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INTRODUCTION

Understanding life history adaptations to f luctuat-
ing environments is increasingly important, as an-
thropogenic climate change is altering the temporal 
variability of multiple climatic drivers (IPCC,  2021; 
Laufkötter et al.,  2020; Pendergrass et al.,  2017). For 
instance, while an increased variance in daily and sea-
sonal temperature and precipitation is expected across 
much of Europe in summer, a decrease is projected in 
other regions (Huntingford et al.,  2013; IPCC,  2021; 
Kotz et al., 2021; Pendergrass et al., 2017). Fluctuations 
in abiotic and biotic environmental drivers experi-
enced by organisms may affect their relative fitness 
and select for specific adaptations to live in variable 
environments.

Two main processes have been identified as adapta-
tions to environmental variability, optimising fitness: 
Demographic buffering reduces the variance in demo-
graphic parameters (e.g. survival, fertility), thereby mini-
mising the effects of bad environments (Hilde et al., 2020; 
Morris & Doak, 2004), while demographic lability lets 
the organisms take advantage of good environments 
by mounting a large increase in some demographic pa-
rameters compared to an average or bad environment, 
and therefore increasing their mean (Barraquand & 
Yoccoz, 2013; Jongejans et al., 2010; Koons et al., 2009; 
see Box 1 for Glossary). The two processes are not mutu-
ally exclusive but can be selected simultaneously, so that 
different demographic parameters of a given life his-
tory can show different responses to an environmental 
driver. Yet, these processes have often been investigated 
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Abstract

Demographic buffering and lability have been identified as adaptive strategies to 

optimise fitness in a fluctuating environment. These are not mutually exclusive, 

however, we lack efficient methods to measure their relative importance for a given 

life history. Here, we decompose the stochastic growth rate (fitness) into components 

arising from nonlinear responses and variance–covariance of demographic parameters 

to an environmental driver, which allows studying joint effects of buffering and lability. 

We apply this decomposition for 154 animal matrix population models under different 

scenarios to explore how these main fitness components vary across life histories. Faster-

living species appear more responsive to environmental fluctuations, either positively 

or negatively. They have the highest potential for strong adaptive demographic lability, 

while demographic buffering is a main strategy in slow-living species. Our decomposition 

provides a comprehensive framework to study how organisms adapt to variability 

through buffering and lability, and to predict species responses to climate change.
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separately, and we lack efficient methods to disentangle 
and predict their relative importance for a given life his-
tory and environment. To understand how organisms 
combine lability and buffering of their demographic 
parameters to enhance fitness in varying environments, 
we need a demographic model framework to predict two 
main fitness components: (1) the effects of nonlinearity in 
responses of all demographic parameters to an environ-
mental driver, and (2) the effects of variance–covariance 
of these parameters. While the latter is well described in 
stochastic demographic theory (Lande et al.,  2003), we 
know much less about the impacts of nonlinearity, repre-
senting the potential for adaptation to varying environ-
ments through lability.

A key prediction from classical theory for evolu-
tionary bet-hedging and stochastic population growth 
is that the long-term fitness will be reduced if the tem-
poral variance of fitness is increased (Lewontin & 
Cohen, 1969). This result is assuming an unstructured 
population with annual population growth rates that 
are IID (independently and identically distributed). 
The fitness is then the logarithm of the geometric mean 
of these growth rates (Lewontin & Cohen,  1969). In 
structured populations, the stochastic growth arises 
from more complex demographic pathways, due to 
variation in demographic parameters of individuals 
in different (st)ages. Fluctuations in the (st)age struc-
ture introduce autocorrelation in the annual growth 

BOX 1  Glossary

Stochastic population growth rate - ln
(

λ
s

)

: The long-term rate of population growth on a logarithmic scale, 
a measure of fitness in a stochastic density-independent environment.

Growth rate in the mean environment - ln
(

λ0
)

: Dominant eigenvalue of the projection matrix in the mean 
environment (z = 0) A(0) on a logarithmic scale.

Mean growth rate - ln
(

λ
)

: Dominant eigenvalue of the mean projection matrix across variable environments 
A on a logarithmic scale.

Demographic lability / labile demographic parameter: A labile demographic parameter fluctuates with tem-
poral variation in environmental conditions. The relationship between a labile demographic parameter and 
the environment (e.g. a key environmental driver) can be convex, concave or linear, so that the average value 
of this demographic parameter in a variable environment becomes >, < or = to the demographic parameter 
estimated in the mean environment (z = 0) respectively. The same definition applies to labile vital rates (e.g. 
survival, fecundity, transition).

