
Bayesian Neural Network Estimation of
Next-To-Leading Order Cross Sections

by

René Alexander Ask

THESIS

for the degree of

MASTER OF SCIENCE

Faculty of Mathematics and Natural Sciences
University of Oslo

Autumn 2022

Bayesian Neural Network Estimation of
Next-To-Leading Order Cross Sections

René Alexander Ask

© 2022 René Alexander Ask

Bayesian Neural Network Estimation of Next-To-Leading Order Cross Sections

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

This thesis explores the use of Bayesian neural networks as a substitute for direct calculation of
next-to-leading order cross sections to speed up the search for new physics in the regime of Beyond the
Standard Model theories. We inferred neural network parameters informed by cross sections produced
by Prospino to this end. We explored the computational cost of drawing neural network samples from
the exact posterior distribution using adaptive Hamiltonian Monte Carlo samplers and the effect various
hyperparameters of the training procedure had. We found that it is possible to obtain performant
models with reliable uncertainty estimates. We showed that Bayesian neural networks can significantly
reduce the time spent computing cross sections and that GPU acceleration can significantly speed up
the inference neural network parameters.

Sammendrag
I denne masteroppgaven utforskes muligheten for å bruke Bayesianske nevrale nettverk til å erstatte
direkte evaluering av høyere ordens kvante-felt teoretiske tverrsnitt i søket etter ny fysikk som som
ikke forklares av Standardmodellen i partikkelfysikk. Vi trente Bayesian nevrale nettverk ved hjelp av
data produsert med Prospino for dette form̊alet. Vi etterforsket den beregningsorienterte kostnaden
som var nødvendig for å trekke nevral nettverk parametere fra den eksakte posterior fordelingen ved
bruk av adaptive Hamiltonske Monte Carlo metoder og s̊a p̊a effekten diverse hyperparametere relatert
til treningsprosessen hadde. Vi fant at det er mulig å produsere modeller med god evne til å predikere
usett data og som gir p̊alitelige usikkerhetsestimater. Vi viste at Bayesianske nevrale nettverk kan
redusere tiden det tar å regne ut tverrsnitt betraktelig og at GPU akselerert trening av modellene kan
betydelig redusere tiden det tar å trekke nevrale nettverk parametere fra posteriorfordelingen.

i

ii

Acknowledgements

First of all, I want to thank my supervisor, Are Raklev, for practical advice on my master’s thesis.
The contextual explanations of the underlying physics and its pertinent challenges have provided me
with precisely the amount of knowledge necessary to carry out the work in this thesis. I have enjoyed
your calm nature and your diligent obsession with typography that has likely elevated the quality of
this thesis. I also want to thank Anders Kvellestad for serving as my unofficial co-advisor. You have
taken time to have lengthy discussions of various related topics investigated in this thesis.

I will never forget the friends I gained through my studies. I want to thank you all for enhancing
my experience and contributing to my growth as a human. It has been a pleasure to learn about the
inner-workings of Mother Nature beside you. It was the best of times, it was the worst of times. A
special thanks to Toshi for awesome long nights working through our bachelor’s courseload and long
walks after late nights out, to Bennern for emotional support and wisdom to carry out life-changing
decisions, to Mærri for your friendship and the christmas celebration I got to spend with your family,
to Kæsp for your inability to stop talking and being the life-of-the-party, to Unis for being the best
labpartner I could ever get and unexpectedly arranging a celebration for my birthday last year, to my
boy TK for being my “homie” for more than 20 years, to Izzi and Carrion for your unfiltered speech
and so many more. Rest assured, besides a couple examinators, no one will read this thesis. Thus if
your name is omitted, no one will ever know.

A final thanks to the Norwegian government for allowing me the opportunity to pursue an
education of high quality at no cost and for the computing resources used in this thesis. Now that we
are mentioning education, thanks to every single person through history that has dedicated their life
to understanding nature and progressing our collective base of knowledge. Without them, there would
be no education to speak of.

iii

iv

Contents

Introduction 1

1 The Physics Problem 3
1.1 Computation of Beyond the Standard Model Cross Sections 3
1.2 Bayesian Regression as a Substitute 4

2 Bayesian Formulation of Machine Learning 7
2.1 The Core of Machine Learning 7

2.1.1 Loss Functions 7
2.1.2 Regularization 8
2.1.3 Optimization 8

2.2 Bayes’ theorem 8
2.3 Bayesian Framework for Machine Learning 9
2.4 Bayesian Inference 10

3 Markov Chain Monte Carlo 13
3.1 Expectation Values and the Typical Set 13

3.1.1 The Typical Set 13
3.1.2 The Target Density and Bayesian Applications 14

3.2 Markov Chains and Markov Transitions 14
3.2.1 Ideal Markov Chains 15
3.2.2 Pathologies 15
3.2.3 Geometric Ergodicity and Convergence Diagnostics 15

3.3 Metropolis-Hastings 15
3.3.1 The Proposal Distribution 16

3.4 Gibbs Sampling 17

4 Hamiltonian Monte Carlo 19
4.1 Hamiltonian Dynamics 19

4.1.1 Leapfrog integration 20
4.2 Generating a Proposal State 21
4.3 The Potential Energy Function in Bayesian Machine Learning Applications 23
4.4 Limitations of Hamiltonian Monte Carlo 23

5 Adaptive Hamiltonian Monte Carlo 25
5.1 The No-U-Turn Sampler 25

5.1.1 Stopping Conditions and Selection of Candidate States 26
5.1.2 Computational Cost 28

5.2 Adapting the Step Size 28

v

vi CONTENTS

6 Bayesian Neural Networks 33
6.1 Neural Networks 33

6.1.1 Basic Mathematical Structure 33
6.1.2 Backpropagation 34
6.1.3 Regularization in Neural Networks 35

6.2 Activation Functions 36
6.2.1 Sigmoid and Tanh 36
6.2.2 ReLU 36
6.2.3 Swish 36

6.3 Bayesian learning of Neural Networks using Monte Carlo Samplers 36
6.3.1 What is Bayesian learning of Neural Networks? 37
6.3.2 The Potential Energy Function of Neural Networks 37
6.3.3 Practical Training of Bayesian Neural Networks 38
6.3.4 Training Algorithm of Bayesian Neural Networks 38

7 The Dataset and Methodology 41
7.1 The Dataset 41

7.1.1 The Features and Targets 41
7.1.2 Data Transformations 42
7.1.3 Data Splitting 43

7.2 Training Methodology 44
7.2.1 Implementation 44
7.2.2 Performance Metrics 44

7.2.2.1 Coefficent of Determination 44
7.2.2.2 Standardized Residuals 45

8 Numerical Experiments 47
8.1 Training Procedure and Selection of Models and Hyperparameters 47
8.2 Results and Discussion 48

8.2.1 Computational Performance 48
8.2.1.1 CPU v. GPU Training Performance 49
8.2.1.2 Prediction Time 51
8.2.1.3 Loading Times 52

8.2.2 Posterior Distribution of Weights 53
8.2.3 Benchmarks of Hyperparameters 55

8.2.3.1 The Effect of Number of Warm-up Steps 55
8.2.3.2 The Effect of Pretraining 58
8.2.3.3 Effect of Number of Parameters 60

8.2.4 Predictive Distributions 63

9 Conclusion 65

List of Figures

5.1 The figure shows an example of a trajectory generated by the NUTS sampler. The
top diagram displays the projection onto position space with the momenta drawn in
as arrows. The bottom diagram shows the resulting balanced binary tree. The tree
structure is drawn onto the trajectory as well. The numbering displays the order in
which the states are generated by Leapfrog integration. The black node is the initial
node. The first doubling is forwards in time and yields the rightmost node of the first
binary tree. The second doubling is backwards in time and is initiated from the black
node, yielding a new tree of height 2 where the left subtree is the new states (the
yellow nodes). The next doubling is also backwards in time, and the Leapfrog integrator
is initiated from the tail (the leftmost yellow node) performing four Leapfrog steps
generating a subtree which becomes the left half of the next tree (blue nodes). The final
doubling in the figure is forwards in time with L = 8 Leapfrog steps taken from the
orange node (which was the rightmost leaf of the tree before the final doubling) which
yields the green nodes. The figure is a modified version of a diagram in [1]. 26

7.1 The values of the cross sections σχ̃0
1χ̃

0
1

are shown projected onto the axis of masses mχ̃0
1
.

The data is taken from the training data. 42
7.2 The values of the cross sections σχ̃0

1χ̃
0
1

are shown projected onto the axes of mixing
angles N1j for j = 1, 2, 3, 4. The data is taken from the training data. 43

8.1 The figure on top shows the relative wall clock time used per generated sample using
L = 512 Leapfrog steps with the HMC sampler, as a function of number of hidden
nodes in the hidden layer with an architechture 5-n-1, where n represents the number
of nodes. The relative wall clock time is computed as the wall clock time used by the
CPU divided by the wall clock time used by the GPU. The figure on the bottom shows
the absolute wall clock time per generated sample measured on the GPU for the same
case. The red dots indicate the actual measured points. The CPU measurements are
done using an 8-core M1 CPU (Apple Silicon). The GPU measurements are made on
an NVIDIA Tesla P100 GPU. 50

8.2 The figure shows the average prediction time given up to several simultaneous inputs
x using the models in table 8.1. The wall clock time of the executions shown are
measured in milliseconds and are averaged over 1000 trials per case. The measured wall
clock time includes computation of the sample mean and sample error of the predictive
distributions produced by the BNN models. The dots indicate the actual measured
values. The colored graphs indicate how many simultaneous input points that were
used. The measurements were done using an 8-core M1 CPU (Apple Silicon). 51

vii

viii LIST OF FIGURES

8.3 The figure shows the average prediction time using the built-in GPU on an M1 Apple
Silicon system-on-chip to compute a prediction given up to several simultaneous inputs
x using the models in table 8.1. The measured wall clock time is given in milliseconds
and is averaged over 1000 trials. The measured time includes computation of the sample
mean and sample error of the predictive distributions produced by the BNN models.
The dots indicate the actual measured values. The colored graphs indicate the number
of simultaneous input points used. 52

8.4 The figure shows the histograms of measured loading times (wall clock) in seconds
using the models in table 8.1. The measurements were made on an M1 Apple Silicon
system-on-chip. The time measurements consist of 1000 measurements for each model. 53

8.5 The figure shows the projection of the kernel density estimation of the empirical
distribution onto two-dimensional subplanes of the posterior distribution. The figure on
the top left shows the plane spanned by (W 1

2,5,W
1
2,6). The figure on the top right shows

the distribution in the plane spanned by (W 3
11,4,W

1
8,1). The figure on the bottom left

shows the distribution in the plane spanned by (b26, b41). The figure on the bottom right
shows the distribution spanned by the plane (b311, b

6
1). The weights used are the ones

pertaining to “model 4” in table 8.1. 54
8.6 The figure shows the computed R2-scores in both log space and target space as a

function number of warm-up steps (20% burn-in and 80% adaptation) achieved with
HMC and NUTS. The architecture of the BNN model used is 5-20-20-1 with tanh(x)
used as the activation function in the hidden layers. We performed 2500 pretraning
steps with a batch size of 32 using the ADAM optimizer. In total 1000 neural networks
were sampled with 10 steps between each stored sample. When HMC was used, we ran
with a fixed number of Leapfrog steps L = 512. When the NUTS sampler was used, we
allowed for a maximum of L = 4096 Leapfrog steps (a maximum tree depth of 12). 56

8.7 The figure shows the standardized residuals computed on the test set. The model
architechture used is a model with layers 5-20-20-1 with tanh(x) as the hidden activation
function. In the top figure, we have used the HMC sampler with a fixed number of
Leapfrog steps L = 512. In the bottom figure, we have used the NUTS sampler with a
maximum tree depth of 12 corresponding to a maximum of L = 212 = 4096 Leapfrog
steps. The remaining important hyperparameters were 2500 pretraining epochs with
a batch size of 32 using the ADAM optimizer. In total 1000 neural networks were
sampled in each case with a thinning-amount of 10 steps between each sample. The
colors indicate how many warm-up steps that were used. The dotted line is the standard
Normal distribution. 57

8.8 The figure shows the average number of Leapfrog steps L as a function of number of
warm-up steps used by the NUTS sampler when sampling the models shown in the
bottom of figure 8.7. We have included a few more measurements to showcase how
fluctuating the average number can be. 58

8.9 The figure shows the computed R2-scores of a model with the architecture 5-20-20-1
with tanh(x) as the hidden activation function. In this case the varying number is the
number of epochs run with pretraining starting from 32 all the way up to 8192. The
batch size used was 32 with the ADAM optimizer. The number of warm-up steps was
1000 (200 of which were burn-in steps and 800 were adaptation steps). We fixed the
Leapfrog steps to L = 512 using the HMC sampler. As usual we sampled 1000 neural
networks with 10 steps between each sample. 59

LIST OF FIGURES ix

8.10 The figure shows the standardized residuals of a model with the architecture 5-20-20-1
with tanh(x) as the hidden activation function. In this case the varying number is the
number of epochs run with pretraining starting from 32 all the way up to 8192. The
batch size used was 32, the number of warm-up steps was 1000 (200 of which were
burn-in steps and 800 were adaptation steps). We fixed the Leapfrog steps to L = 512
using the HMC sampler. The ADAM optimizer was used for the pretraining phase. As
usual we sampled 1000 neural networks with 10 steps between each sample. The colors
indicate the number of pretraining epochs performed. The dotted line is the standard
Normal distribution. 60

8.11 The figure shows the R2-score computed on the training and test data as a function of
number of nodes n in the hidden layer of models with architechture 5-n-1, yielding a
total of 5n+ 1 parameters. The hidden layer activation used was tanh(x). The models
were trained with 1000 warm-up steps (20% burn-in and 80% adaptation), gathering
1000 neural networks with 10 steps between each sample. We used 2500 pretraining
epochs with a batch size of 32. When using the HMC sampler, we fixed the number of
Leapfrog steps to L = 512. When using NUTS, we set a maximum of L = 4096 Leapfrog
steps. 61

8.12 The figure shows the standardized residuals of models with an architecture 5-n-1 with
tanh(x) as the hidden layer activation. The models were trained with 1000 warm-up
steps (20% burn-in and 80% adaptation), drawing 1000 neural networks with 10 steps
between each drawn sample. We used 2500 pretraining epochs with a batch size of 32
using the ADAM optimizer. The figure on top shows results of models trained with the
HMC sampler where we fixed the number of Leapfrog steps to L = 512. The figure
on the bottom shows the results of models trained with NUTS using a maximum of
L = 4096 Leapfrog steps. The colors indicate the number of hidden layers nodes n are
used. The black dotted line shows the standard Normal distribution drawn in. 62

8.13 The figure shows predictive distributions estimated by use of model 3 in table 8.1 for
two targets taken from the test set. The red line shows the true target and the black
line shows the predicted sample mean obtained from the distribution. The figure on top
demonstrates a case where the sample mean is approximately the same as the target,
while the figure at the bottom demonstrates a case where the true target lies entirely
outside the predictive distrbution. 63

8.14 The figure shows the results of the predictive distributions estimated by use of model
3 in table 8.1 computed on all datapoints in the training, validation and test data.
The y-axis shows the percentage of all targets that lie on the interval [µ− kσ, µ+ kσ]
for k = 1, 2, 3, 4, 5 where µ is the sample mean and σ2 is the sample variance of the
predictive distribution. The crosses indicate evaluated points with training data shown
in blue, validation data shown in orange and test data shown in green. The black
dotted line shows the 68% (±σ) expectation, the red dotted line shows the 95% (±2σ)
expectation and the blue dotted line shows the 99.7% (±3σ) expectation of a Gaussian
distribution. 64

x LIST OF FIGURES

List of Tables

8.1 The table shows a selection of models that is used for benchmarking purposes in this
chapter. For each model, 1000 sampled networks were sampled to collectively represent
each BNN model. We performed 1000 pretraining epochs with a batch size of 32 using
the ADAM optimizer. We used 2500 warm-up steps (80% adaptation steps first, followed
by 20% burn-in steps). For every sampled network, we skipped 10 samples. The kernel
used for each model was the NUTS kernel with a maximum of L = 4096 Leapfrog steps.
The number of nodes per layer is shown in the “Layers” column. 48

xi

xii LIST OF TABLES

List of Algorithms

3.1 Metropolis-Hastings 16
3.2 Gibbs sampling 17
4.1 Leapfrog Integration 20
4.2 Vectorized Leapfrog Integration 21
4.3 Hamiltonian Monte Carlo 23
5.1 The NUTS Sampler 29
5.2 Dual-Averaging Step Size Adaptation 31
6.1 Backpropagation: Forward pass 35
6.2 Backpropagation: Backward pass 35

xiii

xiv LIST OF ALGORITHMS

Introduction

The Standard Model of particle physics is a remarkably successful theory explaining the fundamental
particles of nature and their interactions. It accounts for the constituent building blocks of all everyday
phenomena on Earth. Yet, there exists a vast number of observations gathered in collider experiments
which the Standard Model cannot account for. This has led physicists to propose several extensions
to the theory. These extensions, collectively called Beyond the Standard Model theories, predict the
existence of new phenomena that may explain the observed data. The investigation of the extended
theories needs a high accuracy in its computed predictions. Direct calculation of these demands an
excessive computational cost which significantly hampers the search for new physics. The use of
machine learning to circumvent this obstacle has steadily increased over the last years with hopes of
speeding up the search. The use of modern machine learning models such as deep learning has been
widely used for classification tasks but the use of machine learning models to perform regression tasks in
high-energy physics has only recently been employed to speed up quantum field theory calculations that
would otherwise be intractible by direct calculation. An example of this effort is through evaluation of
higher-order cross sections using Gaussian processes [2].

Classical regression is insufficent, however. A crucial aspect of regression tasks in high-energy
physics is an estimation of the uncertainty in predictions which are needed to properly evaluate a new
physics model by propagation of uncertainties through proper inference models. While deep neural
networks are ubiquitously employed to solve regression problems in the real world, they suffer the need
for an excessive amount of data to serve as robust and reliable tools for predicting unknowns, which can
be a major drawback of the model class for smaller sets of data. However, neural networks are universal
function approximators and serve as an ideal model class for regression tasks, especially in the case
where the underlying relationship one attempts to regress is difficult to discern from first principles.
Bayesian inference of its parameters offers an approach of obtaining a distribution of its parameters
which allow for computation of predictions and yield corresponding uncertainty estimates. The most
widely used method for inferring parameters of neural networks through the Bayesian framework
is to parameterize a surrogate distribution for its weights which are used to approximate its true
distribution. The approach has spawned a popular research area because of its natural integration
into popular machine learning frameworks such as TensorFlow and PyTorch with the goal of spending
approximately the same amount of time adjusting its parameters as it does for classical neural networks.
The potential weakness is of course its approximation of the exact distribution of weights.

In this thesis, we propose using Hamiltonian Monte Carlo and its derivatives to infer neural
network parameters from its exact distribution. It is a class of Markov chain Monte Carlo methods for
continuous sample spaces. It is well known to be computationally expensive for large datasets but in
the search for physics beyond the Standard Model, data is a scarce resource, a scenario in which a
more accurate approach to inference may shine. Bayesian inference using Hamiltonian Monte Carlo to
sample from the exact distribution is considered challenging at best, as neural networks suffer from
statistical unidentifiability. The model class is what is known as over-parameterized. This gives rise to
multiple equivalent parameterizations that all yield the same predictions which has the unfortunate
consequence of potentially producing multi-modal distributions with many regions that all yield the
same effective predictions. Although Hamiltonian Monte Carlo is considered a state-of-the-art sampling

1

2 LIST OF ALGORITHMS

method for continuous sample spaces, it needs hand-tuning to achieve good results. To handle this, we
will explore adaptive Hamiltonian Monte Carlo methods to automatically perform tuning on the fly.

The main objective of this thesis is to investigate the viability of substituting direct calculation
of next-to-leading order cross sections in quantum field theory with Bayesian neural networks drawn
from its exact distribution of parameters. To this end, we will investigate the computational cost of
the inference using Hamiltonian Monte Carlo and adaptive extensions of it. A central point of interest
is the actual time needed to infer parameters on modern computing hardware like CPUs and GPUs to
evaluate the feasibility of the methods. The computational cost of computing predictions of inferred
models is a related and equally important question which we will consider. The distribution of neural
network parameters are reported to be multi-modal [3], a feature we will investigate. Due to the need
for reliable uncertainty estimates when predictions are fed through proper inference models, we will
investigate the predictive performance of Bayesian neural networks and the quality of the uncertainty
estimates they yield. Inference of neural network parameters require the specification of a large number
of hyperparameters, the effect of which may be highly dependent on the underlying data used. We will
investigate the effect these have on computational cost and predictive performance.

