the model captures information in both the explanatory
variables and the hidden trend in the response itself. We illustrate the method
with simulation studies using both purely synthetic data and real EHR data
from a Norwegian hospital. We demonstrate the different scenarios in which our
method could improve the prediction using the two step approach, and effects
of possible intervention strategies. The method can be easily extended to more
complex models beyond linear models.
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Sammendrag

Bakgrunn

Elektronisk pasientjournal (EPJ) har i stor grad blitt tatt i bruk på sykehus i
løpet av det siste tiåret. Sykehus-EPJ-data inneholder rik informasjon angående
diagnoser, sykdomshistorie og sykdomsprogresjon, medisinering og prosedyrer.
Tilgjengeligheten av store mengder pasientdata har gitt nye muligheter innen
flere forskningsfelt, inkludert medisin, epidemiologi og metodeutvikling innenfor
statistikk og kunstig intelligens. Til tross for de spennende mulighetene, er
det utfordrende å bruke EPJ-data til forskning. EPJ-data er multimodale,
longitudinelle og støyfylte. Enkelte typer EPJ-data med tidsinformasjon er også
relasjonelle og kan avsløre strukturell informasjon om sykehussystemet. Effektiv
uthenting og organisering av sykehus-EPJ-data er et første skritt i retning av å
forstå kompleksiteten i et sykehussystem og å forbedre kvaliteten på omsorgen.

Formål

Avhandlingen har to nært beslektede formål. Ettersom EPJ-data finnes
i ulike formater, er det behov for spesifikke verktøy for hver type EPJ-data.
Det første formålet med oppgaven er derfor å utvikle og eksperimentere med
ulike statistiske og beregningsorienterte metoder for å trekke ut, integrere og
organisere informasjon fra sykehus-EPJ-data. I denne avhandlingen utforsker
jeg data mining-algoritmer, klassifikasjonsalgoritmer innenfor maskinlæring,
nettverksanalyse på sekvensielle relasjonelle data, samt regresjonsproblemer og
prediksjons- og variabelseleksjonsalgoritmer. Det andre formålet er å demonstrere
det brede anvendelsesområdet av EPJ-data i en klinisk setting. Jeg bruker to
svært forskjellige sykehus-EPJ-datasett: MIMIC III-databasen fra USA og et
datasett fra Akershus Universitetssykehus (AHUS) i Norge. Anvendelsene er
forskjellige. For eksempel kan klassifisering og prediksjon av kliniske hendelser
(artikkel I og III) brukes til å stratifisere pasienter i forhold til risiko og til tidlig
varsling. Å forstå pasientoverføringsmønstre og tilhørende risikofaktorer (artikkel
II) kan forbedre sykehusorganisering og logistikk.

Artikkel I

EPJ-data registrert over tid er utfordrende å jobbe med, ettersom tidsseriene
for hver klinisk funksjon kan måles ved forskjellige tidsfrekvenser, noen oftere
(f.eks. hjertefrekvens) og noen sjeldnere (f.eks. testresultater). I denne artikkelen
foreslår vi en kombinasjon av «dynamic time warping» og tensordekomposisjon
for å representere ulike tidsserier slik at påfølgende klassifiseringsoppgaver kan
gjennomføres. Den resulterende egenskapsmatrisen mates deretter inn i en
klassifiseringsalgoritme, som logistisk regresjon eller «support vector machine»
for å gjennomføre klassifikasjon med hensyn på for eksempel kliniske hendelser.
Vi demonstrerer metoden vår på to kohorter hentet fra en åpent tilgjengelig
database, MIMIC III, med sikte på å klassifisere dødelighet på sykehus. Metoden
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vår gir lovende resultater sammenlignet med andre maskinlæringsalgoritmer som
vanligvis brukes for denne typen anvendelser.

Artikkel II

I denne artikkelen studerer vi mønstre for overføring av pasienter på både
systemnivå (type avdeling) og på individuelt pasientnivå ved bruk av EPJ. Å
forstå overføringsmønstre innen sykehus er viktig for sykehuskapasitetsstyring og
infeksjonskontroll. Så vidt vi vet er dette den første studien som undersøker ulike
typer forflytninger ved forskjellige avdelinger, både kirurgiske (gastrointestinal
kirurgi og ortopedi) og medisinske (gastroenterologi og nevrologi). Dette
er også den første studien som behandler pasientoverføringsmønstre på et
nordisk sykehus. Med den detaljerte beskrivelsen av pasientbevegelser vi har
tilgang til, illustrerer artikkelen variasjonen mellom ulike typer pasienter. Vi
kvantifiserer typer og frekvenser av overføringer, og henter ut de vanligste typene
på avdelingsnivå. I tillegg studerer vi sammenhengen mellom antall overføringer
og kliniske risikofaktorer for å kvantifisere risikoen for unødvendige / overdrevne
overføringer. Disse resultatene er relevante for evidensbasert metodeutvikling
ved bruk av simuleringer for å modellere pasientflyt, kapasitetshåndtering
og infeksjonskontroll, da vi viser kompleksiteten i et sykehussystem og
nødvendigheten av å skille ulike kategorier av pasienter. Denne artikkelen
utfyller avhandlingen ved å gjøre en detaljert undersøkelse av en interessant type
sekvensielle og relasjonelle EPJ-data: overføring mellom forskjellige lokasjoner.
Den gir ytterligere kunnskap ved å kvantifisere hvordan ulike pasienter beveger
seg innenfor en helseinstitusjon ved hjelp av grafteori og nettverksanalyse.

Artikkel III

Denne artikkelen presenterer et nytt rammeverk for prediksjoner innen
helsevesenet, med potensielle anvendelser innenfor optimalisering av sykehusdrift
ved bruk av EPJ. Vi introduserer begrepet "intervenerbar prediksjon" i denne
artikkelen. Dette er en to-trinns tilnærming til prediksjon som balanserer
tolkbarhet og prediksjonsnøyaktighet. Dette fungerer som grunnlag for
mulige intervensjonsstrategier. I det første trinnet blir en regularisert lineær
regresjonsmodell tilpasset dataene. Denne modellen søker å velge ut variabler
(risikofaktorer) som kan forutsi utfallet rimelig godt. Så, i det andre trinnet,
bruker vi restleddene fra forrige trinn som den nye responsen, og de forutgående
responsene som nye prediktorer for å tilpasse en ny regresjonsmodell. På denne
måten fanger modellen opp informasjon både i forklaringsvariablene og den
skjulte trenden i selve responsen. Vi illustrerer metoden med simuleringsstudier
ved bruk av både rent syntetiske data og ekte EPJ-data fra et norsk sykehus. Vi
demonstrerer de forskjellige scenariene der metoden vår kan forbedre prediksjonen
ved å bruke to-trinns tilnærming, og effektene av mulige intervensjonsstrategier.
Metoden kan enkelt utvides til mer komplekse modeller utover de lineære.
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Chapter 1

Introduction
Electronic Health Records (EHR) data contain the medical and treatment

history of patients, and have become widely adopted in hospitals in the
last decade. Hospital EHR data collected during patient visits contain rich
information covering the disease history and progression, medication, procedures
and diagnoses. Modern hospital EHR databases such as the MIMIC III database
and eICU initiative can make data on tens of thousands of patients available to
researchers. The availability of large amount of patient data has brought new
opportunities in several research fields, including medicine, epidemiology and
method developments using statistical and artificial intelligence tools.

In spite of the exciting opportunities, using EHR data for research is
challenging. Initially recorded for administrative and billing purposes instead of
research, EHR data quality is generally insufficient to answer research questions
without great amount of pre-processing. EHR data is inherently multi-modal
(i.e. recorded in many formats), longitudinal (measured over time) and noisy.
Some EHR data with timestamps are also relational which can reveal additional
structural information of the system. Effective extraction and representation
of hospital EHR data is a first step to understand the complexity of hospital
environment and improve quality of care.

There are two objectives of this thesis. The first objective is to explore
different statistical and computational methods to extract, integrate and represent
information from temporal and relational hospital EHR data. Since EHR exist in
various formats, there is the need for using different tools for each data type. In
this thesis I explored data mining algorithms (dynamic time warping), machine
learning classification algorithms, network analysis on sequential relational data,
regression models and prediction problems as well as variable selection algorithms.
Some focus on the comparison and development of methods while others focus
on the data exploration and interpretation. The field of medical informatics is
rapidly expanding and the use of EHR is fundamental. It is necessary to be
equipped with skills from various fields (statistic, computer science, medicine)
and pick the most appropriate one to solve the problems at hand.

The second objective is to demonstrate the broad scope of potential
applications of EHR data in the clinical setting. For instance, clinical event
classification and prediction (paper I and III) could be used for patient risk
stratification and early warning. Understanding patient transfer patterns and
associated risk factors (paper II) could improve hospital management and logistic
efficiency. With the ongoing digitalization process, more data sources are
becoming available and novel applications will emerge as a consequence.
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1. Introduction

This thesis contains three papers. In Paper I, I illustrate the use of data
mining algorithms on heterogeneous unequal length temporal EHR data to
extract features from ICU patients, and the classification performance using
binary classification algorithms. A wide range of algorithms for this type of data
are compared. In Paper II, I use methods from network analysis to investigate the
patient flow in a large regional hospital in Norway using EHR data. Compared
to other studies that analyze patient flow, this paper includes time information
(work day, week in the year) and additional patient level risk factors to identify
the heterogeneity in different hospital departments. In paper III, I develop a
method for intervenable prediction in a hospital environment and demonstrate
the use-case using aggregated EHR data at the ward level. This paper is a proof
of concept that can be extended by using various models and applied in different
contexts. Two datasets have been used to illustrate the methods: the publicly
available MIMIC III critical care database (Johnson2016) from Boston, United
States; and data from Akershus University Hospital in the Greater Oslo Region,
Norway.

The thesis is structured as follow. Chapter 2 provides a brief introduction of
the EHR data, which covers the history and current state of adoption, its use in
daily care and research and the challenges in both scenarios. Ethics related to
EHR use is also introduced in this chapter. In Chapter 3 the two datasets used
in the papers are introduced. Chapter 4 states the aim of the thesis. Chapter 5,
6 and 7 provide the background and introduction of paper I, II and III, followed
by the Chapter 8 that summarizes all three papers. Chapter 9 contains the
discussions: first I discuss the topics that are common in all three papers, then
I discuss each paper in detail separately. In the end, I conclude the thesis in
Chapter 10.

2



Chapter 2

Electronic Health Records
Electronic Health Records, or EHR data, are the digital version of patient

records. EHR data contain the medical and treatment history of patients that
can be used to share information within and across healthcare providers. EHR
data are collected when a patient encounters the healthcare system, either in
primary care services such as General Practitioner (GP) and community care;
or specialized care services such as hospitals.

EHR data can be broadly categorized into the following five categories based
on their functionalities [36].

1. Health information and data: symptoms, reasons for appointment, clinical
notes, vital signs, treatment outcomes, medical history, diagnoses.

2. Clinical decision support system: drug-drug interactions, drug-allergy
alerts, alerts to critical laboratory values, clinical guidelines.

3. Order-entry and result management: medication lists, prescriptions, lab
test results

4. Image: radiology test images and reports

5. Administrative: finances and billing, administrative patient data

In this chapter I will first give a brief introduction to the EHR data in daily
care: the development and current state, opportunities and challenges associated
to the use of EHR. Then I will cover the major research topics that utilize EHR
data. The ethical issues related to the use are discussed in chapter ?? at the
end of the thesis.

2.1 Current state of EHR systems

EHR systems falls under the scope of Digital Health or Healthcare Information
Technology (HIT). The development of HIT and EHR adoption differs from
country to country. In the US, hospitals started adopting IT systems as early
as in the 1960s [2], however EHR only became widely installed and used
after 2009, following the Health Information Technology for Economic and
Clinical Health Act (HITECH Act) [18, 33] )(United States Public Law, Health
Information Technology for Economic and Clinical Health (HITECH) Act of
2009. Section 13410(d)) in the Obama Administration. In 2017, 96% of the US
hospitals and 86% of the physician offices had EHR systems. Among Asia-Pacific
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2. Electronic Health Records

countries, some have mature systems (Korea, Japan, Common Wealth regions
such as Singapore and Hong Kong) while others are experiencing a high rate
of development. China, for example, has witnessed an increase from 18.6% to
85.3% (2007-2018) in hospital EHR adoption [34]. European hospitals on average
have a high EHR adoption rate (over 95% hospitals in 2015). Some countries
had prompted EHR strategies and plans since early 1990s (Northern Europe),
and some started the process in the last decade (Italy, 2010) [7].

In Norway the EHR systems are being used in three levels in the healthcare
system: Primary healthcare (GP, nursing homes and community care), Specialist
healthcare (hospitals) and National Summary Care Record [13]. Among the
specialist healthcare facilities, three regions out of four (Southern-Eastern,
Northern and Western Region) use the Norwegian solution DIPS, one (Central
Region) uses Doculive EPJ.

2.2 EHR in daily care

The biggest motivation for EHR use in healthcare services is to share complete,
secure patient information between practitioners. As more and more hospitals
and healthcare workers began using EHR systems in the last decade, there has
been a mixed view on EHR systems in day-to-day use.

In a survey [36] of over 5000 GPs (general practitioners) in European countries,
over 90% use EHR for the following functionalities: prescription and medication,
diagnosis, lab test results, medical history and clinical notes and drug-allergy
alerts. The benefit of EHR usage falls into three major categories:

• Information management: use of EHR allows practitioners to have fast
access to patient information such as medical history and allergy. It also
allows faster reimbursement process.

• Clinical communication: use of EHR provides better coordination across
different medical teams, for example, drug prescription between physician,
pharmacist and nursing staff. It also allows information share across
different providers.

• Decision support and error reduction: some EHR systems have embedded
algorithms to check drug allergies, drug dosing errors as well as drug-
drug interactions. This is particularly useful to avoid harm caused by
prescription.

There are also concerns and challenges for making full use of EHR [2]. For
physicians, the daily added workload for learning and using the EHR system
can have a negative impact on the user experience. Maintenance issues and tool
failures can also be prohibiting. EHR systems can also be expensive to install
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and maintain. As for the cost reduction brought by EHR for hospitals and for
the whole healthcare system, the evidence is mixed.

2.3 EHR in research

The availability of EHR data provides a great data source for research in
multiple fields, such as medicine, clinical practice, public health and epidemiology,
methodology and model development in statistics as well as algorithms and data
management in computer science. In this section, I first give a short introduction
to the applications of EHR in two research fields: epidemiology and machine
learning; then I discuss some of the challenges of using EHR in research.

2.3.1 Epidemiological research

There are several advantages of using EHR for epidemiological research.
Thanks to the large sample sizes, researchers can look at smaller subgroups; in
addition, since data already exist in the databases, it is less expensive and time
consuming to follow up a cohort [10].

The direct impact of the large volume of EHR data becoming available is
that now it is possible to re-evaluate prior findings from smaller studies [12]
or to inspire new research directions [4, 41]. For instance, new metrics can be
proposed and evaluated with the rich data source [15, 20]. The most common
use of EHR in epidemiological research is to discover and evaluate associations
between risk factors and outcomes. Such examples include biomarker-disease
associations [38], obesity with acute kidney injury [9], obesity with one-year
survival [56], sex with clinical outcomes in sepsis patients [54] and many more.
Furthermore, some fundamental causes of disease are also available or can be
included in EHR: social, behavioral, environmental factors, alcohol and tobacco
use, stress and physical activity [10]. This facilitates research that link clinical
outcomes with environmental and social factors, such as socioeconomic status
with sepsis mortality [43]. Another potential use of EHR is to study stigmatized
conditions where participant recruitment is difficult, such as HIV treatment [41],
HIV patient and mental health [44] and other mental health outcomes [52].

2.3.2 Machine learning using EHR

During the last decade, EHR data has provided unprecedented opportunities
for researchers in the machine learning community to develop and test algorithms
in the last decade. The biggest advantage of EHR data is the volume: in both the
large size of study cohort, and the number of variables as input and outcome. For
instance in the most popular open source MIMIC-III database [29], researchers
can build models to perform mortality prediction, length-of-stay predictions, 30
day re-admission predictions and acute kidney injury predictions among many
other modeling tasks, using a mixed bag of input data including vital sign time
series, demographics, lab results and clinical texts.
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The most common learning tasks for machine learning using EHR are disease
detection or risk predictions, where the goal is to develop models to map EHR
data to the outcome target. This can be done with statistical models (e.g.
generalized linear regressions such as logistic regression; penalized regressions),
traditional machine learning algorithms (e.g. Support Vector Machine, ensemble
methods, Random Forests) or deep learning depending on the input data, yet
it is at its core a supervised learning problem. Mortality prediction (in- or
out-of-hospital) has been the target outcome for various benchmark studies using
MIMIC-III database [22, 28, 40]. Some clinical adverse events are also of interest,
such as hospital acquired infection after surgery [26, 37], seizure [1], myocardial
infarction, sepsis onset (see [19] for a complete list of outcome of interest). The
input data are typically heterogeneous: they may contain both static (such as
age, sex, ethnicity) and temporal (vital signs) data; and they could be both
structured (in a table with pre-specified fields) or unstructured texts. The data
being multi-modular implies that some data representation (linear or non-linear
transformation) is necessary before a discriminatory task (classification) takes
place: for example, Natural Language Processing (NLP) is essential when clinical
text is included as input.

A few topics other than risk prediction are also getting attention. Com-
putational phenotyping embeds EHR data (such as clinical text, medication)
to clinical concepts, or phenotypes of interest [3, 46]. This can be done with
both classical unsupervised learning algorithms (Principal Component Analysis,
K-means clustering), matrix and tensor methods [23, 24] as well as deep learning
[53]. Given the importance of data security and privacy protection for using
health data, algorithms that enable privacy preserving learning to de-identify
EHR data or generate synthetic records for research have been proposed in recent
years [5, 6, 8, 35].

The evaluation of machine learning algorithms using EHR is typically through
their prediction or classification accuracy. Area under receiver operating curve
(AUROC), positive predictive value, precision-recall curve (AUPRC) are the
most commonly used metrics for binary classifications. There is no single best
algorithm that outperforms the others in all situations and datasets, sometimes
logistic regression model is among the best performing classifiers [22, 28, 40].

2.3.3 Challenges

Among the many challenges related to using EHR for research, data quality
challenge is arguably the fundamental one. First of all, EHR are collected during
patient encounters with the healthcare system, which suggests that EHR contain
more complete data for the ill than the healthy. Lack of data from the healthy
population could lead to biased conclusions. EHR systems nowadays have not
existed long enough to store many years of data that cover different aspects
of a patient. Fortunately this could potentially be solved via linkage to other
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registries [10].

Secondly, missing and erroneous data is very common in EHR even for
patients whose data have been collected. Measurements could be taken only
when physicians think it is necessary, hence we might miss some information
[19]; some variables are difficult to observe, such as patient compliance with
prescriptions and interventions [55]; diagnostic codes could be missing due to
changes in disease definition like updates from ICD-9 to ICD-10 codes [55].
Outcome labels could be unavailable or misleading, for example, diagnostic
codes could imply that a patient was screened instead of diagnosed [17]. A few
solutions are 1) develop software to facilitate accurate data entry; 2) use more
than one database to construct a patient history and verify outcome definitions;
3) understand the cause of missing: is the data missing completely at random
(MCAR), missing at random (MAR) or missing not at random (MNAR), and
choose methods that can deal with each type of missingness accordingly [16].

Apart from data quality challenges, there are also a few analytical challenges.
Bias is a direct consequence of incomplete data. If data used to develop predictive
models do not represent the population where the model will be deployed, this
model is hardly a correct one. Researchers generally would validate the results
on the test data, but rarely on external data, like another hospital [19]. This
is partly because there are very few open, multi-center EHR data for research
purposes. In order for models to generalize, there is a need for collaborated
research using more data sources. Causality analysis and modeling using EHR
is also not an easy task. Using existing data collected in the past suggests that
the study is observational instead of experimental, where the latter is considered
as the golden-standard to draw causal conclusions. On top of these comes the
interpretation of machine learning models, which is hard to achieve when the
model involves complex architectures like deep learning. Building interpretable
machine learning models that can carry out causal inference is a particularly
active research field [11, 49].

2.4 Ethics

I will introduce the ethical issues related with EHR use in this section. The
first topic is the privacy, consent and data security; and the second topic is the
responsible use of EHR in machine learning research.

2.4.1 Privacy, consent and data security

Patient data use (including EHR) for direct care such as legitimate clinical
treatment and audit purposes is seen as the primary use of health data and do
not require consent [47]. On the contrary, research is considered as the secondary
use of health data and require stricter regulations. Consent should be obtained
from individual patients, and the research itself should be in line with the public
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interest [47]. According to [30, 31, 42], patients are generally supportive about
their data being used in research. Nevertheless, there are also concerns. One of
the most common concerns is that patients fear that they may not have control of
who have access to their data and for what purpose[33]. For example, in a study
patients expressed their wish to not share data with pharmaceutical companies
[21]. They might fear that the data could be linked to other personal data:
disclosure of health information could lead to undesired predictive marketing,
discrimination in employment, denial of certain insurance coverage [14]. Patients
might also have concerns about the competence of the healthcare providers for
data protection from attacks [27].