Outline of the Thesis

In chapter 1, we will discuss the extensive computational cost needed to compute next-to-leading
order cross sections in quantum field theory and how Bayesian regression models can serve as a viable
substitute for direct calculation of these. In chapter 2, we will give an overview of machine learning
for regression tasks and a formulation of it from a Bayesian perspective. We will discuss how one in
general constructs a probabilistic model using Bayes’ theorem which all together culminates to the
notion of Bayesian machine learning. In chapter 3, we provide an overview of important ideas for
Markov chain Monte Carlo methods in continuous sample spaces including the Metropolis-Hastings
and Gibbs samplers which form the basis for Hamiltonian Monte Carlo. In chapter 4, we will present
Hamiltonian dynamics and discuss how we can construct the basic Hamiltonian Monte Carlo sampler.
In chapter 5, we explore ways to dynamically tune parameters used in the sampler to avoid tedious
hand-tuning and automatically tune them on the fly. In chapter 6, we will survey the neural network
model before we bring all the topics together, resulting in a training algorithm for Bayesian neural
networks using the MCMC samplers to draw parameters directly from the exact distribution of the
model. In chapter 7, we will discuss the dataset we apply the methods to, the preparation of the data
and present the metrics we will use to evaluate the performance of the inferred models. In chapter 8,
we will present the results of our numerical experiments and discuss their implications. In chapter 9,
we will present our final thoughts on the methods and suggestions for future topics of investigation.

Chapter 1

The Physics Problem

In this chapter, we shall motivate the need for Bayesian machine learning regression models to replace
deterministic methods in high-energy physics in the search for Beyond the Standard Model (BSM)
physics. We will start off with a brief survey of the conventional way to compute cross sections, its
need for precision and the inherent problems involved. We will end the chapter with a discussion of
how Bayesian regression can provide a substitute for the standard way to compute cross sections.

1.1 Computation of Beyond the Standard Model Cross Sec-
tions

The Standard Model of particle physics (SM) is a successful fundamental theory that describes the
fundamental particles of nature and their interactions. Despite its success, however, it has a few
limitations on its own which has led physicists to propose extentions to the model to explain physics
that the SM cannot. One such family of extensions is called supersymmetry. Theories like this are
known as BSM models.

In order to test whether a particular symmersymmetric extension to the SM is valid, one has to
search through large (high-dimensinoal) parameter spaces where the parameters themselves somewhat
simplified represent the properties of the particles in the model. The technical aspect is to rather exclude
regions of parameter space which cannot explain observed data. To this end, theoretical physicists
must compute what is known as a cross section σ. These are roughly speaking the probability that a
particular event occurs in a particular collider experiment. The total number of such events is given
by the event equation

n = σεAL, (1.1)

where ε represents the efficiency of the experimental apparatus, A represents the acceptance and L is
the integrated luminosity of the data taken in the search or experiment, i.e. the amount of data. The
job of the theoretical physicist is to compute σ, as all the other quantities can be inferred or measured
from the experimental setup used.

We may further decompose the total number events as

n = s+ b, (1.2)

where b is called the background which is the portion of the events explained by the SM. Here s
represents a portion of n which cannot be explained by SM, but rather the new BSM model, and is
called the signal. Strictly speaking, the model proposed may only explain a subset of the total events.
On a more technical level, the event equation can be divided into several cuts. A cut defines a range of
an experimentally measured quantity where anything outside of it is excluded. A signal region consists

3

4 CHAPTER 1. THE PHYSICS PROBLEM

of a set of cuts. For a signal region i, the event equation reads

ni = σεiAiL. (1.3)

All but the cross section and the integrated luminosity depend on the signal region.
The computation of σ in eq. (1.1) needs to be carried out to a high accuracy to yield a greater

exlusion power. To explain why, consider the Poisson likelihood

L(n|s, b) =
∫ ∞

0

[ξ(s+ b)]ne−ξ(b+s)

n! P (ξ)dξ, (1.4)

where ξ is a rescaling parameter and P (ξ) is its probability distribution which is peaked at ξ = 1. Its
width is defined by

σ2
ξ = σ2

s + σ2
b

(s+ b)2 , (1.5)

where σs is the systematic uncertainty of the signal predictions s and σb is the systematic uncertainty
of the background b. The particular form of P (ξ) given a width σξ is typically chosen to be Gaussian
or log-normal [4]. To compare s and b correctly to n we must evaluate eq. (1.4). If σs is large, this will
increase the width σξ which yields a larger value of the likelihood for all points ξ. The consequence is
less exclusion power achieved by the statistical analysis for the experimental data from which n was
measured.

Computation of cross sections involves computation in quantum field theory of terms in a perturba-
tion expansion which are of the form

σ = α2σLO + α4σNLO + higher order terms, (1.6)

where α is a small parameter, σLO is the leading order (LO) term and σNLO is the next-to-leading
order (NLO) term. For supersymmtric models, computation of the cross section used in the event
equation is in practice carried out using Prospino [5]. It is a software developed to compute cross
sections up to the (NLO) term. This computation is exceedingly expensive and can take up to the
order of hours for a single tuple of input parameters [2]. This computational expense significantly
hampers the investigation of parameter regions of BSM models. The search for new physics is thus
halted, not by lack of possible BSM models to explain the discrepancies between the SM predictions
and the observed data, but instead by the computational cost to perform the search itself. But the
necessity for high accuracy in the computed cross sections used with the event equation forces the
theoretical physicist to carry them out regardless, to progress in the search for new physics.

1.2 Bayesian Regression as a Substitute
Regression models are widely employed in problems where direct calculation of a target y ∈ Rd from
an independent variable x ∈ Rp (which we usually call the features) is either too expensive to be
considered tractible or the relationship between x and y is difficult to capture from first principles.
The typical strategy is to represent the relationship between x and y with a mathematical function
imbued with a collection of free parameters which are adjusted according to some “learning” algorithm
that given a large number of examples is able to correctly predict the targets of unseen examples. This
is what is referred to as supervised machine learning. The strategy has proved to be an efficient one,
employing what we may coin as black box algorithms where we learn a mathematical function which
is able to calculate the target given its independent variable without any intrinstic knowledge of the
fundamental relationship between the two.

It comes with a major drawback, however. Assessing the accuracy of the prediction is difficult
if the target is unknown. This is where Bayesian regression comes into the picture. Mathematical
models trained within the Bayesian regression framework provides a natural way to not only predict

1.2. BAYESIAN REGRESSION AS A SUBSTITUTE 5

a target y but also yield a corresponding uncertainty in its prediction, given an example of x. The
resulting model produces a distribution of targets instead of a single prediction. This allow for a more
thorough statistical analysis of the quality of its predictions, which is necessary if the regression model
is to be used as a reliable substitute for direct calculations of NLO cross sections.

In this thesis, we propose to perform Bayesian regression using neural networks to substitute direct
calculations of NLO cross sections. Neural networks are universal function approximators [6] and are
thus a robust mathematical model to employ for regression tasks that may need a large number of free
parameters to learn the relationship between the targets and the features. Neural networks trained
within the Bayesian framework is referred to as Bayesian neural networks (roll credits). Due to the
large number of free parameters found in neural networks, using them in Bayesian regression tasks is a
considerable challenge. The vast majority of their usage in the literature employ approximate strategies
to infer parameters of the model. The main reason for this is that modern machine learning libraries
such as TensorFlow or PyTorch provide highly optimized and modular frameworks for neural network
models, and research have been conducted to create Bayesian alternatives which spend approximately
the same amount of time learning its parameters per training example. Given a set of data examples,
the distributions of the model parameters in the neural network are parameterized with a surrogate
distribution, i.e. a Gaussian distribution for each parameter. The parameterization is adjusted when
shown training examples to “learn” an approximation to the true distribution of the model parameters.
Once a parameterization is learned, the model can be used to computed a predictive distribution of a
target given an example of the independent variable. This is achieved by drawing samples from the
learned distribution, usually by use of Markov chain Monte Carlo (MCMC) methods. The disadvantage
is that the surrogate distributions are typically treated as a product of an independent distribution
for each parameter of the neural network, which cannot properly capture the multi-modal nature of
the exact high-dimensional distribution its parameters embody. The multi-modality is a result of the
over-parameterization of the model class and is a potentially inescapable consequence for sufficently
complex neural network architectures. The over-parameterizations give rise to at least two symmetries
which convolutes inference of its parameters. These are weight-space symmetry and scaling symmetry.
The latter symmetry arises if mappings employed in the model has the property σ(αx) = ασ(x).
For two adjacent layers in a neural network, the weights can simply be rescaled and produce the
same prediction as before. The former symmetry persist regardless because parameters within a
layer can be permuted and still yield the same resulting prediction. These are examples of statistical
unidenfiability. Treating its parameters as independent may therefore be a crude approximation.
Inferring parameters from its exact distribution, which is our task, is complicated by the fact that
many equivalent parameterizations yield the same predictions in “target-space”. In principle, several
regions in the parameter space of neural networks all produce equivalent results when applied to an
example of x, which makes assessing convergence in parameter space difficult and proper exploration
of its distribution exacts a heavy toll.

We will explore the properties of Bayesian neural networks where its parameters are sampled from
the exact posterior using MCMC methods. Important problems to investigate is the computational
cost of the methods on different types of hardware such as a CPU and a GPU. The ability to correctly
predict targets and yield reliable uncertainty estimates are especially imperative to replace direct
calculations of NLO cross sections. Exploring the exact distribution of neural network parameters is
also of interest to evaluate the degree to which its distribution can be approximated with parameterized
surrogate distributions. This will be some of the main concerns in this thesis.

In the next chapter, we shall formalize the notion of a Bayesian regression and Bayesian machine
learning precisely.

6 CHAPTER 1. THE PHYSICS PROBLEM

Chapter 2

Bayesian Formulation of Machine
Learning

In this chapter we will introduce the notion of Bayesian machine learning (Bayesian ML). We will
start from the classical view of ML and reformulate it in terms of Bayesian concepts. We will only
concern ourselves with so-called supervised ML models used to solve supervised regression tasks as it
is the only class of problems of interest in this thesis. We will first introduce the core of ML and its
constituent ingredients. From this we transition to Bayes’ theorem and a Bayesian framework for ML.
Finally we discuss Bayesian inference.

2.1 The Core of Machine Learning
The basic conceptual framework of a supervised machine learning problem is as follows. Assume a
dataset D is a sequence of N datapoints D = {(x(i), y(i))}Ni=1, where x(i) ∈ Rp is the set of features
and y(i) ∈ Rd is the target. The next ingredient is to assume the targets can be decomposed as

y = f(x) + δ, (2.1)

for some true function f : Rp → Rd (also known as the ground truth), where δ ∈ Rd is introduced to
account for random noise. The objective is to learn f(x) from the dataset. To this end, we choose
a model class f̂(x; θ) parameterized by a model parameters θ ∈ Rm, combined with a procedure to
infer an estimate of the parameters θ̂ such that the model is as close to f(x) as possible. Formally,
this means choosing a metric L to quantify the error, called a loss function (or a cost function, but
we will adopt the former term in line with the terminology used in the TensorFlow framework), and
minimize it with respect to the parameters of the model to obtain θ̂ using an optimization algorithm.
For brevity, we will denote the output of a model class as ŷ(i) ≡ f̂(x(i); θ).

2.1.1 Loss Functions
For regression problems, two loss functions L are commonly chosen. The first is the residual sum of
squares (RSS) given by

LRSS ≡ RSS =
N∑
i=1

∥∥∥y(i) − ŷ(i)
∥∥∥2

2
, (2.2)

where ‖·‖2 denotes the L2-norm. The second is the the mean squared error (MSE), defined as

LMSE ≡ MSE = 1
N

N∑
i=1

∥∥∥y(i) − ŷ(i)
∥∥∥2

2
. (2.3)

7

8 CHAPTER 2. BAYESIAN FORMULATION OF MACHINE LEARNING

For optimization purposes, they yield equivalent optimal parameters θ̂, at least in principle.

2.1.2 Regularization
With datasets of limited size, overfitting can pose a problem, yielding models that generalize poorly
because they become overly specialized to the dataset on which θ̂ is inferred. The implication is that
the predicted target on unseen data is unlikely to be correct. This occurs especially if the model is too
complex. One strategy to overcome this, is to tack on a regularization term to the loss-function. By
regularization, we mean an additional term that limits the size of the allowed parameter space. Hence,
regularization imposes a constraint on the optimization problem.

The two most commonly used regularization terms are L2-regularization, which adds a term to the
loss function as

L = L0 + λ

2 ‖θ‖
2
2, (2.4)

where λ is the so-called regularization strength, which is what we call a hyperparameter, and L0 is a
loss function with no regularization term. The second is L1-regularization, which yields a loss

L = L0 + λ

2 ‖θ‖1. (2.5)

The terms penalize large values of θ, effectively shrinking the allowed parameter space. The larger the
value of the regularization strength λ, the smaller the allowed parameter space becomes.

More generally, we can decomposed our full loss function as

L(x, y, θ) = L0 +R(λ1, . . . , λr, θ), (2.6)

where R(θ) is a linear combination of Lp-regularization terms where λi are the expansion coefficients
which are all treated as hyperparameters. Lp-regularization terms is defined by the Lp-norm

‖x‖p = (|x1|p + · · ·+ |xm|p)
1/p

, x ∈ Rm. (2.7)

In practice, we typically use a single form of Lp-regularization but nothing stops us from constructing
complicated regularization terms in theory.

2.1.3 Optimization
Once a model class and loss function is chosen, an optimizer or optimization algorithm must be chosen.
By this, we mean an algorithm that uses the loss function and the model class, and minimizes the
loss with respect to the model parameters to yield an estimate of θ̂. Regardless of which optimization
algorithm we employ, we seek

θ̂ = arg minθ L. (2.8)

In this thesis, optimization plays a smaller role in the inference of model parameters than in classical
ML because we do not seek a single estimate θ̂ in most Bayesian applications. We shall nevertheless
utilize such algorithms for some parts but for another purpose. One of the most popular optimizers in
the deep learning community is ADAM [7] which we will mainly use when optimization is needed.

2.2 Bayes’ theorem
Our goal is to reformulate ML in terms of Bayesian concepts. The backbone of Bayesian ML is Bayes’
theorem [8]. The theorem can be formulated as

p(θ|D) = p(D|θ)p(θ)
p(D) , (2.9)

2.3. BAYESIAN FRAMEWORK FOR MACHINE LEARNING 9

where D is observed data and θ denotes the parameters of the model. Here p(θ) is called the prior
distribution and embodies our prior knowledge of θ before any new observations are considered. p(D|θ)
is called the likelihood function and provides the relative probability of observing D for a fixed value
of θ. It need not be normalized to unity, which is why it only provides relative “probabilities”. The
posterior distribution p(θ|D) models our belief about θ after the data D is observed. Finally, p(D)
is called the evidence which we may regard as the normalization constant of the posterior such that
posterior integrates to unity over parameter space. In the context of Bayesian ML, the evidence will
not be an interesting quantity as it will not turn up as part of any algorithms. Moreover, it is typically
intractible for sufficiently large parameter spaces. It is therefore common to write Bayes’ theorem as

p(θ|D) ∝ p(D|θ)p(θ), (2.10)

which we too shall adopt.

2.3 Bayesian Framework for Machine Learning
The Bayesian framework for ML differs somewhat in approach to its classical counterpart. We define
a model class in the same way as before. Choosing a loss function is substituted with choosing a
likelihood function and a prior. Minimization of the loss function is replaced with maximization of the
likelihood function or the posterior distribution. In fact, the Bayesian framework introduces several
ways to infer an estimate for the optimal model parameters [9].

1. Maximum Likelihood Estimation (MLE): The optimal parameters θ̂ are inferred by

θ̂ = arg maxθ p(D|θ), (2.11)

meaning we choose θ̂ as the mode of the likelihood function. This is equivalent to maximizing
the log-likelihood (since log is a monotonic function), i.e.

θ̂ = arg maxθ log p(D|θ). (2.12)

2. Maximum-A-Posteriori (MAP): This estimate of θ̂ is defined as

θ̂ = arg maxθ p(θ|D), (2.13)

meaning we choose θ̂ as a mode of the posterior distribution.

3. Bayes’ estimate: The estimate of θ̂ is chosen as the expectation of the posterior,

θ̂ = Ep(θ|D)[θ] =
∫

dθ θp(θ|D). (2.14)

The connection between classical and Bayesian ML can be understood from what follows. First,
let us assume that each datapoint (x(i), y(i)) is identically and independently distributed (i.i.d.). The
likelihood function can then generally be written as

P (D|θ) =
N∏
i=1

P (y(i)|x(i), θ). (2.15)

For regression tasks, the standard choice of likelihood function is the Gaussian

p(y|x, θ) = exp
(
− 1

2σ2

∥∥∥y − f̂(x; θ)
∥∥∥2

2

)
, (2.16)

10 CHAPTER 2. BAYESIAN FORMULATION OF MACHINE LEARNING

where σ is some hyperparameter typically chosen to be the same for every datapoint (x, y). For the
full dataset, we get

p(D|θ) =
N∏
i=1

exp
(
− 1

2σ2

∥∥∥y(i) − f̂(x(i); θ)
∥∥∥2

2

)
. (2.17)

Now, consider the definition of MLE from eq. (2.11). It instructs us to maximize the expression in
eq. (2.17). If we rewrite the likelihood function a bit

p(D|θ) = exp
(
− 1

2σ2

N∑
i=1

∥∥∥y(i) − f̂(x(i); θ)
∥∥∥2

2

)
, (2.18)

we can observe that maximization of the likelihood function simply amounts to minimization of the RSS
and hence of the MSE, as can be seen by comparison with the expressions in eq. (2.2) and eq. (2.3).

We can go even further, by considering the MAP estimate. Let us introduce a Gaussian prior on
the parameters such that

p(θ) ∝ exp
(
−λ2 ‖θ‖

2
2

)
. (2.19)

The posterior obtained from Bayes’ theorem in eq. (2.10) by combining the prior introduced in eq. (2.19)
and the likelihood function in eq. (2.17) is

p(θ|D) ∝ p(D|θ)p(θ) ∝
N∏
i=1

exp
(
− 1

2σ2

∥∥∥y(i) − f̂(x(i); θ)
∥∥∥2

2

)
exp

(
−λ2 ‖θ‖

2
2

)
, (2.20)

which we can rewrite as

p(θ|D) ∝ exp
(
−

[
1

2σ2

N∑
i=1

∥∥∥y(i) − f̂(x(i); θ)
∥∥∥2

2
+ λ

2 ‖θ‖
2
2

])
. (2.21)

Maximization of this expression is equivalent to minimization of RSS or MSE with a L2-regularization
term tacked on which can be seen by comparison with eq. (2.4). Obviously, we are missing a factor
1/N in front of the likelihood term which can be thought of as baked into the σ parameter. The
natural generalization is that the posterior can be expressed as

p(θ|D) ∝ exp (−L) , (2.22)

for any loss function as in eq. (2.6). For a purpose that comes much later when we discuss Hamiltonian
Monte Carlo, we can invert eq. (2.22)

L = − logZ − log p(D|θ)− log p(θ), (2.23)

for some appropriate normalization constant Z. Assuming that the dataset consists of observations
that are i.i.d, we get

L = − logZ −
N∑
i=1

p(y(i)|x(i), θ)− log p(θ). (2.24)

Equation (2.24) will play an important role later on.

2.4 Bayesian Inference
We have seen that there is a straight forward connection between the Bayesian framework and the
classical view of ML by looking at estimators θ̂. In regression tasks, however, we are seldom interested

2.4. BAYESIAN INFERENCE 11

in a single estimate of the model parameter. Instead we seek to obtain the posterior distribution from
which we can infer other quantities. In applications where the model class is sufficiently complex,
direct computation of the posterior is not feasible. Instead, we must settle with an approximate
posterior distribution which we construct using Monte Carlo Markov chains (MCMC) methods. The
discussion of such methods is allocated to chapter 3. For now we assume that there exists a way to
generate samples θ ∼ p(θ|D). We approximate the posterior by sampling a set of model parameters
{θ(1), . . . , θ(n)} where θ(t) ∼ p(θ|D), yielding an empirical posterior distribution.

We will primarily use the posterior to compute two classes of mathematical objects. The first is the
predictive distribution of a target y∗ given an input x∗. The predictive distribution can be expressed as

p(y∗|x∗, D) =
∫

dθ p(y∗|x∗, θ)p(θ|D). (2.25)

Equation (2.25) is generally intractible since we cannot exactly compute the posterior. The predictive
distribution is therefore approximated by generating a set of predictions using the empirical posterior
distribution. That is, we indirectly sample from p(y∗|x∗, D) by computation of f̂(x∗; θ(t)) for t =
1, . . . , n. In other words, the empirical predictive distribution is generated as follows.

θ(t) ∼ p(θ|D),
f(x∗; θ(t)) ∼ p(y∗|x∗, θ).

(2.26)

The second class is expectation values with respect to the posterior distribution, which for a target
function f(θ) is defined as

Ep(θ|D)[f] =
∫

dθ f(θ)p(θ|D). (2.27)

An important example of eq. (2.27) is the expectation value of the predictive distribution, which will
be the expectation of the model class with respect to the posterior

ŷ ≡ Ep(θ|D)[f̂(x; θ)] =
∫

dθ f̂(x; θ)p(θ|D). (2.28)

Equation (2.27) must be approximated since we cannot hope to evaluate the posterior p(θ|D). Even if
we could, we will be working with sufficiently large parameters spaces such that the integral itself is
intractible in any case. Approximation of expectation values is done using MCMC methods which is
the subject of the next chapter.

12 CHAPTER 2. BAYESIAN FORMULATION OF MACHINE LEARNING

Chapter 3

Markov Chain Monte Carlo

In this chapter, we will discuss fundamental ideas pertaining to Markov Chain Monte Carlo (MCMC)
methods. We shall confine the discussion to continuous sample spaces which is the kind needed in
this thesis. We will commence with a discussion of expectation values and an important notion called
the typical set. We will then define and discuss Markov chains and Markov transitions after which we
shall discuss Metropolis-Hastings sampling and its limitations. Finally we will look at Gibbs sampling.
We will adopt a geometric view where possible to provide a natural transition to Hamiltonian Monte
Carlo and the No-U-Turn sampler in the two following chapters.

3.1 Expectation Values and the Typical Set
Consider a target probability density π(θ) and an m-dimensional sample space Θ where θ ∈ Θ. Consider
f(θ) to be an arbitrary smooth function of θ. The expectation value of f(θ) with respect to the density
π(θ) is then defined as

Eπ[f] =
∫

dθ π(θ)f(θ). (3.1)

We shall interchangably refer to expectation values simply as expectations. We will call the function
f we seek to compute the expectation of as the target function. For all but a few simple densities,
evaluation of eq. (3.1) is impossible analytically. To complicate things further, numerical evaluation
with numerical integration techniques of the expectation in high-dimensional spaces quickly becomes
computationally infeasible as the dimensionality increases, due to limited computational resources.
Even worse, we may not even be able to write down the expression of π(θ) explicitly. Fortunately, it is
unlikely that the entire sample space contribute significantly to the expectation. If we could somehow
pick out the points in sample space that does contribute, only knowing π(θ) up to a normalization
constant, we could make approximate computations of expectations tractible.

For most purposes, we are interested in the expectation of more than a single target function. For
example, in Bayesian applications, we are often interested in both the mean and variance of a quantity
which introduces the need for several target functions. Thus the numerical method should not depend
on the target function in question. Instead the focus should be laid on the contribution from π(θ)dθ to
the integrand. The objective of MCMC methods is to efficiently sample points from regions of sample
space where this quantity is non-neglible. This region of sample space is called the typical set [10].

3.1.1 The Typical Set
For simplicity, we can divide a sample space into three regions with respect to the target density π(θ).

13

14 CHAPTER 3. MARKOV CHAIN MONTE CARLO

1. High-probability density region. These are regions in the neighborhood of a mode of the target
density. In general, as the dimensionality increases, the contribution from π(θ)dθ becomes
neglible here unless the volume in the region is significant enough.

2. The typical set. This refers to the regions in which π(θ)dθ provides a non-neglible contribution
to any expectation. This may be thought of as the high-probability region of the sample space
since π(θ)dθ is proportional to probability of a volume dθ in the neighborhood of θ.

3. Low-probability density regions. These are regions far away from any mode of the density. This
region, too, will generally yield neglible contributions to the integrand even if the volume is large.

Although the notion of a typical set can be formalized precisely, we will intentionally operate with this
somewhat imprecise definition. For our purposes, it suffices to use it merely as a conceptual notion to
evaluate the quality of the samples generated by an MCMC chain.

3.1.2 The Target Density and Bayesian Applications
In the chapter on Bayesian ML, we mentioned that we could not compute the evidence term of Bayes’
theorem in realistic applications and thus were only concerned with a proportionality relationship
p(θ|D) ∝ p(D|θ)p(θ). Thus any MCMC methods we are interested in cannot require that the π(θ) is
normalized to unity. We only require that the density is smooth and that

0 <
∫

dθ π(θ) <∞. (3.2)

Sometimes we may refer to the target density as the target distribution. In Bayesian applications, we
assume that π(θ) = p(D|θ)p(θ) such that p(θ|D) ∝ π(θ).

3.2 Markov Chains and Markov Transitions
Since direct evaluation of eq. (3.1) in most applications is intractible, we seek to approximately evaluate
it by generating samples θ(t) from the typical set using Markov chains. A Markov chain is a sequence
of points θ(1), θ(2), ..., θ(n) generated sequentially using a random map called a Markov transition. A
Markov transition is a conditional probability density T (θ′|θ) that yields the probability of transition
from a point θ to θ′. The Markov transition is also called a Markov kernel which is a special case of
a transition kernel. The latter is the term we will adopt because it is the term used by TensorFlow
Probability.

An arbitrary transition kernel is not useful because the generated Markov chain is unlikely to have
any relation to the target distribution of interest. To generate a useful Markov chain, we must use a
transition kernel that preserves the target distribution. The condition that ensures this is

π(θ) =
∫
dθ′π(θ′)T (θ|θ′). (3.3)

The condition is formally called detailed balance. The interpretation of the condition is that the Markov
chain is reversible.

We can start from any θ and use the transition kernel to produce a set of new states. The
distribution generated by the Markov chain should be distributed according the target distribution
regardless of which point we used to generate the chain from, given a long enough chain. A more
important fact is that as long as this condition is satisfied, the Markov chain will converge to and stay
within the typical set.

The standard approach to approximate eq. (3.1) is then with the MCMC estimator

f̂N = 1
N

N∑
t=1

f(θ(t)). (3.4)

3.3. METROPOLIS-HASTINGS 15

For large enough N , the estimator can be shown to converge to the true expectation such that
limN→∞ f̂N = Eπ[f]. Obviously, the knowledge that the estimator will asymptotically converge to the
true expectations is of limited use when restricted to a practical computation in which only a finite
chain can be generated. We must therefore understand the properties of finite Markov chains so we
can efficiently use them to approximate eq. (3.1).

3.2.1 Ideal Markov Chains
In order to understand the behaviour of finite Markov chains, we should first consider the behaviour of
ideal Markov chains. An ideal Markov chain can be divided into three phases.

1. A convergence phase. The Markov chain is initiated from some point θ and the initially generated
sequence lies in a region outside the typical set. Estimators evaluated using this part of the
sequence are highly biased, meaning inclusion of these points will lead to an estimator that lies
relatively far away from the true expectation.

2. An exploration phase. The Markov chain has reached the typical set and begins its first “traversal”
of it. In this phase, estimators will rapidly converge towards the true expectations.

3. A saturation phase. At this point, the Markov chain has explored most of the typical set and
convergence of the estimators slow down significantly.

The ideal evaluation of estimators thus only use the parts of the Markov chain generated in the second
and third phase, discarding the the chain generated in the first phase. The notion of discarding the
chain from the first phase is called burn-in or mixing. To most efficiently approximate eq. (3.1), we
should really only use points generated in the exploration phase. Using points from the saturation phase
does not hurt the estimators but yield diminishing returns with respect to computational resources.

3.2.2 Pathologies
Unfortunately, many target distributions embody typical sets with pathological regions where any
transition kernel that obey eq. (3.3) is not sufficient to efficiently explore the typical set. Geometrically,
this can be regions in the typical set in which the target distribution rapidly changes. The pathological
regions can be completely ignored by the chain for much of the exploration, leading to poor convergence
and thus biased estimators. However, as long as the transition kernel satisfies detailed balance, we
know for a fact that the estimators must converge eventually. Consequentially, the Markov chain will
be stuck near pathological regions for long periods to compensate before it rapidly explores other
parts of the typical set. This behaviour can be repeated, which makes estimators oscillate. Regardless
of when the MCMC chain is terminated, the estimator will likely be biased due to this oscillating
behaviour.

3.2.3 Geometric Ergodicity and Convergence Diagnostics
Generation of ideal Markov chains is guaranteed if the transition kernel satisfies geometric ergodicity
[11], a Central Limit Theorem for the MCMC estimators. However, in most cases it is impossible to
check that the condition is satisfied. Instead one uses a statistical quantitiy known as the potential
scale reduction factor R̂ [12]. The ideal value is R̂ = 1. For values far away from this target, it is
unlikely that geometric ergodicity is satisfied. The Rule-of-thumb is to assume convergence if R̂ < 1.1
[13].

3.3 Metropolis-Hastings
Construction of a transition kernel that ensures convergence to the typical set of the target distribution
is a non-trivial problem in general. Fortunately, the Metropolis-Hastings algorithm provides a general

16 CHAPTER 3. MARKOV CHAIN MONTE CARLO

solution that lets us construct a transition kernel with this property [14, 15]. The algorithm consist
of two components; a proposal of a new state and a correction step called the Metropolis correction.
Given a state θ, we propose a new state θ′ by adding a random perturbation to the initial state. The
correction step rejects a proposed state that moves away from the typical set of the target distribution
and accepts proposals that stay within it. The proposed state is formally sampled from a proposal
distribution q(θ′|θ). The probability of accepting the proposed state given the initial state, fittingly
called the acceptance probability, is

a(θ′|θ) = min
(

1, q(θ|θ
′)π(θ′)

q(θ′|θ)π(θ)

)
. (3.5)

A particularly neat feature of the acceptance probability in eq. (3.5) is that it can be calculated
in Bayesian applications because the evidence term cancels out. These steps are summarized in
algorithm 3.1.

Algorithm 3.1 Metropolis-Hastings
function MetropolisHastings(θ)

Sample θ′ ∼ q(θ′|θ)

a(θ′|θ)← min
(

1, q(θ|θ
′)π(θ′)

q(θ′|θ)π(θ)

)
Sample u ∼ Uniform(0, 1).
if a(θ′|θ) ≥ u then

θ ← θ′ . Accept transition
else

θ ← θ . Reject transition
end if
return θ

end function

3.3.1 The Proposal Distribution
There are many valid choices of proposal distributions. A common choice is a Gaussian distribution
q(θ′|θ) = N (θ′|θ,Σ), where Σ is the covariance matrix of the normal distribution used to generate the
perturbation of the initial state. This is typically chosen to be the identity matrix Σ = I.

We will refer to the Metropolis-Hastings algorithm with this proprosal distribution as random walk
Metropolis. More precisely, this means that a proposed state is given by

θ′ = θ + δ, (3.6)

where δ ∼ N (0,Σ). This distribution is symmetric such that q(θ′|θ) = q(θ|θ′), implying that the
acceptance probability reduces to

a(θ′|θ) = min
(

1, π(θ′)
π(θ)

)
. (3.7)

Hence, evaluation of the acceptance probability only require that we evaluate the target distribution
at the initial state and the proposed state.

The random walk Metropolis algorithm does suffer from slow convergence to, and exploration of,
the typical set in high-dimensional spaces. This can be understood because of the following. As we
increase the dimension of the sample space, the volume outside of the typical set becomes increasingly
larger than the volume of the typical set itself. This implies with increasing probability that a random

3.4. GIBBS SAMPLING 17

perturbation of an arbitrary initial state will cause the proposed state to lie outside the typical set
for a fixed covariance matrix. We can compensate for this flaw by reducing the values of Σij , but
this will slow down exploration of the sample space. The slow exploration also leads to a Markov
chain where consecutive samples embody a relatively large measure of correlation. The quality of the
resulting Markov chain tarnishes and successive samples must be discarded in order to properly evaluate
eq. (3.1). This process of discarding correlated successive samples in a Markov chain is called thinning.
Fortunately, there exists a solution; gradient-informed exploration of the sample space, manifested
in the form of Hamiltonian Monte Carlo. This algorithm is a special case of a Metropolis-Hastings
algorithm in which the proposal distribution q(θ′|θ) is a special one utilizing Hamiltonian dynamics
and Gibbs sampling to produce a new proposal state θ′. This is the topic of the next chapter.

3.4 Gibbs Sampling
The final standard MCMC algorithm we need is the Gibbs sampler. It plays a small part of the
sampling in HMC and so we should therefore briefly discuss it. It is a MCMC sampling method used
for multi-variate probability densities, and so is only meaningful to discuss for d > 1 dimensions.
Suppose θ(t) represents the parameters at iteration t. The next sample θ(t+1) in the Markov chain
is drawn according to some chosen conditional distribution p depending on the previous and current
sample as follows

θ
(t+1)
i ∼ p(θi|θ(t+1)

1 , . . . θ
(t+1)
i−1 , θ

(t)
i+1, . . . , θ

(t)
m). (3.8)

We may summarize this as a function in algorithm 3.2 which given an initial state θ(t) returns a new
state θ(t+1) sampled according to eq. (3.8).

Algorithm 3.2 Gibbs sampling
function Gibbs(θ(t))

for i = 1, . . . , d do
Sample θ(t+1)

i ∼ p(θi|θ(t+1)
1 , . . . θ

(t+1)
i−1 , θ

(t)
i+1, . . . , θ

(t)
m).

end for
return θ(t+1) =

(
θ

(t+1)
1 , . . . , θ

(t+1)
m

)
.

end function

18 CHAPTER 3. MARKOV CHAIN MONTE CARLO

Chapter 4

Hamiltonian Monte Carlo

In this chapter, we will explore the details of Hamiltonian Monte Carlo. It is a Markov chain Monte
Carlo method that uses gradient-informed steps to generate a proposal state for Metropolis correction.
This is achieved by usage of Hamiltonian dynamics which allow gradient-informed exploration by
treating the model parameters as “coordinates” of a fictitous physical system, and introducing auxilliary
variables representing its momenta. The coordinates and momenta are required to obey a particular
set of coupled differential equations called Hamilton’s equations. The differential equations cannot in
general be solved exactly and are instead simulated. The particular kind of numerical method used to
achieve this is called the Leapfrog integrator. At the end of a simulation, a new set of coordinates and
momenta will be generated, which is regarded as the proposal state to undergo Metropolis correction.
If accepted, we keep the proposed coordinates as the next parameter in the Markov chain. Otherwise,
the initial coordinates assume this role. The auxilliary momenta is discarded and resampled on each
iteration as they play no important role for the actual Markov chain.

We begin by presenting Hamiltonian dynamics and the Leapfrog integrator. Once established we
show how the framework is used to construct an MCMC method. Next, we will see how to apply the
method to Bayesian machine learning models before we finalize the chapter with a discussion on some
limitations of the method.

4.1 Hamiltonian Dynamics
Hamiltonian dynamics [16] is a formulation of classical mechanics that allows us to compute the time
evolution of a physical system. The fundamental mathematical object of the theory is the Hamiltonian
H which governs the time evolution of the coordinates q = (q1, . . . , qd) and momenta p = (p1, . . . , pd)
of the system. The 2d-dimensional space defined by the points (q, p) is called phase-space. The precise
relationship is formulated by Hamilton’s equations

dqi
dt = ∂H

∂pi
,

dpi
dt = −∂H

∂qi
, for i = 1, . . . , d. (4.1)

The objective is to use the 2d coupled differential equations in eq. (4.1) to find (q(t), p(t)) given some
initial condition (q(0), p(0)) where t represents time. A system governed by Hamilton’s equations is
called a Hamiltonian system. For the purpose of constructing a MCMC method, we need not consider
the most general theory of Hamiltonian dynamics and we will therefore refrain from doing so. We
shall confine our focus to Hamiltonians which can be decomposed as

H(q, p) = V (q) +K(p), (4.2)

where V is the potential energy and K is the kinetic energy of the system. The particular kind of
Hamiltonian in eq. (4.2) corresponds to the total energy of the system. A key feature is that this

19

20 CHAPTER 4. HAMILTONIAN MONTE CARLO

Hamiltonian is conserved through time. This observation follows from

dH
dt =

∑
i

(
dqi
dt

∂H

∂qi
+ dpi

dt
∂H

∂pi

)
=
∑
i

(
∂H

∂pi

∂H

∂qi
− ∂H

∂qi

∂H

∂pi

)
= 0. (4.3)

Thus any solution (q(t), p(t)) will be confined to a hyperplane defined by the Hamiltonian and the
initial condition.

Evolving a Hamiltonian system from some initial point (q(0), p(0)) is in general a non-trivial task.
Exact solutions can only be computed for simple systems. To arm ourselves with a robust MCMC
method, then, we must employ a numerical method to approximate the solutions. To this end, there
is a class of numerical methods called symplectic integrators that take advantage of the underlying
geometry enforced by Hamilton’s equations which allow accurate solutions over long time periods at a
lower computational cost than typical higher-order methods such as fourth-order Runge-Kutta. The
particular symplectic integrator used in HMC is called the Leapfrog integrator which we shall discuss
next.

4.1.1 Leapfrog integration
The Leapfrog integrator [17] is used in HMC to integrate eq. (4.1) to generate new proposal states.
First assume that we discretize the time-coordinate t into discrete time coordinates defined by an
initial time t0 and a step size ε which defines the distance between each time coordinate. The k-th
time coordinate can be generated by

tk = t0 + kε. (4.4)

To please mathematicians, we introduce functions q̂ and p̂ to represent the discretized approximations
to the exact solution (q(t), p(t)). From an initial point (q(t0), p(t0)), we simulate the system to obtain
approximate values of the exact solution at discrete times t1, . . . , tn.

Consider a single Leapfrog step from a point (q̂(t), p̂(t)). Its approximation to (q(t+ ε), q(t+ ε)) is
then computed as formulated in algorithm 4.1.

Algorithm 4.1 Leapfrog Integration
function Leapfrog(V, q, p, ε)

for i = 1, . . . , d do

p′i ← pi −
ε

2
∂V (q)
∂qi

q′i ← qi + ε

mi
p′i

p′i ← p′i −
ε

2
∂V (q′)
∂qi

end for
return (q′, p′)

end function

Note the introduction of the masses mi. For now they may simply be regarded as some constants
belonging to the Hamiltonian system. When used in HMC, it is common to set all masses mi = 1 from
which we can formulate the algorithm in vectorized form, as seen in algorithm 4.2.

4.2. GENERATING A PROPOSAL STATE 21

Algorithm 4.2 Vectorized Leapfrog Integration
function VectorizedLeapfrog(V, q, p, ε)

p′ ← p− ε

2∇qV (q)
q′ ← q + εp′

p′ ← p′ − ε

2∇qV (q′)
return (q′, p′)

end function

4.2 Generating a Proposal State
Our next objective is to understand how we connect an arbitrary target distribution π(θ) to Hamiltonian
dynamics. In this section we will weave these together and show how we generate a new proposal
state θ′ which will undergo a Metropolis correction. The results discussed in this section can be
understood as representing the proposal distribution q(θ′|θ) used during the Metropolis-Hastings step,
as we summarized in algorithm 3.1.

The fundamental assumption we make is that the target distribution can be expressed in terms of
a canonical distribution over coordinate space

π(q) ∝ exp {−V (q)} , (4.5)

where q represents the model parameters θ. We will stick to this convention to avoid confusion and
utilize the formulation of Hamiltonian dynamics discussed hitherto. Once we want to apply it in a
Bayesian ML context, we simply replace q → θ. From eq. (4.5), we can find the potential energy
function in terms of the target distribution

V (q) = − log π(q), (4.6)

up to a constant. Hence once the target distribution is known, we use eq. (4.6) to obtain the potential
energy of the system.

We now turn to the problem of constructing the Hamiltonian so we can utilize Hamilton’s equations.
To achieve this, we must introduce auxilliary momenta p so we can define a kinetic energy function and
evolve the system through what we may regard as fictitious time t. The momenta are sampled from
some distribution of our own choice. We can proceed in the same way as we did with the potential
energy function and express the momentum distribution in terms of a canonical distribution over
momentum space

π(p) ∝ exp {−K(p)} , (4.7)

such that
K(p) = − log π(p), (4.8)

up to a constant. The commonly chosen expression for kinetic energy is the one found in classical
physics

K(p) =
d∑
i=1

p2
i

2mi
, (4.9)

from which the canonical distribution is inferred to be

π(p) ∝ exp
{
−

d∑
i=1

p2
i

2mi

}
=

d∏
i=1

exp
{
− p2

i

2mi

}
. (4.10)

22 CHAPTER 4. HAMILTONIAN MONTE CARLO

Hence, with the kinetic energy from eq. (4.9), we sample each momentum independently from a
Gaussian distribution with zero mean and variance σ2

i = mi.
Now that we understand how we specify the potential energy for a given target distribution and

the kinetic energy of the auxilliary momenta, we can formulate the full canonical distribution over
phase-space as

π(q, p) = π(q)π(p) ∝ exp {−V (q)} exp {−K(p)} = exp {−H(q, p)} . (4.11)

We are naturally just interested in generating a new coordinate q′. Using Hamilton’s equations with the
Hamiltonian implied by eq. (4.11), we can simulate the fictitious Hamiltonian system using Hamilton’s
equation in eq. (4.1) to generate a new state (q′, p′). The proposal state is then obtained by the
projection map (q′, p′) 7→ q′.