There are a few ways to facilitate the secure use of health data. Legal
requirements could reduce the risk of unauthorized disclosure, such examples
are the HIPAA Privacy Rule [48], the HITECH Act (2009), the Federal Policy
for the Protection of Human Subjects in the United States and the General
Data Protection Regulation (GDPR) in EU and EEA (reference 4,5,6 in [33]).
There should be consequences for data breaches in the forms of civil and criminal
penalties [33]. Encryption and access limits to personnels are also ways avoid
unauthorized disclosure. In order to reduce the risk that an individual patient
might be identified, data holders could remove pseudonymisation code so that
re-identification becomes impossible, and use secure computing systems that do
not allow the data to be downloaded outside the system[47]. Education on data
security should be provided to personnels handling collection, data entry, data
management and storage by IT professionals as well as end-users to promote
secure use of patient data[33].

2.4.2 Responsible machine learning using EHR

A few considerations need to be taken in order to use EHR in a research
in a responsible way, especially when developing machine learning algorithms.
The clinical relevance of the objective should be considered carefully: in simple
words, ask good questions and solve actionable questions[51]. If developing an
in-hospital mortality prediction tool does not do better than what the clinicians
already know, then this research question could be more specific or revised.
Similarly, if a prediction model for death does not allow for any intervention, or
the strategy is constrained by resources, then this is not actionable intelligence.
Developing methods and algorithms that are clinically relevant and actionable
requires stakeholder engagement, and physicians must guide, oversee and monitor
the adoption of ML/AI solutions[49, 51]; meanwhile solutions that take resource
constrains into account could be a promising direction[45].

From the technical point of view, the explanability of the algorithms, data
validity and bias induced by either algorithm or data all have ethical implications.
These aspects remain challenges in developing useful and fair ML/AI tools for
healthcare and beyond, as discussed in the previous section and in [25, 32, 39, 50].
In addition, the reproducibility of results [22, 40] and high standard reporting
should also be take into account in scientific research. There are challenges and
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great opportunities in EHR and ML/AI research, and ethical considerations
must always be prioritized: do no harm.
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Chapter 3

Data sources

3.1 MIMIC III data

The Medical Information Mart for Intensive Care III, or MIMIC III [2] is a
large, freely-available single center database that contains deidentified data on
patients admitted to critical care units at Beth Israel Deaconess Medical Center,
Boston, USA between 2001 to 2012. The data can be accessed and downloaded at
https://mimic.mit.edu upon the completion of a privacy protection course.

The data types include, but are not limited to structured data such
as temporal physiological signs, laboratory test results, static demographic
information such as age and gender as well as unstructured data such as free
text clinical notes. In this thesis I will focus on the structured temporal and
sequential data. Recent works on reproducible studies using MIMIC-III data
make it possible to extract consistent patient cohorts and features. In Paper I,
I selected two cohorts from MIMIC III database for the experiments, and the
selection criteria is in line with [1].

3.2 AHUS data

The AHUS data is a large EHR dataset provided by Akershus University
Hospital (Akershus Universitet Sykehus), Norway. Akershus University Hospital
is a tertiary hospital serving a population of 560,000 in the Greater Oslo Region.
The use of data was approved by the Regional Committee for Medical and
Health Research Ethics (Ref.no. 33192) and was considered exempt from
patient consent requirements by the institutional Data Protection Officer (Ref.no.
2019/56). Pseudonymized data was extracted on December 6th 2019 by the
AHUS Department for Data Extraction and Analysis. The study period is a
365-day period from June 2018 to May 2019. The study index time (T0) is
on a Monday in June 2018, however for personal privacy protection the exact
week number is kept by the data extraction personnel and unknown to anyone
else, including the researchers using the data. For data that contains temporal
records, the granularity of time is hourly.

The extracted deidentified personal level data is stored in the TSD
(Tjenester/Service for Sensitive Data), a platform for collecting, storing, analyzing
and sharing sensitive data in compliance with the Norwegian privacy regulation.
The platform is owned by the University of Oslo, operated and developed
by the TSD service group at the University of Oslo, IT-Department (USIT).
(tsd-drift@usit.uio.no)
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Chapter 4

Aims of the thesis
There are two closely related aims of the thesis. As EHR data exist in various

formats, there is the need for specific tools for each type of EHR data. The first
aim of the thesis is therefore to develop and experiment with different statistical
and computational methods to extract, integrate and represent information from
hospital EHR data. In this thesis I explore data mining algorithms (dynamic
time warping), machine learning classification algorithms, network analysis on
sequential relational data, regression problems, prediction and variable selection
algorithms.

The second aim is to demonstrate the broad scope of applications of EHR
data in the clinical setting. I used two very different hospital EHR datasets:
the MIMIC III database from the US and the AHUS data from Norway. The
applications are diverse, for instance, clinical event classification and prediction
(paper I and III) could be used for patient risk stratification and early warning.
Understanding patient transfer patterns and associated risk factors (paper II)
could improve hospital management and logistic efficiency.

In Paper I I aim to develop a method to represent complex temporal EHR
data, with the application of clinical event classification. I illustrate the use of
data mining algorithms on heterogeneous unequal length temporal EHR data
to extract features from ICU patients, and the classification performance using
binary classification algorithms. A wide range of algorithms for this type of data
are compared in the paper.

In Paper II I aim to explore the representation of sequential hospital EHR
location logs via networks. I use network analysis, both statically and enhanced
with time information, to investigate the patient flow in a large regional hospital
in Norway. Compared to other studies that analyze patient flow, this paper
includes time information (work day, week in the year) and additional patient
level risk factors to identify the heterogeneity in different hospital departments.

In Paper III I aim to develop a method that balances predictability and
interpretability, with intervenable prediction in a hospital setting as the target
application. I demonstrate the use-case using aggregated EHR data at the ward
level. This paper is a proof of concept that can be extended using various models
and different applications.

The background information for each paper are provided in the chapters 5,
6, 7, and the summary of the papers is presented in chapter 8.
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Chapter 5

Clinical event classification with
temporal EHR data

5.1 Clinical event prediction and classification

Risk prediction and classification has been an important task for clinicians
for decades. Prediction tasks vary greatly. The tasks of interest include
but are not limited to patient length of hospital stay forecast, physiologic
decline detection, phenotype classification, admission or readmission prediction,
discharge prediction and risk of mortality prediction [6, 16, 17, 21, 27]. The
purpose of developing predictive models using EHR data is to better understand
patient conditions and devise a clinical decision support system that can assist
clinicians on decision making.

Various criteria and metrics have been proposed to evaluate and assess the
condition of patients admitted to intensive care units (ICU), such as SAPS
(Simplified Acute Physiology Score) [15], SOFA score (Sequential or Sepsis-
related Organ Failure Assessment) [25] and APACHE (Acute Physiologic And
Chronic Health Evaluation) [14]. These criteria aim to measure the severity of
disease by combining routine physiological measurements. Generally, a higher
score implies greater chance of mortality. These activities have been replaced by
modern statistical and machine learning algorithms nowadays.

EHR data are challenging to work with in research. Access to personal level
EHR data for research is highly restricted due to privacy protection regulations;
the data has questionable quality due to missing measurements and labels; the
various formats where data are recorded makes it pre-processing a difficult but
necessary task. However, thanks to the efforts in making a large EHR data
available to the public [12], it is possible to start make some progress on this
front. For the remainder of this chapter, I will focus on the temporal EHR data.

5.2 Temporal EHR data

EHR data of various formats are being collected on patients from their arrival
to discharge. Based on sampling frequency, EHR data can be categorized into
the following groups [4]:

1. High frequency (seconds): signals such as electrocardiogram ECG that are
generated at bedside. This type of data are vulnerable against artifact
corruption like sensor falling off and power grid interference. The data must
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be aggregated and filtered before any learning tasks or feature extraction
can take place.

2. Mid frequency (hours): vital signs, medications, procedures and lab results.
Errors could occur due to human registration. Sometimes the time of
measurement taken can be more informative than the actual value of the
test results (e.g. a test being run at 2 am because the patient is very ill)
[4].

3. Low frequency or static (once or by order): structured data (demographics,
life-style information, underlying disease) and unstructured data (clinical
notes in free text). For the free-text notes, natural language processing
techniques need to be applied. However, misspelling, acronym-heavy, and
domain specific terms across different diseases can be challenging without
expert insight.

In clinical event classification, the most common type of temporal EHR data
are mid and low frequency physiologic measurements. These are also the basis
of classic disease severity scores [14, 15, 25].

5.3 Time series classification

The difference between time series classification and other classification
problems is the additional time dimension, or the ordered sequences. Typically,
the input of a classifier is the feature matrix where each row is one observation
(or sample, subject), and each column is a feature. For time series or ordered
sequences, the additional time dimension needs to be accounted for when
constructing a feature matrix.

Time series classification algorithms can be broadly categorized into three
groups [26]: feature based, model based and distance based methods. For the
feature based methods, feature extraction based on e.g. a Fourier transform
is done on the time series data, then a conventional classifier such as logistic
regression or SVM is used on the extracted features. For model based methods,
a data generation model is assumed (such as an auto-regressive AR model). The
model that is the best fit for the test data is the class output. Finally, for the
distance based methods, a similarity metric is defined, then a distance is computed
for pairs of input series. The classification is done with a distance-based classifier
like k-nearest neighbor algorithm.

5.3.1 Dynamic time warping

Dynamic time warping (DTW) is a technique to find the optimal alignment
between two time dependent sequences, specifically with time deformation
and different speed [13, 18]. Given two time series x = (x1, x2, ..., xN )
and y = (y1, y2, ...yM ), construct a cost matrix C ∈ RN×M with elements
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cn,m = d(xn, ym). Here d is a distance measure. With squared Euclidean
distance, d(xn, ym) = (xn − ym)2.

A warping path W = (w1, ..., wQ) is a set of matrix indices that defines
a mapping between x and y where Q is the length of the warping path. Let
w1 = (1, 1), wQ = (N,M), indicating that the warping path starts and ends in
the opposite corner cells of the matrix (boundary conditions). W also needs to
satisfy additional continuity and monotonicity conditions [13]. Let the total cost
of a warping path W between x,y be

TCW (x,y) =
Q∑
q=1

cwq
, (5.1)

The optimal warping path W ∗ is the one that minimizes the total cost among
all possible paths, and the DTW distance is the total cost associated with W ∗,

DTW (x, y) = TCW∗(x,y)
= min{TCW (x,y)}.

Figure 5.1: Illustration of DTW [Tan2019]. a: Alignment for two time series Q
(blue) and C (red). b Cost matrix C with warping path W (green).

It is time consuming to find the optimal warping path. By restricting the
difference between possible alignment indices between time series pairs, the
search window is narrowed around the diagonal of the warping cost matrix.
Two well known global constraints are the Sakoe-Chiba band [22] and Itakura
parallelogram[11]. A comparison between these two constraints has been made
by [3]. More recent works have investigated learning constraints from the data
for faster computation and better accuracy [2, 19, 20, 23]. It is worth mentioning
that constraints work well when the time series lengths do not differ much,
otherwise the warping path might not exist[5].
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5.4 Tensor decomposition

A tensor is a multidimensional array, the number of dimensions is called
order, modes or ways. In this work we focus on third order tensors. A slice is a
two dimensional section of a tensor with two fixed modes. For example X1:: is a
horizontal slice, which is the first layer or top matrix of a tensor.

Table 5.1: List of notations

Symbol Definition

X,D,M Matrix
XT Matrix transpose
xr r-th column of X
X ,D Tensor
xij , xijk Elements of a matrix and a tensor
Xi::,X:j: Horizontal, lateral slice of tensor
X::k or simply Xk Frontal slice of tensor
x, y Vector
◦ Outer product

In this paper we focus on CANDECOMP/PARAFAC or CP decomposition
for short. For a third order tensor X ∈ RI×J×K , a CP decomposition for a
chosen number of components r = 1, ..., R can be formalized in the following
way:

min
X̂
||X − X̂ || where X̂ =

R∑
r=1

ar ◦ br ◦ cr (5.2)

Here ar, br, cr are column vectors of size I, J,K. The vectors can be
reorganised into factor matrices [[A,B,C]] where A ∈ RI×R,B ∈ RJ×R,C ∈
RK×R, A = [a1 a2... aR]. If the columns of A,B,C are normalized to unit
length, then the weights are absorbed into λ ∈ RR,

X̂ =
R∑
r=1

λrar ◦ br ◦ cr. (5.3)

Tensors can capture information with more than two dimensions, and tensor
or matrix decomposition has wide applications in signal processing and data
mining[1, 24], and has been applied successfully in healthcare informatics, see [7,
8, 9, 10].

22



References

References

[1] Acar, E. et al. “Tensor-based fusion of EEG and FMRI to understand neu-
rological changes in schizophrenia”. In: Proceedings - IEEE International
Symposium on Circuits and Systems (2017), pp. 1–4.

[2] Dau, H. A. et al. “Judicious setting of Dynamic Time Warping’s window
width allows more accurate classification of time series”. In: Proceedings -
2017 IEEE International Conference on Big Data, Big Data 2017 (2017).

[3] Geler, Z. et al. “Dynamic Time Warping: Itakura vs Sakoe-Chiba”. In:
IEEE International Symposium on INnovations in Intelligent SysTems
and Applications, INISTA 2019 - Proceedings (2019).

[4] Ghassemi, M. et al. “Opportunities in Machine Learning for Healthcare”.
2018. arXiv: 1806.00388.

[5] Giorgino, T. “Computing and Visualizing Dynamic Time Warping
Alignments in R : The dtw Package”. In: Journal of Statistical Software
vol. 31, no. 7 (2009).

[6] Harutyunyan, H. et al. “Multitask Learning and Benchmarking with
Clinical Time Series Data”. In: (2018). arXiv: 1703.07771.

[7] Henderson, J., Malin, B. A., and Ho, J. C. “PIVETed-Granite : Computa-
tional Phenotypes through Constrained Tensor Factorization”. In: (2018).
arXiv: arXiv:1808.02602v1.

[8] Henderson, J. et al. “Granite: Diversified, Sparse Tensor Factorization for
Electronic Health Record-Based Phenotyping”. In: IEEE International
Conference on Healthcare Informatics (ICHI). 2017.

[9] Ho, J., Ghosh, J., and Sun, J. “Marble : High-throughput Phenotyping from
Electronic Health Records via Sparse Nonnegative Tensor Factorization”.
In: Kdd (2014), pp. 115–124.

[10] Ho, J. et al. “Limestone: High-throughput candidate phenotype generation
via tensor factorization”. In: Journal of Biomedical Informatics vol. 52
(2014), pp. 199–211.

[11] Itakura, F. “Minimum Prediction Residual Principle Applied to Speech
Recognition”. In: IEEE Transactions on Acoustics, Speech, and Signal
Processing vol. 23, no. 1 (1975), pp. 67–72.

[12] Johnson, A. E. et al. “MIMIC-III, a freely accessible critical care database”.
In: Scientific Data vol. 3 (2016), p. 160035.

[13] Keogh, E. J. and Pazzani, M. J. “Scaling up dynamic time warping to
massive datasets”. In: Principles of Data Mining and Knowledge Discovery
vol. 1704, no. Derriere (1999), pp. 1–11.

[14] Knaus, W. et al. APACHE II: A severity of disease classification system.
1985.

23

https://arxiv.org/abs/1806.00388
https://arxiv.org/abs/1703.07771
https://arxiv.org/abs/arXiv:1808.02602v1


5. Clinical event classification with temporal EHR data

[15] Le Gall, J.-R., Lemeshow, S., and Saulnier, F. “Simplified Acute Physiology
Score ( SAPS II ) Based on a European / North American Multicenter
Study”. In: JAMA vol. 270, no. 24 (1993), pp. 2957–2963.

[16] Lin, Y.-W. et al. “Analysis and Prediction of Unplanned Intensive Care
Unit Readmission using Recurrent Neural Networks with Long Short-Term
Memory”. In: PLoS ONE vol. 14, no. 7 (2019).

[17] McWilliams, C. J. et al. “Towards a decision support tool for intensive
care discharge: Machine learning algorithm development using electronic
healthcare data from MIMIC-III and Bristol, UK”. In: BMJ Open vol. 9,
no. 3 (2019), pp. 1–8.

[18] Muller, M. “Dynamic Time Warping”. In: Information Retrieval for Music
and Motion. Springer, Berlin, Heidelberg, 2007. Chap. 4, pp. 69–84.

[19] Niennattrakul, V. and Ratanamahatana, C. A. “Learning DTW Global
Constraint for Time Series Classification”. In: (2009). arXiv: 0903.0041.

[20] Ratanamahatana, C. A. and Keogh, E. “Making time-series classification
more accurate using learned constraints”. In: SIAM Proceedings Series
(2004), pp. 11–22.

[21] Ribas Ripoll, V. J. et al. “Sepsis mortality prediction with the Quotient
Basis Kernel”. In: Artificial Intelligence in Medicine vol. 61, no. 1 (2014),
pp. 45–52.

[22] Sakoe, H. and Chiba, S. Dynamic Programming Algorithm Optimization
for Spoken Word Recognition. 2. Morgan Kaufmann Publishers, Inc., 1990,
pp. 159–165.

[23] Salvador, S. and Chan, P. “FastDTW: Toward accurate dynamic time
warping in linear time and space”. In: Intelligent Data Analysis vol. 11,
no. 5 (2007), pp. 561–580.

[24] Sidiropoulos, N. D. et al. “Tensor Decomposition for Signal Processing and
Machine Learning”. In: IEEE Transactions on Signal Processing vol. 65,
no. 13 (2017), pp. 3551–3582. arXiv: 1607.01668.

[25] Vincent, J. L. et al. “The SOFA (Sepsis-related Organ Failure Assessment)
score to describe organ dysfunction/failure”. In: Intensive Care Medicine
vol. 22, no. 7 (1996), pp. 707–710.

[26] Xing, Z., Pei, J., and Keogh, E. “A brief survey on sequence classification”.
In: ACM SIGKDD Explorations Newsletter vol. 12, no. 1 (2010), pp. 40–48.

[27] Yoon, J. et al. “Forecast lCU: A prognostic decision support system for
timely prediction of intensive care unit admission”. In: 33rd International
Conference on Machine Learning, ICML 2016 vol. 4 (2016), pp. 2524–2538.

24

https://arxiv.org/abs/0903.0041
https://arxiv.org/abs/1607.01668


Chapter 6

Intrahospital patient transfer
pattern

6.1 Hospital patient flow

Hospitals are complex systems that must run smoothly to optimize treatment
quality and patient safety. Hospital patient flow, as the name suggests, is the
physical movement or transfers of patients from one hospital unit to another.
It is also referred to as hospital events [1] or patient pathways [7]. A typical
chain of hospital events from patient admission to discharge takes the one of the
following paths in figure 6.1, although it can differ across different hospitals.

Figure 6.1: Hospital event from arrival to discharge. Figure adapted from [Ben-
Tovim2016] after excluding EECU (Extended Emergency Care Unit).

Patient flow from admission to discharge is affected by a few factors, including
time of arrival (weekday or weekend, during the day or night), triage types,
admission rates, treatment times and resource capacities. There are five common
types patients who have distinct needs[7]:
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1. Emergency: patient who are admitted from Emergency Department (ED),
either on their own or by ambulance.

2. Surgical: patients who undergo surgical procedures.

3. Medical: patients who need medical treatment and do not undergo surgery.

4. Day-surgical or day-medical: patients who need minor surgical or medical
procedures and do not require a hospital bed.

5. Out-patient: patients who visit the hospital for a few hours for medical or
diagnostic visits.

The proper management of patient flow is critical to not only patient safety,
but also healthcare worker wellbeing. Delays, queues and inappropriate placement
of patients can directly affect patient safety and satisfaction, while inefficient
capacity utilization and variability of workload can cause stress for healthcare
personnel, which would in turn affect patient safety. These are patient flow
problems either due to bad allocation or shortage of capacity, lack of coordination
between different units, or presence of bottlenecks that could delay patient
throughput [7]. Beyond capacity management, patient flow also plays a part
in hospital infection control: patients can spread pathogens to other patients
while being moved around; this in turn plays a part in capacity management as
separating colonized patients require additional beds in single rooms or double
rooms with other colonized patients [6]. An in-depth understanding of patient
flow throughout the hospital is therefore key to hospital management and quality
of care.

6.2 Network analysis

A short introduction to network terminology and analysis methods is covered
in this section, before I put them into the context of hospital patient flow.

6.2.1 Terminology

A network graph G = (V,E) is a mathematical structure that consists of a
set of vertices V and edges E. Vertices are also known as nodes, and edges are
also known as links. Elements of E are pairs {u, v} of distinct vertices u, v ∈ V .
The number of vertices Nv = |V | and number of edges Ne = |E| are called the
order and size of the graph G.

The descriptive analysis of a network graph is focused on its structure and
characteristics. A graph is directed if the vertices defining an edge are ordered, i.e.
{u, v} is distinct from {v, u} for u, v ∈ V . Such edges are directed edges or arcs,
with the direction from head u to tail v. In a directed graph there can be two
arcs connecting a pair of vertices of the opposite directions. A graph is weighted
if the edges have the weight attribute, i.e. their frequencies are of interest. A
graph can be both directed and weighted as these are two independent edge
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attributes. The degree of a vertex v, dv counts the number of edges in E that
links to v. If the graph is directed, the terms in and out degree dinv , doutv are used
to distinguish the direction. Finally, the density of a graph is the frequency of
realized edges relative to potential edges,

density(G) = |E|
|V |(|V | − 1)/2 (6.1)

The methods and metrics in graph theory and network analysis are extensive.
For instance, finding the shortest path connecting any two vertices (shortest path
distance); measuring how important a vertex is to the system (with different
centrality metrics); discovering groups that are closely connected (community
detection or graph partitioning). Nevertheless, these metrics and methods are
not particularly relevant to our application in understanding hospital patient
flows. This is further explained in the discussions (Chapter 9).