As stated in the beginning of this section, we may regard the details outlined here as an elaborate
explanation of the proposal distribution q(θ′|θ). The final keypoint to consider is how we can make
it symmetric so that we only need to evaluate π(q′, p′) at the Metropolis step using eq. (3.7). It can
be shown that we only need two additional steps. We must randomly choose to sample forwards or
backwards in time. The second step is the negate the momenta at the end of the generation of the
state, p 7→ −p. The acceptance probability can then be computed as

a = min
(

1, π(q′, p′)
π(q, p)

)
= min (1, exp {− [H(q′, p′)−H(q, p)]}) . (4.12)

But this should always be evaluated to a = 1 if H is indeed conserved. But the catch is that the
dynamics is only approximated using the Leapfrog integrator. The best the integrator can do is
conserve H on average, with its value oscillating about the initial value.

Before we summarize the algorithm in a neat manner, we shall briefly outline it conceptually.

1. Given an initial state q, we randomly sample the auxilliary momenta p from the distribution in
eq. (4.10) to generate an initial condition (q, p) to use with Hamilton’s equations.

2. We randomly choose to simulate the system forwards or backwards in time by sampling a variable
v ∼ Uniform({−1, 1}) from which the step size is set as vε. Forwards in time is represented by
v = 1 and backwards in time is represented by v = −1.

3. Perform L Leapfrog steps using algorithm 4.1 for a total trajectory length of εL to produce a
proposal point (q′, p′).

4. Perform a Metropolis-Hastings correction on the proposal state to accept or reject it.

5. Project the phase-space point onto coordinate space and return q′ if accepted, or q if rejected, in
the previous step.

This essentially summarizes the practical steps of HMC. The introduction of randomly simulating
forwards and backwards in time is to ensure that the algorithm is reversible and obeys the detailed
balance condition discussed in chapter 3. To please mathematicians once more, we must really reverse
the sign of the final momenta as well, but since we shall use a Gaussian distribution, changing the sign
of the momenta makes no difference to the value of the kinetic energy. To generate a Markov chain by
this procedure, we simply feed the returned coordinate state back in to the machinery and reiterate.
The HMC scheme is summarized in algorithm 4.3.

4.3. THE POTENTIAL ENERGY FUNCTION IN BAYESIAN MACHINE LEARNING APPLICATIONS23

Algorithm 4.3 Hamiltonian Monte Carlo
function HMCstep(q,H,L, ε)

Sample p ∼ N (0,diag(m1, . . . ,md)) . Sample auxilliary momenta
Sample v ∼ Uniform({−1, 1}). . Randomly choose direction in time.
(q′, p′)← (q, p) . Initialize the initial state.
for l = 1, ..., L do . Simulate Hamiltonian system for L Leapfrog steps.

(q′, p′)← Leapfrog(q′, p′, vε)
end for
a = min (1, exp {− [H(q′, p′)−H(q, p)]}) . Compute acceptance probability
Sample u ∼ U(0, 1) . Uniform distribution on (0, 1).
if a ≥ u then . Perform Metropolis-Hastings correction

q ← q′ . Accept proposed state.
else

q ← q . Reject proposed state.
end if
return q

end function

4.3 The Potential Energy Function in Bayesian Machine Learn-
ing Applications

We seek to use HMC in a Bayesian ML application. It is therefore important to discuss a general
way to construct the potential energy function in such applications. First, recall from chapter 2 in
eq. (2.22) that the posterior could in general be written as

p(θ|D) ∝ exp {−L(θ)} , (4.13)

where L was some loss function in the classical ML sense. However, we do not need the evidence term
and simply sample from the target distribution π(θ) = p(D|θ)p(θ) instead. Comparison with eq. (4.5)
makes it clear that the potential energy function simply is L. Combining this with eq. (2.24), lets us
conclude that the general expression for the potential energy is

L = − log p(D|θ)− log p(θ), (4.14)

up to a constant. If we assume all N datapoints are i.i.d. we can recast it as eq. (2.24), that is

L = −
N∑
i=1

log p(y(i)|x(i), θ)− log p(θ). (4.15)

4.4 Limitations of Hamiltonian Monte Carlo
Although HMC is effective at exploring the state space we wish to sample from, it suffers from the
need to hand-tune the trajectory length εL. Poor choices of ε and L can lead to poor results. On one
hand, if the trajectory length is too short, exploration of the state space will be limited which makes
HMC behave like a random-walk. Suppose we fix the trajectory length to a finite, but sufficiently
large value. If the step size ε is too large, it can lead to instabilities in the leapfrog integrator, while if
its chosen to be too small, it will perform far too many iterations to make the algorithm worthwhile.
Tuning these parameters requires preliminary runs for the problem at hand and analysis of so-called
trace statistics, which essentially measures the quality of the generated Markov chain.

24 CHAPTER 4. HAMILTONIAN MONTE CARLO

In the next chapter, we will look at algorithms that adaptively sets the trajectory length of HMC,
namely the No-U-Turn sampler combined with dual-averaging of the step size, which allows us to
overcome these limitations and more effectively sample from the target distribution without the need
for hand-tuning and analysis of trace statistics, or reliance on heuristics.

Chapter 5

Adaptive Hamiltonian Monte Carlo

Hamiltonian Monte Carlo is considered a state-of-the-art sampler that efficiently explores sample space
by producing large jumps to successive states with low correlation, but suffers the need for manual
tuning of the trajectory length εL. In this chapter, we will explore improvements that adaptively
adjust the trajectory length. This is achieved by means of adapting both the number of Leapfrog steps
L using an improved sampler called the No-U-Turn (NUTS) sampler, and an adaptive scheme for
setting the step size ε using a dual-averaging algorithm. We will closely follow the treatment in the
original paper [1] but adapt the notation to be consistent with the rest of this thesis.

We will start off with a discussion on how to adapt the number of Leapfrog steps using NUTS. At
a high-level, NUTS starts from an initial state (q, p) and simulates the Hamiltonian dynamics of the
system. This is done in the following way. Leapfrog steps are performed either forwards or backwards
in time, first with a single Leapfrog step, then two Leapfrog steps, then followed by four Leapfrog steps
and so on. This reiteration of the simulation is performed until the the path traced out in position
space starts to double back towards itself. The states traced out can be regarded as a balanced binary
tree B where each node represents a phase-space state produced by the Leapfrog integrator during the
simulation. The next state of the Markov chain is sampled at random from these nodes.

We will end the chapter with the dual averaging-scheme for adaptively setting the step size used
with Leapfrog integrator. The algorithm is a modified version of a dual-averaging scheme presented by
Nesterov in [18].

5.1 The No-U-Turn Sampler
The No-U-Turn sampler generates a set of states we may regard as a balanced binary tree which we
represent with the set B. We shall explain the way it is built by starting from an initial point and
building up the tree gradually before we generalize the procedure. An example of a trajectory in a
two-dimensional position space generated by NUTS is shown in figure 5.1. The initial state (q, p) is
defined as the the node of the tree of depth j = 0. We sample a direction at random in time, either
forwards (v0 = 1) or backwards (v0 = −1) and perform a single Leapfrog step to produce a new state
(q′, p′) using the step size εv0. This state represents its own little subtree of height j = 0 which is to
be combined with the initial node to form a tree of height j = 1. If v0 = 1, the new node is placed as
the right half of the new tree. Conversely, if v0 = −1, the new node is placed as the left half of the
new tree. We repeat, but this time we double the number of Leapfrog steps to L = 2. We randomly
sample the direction once more. If forwards in time (v1 = 1), we initiate the Leapfrog integrator from
rightmost node of the current tree (which represents the head of the trajectory in position space). If
backwards in time (v1 = −1), we feed the state of the leftmost node to the Leapfrog integrator (which
represents the tail of the trajectory in position space) and integrate backwards in time. The new states
produced with the Leapfrog integrator becomes the nodes of a subtree of height j = 1 which will be

25

26 CHAPTER 5. ADAPTIVE HAMILTONIAN MONTE CARLO

combined with the current tree. Again, if v1 = 1, we place the new subtree as the right half of the
combined tree. If v1 = −1, it is placed as the left half of the combined tree. This procedure is carried
out repeatedly. We draw a direction in time at random, and perform twice as many Leapfrog steps as
the prior iteration from the rightmost node if forwards in time or from the leftmost node if backwards
in time to extend the trajectory further. More precisely, given a tree of height j,

1. Sample a direction vj ∼ Uniform({−1, 1}) in time. Set the step size in the Leapfrog integrator
as ε→ εvj .

2. Perform 2j Leapfrog steps from the rightmost node if vj = 1 or from the leftmost node if vj = −1.

3. The new generated tree of height j is combined with the current tree of height j, producing a
combined tree of height j + 1. If vj = 1, the newly generated tree becomes the right half of the
combined tree. If vj = −1, it becomes the left half of the combined tree.

From a practical perspective, we cannot apply these steps repeatedly ad-infinitum of course. At some
point, we must stop the doubling of the tree and select a node which from which we obtain the position
state to take the next place in the Markov chain. How this is solved is what we shall consider next.

Figure 5.1: The figure shows an example of a trajectory generated by the NUTS sampler. The top diagram
displays the projection onto position space with the momenta drawn in as arrows. The bottom
diagram shows the resulting balanced binary tree. The tree structure is drawn onto the trajectory
as well. The numbering displays the order in which the states are generated by Leapfrog
integration. The black node is the initial node. The first doubling is forwards in time and
yields the rightmost node of the first binary tree. The second doubling is backwards in time and
is initiated from the black node, yielding a new tree of height 2 where the left subtree is the
new states (the yellow nodes). The next doubling is also backwards in time, and the Leapfrog
integrator is initiated from the tail (the leftmost yellow node) performing four Leapfrog steps
generating a subtree which becomes the left half of the next tree (blue nodes). The final doubling
in the figure is forwards in time with L = 8 Leapfrog steps taken from the orange node (which
was the rightmost leaf of the tree before the final doubling) which yields the green nodes. The
figure is a modified version of a diagram in [1].

5.1.1 Stopping Conditions and Selection of Candidate States
We seek a way to stop the doubling procedure that automatically does so when continuing is no longer
beneficial from a computational standpoint. Let us first consider a point we stressed in chapter 4. If
Hamilton’s equations are solved exactly, the generated trajectory is confined to a hyperplane. Thus

5.1. THE NO-U-TURN SAMPLER 27

for an exact solution, the trajectory would at some point in time double back towards itself. This
will likely also happen when we only approximate the solution with the Leapfrog integrator. If we
continue the doubling procedure when the generated trajectory begins to double back on itself (perform
a “U-turn”), we will revisit regions of parameter space that are already part of the binary tree, thus
wasting computational resources. To avoid this, we ought to check during each doubling if such a
“U-turn” occurs and terminate if it does. Consider an initial state (q, p) and let (q′, p′) be a point
produced by the Leapfrog integrator (which is treated as a function of time). Then the change in the
Euclidean distance between the positions are

d
dt
‖q′ − q‖22

2 = (q′ − q)T d
dt (q

′ − q) = (q′ − q)T p′. (5.1)

If eq. (5.1) evaluates to a negative number, continuing the simulation for an infinitesimal time dt will
decrease the distance between the points which is how we can detect an occurence of a “U-turn”. The
way the NUTS sampler does this, is to consider the leftmost and rightmost node of any subtree of the
current tree. Let (q+, p+) be the rightmost node and (q−, p−) the leftmost node of any subtree. Then
if

(q+ − q−)T p+ < 0 or (q+ − q−)T p− < 0, (5.2)

is fulfilled for any of the subtrees, it terminates the doubling of the tree. This is the so-called No-U-Turn
condition. We must consider two distinct cases where the stopping condition in eq. (5.2) is met.

1. Consider a tree of height j. If, during the doubling to create the tree of height j + 1, a “U-turn”
is detected within any of the subtrees of the new tree of height j, all of its states are discarded
and the tree before the doubling is taken as the final tree. That is, if eq. (5.2) is met for any of
the subtrees of the new tree, we must discard their states. The reason for this is that if we were
to begin the doubling from any of these states, the No-U-Turn condition is met before we can
rebuild B and thus we violate reversibility and inadvertently detailed balance.

2. Consider now the combined tree after doubling. Naturally, none of the subtrees will satisfy the
No-U-Turn condition because

(a) The tree before doubling had not triggered the termination of the doubling procedure.
Hence, none of its subtrees nor the full tree satisfy eq. (5.2).

(b) The new tree, which is the other half of the combined tree, did not trigger a termination
either so none of its subtrees nor the full tree satisfy eq. (5.2).

The only part of the combined tree that can satisfy the No-U-Turn condition at this is point is
the rightmost and leftmost nodes of the entire tree. If eq. (5.2) is met in this case, we terminate
the doubling but no state must necessarily be discarded. After all, since the full tree is built and
none of subtrees satisfy the No-U-Turn condition, we can start from any state and find a unique
set of directions {vj} from which we can rebuild the entire tree before the No-U-Turn condition
is satisfied.

There is another case in which we want to stop the doubling procedure. If at any point, the error
of the simulation becomes too large, the states produced during the doubling process is likely to lie in
a low probability region of parameter space. Continuing the simulation at this point will likely waste
computational resources as states integrated from these low probability states will yield new states in
a low probability region. Let (q′, p′) be any state in the tree (including the initial state) and denote
the initial state as (q, p). The doubling is terminated if

H(q′, p′)−H(q, p) + log Λ ≥ ∆max, (5.3)

where Λ ∼ Uniform(0, 1) is sampled in the beginning of the tree building (and is the slice variable used
during Metropolis correction to accept or reject a state) and ∆max is a tolerance which the authors of

28 CHAPTER 5. ADAPTIVE HAMILTONIAN MONTE CARLO

the original paper recommends to be set to ∆max = 1000 to allow the tree building to continue if the
error introduced by the Leapfrog integrator is moderate. Equation (5.3) essentially states that if the
energy difference becomes too large, we terminate the tree building. The tree produced during this
final doubling must be discarded and the final tree becomes the tree prior to doubling. The reasoning
is the same as before; we cannot initiate the Leapfrog integrator from the states in this tree and rebuild
B as the stopping condition in eq. (5.3) is met before the full tree can be rebuilt.

Once the tree B is built, the NUTS sampler selects a candidate set C from the tree where all of its
elements, which we define as candidate states, must satisfy

π(q′, p′)
π(q, p) = exp{−[H(q′, p′)−H(q, p)]} > Λ, (5.4)

which is the same Metropolis correction that is employed in HMC [19]. Again (q, p) represents the
initial node of the tree doubling. The next state in the Markov chain is drawn randomly from C. The
selected state (q′, p′) is projected onto q′ which is the parameter of interest that is next in line in the
Markov chain. We have defined a function NUTSstep in algorithm 5.1 which generates the next state
q′ in the Markov chain given a prior state q, a Hamiltonian H and a step size ε.

5.1.2 Computational Cost
The No-U-Turn sampler introduces additional operations to keep track of whether any of the stopping
conditions are met. Equation (5.2) requires 2j+1 − 2 evaluations of inner products for a tree of height
j, two inner products per subtree. In addition, eq. (5.3) requires 2j − 1 evaluations of the Hamiltonian,
and its gradient must be calculated an equal amount of times to perform Leapfrog integration similar
to what is required by HMC. The additional cost of the inner products are, however, neglible for
sufficiently complex models and/or large datasets as the evaluation of the Hamiltonian and its gradient
will be the dominating computational cost. Another added computational cost is the memory footprint
introduced by storing the balanced binary tree. In its naive form, the memory footprint requires the
order O(2j) states. A more efficient solution can be found by observing that the uniform distribution
over the candidate set C can be rewritten as

p(q, p|B, C) = 1
|C| = |Csubtree|

|C|
1

|Csubtree|
, (5.5)

where |·| denotes the cardinality or the number of elements in the set and Csubtree ⊆ C is the candidate
states in a subtree of the subset of the full tree corresponding to the candidate set. Equation (5.5)
states that the uniform probability over C can be rewritten as the probability of selecting a subtree
Csubtree from C times the probability of drawing a state at random from that subtree. A tree of height
j consists of two subtrees of height j − 1. From each subtree for j > 0, draw a state (q, p) from each
subtree with probability 1/|Csubtree| to represent that tree and a give it a weight proportional to how
many states of the total candidate set that belonged to that particular subtree. Starting from the
initial tree of height j > 0, this can be performed during the doubling process for each new subtree
that is generated to avoid explicit storage. The storage requirement is thus brought down to an order
of O(j) position-momentum states, which significantly reduces the memory footprint.

5.2 Adapting the Step Size
Now that we have established a means of adapting the number of Leapfrog steps L, we turn our
attention to adapting the step size ε. We will employ a dual-averaging algorithm as in [1], which is a
version of the stochastic convex optimization algorithm presented by Nestrov in [18]. The algorithm
we will explore is better suited for the MCMC methods used in this thesis.

5.2. ADAPTING THE STEP SIZE 29

Algorithm 5.1 The NUTS Sampler
function NUTSstep(q,H, ε)

Draw p ∼ N (0, I)
Draw Λ ∼ Uniform(0, 1)
Set the initial tree B ← {(q, p)}.
Set the initial candidate set C ← B
for j ≥ 1 do

Draw vj ∼ Uniform({−1, 1})
if vj = 1 then

Do 2j Leapfrog steps from the rightmost node of the current tree. Assign to B′
else

Do 2j Leapfrog steps from the leftmost node of the current tree. Assign to B′
end if
if for any subtree in B′, eq. (5.2) is satisfied then

Terminate building of tree and discard B′
else

B ← B ∪ B′.
if eq. (5.2) is satisfied for leftmost and rightmost leaves then

Terminate building of tree.
end if
if eq. (5.3) is satisfied for any state in B then

Terminate building of tree.
end if

end if
end for
for (q′, p′) ∈ B do

if exp{−[H(q′, p′)−H(q, p)]} > Λ then
C ← C ∪ {(q′, p′)}

end if
end for
Draw (q′, p′) at random from C.
return q′

end function

30 CHAPTER 5. ADAPTIVE HAMILTONIAN MONTE CARLO

Let ft be a quantity calculated from the Markov chain at iteration t for t ≥ 1. For our purposes,
this quantity will be related to the acceptance probability at at iteration t computed using eq. (4.12)
from the HMC sampler and a target acceptance probability δ through

ft = δ − at. (5.6)

Let x ∈ R be a tunable parameter of the MCMC algorithm. This parameter will in our case be a
function of the step size ε, which is the parameter we want to tune. But for numerical stability, we
will use x = log ε. Define the expectation of ft as

f(x) = lim
T→∞

1
T

T∑
t=1

E[ft|x]. (5.7)

The objective is to adapt x such that f(x) → 0, which will bring the average of the acceptance
probabilities at towards its target acceptance probability δ. To this end, we employ the update scheme

xt+1 ← µ−
√
t

γ

1
t+ t0

t∑
i=1

ft,

x̄t+1 ← ηtxt+1 + (1− ηt)x̄t,
(5.8)

with x1 = x̄1. Here µ is a free parameter which xt is shrunk towards, γ > 0 is a free parameter
expressing the rate of shrinkage, t0 is introduced for numerical stability of the iterates xt and ηt is a
step size schedule dependent on t that satisfies

∞∑
t=1

ηt =∞ and
∞∑
t=1

η2
t <∞, (5.9)

which can be achieved by choosing

ηt = t−k for k ∈ (1/2, 1]. (5.10)

The update scheme in eq. (5.8) will converge xt towards a fixed value. We can see this by considering
large t and

xt+1 − xt = −
√
t+ 1
γ

1
t+ 1 + t0

t+1∑
i=1

fi +
√
t

γ

1
t+ t0

t∑
i=1

fi

∼ − 1
γ

1√
t
ft+1 → 0 as t→∞,

(5.11)

as long as ft is bounded. As long as xt is bounded (which we just established) and f(x) is a
nondecreasing function of x, it can be shown that the update scheme in eq. (5.8) guarantees that
f(x̄t)→ 0 as t→∞.

The reasoning for using dual-averaging of x̄t as opposed to just averaging xt directly is that the
Markov chain is finite and the dual-averaged x̄t with k < 1 in the step size schedule from eq. (5.10)
gives more weight to more recent iterations in the chain. This is desirable since the ideal step size
during the initial Markov chain may be widely different from the ideal step size once the Markov chain
converges to the stationary distribution. For any k ∈ (1/2, 1], it can be shown that x̄t eventually
converges to the average of xt for a long enough chain. Thus for a finite number of adaptation steps T ,
we obtain an optimal value of the step size through

εopt = log−1(x̄T), (5.12)

for which f(x̄T) ≈ 0, as desired.

5.2. ADAPTING THE STEP SIZE 31

To adapt the step size in standard HMC, we define ft as

ft = δ − aHMC
t , (5.13)

where aHMC
t is as in eq. (4.12). Then we set x = log ε and apply the updates in eq. (5.8) for a finite

number of steps M . Adapting the step size in NUTS is a little more complicated as there is no single
Metropolis-correction step during the generation of the next state in the Markov chain. Instead, we
calculated

aNUTS
t = 1

|Bfinal|
∑

(q′,p′)∈Bfinal

exp{−[H(q′, p′)−H(q, p)]}, (5.14)

where (q, p) are the initial state of the tree doubling and Bfinal denotes the set of states produced
during the final doubling of the NUTS sampler. Thus, when the dual-averaging scheme is applied to
the step size used in the NUTS sampler, the average of the acceptance probability of all the states
produced during the final doubling is used instead. Then ft for NUTS is defined as

ft = δ − aNUTS
t . (5.15)

Generalizing then, and let at be defined either by eq. (4.12) if the sampler is HMC or eq. (5.14)
if the sampler is NUTS. Then the algorithm can be summarized as in algorithm 5.2. The algorithm
performs T adaptation steps with a sampler S which is assumed to take in a state q and return a new
state q′ and the corresponding acceptance probability a for either HMC or NUTS.

Algorithm 5.2 Dual-Averaging Step Size Adaptation
Parameters:
T : Number of adaptation steps.
S: Sampler of the form S(q) 7→ q′, a. (Either HMC or NUTS)
q: Initial state of Markov chain.
ε: Initial step size.
µ, γ, t0, k: Free hyperparameters of the algorithm discussed in the text.
function DualAveragingStepSizeAdaptation(T, S, q, ε, µ, γ, t0, k)

Set the initial values:
x1 ← log ε
x̄1 ← x1
qt ← q
Perform T iterations adapting x with δ as target acceptance probability:
for t = 1, . . . , T do

qt+1, at ← S(qt) . Draw next sample and get acceptance probability
ft ← δ − at
ηt ← t−k . Step size schedule
xt+1 ← µ−

√
t

γ(t+t0)
∑t
i=1 fi . First step of update scheme in eq. (5.8)

x̄t+1 ← ηtxt+1 + (1− ηt)x̄t . Second step of update scheme in eq. (5.8)
end for
εopt ← log−1(x̄T) . Apply inverse of log to get optimal step size
return qT , εopt . Return the final state and the optimal step size

end function

32 CHAPTER 5. ADAPTIVE HAMILTONIAN MONTE CARLO

Chapter 6

Bayesian Neural Networks

6.1 Neural Networks
In this chapter, we will finally discuss the main topic of this thesis, Bayesian neural networks (BNNs).
We will start off introducing the mathematical formalism of neural networks. We will then discuss the
backpropagation algorithm, which is the standard algorithm used to compute the gradient of the model
with respect to a specified loss. We will then end the chapter with how Bayesian learning of neural
networks work. Fortunately, most of the groundwork is already laid, so we need only a mathematical
description of the model and a Bayesian interpretation of it. We will stay general and assume a set of
inputs x ∈ Rp and corresponding targets y ∈ Rd. These serve as the training data on which the neural
network is trained. We will adopt the terminology used by the TensorFlow framework [20] to help
make the transition from mathematics to code easier.

6.1.1 Basic Mathematical Structure
A neural network is most generally defined as a non-linear function f : Rp → Rd built up as follows.

• A set of L layers. Consider the `’th layer. It consists of n` nodes all of which has a one-to-one
correspondence to a real number. The conventional representation is with a real-valued vector
a` ∈ Rn` called the activation of layer `.

• For convenience, the layer with ` = 1 is often called the input layer and the layer with ` = L is
referred to as the output layer. The layers in between for ` = 2, ..., L− 1 are called the hidden
layers. Although this distinction is merely conceptual and does not change the mathematics one
bit, it provides useful categories for discussion later on.

• Each layer ` is supplied with a (possibly) non-linear function σ` : Rn`−1 → Rn` . In other words,
it defines a mapping a`−1 7→ a`. The complete neural network function can thus be expressed as

f(x) = (σL ◦ σL−1 ◦ · · · ◦ σ` ◦ · · · ◦ σ2 ◦ σ1) (x). (6.1)

• To each layer, we assign a kernel W ` ∈ Rn`×n`−1 and a bias b` ∈ Rn` . Together, these parameters
are called the weights of layer `.

• The complete set of neural network parameters (W, b) ≡ {(W `, b`)}L`=1 are called the weights of
the network. They serve as the learnable or trainable parameters of the model.

• Finally, we introduce the logits z` ∈ Rn` of layer `.

• The permutation of number of layers, number of nodes per layer and activation functions are
collectively called the architecture of the neural network.

33

34 CHAPTER 6. BAYESIAN NEURAL NETWORKS

The activation in layer ` is computed through the recursive equation:

a`j = σ`

(∑
k

W `
jka

`−1
k + b`j

)
≡ σ`(z`j), for j = 1, 2, ..., n`. (6.2)

A special case of eq. (6.2) applies to ` = 1 where a0 = x ∈ Rp is assumed.

6.1.2 Backpropagation
The standard approach to train a neural network is by minimization of some loss function by employing
the backpropagation algorithm [21] to compute its gradient with respect to its trainable parameters
recursively. The algorithm boils down to four equations. Consider L as the loss function. The first of
the four equations quantifes the change in the error with respect to the logits zLj in the output layer,

∆L
j = ∂L

∂zLj
, (6.3)

but for convenience we will simply regard this as the “error” in the output layer (and use the same
term for ∆`

j). For example, in the case where L = RSS, we get

∆L
j = ∂L

∂zLj
= aLj − yj , (6.4)

for a single datapoint y, so the use of the term is largely appropriate. Fundamentally, they denote the
gradient of the error with respect to the quantities defined with respect to the neural network model.
The second equation allows us to compute the error at layer ` given we know the error at layer `+ 1,

∆`
j =

(∑
k

∆`+1
k W `+1

kj

)
σ′`(z`j). (6.5)

The final two equations relate these errors to the gradient of the loss function with respect to the
model parameters. For the kernels, we have

∂L
∂W `

jk

= ∂L
∂z`j

∂z`j
∂W `

jk

= ∆`
ja
`−1
k . (6.6)

For the biases, the gradients are
∂L
∂b`j

= ∂L
∂z`j

∂z`j
∂b`j

= ∆`
j . (6.7)

With these four equations, we can fit the neural network using minimization techniques such as
stochastic gradient descent or more complex methods such as ADAM (pages 13-19 in [9]). Although not
the focus of this thesis, we might use these methods in conjunction with HMC to speed up convergence
to the stationary distribution. Furthermore, the computation of gradients in combination with HMC
or NUTS is achieved with the backpropagation algorithm as we know from chapter 4 where L coincides
with the potential energy function whose gradient is necessary to employ these samplers.

We are now equipped to write down the backpropagation for a single datapoint. It’s built up of
a forward pass which takes an input x and applies the recursive eq. (6.2) which produces a model
prediction ŷ = aL. The second part of the algorithm is the backward pass which based on the prediction
ŷ and the target y, computes the gradient of the loss function L with respect to the model parameters.
The forward pass of the neural network is summarized algorithm 6.1.

6.1. NEURAL NETWORKS 35

Algorithm 6.1 Backpropagation: Forward pass
procedure ForwardPass(x)

a0
j = xj for j = 1, . . . , p . Initialize input

for ` = 1, 2, .., L do
for j = 1, 2, .., n` do

a`j ← σ`

(∑
kW

`
jka

`−1
k + b`j

)
end for

end for
end procedure

The backward pass of the algorithm is stated in algorithm 6.2.

Algorithm 6.2 Backpropagation: Backward pass
procedure BackwardPass(L, x, y)

for j = 1, 2, . . . , nL do
∆L
j ← ∂L

/
∂zLj

∂L
/
∂bLj ← ∆L

j

∂L
/
∂WL

jk ← ∆L
j a

L−1
k

end for
for ` = L− 1, . . . , 1 do

for j = 1, . . . , n` do
∆`
j ←

(∑
k ∆`+1

k W `+1
kj

)
σ′(z`j)

∂L
/
∂b`j ← ∆`

j

∂L
/
∂W `

jk ← ∆`
ja
`−1
k

end for
end for

end procedure

Note that in all practical implementations in this thesis, we utilize automatic differentiation provided
by TensorFlow to compute the gradients.

6.1.3 Regularization in Neural Networks
As discussed in chapter 2, models with a large number of parameters are prone to overfit training
data and generalize poorly as a consequence. Thus one typically tacks on an L2-regularization term to
the loss L0. Assuming that L0 is the RSS in eq. (2.2), the form of the full loss function for a neural
network model becomes

L = 1
2
∑
i

∥∥∥ŷ(i) − y(i)
∥∥∥2

2
+ λW

2
∑
`

∥∥W `
∥∥2

2 + λb
2
∑
`

∥∥b`∥∥2
2, (6.8)

where λW and λb are regularization strengths for the kernels and biases respectively. The L2-norm
‖·‖2 is the standard Euclidean norm in the case of a vector. For a matrix, we mean the following. Let

36 CHAPTER 6. BAYESIAN NEURAL NETWORKS

A ∈ Rm×n. The matrix norm ‖·‖2 is then given by Fröbenius norm

‖A‖2 =

√√√√ m∑
i=1

n∑
j=1
|Aij |2. (6.9)

6.2 Activation Functions
There are many common activation functions σ with various strengths and weaknesses used in modern
neural networks. We shall briefly mention a few for completeness.

6.2.1 Sigmoid and Tanh
The sigmoid activation function is given by

σ(x) = 1
1 + exp(−x) . (6.10)

It was a very common choice in neural networks early on, likely due to its simple derivative. It has
a significant drawback, however. Looking at eq. (6.10), we can easily deduce that σ(∞) = 1 and
σ(−∞) = 0, and since its derivative is of the form σ′(x) = σ(x)(1− σ(x)), the gradient computed with
backpropagation vanishes if |x| → ∞. This significantly hampers the progress during optimization.

A popular alternative to the sigmoid function is the hyperbolic tangent given by

tanh(x) = e2x − 1
e2x + 1 . (6.11)

This function is very similar to sigmoid in the sense that its derivative vanishes for inputs of large
magnitude and so may suffer from the same issues as sigmoid does.

6.2.2 ReLU
To overcome the vanishing gradient problem, an activation function called the Rectifying Linear Unit
(ReLU) became widely adopted, which is given by

σ(x) = x+ = max(0, x). (6.12)

6.2.3 Swish
Recently, an activation function to replace ReLU was proposed in [22] known as swish or SiLU which
was shown to outperform ReLU in deep neural networks on a number of challengig datasets. The
activation function is given by

σ(x) = x · sigmoid(x) = x

1 + exp(−x) . (6.13)

6.3 Bayesian learning of Neural Networks using Monte Carlo
Samplers

So far, we have discussed neural networks as a model class whilst ignoring the issue of what it really
means to do Bayesian learning of neural networks, in other words, what it means to train BNNs.
We have intentionally left it somewhat ambigious what this really means because as it turns out, its
meaning can be quite different depending on how Bayesian inference is performed. In this section we
will clarify precisely what it means to train BNN using MCMC samplers such as HMC and NUTS. We
shall then discuss practical aspects of the training which we shall put to practice in chapter 8.

6.3. BAYESIAN LEARNING OF NEURAL NETWORKS USING MONTE CARLO SAMPLERS37

6.3.1 What is Bayesian learning of Neural Networks?
The way Bayesian learning of neural networks manifest itself depends on the way in which we do
Bayesian inference of the probabilistic model. We are concerned with inference of model parameters
from the posterior using MCMC methods and will therefore obtain samples where each such sample
consist of the weights of an entire neural network. More precisely, if we gather N samples with a
chosen sampler, we will obtain N entire neural networks all sampled from the posterior to explain the
observed data. Thus, what we mean by a trained BNN in this sense is that we have sampled a set of
neural networks that collectively represent the BNN.

As we discussed at the end of chapter 2, we are mainly interested in the predictive distribution
p(y|x,W, b) of an output y given an input x. We can approximate this distribution by constructing
an empirical distribution by feeding x through all N sampled neural networks to obtain N predicted
targets ŷ using eq. (2.26). The second quantity of interest is expectations of target functions dependent
on the model parameters. We can approximate any such expectation with an MCMC estimator as in
eq. (3.4) using all N networks to evaluate the target function.

6.3.2 The Potential Energy Function of Neural Networks
We now turn to the Bayesian formulation of the neural network model for use with the samplers used
in this thesis. Assume that we have picked an architecture for a neural network and wish to train it in
the Bayesian sense. For both HMC and NUTS, we need only specify a potential energy function for our
model. The samplers take care of the rest. Assume we are dealing with a dataset D = {(x(i), y(i))}Ni=1
where all N points are independent and identically distributed. Equation (4.15) instructs us to specify
a prior for the weights of the network, and a likelihood function that depends on the target and the
model output, in order to fully specify the potential energy function. Common practice is to choose
priors that are either Gaussian or Laplacian. We will operate with Gaussian priors, i.e.

P (W `) ∝ exp
(
−λW2

∥∥W `
∥∥2

2

)
and P (b`) ∝ exp

(
−λb2

∥∥b`∥∥2
2

)
. (6.14)

We will not worry too much about the choice of priors as the term in the potential energy function
that corresponds to the likelihood will be much larger in practice. The Gaussian priors serve roughly
the same purpose as L2-regularization does in classical ML.

The likelihood for regression from eq. (2.17) formulated in terms of a neural network f̂(x(i);W, b) is

p(D|W, b) = exp
(
− 1

2σ2

N∑
i=1

∥∥∥y(i) − f̂(x(i);W, b)
∥∥∥2

2

)
, (6.15)

where σ is treated as a hyperparameter. This is not the only valid choice for a likelihood function
but it is the common choice since it can be identified with the Euclidean L2-norm and its “neat”
mathematical properties.

Combining the priors and the likelihood with eq. (2.24) yields the potential energy function

L = 1
2σ2

N∑
i=1

∥∥∥y(i) − f(x(i);W, b)
∥∥∥2

2
+ λW

2

L∑
`=1

∥∥W `
∥∥2

2 + λb
2

L∑
`=1

∥∥b`∥∥2
2, (6.16)

up to a constant. As we discussed in chapter 4, the potential energy function also happens to be the
typical loss function with L2-regularization used in the classical ML which is why we denote it as L.
At this point, we have set up all the machinery we need to train BNNs. Our next topic of discourse is
the practice of doing so.

38 CHAPTER 6. BAYESIAN NEURAL NETWORKS

6.3.3 Practical Training of Bayesian Neural Networks
Training BNNs in practice requires us to specify a fairly large number of hyperparameters to obtain a
set of models. These are

1. Neural network architecture. We need to specify its number of layers, number of nodes and
activation function per layer. Once the BNN is trained, we store this information along with the
model for future usage. The stored weights themselves will encode how many layers and nodes
the model has but the activation functions must be stored in addition.

2. Number of results. We must specify how many neural networks we want to sample and store.
Because the weights must be stored in its entirety, we are forced to worry about the amount of
disk space that is required to do so. For a fixed allocated disk space, we can obviously store a
larger set of samples if the model is simple. As complexity increases, the number of samples we
can store will necessarily decrease.

3. Number of warm-up steps. We must decide how long we want to run the MCMC chain before
we start storing results. If amount of disk space was no obstacle, this step would be considered
entirely optional as we could simply store every single sample and make a thorough analysis of
the chain’s quality to determine when proper mixing is obtained. In practice, with TensorFlow’s
framework, we can make a predetermined set of burn-in steps to avoid unnecessary RAM usage.
In conjunction with a predetermined number of burn-in steps, we must also set a number of
adaptation steps to dynamically set the step size used with the Leapfrog integrator. We shall
the call total number of burn-in steps and adaptation steps as the number of warm-up steps.

4. Amount of thinning. Since successive samples most likely will be correlated, we can specify
how many samples we simply skip once we start gathering samples, i.e. after the burn-in period.
Again, we could ignore this and do this manually with the chain but doing so becomes a question
of amount of available VRAM, RAM and disk space.

5. Hyperparameters specific to the samplers. The samplers themselves carry their own
hyperparameters. In the case of HMC, we must specify a fixed number of Leapfrog steps L. If we
use the NUTS sampler, we must specify the maximum tree depth. Moreover, we must determine
how much of the computing resources we allocate to adapting the step size used in the Leapfrog
integrator.

6. Amount of pretraining. An attempt to accelerate convergence of the MCMC chain can be
achieved by pretraining the neural network using minimization methods with the backpropagation
algorithm to bring the weights closer to a minima of the potential energy function (i.e. the loss
function used in classical ML). Then the point estimate obtained at the end of the training is
used as a starting point for the MCMC chain.

6.3.4 Training Algorithm of Bayesian Neural Networks
In this section we shall turn our attention to an actual training algorithm for BNNs. Assume we pick
a sampler S that represents either HMC or NUTS and a specified permutation of the hyperparameters
discussed in the last section. In practice we can summarize a training algorithm as follows.

1. Initialize the weights of the model from the specified priors, i.e.

Sample W ` ∼ p(W `) and sample b` ∼ p(b`) for ` = 1, . . . , L. (6.17)

2. Minimize the potential energy function L with respect to the weights of the model using an
optimizer of your choice to obtain a point estimate for use as the initial state of the Markov
chain.

6.3. BAYESIAN LEARNING OF NEURAL NETWORKS USING MONTE CARLO SAMPLERS39

3. Initialize the Markov chain for a finite set of burn-in steps to achieve mixing using S. A proportion
of the initial burn-in steps are used for step size adaptation, while the remaining are used for
mixing.

4. Gather samples by applying S repeatedly, replacing the current weights of the model by the ones
returned by S.

40 CHAPTER 6. BAYESIAN NEURAL NETWORKS

Chapter 7

The Dataset and Methodology

In this chapter, we will outline the methodology used to train Bayesian neural networks. We will
commence with a description of the dataset and the transformations employed on the datapoints. We
will then briefly explain the training methodology employed with a discussion of the implementation
and performance metrics to be used for testing of the trained models.

7.1 The Dataset
In this section, we will give a brief description of the dataset. Moreover, we will discuss the data
transformations prior to training and its implications on the accuracy of the predictions.

For the predictions presented in this chapter, we have restricted our investigations to use the
dataset for a single particle production process throughout. This will make it easier to compare the
performance of BNNs across different configurations to better understand the strengths and weaknesses
of the different choices made when training BNNs.

7.1.1 The Features and Targets
We will focus on a particular neutralino-neutralino. Neuralinos are denoted by the symbol χ̃0

i for
i = 1, 2, 3, 4. Each neutralino carries its own mass mχ̃i

and a set of mixing angles Nij expressing
the strength of its coupling to other particles. For each neutralino i, there are four mixing angles for
j = 1, 2, 3, 4. The two possible cases of interest then would be a process with two identical neutralinos
in the final state, in which case the input features are of the form

x = (mχ̃0
i
, Ni1, Ni2, Ni3, Ni4), (7.1)

or a process where there are two distinct neutralinos i and k in the final state, such that the input
features would have the form

x = (m0
χ̃i
, Ni1, Ni2, Ni3, Ni4,mχ̃0

k
, Nk1, Nk2, Nk3, Nk4). (7.2)

The targets of the dataset are NLO cross sections of the form

σχ̃0
i
χ̃0

k
= LO + NLO. (7.3)

In our case we will focus on processes that results in χ̃0
1χ̃

0
1, meaning the input features have the form

in eq. (7.1). The masses mχ̃0
i

can take on both postive and negative values in the dataset.
In figure 7.1, we show the NLO cross sections σχ̃0

1χ̃
0
1

for points taken from the training set projected
onto the axis of masses mχ̃0

1
and in figure 7.2 we show their values projected onto the axes of the

mixing angles N1j for j = 1, 2, 3, 4. Note in particular that the cross sections span several orders of

41

42 CHAPTER 7. THE DATASET AND METHODOLOGY

magnitude which necessitates a data transformation to reliably perform regression analysis with the
dataset. We can also note a few outliers most of which yield neglible cross section values, but we
should be aware of that adverse effect of these can affect the trained BNN models. There is a certain
asymmetry in some of the features as well, where there are largely more cross sections on the right side
of mχ̃0

1
which may bias the weights of the BNN to perform better if the its input contain a positive

mass. We can observe a similar asymmetry for N11 and N13 in figure 7.2. It is worth noting that cross
sections with very low values come from a fine tuned region where N11 and N12 are approximately
zero.