6.2.2 Network visualization

The visualization of a network is fundamental to understand the network
structure in an intuitive manner. The simplest way is merely to draw the vertices
randomly and connect the them with lines, although when the network is big,
the graph can be unreadable or not informative. Drawing conventions, aesthetics
and constraints have been proposed [2], and many layout algorithms have since
been implemented for convenient network visualization. In figure 6.2 I illustrate
the patient transfer network using AHUS data. The details can be found in
Paper II.

6.2.3 Temporal network

Network has a natural temporal flavor to it: edges are formed consequently
rather than all at once. Nonetheless, the majority of network analyses are focused
on static networks, either due to the complexity brought by the time, or due to
the availability of time-stamped relational data. A temporal or dynamic network
is a time-indexed graph G(t) = (V (t), E(t)) where time t varies discretely or
continuously, and V (t), E(t) are vertices and edges present at time t.

The classic way to represent a network evolving over time is through the
construction of an aggregated static graph. To put in simple terms, t is divided
in consecutive non-overlapping intervals and one graph is constructed for each
interval. This is equivalent to taking snap-shots of the whole, aggregated network
over time. Other analyses can be carried out on each graph. It is common
to compute some network metric, e.g. clustering coefficient for each interval
then plotted over time to understand how network evolves during 0-12 hours,
12-24 hours and so on. Alternatively, visualizations can be created at each time
interval for a qualitative comparison.

Temporal motif is another way of understanding temporal networks. A motif
or graphlet is a small subgraph occuring in a network [4]. In a temporal network,

27



6. Intrahospital patient transfer pattern

Figure 6.2: Patient transfer network illustration. For details and abbreviations
see Paper II.

motifs are used to study the temporal and topological structure of the network.
As per [5], a k-node, l-edge motif is a sequence of l edges:

M = (u1, v1, t1), (u2, v2, t2), ..., (ul, vl, tl) (6.2)

where t1 < t2 < ... < tl. Intuitively, motifs are time-stamped and therefore
ordered edges involving a small number of vertices. A real life example of such
motifs is reciprocation of telephone calls in a social network: person A calls B,
B calls C, etc. Figure 6.3 shows some simple examples of motifs. The study
of temporal motifs is relatively recent, with a large focus on counting motifs
efficiently in a large networks [3, 5].

6.3 Patient flow from EHR location logs: a network approach

In this section I describe the two perspectives to understand patient flow
using EHR data, first by examining the system itself (hospital operation), then
by examining the individual actors in the system first (patients or healthcare
workers).
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Figure 6.3: Examples of network motifs. Numbers are the ordering of edges.

The EHR data contain rich information to study the patients and hospital
operation in detail, as it is possible to link time stamped events (operation
procedure, measurements, medication) with patient whereabouts. The terms
flow, transfer, movement are used interchangeably. The following information
are required to produce patient flow network:

• Location for each patient as vertices;

• Time when each transfer happens;

• Specify time granularity (e.g. weekly, daily) and level of aggregation (e.g.
patient level, departmental level, hospital level).

Other patient attributes can be attached to each transfer. For brevity, I only
focus on the network construction here.

6.3.1 System-wide analysis

The system-wide analysis is essentially the structural analysis of the patient
transfer network. The transfer network construction depends on the question of
interest: are we interested in all the possible connections and system bottlenecks?
A static network would be sufficient to answer this question. If we want to
identify how the connection changes in the monthly or weekly scope, it becomes
necessary to keep the time information. Direction of each transfer is also an
important aspect.

In Paper II, the system is each one of the four departments in the hospital.
They are very different in terms of service types (both surgical and medical).
For the static networks we ignored the time of each transfer and constructed
one network for each department for all transfers that happened in the one-year
study period. To keep the time information, we have constructed the weekly
networks; we also kept weekday to explore the difference between the work days
(Monday to Friday) and weekends (Saturday to Sunday). Metrics applied to
both static and temporal transfer networks are: size in terms of edge and vertex
counts, connectedness in terms of density, vertex functionality and importance in
terms of in- and out-degree. For temporal network metrics, mean and standard
deviation are reported.

We also investigate certain types of transfer by categorizing all transfers
into groups: Bed-to-Bed, ED-to-Any, and others. By averaging the number of
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transfers per patient in each department, it can reveal the differences in the
types of service provided for patients and the complexity of hospital system.

6.3.2 Patient-based analysis

The patient-based analysis using network is a form of temporal motif analysis.
The previous system-wide analysis breaks the complete trajectory of individual
patients and only the transfer itself is important. Here, the complete patient
trajectory of interest.

We investigate the two extremes of transfer trajectories: the most common
and the least common trajectories. In motif analysis, counts or frequency of
certain motifs are the fundamental quantities of interest. These are also what
we try to quantify in our study. The results can inspire further analysis on the
potential causes for exceedingly long trajectories and if some transfers could be
avoidable.
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Chapter 7

Intervenable prediction for hospital
operation

7.1 Prediction and intervention in healthcare environment

Prediction is an important task in healthcare. An accurate prediction of the
target quantity can facilitate good planning to utilize available resources. For
instance, in [3] the platelet usage was predicted to reduce waste due to the short
storage time of blood product, and in [6] the weekly average medicine expenditure
of patients was predicted to help with healthcare expenditure planning. Aside
from the prediction itself, it is often interesting to find out what factors are
contributing to the predictions. In a patient-centered prediction model, possible
risk factors are age, sex, lifestyle indicators such as smoking drinking. Sometimes
time factor represented by weekday or weekend can also provide additional
information[3, 8].

There exist a wide range of predictive models including both statistical and
machine learning approaches. Despite the popularity of complex machine learning
methods, regressions remain one of the most commonly used models. Regression
models have a simple formulation that encourages interpretation, and their
theoretical properties have been studied extensively. Moreover, the development
of penalized regression models made it convenient to include thousands of
variables at the same time. Some forms of penalties also produce sparse regression
coefficients, which act as a variable selection procedure.

In healthcare, it is natural to ask questions about intervention. What would
be the effect of changing one variable? However this is not a trivial problem
to solve. Randomized controlled trials are the golden standard to measure
intervention effects, yet not all intervention strategies are suitable for experiments.
The adoption of electronic health records in healthcare makes available a huge
quantities of information, which could enable the design of intervention strategies
and measure effects. One possibility is to build a predictive model that is accurate
as well as interpretable, and use it to guide further intervention studies. This is
what we are trying to do in Paper III.
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7.2 Regression with sparsity constraints

In this section I provide a brief introduction to the regression problem with
sparsity constraints. Without loss of generality, only linear regression is discussed.

We observe N observations of some response variable yi and p predictor
variables xi = (x1i, ..., xpi), i = 1, ..., N . A linear regression model assumes the
following relationship:

yi = β0 +
p∑
j=1

xijβj + εi (7.1)

where β0 and β = (β1, ..., βp) are unknown parameters (regression coefficients)
and εi is an error term. In standard regression models, the errors are assumed
independent. The intercept β0 can be conveniently folded into the β by adding
a 1 column into the design matrix X. The least squares estimates for the
parameters optimize the objective function

min
β

N∑
i=1

(yi −
p∑
j=0

xijβj)2. (7.2)

7.2.1 Variable selection

The motivation of variable selection is to produce a more parsimonious model
that contain fewer predictors to enhance the interpretability, reduce the variance
of the model and improve prediction. Broadly speaking, there are two categories
of variable selection algorithms: the filter methods and the wrapper methods [4,
12]. The filter methods rank the importance for each variable first, then combine
the selected variables together. They are fast, however they risk missing out
interactions and selecting highly correlated variables. Wrapper methods search
for combinations of variables that maximize model performance, which makes
them computationally intensive.

In a low dimensional regression setting where n >> p, variable selection can
be done with backward selection, forward selection or a mix of both. Sometimes
domain knowledge plays a part in the variable selection as well. Discussions on
variable selection in low dimensional regression can be found in [1, 5]. When
n < p, the more appropriate solution is to use regularization.

7.2.2 Sparsity via the lasso

The lasso (Least Absolute Shrinkage and Selection Operator [9]) is a widely
used method for regularization. The optimization problem of least squares
becomes

min
β

N∑
i=1

(yi −
p∑
j=0

xijβj)2 subject to||β||1 ≤ t (7.3)
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where ||β||1 =
∑p
j=0 |βj | and t is a positive bound. Writing y = (y1, ..., yN )

as the vector of the response and X as the N ×p design matrix (p+1 if including
the intercept term), this optimization problem is commonly expressed in the
Lagrangian form:

min
β

{
||y −Xβ||22 + λ||β||1

}
(7.4)

for some λ ≥ 0.

The tuning parameterλ controls the amount of shrinkage on the regression
coefficients. The larger λ is, the heavier the penalty becomes and as a result,
some coefficients become 0. When λ = 0 the coefficients are the same as least
squares estimates. The choice of λ is typically made by cross-validation.

7.2.3 Other regularizations

A wide range of penalties exist in the literature for regression problems.
A few well known examples include the adaptive lasso [13] that provides the
"Oracle Property", i.e. consistent variable selection; and the elastic-net [14] that
encourages strongly correlated variables to be in or out of the model together.
The R package glmnet [2] provides a fast and easy-to-use implementation of the
elastic-net.

Some slightly more complex penalties allow investigators to include domain
knowledge, beliefs or preference on the predictors. For example, one might
hope that some variables have non-negative sign [7]. Sometimes it could make
sense to group variables together based on the functionalities and real-world
implications. The group lasso [10] imposes a group structure on the predictors,
where a subgroup of predictors are either all non-zero, or all shrunk to zero.
Hierarchy between variables can also be imposed via overlapping groups [11].

7.3 Intervenable prediction with simulation and EHR data

In this project we propose a framework for intervenable predictions in
the hospital setting. The key concept is the balance of predictability and
interpretability, achieved via a two step regression approach. In the first step
we use a linear penalized regression model: the purpose is to select variables
to explain the outcome. If all explanatory variables that generate the response
variable are measured, and are included in the regression model in the correct
way, the prediction would not be far off; however in reality it is hard to know
the true data generating mechanism, or to measure all the relevant variables.
This is the motivation for the second step after the initial regression and variable
selection. We use the residuals as the new response, and use the original lagged
response as the explanatory variables in the second step. This is equivalent to an
autoregressive model. By combining step one which explains the outcome using
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explanatory variables, and step two that captures the unexplained components,
our method balances interpretability and prediction accuracy.

I illustrate our method using two sets of simulation studies. In the first set
of simulations I use a combination of simulated periodic and non-periodic time
series as explanatory variables to generate the outcome time series. In the second
simulation study, due to the lack of outcome variable in the AHUS dataset,
I simulate the pseudo-infection metrics using the real hospital EHR series as
explanatory variables. In both examples I illustrate the variable selection in step
one, and prediction improvement after step two.
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Chapter 8

Summary of the papers

Paper I: Feature extraction from unequal length heterogeneous EHR
time series via dynamic time warping and tensor decomposition.
Published in Data Mining and Knowledge Discovery (2021) 35:1760-1784.
DOI: 10.1007/s10618-020-00724-6

Temporal EHR data is challenging to work on, as the time series for each
clinical feature may be measured at different time frequencies, some more
often (e.g. heart rates) and some less often (e.g. test results). In this paper
we propose a combination of dynamic time warping (DTW) algorithm
and tensor decomposition to represent the unequal time series such that
subsequent classification tasks can be performed. The representation
feature matrix is then fed into a classifier such as logistic regression or
support vector machine to carry out clinical event classification. We
demonstrate our method on two cohorts extracted from an openly accessible
database, the MIMIC III, aiming to classify in-hospital mortality. Our
method yields promising results compared to other machine learning
algorithms commonly used for this application.
Our method is an alternative approach to tackle the classification of
multivariate time series beyond deep learning and specifically, recurrent
neural networks, which have been the most widely used methods for
temporal EHR data classification in recent years. We demonstrate the
success of the classic time series mining algorithm (DTW) in the field of
healthcare EHR data, which might inspire further method developments
using distance based methods.
Relating back to the thesis aim, this paper uses an existing data mining
algorithm, originally for speech recognition, for a new type of data
(temporal EHR) and yields interesting results. This is an addition to
the existing literature on clinical event classification which focus primarily
on neural networks, and can be extended to other applications.

Paper II: Effects of patient-level risk factors, departmental allo-
cation and seasonality on intrahospital patient transfer pat-
terns - network analysis applied on a Norwegian single-centre
dataset. Accepted for publication in BMJ Open(2022) 0:e054545. DOI:
10.1136/bmjopen-2021-054545.

This paper studied the hospital patient transfer patterns at both system
(clinical department) level and individual patient level using Electronic
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Health Records (EHR). Understanding intrahospital transfer pattern is a
crucial step for hospital capacity management and infection control. As
far as we know, this is the first study that investigates different types
of transfers in a variety of departments, both surgical (gastrointestinal
surgery and orthopaedics) and medical (gastroenterology and neurology).
This is also the first study on patient transfer pattern in a Nordic hospital.
With the detailed description of patient movements, the paper illustrates
the heterogeneity among different types of patients. We quantified the
types and frequencies of transfers, and extracted the most common ones at
the department level. In addition, we associated number of transfers with
clinical risk factors to quantify the risk of excessive transfers. These results
are relevant for evidence based method development using simulations
to model patient flow, capacity management and infection control, as we
show the complexity of hospital systems and the necessity to distinguish
different categories of patients.
From a methodology perspective, we applied graph theory and methods in
network science. In recent years network analysis has become popular in
patient flow analysis, although the focus has been on the system as a whole
over an entire period of time; in other words, static networks. Instead, in
our work we also analyzed the evolution and difference of the networks in
each week, and we compared the network differences between weekdays to
weekends. We also utilized the notion of network motifs to describe the
most common transfer types for each patient.
This paper complements the thesis by providing detailed examination of an
interesting type of sequential relational EHR data: the location transitions.
It provides additional knowledge by quantifying how different patients
move within a healthcare facility using graph theory and network analysis,
which can be used for future method developments and simulations.

Paper III: Intervenable predictions of hospital operation using
Electronic Health Records [Submitted to BMC Medical Informatics
and Decision Making]

This paper presented a novel framework for predictions in a healthcare
setting, with potential applications in hospital operation optimization using
Electronic Health Records. We introduce the term "intervenable prediction"
in this paper, which is a two step approach that balance interpretability
and prediction accuracy. This serves as the basis for possible intervention
strategies.
In the first step, a penalized linear regression model that induces sparsity is
fitted to the data, which attempts to select variables (risk factors) that can
predict the outcome reasonably well. Then in the second step, we use the
residuals from the previous step as the new response, and use the lagged
response variable as the new predictors to fit a second regression model. In
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this way, the model captures information in both the explanatory variables
and the hidden trend in the response itself. We illustrate the method
with simulation studies using both purely synthetic data and real EHR
data from a Norwegian hospital. We demonstrate the different scenarios
in which our method could improve the prediction using the two step
approach, and effects of possible intervention strategies. The method can
be easily extended to more complex models beyond linear models.
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Chapter 9

Discussion

9.1 Overview

The thesis constitutes of three distinct yet related papers. The common theme
and type of data is hospital electronic health records. Due to the development of
electronic devices that collect patient data and digitalisation of health registries,
EHR contain a much broader range of data in different formats compared to
traditional healthcare data. This creates more opportunities for researchers to
study new problems, but also brings new methodological challenges. This is an
interdisciplinary field that requires knowledge in databases, computer science,
statistics and medicine, which makes working with EHR data an inspiring yet
challenging learning experience.

This thesis is my attempt to explore some of the many possibilities that
hospital EHR data brings. The three papers have different focuses. Some are
more focused on the data representation: specifically, how to make complex data
into useful formats that can shed light on the patients (paper I, II); some are
more focused on the potential application of streaming EHR data in real time
to improve hospital logistic operations (paper III). Some are more experimental
and based on statistical and machine learning algorithms (paper I, III) while
others are more exploratory and require medical expert insights (paper II).

From the methodological perspective, this thesis contains not only statistical
methods but also graph theory and data mining algorithms. This is not surprising
given the richness and complexity of EHR data. I have used two single center
hospital EHR (one American, one Norwegian) that are similar in terms of data
collection (patient measurements with time stamps). However, one important
difference between these two datasets is the way data were anonymised. Therefore
it becomes infeasible to carry out certain analyses on the American data. The
choices of methodology are naturally based on the questions of interest as well
as types of variables at hand, such as the unique sequential relational data with
consistent time stamps.

In the next three sections I will discuss each paper in detail. Each section
covers contributions and findings, methods, challenges and limitations. In the
end I will discuss the future perspectives that are common for all papers.
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9.2 Paper I

9.2.1 Contribution and findings

The paper Feature extraction from unequal length heterogeneous EHR time
series via dynamic time warping and tensor decomposition presents a novel
method for temporal EHR data classification. Temporal EHR data is complex
to work on as the feature time series may be measured at different time points
for different periods of time. Such unequal length time series needs special
algorithms to represent before they can be fed into any classification algorithms.
We proposed a combination of dynamic time warping and tensor decomposition
to tackle this issue. The DTW algorithms computes a distance-based metric for
each feature that is further fed into some form of classifier (logistic regression,
support vector machine). The distance matrices are used in a novel way for
classification: the proposal of pivot patient makes sure that all features are
considered together in contrast to the typical use of classifying each feature alone
and then aggregate.

Our method produces classification results that are better than or equal to
other state-of-the-art machine learning algorithms for this type of classification
problems. We found that the representation extracted by a global DTW
(computed on the entire sequence) do not differ significantly from constrained
DTW. Among the classifiers we experimented with for the DTW representations,
logistic regression has been the best performing one compared to more complex
classifiers.

Implications: our method is an alternative approach to tackle the classification
of multivariate time series beyond deep learning and specifically, recurrent neural
networks, which have been the most widely used methods for temporal EHR
data classification in recent years. We demonstrated the success of the classic
time series mining algorithm (DTW) in the field of healthcare using temporal
EHR data, which might inspire further method developments using distance
based methods. The use of a popular publicly available dataset, the MIMIC
III data and a standardized data processing pipeline suggests that the result is
reproducible.

9.2.2 Methods, challenges and limitations

EHR time series as features for a classification problem
There exist various strategies to work on temporal EHR data as inputs

for classification problems. In our paper we used a combination of a distance
based method and tensor decomposition to lower the dimension of the original
input data. The time dimension of each feature is compressed into a time-less
distance matrix and stacked into a tensor, then the three dimensional tensor
is decomposed, where one of the feature matrices is used for further dimension
reduction. The end product is a matrix where each row is one observation
(sample), which is used as inputs for further classification. Reference [49] is
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closely related to our work in the sense that they also apply DTW algorithm
to unequal length physiological series to compute the distance matrix. The
difference is that they stopped at the stack of distance matrices and used a
KNN classifier instead. Both solutions seem to work decently in terms of final
classification.

Apart from utilizing a distance metric for signals, there are two directions for
making use of EHR time series as features: one direction is to simplify the input
by summarizing time series into summary statistics such as mean, standard
deviation, min and max and skewness[23, 25, 31]. Another direction is to use
a non-linear transformation such as recurrent or convolutional neural networks
to transform the three dimensional input (patient by feature by time) into a
two dimensional feature matrix [25, 49, 58]. There is no conclusion as for which
representation is the best in general as there are limited data of this kind for
large scale experiments.

DTW for multivariate features
Time series classification using dynamic time warping algorithms is most

common in univariate problems where there is only one feature for each sample.
When there are more than one feature per sample, a few solutions are possible:
computing one distance matrix for every feature and stack them into a three
dimensional tensor; summing every distance matrix together (the "independent
DTW" [63]); or compute the DTW warping path on a cumulative distance
considering all features together (the "dependent DTW" [63]). The first solution
(distance tensor) is what our method and reference [49] adopted, and it is
essentially an independent DTW. According to [63], whether independent or
dependent DTW is superior depends on the data in application.

DTW constraints
Dynamic time warping (DTW) is a type of elastic measures. As discussed by

[66], elastic measures are typically time consuming to compute, especially when
collected in an ensemble for Nearest Neighbor classification. They have proposed
a fast solution for the Elastic Ensemble within the Hierarchical Vote Collective
of Transformation based Ensembles (HIVE-COTE), which is the state-of-the-art
time series classification algorithm [38, 39]. Most variations of DTW try to tackle
the issue of singularity: one point can be assigned to align with many consecutive
points on the other series, leading to over compression[2]. A detailed analysis on
the optimal warping path of DTW was provided in [18] where they proposed
a sliding window DTW and time alignment measurement to tackle the issue
of singularity. Some other alternatives are the continuous DTW [50], weighted
DTW [2, 30] and DTW based on Mahalanoibis distance for multivariate time
series [46].

Choice of classifier
After the representation of original temporal EHR data into a feature matrix,
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the choice of classifier is rather trivial. In our experiments we have found that
logistic regression (LR) is the best performing classifier. It is interesting that
LR is frequently among the best performing classifiers for binary classifications
despite its simplicity [25, 31]. LR is also a typical choice of classifier after
neural network representations. The representation stage, either through simple
summary statistics (max, mean et cetera) or complex deep representations or
distance-based representations (our approach), seem to be the vital stage.

Use of pivot patient and distance matrix
In this paper we proposed the use of a pivot patient after we computed the

distance tensor. By using the pivot patient, we make sure that all the rest of the
observations in the feature matrix used for classification have a DTW distance
based on the same patient. This is one way to encourage the interpreatbility of
the feature matrix. The choice of pivot is made by optimizing the cross-validation
error.