1000 750 500 250 0 250 500 750 1000
m 0

1

10 7

10 5

10 3

10 1

101

0 1
0 1

Figure 7.1: The values of the cross sections σχ̃0
1χ̃

0
1

are shown projected onto the axis of masses mχ̃0
1
. The

data is taken from the training data.

7.1.2 Data Transformations
We shall briefly discuss how the training data is transformed before training. The targets in the dataset
of NLO cross sections can span several orders of magnitude. For practical training of BNNs, this
would require model parameters that also span several orders of magnitude. The result will usually be
numerical overflow and thus unsucessful training of the models. Therefore, we have chosen to map the
targets using the base-10 logarithm, i.e. y 7→ log10(y). More generally, we could choose any base-a
logarithm. A practical consideration here is that once the model is trained, any prediction it produces
must be transformed back using the inverse mapping to produce a cross section. As we increase the
value of a, the precision the model’s prediction decreases. Thus a small error in log-space can result in
a large error in what we may refer to as the target space, the larger the value of a is. We will explore
the performance both in log space using the transformed data and in target space by applying the
inverse mapping to the predictions.

7.1. THE DATASET 43

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
N11

10 7

10 5

10 3

10 1

101

0 1
0 1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
N12

10 7

10 5

10 3

10 1

101

0 1
0 1

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
N13

10 7

10 5

10 3

10 1

101

0 1
0 1

0.6 0.4 0.2 0.0 0.2 0.4 0.6
N14

10 7

10 5

10 3

10 1

101

0 1
0 1

Figure 7.2: The values of the cross sections σχ̃0
1χ̃

0
1

are shown projected onto the axes of mixing angles N1j
for j = 1, 2, 3, 4. The data is taken from the training data.

7.1.3 Data Splitting
Data splitting is a common strategy in machine learning to avoid biased model selection and obtain
reliable estimates of the performance of the trained models. The conventional way is to split the
dataset D into three subsets:

1. A training set Dtrain. This dataset usually contain the largest chunk of the dataset and is used
to train the models.

2. A validation set Dval. This dataset is typically the smallest of the bunch and is sometimes used in
classical machine learning problems to perform cross-validation or similar methods. The results
measured here are typically used to select hyperparameters of the model.

3. A test set Dtest. This partition is slightly larger than the validation set and is used as an
out-of-sample check to measure the performance of a model.

We have selected to use a division of 80% training data, 5% validation data and 15% test data. The
absolute size of the full dataset consists of 14683 datapoints. This is a fairly small dataset for a typical
machine learning task where neural networks are used. Neural networks are usually called “data
hungry” and their performance is typically significantly improved by increasing it large amounts of
data.

44 CHAPTER 7. THE DATASET AND METHODOLOGY

7.2 Training Methodology
In this section, we shall explain the methodology used to train and test the BNNs explored in this
thesis. We will explain the implementations, selection of models and hyperparameters and performance
metrics used.

7.2.1 Implementation
We have utilized the Python libraries TensorFlow 2.7.0 and TensorFlow-Probability 0.15.0
[20, 23] to implement the BNNs. The implementation itself is available at [24]. Unfortunately, BNNs
trained with HMC or NUTS have not been of interest for the majority of the deep learning community.
The main focus has been with use of surrogate distributions to develop algorithms that when employed
using GPUs spend roughly the same amount of time per epoch as training of classical neural networks.
As a result no implementations of BNNs for these kind of samplers have been implemented directly
into either framework. Luckily, TensorFlow-Probability provides general purpose implementations
of the samplers we have discussed hithertho which only requires us to define the unnormalized negative
log-target density (which is the negative potential energy function −L) to utilize the them. Thus, we
could have implemented BNNs from a strictly functional programming paradigm. However, to storing
BNNs requires storage of more than simply the Markov chain generated by the samplers. Additional
information such as the activation function used per layer, nodes used per layer and so on makes it
fairly impractical. Consequentially, we created an object-oriented implementation that facilitates the
usual kind of conveniences shipped with TensorFlow such as the ability to automatically save, load or
print the model architecture to screen, and provide error handling, to name a few. The class and its
functionality is well-documented and made with the intention to be reused, expanded and modified.
We do, however, provide a implementation that only uses functional programming as well.

Both TensorFlow and TensorFlow-Probability handle execution on NVIDIA GPUs automatically
with minimal effort on the user side, which we have utilized to generate our results. We will also
provide measurements that indicate the expected speedup gained from using a GPU instead of a CPU
for training of BNNs. Some of the results are also generated using the built-in GPU on an M1 Apple
Silicon system-on-chip (SoC), since a port of TensorFlow that supports execution on this device is
available. We will make it crystal clear on what hardware the calculations are performed.

7.2.2 Performance Metrics
In this section, we will discuss the performance metrics used to benchmark and measure the performance
of the models trained in this thesis. Due to the inherent probabilistic nature of the models trained,
any output the model produces will be a distribution from which we can calculate a sample mean
and variance. We will introduce a metric to measure the performance of the mean predictions of the
BNNs called coefficient of determination and a metric to assess the BNNs ability to yield reliable
uncertainties in its predictions called standardized residuals.

7.2.2.1 Coefficent of Determination

The coefficent of determination, or the R2-score, is used to assess the quality of the predictions of a
model in supervised regression tasks. For a dataset D = {(x(i), y(i))}Ni=1, it is given by

R2 = 1−
∑N
i=1(y(i) − ŷ(i))2∑N
i=1(y(i) − ȳ)2

, (7.4)

where y(i) denotes the target of an input x(i) and ŷ(i) denotes the model prediction and ȳ denotes the
sample mean of the targets

ȳ = 1
N

N∑
i=1

y(i). (7.5)

7.2. TRAINING METHODOLOGY 45

The R2-score lies in the range R2 ∈ (−∞, 1] where the larger the value, the better the model predicts.
The score is interpreted as the proportion of the variance in the targets that can be predicted from
the inputs. The reason we select this metric is that it provides a more reliable interpretation of the
prediction quality of our models than other metrics such as mean squared error (MSE), root mean
squared error (RMSE) and the mean absolute error (MAE) which can only be used to compare the
predictions of models relative to each other [25]. Their values all lie in the range of [0,∞) where a
perfect prediction would yield zero. The lack of an upper-bound on these alternative metrics make
them difficult to interpret in a vacuum, a weakness the R2-score does not suffer from. If R2 < 0, the
model performs poorly, while of R2 ∈ [0, 1], the model explains the variation in the data with R2 = 0
meaning the model cannot explain any of the variance in the targets around their sample mean. A
score of R2 = 1 means a perfect prediction.

Note that when we use BNNs to compute the R2-score, we will replace ŷ(i) in eq. (7.4) with the
sample mean of the predictive distribution computed by the BNNs.

7.2.2.2 Standardized Residuals

Standardized residuals is a transformation of a model prediction given an input feature x(i) and a
target y(i). The mapping is defined as

z(i) = y(i) − ŷ(i)

σ̂(i) , (7.6)

where σ̂(i) is the square-root of the sample variance of the model predicitions and ŷ(i) is the sample
mean of the predictions. The mapping in eq. (7.6) resembles the mapping of a random variable
x ∼ N (µ, σ2) onto the standard Normal distribution z ∼ N (0, 1).

As we discussed in chapter 2, the fundamental assumption made is that any target y can be
decomposed as

y = f(x) + δ, (7.7)

for some true function f(x) and a random noise δ, often taken to be distributed according to a Gaussian
distribution. But the noise in the data produced by Prospino in the sample generation is neglible,
which means that y ≈ f(x). The regression error obtained through the sample variance of the model
predictions must therefore be dominated by the variance of the predictive distribution computed by
the model itself. Let σ2

z denote the variance of the distribution of the standardized residual. If σz > 1,
the model will be considered overconfident in its predictions since the sample variance of the model’s
predictions are smaller than the variance of the targets around the mean prediction. On the other
hand, if σz ≤ 1, we consider the model to yield reliable uncertainty estimates. In this case, the model
is not considered to be “underconfident” but rather “conservative”. As a visual aid, we will draw in
the standard Normal distribution N (0, 1) with the distibutions obtained with eq. (7.6) for reference.
If the distribution lies largely on the “inside” of N (0, 1), we can consider it as a conservative model
to an approximation. But note that the distribution may have longer “tails” than the usual Normal
distribution and thus σz > 1 is possible even if the majority of the distribution lies inside the Normal
distribution.

46 CHAPTER 7. THE DATASET AND METHODOLOGY

Chapter 8

Numerical Experiments

Seven technical chapters have culminated to the main event, the numerical experiments and their
results. This is where we learn if BNNs can deliver on the promise of substituting direct calculations of
cross sections. We will begin with a description of the training procedure, and selection of models and
hyperparameters. We will then explore the results of numerical experiments and their consequences.
We start off with the computational cost of training and computation of predictions, after which
we explore the empirical posterior distribution drawn. We will then present the effect of various
hyperparameters chosen for the training of BNNs. We end the chapter by investigating the predictive
distribution and how reliable the uncertainty estimates of the trained models are.

8.1 Training Procedure and Selection of Models and Hyper-
parameters

For convenience, we repeat the training procedure discussed at the end of chapter 6 below.

1. The weights of the neural network model is initiated from a the prior, i.e.

Draw W ` ∼ p(W `) and b` ∼ p(b`) for ` = 1, 2, . . . , L. (8.1)

2. A set of pretraining steps are performed using the backpropagation algorithm which is combined
by the forward pass in algorithm 6.1 and the backward pass in algorithm 6.2. The loss function
L, which is the same as the potential energy function used with HMC and NUTS from eq. (6.16),
is minimized using the ADAM optimizer with respect to the network weights to obtain a point
estimate. The point estimate is used to initiate the Markov chain. The regularization parameters
in eq. (6.16) are set as σ = 1 for the likelihood and λW = λb = 10−3 for the priors. This was
done for every trained model in this chapter.

3. A finite number of warm-up steps are performed, starting from the point estimate. The warm-up
steps are divided into 80% adaptation steps used to adapt the step size ε used with the Leapfrog
integrator. At this point, the step size is freezed and the remaining 20% is used for burn-in or
mixing. This is a heuristic recommended by the TensorFlow-Probability developers.

4. Once the warm-up steps are completed, we start gathering neural network samples. We have
generated 1000 samples for each BNN model. In each case, these are sampled by skipping 10
samples between each stored sample. This is done to reduce the correlation between successive
samples. The total number of samples generated after the warm-up steps is thus really 11000 of
which only each 11th sample is kept. As we explained in chapter 6, this is done to reduce the
memory footprint of the trained model as correlated samples will bias any MCMC estimator
computed using eq. (3.4).

47

48 CHAPTER 8. NUMERICAL EXPERIMENTS

All models discussed in this chapter are trained using the procedure above.
In order to better understand the behaviour of BNNs, we have chosen to train a set of models

whose details are listed in table 8.1. Each model consists of 1000 sampled neural networks. Each model
is trained with tanh(x) as the activation function on the hidden layers, while the output layer uses an
identity activation. We will refer to this table whenever a model or a set of models selected from it is
used. Otherwise, we will state the model architecture used and its hyperparameters explicitly.

Table 8.1: The table shows a selection of models that is used for benchmarking purposes in this chapter.
For each model, 1000 sampled networks were sampled to collectively represent each BNN model.
We performed 1000 pretraining epochs with a batch size of 32 using the ADAM optimizer. We
used 2500 warm-up steps (80% adaptation steps first, followed by 20% burn-in steps). For every
sampled network, we skipped 10 samples. The kernel used for each model was the NUTS kernel
with a maximum of L = 4096 Leapfrog steps. The number of nodes per layer is shown in the
“Layers” column.

Model number Layers Number of parameters
1 5-50-1 351
2 5-50-50-1 2901
3 5-50-50-50-1 5451
4 5-50-50-50-50-1 8001
5 5-50-50-50-50-50-1 10551

8.2 Results and Discussion
In this section we present the results from various numerical experiments and discuss their implications.
We start off with measurement of computational performance with a focus on training time, prediction
time and loading times. We then investigate the posterior distribution projected onto two-dimensional
planes of the BNN weights to investigate their potential multi-modal nature in order to evaluate if the
typical approximations with surrogate distributions for the weights yield a sufficient representation of
the exact posterior distribution. Following this, we present the effect various hyperparameters have on
the training of BNNs. Finally, we explore the predictive distributions of a trained BNN and its ability
to yield reliable uncertainty estimates.

8.2.1 Computational Performance
In this thesis we are primarily concerned with creation of an optimized alternative to direct calculations
of NLO cross sections. In this section we will explore the computational cost of BNN models, both on
modern CPUs and GPUs. We shall measure the training time which, with the way we perform Bayesian
inference of the BNN parameters, most appropriately translates to the time used per generated sample
with HMC and NUTS. Another measurement of great interest is the time a trained BNN model uses
to compute predictions as this will be their central limiting factor once trained. However, because we
must store the full BNN model on disk, the loading times play an important role as well. We shall
therefore measure the execution time of predictions and loading times separately. We will perform wall
clock measurements using time.perf counter provided by the time module of the standard library
shipped with Python 3. It yields a measurement in fractional seconds of the clock with the highest
available resolution on the system.

Note that TensorFlow supports OpenMP-type parallelization on the CPU. The workload is evenly
distributed among the threads (which may be physical cores or virtual threads if the CPU has
hyperthreading support). It is a form of shared-memory parallelization in which all threads access
the same memory. This is similar to how a GPU operates. Unfortunately, multi-device parallelization
either on the CPU or the GPU lacks support in the case of non-synchronous execution. Thus we will
only compare the single-node performance that is achievable with either a CPU or a GPU. We will

8.2. RESULTS AND DISCUSSION 49

thus contrast the performance achieved by a single CPU node with several (virtual) threads available
to the performance obtained by employing the workloads on the GPU.

8.2.1.1 CPU v. GPU Training Performance

On which commercially available hardware platform training should be executed is of great interest
from a practical standpoint as sampling from neural network posteriors is notoriously expensive due
to the high-dimensional parameter space its weights reside in. In this section we pit the training
performance achieved on a CPU and GPU against each other.

In figure 8.1, we demonstrate the significant speedup that can be achieved with GPU accelerated
sampling when using TensorFlow-Probability and its implementation of samplers. Here we have used
HMC and a fixed L = 512 Leapfrog steps with XLA (Accelerated Linear Algebra) compilation enabled
on the GPU. This is a highly optimized linear algebra execution engine that can significantly speed up
code written with TensorFlow run on an NVIDIA GPU. The models trained had the architecture 5-n-1
with various choices of number of hidden layer nodes n. By inspection we see that for the model with
the largest number of parameters, the GPU can achieve approximately 50 times speedup relative to
the CPU. From the figure at the bottom, we can note that the corresponding absolute wall clock time
per generated sample on the GPU took roughly 0.5 seconds. We performed 1000 warm-up steps and
sampled 1000 neural networks skipping 10 between each stored sample. Thus in practice, we generated
12000 neural networks in total (1000 for the warm-up steps and 11000 during sampling) which each on
average took 0.5 seconds. This amounts to a total time of roughly 1.67 hours. To generate the same
number on the CPU, then, would require a total wall clock time of approximately 83.5 hours. Thus
training BNNs on a GPU can yield a significant practical benefit, especially as the complexity of the
model increases.

In the same manner we did with the analysis here, one can estimate the total training time of the
BNNs by performing a test run to generate a fair number of samples from which the wall clock time
per sample can be estimated. The analysis is is slightly more convoluted when the NUTS sampler
is used instead. Since the NUTS sampler adaptively sets the number of Leapfrog steps, only an
upper-bound on the wall clock time can be estimated by measuring the wall clock time used with
HMC in the following manner. When using NUTS, a maximum tree depth J is set which corresponds
to a maximum number of Leapfrog steps L = 2J . Measuring the wall clock time with HMC, fixing
the number of Leapfrog steps to L = 2J will yield an upper-bound on the wall clock time used by
NUTS. The estimated time will likely be larger than what the NUTS sampler actually uses as it may
terminate the tree doubling before reaching the maximum tree depth. This approach is sensible as the
computational cost of the NUTS sampler is approximately the same as for HMC for an equivalent
number of Leapfrog steps when using a sufficiently complex model and/or a large dataset, as we
discussed in chapter 5.

50 CHAPTER 8. NUMERICAL EXPERIMENTS

25 26 27 28 29 210

Number of Hidden Layer Nodes

10

15

20

25

30

35

40

45

50

Re
la

tiv
e

Ti
m

e

25 26 27 28 29 210

Number of Hidden Layer Nodes

0.1

0.2

0.3

0.4

0.5

Ti
m

e
Us

ed
 p

er
 S

am
pl

e
[s

]

Figure 8.1: The figure on top shows the relative wall clock time used per generated sample using L = 512
Leapfrog steps with the HMC sampler, as a function of number of hidden nodes in the hidden
layer with an architechture 5-n-1, where n represents the number of nodes. The relative wall
clock time is computed as the wall clock time used by the CPU divided by the wall clock time
used by the GPU. The figure on the bottom shows the absolute wall clock time per generated
sample measured on the GPU for the same case. The red dots indicate the actual measured
points. The CPU measurements are done using an 8-core M1 CPU (Apple Silicon). The GPU
measurements are made on an NVIDIA Tesla P100 GPU.

8.2. RESULTS AND DISCUSSION 51

8.2.1.2 Prediction Time

As we discussed in chapter 1, the execution time’s order of magnitude when using Prospino can be up
to the order of hours. If BNNs are to serve as a viable alternative to these calculations, it must at
least significantly reduce the time it takes to compute predictions. In figure 8.2, we show the average
execution time to compute predictions using the models in table 8.1. For each model, we randomly
generated input points x ∈ R5 and computed predictions for up to 4096 input points simultaneously.
Thus the largest input for the BNNs was of dimension (4096, 5). The execution times were measured
in 1000 trials from which the sample mean were computed. The execution times appear proportional
to the number of input points provided for each model, which perhaps is not all that surprising. We
can crudely infer by inspection that increasing the order of magnitude by one does the same for the
execution time. Still, the order of magnitude for a single input point is at the order of a millisecond
which is a significant speedup over Prospino calculations. Both the sample mean of the predictions
and the sample error were computed during the measurement.

1 2 3 4 5
Model

100

101

102

103

Ex
ec

ut
io

n
Ti

m
e

[m
s]

1 points
16 points
256 points
4096 points

Figure 8.2: The figure shows the average prediction time given up to several simultaneous inputs x using the
models in table 8.1. The wall clock time of the executions shown are measured in milliseconds and
are averaged over 1000 trials per case. The measured wall clock time includes computation of the
sample mean and sample error of the predictive distributions produced by the BNN models. The
dots indicate the actual measured values. The colored graphs indicate how many simultaneous
input points that were used. The measurements were done using an 8-core M1 CPU (Apple
Silicon).

The performance degradation observed in figure 8.2 that occur as we increase the number of
simultaneous input points is inherently due to the limited vectorization capability of the CPU’s
computing units when performing matrix multiplications in the forward pass through all neural
network samples simultaneously. One might hypothesize that more specialized computing units may
be able to handle several input points while applying all sampled networks at the same time. As it
turns out, GPUs excel at executing matrix multiplication. In figure 8.3 we can see the execution times
achieved using the GPU on an M1 Apple Silicon SoC to perform the same computations as before.
In this case the order of magnitude remains more or less the same in all the tests. Thus, computing
predictions on several simultaneous input points can be of a great benefit if the execution is employed

52 CHAPTER 8. NUMERICAL EXPERIMENTS

on a GPU. Note, however, that the measured execution time of “model 1” for a single point is slightly
slower than for more points which likely is due to the overhead introduced by using the GPU for such
a simple model. Care should thus be taken when considering what type of hardware the computations
should be performed with. Moreover, the gap between 256 and 4096 points may indicate a saturation
of the computing units and going beyond this point can potentially yield diminishing returns.

1 2 3 4 5
Model

0.8

1.0

1.2

1.4

1.6

Ex
ec

ut
io

n
Ti

m
e

[m
s]

1 points
16 points
256 points
4096 points

Figure 8.3: The figure shows the average prediction time using the built-in GPU on an M1 Apple Silicon
system-on-chip to compute a prediction given up to several simultaneous inputs x using the
models in table 8.1. The measured wall clock time is given in milliseconds and is averaged over
1000 trials. The measured time includes computation of the sample mean and sample error of the
predictive distributions produced by the BNN models. The dots indicate the actual measured
values. The colored graphs indicate the number of simultaneous input points used.