This is a novel use of DTW distance matrices. In the classical DTW or
other distance-based time series classification frameworks, the distance matrix,
say for feature A, is directly fed into a distance-based classifier such as KNN
[71]. In the case of multivariate features, one can either sum up the independent
DTW distances on each feature into one total distance matrix then do KNN
(as suggested in [63]), or do the other way around: do KNN feature by feature,
produce a classification result for each feature, then combine then together in
some way [49]. Our method by using a pivot patient makes sure that all features
are considered together, hence is an interesting alternative of using distance
matrices in the multivariate scenario.

Interpretation
There are two ways to look at the interpretation of our method. The first is

the patient-wise distance and the second is the factor loading post decomposition.
A distance matrix is generally symmetrical although this might not be the case
for DTW distances. Nonetheless, it consists of the distance between any two
patients for a specific feature. When a pivot patient is fixed, this ensures that
the input matrix for the classifier are distances or transformed distances against
the same patient.

The factor loading of the tensor is another angle of looking at interpretations.
In the literature of tensor based phenotyping [28, 29, 56] the decomposed three
factors are often a way of interpreting the components that makes up the
corresponding disease phenotype. For our method the interpretation is slightly
different, since the tensor itself contains distances instead of the original values
for each patient. The interpretation of a specific component (one column of
the factor) would therefore be the relative dis-similarity of all features in this
component.

Computational cost
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Classification problems generally have the time complexity that depends on
the learning phase and data size. If a non-distance based method is used, then
the computation is mostly during the training stage, not the test stage where
only prediction is made. If a distance-based method is used, the distance of the
test set with a training sample also needs to be computed. This is true for a
KNN classifier, which requires computing the distance of the new test samples
with the training samples.

For a classification of time series or sequential data using distance-based
methods, the situation is more complicated. The cost of the distance measure
plays a part: using a lock-step measure such as Euclidean distance (i-to-i
correspondence of both input series) is cheaper than an elastic measure (one-
to-many) such as DTW, where the optimal warping path needs to be found
[1]. DTW has quadratic complexity, and depends on the size of the longest
series. Using constrained DTW can possibly reduce the computational cost by
restricting the possible path.

Prediction or forecast
The distinction between prediction and/or classification and forecast is that

the latter is yet to happen in the future. In principle our method can be extended
to make forecasts, however the requirement of computing the distance matrix
between test samples and pivot could make it time consuming and unpractical
for forecasting tasks. Our method is more suitable for a first step towards deeper
understanding of how patients differ. DTW-KNN type methods also have this
issue. On another note, the Long-Short Memory Neural Networks (LSTM) or
other deep learning methods that only take first 24 or 48 hours for training are
designed to produce early warnings, hence are more suitable for forecasting.

Generalization to other datasets
In our experiments we made use of the MIMIC III [32] database. Specifically,

we used two sub-cohorts: the sepsis cohort and the acute kidney injury cohort.
The cohort definition and extraction algorithm is defined in [31] where the
authors have released the code for reproducible cohort creation. Nonetheless,
there could be some overlaps between these two cohorts, and due to the lack of
other publicly available EHR data of similar type, we do not yet know how well
the method will generalize.

9.3 Paper II

9.3.1 Contributions and implications

The paper Effects of patient-level risk factors, departmental allocation and
seasonality on intrahospital patient transfer patterns: network analysis applied on
a Norwegian single-centre dataset provides a detailed analysis of the intrahospital
patient flow pattern in a large Norwegian hospital during a one-year period in
2018-2019. This paper studied the hospital patient transfer patterns at both
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system (department) level and individual patient level using Electronic Health
Records (EHR). As far as we know, this is the first study that investigates different
types of departments: surgical (gastrointestinal surgery and orthopaedics) and
medical (gastroenterology and neurology). This is also the first study on patient
transfer patterns in a Nordic hospital. The Paper II is based on data pre-
COVID19 pandemic and is therefore informative on how the hospital operates
during normal periods.

Understanding the transfer patterns at healthcare facilities is crucial for
patient safety. The two most important aspects at play are infection control
and hospital capacity management. Various studies have attempted to address
these two matters separately. For instance, authors of [12, 14, 57, 69] discussed
the transfer pattern associated with hospital acquired infections, and some also
address hospital ward planning [44]. When it comes to capacity management,
the more optimized and efficient the hospital operates (smooth patient flow),
the less loss of time incurs. This suggests not only better patient safety but
also reduced costs as well as better staff workload planning[8]. One particular
aspect to measure capacity, the emergency department (ED) process has been
studied extensively, mostly using simulations [5, 10, 45, 51, 64]. Nonetheless,
the simulation studies typically focus on only selected departments and wards,
and only assign parameters to represent and model the overall processes. This
abstraction can overlook important differences across different types of wards.
In this paper we identified the heterogeneity of different hospital wards during
different time periods, which is an important step towards evidence based
planning and realistic simulations, for both infection control and capacity
management. This is an important contribution to system level quality
improvement [43], which can also inspire healthcare management education[3].

From a methodological point of view, this paper applies network analysis
on time-stamped EHR location logs. In addition to visualizing all the transfers
together, it is one of the few studies that analyze temporal networks by aggregated
static graphs over time, and it is the first that analyses the complete patient
trajectory using temporal motifs. Compared to other studies that use discrete
event simulation [74], or multi-state models for patient processes which typically
focus on the abstraction of activities or wards, network analysis has a different
focus: on description, not prediction or modeling.

9.3.2 Findings

Network analysis on patient transfers
We found that transfer network patterns vary greatly across patient

types. Specifically, patients in surgical departments (gastrointestinal surgery,
orthopedics) have greater network size: more wards (vertices) are involved, and
more transfer types (edges) occur compared to medical departments. This is
expected as operation rooms are involved. In addition, many seemingly unrelated
wards with respective departments are connected as well. This illustrates the
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complexity of hospital systems where all locations are inter-connected. This
phenomenon is well established as in [4, 34, 65].

We enriched network with time information, by constructing aggregated
weekly networks. Within each week, we also differentiate by work days (Monday
to Friday) and weekends (Saturday and Sunday). We found that the network
sizes differ greatly in the one year period. Apart from [4], other studies have
not used the time information. Seasonality plays a big role in large volume of
surgical transfers: in summer season there are less scheduled surgeries.

Transfer patterns at the individual level
We looked at the transfer patterns at the individual level from different

angles. Temporal motifs (in the form of transfer chains) have been extracted
and analyzed. We have identified and quantified the most common types of
transfers. These findings can be used as additional evidence for future simulation
models such as in [26, 40, 62]. The seasonal and weekly patterns could be used
for detailed ED process simulations [70] and hospital occupancy and discharge
simulations [59].

We have found that the vast majority of transfers are short (two or three
transfers). This is the basis for our investigations of the risk factors associated
to many number of transfers, as we were interested to know if the long transfer
chains can be characterized and eventually prevented. Compared to [9] that
investigated the relationship between intrahospital transfers and hospital acquired
infections, we did not have infection outcome in our study. Nonetheless, we
argue that the causal direction between number of transfers and infection risk is
not clear-cut. Better questions and careful variable constructions are necessary
to investigate this further.

9.3.3 Methods, challenges and limitations

Network analysis as the choice of model
The patient transfer study is partly inspired by the availability of time-

stamped patient location data. Network is a natural choice to understand
relational data, such as the patient flow within the system (hospital or department,
in our study). In studies that apply network analysis on intrahospital transfers[4,
34, 65], it is common to use all wards in the whole hospital as vertices to illustrate
the connectivity and bottlenecks in the system. For our study, we did not have
access to data at the whole hospital. However, what differentiate our work from
the rest is that we stratify by departments, as each department has different
features.

It is not uncommon to make use of network analysis for healthcare related
studies in recent years. Networks for single hospital settings typically focus
on patient mobility associated with infections (Clostridium difficile is often
the target) [12, 44]. Some studies extend the networks to many healthcare
facilities at a national level [17]. Some other types of networks such as healthcare
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collaboration [13, 16] are less common. Network analysis as the choice of model
allow the investigators to look at the hospital (hospitals) at a system level,
which can be quite convenient for some applications. For example, in [17], by
identifying only two percent of all facilities that are at critical positions in
the US healthcare facilities network, it is possible to monitor 80 percent of all
Clostridium difficile infections nationwide. This is a good strategy for optimized
surveillance efficiency.

Network metric choices
In this paper I have used the fundamental network characteristics to describe

the intrahospital transfers, namely the degree (in and out), edge and vertex
counts as well as density. Directions are used when appropriate. These metrics
are simple yet captures important features of the system. Similar results can be
seen in [4, 34].

Some other common metrics to describe networks such as clustering
coefficients, degree distribution, centrality, shortest path have not been used
in this paper, which have appeared in the studies mentioned above. There
are a few reasons behind this. The intrahospital transfers have meaningful
clinical context where patients have specific medical needs, and the networks
are inherently temporal and directed. This suggests that shortest path metric
(i.e. the minimum number of edges that exist between point A to B, which is a
good metric to measure how fast information spread) is not as clinically relevant
in this setting: if a patient in ward A needs to be treated in ward B before he
reaches ward C, he will have to visit ward B even though A and C are connected
for other patients. Clustering coefficients and centrality are not applicable for
another reason: our network is incomplete for the whole hospital system, and
our networks are relatively small compared to other studies. We are not trying
to identify the small world property as suggested in [34], but evolution and
temporal differences over one year period and between weekdays and weekends.
Our choices of metrics are suitable for our purposes.

Time stamps for network construction
The EHR data used in this study has consistent hourly time stamps across

different patients. For the purpose of privacy protection, the index time t = 0h
is on an unknown day in June 2018 where only personnel who extracted the
data from the data warehouse know which day it is. This feature is non-trivial:
it is possible to identify events that are happening at the the same time. In
contrast, EHR data that use a privacy protection strategy such as randomly
assign distinct index time to each patient (such as MIMIC-III database) will not
allow the construction of a temporal network. This is possibly one reason for
the sparsity of temporal network analysis on patient transfers.

Transfer chain (motif) analysis
In this paper we analyzed the typical transfer patterns at the patient level

(chains). In computer science and network science communities these reappearing
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graphlets are called motifs [36, 47, 52]. Recent efforts in network sciences have
been developing new fast algorithms to extract motifs in big temporal networks,
especially social networks. Although the repeating patterns is intuitive in the
patient transfer context, there is few mentioning of motifs in healthcare and
medicine. Patient transfer chains are known and understood by physicians who
work in the front line with patients, however their quantification and frequency
are not well documented. Also, it is feasible in our medium sized dataset, yet
how it scales in bigger datasets is unknown. Time lapse between stages are also
interesting to investigate. The most interesting point in my view is to apply our
findings with current simulation methods (discrete event, multi-state models) to
investigate the spread of infections or hospital capacity.

Risk factors for many transfers
Our secondary objective was to identify risk factors for number of transfers.

In order to avoid artificially boosting the number of transfers by in-and-out of
operation room transfers, we coded operations and perioperative wards into
one single location. We used a regression approach where the response is the
number of transfers using departments, patient demographics, antibiotics and
NEWS scores (first 48 hours average) as covariates. The biggest challenge for this
task is the covariate construction: it is very difficult to meaningfully represent
the changing patient clinical conditions over the course of the entire visit into
one static feature. For example, the NEWS score is designed to capture the
physiology derangement for early warning. However, NEWS is also recorded
over the entire patient stay which should also provide information on the patient
condition at each time of measurement. It requires a clear formulation of the
research question and interpretation before the construction of the explanatory
variables.

Another challenge is an ever lasting topic in statistics: causality. The direction
of causal relationship is unclear in this study, or in many observational studies
in healthcare. Does having antibiotics (or infection) result in longer length of
hospital stays and more numbers of transfers? Or does more transfers lead
to being infected? An intuitive but overly simplistic solution is to look at the
time of event, whichever happened first ’caused’ the other. Nevertheless, most
patients seemed to have antibiotics administered until they were discharged so
there was no easy way to tell which happened first. Even with such detailed
temporal data, it is still very difficult to answer causal questions. These issues
need to be addressed with more precise research questions, and more appropriate
methodology.

Lack of laboratory data
In the AHUS dataset we used for this paper, we do not have laboratory

data for infection status from each patient. This is a limitation of our study
as we could not carry out analysis on the important topic of hospital acquired
infections. The use of antibiotics (which we had) could serve as a proxy for being
infected yet it was not optimal even after we exclude prophylactic antibiotics for
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surgical patients. The inclusion of lab data should be implemented in the future
studies.

9.4 Paper III

9.4.1 Contributions and implications

The paper Intervenable predictions of hospital operations using Electronic
Health Records provides a framework for making predictions that balance
interpretability and accuracy. This is the basis for making interventions to
avoid undesirable outcomes in a healthcare environment and improve quality
of care. The appropriate application can be allocating more resources (such as
nurses) to wards that need them to prevent adverse events. This paper focuses
on the idea of making predictions where stakeholders (hospital management)
could identify the risk factor involved and potentially make a change, rather than
the exact application. When the availability of data ceases to be an obstacle,
variants of our methods could be deployed as appropriate.

From a methodological point of view, this paper has a few novelties. We
use a two step approach: the first one is a penalized linear regression analysis
that induces sparsity, which attempts to select variables (risk factors) that can
predict the outcome. Then in the next step we use the residuals from the
previous step as the new response, and the lags of the original response as the
explanatory variables. In this way, the model utilizes not only the information
in the explanatory variables, but also the unmodel part left in the residual. In
our paper we only present simple models (linear regression as the first step),
however the idea can be extended to other linear and non-linear models.

9.4.2 Methods, challenges and limitations

Regression as the choice of model
Regression models, including linear and generalized linear regression models

(GLM), generalized additive model (GAM), have been applied in various of
application fields for decades. They are simple and flexible: the response
variables is expressed as a weighted sum of original or transformed explanatory
variables, and the response can take the form of real values, binary or counts.

In the Interpretable Machine Learning (IML) field, regression models are
considered as inherently interpretable [48]. This is thanks to the weighted-sum
formulation of the regression models and the rich literature on the theoretical
properties of these models. It is also worth mentioning that when it comes
to prediction and forecasting (either numerical outcome or classes), simple,
interpretable models such as logistic regression and ARIMA models are still
among the best performing models among much more complex methods such as
neural networks [22, 25, 31, 41].
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The challenge for non-penalized regression models arises when there are
many explanatory variables, especially when n < p. The interpretability will be
difficult and there might not be a unique solution. A standard approach is to
use regularization such as ridge or lasso regression.

Sparsity and variable selection
In this paper we achieve sparsity via the lasso and a form of hierarchical

structure in the regularization. One of the benefits of limiting the number of
variables is to make the model simpler for the human brain to understand,
especially when there are many variables. It could help with understanding
the data generating mechanism and provide possible directions for the future
experimental design. The medical scores used to identify patients at risk are
common in clinical practices, and they are derived from clinical variables by
assign them with weights, similar to regression coefficients[68]. Here the variable
selection is purely based on domain knowledge. There exist a wide range of
penalties that are possible for regression models, many of which allow domain
knowledge or beliefs to be included in the data-driven variable selection process.

There are also several limitations in variable selection via sparsity inducing
norms or regularization. The first limitation is the selection procedure. One way
to produce sparse models, the stepwise selection is a very common strategy for
low dimensional problem. However adding or dropping one variable at a time
might be problematic when interaction exist, and stepwise selection requires
computing a large number of competing models. The lasso itself is known to
not handle interaction or correlated variables well. This might be mitigated via
some structures on the penalty, such as grouped or hierarchical selection.

Another limitation is the inference on parameters after selection. The lasso
estimators, in contrast to the least-squared estimators, are biased towards zero.
While it has the benefit of shrinking some variables to exactly zero hence
producing sparse results, it is difficult to make inference even with resampling
techniques such as bootstrap. There are techniques to address this issue, however
they are beyond the scope of this discussion [37, 67].

Penalized regression with time series
Although the theoretical works on lasso and other penalties are mostly

focused on scenarios where observations are independent, penalized regressions
are also frequently applied to time series data. The theoretical properties of the
model and sparsity consistency (whether the correct variables with non zero
coefficients could be identified) are summarized in [33] and reference therein. In
the numerical experiments by [33] using various penalties (lasso, elastic-net and
their adapted versions) on autoregressive (AR), autoregressive distributed lag
(ADL) and vector-autoregression (VAR) models, the selection is mostly affected
by the correlation between explanatory variables. This is consistent with our
own experiments, where the variable selection stage is able to identify the correct
variables in uncorrelated scenario despite the data are sequentially correlated.
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Beyond the penalties and procedures that are widely used for independent
observations, there also exist procedures for sequentially correlated data [24, 27,
53, 72, 73].

Forecasting
Forecast is a challenging task. When a simple univariate model such as

ARIMA is applied, the forecast is made using the available data of the series
itself. When a regression model or autoregressive model with exogenous variables
is applied, it is also necessary to know the forecast values of the exogenous or
explanatory variables, which increase the uncertainty even further. Only when
the exogenous variables are known in advance or we have high confidence in
(such as schedules) will the final forecast of the response be more certain. Usually
seasonality or trend are very informative, and time series forecast models typically
decompose the data into components to enhance the forecast.

Explainable AI
Explainable artificial intelligence (XAI) has recently become an important

topic especially in healthcare applications. There have been various methods
trying to "open the black box", i.e. understand how the model works so that
medical decisions can be made with trust. XAI can be internally explainable
methods, or post-hoc or externally explainable methods [20, 42]. In Paper III
we use the linear regression model which is the simplest internally explainable
method, where the outcome is a weighted sum of risk factors. Externally
explainable methods such as the Local Interpretable Model-agnostic Explanations
(LIME) [60], Shapely values [19]could also be used to understand which input
are meaningful as intervention variables.

Intervention and causality
Healthcare machine learning is mostly done on observational data, and this

poses challenge to understanding causality. One example given in [21] is that
asthmatic patients admitted for pneumonia are treated more aggressively hence
lowering the sub-population mortality, hence a simple model will learn that
asthma is protective, which is untrue. Special methodology is required to infer
causal relationship using observational data [55].

For time series data, there exist a few approaches to infer intervention effects
that do not fall under the causal inference frameworks (Structural Equation
Modeling[54] and potential outcome [61]). In marketing applications it is common
to infer the effects of interventions, and one approach in practice is the Bayesian
Structural Time series [11]. This approach to construct the counterfactuals
where an intervention is not in place is similar to what we are doing in Paper
III, i.e. prediction using inputs without intervention. Alternatively, interrupted
time series analysis is a popular method to assess the intervention effect in time
series in public health applications [6, 7, 15, 35].
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Real life application
Unfortunately, for this paper I did not have a suitable response variable from

the AHUS dataset. This is a limitation of the study. We could only demonstrate
hypothetical scenarios based on the model we assumed that generated the
outcome variable. In the future I hope we could have access to more variables in
the EHR datasets and construct realistic examples.

9.5 Data protection

Here I would like to briefly describe my experience on use of EHR and
ethics. Privacy protection on health data is important, however the way it is
implemented can have various implications to research: from access to data, to
the research questions that can be addressed.

MIMIC data
The access to MIMIC data had been a smooth experience as the data is

publicly available. A privacy protection course was required in the application
for data access, which took a few hours to complete. Once the access is granted,
the data can be downloaded to one’s personal computer.

The MIMIC III data constitutes of 26 separate data files and are linked by
unique patient ID. The time of admission for each patient is randomly shuffled
and projected into the future, so there is no possibility to identify which patients
were in the hospital at the same time. This protects privacy of the patients
while also render certain research topics that require time information impossible
(e.g. season, real time of the day, weekend). Yet the independence of patients
is suitable for most machine learning problems such as disease progression
prediction on individual patients.

AHUS (Norwegian) data
The access to the Norwegian hospital data had been a long and laborious

experience. Initially EHR data from Oslo University Hospital (Oslo Univer-
sitetssykhus, OUS) was the designated data source for this PhD project back in
2016. However after the data usage application was approved by the Regional
Ethical Committee (REK), we still did not receive the promised data due to
bureaucratic reasons even until late 2018. This had been a big obstacle to
the PhD project. Eventually we applied for access to EHR data at another
Norwegian hospital, Akershus University Hospital (AHUS) and the application
was approved in late 2019.

The AHUS data is deidentified by the data extraction personnel at AHUS
hospital and then stored in the TSD (Tjenester/Service for Sensitive Data,
tsd-drift@usit.uio.no). This is a secure server that only granted researchers
have access to, and all analyses need to be done here. Only the project owner
is allowed to export aggregated results. The time information is processed in a
different way compared to MIMIC data. The data extraction period is roughly
one year, however we as investigators only know the start of the study period is
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one Friday in June 2018, but do not know the exact date. The time recording
for each patient is not shuffled as in MIMIC data hence it is possible to compute
the number of patients at a certain ward during a specific time period.

9.6 Future perspectives

In addition to the points raised above, there are a few things that can be
done in the future. As of now, access to EHR data for research is still challenging
even in countries with good EHR systems in place. Efforts need to be made in
order to make data open and still secure. More data similar to the MIMIC III
database and eICU are desirable so that researchers can evaluate their models
in more than one dataset. The generalisability is crucial for any AI system to be
useful.

Complex raw data require robust data processing pipelines. For individual
researchers this is a non-trivial task. Some efforts to build consistent cleaning
pipelines have been made on the MIMIC III database although they are very
data-specific. It would be ideal if a universal data pipeline exists and saves
researchers time on this task. Nonetheless, cleaning the data from its raw form
would let the researcher know the data better; therefore a hybrid solution or
routine could be interesting.

There are many directions for future research using EHR beyond making
predictions on patient health status, which is still the most popular theme. One
direction forward would be understanding a model’s decision process, so that
both clinicians and patients can understand the decisions made by machines.
This is crucial for building trust in AI and patient safety. Beyond healthcare
applications, interpretable machine learning systems are also high demand. There
is going to be an exponential growth in this field.
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Chapter 10

Conclusion
In this thesis I introduced novel methods to extract, integrate and represent

information from heterogeneous temporal hospital electronic health record
EHR data. Three distinctive papers covering different clinical applications
(clinical event classification, patient flow management, logistic optimization)
are included in the thesis, making use of a wide range of statistical, machine
learning and graph theory tools. The thesis illustrates the opportunities and
challenges in healthcare in the Big Data Era, and at same time demonstrates the
methodological solutions to tackles these challenges. I believe the field of medical
informatics using EHR data is only getting more exciting where practitioners
and teams with interdisciplinary expertise can and will excel. However, it is the
patients and everyone using the healthcare services who will truly benefit from
the advancement in this field.
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Abstract
Electronic Health Records (EHR) data is routinely generated patient data that can
provide useful information for analytical tasks such as disease detection and clinical
event prediction. However, temporal EHR data such as physiological vital signs and
lab test results are particularly challenging. Temporal EHR features typically have
different sampling frequencies; such examples include heart rate (measured almost
continuously) and blood test results (a few times during a patient’s entire stay). Differ-
ent patients also have different length of stays. Existing approaches for temporal EHR
sequence extraction either ignore the temporal pattern within features, or use a prede-
fined window to select a section of the sequences without taking into account all the
information. We propose a novel approach to tackle the issue of irregularly sampled,
unequal length EHR time series using dynamic time warping and tensor decomposi-
tion. We use DTW to learn the pairwise distances for each temporal feature among the
patient cohort and stack the distance matrices into a tensor. We then decompose the
tensor to learn the latent structure, which is consequently used for patient represen-
tation. Finally, we use the patient representation for in-hospital mortality prediction.
We illustrate our method on two cohorts from the MIMIC-III database: the sepsis and
the acute kidney failure cohorts. We show that our method produces outstanding clas-
sification performance in terms of AUROC, AUPRC and accuracy compared with the
baseline methods: LSTM and DTW-KNN. In the end we provide a detailed analysis
on the feature importance for the interpretability of our method.

Keywords Electronic health records · Dynamic time warping · Tensor
decomposition · Patient similarity
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1 Introduction

Electronic health record, or EHR data is patient data routinely generated from health
institutions, including demographics, diagnoses, vital measurements, clinical notes,
laboratory test results andmedical images. EHR data can provide valuable information
for analytical tasks including but not limited to disease detection and classification,
medical concept embedding and data augmentation (Xiao et al. 2018). However, EHR
data can be challenging due tomulti-modality of data types, lack of outcome labels and
missingness, temporality and irregularity (Ghassemi et al. 2018; Kruse et al. 2016).
Temporal EHR sequences are difficult to model due to two sources of variability in
length of sequence: feature-wise and subject-wise. Different features (also known as
variables or parameters) can vary greatly in terms of measurement frequency, from
measured nearly continuously (blood pressure) to daily or whenever necessary (lab-
oratory test). Different patients (or subjects) can have varying periods of stays in the
hospital or intensive care units. It is crucial to represent the data in meaningful ways
to proceed with further analytical tasks such as clinical event predictions, hence the
heterogeneity in sequence length poses challenges.

There have been several approaches to represent temporal EHR data. One simple
approach is to compute sample statistics (minimum, maximum, mean, standard devia-
tion, number of measurements, first measurement) for features at predefined intervals,
for instance the first 48 h of the hospital stay (Harutyunyan et al. 2018; Johnson et al.
2017; Guo et al. 2020a). Classification tasks are then completed using classifiers such
as logistic regression or gradient boosting machines. This approach produces human
readable and interpretable features and can adapt to both feature and subject sequence
length variability, however loses the temporal dependency which is valuable for mod-
eling pathophysiologic evolution and disease progression (Luo et al. 2016; Alaa and
van der Schaar 2018). Recent developments in deep learning, especially Recurrent
Neural Networks (RNN) are able to capture the temporal pattern in multiple features.
Long Short Term Memory (LSTM) networks are a type of state-of-the-art RNN, and
have shown many successful applications in temporal healthcare data representation
and classification. Such examples include sepsis prediction (Scherpf et al. 2019),
unplanned intensive care unit readmission (Lin et al. 2019), mortality risk monitor-
ing (Kaji et al. 2019; Purushotham et al. 2018) and other clinical event detection and
diagnosis (Lipton et al. 2016). Bidirectional LSTM (BiLSTM) is a variation of LSTM
which takes both forward and backward sequence dependency into account, and has
been successful in disease inference and predictions (Yu et al. 2020; Guo et al. 2020b).

LSTMs are typically trained on a specified window (first 24 or 48 h of
patient records) therefore ignore the irregular sequence lengths (Suresh et al. 2018;
Purushotham et al. 2018; Song et al. 2018; Lei et al. 2018).When there aremissing val-
ues or variables, it is necessary to impute: either withmean, zero or withmore complex
approaches such as Gaussian Processes (Lipton et al. 2016; Moor et al. 2019). Despite
of their outstanding performance in classification tasks, most deep learning methods
require a large amount of data to train and remain complex with tens of thousands
of hyperparameters that are hard to interpret (Lipton 2016). Recent works to improve
interpretability in deep learning using ‘attention’ mechanisms still require complex
architecture (Alaa and van der Schaar 2018; Song et al. 2018). We need therefore
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a more transparent tool that can account for temporal sequences sampled at various
frequencies for irregular length of periods from different patients.

Modeling unequal length temporal EHR features directly in the raw form requires
either extracting the summary statistics at a snapshot or segmenting the sequences into a
regularwindow, as outlined above.On theother hand, ifwemodel the relations between
sequences such as similarity instead of the raw sequence itself, the segmentation could
be avoided. It is natural to study the similarity or distance (we use these two terms
interchangeably) as patients with similar conditions might display similar patterns
of physiological trends (Luo et al. 2016). This forms clusters of patients that can
be used for personalized predictions and treatments (Che et al. 2017; Ruffini et al.
2017) and to help understand the underlying patient characteristics, also known as
phenotyping (Ho et al. 2014a, b; Perros et al. 2017). Powerful data mining tools such
as dynamic time warping (Keogh and Pazzani 1999) can align and compare two
time series of unequal lengths, and has proven effective in EHR temporal sequence
learning (Che et al. 2017; Moor et al. 2019). The distances computed for different
features then need to be integrated in some way for further classification tasks. Luo
et al. (2016) used frequent subgraph mining to group patients with similar temporal
trends, then used subgraph groups to predict 30-day mortality. Moor et al. (2019)
proposed to use a hybrid of dynamic timewarping (or DTW in short) and theK-nearest
neighbor ensemble algorithm to classify each feature, then ensemble the predictive
score together to predict sepsis onset. Outside healthcare related applications, nearest
neighbor type classifiers with some distance metric remains one of the most powerful
time series classification methods (Tan et al. 2019; Bagnall et al. 2016).

Instead of classifying each feature individually and then integrate, an alternative to
collect all features together is to put theDTWdistancematrices into amultidimensional
array: a tensor. In this way data from more than two dimensions can be captured
conveniently. This tensor contains information about all features that were originally
irregular at feature level and subject level, and its decomposition can provide useful
insights on the characteristics of the features and the cohort. We therefore propose
a novel method to represent irregular length temporal EHR data via dynamic time
warping and tensor decomposition. Instead of using a fixed window of data, we use
the full patient sequences from various features that typically differ for each patient.
We learn the patient-pairwise feature distance for each feature using dynamic time
warping. Based on these distance matrices we construct a third order tensor, then
decompose the tensor using CANDECOMP/PARAFAC decomposition (Kiers 2000).
Our approach is referred to as DTW-CP. The learned latent feature matrix contains
information that can further produce patient representation for supervised learning
tasks.

We test DTW-CP on two different cohorts from the open MIMIC-III critical
care database with an in-hospital mortality prediction experiment, and compare with
baseline results produced by LSTM. With sufficient number of latent components,
DTW-CP has consistently better classification performance on both cohorts in three
metrics. We provide a detailed analysis of the features and learned latent components
to provide insight on which features contain more information for the classification
performance.
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The rest of the paper is organized as follow. Section 2 provides background informa-
tion for dynamic time warping and CP decomposition, and describes our methodology
of patient representation in detail. Section 3 outlines the experimental evaluation and
implementation details. Section 4 provides results for the experiments and analysis of
feature importance. Section 5 discusses the strength, limitation and future works and
conclude the paper.

2 Methodology

We give a brief review of dynamic timewarping and tensor decomposition in Sect. 2.1,
then describe our method for patient time series representation in Sect. 2.2.

2.1 Background

We first introduce the notations used in the paper (consistent with Kolda and Bader
2009). A tensor is a multidimensional array, the number of dimensions is called order,
modes or ways. In this work we focus on third order tensors. A slice is a two dimen-
sional section of a tensor with two fixed modes. For example X1:: is a horizontal slice,
which is the first layer or top matrix of a tensor (Table 1).

2.1.1 Tensor decomposition

Tensor decomposition has wide applications in signal processing and data mining
(Sidiropoulos et al. 2017; Acar et al. 2017), and has been applied successfully in
helathcare informatics (Ho et al. 2014a; Henderson et al. 2017, 2018). In this paper
we focus on CANDECOMP/PARAFAC or CP decomposition for short. For a third
order tensor X ∈ RI×J×K , a CP decomposition for a chosen number of components

Table 1 List of notations Symbol Definition

X, D, M Matrix

XT Matrix transpose

xr r-th column of X

X ,D Tensor

xi j , xi jk Elements of a matrix and a tensor

Xi ::, X: j : Horizontal, lateral slice of tensor

X::k or simply Xk Frontal slice of tensor

x, y Vector

◦ Outer product
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r = 1, . . . , R can be formalized in the following way:

min
X̂

||X − X̂ || where X̂ =
R∑

r=1

ar ◦ br ◦ cr (1)

Here ar , br , cr are column vectors of size I , J , K . The vectors can be reorganised
into factor matrices [[A, B,C]] where A ∈ RI×R, B ∈ RJ×R,C ∈ RK×R , A =
[a1 a2 . . . aR]. If the columns of A, B,C are normalized to unit length, then the
weights are absorbed into λ ∈ RR ,

X̂ =
R∑

r=1

λr ar ◦ br ◦ cr . (2)

More details on tensors and the CP decomposition can be seen in (Rabanser et al.
2017; Kolda and Bader 2009) and references therein.

2.1.2 Dynamic time warping

Dynamic time warping (DTW) is a technique to find the optimal alignment between
two time dependent sequences, specifically with time deformation and different speed
(Keogh and Pazzani 1999; Muller 2007). Given two time series x = (x1, x2, . . . , xN )

and y = (y1, y2, . . . yM ), construct a cost matrix C ∈ RN×M with elements cn,m =
d(xn, ym). Hered is a distancemeasure.With squaredEuclidean distance,d(xn, ym) =
(xn − ym)2.

Awarping pathW = (w1, . . . , wQ) is a set of matrix indices that defines amapping
between x and y where Q is the length of the warping path. Let w1 = (1, 1), wQ =
(N , M), indicating that the warping path starts and ends in the opposite corner cells
of the matrix (boundary conditions). W also need to satisfy additional continuity and
monotonicity conditions (Keogh and Pazzani 1999). Let the total cost of a warping
path W between x, y be

TCW (x, y) =
Q∑

q=1

cwq , (3)

The optimal warping path W ∗ is the one that minimizes the total cost among all
possible paths, and the DTW distance is the total cost associated with W ∗,

DTW (x, y) = TCW∗(x, y)

= min{TCW (x, y)}.

It is time consuming to find the optimal warping path. By restricting the difference
between possible alignment indices between time series pairs, the search window is
narrowed around the diagonal of the warping cost matrix. Two well known global
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constraints are the Sakoe–Chiba band (Sakoe and Chiba 1978) and Itakura parallelo-
gram (Itakura 1975). A comparison between these two constraints has been made by
Geler et al. (2019). More recent works have investigated learning constraints from the
data for faster computation and better accuracy (Ratanamahatana and Keogh 2004;
Niennattrakul and Ratanamahatana 2009; Salvador and Chan 2007; Dau et al. 2017).
It is worth mentioning that constraints work well when the time series lengths do not
differ much, otherwise the warping path might not exist (Giorgino 2009).

2.2 Representation of EHR time series

In this section we describe the workflow of representing patient time series of unequal
length and sampling frequency. Each unique variable of such physiological time series
such as temperature or white blood cell count is referred to as a feature. We use the
term distance and similarity interchangeably. Denote the patient index i, i = 1, . . . N
and feature index k, k = 1, . . . K . The length of stay for different patients varies,
leading to patient-specific time index denoted by ti = (ti1, . . . , tiT ). The temporal
sequence of feature k associated to patient i is recorded as

pik = (pik,ti1 , . . . , pik,tiT ). (4)

2.2.1 Learning latent feature structure

Due to the irregularity in lengths of feature sequences across patients and features, we
transform the problem from modeling the individual feature itself for all patients to
modeling the similarity of feature between pairs of patients. As dynamic time warping
(DTW) can align and compute the distances between pairs of univariate sequences
with varying lengths, for each feature k, we compute the distance between each pair
of patients (i, j) denoted by

di jk = DTW ( pik, p jk). (5)

The procedure is illustrated in Fig. 1a. This forms a third order pairwise distance
tensor D ∈ RN×N×K where the three modes correspond to patient, patient, feature
respectively (Fig. 1b). Each frontal slice D::k represents the pairwise distance matrix
for feature k. Elements in the same slice D::k have 0 as diagonal elements, diik = 0
for i = 1, . . . N .

We then proceed by decomposing the tensor D via CP decomposition with chosen
number of components R (Fig. 1c). The motivation for this step is twofold. On the
one hand, using CP allows us to learn the latent variables from a complex set of data
of multiple unequal-length time series across different patients; on the other hand we
reduce the dimensionality of the data andmake it possible to carry out predictive tasks.
CP produces three factor matrices M1 ∈ RN×R, M2 ∈ RN×R, M3 ∈ RK×R that are
the combinations of the vectors from the rank-one components. They represent patient,
patient and feature modes. We refer to M3 as the feature factor matrix where each
element Mk,r is the loading or weight for feature k on component r .
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2.2.2 Patient representation for prediction

We further examine the distance tensor D from another perspective: its lateral slices
D:i :. Our approach is similarity based, hence it is necessary to have a common key
or pivot patient to compare with. A pivot patient is defined as the patient I in the
cohort whose features of other patients i = 1, . . . N , i �= I are compared to. For
instance, the first slice on the left D:1: ∈ RN×K contains DTW distances for all
features comparing patient I = 1 with all other patients (Fig. 1d). Such a matrix is
referred to as a pivot distance matrix. Each pivot distance matrix is partial as it only
contains distances compared with one key patient. In order to complete a predictive
task such as mortality classification, directly using the distance matrix as input creates
problems because there is no rule as for which lateral slice (i.e. which pivot patient)
to choose. Each component of the feature factor matrix M3, however, contains feature
information (loadings) collected from all patient pairs that can be used for prediction.
We produce patient representation PI ∈ RN×R by projecting the pivot distance matrix
onto the feature factor matrix (Fanaee-T et al. 2013) as shown in Fig. 1e,

PI = D:I :M3. (6)

Fig. 1 a, b, c: Procedure of learning latent feature factor, where d(i, j, 1) is the DTW distance between
patients (i, j) for feature 1. d, e: Learning patient representation for prediction. Similarly, d(1, j, k) is the
DTW distance between patients (1, j) for feature k
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2.2.3 Training and testing procedure

Nowwe describe theworkflow of the training and testing. First the data set is randomly
split into training and test sets with 70/30 proportion and class stratification. In the
training set, DTW distances are computed for all features. The distance tensor is
constructed and then decomposed, producing the feature factormatrix for a pre-chosen
number of latent components. To create the projection matrix for classification, we
choose an arbitrary lateral slice (of pivot patient I ) from the training tensor, and
project it onto the feature factor matrix. In the illustration of Fig. 1, I = 1 but it
can be different. This projection is used for training the classifier. For the test set,
it is necessary to compute the DTW distance for feature sequences between the test
subjects and the pivot patient I , thenmake the projection onto the feature factormatrix.
This is because we need to make the distance representation consistent: both training
and test distances for projection need to be compared with the same pivot.

3 Experimental evaluation

We carry out experiments using a publicly available database, theMedical Information
Mart for Intensive Care (MIMIC III) database (Johnson et al. 2016). This is a single
center database that contains information about patients admitted to critical care units
at Beth Israel DeaconessMedical Center, Boston, USA. The data types include, but are
not limited to structured data such as temporal physiological signs and laboratory test
results, static demographic information such as age and gender, as well as unstructured
data such as free text clinical notes. In the current work we will focus on the structured
temporal data. Recent works on reproducible studies using MIMIC-III data make it
possible to extract consistent patient cohorts and features. We select two cohorts for
our experiments, and our selection criteria is in line with (Johnson et al. 2017).

3.1 Cohort and feature selection

3.1.1 Sepsis cohort

The first cohort we examine is a subset of the sepsis cohort originally studied in (Ribas
Ripoll et al. 2014) then reproduced by Johnson et al. (2017). We choose patients
who have a sepsis diagnosis (ICD-9 code 995.92 or 785.52) and Simplified Acute
Physiology Scores (SAPS) (Le Gall et al. 1993). We only keep patients who have
been in the ICU for no more than seven days (168 h), making a cohort of 1425 ICU
stays in total. Of these patients, 38.9% are associated with a mortality outcome. Our
study period is longer than other works using DTW or similarity-based methods that
used only 12 or up to 48 h (Luo et al. 2016; Moor et al. 2019). It is of interest to
see whether DTW still works well for longer sequences. We design an incremental
inclusion criterion: group 1 contains all subjects with below 24 h (1 day) records,
group 2 contains subjects with below 48 h (2 days) records and so on, until 7 days.
This suggests that patients within groups with shorter stays are also included in those
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Table 2 Information for the sepsis and the acute kidney injury (AKI) cohorts

Cohort index Length of stay (h) N patient (Case, Control)

Sepsis 1 [5, 24] 225 (136, 89)

Sepsis 2 [5, 48] 546 (240, 306)

Sepsis 3 [5, 72] 833 (338, 495)

Sepsis 4 [5, 96] 1048 (410, 638)

Sepsis 5 [5, 120] 1202 (468, 734)

Sepsis 5 [5, 144] 1329 (521, 808)

Sepsis 5 [5, 168] 1425 (554, 871)

AKI 1 [5, 24] 652 (189, 463)

AKI 2 [5, 48] 1676 (370, 1306)

AKI 3 [5, 72] 2448 (515, 1933)

AKI 4 [5, 96] 2959 (611, 2348)

AKI 5 [5, 120] 3284 (683, 2601)

AKI 6 [5, 144] 3521 (757, 2764)

AKI 7 [5, 168] 3705 (801, 2904)

Note that for the AKI experiment we use 50 fixed size of stratified random samples (500 subjects in total
with 150 cases, 350 controls) for each subgroup 1–7

with longer stays. In this waywe can observeDTW’s performance on datawith smaller
and larger sequence length variability.

3.1.2 Acute kidney injury cohort

The second cohort is the acute kidney injury (referred to as AKI in the rest of the paper)
cohort based on Johnson et al. (2017). We select patients who have ICD-9 diagnosis
of acute kidney injury (code 584.9) who have no more than seven days stay, similar
to the previous section. We end up with a cohort of 3705 patients (21.6% mortality).
Similar to the previous cohort, we segment the cohort into seven incremental groups:
below 24, 48, 72, 96, 120, 144, 168 h corresponding to 1 to 7 days. We modify the
experiment slightly to assess the stability of our method in a more controlled scenario.
We fix two aspects of the cohorts: sample size and class distribution. We perform
experiments on 50 random samples of fixed size 500 subjects from the five subgroups
corresponding to length of stay, shown in Table 2. The class distribution within each
sample is set to 30% case (dead) and 70% control (alive). This produced 350 random
samples in total.

3.1.3 Feature selection

In the temporal EHR prediction literature there have been some frequently used phys-
iological and laboratory test variables (Johnson et al. 2017; Moor et al. 2019; Luo
et al. 2016; Suresh et al. 2018). The majority of these features are the same, such as
heart rate, oxygen saturation and others. Nonetheless, there are some study-specific
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Table 3 Extracted features and abbreviations for our experiment

Heart rate HR Mean blood pressure MBP

Systolic blood pressure SBP Diastolic blood pressure DBP

Respiratory rate RR Temperature Temp

Oxygen saturation SpO2 Glasgow coma scale total GCS

GCS motor, verbal, eyes GCS_m, v, e Urine output UO

Endotracheal flag EndoFlag

Anion gap AG Albumin ALB

Immature Band forms Band Base excess BE_bg

Bilirubin BIL Blood Urea Nitrogen BUN

Bicarbonate HCO3* Carboxyhemoglobin CoHB_bg

Calcium Ca_bg Chloride CL*

Creatinine CR Glucose Glu*

Glucose chart Glu_c Hematocrit HCT*

Hemoglobin HGB* Lactate LAC*

Methemoglobin MetHb_bg International Normalized Ratio INR

Partial pressure (Oxygen) PO2_bg Partial pressure (CO2) PCO2_bg

pH pH Platelets PLT

Prothrombin time PT Partial thromboplastin time PTT

Potassium K* Sodium Na*

Total CO2 concentration totalCO2_bg White blood cell count WBC

The top panel consists of vital signs as well as urine output, Glasgow coma scales and endotracheal flag.
The bottom panel contains laboratory test variables. bg: arterial blood gas measurement
* Indicate that this feature has more than one measurement source, the other being blood gas

features included in each paper, for instance, Luo et al. (2016) uses volumes of gas
exchanged per minute which is not included in other studies. For consistency, we
extract a reproducible set of features from Johnson et al. (2017), listed in Table 3.
Repeated feature names such as glucose is due to multiple sources of data produced in
different test procedures, as explained by the authors (finger-stick glucose or arterial
blood gas glucose). The final number of features is 52.