8.2.1.3 Loading Times

Even if we have demonstrated a substantial speedup for the execution part of computing predictions
using BNNs, we have thus far ignored the fact that the empirical distribution representing the weights
of a BNN is stored on disk which typically means a solid state drive (SSD) with modern computing
hardware. The memory bandwidth between the SSD and the faster forms of memory such as RAM,
cache and registers can be a potential bottleneck for performance. Although cache and registers
introduce fast memory transfer of stored data to the computing units of the CPU, they typically
boast a very limited capacity. Thus loading in the entire BNN model might not be viable and we may
observe that once we need models with a large number of parameters, the loading times dominate the
computational cost involved with computing predictions. This added computional cost stems from the
transfer of data back and forth between the RAM, and the cache and registers. An additional problem
is that if the BNN model is simply used for a single prediction at a time, it might simply be loaded a
single time before it is dumped from working memory. In this case, the initial load may dominate the
computational cost all together.

In figure 8.4 we show the resulted loading times (wall clock, as usual) measured using an M1 Apple
Silicon system-on-chip. The memory allocated to the BNN models was deallocated manually using
the del operator provided by Python to ensure that each model was dumped from cache/registers

8.2. RESULTS AND DISCUSSION 53

between each measurement. The models loaded in are the ones listed in table 8.1. The order of
magnitude of the loading times displayed in the figure is approximately the same order of magnitude
as the execution time. Thus loading does not seem to display a performance bottleneck for the models
used. In other words, we have demonstrated that BNNs can provide a serious substitute for Prospino
calculations from a perspective purely concerned with computational cost. It remains to be seen if the
predictions themselves are reliable enough for this substitution to be adopted, which we will explore in
later sections.

10−3 10−2

Loading Times [s]

0

2000

4000

6000

8000

10000

D
en

si
ty

Model 1

Model 2

Model 3

Model 4

Model 5

Figure 8.4: The figure shows the histograms of measured loading times (wall clock) in seconds using the
models in table 8.1. The measurements were made on an M1 Apple Silicon system-on-chip. The
time measurements consist of 1000 measurements for each model.

8.2.2 Posterior Distribution of Weights
An important problem to consider is if we can even justify the use of Monte Carlo samplers to sample
from the exact posterior instead of using the approximation employed by variational inference with
a parameterized surrogate posterior, which is the most ubiquitous method of training BNNs in the
literature. The surrogate posterior distribution is usually a factorized Gaussian distribution of the form

p ∝
∏
i,j,`

N (µ`ij , (σ`ij)2)N (µ`j , (σ`j)2), (8.2)

meaning for each parameter in the model, we assume its posterior distribution can be written as an
independent Gaussian distribution with a mean µ`jk and a standard deviation σ`ij for the kernels, and
µ`j and σ`j for the biases. The method sports some fairly obvious advantages like the fact that one
can perform online training, i.e. continue training once new data becomes available starting from an
earlier checkpoint by recycling p obtained during earlier training as the prior. The way we have trained
BNNs in this thesis does not seem to permit this form of training because we cannot easily formulate a
prior based on the empirical distribution we have sampled. Once could perhaps perform kernel density
estimation (KDE) of the empirical distribution to obtain a log-prior which can be used as part of
the potential energy function. There are, however, a number of practical issues that arise from this

54 CHAPTER 8. NUMERICAL EXPERIMENTS

idea. The high-dimensional nature of the neural network model class would suggest that a fairly high
number of samples relative to the dimensionality of the sample space must be drawn to approximate
the posterior well enough to carry out KDE. If enough samples are drawn, we could in principle
calculate an approximate density π̂(W, b) which can be used during the evaluation of the potential
energy function by replacing the priors with π̂(W, b). However, the weights of the BNN models are not
in general independent of each other and thus kernel density estimation must be performed on the
entire sample space which in general will introduce a computational cost that is likely to be intractible.
In practice, then, we cannot use the weights of the model that we have already sampled to continue
training. We must start over entirely and discard the empirical distribution we obtained with the prior
dataset since the new posterior distribution will change when new data becomes available. If the new
data is sufficiently different from the training data used before, the empirical distribution will likely
not approximate the posterior very well and keeping them will introduce a bias to MCMC estimators
when combined with samples from the new exact posterior.

It has been widely discussed that BNN posteriors are typically found to be multi-modal [3]. We
demonstrate this observation in figure 8.5.

1 2 3

W 1
2,5

0

2

4

6

W
1 2,

6

−2 0 2 4

W 3
11,4

−1

0

1

2

3

4

5
W

1 8,
1

−4 −2 0 2

b2
6

−2

0

2

4

b4 1

−2 0 2

b3
11

2

4

6

8

b6 1

Figure 8.5: The figure shows the projection of the kernel density estimation of the empirical distribution
onto two-dimensional subplanes of the posterior distribution. The figure on the top left shows
the plane spanned by (W 1

2,5,W
1
2,6). The figure on the top right shows the distribution in the

plane spanned by (W 3
11,4,W

1
8,1). The figure on the bottom left shows the distribution in the plane

spanned by (b2
6, b

4
1). The figure on the bottom right shows the distribution spanned by the plane

(b3
11, b

6
1). The weights used are the ones pertaining to “model 4” in table 8.1.

8.2. RESULTS AND DISCUSSION 55

It shows the distributions obtained with kernel density estimation applied to projections of the empirical
distribution onto two-dimensional planes of the posterior. We can observe that the projection onto the
planes shown there indicate that the posterior distribution indeed is multi-modal and unlikely to be
approximated well with a parameterized surrogate distribution like the one in eq. (8.2). We cannot
make any comments on the specific effect the multi-modality has on the predictive distribution from
these results though, only that the distribution itself is poorly approximated by surrogate distributions.

8.2.3 Benchmarks of Hyperparameters
In this section, we turn our attention to the effect of various hyperparameters on the performance of
the trained BNNs. We will investigate the effect of the amount of warm-up and pretraining performed,
the effect of increasing the complexity of the models, and how HMC and NUTS affects the performance
of the trained models.

8.2.3.1 The Effect of Number of Warm-up Steps

As we discussed in section 6.3.3, we set a predetermined number of warm-up steps, i.e. number
of burn-in steps and number of adaptation steps when using TensorFlow Probability’s samplers.
Conventional wisdom would have us believe that increasing the number of burn-in steps increases
the probability that the Markov chain has converged to the stationary distribution of the posterior.
Moreover, the literature has shown that NUTS performs at least as good as or better than HMC
with an equivalent number of maximum Leapfrog steps or more as the results in [1] demonstrated.
In our case we have split the number of warm-up steps as 80% adaptation steps which are used to
adapt the step size used with the Leapfrog integrator and 20% burn-in steps to achieve mixing and
converge to the stationary distribution. The performance of HMC and NUTS may depend heavily
on a well-tuned step size, which is why it usually is recommended to allocate the majority of the
warm-up steps for adaptation of it. This should help with efficient exploration of the sample space of
the posterior distribution.

To investigate the effect of the number of warm-up steps, we employed a model with a 5-20-20-1
architechture using tanh(x) as the activation function on the hidden layers. We fixed the number
of pretraining epochs to 2500 with a batch size of 32 using the ADAM optimizer. We then trained
several models using various number of warm-up steps with both HMC and NUTS. When trained
with HMC, we fixed the number of Leapfrog steps to L = 512. When trained with NUTS, we set a
maximum tree depth of 12 corresponding to a maximum of L = 4096 Leapfrog steps. In figure 8.6
we show the achieved R2-scores of the different configurations both in log space and target space as
function of the number of warm-up steps used. In log space, the models consistently achieve scores
R2 ≈ 1 which suggest they on average correctly predict the targets in the test data. Transforming the
predictions and targets back to target space, however, lead to som fairly poor results as we increase
the number of warm-up steps with HMC outperforming the models trained with NUTS in all but one
case. We removed the point at 32 warm-up steps for the NUTS sampler as it achieved a poor score of
R2 = −1306 in this case. The poor performance in target space is expected if the models in log space
do not perform exceptionally well due to the exponentiation of the inverse transform back to target
space. Thus we have an empirical confirmation of the potential downside of the data transformations
discussed in section 7.1.2.

56 CHAPTER 8. NUMERICAL EXPERIMENTS

26 28 210 212

Warm-up Steps

0.86

0.88

0.90

0.92

0.94

0.96

0.98

R
2

Log space (NUTS)
Target space (NUTS)
Log space (HMC)
Target space (HMC)

Figure 8.6: The figure shows the computed R2-scores in both log space and target space as a function
number of warm-up steps (20% burn-in and 80% adaptation) achieved with HMC and NUTS.
The architecture of the BNN model used is 5-20-20-1 with tanh(x) used as the activation function
in the hidden layers. We performed 2500 pretraning steps with a batch size of 32 using the
ADAM optimizer. In total 1000 neural networks were sampled with 10 steps between each stored
sample. When HMC was used, we ran with a fixed number of Leapfrog steps L = 512. When the
NUTS sampler was used, we allowed for a maximum of L = 4096 Leapfrog steps (a maximum
tree depth of 12).

In figure 8.7 we display the standardized residuals in log space for both samplers over all trained
configurations. The standardized residuals demonstrate that the claims discussed in the beginning of
this section may not be general enough to apply to BNNs as the models trained with HMC performs
better than those trained with NUTS almost regardless of how many warm-up steps that are performed.
When using NUTS, the performance of the model trained with a substantial amount of warm-up
steps appear to degrade as opposed to improve. The standardized residual of HMC lies consistently
inside the Normal distribution for the bulk of the distribution albeit with longer tails, while the NUTS
sampler produced rather few models that achieve the same. Thus the models trained with HMC yields
fairly reliable uncertainty estimates. These results, then, actually indicate that we may be better off
running the training procedure of BNNs with a fixed L, only adapting the step size. Even better, we
may get by with a fairly small number of warm-up steps and a fairly small L as the performance does
not appear to depend much on the number of warm-up steps. A small number is likely still necessary
to tune the step size used with the Leapfrog integrator.

8.2. RESULTS AND DISCUSSION 57

4 2 0 2 4
Standardized Residual

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity

32
128
512
2048
8192

(0, 1)

4 2 0 2 4
Standardized Residual

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

32
128
512
2048
8192

(0, 1)

Figure 8.7: The figure shows the standardized residuals computed on the test set. The model architechture
used is a model with layers 5-20-20-1 with tanh(x) as the hidden activation function. In the top
figure, we have used the HMC sampler with a fixed number of Leapfrog steps L = 512. In the
bottom figure, we have used the NUTS sampler with a maximum tree depth of 12 corresponding
to a maximum of L = 212 = 4096 Leapfrog steps. The remaining important hyperparameters
were 2500 pretraining epochs with a batch size of 32 using the ADAM optimizer. In total 1000
neural networks were sampled in each case with a thinning-amount of 10 steps between each
sample. The colors indicate how many warm-up steps that were used. The dotted line is the
standard Normal distribution.

The claim that NUTS performs at least as well as HMC with an equivalent number of Leapfrog
steps begs the question, then, how many Leapfrog steps did NUTS use on average? In figure 8.8,
we show the average number of Leapfrog steps the NUTS sampler used during the generation of the
Markov chain as a function of number of warm-up steps. Clearly, NUTS used more Leapfrog steps
on average than L = 512, except in a single case. The NUTS sampler introduces the need for a
slightly more complicated analysis than a one-to-one comparison like this though. Recall from chapter
5, that the NUTS sampler generates samples by running HMC forwards and backwards in time at

58 CHAPTER 8. NUMERICAL EXPERIMENTS

random until a stopping condition is met. At this point the sampler selects one of the acceptable states
that does not violate detailed balance at random. Thus the selected position (model parameter) may
lie close to the initial position. When trained with HMC, the final state produced by the Leapfrog
integrator is accepted with a probability computed according to eq. (4.12). Thus the model parameter
selected by the HMC sampler at each step is either the initial one or the final one. Thus for the same
number of Leapfrog steps and a properly tuned step size, we might expect HMC to generate larger
jumps in sample space. The step size used for the two samplers were likely different as the step size
adaptation will also differ a bit since The NUTS sampler uses the average acceptance probability for
all states generated during the final doubling of the balanced binary tree, while HMC only use the
acceptace probability of the final state for step size tuning, as we discussed in chapter 5.

26 28 210 212

Number of Warm-up Steps

250

500

750

1000

1250

1500

1750

2000

Av
g.

 L
ea

pf
ro

g
St

ep
s

datapoints

Figure 8.8: The figure shows the average number of Leapfrog steps L as a function of number of warm-up
steps used by the NUTS sampler when sampling the models shown in the bottom of figure 8.7.
We have included a few more measurements to showcase how fluctuating the average number can
be.

8.2.3.2 The Effect of Pretraining

Pretraining a BNN model is a strategy employed that starts from a neural network model sampled at
random from its prior, and minimizes the potential energy function L with respect to its weights to
obtain a point estimate which is then used as the initial point of the Markov chain. The strategy is
suggested as a means to accelerate convergence to the stationary distribution, bypassing the need for
long warm-up chains. This may help but as we discussed in chapter 3, the typical set, the set which we
seek to sample from, may not lay particularly close to the mode of the posterior distribution density
(recall that minimization of the potential energy function is equivalent to maximizing the posterior
distribution density). That said, this systematic search for an initial point for the Markov chain may
fair better than initiating it from a randomly drawn sample. Nevertheless, we have a good reason to
challenge this recommendation and verify that it indeed improves the performance of the BNN models
we sample, even though it should not be surprising if the point estimate yields a better initial point of
the Markov chain than one randomly sampled from the priors.

8.2. RESULTS AND DISCUSSION 59

We trained a BNN model with the architechture 5-20-20-1 with tanh(x) as the activation function
in the hidden layers. We fixed the number of warm-up steps to 1000 of which 800 were used for
adaptation of the step size and 200 were used for burn-in. We fixed the number of Leapfrog steps to
L = 512 using the HMC sampler. As usual, we sampled 1000 neural networks with 10 steps between
each sampled network. In figure 8.9 we can observe that the performance of the model increases as we
increase the number of pretraining epochs which gives us empirical grounds for initiating the Markov
chain from the point estimate obtained. As in the previous section, we see a dramatic decrease in
performance when we transform the predictions back to target space and compute the R2-score, further
solidifying the problem with the data transformations.

26 28 210 212

Pretraining Epochs

0.86

0.88

0.90

0.92

0.94

0.96

0.98

R
2

Target space (HMC)
Log space (HMC)

Figure 8.9: The figure shows the computed R2-scores of a model with the architecture 5-20-20-1 with tanh(x)
as the hidden activation function. In this case the varying number is the number of epochs run
with pretraining starting from 32 all the way up to 8192. The batch size used was 32 with the
ADAM optimizer. The number of warm-up steps was 1000 (200 of which were burn-in steps and
800 were adaptation steps). We fixed the Leapfrog steps to L = 512 using the HMC sampler. As
usual we sampled 1000 neural networks with 10 steps between each sample.

In figure 8.10, we show the computed standardized residuals in log space. The figure demonstrates
a pretty noticable improvement as the amount of pretraining increases, up to a point. The mode
with 2048 epochs of pretraining produces a distribution that mostly lie inside the standard Normal
distribution, implying it yields reliable uncertainty estimates by our metric. Once we surpass this
number, however, we see a slight degradation of the model performance with a larger spread in the
standardized residual distribution. But we can rest assured that pretraining can be used to increase
the performance of the trained BNN when everything else is held fixed, and should thus be applied as
part of the training procedure. Note that the model used here consists of a rather small number of
parameters. We performed pretraining of the models on a GPU which yielded less than 10% GPU
utilization, while the MCMC sampling of the model parameters required ∼ 90% GPU utilization.
Hence pretraining with models of this size may be better performed on either a built-in GPU on an
SoC such as the one shipped with an Apple Silicon SoC to reduce the cost of data transfer. Else, the
pretraining should perhaps be employed on a multi-core CPU device. From an economic perspective,

60 CHAPTER 8. NUMERICAL EXPERIMENTS

this will likely be less costly due to the added expense (not the computational cost, but the real-world
cost) of employing computations on a GPU.

4 2 0 2 4
Standardized Residual

0.0

0.1

0.2

0.3

0.4

0.5

0.6
De

ns
ity

32
128
512
2048
8192

(0, 1)

Figure 8.10: The figure shows the standardized residuals of a model with the architecture 5-20-20-1 with
tanh(x) as the hidden activation function. In this case the varying number is the number of
epochs run with pretraining starting from 32 all the way up to 8192. The batch size used was
32, the number of warm-up steps was 1000 (200 of which were burn-in steps and 800 were
adaptation steps). We fixed the Leapfrog steps to L = 512 using the HMC sampler. The ADAM
optimizer was used for the pretraining phase. As usual we sampled 1000 neural networks with
10 steps between each sample. The colors indicate the number of pretraining epochs performed.
The dotted line is the standard Normal distribution.

8.2.3.3 Effect of Number of Parameters

Increasing the number of parameters of the BNN model may help capture the underlying process from
the data to a larger degree. The typical problems posed by the bias-variance trade-off [9] does not
play as significant a role here since the trained model can compute a sample variance along with its
prediction. The concept is that increasing the complexity of the model class will increase its ability
to capture nuances in the training data which consequentially decreases its ability to generalize well
to unseen data. Bayesian neural networks are by no means immune to this effect, however, as the
model is still sampled according to the special features found in the training data which in principle
may be due to noise or a sample set which does not provide a sufficiently general representation of
the underlying process one attempts to capture with the regression model. As explained in section
7.2.2, the dataset produced by Prospino contains very little noise and thus specializing the model to
the inherent noise is not the issue. We did, however, see outliers and asymmetries in figure 7.1 and
figure 7.2. If a model has a large number of parameters, then, the training may produce a BNN model
that generalizes poorly to the unseen test data because it attempts to account for the nuances in the
training data. Moreover, the dataset we use is fairly small (∼ 15000 datapoints in total), which can
exacerbate the effect.

In figure 8.11 we show the computed R2-score on the training and test data as a function of number
of nodes n placed in the hidden layer of models with the architecture 5-n-1. The hidden activation

8.2. RESULTS AND DISCUSSION 61

used was tanh(x). The training was carried out with 1000 warm-up steps with the usual division
of 20% burn-in steps and 80% allocated to adaptation of the step size in the Leapfrog integrator.
We performed 2500 pretraining steps with a batch size of 32 for each model. When using the HMC
sampler, we fixed the number of Leapfrog steps to L = 512. For the NUTS sampler, we allowed a
maximum of L = 4096 Leapfrog steps. We sampled 1000 networks in each cases, skipping 10 networks
between each stored sample. The models trained with the HMC sampler increase in performance up
until a maximum after which the performance degrades, which may be explained by the fixed number
of Leapfrog steps in an increasingly higher-dimensional parameter space. Moreover, the dataset used is
fairly small for 7n+ 1 parameters in total as n increases (which in the highest case of n = 213 = 8192
parameters imply 57345 parameters per sampled neural network). The R2-scores between the training
and test data fluctuate about each other which indicate that BNNs may in some cases generalize well
to unseen data. It may very well be due to the small number of datapoints in the test data as it seems
to contradict the problems implied by the bias-variance trade-off.

26 28 210 212

Number of Hidden Layer Nodes

0.978

0.980

0.982

0.984

0.986

0.988

R
2

(train, NUTS)
(test, NUTS)
(train, HMC)
(test, HMC)

Figure 8.11: The figure shows the R2-score computed on the training and test data as a function of number
of nodes n in the hidden layer of models with architechture 5-n-1, yielding a total of 5n + 1
parameters. The hidden layer activation used was tanh(x). The models were trained with 1000
warm-up steps (20% burn-in and 80% adaptation), gathering 1000 neural networks with 10
steps between each sample. We used 2500 pretraining epochs with a batch size of 32. When
using the HMC sampler, we fixed the number of Leapfrog steps to L = 512. When using NUTS,
we set a maximum of L = 4096 Leapfrog steps.

In figure 8.12, we show the computed standardized residual distribution in log space on the test
data of the same models, which gives us an idea of the reliability of the uncertainties produced by the
BNNs as a function of the number of parameters. Unfortunately, data for NUTS beyond this point
was not measured due to time constraints. Note however, that the model with 2048 hidden layer nodes
trained with NUTS produces far superior uncertainty estimates to the other models, lying well inside
the Normal distribution alebeit with longer tails that extend outwards in both directions.

62 CHAPTER 8. NUMERICAL EXPERIMENTS

4 2 0 2 4
Standardized Residual

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

32
128
512
2048
8192

(0, 1)

4 2 0 2 4
Standardized Residual

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

32
128
512
2048

(0, 1)

Figure 8.12: The figure shows the standardized residuals of models with an architecture 5-n-1 with tanh(x)
as the hidden layer activation. The models were trained with 1000 warm-up steps (20% burn-in
and 80% adaptation), drawing 1000 neural networks with 10 steps between each drawn sample.
We used 2500 pretraining epochs with a batch size of 32 using the ADAM optimizer. The figure
on top shows results of models trained with the HMC sampler where we fixed the number of
Leapfrog steps to L = 512. The figure on the bottom shows the results of models trained with
NUTS using a maximum of L = 4096 Leapfrog steps. The colors indicate the number of hidden
layers nodes n are used. The black dotted line shows the standard Normal distribution drawn
in.