3.2 Implementation details

For features other than lab test variables, we use the period starting from patient
admission into ICU until their discharge (from ‘0h’ to end of stay illustrated in Fig. 2).
For lab test features, we include an extended period of 24 h before admission (from
‘-24h’ to the end of stay). These features are typicallymeasured less frequently, and an
additional period may contain useful information (Johnson et al. 2017). Each feature
is standardized by substracting the mean and dividing by the standard deviation of its
own cohort.

We evaluate our DTW-CP method on a binary classification task: in-hospital mor-
tality. DTW is carried out on 52 standardized features for the training set, producing
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Fig. 2 Time intervals for feature extraction from an individual patient’s ICU stay

52 pairwise distance matrices. We use three options for the warping path of DTW:
without any constraint, Itakura parallelogram, and Sakoe–Chiba constraint with band-
width that is half of the maximum length of the two series of interest. In the case when
a constrained warping path does not exist, we use the unconstrained warping path to
compute the distance. The distance matrices are then stacked into a third order tensor
as described in Fig. 1 for CP decomposition. The selected number of components to
decompose into is from 2 to 30. The rest of the procedure is as described in Sect. 2.2.
We use logistic regression, support vector machine with linear and radial basis func-
tion kernel as our classifiers. The tuning parameters for SVM are chosen via 5-fold
cross validation.We use three options of pivot patient in our experiments: (1) a random
pivot such as the first patient (Sect. 4.1.1, part 1); (2) all patients as pivots (Sect. 4.1.1,
part 2); (3) we choose 10 random pivots, split the training set into training and val-
idation data and fit the models with each pivot. The one that has the best validation
AUC is picked as the final pivot (Sect. 4.1.2). The metrics to evaluate the classifica-
tion performance on the test data are Area under Receiver Operating Characteristic
curve (AUROC, or AUC in the rest of the paper), Area Under Precision Recall curve
(AUPRC) and accuracy (defined by the proportion of correct classifications). The use
of AUPRC is to provide a better metric when the class distribution is imbalanced. We
report the average of the above three metrics over the random splits from the test sets
from each experiment.

We consider two types of comparison methods: K-nearest neighbor combined with
dynamic time warping (DTW-KNN), and Long Short Term Memory (LSTM) neural
networks. For DTW-KNN, we use the DTW distance computed in the previous task.
For all features, we sum up the pairwise DTW distances matching the patient index:
the resulting matrix is the multivariate DTW distance matrix with elements dmi, j =∑52

k=1 di, j,k for patients i, j . This is equivalent to the independent multivariate DTW
distance (Shokoohi-Yekta et al. 2017). We experiment KNN classifiers with k =
1, 3, 5.

There are numerous variations of LSTM architectures (Harutyunyan et al. 2018;
Song et al. 2018). A typical LSTM application of temporal EHR data requires each
patient record to have at least 24 h of records, then only take the first 24 h for model-
ing, indicated as the interval between ‘0h’ to ‘23h’ in Fig. 2. While producing good
classification results with huge amount of training data, this inclusion criterion ignores
patients with shorter records. We adjust this approach to make patient inclusion more
flexible. For cohorts with shorter than 24 h records (day1), we make predictions on
data periods of both 12 and 18 h for subjects who have at least 12 and 18 h records,
respectively. For cohorts with longer records we use 12, 18, 24 h. We use the average
performance over these windows as our final metric for that cohort.
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We fit LSTM type models of three different architectures for the hidden layers: (1)
one LSTM hidden layer; (2) two LSTM hidden layers and (3) one bidirectional LSTM
hidden layer (BiLSTM). We use the rectified linear unit (ReLu) activation for hidden
layers, and the sigmoid activation for the dense output layer to complete the binary
classification.We test two different numbers of units, 64 and 128, for the LSTM layers.
We use RMSProp as our optimizer. The batch size is fixed at 32. We train each model
with 20 epochs and we use an early stopping if the validation loss stops decreasing
for 5 epochs. It is uncommon to have more than two LSTM layers in practice as the
number of parameters to estimate explodes. An optimal set of hyperparameters for
LSTM does not exist in the literature and the impact of number of units or architecture
can be insignificant (Reimers andGurevych 2017). Our choice of configuration should
be representative for this type of methods. We compute the average AUC, AUPRC
and accuracy over the random splits from the test set for each window.

Software for implementation: R (version 3.6.1) has been used for data preparation,
DTW (with dtw package created by Giorgino 2009) and classification. MATLAB
Tensorlab (Vervliet et al. 2016) has been used for CP decomposition. Keras
(Chollet 2015) with TensorFlow backend has been used for LSTM models.

4 Results

In this section,we report the classification performance tested onboth the sepsis and the
acute kidney injury (AKI) cohorts, followed by the analysis of features using data from
the sepsis cohort.We answer the followingquestions: (1) howdoes ourmethodperform
in data sets with different combinations of feature sequence heterogeneity compared
to the baseline methods? (2) are we able to identify features that are important for the
patient representation and the classification performance?

4.1 Classification performance

4.1.1 DTW-CP performance analysis

Figure 3 compares the classification performance (measured by AUC) using DTW
distances computed with three warping path options (unconstrained, Itakura paral-
lelogram, and Sakoe–Chiba band) as features, and logistic regression(LR) and linear
SVM as classifiers for the sepsis cohort for each group (sepsis 1–7, Table 2) over 10
random splits of the training and test sets. The pivot is fixed at the first patient. We
use ‘group’ and ‘day’ interchangeably in the rest of the paper. On the x-axis is the
number of components or latent features as predictors. Overall, different constraints
do not give very different classification performance. Computation times for the con-
straints can be found in Sect. 4.3. When the number of components grows, the AUC
increases and stabilizes for all groups. This upward-then-stable pattern is common
for tensor-based phenotyping and prediction applications (Ho et al. 2014a, b). The
exception is day1 (dark green) with the LR classifier: after component 20 to 25 the
performance start to deteriorate yet still stays above 0.8. This was not the case for
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Fig. 3 AUC of DTW-CP with LR and linear SVM classifier on 1–7 groups for the sepsis cohort, fixed
pivot at the first patient. DTW distances are computed with no constraint (‘None’), Itakura parallelogram,
and Sakoe–Chiba band. Lines represent the mean AUC over 10 randomly split test sets for each number of
components from 2 to 30

the SVM classifier. This indicates that the optimal component r for day1 with LR is
smaller than 30; alternatively a classifier with penalization could be applied tomitigate
the problem.

Similarly,we show themeanAUCfor the acute kidney injury (AKI) cohort for group
1–7 over 50 randomly sampled test sets under differentDTWconstraints and classifiers
(Fig. 4). Similar to the sepsis cohort results, the AUC displays an upward-then-stable
trend as the number of components increases. As the day grows (hence the variation
among the sequences within the cohort) the performance slightly deteriorates. The
patterns in the AKI cohort is more consistent than the sepsis cohort and less variable.

We then test the performance of DTW-CP over different choices of pivots: we carry
out classification tasks using all the pivot patients in the training tensor for each day
from the sepsis cohort (with only one random split) with component R = 30 and no
DTW constraint, and report the mean and standard error of the metrics in Table 4. The
results can be compared with Figs. 3 and 6. Apart from day1 where the classification
performance is slightly worse and with higher LR standard errors, the other metrics
fluctuate with an SE around 0.02. It is not straight-forward to identify the potential
outliers in the cohort because there are multiple features, and all distances are relative
to which pivot to compare with. Instead of iterating over all possible pivots, one way
to choose the pivot is to randomly choose a few (for instance, 10) and pick one that
produces the best validation AUC.

4.1.2 Comparison with KNN and LSTM

In this section we compare DTW-CP with KNN and LSTM methods. We make use
of the procedure described in the previous section: we randomly choose 10 training
pivot patients and take the pivot with best validation AUC as the optimal pivot. The
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Fig. 4 AUC of DTW-CP with LR and linear SVM classifier on 1–7 groups for the AKI cohort, fixed pivot
at the first patient. DTW distances are computed with no constraint (‘None’), Itakura parallelogram, and
Sakoe–Chiba band. Lines represent the mean AUC over 50 randomly split test sets for each number of
components from 2 to 30

Table 4 Performance (mean, SE) on the sepsis cohort with different pivot patients

Metric/Classifier Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

AUC LR

Mean 0.836 0.876 0.900 0.881 0.852 0.874 0.884

SE 0.044 0.020 0.018 0.021 0.020 0.018 0.022

AUC SVM

Mean 0.873 0.871 0.889 0.864 0.832 0.863 0.872

SE 0.030 0.023 0.020 0.023 0.024 0.020 0.024

Accuracy LR

Mean 0.773 0.809 0.850 0.819 0.798 0.830 0.841

SE 0.042 0.021 0.019 0.020 0.019 0.019 0.016

Accuracy SVM

Mean 0.806 0.805 0.831 0.800 0.788 0.822 0.830

SE 0.040 0.021 0.020 0.020 0.020 0.020 0.019

AUPRC LR

Mean 0.853 0.883 0.890 0.874 0.801 0.820 0.850

SE 0.050 0.017 0.018 0.022 0.026 0.030 0.024

AUPRC SVM

Mean 0.897 0.876 0.879 0.848 0.778 0.802 0.827

SE 0.041 0.021 0.022 0.026 0.031 0.029 0.030
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Fig. 5 Three metrics (mean, 95% CI) for the AKI cohort, comparing DTW-CP with LSTM, KNN over 7
groups. DTW-CP (LR = logistic regression, SVM-L = SVMwith linear kernel, SVM-R = SVMwith radial
basis function kernel) performance are extracted at component 30 with unconstrained DTW

results are averaged over 10 random splits from the sepsis cohort, and 50 random
splits from the AKI cohort. We focus on the case with 30 components. In Fig. 5 we
illustrate the three metrics from the AKI cohort. It can be seen that for DTW-CP, LR
and SVM-L classifiers produce similar results, while SVM-R is slightly worse. The
impact of adding sequence length variation (from day 1 to day 7) is not as obvious as
in Fig. 4, and the AUC is higher after selecting the optimal pivot. Compared with the
baselinemethods, DTW-CPwith LR or SVM-L produce the best AUC.When it comes
to the accuracy and AUPRC, DTW-CP is constantly better than LSTM methods, and
has better or similar performance as the best KNNmethod from day 1 to day 5. As the
prediction horizon increases, the deterioration of the LSTMmethods is more obvious.
This is not surprising, as there is not enough information to predict in a long term by
using only the first 24 h without huge amounts of training data. BiLSTM seems to
have the best performance among the LSTM methods.

In Fig. 6 we show the performance comparison on the sepsis cohort. DTW-CP
outperforms LSTMs and KNN (k = 1) in all metrics on all groups except day1. It also
produces better or equal performance in all metrics as the best KNN in day 3, 4 and 5.
In day 2, 6 and 7, DTW-CP has comparable or marginally lower performance than the
best KNN (k = 5) in one of the three metrics. We also observe that the performance
of DTW-CP in day 1 is worse than the other groups in terms of AUC and accuracy,
although the metric values are still decent. This is consistent with Fig. 3 and Table 4.

We make the following comments on the performance differences between the
sepsis and the AKI cohort. With DTW-CP, when we use any random pivot (such as the
first patient, Figs. 3, 4), the overall performance in terms of AUC is better in the sepsis
than the AKI cohort, with an exception day1. The worse performance in sepsis-day1
compared to other days in the sepsis data is probably due to much fewer samples (only
225, see Table 2); when the sample size is larger (AKI) , day1 has better performance
than all other days. In all the other days, sepsis has larger sample size than AKI, which
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Fig. 6 Three metrics (mean, 95% CI) for the sepsis cohort, comparing DTW-CP with LSTM, KNN over 7
groups. DTW-CP performance are extracted at component 30 with unconstrained DTW

could explain why performance is still competitive when sequence length variation
gets bigger. With controlled sample size in all its subgroups, the AKI cohort displays
rather constant deterioration as length variation grows (day1, 2 has better AUC than
day6, 7). We summarize that DTW-CP could perform better under two conditions:
when there is more data, and when the sequences are shorter. If we select the pivot
that produces that best validation AUC among a few randomly chosen ones, then the
sequence length variation has less impact on the performance.

4.2 Analysis of feature importance

Following the good classification performance,we further investigate the interpretabil-
ity using data from the sepsis cohort. The aim is to understand which features play
an important role in the patient representation. We look at three aspects, namely the
measurement frequency of the features, the distance matrix for one pivot patient and
the learned latent feature matrix from CP decomposition. The feature names and
abbreviations are consistent with Table 3.

4.2.1 Measurement frequency

The featureswe use vary greatly in terms ofmeasurement frequency, and consequently,
in terms of total number of measurements and length of sequence. Figure 7 illustrates
the average number of measurements for patients in the sepsis cohort. The time stamp
of feature recording is rounded to the nearest hour; if more than one measurement
per hour is made, an average is taken. The total number of hours of patient stay in
hospital or intensive care unit (length of stay, LOS) is therefore the maximum number
of measurements for this patient. The cohort mean (median) length of stay is 56.65
(52) h. Vital features such as heart rate, blood pressures and oxygen saturation are
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Fig. 7 Average number of total measurements for features in sepsis cohort. Cohort mean (median) length
of stay is 56.65 (52) h. The red dashed line distinguishes the non-lab and lab test features

measured almost hourly while laboratory tests are taken only a few times during a
patient’s entire hospital stay. At the same time, even within the same feature (i.e. heart
rate), the number of measurements can vary across patients given different LOS.

4.2.2 Distance matrix

To deal with the heterogeneity of time series outlined in the previous section, we work
with the similarity (distance) between patient pairs computed via DTW. Figure 8
presents a heatmap for a pivot distance matrix for an arbitrary patient, as described in
Fig. 1. It is important to point out that this matrix varies for different pivot patients. The
X-axis represents the subject index of the cohort. Each colored element represents the
DTW distance for each individual patient compared to the pivot for the corresponding
feature, plotted on the y-axis. The features are ordered in the same way as Fig. 7. The
top rows represent very frequently measured features (vitals and procedures) having
close to zero distances with low variability, colored in deep red. Most blood gas test
results (end with _bg) are measured very infrequently and display the same pattern as
the vitals. This effect could be interpreted as follows: frequently measured features are
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Fig. 8 Distance matrix for one patient from the sepsis cohort

vital signs that are inherently similar, hence little distance; while features with very
few measurements simply contain too little information.

Noticeably, for this pivot patient the urine output, GCS measurements, blood urea
nitrogen, creatinine, lactate, PaO2/FiO2 ratio, platelet counts and white blood cell
count display higher distance variability, colored inwhite and blue.We assume features
with high variance provide more information for classification.

4.2.3 Latent feature matrix

The pivot distance matrix only contains DTW distances of one particular patient com-
pared to others in the cohort, therefore it is patient-specific. Tensor decomposition (CP)
provides a useful tool to summarize information from the whole cohort. The latent
featurematrix of the sepsis cohort is 52 rows (feature) by R = 2, . . . 30 columns (com-
ponent). By examining each component, we can identify which feature was important
or unimportant by examining the magnitude of its loadings. In contrast to to Principal
Component Analysis (PCA), the first component from CP does not necessarily cor-
respond to the direction explaining the largest variance: there is no ordering among
the components. We illustrate with an example of three arbitrary components out of
30 from the CP decomposition in Fig. 9, as it is infeasible to visualize more than
three dimensions. We normalize loadings of each component to unit length. In this
particular factorization, it can be observed that most features have low factor weights
or loadings, as they are concentrated around 0, and some are more spread out.
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Fig. 9 Normalized factor loadings for three arbitrary components out of 30 from the CP decomposition,
corresponding to the sepsis day 1 cohort. Green and Red color indicate feature categories Lab and Vital.
Only loadings of magnitude greater than 0.1 in any direction is labeled for readability

To further investigate the importance of each particular feature, we calculate the
average factor loading in the following way. For the decomposed feature factor matrix
M ∈ R52×R where each row corresponds to the kth feature’s Rth component loading,
and we define the average loading of feature k as the average magnitude of all its R
loadings. We illustrate the average loadings for the sepsis tensor decomposition over
7 days with fixed number of components, R = 30 in Fig. 10. Comparing with Fig. 7
it can be observed that the factor loading does not correspond with the measurement
frequency: temperature andSpO2aremeasured rather frequently but have low loadings
across all 7 days constantly; creatinine, lactate, PaO2/FiO2 fraction aremeasured fewer
times but have greater loadings. Regarding trend corresponding to one to seven day
data, features display various patterns: increasing (GCS verbal), constant (heart rate)
and decaying (lactate). This examination also reveals which features play very little
role (close to zero loading for all 7 days) in the patient tensor structure.

From the factor loadings we can try to link to the physical meanings of feature
importance. Urine output is measured frequently and is a marker for acute kidney
injury that is associated with high hospital mortality (Legrand and Payen 2011; Zhang
et al. 2014). Lactate (serum and blood gas) has both shown up as important features,
and lactate level elevation is associated with increased risk of death (Sanderson et al.
2018; Filho et al. 2016; Trzeciak et al. 2007). The other features such as PaO2/FiO2
ratio (Allardet-Servent et al. 2009), glucose (Park et al. 2013), creatinine, bilirubin,
platelet counts, INR (Murali et al. 2014; Li et al. 2018) are indicators for functionality
in different organs, and GCS scores (Ting et al. 2010) provides information for the
mobility of a patient. Our method could be one step forward to understanding which
features are most indicative for classification for similar datasets, in contrast to includ-
ing all features available and utilizing models with complex architecture. It is crucial
to point out that physiological patterns are extremely complex especially for critically
ill patients, and all interpretations are data and context dependent. Therefore any use
of machine learning models need to be carefully verified by clinicians.
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Fig. 10 Average loading for 52 features over all R = 30 components for the CP decomposition, sepsis
data, day 1 to 7

4.3 Scalability of DTW and CP

We provide the execution time for Dynamic time warping and CP decomposition for
the sepsis dataset. Computations are performed on a High Performance Computer
running Red Hat Enterprise Linux 7. The hardware includes Intel ®Xeon ®Platinum
8160 (2.10 GHz) CPU and 1TB of RAM.

The average time for DTWcomputations in hours (mean, standard deviation) for all
features is reported in Table 5. Itakura parallelogram and Sakoe–Chiba constraint (of
bandwidth half of the maximum sequence length) improve the DTW speed compared
to unconstrained DTW. The higher standard deviation in the unconstrained DTW is
due to longer time required for features with longer sequences, such as heart rate
(Table 6).

We also provide the time required for CP decomposition with varying size of ten-
sors and number of components to decompose. The computation is carried out using
MATLAB tensorlab toolbox. We report the execution time in seconds for the sepsis
data set, day 1 to 7 subgroups (averaged over 10 random splits) where the dimension
of target tensor grows from 158 × 158 × 52 to 998 × 998 × 52.
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Table 5 Average DTW
execution time (h) for 52
features

Constraint Mean SD

None 1.047 0.351

Itakura 0.980 0.178

Sakoe–Chiba 0.904 0.096

Table 6 CP decomposition execution time (seconds) into 10, 20, 30 components

Data index Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
Size of patient mode 158 383 584 734 842 931 998

10 13.01 36.37 56.62 80.66 90.49 98.74 114.09

20 18.81 111.99 134.69 156.64 190.05 229.46 323.64

30 143.30 169.91 211.02 275.45 283.10 302.19 356.80

5 Discussions and conclusion

We have proposed a novel approach, a hybrid of dynamic time warping with tensor
decomposition (DTW-CP) to tackle a prevalent but challenging issue with temporal
EHR sequences: varying sampling frequency among features for different lengths of
patient stays. Our approach utilizes DTW to learn information about feature similari-
ties for patients in the cohort, and consequently uses tensor decomposition to learn the
latent feature structures. In addition, we have done a detailed analysis of the temporal
features used in many clinical prediction applications using the MIMIC-III database.
We illustrated that the importance of a feature (i.e. high factor loading from decom-
position) is not directly related to how often it is measured, and linked the ‘important’
features to their clinical interpretations.

Among all the works using DTW or tensor decomposition in healthcare, we are the
first to combine these two. Moreover, we have extended the DTW time period to up
to seven days, and illustrated how classification performance changes with different
variation in sequence length. We carried out careful experiments using (1) distance
matrices computed by differentDTWconstraints (Itakura parallelogram, Sakoe–Chiba
band versus unconstrained DTW); (2) different pivot options; (3) different classifiers
(logistic regression, linear and radial basis function kernel SVM). By comparing with
two baseline methods: LSTM with three architectures, and DTW-KNN methods, we
have shown that our method is able to outperform them in three different metrics. We
also give interpretations of the classification performance with different data sets and
different settings.

DTW-CP is a similarity (distance) based approach, this has two implications. Firstly
it is necessary to compute the distance between all pairs of patients in the cohort for
each feature. This step can be time consuming when the sequences are long and when
the cohort is large, as pointed out inMoor et al. (2019) (who did not use any constraint,
but used fastDTW in their implementation). Although DTW computation time can be
reduced with constraints, it can only be used when the sequence length do not differ
much; also it is unclear which constraint is the best (Geler et al. 2019). Secondly, the
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interpretation of features is based on patient similarity instead of the feature value
themselves. This means there is always a need for pivot patient to compare the rest of
the cohort with, to make the interpretation meaningful. We have chosen to optimize
the choice of pivot based onmaximizing AUC. This choice should of course be guided
by which metric is most important for any given application.

Our choice of decomposition algorithm (CP) does not have non-negative constraint,
hence the interpretation of latent feature matrix distinguishes itself from Ho et al.
(2014a, b); Afshar et al. (2018) and others where each component is a combination
of positive phenotype memberships. There is no standard way to choose the number
of components to decompose into, hence we suggest that in practice this should be
where the classification performance stabilizes. Lastly, we have only utilized tempo-
ral EHR sequences. Most works on patient clustering and clinical event predictions
include static demographic data in addition to the dynamic data (Suresh et al. 2018;
Purushotham et al. 2018), thus combining static data with temporal sequences is a
direction we could investigate further. Possible solutions include coupled matrix and
tensor factorization (CMTF).
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Abstract: 

Objectives: Describe patient transfer patterns within a large Norwegian hospital. Identify risk 

factors associated with a high number of transfers. Develop methods to monitor intrahospital 

patient flows to support capacity management and infection control. 

Design: Retrospective observational study of linked clinical data from electronic health records. 

Setting: Tertiary care university hospital in the Greater Oslo Region, Norway 

Participants: All adult (≥18y) admissions to the Gastroenterology, Gastrointestinal surgery, 

Neurology and Orthopaedics departments at Akershus University Hospital, June 2018-May 2019.  

Methods: Network analysis and graph theory. Poisson regression analysis. 

Outcome measures: Primary outcome was network characteristics at the departmental level. We 

describe location-to-location transfers using unweighted, undirected networks for a full-year study 

period. Weekly networks reveal changes in network size, density and key categories of transfers 

over time. Secondary outcome was transfer trajectories at the individual patient level. We describe 

the distribution of transfer trajectories in the cohort and associate number of transfers with patient 

clinical characteristics. 

Results: The cohort comprised 17,198 hospital stays. Network analysis demonstrated marked 

heterogeneity across departments and throughout the year. The Orthopaedics department had 

largest transfer network size and density and greatest temporal variation. More transfers occurred 

during weekdays than weekends. Summer holiday affected transfers of different types (ED-any 

location / bed ward-bed ward / to-from technical wards) differently. 

Over 75% of transferred patients followed one of twenty common intrahospital trajectories, 

involving 1–3 transfers. Higher number of intrahospital transfers was associated with emergency 

admission (transfer rate ratio RR=1.827), non-prophylactic antibiotics (RR=1.108), surgical 

procedure (RR=2.939), and stay in ICU or high-dependency unit (RR=2.098). Additionally, 

gastrosurgical (RR=1.211), orthopaedic (RR=1.295) and neurological (RR=1.114) patients had 

higher risk of many transfers than gastroenterology patients (all effects: p<0.001). 

Conclusions: Network and transfer chain analysis applied on patient location data revealed logistic 

and clinical associations highly relevant for hospital capacity management and infection control. 
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Strengths and limitations of this study 

 

• Strengths of this study include its comprehensive dataset with time-stamped patient-level 
information on intrahospital transfers, admission type, demographics, physiological 
derangement and antibiotic use  

• Both static and temporal network analysis methods were applied to capture different aspects 
of patient flow 

• Regression techniques complemented the network analyses, assessing associations between 
patient-level risk factors and longer intrahospital transfer trajectories 

• Limitations of the study include a twelve-month dataset, hampering robust analysis of yearly 
seasonality  

• Data were limited to patients in four hospital departments, precluding network analysis at an 
all-hospital or inter-hospital level 
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1. Introduction 

Hospitals are complex systems which must run smoothly to ensure treatment quality and patient 

safety. Transfer of patients between specialised departments is a key part of hospital operation, 

and optimisation of patient flows is crucial for hospital capacity management and infection control. 

Patients’ journeys through the hospital may be analysed from different viewpoints. At a systemic 

level, assessment of overall transfer patterns makes it possible to identify logistic problems and 

make adequate adjustments. Improved bed utilisation to counter unanticipated under- and over-

capacity in different hospital wards may reduce variability of workload and stress for hospital 

personnel. However, placement of patients in inappropriate settings may reduce quality of care 

and increase the risk of errors.1 Physically moving patients also carries a risk of introducing 

infectious agents to new staff and hospital areas. Certain locations and the transfers between them 

may be crucial for hospital operation, and some pathways may be especially vulnerable to e.g., 

understaffing or closure during an infection outbreak.2 At an individual level, each transfer requires 

handover of medical information, its quality and completeness being essential for error avoidance 

and continuity of care. Hospitalised patients who are frequently transferred have increased risk of 

falls, delirium, prolonged hospital length of stay, healthcare-associated infections and mortality.3–

6 Characterisation of transfer patterns both at a systemic and an individual level may thus be 

relevant for understanding and revising healthcare service use. For organisational planning, 

smoothed, long-term transfer data showing major patient flows and seasonality is key. In contrast, 

real-time data reveals the extremes and allows for immediate intervention, e.g., when monitoring 

detects excessive staff workload or single patients subjected to transfer pathways known to carry 

unacceptable risk. 

Intrahospital patient transfers have been studied using graph theory and network analysis. 

Construction of a weighted, directed transfer network describing the emergency surgical services 

in a UK hospital identified potential hubs and bottlenecks in the system.2 Static and temporal 

transfer networks of patient flow in two UK acute care hospitals were evaluated and related to 

emergency department performance.7 Inter-departmental patient transfer networks for five 

European hospitals were constructed and used in a simulation study of infection spread among 

high- and low-risk patient groups.8 Network analysis has also been applied on national,9 regional10 

and simulated11 patient transfer data to elucidate spread of resistant microbes.  
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The above studies almost exclusively evaluated transfer networks for entire hospital systems. Most 

studies analysed networks as static entities, without attention to possible temporal changes in size 

or connectivity. Furthermore, network analysis alone is insufficient to describe individual patient 

trajectories, since in this method each patient’s intrahospital journey is broken up into a number 

of separate location-to-location moves. All transfers are then analysed collectively without regard 

to their sequence. 

In this study we examined patient transfers in a large Norwegian hospital using electronic health 

record data. Our primary objective was to describe intrahospital transfer patterns at a systemic 

level. To this end we applied network analysis on all transfers in four hospital departments, 

highlighting the heterogeneity of transfer patterns across departments and over time. Our 

secondary objective was to evaluate transfers on an individual level. We identified typical and 

atypical transfer trajectories and assessed whether patient characteristics, including admission type, 

age, gender, surgery, antibiotic usage and physiological derangement were associated with a higher 

number of intrahospital transfers. 
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2. Methods  

Hospital characteristics 

This retrospective, observational cohort study analysed data from Akershus University Hospital 

(AUH), Norway, a tertiary hospital serving a population of 560,000 within the Greater Oslo Region. 

Patients who need cardiac surgery and neurosurgery or suffer from major trauma are referred 

elsewhere. In 2019, AUH had 763 somatic (non-psychiatric) beds, 66,280 somatic admissions, 

33,886 day cases, and 366,858 somatic ambulatory consultations. The Emergency Department 

(ED) is an integrated division of the hospital and predominantly receives urgent cases arriving by 

ambulance and pre-screened patients from Local Emergency Medical centres. Approximately 75% 

of patients presenting in the ED are transferred to other hospital wards. Two surgical suites together 

provide 22 operating rooms (ORs). Two mixed medical-surgical intensive care units (ICUs), one 

cardiac high-dependency unit (HDU) and one mixed postoperative care unit / HDU together 

provide 14 invasive and 8 non-invasive ventilator beds. 

Data collection 

The study was approved by the Regional Committee for Medical and Health Research Ethics (REK 

SørØst C Ref.no. 33192) and was considered exempt from patient consent requirements by the 

institutional Data Protection Officer (Ref.no. 2019/56). Pseudonymized data was extracted on 

6 Dec 2019 by the AUH Department for Data Extraction and Analysis and stored and processed 

within the Service for Sensitive Data at the University of Oslo. The study period was 365 days 

starting at a Monday in June 2018; the exact week number was not released to the authors for 

privacy protection reasons. For time-stamped data, the granularity of time is hourly. 

All adult (≥18 years) admissions to any ward in the departments of Gastroenterology, 

Gastrointestinal surgery, Neurology or Orthopaedics in the study period were included. The four 

departments, two medical and two surgical, each containing 1–3 wards (Table 1 & S1), were 

selected because they treat defined patient groups that were expected to differ from each other. 

Study sample size was not pre-defined. The cohort only contained admissions occurring after the 

study start time and hence excluded patients who were already admitted. Stays with incomplete or 

erroneous data (e.g., missing length of stay, negative time durations) were excluded. For patients 

with multiple hospital stays within the study period, each stay was treated as a unique event. 
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We extracted time stamped patient location data throughout each stay to construct individual 

intrahospital transfer trajectories. The following information was also extracted from AUH 

electronic health records: demographics (age, gender), admission type (elective or emergency), 

time of hospital admission, physiological derangement measured as National Early Warning 

Score 2 (NEWS212), administration of antibiotics (excluding surgical prophylaxis), and whether 

the patient underwent a surgical procedure. The term “patient record” refers to all data collected 

during a stay at the hospital. 

Key variable definitions  

At AUH, NEWS2 is routinely scored in the ED and three times daily in bed wards. The maximum 

and mean NEWS2 for each patient during their first 48 hours of stay were used in analyses, to 

utilise NEWS2 as a marker of physiologically deranged state around hospital admission. Any non-

prophylactic antibiotics usage during a stay was coded as a binary yes-no variable. Length of 

hospital stay was converted to days. ICUs, HDUs and ORs were collectively denoted Technical 

wards. A surgical procedure was assumed for stays with OR or Day Surgery Unit in the location 

log. In line with Norwegian hospital routine, the transition from one hospital day to the next was 

defined to occur at 07:00 hours. Weekdays and weekends were Monday–Friday and Saturday–

Sunday, respectively. 

Intrahospital transfer, or transfer for brevity, is a patient movement from one physical location 

(ward, ED, etc.) to another. For perioperative transfers, we chose to combine multiple consecutive 

patient movements between the pre- and post-operative HDU and the OR into a single location, 

ORBLOCK, to avoid inflating the number of transfers.  

Transfer patterns 

We describe intrahospital transfer patterns at hospital departmental level, using networks, and at 

individual patient level using transfer chains. In network analysis and graph theory,13,14 a network 

is a graph that contains two types of elements: vertices (or nodes) and edges. A vertex represents 

the elementary unit of the system, and an edge captures the interaction between two different units. 

The edge can be directed or undirected. If two vertices are connected more than once, a weight can 

be assigned to the edge between them. Network density is defined as the ratio of the number of 

existing edges over the sum of all possible edges for all vertices. Degree of a vertex is the number 
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of other vertices it is connected with. Taking into account whether each connected vertex is on the 

‘from’ or ‘to’ side of the edge, out-degree and in-degree for a vertex can be computed.  

In this study, vertices were hospital locations patients had visited, and edges were the transfers 

between any two locations. Imagine an emergency patient who needs surgery and therefore is 

transferred from the ED to a bed ward, then to the OR, then back to the same bed ward, and 

eventually discharged home. This transfer history can be constructed into a network of three 

vertices and three edges, if we ignore the final discharge to home. For each of the four departments 

studied we first constructed an unweighted, undirected network to explore global connectivity, 

disregarding timing, frequency and type of transfers. We further constructed more detailed 

networks by letting them change with time, from study week 1 through 52, and from weekday to 

weekend. Finally, we examined the temporal frequency of specific types of transfers. Here, we 

categorised all edges in the networks into three broad transfer groups: ED–Any (transfers from the 

ED to any other ward), Bed ward–Bed ward (transfers not involving technical wards), and 

Technical (transfers involving technical wards, i.e., ICUs, HDUs and ORs). 

Network analysis only captures the grand total of location-to-location transfers and is insufficient 

to examine individual patients’ transfer trajectories. We therefore extracted the transfer chain for 

each stay, keeping the sequence of locations. Variables of interest were the actual transfer 

sequences themselves and the length of the chains, i.e., the number of transfers. 

Network and statistical analysis 

Network size was quantified by number of vertices and edges (unique locations and transfers). For 

the 52 weekly networks in the temporal network analyses, we report mean and standard deviation 

(SD) of weekly vertex and edge counts. Network density was computed for the undirected, 

unweighted networks. In- and out-degrees for vertices were computed for directed, unweighted 

networks in the weekday–weekend network comparison. Descriptive statistics of patient cohort 

characteristics are provided as counts, percentages or medians (10th–90th percentile) as appropriate. 

Frequencies of the various transfer chains were examined and the most common types of chains 

listed.  

Two multivariate Poisson regression models were used to identify risk factors associated with 

higher number of intrahospital transfers. Explanatory variables used in both models were age 
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(categorised as 18–39, 40–64, 65–84, and 85+ years), gender, admission type (elective vs. 

emergency), departmental allocation, physiological derangement (mean first 48-h NEWS2, 

categorised as 0–2, 3–4, 5–6, and 7+), and whether non-prophylactic antibiotics were administered 

during the stay. In the second model we also included variables indicating treatment (having 

undergone surgery, having a stay in an HDU or ICU). Interaction terms between departmental 

allocation, surgery, and antibiotics use were modelled. Results are reported as transfer rate ratios 

(RR) with 95% confidence intervals (CI). P-values less than 0.01 are considered statistically 

significant. 

All analyses were implemented in the statistical software R (version 3.4.2). Network analyses and 

visualisation were conducted using packages igraph15 (https://igraph.org) and ggraph.16 
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3. Results  

Patient cohort and hospital locations  

After processing, the cohort contained 17,198 unique records. Table 1 summarizes cohort 

demographics and locations visited, stratified by whether the stay involved surgery. 

The Gastroenterology department had fewest admissions (N=1712, 10%); the other three 

departments had between 4788 and 5522 admissions. Surgical procedures were rare for stays in 

the Neurology department (1%) and common in the Orthopaedics department (61%). Overall, 

across departments, 63%–83% of patient stays were non-elective, i.e., emergency admissions 

starting in the ED. 

The proportion of stays with non-prophylactic antibiotics administered varied from 11% 

(neurological patients not undergoing surgery) to 57% (gastroenterological patients undergoing 

surgery). Antibiotics use was more common for stays with surgery, irrespective of department. 

LOS and maximum NEWS2 during the first 48 hours of stay were higher in stays with surgery, 

except for in the Neurology department. Stays with surgery also on average comprised two more 

unique intrahospital locations and more transfers than stays without surgery (median 3 times 

versus 1). Overall, 0.5% of patients experienced eight or more transfers. Maximum transfer count 

varied markedly between the medical departments (eight) and the surgical departments (twenty-

three). 

Transfer networks 

A total of 1940 (11%) stays comprised only one intrahospital location and were excluded from 

network analysis. In total, 35,001 location-to-location transfers were found for the remaining 

15,258 patient stays. Figure 1 displays department-wise static networks. Vertex colours indicate 

ward types. In general, the ED, OR, HDUs and ICUs had many connections with wards in all 

studied departments. Many emergency patients ultimately allocated to one of the four studied 

departments were initially transferred from the ED to the OR, an HDU, or one of a wide range of 

surgical and medical wards belonging to other departments. The Orthopaedic department network 

was most densely connected, comprising 28 locations and 155 unique location-to-location transfer 

pathways, giving a network density of 0.410. The Neurology department network was the least 

densely connected, with 20 vertices, 55 edges and network density 0.288. Despite a much larger 
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cohort size (4788 vs. 1712 stays), the Gastroenterology department had network size and density 

very similar to Neurology. 

Figure 2A visualises week-by-week edge (location) and vertex (unique transfer pathway) counts 

throughout the study period, stratified by hospital department. The Gastrosurgery and 

Orthopaedics networks contained many more transfer pathways than the other two departments. 

The Orthopaedics network also displayed marked temporal variations over the year. A dip in 

connectivity around study week 3–10 could have been due to less elective surgery and closure of 

wards during summer holidays. 

Figure 2B displays week-by-week number of transfers, stratified by transfer type and department. 

In Figure 2C these data are normalised by number of admissions during that week in the 

corresponding department. ED–Any type transfers denote emergency hospital admissions and were 

relatively constant over time for all departments. The neurology department had fewest elective 

admissions, thus its normalised ED–Any was close to 1. Counts of Bed ward–Bed ward transfers 

also were rather constant and did not constitute much of the traffic. In contrast, Technical type 

transfers, involving transfers to and from ICUs, HDUs and ORs, showed distinct temporal 

variation and lower activity during the summer holidays. 

Network connectivity varied during the week (Figure 3). On average, networks included more 

locations (vertices) and almost twice as many unique location-to-location transfer pathways (edges) 

on weekdays as during weekends. A majority of hospital locations visited by our patient cohort 

received patients from more locations (higher in-degree) and transferred patients to more locations 

(higher out-degree) on weekdays than on weekends. Adjusted for number of patients present (bed 

occupancy was higher on weekdays than weekends), number of transfers was still higher on 

weekdays. In contrast, the number of unique locations used by patients ultimately allocated to one 

of the four studied departments was higher on weekends. 

The ED had a very large out-degree but zero in-degree, as this ward feeds patients to many 

locations but receives no patients from other hospital wards. Conversely, the “home” wards for 

our patient cohort (Gastroenterology, Gastrosurgery A/B, Neurology A/B, Orthopaedic A/B/C) 

received their patients from more locations than they transferred patients to. Home wards thus 
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“assembled” patients from the ED, OR, HDUs and any “ad hoc” wards, ultimately for patient 

discharge to home. 

Patient transfer chain analysis 

The 15,258 patient stays comprising more than one intrahospital location followed 1118 unique 

transfer chains, i.e., sequences of locations. Chain utilisation was highly skewed: 75% of 

transferred patients followed one of the top twenty (1.8%) transfer chains (Table 2). The three 

most common transfer chains, from the ED to one of the two neurological bed wards or the ED 

observation unit, together represented one third of transferred patients. Ten out of the twenty most 

common transfer chains involved only one transfer and started in the ED. The sub-pattern Bed 

ward–ORBLOCK–Bed ward occurred in nine out of the twenty most common transfer chains. 

In contrast, the majority of unique transfer chains occurred infrequently: 10% of patient stays 

(1505 out of 15,258) followed one of 976 uncommon patterns (87% of all types), each occurring 

≤7 times over the one-year period. Compared to the majority, in this 10%-subgroup patients stayed 

at a higher number of unique hospital locations (4 (2–5) vs. 3 (2–3)) and more often underwent 

surgery (64% vs. 49%) and advanced treatment in an HDU or ICU (42% vs. 23%). Also, in this 

10%-subgroup, 8% of patient stays from the Gastrosurgery or Orthopaedics department also 

involved stays in medical bed wards, as opposed to 0% among the remaining surgical patient stays. 

Two multivariate Poisson regression models identified risk factors associated with a higher 

number of intrahospital transfers (Table 3). In the first model, older age was negatively associated 

with more transfers, while higher first-48h mean NEWS2 was associated with more transfers. The 

effect increased from NEWS2 score 0–2 via 3–4 to 5–6, from where it levelled off. The effects of 

age and NEWS2 were no longer significant when treatment in the OR or HDU/ICU was adjusted 

for (Model 2 in Table 3). Gender did not contribute significantly in either model. 

Emergency hospital admission and antibiotics use were associated with increased risk of 

undergoing more transfers, as was treatment in the OR or an HDU/ICU. Although much of the 

increased risk was explained by these factors, admission to surgical departments (Gastrosurgery 

and Orthopaedics) in itself increased the risks of more transfers. Modelled interactions between 

departmental allocation, surgery and antibiotics use were not significant (Table S2, Supplementary 

material). 
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4. Discussion 

The main finding in this retrospective study applying network analysis on patient location data in 

four hospital departments was a marked heterogeneity in patient transfer patterns. Departments 

differed markedly regarding network size and density, transfer types, and temporal changes over 

the week and year. 

Why network analysis of patient location data? 

Given the range of health services offered to different patient populations, patient flows within 

hospitals would be expected to vary widely between departments and even wards. Optimisation of 

patient logistics is key to reduce delays and overcrowding, and thus time and health care costs. 

Availability of beds in wards specialised for each patient’s  medical condition likely reduces errors 

and improves quality of care. Detailed knowledge of highly connected hospital hubs and patient 

trajectories is also important for prevention and control of hospital infections.2,3 

Heterogeneity in size and connectivity of transfer networks 

In all departments studied, a majority of stays were emergency admissions via the ED. As in 

previous work1, the number of emergency admissions was relatively constant over time (Figure 

2B & C). The ED acted as a hub feeding patients to their allocated department’s “home” wards 

(Figure 1). However, networks revealed that Gastrosurgical and Orthopaedic patients also to a 

large degree were treated in surgical wards in other surgical departments. “Home” and “non-home” 

wards alike transferred patients to and from the OR. Likely, the large proportion of emergency 

admissions at AUH intermittently caused patient surges, overcrowding, and patients being placed 

in any suitable ward with a free bed and only later transferred to a ward in their allocated 

department. Gastrosurgical and Orthopaedic patients, many of whom are multimorbid, also had 

stays in a number of medical wards (Figure 1). This resulted in the two surgical departments having 

larger and 2.5–3 times more densely connected transfer networks than those of the two medical 

departments, which may have treated more homogenous patient populations. Although Neurology 

had many more admissions than Gastroenterology, the two networks were very similar in number 

of locations and connectivity.  
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These findings illustrate that patient flows in one department may be heavily affected by logistic 

changes implemented in seemingly unconnected departments. Weighted and directed networks 

would provide important additional information, useful for real-time monitoring of patient flows. 