8.2. RESULTS AND DISCUSSION 63

8.2.4 Predictive Distributions
As we discussed in chapter 2, one of the primary objects we seek to compute in Bayesian ML is the
predictive distribution p(y∗|x∗, D) for a target y∗ given an unseen input point x∗ and a training dataset
D. Thus far, we have not explicitly explored the predictive distributions the BNN models compute
but instead focused the effects it has using certain metrics. Using BNNs as a substitute for direct
calculations of NLO predictions can be a dangerous decision if care is not taken to understand the
probabilistic nature of the model class. We shall thus turn our attention to exploring the predictive
distribution in this section.

In figure 8.13, we show the predictive distribution computed with model 3 in table 8.1. In the
figure on top, the sample mean approximates the true target well with a fairly small spread in the
distribution which is a desirable outcome in most cases. There are, however, ill performing cases as
well which we demonstrate in the figure at the bottom. Here the true target lies entirely outside the
predictive distribution. Thus care must be taken to understand when a BNNs prediction is reliable
and when it is not.

2.85 2.80 2.75 2.70 2.65 2.60 2.55
Predicted Value

0

2

4

6

8

10

De
ns

ity

Sample mean
True target

1.4 1.3 1.2 1.1 1.0
Predicted Value

0

2

4

6

8

10

De
ns

ity

Sample mean
True target

Figure 8.13: The figure shows predictive distributions estimated by use of model 3 in table 8.1 for two
targets taken from the test set. The red line shows the true target and the black line shows the
predicted sample mean obtained from the distribution. The figure on top demonstrates a case
where the sample mean is approximately the same as the target, while the figure at the bottom
demonstrates a case where the true target lies entirely outside the predictive distrbution.

64 CHAPTER 8. NUMERICAL EXPERIMENTS

We can deal with this problem by empirically counting how many targets y ∈ [µ− kσ, µ+ kσ] for
k = 1, 2, 3, 4, 5 where µ represents the sample mean and σ2 represents the sample variance of each
predictive distribution computed by the BNN model. In principle there is no need for k to be an integer,
and a finite grid of points k ∈ (0,∞) can be used instead such that an arbitrary desired accuracy can
be specified. For comparative purposes, note that for k = 1, 2, 3 the expected percentages of points
should be approximately 68%, 96% and 99.7% for a Gaussian distribution, respectively. Though, we
have no a priori reason to assume the preditive distributions are Gaussian, the percentages serve as
useful reference values.

We illustrate the results of this analysis in figure 8.14 performed on the training, validation and
test data. Clearly there exists a small percentage of ill cases where the target lies far away from the
predicted mean. The result does at least tell us that more than 95% of the targets lie within µ± 3σ in
their respective predictive distribution. This is however lower than the expected value of 96% within
µ± 2σ. This indicates that this model is too confident in its predictions and does not yield reliable
uncertainty estimates for a large enough portion of the data. At least not when a Gaussian distribution
is used for reference.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rc

en
ta

ge
 o

f P
re

di
ct

io
ns

train
val
test

Figure 8.14: The figure shows the results of the predictive distributions estimated by use of model 3 in table
8.1 computed on all datapoints in the training, validation and test data. The y-axis shows the
percentage of all targets that lie on the interval [µ − kσ, µ + kσ] for k = 1, 2, 3, 4, 5 where µ
is the sample mean and σ2 is the sample variance of the predictive distribution. The crosses
indicate evaluated points with training data shown in blue, validation data shown in orange
and test data shown in green. The black dotted line shows the 68% (±σ) expectation, the red
dotted line shows the 95% (±2σ) expectation and the blue dotted line shows the 99.7% (±3σ)
expectation of a Gaussian distribution.

Chapter 9

Conclusion

The main objective of this thesis has been to investigate Bayesian neural networks sampled from
the exact posterior as a substitute for direct calculations of next-to-leading order cross sections in
quantum field theory. We argued for the necessity of bypassing the computationally expensive direct
calculations with Bayesian regression because of the need for an estimate of the uncertainty of the
predicted cross sections. This was due to the role the uncertainties play in the statistical exclusion
of regions in parameter spaces of possible Beyond the Standard Model theories. The neural network
model was chosen for its universal function approximation property. We provided an overview of
Bayesian machine learning and its relation to classical machine learning with a focus on regression
tasks. We sought to use Markov chain Monte Carlo methods to sample from the exact posterior of
neural networks and thus delved into the theory behind these methods for continuous sample spaces,
building our way through the Metropolis-Hastings methods all the way up to the advanced class of
samplers used in this thesis, namely Hamiltonian Monte Carlo. We discussed the shortcomings of
Hamiltonian Monte Carlo with a fixed trajectory length and its need for tedious hand-tuning via
preliminary diagnostic tests. This motivated the exploration of adaptive Hamiltonian Monte Carlo
techniques to adapt the trajectory length with the No-U-Turn sampler for the number of Leapfrog
steps and a dual-averaging scheme for the step size used in the Leapfrog integration component.

Through numerical experiments, we demonstrated that trained BNNs can significantly reduce
the time spent computing cross sections. We found that the time spent on such computations were
roughly evenly divided between loading the models in from memory and performing the actual forward
pass in the neural networks to compute the predictive distribution, its sample mean and sample
variance. Moreover, we found that the training employed on GPUs with XLA compilation can result in
a significant reduction in training time compared to training on CPUs. We investigated the empirical
posterior distribution of the sampled weights and found them to be multi-modal, consistent with claims
in the literature, sowing doubt of the reliability of Bayesian inference using surrogate models. We
explored how various hyperparameters used during training of BNNs affect their predictive performance.
We found evidence suggesting that a moderate amount of warm-up steps and pretraining positively
impacts the performance of the trained models but that an excessive amount exacerbated it. With the
vast set of different configurations one can use with BNNs though, these results may not be generalizable
to different forms of architectures than the ones we have used and more extensive investigations can
be carried out. Some of the configurations we explored were found to produce reliable uncertainty
estimates and performed well in the space of targets it was trained for. Finally, we explored the
predictive distributions of a trained BNN model and showcased an example of a good predictive
distribution and a predictive distribution which missed the mark entirely. We showed that the BNN
model underperformed relative to a Normal distribution where less than 96 % of the targets resided
within ±2σ of the sample mean of the distributions.

65

66 CHAPTER 9. CONCLUSION

Although we have progressed our understanding of the training of BNNs by drawing samples from
the exact posterior with MCMC samplers like HMC and NUTS, there are several question which we
have not answered. We propose the following problems to be addressed in the future.

1. The Convergence Properties of the Markov Chain. In chapter 3, we noted that the
standard metric to estimate that a Markov chain has converged to its stationary distribution were
by use of the scale reduction factor R̂. Such convergence statistics is not measured or reported in
this thesis. Computing R̂ for neural network posteriors is complicated by the non-identifiability
of neural networks. Several different neural networks sampled from the different regions of sample
space may produce the same predictions, which makes assessing the convergence by studying the
elements of the Markov chain itself challenging. Instead we propose the use of R̂ computed on
the predictions by using the samples in the Markov chain. This analysis has been performed
in [3] where they study the resulting Markov chain in function space. For a specific input x,
one can run several independent chains that all compute their own predictive distribution. The
R̂ metric can then be calculated from the resulting set of distributions to identify potential
non-convergence.

2. Training of BNNs on Larger Datasets. In this thesis, we have focused on a fairly small
dataset of ∼ 15000 datapoints. At no point have we investigated the added computational
expense from computing the potential energy function and its gradient in HMC and NUTS as a
function of the number of datapoints it needs to be evaluated for. If NLO cross section estimation
is to be used with BNNs on larger datasets, the effect it has on the hyperparameters used during
training is likely necessary to be reinvestigated. The analysis performed in this thesis should at
least give information on what hyperparameters that are worth exploring. Training time will
likely be much longer but the predictive performance of the trained BNN may become more
robust.

3. Sampling Larger Models. Our analysis has been dealing with a fairly small number of sampled
neural networks per model. In each case, we have drawn 1000 neural networks which collectively
represented the full BNN model. The number of parameters the models had, spanned from a few
hundred to the order of a hundred thousand. A thousand samples drawn from the posterior is a
pretty low number owed to the computational expense needed to generate them. For the most
complex models trained, the training time could exceed 24 hours on a GPU. Thus drawing more
samples by running longer Markov chains can be exceedingly expensive. The potential upside is
that the MCMC estimators and the predictive distributions will likely produce better results if
more samples are drawn. An important consideration to reduce the training time is to increase
the complexity of neural networks by adding many small layers and create deep networks as
opposed to shallow networks with many nodes per layer. The reason for this is that applying
shallow “wide” networks to a large dataset simultaneously during training may create temporary
objects which are too large to fit into cache and registers which results in additional time spent
transferring strips of memory, in which case the GPU may sit idle during large portions of the
training.

4. The Effect of Thinning. We have operated with a fixed number of samples skipped between
each drawn network. This means that we have performed no analysis of the correlation between
successively drawn samples but instead worked with a heuristic that appeared to produce good
results. Investigating the lag-l autocorrelation of successive neural network samples can give
valuable information from a practical perspective. Although drawing more samples may be
beneficial for the calculation of MCMC estimators, it is not so if the samples are heavily correlated.
Both samplers used in this thesis generate successive samples with low correlation in simple cases
studied in the literature [1, 26] but with the complexity of the BNN posterior, this may require a
larger amount of thinning. Performing preliminary runs to estimate how correlated successive
samples are will help reduce the necessary amount of samples needed to be drawn to obtain good

67

statistics from the MCMC estimators. It will also help the practitioner to minimize the amount
of thinning and avoid wasting computational resources.

5. The Effect of the Multi-modality of the Posterior on the Predictive Distributions.
Although we demonstrated the multi-modality of the posterior distribution of BNNs, we did not
investigate its effect on the predictive distribution. After all, it is the predictive distribution we
really care about in practice. Due to how computationally expensive it is to sample from the
exact posterior, a thorough comparison of sampling from the exact posterior should be compared
and contrasted with the use of surrogate distributions for the BNNs parameters with respect to
the quality of the predictive distributions they produce.

6. Other Potential Energy Functions. In our investigation we have used a Gaussian prior for
each neural network parameter and the same likelihood function for each model. It is possible
that modifying the potential energy function, either by choosing different priors or modifying the
likelihood function, that the training process can be improved. It has been suggested that the
effect of the chosen priors may yield a measurable impact on the predictive distribution although
it may not be particularly noticable from studing the posterior distribution of weights [3].

7. Deep Ensembles. Deep ensembles has been shown to yield a better fidelity of the Bayesian
predictive distribution on par with the ones produced by HMC, outperforming the surrogate
distributions typically employed in the literature [3]. And this can potentially be achieved at a
significant reduction of the computational cost of sampling from the true posterior using HMC
or NUTS.

8. Multi-GPU Training with HMC. In this thesis, within the framework we used, we were
confined to run the sampling on a single GPU device. Investigating the possibility of running
multiple independent Markov chains on several GPUs simultaneously in an asynchronous fashion
can potentially speed up the training of BNNs with HMC significantly by allowing for many
long chains to sample independently of each other. The quality of the sampled chains from the
posterior is likely to improve by generating more than a single chain. One possible framework
to adopt for this is Jax [27], a machine learning research library developed and used in-house
by the Deep Mind research team at Google Research. It allows for automatic mapping of a
Python function to several physical devices (such as multiple GPUs), just-in-time compilation
for GPU devices which when run on NVIDIA GPUs support XLA compilation. Moreover, it
provides its own framework for automatic differentiation. Thus it may be a viable platform
to develop more research oriented machine learning models than the more strict frameworks
provided by TensorFlow and its extensions. Due to the complex control flow introduced by the
NUTS sampler, it is not as well suited for multi-GPU sampling but other adaptive schemes such
as ChEES-HMC was recently proposed to adaptively set the trajectory length without the same
limitation [28].

9. Approximate the Prior From the Empirical Distribution for Online Training. A major
drawback to drawing samples from the exact distribution is that we in practice must discard old
models when new data becomes available. This is unfortunate as we obviously know something
about the weights inferred from the dataset prior to the arrival of the hypothetical new data.
We are closely guarding a set of them which we have drawn, informed by the “old” data. In
order to increase the viability of sampling from the exact posterior, investigating ways to obtain
approximate unnormalized densities that approximate the empirical distributions can be fruitful
for the following reason. The potential energy function used in HMC and NUTS requires the
ability to evaluate a log prior given an arbitrary input of weights. Thus inferring a function that
approximates the empirical distribution will yield an informed prior that can be evaluated to
draw new samples given new data. This can greatly increase the viability of the methods as old
samples can inform the generation of new ones.

68 CHAPTER 9. CONCLUSION

Bibliography

[1] M. D. Hoffman and A. Gelman, The no-u-turn sampler: Adaptively setting path lengths in hamiltonian
monte carlo, Journal of Machine Learning Research 15 (2014) 1593–1623.

[2] A. Buckley, A. Kvellestad, A. Raklev, P. Scott, J. V. Sparre, J. Van Den Abeele et al., Xsec: the
cross-section evaluation code, Eur. Phys. J. C 80 (2020) 1106, [2006.16273].

[3] P. Izmailov, S. Vikram, M. D. Hoffman and A. G. Wilson, What Are Bayesian Neural Network Posteriors
Really Like?, CoRR (2021) , [2104.14421].

[4] GAMBIT collaboration, C. Balázs et al., ColliderBit: a GAMBIT module for the calculation of
high-energy collider observables and likelihoods, Eur. Phys. J. C 77 (2017) 795, [1705.07919].

[5] W. Beenakker, R. Hopker and M. Spira, PROSPINO: A Program for the production of supersymmetric
particles in next-to-leading order QCD, hep-ph/9611232.

[6] K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators,
Neural Networks 2 (1989) 359–366.

[7] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, 12, 2014. 1412.6980.

[8] J. L. Devore and K. N. Berk, Modern Mathematical Statistics with Applications, p. 80. Springer, 2018.

[9] P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson, C. K. Fisher et al., A high-bias,
low-variance introduction to Machine Learning for physicists, Physics Reports 810 (may, 2019) 1–124.

[10] M. Betancourt, A conceptual introduction to hamiltonian monte carlo, 1701.02434.

[11] G. O. Roberts and J. S. Rosenthal, General state space markov chains and MCMC algorithms, Probability
Surveys 1 (jan, 2004) .

[12] A. Gelman and D. B. Rubin, Inference from Iterative Simulation Using Multiple Sequences, Statistical
Science 7 (1992) 457 – 472.

[13] S. Brooks, A. Gelman, G. L. Jonas and X.-L. Meng, eds., Handbook of Markov Chain Monte Carlo, ch. 6.
Springer, 2018.

[14] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of State
Calculations by Fast Computing Machines, The Journal of Chemical Physics 21 (1953) 1087–1092,
[https://doi.org/10.1063/1.1699114].

[15] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika
57 (04, 1970) 97–109,
[https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf].

[16] J. S. Helbert Goldstein, Charles Poole, Classical Mechanics, 3rd ed., ch. 2,8. Addison Wesley, 2000.

[17] C. M. Bishop, Pattern Recognition and Machine Learning, ch. 11, p. 551. Springer New York, 2006.

[18] Y. Nesterov, Primal-dual subgradient methods for convex problems, Mathematical Programming 120 (Aug,
2009) 221–259.

[19] J. Park and Y. F. Atchadé, Markov Chain Monte Carlo Algorithms with Sequential Proposals,
1907.06544.

[20] Tensorflow Developers, Google, “Tensorflow.” https://doi.org/10.5281/zenodo.6574269, May, 2022.

69

http://dx.doi.org/10.1140/epjc/s10052-020-08635-y
http://arxiv.org/abs/2006.16273
http://arxiv.org/abs/2104.14421
http://dx.doi.org/10.1140/epjc/s10052-017-5285-8
http://arxiv.org/abs/1705.07919
http://arxiv.org/abs/hep-ph/9611232
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1016/j.physrep.2019.03.001
http://arxiv.org/abs/1701.02434
http://dx.doi.org/10.1214/154957804100000024
http://dx.doi.org/10.1214/154957804100000024
http://dx.doi.org/10.1214/ss/1177011136
http://dx.doi.org/10.1214/ss/1177011136
http://dx.doi.org/10.1063/1.1699114
http://arxiv.org/abs/https://doi.org/10.1063/1.1699114
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf
http://dx.doi.org/10.1007/s10107-007-0149-x
http://dx.doi.org/10.1007/s10107-007-0149-x
http://arxiv.org/abs/1907.06544
https://doi.org/10.5281/zenodo.6574269

70 BIBLIOGRAPHY

[21] D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning representations by back-propagating errors,
Nature 323 (1986) 533–536.

[22] P. Ramachandran, B. Zoph and Q. V. Le, Searching for activation functions, CoRR (2017) , [1710.05941].

[23] J. Lao, C. Suter, I. Langmore, C. Chimisov, A. Saxena, P. Sountsov et al., tfp.mcmc: Modern markov
chain monte carlo tools built for modern hardware, 2002.01184.

[24] R. A. Ask, “Bayesian neural network implementation in Tensorflow.”
https://doi.org/10.5281/zenodo.6800167, July, 2022.

[25] D. Chicco, M. J. Warrens and G. Jurman, The coefficient of determination R-squared is more informative
than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, PeerJ. Computer science
7 (Jul, 2021) e623–e623.

[26] S. Brooks, A. Gelman, G. Jones and X.-L. Meng, eds., Handbook of Markov Chain Monte Carlo.
Chapman and Hall/CRC, may, 2011, 10.1201/b10905.

[27] I. Babuschkin, K. Baumli, A. Bell, S. Bhupatiraju, J. Bruce, P. Buchlovsky et al., “The DeepMind JAX
Ecosystem.” http://github.com/deepmind, 2020.

[28] M. Hoffman, A. Radul and P. Sountsov, An adaptive-mcmc scheme for setting trajectory lengths in
hamiltonian monte carlo, in Proceedings of The 24th International Conference on Artificial Intelligence
and Statistics (A. Banerjee and K. Fukumizu, eds.), vol. 130 of Proceedings of Machine Learning Research,
pp. 3907–3915, PMLR, 13–15 Apr, 2021.

http://dx.doi.org/10.1038/323533a0
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/2002.01184
https://doi.org/10.5281/zenodo.6800167
http://dx.doi.org/10.7717/peerj-cs.623
http://dx.doi.org/10.7717/peerj-cs.623
http://dx.doi.org/10.1201/b10905
http://github.com/deepmind

	Introduction
	The Physics Problem
	Computation of Beyond the Standard Model Cross Sections
	Bayesian Regression as a Substitute

	Bayesian Formulation of Machine Learning
	The Core of Machine Learning
	Loss Functions
	Regularization
	Optimization

	Bayes' theorem
	Bayesian Framework for Machine Learning
	Bayesian Inference

	Markov Chain Monte Carlo
	Expectation Values and the Typical Set
	The Typical Set
	The Target Density and Bayesian Applications

	Markov Chains and Markov Transitions
	Ideal Markov Chains
	Pathologies
	Geometric Ergodicity and Convergence Diagnostics

	Metropolis-Hastings
	The Proposal Distribution

	Gibbs Sampling

	Hamiltonian Monte Carlo
	Hamiltonian Dynamics
	Leapfrog integration

	Generating a Proposal State
	The Potential Energy Function in Bayesian Machine Learning Applications
	Limitations of Hamiltonian Monte Carlo

	Adaptive Hamiltonian Monte Carlo
	The No-U-Turn Sampler
	Stopping Conditions and Selection of Candidate States
	Computational Cost

	Adapting the Step Size

	Bayesian Neural Networks
	Neural Networks
	Basic Mathematical Structure
	Backpropagation
	Regularization in Neural Networks

	Activation Functions
	Sigmoid and Tanh
	ReLU
	Swish

	Bayesian learning of Neural Networks using Monte Carlo Samplers
	What is Bayesian learning of Neural Networks?
	The Potential Energy Function of Neural Networks
	Practical Training of Bayesian Neural Networks
	Training Algorithm of Bayesian Neural Networks

	The Dataset and Methodology
	The Dataset
	The Features and Targets
	Data Transformations
	Data Splitting

	Training Methodology
	Implementation
	Performance Metrics
	Coefficent of Determination
	Standardized Residuals

	Numerical Experiments
	Training Procedure and Selection of Models and Hyperparameters
	Results and Discussion
	Computational Performance
	CPU v. GPU Training Performance
	Prediction Time
	Loading Times

	Posterior Distribution of Weights
	Benchmarks of Hyperparameters
	The Effect of Number of Warm-up Steps
	The Effect of Pretraining
	Effect of Number of Parameters

	Predictive Distributions

	Conclusion