Temporal variation in patient transfer networks 

Monitoring of temporal changes in patient transfer networks is relevant for capacity planning, but 

in-depth organisational knowledge of studied departments is required for interpretation of findings 

to be reliable. We saw marked heterogeneity across hospital departments regarding temporal 

variability (Figure 2A). Week-to-week variation in number of transfers was much larger in the 

Orthopaedics department than in Gastrosurgery, despite the two networks having similar edge and 

vertex counts when averaged over the year. The contrast between the two surgical departments 

and Neurology was pronounced.  

Higher temporal variability in the Orthopaedics department seemed to reside in transfers involving 

ORs, ICUs and HDUs (Figure 2B) and partially reflected the weekly number of admitted patients 

(Figure 2C). Both surgical departments had a drop in transfers during summer holidays, when 

fewer elective surgical procedures are performed. In the Gastroenterology department, some 

change in patient logistics must have been implemented around Christmas, i.e., study week 26. 

Similar effects of organisational changes have been reported in UK acute care data.7  

Network connectivity also changed over the week. On average, studied hospital wards were 

connected to almost twice as many locations during the week than on weekends (Figure 3). The 

“assembling” function of “home” wards, i.e., wards belonging to the four studied departments 

(higher in-degree than out-degree) also was less marked on weekends. Admissions occurring on 

weekends have been shown to more often result in transfer to the ICU and to be associated with 

increased adjusted mortality rates.17,18 

Individual patient transfer trajectories 

Standardised patient trajectories facilitate hospital logistics and specialised treatment. Network 

analysis however examines the total number of transfers and does not capture their sequence in 

individual patients.3,4 Moreover, in some health care systems the format of patient location data 

does not facilitate analysis of entire patient trajectories, and data validity may be poor.1 
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Core hospital pathways manage a majority of patients.7 We found that 11% of stays involved only 

one location. A further 67% of stays followed one of twenty common patient transfer chains, half 

of which started in the ED and involved only one transfer (Table 2). 

In contrast, a substantial minority of patient stays represented a very high number of uncommon, 

non-standardised hospital location sequences. These uncommon transfer chains included more 

locations and more often multiple OR visits and ICU / HDU stays. Among the stays following the 

10% least common transfer chains, 8% of patients allocated to one of the two surgical departments 

(Orthopaedics or Gastrosurgery) also had stays in medical bed wards. In contrast, surgical patients 

following the 90% most common transfer chains had no medical ward stays. Multimorbidity thus 

seemed to predispose for non-standard needs, which again is known to carry higher risk of 

unwanted outcomes.3–6 

Although not necessarily causal, the factors associated with higher number of intrahospital 

transfers in our regression analysis are clinically recognisable as proxy variables for more complex 

hospital stays. Caution must be used when interpreting effect sizes, since there could have been 

interdependence between variables. The regression model controlling for age and gender showed 

an increase in number of transfers with increasingly deranged physiological state early in the 

hospital stay, quantified as mean NEWS2 during the first 48 h. The effect levelled out at NEWS2 

of five or higher, values often associated with transfer to more advanced care12. In the model that 

also adjusted for treatment in an HDU, ICU or OR, the statistical contribution of NEWS2 was no 

longer detectable. The effect of these two variables could thus not be disentangled by our analysis. 

Non-prophylactic antibiotics use was associated with more patient transfers. This variable could 

have acted as proxy for e.g., bowel anastomosis leakage or postoperative wound infections needing 

repeated surgical treatment, and postoperative pneumonia needing advanced monitoring or 

mechanical ventilatory support. Interestingly, stays in surgical departments were associated with 

increased number of intrahospital transfers even after statistical adjustment for clinical risk factors, 

OR and ICU treatment. 

Implications for clinicians and policymakers 

Analysis of intrahospital patient transfer networks is relevant for design of new hospital buildings 

and allocation of hospital areas for essential units, e.g., those acting as hubs. Proximity between 
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wards frequently connected by transfers may increase efficiency. In wards with known high 

connectivity, planning more isolation beds might be prudent to shield vulnerable individuals and 

prevent outbreaks. 

Ongoing monitoring of the connectivity (in-degree and out-degree) of individual hospital wards is 

highly relevant for infection prevention and control. When new pathogens emerge simultaneously 

in different wards with no apparent linkage, network and transfer sequence analysis may reveal 

possible transmission routes that can be controlled. To limit a hospital outbreak, it may be useful 

to identify units so frequently connected by transfers that they should be regarded as equally 

exposed to an infectious agent.  

Patient transfer is often necessary for diagnostics or specialised treatment, but intrahospital 

transfers may also result from foreseeable and preventable factors such as seasonal overcrowding 

and staffing shortages, construction work, or wards being closed during infection outbreaks. 

Evaluation of factors resulting in transfer peaks might motivate improved institutional 

preparedness. Placing patients in inappropriate specialty areas increases the risk of medical errors 

when staff are exposed to unfamiliar medical conditions, treatments, or devices. Real-time transfer 

analysis may identify and warn hospital managers about unusual, potentially high-risk transfer 

sequences.  

The methods applied in this study could be used to monitor patient flows, predict likely logistic 

problems and routes of infection spread, and develop plans for optimising placement of patients 

deemed at risk for long and complicated hospital stays. There is a need for standardised indicators 

of patient flow logistics to facilitate comparison between institutions and health systems.1 

Strengths and limitations 

A one-year study period prevented analysis of long-term trends. We only had data for adult patients 

allocated to four selected hospital departments. Short-term patient movement, e.g., for medical 

imaging or diagnostic procedures, was not studied. Generalisability of our findings may be limited 

to similar health care systems. 

Strengths of this study include that complete, high time-resolution datasets comprising both 

elective and emergency admissions were evaluated on a departmental and ward level. Transfers 
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were categorised by subtype, and individual transfer trajectories were associated with key clinical 

patient characteristics. Our methodological approaches should be transferable to new settings. 

Conclusion 

Temporal network analysis applied on departmental and ward level provides insight into the 

heterogeneity of intrahospital patient transfers. The method is a potential tool for continuous, 

automated monitoring of patient flows. Analysis of typical and atypical patient transfer trajectories 

is a useful supplement. Obvious areas of benefit are hospital capacity management across wards 

and departments, and infection prevention and control.  

Areas remaining for future research include patient and systemic factors that may predict and 

prevent extremely long transfer trajectories. Frequent changes of intrahospital location may 

negatively affect important aspects of patients’ experience of their care, such as quality and 

consistency of medical information given and confidence in hospital staff.19 Intrahospital transfer 

patterns should therefore be studied also in view of patient-reported outcome measures. 
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11. Legends 

Figure 1 Patient transfer networks in four hospital departments 

Unweighted, undirected transfer networks for four hospital departments over a one-year period. 

Vertex (location) colours distinguish different functionality, i.e., ED, ORs, ICUs, medical and 

surgical wards. Vertex size is proportional to its degree (number of other locations connected to 

it). Network sizes are given as edge and vertex counts (E, V) and density. PHDU, Postoperative 

HDU; EDOU, Emergency Department observation unit; GI S, Gastrointestinal surgery; Day S, 

Day surgery; Mix S, Mixed surgery; TCVS, Thoracic and Cardiovascular surgery. Complete list 

of abbreviations in Table S1 (Supplementary materials). 

Figure 2 Temporal changes in network size by hospital department and transfer type 

A: Weekly network sizes in terms of transfer pathway (edge) and location (vertex) counts. B: 

Weekly sum of transfers, split by transfer type. C: Weekly sum of transfers by type, normalised 

by number of patient admissions in the corresponding department that week. Study week is 

counted from a Monday in June 2018; hence study weeks 1–13 denote June-August, and so forth. 

ED–Any, transfers from the ED to any other ward; Bed ward–Bed ward, transfers between regular 

wards; To–from Technical, transfers involving technical wards, i.e., ICUs, HDUs and ORs. 

Figure 3 Transfer network connectivity on weekdays and weekends 

For thirty hospital wards, daily average number of hospital locations the ward received patients 

from (In degree, green dots) and sent patients to (Out degree, amber dots). Data for all stays 

allocated to any of the four studied departments, split by weekday / weekend. Full-year network 

size (all four departments) reported as mean (SD) of edge (E) and vertex (V) counts. 
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Table 1 Clinical and location characteristics of study cohort 

Department 

Admissions (N) 

Gastroenterology 

1712 

Gastrosurgery 

5522 

Neurology 

4788 

Orthopaedics 

5176 

Surgery Yes 
 

No 
 

Yes 
 

No 
 

Yes 
 

No 
 

Yes 
 

No 
 

N, p1% 69 
4.0 

1643 
96.0 

1942 
35.2 

3580 
64.8 

46 
1.0 

4742 
99.0 

3171 
61.3 

2005 
38.7 

Emergency admission 
(N, p1%, p2%) 

49  
2.9 
71.0 

1059 
61.9 
64.4 

1029 
18.6 
53.0 

3043 
55.1 
85.0 

45 
9.3 
97.8 

3944 
82.4 
83.2 

1643 
31.7 
51.8 

1605 
31.0 
80.0 

Antibiotic use 
(N, p1%, p2%) 

39 
2.3 
56.5 

337 
19.7 
20.5 

663 
12.0 
34.1 

1176 
21.3 
32.8 

9 
1.9 
19.6 

527 
11.0 
11.1 

1272 
24.6 
40.1 

317 
6.1 
15.8 

Cohort characteristics  

Age 
65 

36–81 
65 

30–85 
58 

28–80 
62 

31–83 
51 

35–75 
64 

32–84 
68 

40–85 
69 

35–88 

NEWS2 score 
4 

1.0-7.7 
2 

0-6 
3 

1-6 
2 

0-6 
1 

0-3 
2 

0-5 
3 

1-6 
2 

0-6 

LOS (days) 
5.3 

1.2–13 
44 

2.0 
0.5–7.9 

86 

3.9 
1.1–13 

184 

2.0 
0.5–7.1 

90 

2.2 
0.8–7.2 

49 

2.8 
0.7–10 

113 

4.3 
1.3–12 

84 

1.2 
0.3–5.8 

43 

Unique wards 
4 

3–5 
6 

2 
1–3 
4 

4 
3–5 
7 

2 
1–3 
5 

4 
3–5 
6 

2 
1–2 
6 

4 
3–5 
9 

2 
1–3 
5 

Individual transfers 
3 

1–4 
7 

1 
0–2 
6 

3 
2–4 
21 

1 
0–2 
9 

2 
2–3 
4 

1 
0–1 
8 

3 
2–5 
23 

1 
0–2 
6 

Ward Type N  

Emergency Dept ED 12370 1101 4058 3980 3231 
Operating Room 

OR 
5032 67 1828 45 3092 

Day Surgery 235 2 119 1 113 
Postop. HDU 

Tech 

5444 144 2018 99 3183 
General ICU 134 8 75 24 27 
Medical ICU 201 86 45 47 23 
Cardiac HDU 2   1 1 
ED Obs. Unit 2036 531 747 54 704 
Hemodialysis 8 2   6 
Orthopedic A 

Surg 

2144  11 2 2131 
Orthopedic B 1849  13  1836 
Orthopedic C 603 1 9  593 
Gastrosurgery A 2328 5 2301 2 20 
Gastrosurgery B 2488 4 2462 1 21 
Mixed Surgery 197 2 101 1 93 
Urology 534 4 386 2 142 
ThoracoVascular 496  166 1 329 
Neurology A 

Med 

2521 2 1 2516 2 
Neurology B 2245 5 1 2237 2 
Neuro Rehab 306   306  
Gastroenterology 1263 1246 15  2 
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Palliation A 8  8   
Geriatrics 5 1 2  2 
Palliation B 11    11 
Infection/Hema 14 8 4  2 
Infection A 20 8 8 1 3 
Cardiac 9  3 1 5 
Cardiac/Renal 8 3 3 1 1 
Pulmonary A 2  1  1 
Pulmonary B 1    1 

Upper panel: Cohort summary for four hospital departments, stratified by whether patient stay involved surgery. 
Antibiotics usage excludes surgical antimicrobial prophylaxis. N: number of patient stays. p1%: percentage of all 
patient stays in this department. p2%: percentage of patient stays in this department with same surgery status. Mid 
panel: Patient characteristics in each sub-cohort. NEWS2, National Early Warning Score 2, maximum value in first 
48 h; LOS, Length of hospital stay; Unique wards, Number of unique wards visited during each patient stay. Age 
and NEWS2 are reported as median and 10th-90th percentiles. LOS, Unique wards and number of transfers are 
reported as median, 10th-90th percentiles and maximum. Lower panel: Number of visits to each of 30 observed 
wards, by patients’ allocated department. 
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Table 2  The twenty most common intrahospital transfer trajectories 

 

Location sequence N % Cum % 
ED – Neurology A 2015 13.3 13.3 
ED –  ED Observation Unit 1544 10.1 23.4 
ED – Neurology B 1508 9.9 33.3 
ED – Gastrosurgery A 872 5.7 39.0 
ED – Gastrosurgery B 866 5.7 44.7 
ED – Orthopaedic A – ORBLOCK – Orthopaedic A 474 3.1 47.8 
ED – Gastroenetrology A 470 3.1 50.9 
 Orthopaedic C – ORBLOCK – Orthopaedic C 429 2.8 53.7 
ED – Orthopaedic B – ORBLOCK – Orthopaedic B 413 2.7 56.4 
ED – Orthopaedic B 391 2.6 59.0 
 Orthopaedic B – ORBLOCK – Orthopaedic B 370 2.4 61.4 
ED – Gastrosurgery B – ORBLOCK – Gastrosurgery B 349 2.3 63.7 
 Gastrosurgery B – ORBLOCK – Gastrosurgery B 325 2.1 65.8 
ED – Orthopaedic A 324 2.1 67.9 
 Gastrosurgery A – ORBLOCK – Gastrosurgery A 309 2.0 69.9 
 Orthopaedic A – ORBLOCK – Orthopaedic A 293 1.9 71.8 
ED – Gastrosurgery A – ORBLOCK – Gastrosurgery A 180 1.2 73.0 
ED –  Urology 154 1.0 74.0 
ED –  Neurology A – Neurology B 153 1.0 75.0 
ED –  ThoracoVascular 118 0.8 75.8 
 Total of 15258 patients 11557  75.8 75.8 

The twenty most common out of a total of 1118 transfer chains observed in all 15258 patient stays in the 
departments of Gastroenterology, Gastrointestinal surgery, Neurology, and Orthopaedic surgery over a one-
year study period. ED, Emergency department; ORBLOCK, pre- / postoperative High Dependency Unit in 
combination with OR treatment. 
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Table 3  Poisson regression analysis on number of intrahospital transfers per stay 

 Model 1 Model 2 

Risk factors RR 95% CI P value RR 95% CI P value 

Age   18 – 39 Reference    Reference    
   40 – 64 0.984 0.949 – 1.021 0.405 1.017 0.980 – 1.055 0.382 
   65 – 84 0.925 0.892 – 0.959 <0.001 0.982 0.947 – 1.019 0.344 
   85+ 0.835 0.793 – 0.880 <0.001 0.960 0.911 – 1.011 0.125 

NEWS2 1 0 – 2 Reference      
   3 – 4 1.071 1.027 – 1.117 0.001 0.984 0.943 – 1.027 0.470 
   5 – 6 1.138 1.051 – 1.231 0.001 0.956 0.882 – 1.034 0.270 
   7+ 1.132 0.988 – 1.289 0.068 0.801 0.699 – 0.914 0.001 

Gender  Female Reference   Reference   
   Male 0.984 0.961 – 1.009 0.205 0.997 0.973 – 1.021 0.786 
Dept.  Gastroenterology Reference   Reference   
  Gastrosurgery 1.679 1.590 – 1.773 <0.001 1.210 1.144 – 1.280 <0.001 
  Neurology 1.039 0.980 – 1.102 0.199 1.117 1.053 – 1.184 <0.001 
  Orthopaedics 2.406 2.281 – 2.540 <0.001 1.294 1.222 – 1.372 <0.001 
Admission  Elective Reference   Reference   
   Emergency 1.388 1.347 – 1.440 <0.001 1.834 1.778 – 1.892 <0.001 
Antibiotics 2 No Reference   Reference   
   Yes 1.372 1.336 – 1.409 <0.001 1.107 1.077 – 1.138 <0.001 
Been to OR 3 No    Reference   
   Yes    2.936 2.846 – 3.029 <0.001 
Been to ICU 4 No    Reference   
   Yes    2.106 2.025 – 2.189 <0.001 

RR, patient transfer rate ratio. 1Mean first 48-h NEWS2 score. 2Use of any non-prophylactic antibiotics. 
3Indicates a surgical procedure. 4Stayed in an ICU or HDU, indicates a severe patient condition. 
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Figure 1 Patient transfer networks in four hospital departments 
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Figure 2 Temporal changes in network size by hospital department and transfer type 
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Figure 3 Transfer network connectivity on weekdays and weekends 
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Table S1 Hospital ward names, types and abbreviations 

 

Type Ward Abbreviations 
used in Fig. 1 

Department link 
for “home” wards in 
current study 

ED Emergency Dept ED  
OR Operating Room Suite OR  
 Day Surgery Unit Day S  
Technical Postoperative HDU PHDU  
 General ICU ICU  
 Medical ICU MICU  
 Cardiac HDU CICU  
 ED Observation Unit EDOU  
 Haemodialysis Haemodial  
Surgical Orthopaedic A OT A  
 Orthopaedic B OT B Orthopaedics Department 
 Orthopaedic C OT C  
 Gastrosurgery A GIS A Gastrosurgery 

Department  Gastrosurgery B GIS B 
 Mixed Surgery Mix S  
 Urology Uro  
 ThoracoVascular TCVS  
Medical Neurology A NR A  
 Neurology B NR B Neurology Department 
 Neuro Rehab NR Rehab  

 Gastroenterology GE Gastroenterology 
Department 

 Palliation A PC A  
 Geriatrics Geriatrics  
 Palliation B PC B  
 Infection/Haema Inf/Haem  
 Infection A Inf A  
 Cardiac Cardiac  
 Cardiac/Renal Card/Ren  
 Pulmonary A Pulm A  
 Pulmonary B Pulm B  
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Table S2 Poisson regression analysis on number of intrahospital transfers, with modelled 
interactions between departments, OR stay, and antibiotics use 

  Model S1 Model S2 

Risk factors  RR 95% CI P value RR 95% CI P value 

Age 18 – 39 Reference   Reference   

 40 – 64 1.016 0.980 – 1.055 0.386 1.020 0.983 – 1.058 0.304 

 65 – 84 0.980 0.945 – 1.017 0.284 0.983 0.948 – 1.020 0.361 

 85+ 0.959 0.910 – 1.010 0.115 0.961 0.911 – 1.012 0.132 

NEWS2 score 1 0 – 2 Reference   Reference   

 3 – 4 0.986 0.945 – 1.029 0.523 0.989 0.948 – 1.032 0.626 

 5 – 6 0.963 0.889 – 1.042 0.352 0.970 0.895 – 1.050 0.456 

 7+ 0.821 0.716 – 0.937 0.004 0.829 0.722 – 0.947 0.006 

Gender Female Reference   Reference   

 Male 0.998 0.974 – 1.023 0.876 0.998 0.947– 1.022 0.854 

Department Gastroenterology Reference   Reference   

 Gastrosurgery 1.194 1.123 – 1.271 <0.001 1.182 1.100 – 1.271 <0.001 

 Neurology 1.094 1.029 – 1.163 0.004 1.091 1.019 – 1.169 0.013 

 Orthopaedics 1.179 1.101 – 1.263 <0.001 1.163  1.076 – 1.257 <0.001 

Admission  Elective Reference   Reference   

 Non-elective 1.844 1.788 – 1.902 <0.001 1.845 1.789 – 1.904 <0.001 

Antibiotics 2 No Reference   Reference   

 Yes 1.102 1.072 – 1.132 <0.001 1.073 0.947 – 1.213 0.264 

Been to OR 3 No Reference   Reference   

 Yes 2.307 1.953 – 2.707 <0.001 2.242 1.717 – 2.871 <0.001 

Been to HDU 4 No Reference   Reference   

 Yes 2.118 2.037 – 2.202 <0.001 2.118 2.037 – 2.201 <0.001 

        

Interactions GS * OR 1.240 1.051 – 1.472 0.012 1.319 1.024 – 1.731 0.039 

 NR * OR 0.925 0.713 – 1.195 0.556 0.952 0.675 – 1.346 0.778 

 OT * OR 1.380 1.167 – 1.640 <0.001 1.411 1.094 – 1.853 0.013 

        

 GS * Antibiotics    1.038 0.903 – 1.194 0.603 

 NR * Antibiotics    0.998 0.856 – 1.165 0.982 

 OT * Antibiotics    1.079 0.915 – 1.274 0.403 

        

 Antibiotics * OR    1.061 0.758 – 1.495 0.799 

RR, patient transfer rate ratio. 1Mean first 48-h NEWS2 score. 2Use of any non-prophylactic antibiotics. 3Indicates a 
surgical procedure. 4Stayed in an ICU or HDU, indicates a severe patient condition. GS, Gastrosurgery; NR, 
Neurology; OT, Orthopaedics. 
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