Adaptive demographic lability (demographic lability hypothesis): Selection for demographic parameters to 
track environmental fluctuations that leads to an overall increased fitness, ln

(

λ
s

)

. Increase in ln
(

�
s

)

 occurs 
when an increase in the demographic parameter means due to convexity in their responses leads to a shift in 
the arithmetic mean of annual population growth rates ln

(

�
)

, that overcomes the negative effect of temporal 
variance in the annual population growth rates (variance–covariance component �2). This hypothesis relies 
on the assumption that the nonlinearity index D (defined below) is positive.

Nonlinearity index (D): D measures the total effect of nonlinearity of demographic parameters in a life his-
tory, and is a key component to describe the nonlinearity component of the fitness decomposition (Equation 3). 
This index corresponds to the sum over all (st)ages of the second derivatives of the demographic parameters 
(depending on vital rates) in the mean environment (z = 0), weighted by the sensitivities of �0 to the corre-
sponding demographic parameters (matrix elements). When positive (/negative), D is an indicator of adaptive 
(/non-adaptive) lability through overall positive (/negative) contributions from convexity (/concavity) of the 
demographic parameters. Adaptive lability can create a positive overall effect of environmental variability if 
D is positive and the negative effects of increased variance–covariance of the demographic parameters are not 
too large (see Equation 3).

Demographic buffering / buffered demographic parameters: Low variance of a demographic parameter in re-
sponse to temporal variation in the environmental variable z. A more flat relationship between the demographic 
parameter and the environment z leads to such low parameter variance, and to the mean demographic param-
eter in the variable environment remaining approximately equal to demographic parameter value in the mean 
environment (z = 0). The same definition applies to buffered vital rates (e.g. survival, fecundity, transition).

Adaptive demographic buffering (demographic buffering hypothesis): The prediction that natural selection 
should favour a reduction in variance of the demographic parameters with the strongest influence on fitness 
in the mean environment, reducing the variance–covariance component σ2 and leading to an overall stable or 
increased fitness in variable environments. The assumption that ln

(

�
)

 is not affected by environmental vari-
ance (ln

(

�0

)

≈ ln
(

�
)

), is often made for this hypothesis.
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rates (Caswell,  2001). Still, under the assumption of 
small fluctuations in the demographic parameters, 
Tuljapurkar (1982) derived an important approximation 
of long-term growth rate in stage-structured popula-
tions, emphasising how the variance in fitness is linked 
to variances and covariances of demographic parame-
ters in different stages (Equation 1). The key conclusion 
from this approximation is that temporal variability in 
demographic parameters and/or positive covariance will 
have a negative effect on fitness, and should be selected 
against, in particular for demographic parameters that 
have a large impact on fitness in the mean environment. 
Accordingly, the demographic buffering hypothesis 
predicts that natural selection should favour a reduc-
tion in variance of the demographic parameters with 
the strongest influence on population growth (Boyce 
et al., 2006; Gaillard & Yoccoz, 2003; Hilde et al., 2020; 
Pfister, 1998; Tuljapurkar & Orzack, 1980).

However, positive effects of environmental variabil-
ity have also been demonstrated under strong negative 
covariance among demographic parameters (Colchero 
et al., 2019; Doak et al., 2005; Tuljapurkar, 1990), nega-
tive environmental autocorrelation (Tuljapurkar, 1982) 
and convex relationships between demographic param-
eters and the environment. The latter represents a case 
of adaptive lability as described by Koons et al. (2009). 
In contrast to adaptive demographic buffering, which 
optimises fitness by reducing the variance of most 
influential demographic parameters, lability can be 
adaptive if the benefit of an increase in the arithme-
tic mean of the annual growth rates through increased 
demographic parameter means can overcome the neg-
ative effect of increased demographic variance on 
fitness (Box  1). Nonlinearity in population and de-
mographic parameter responses to environmental 
drivers may be common in the wild (Barraquand & 
Yoccoz, 2013; Clark & Luis, 2020; Dahlgren et al., 2011; 
Drake, 2005; Hansen et al., 2021; Jenouvrier et al., 2012; 
Lawson et al., 2015; Louthan & Morris, 2021; Mysterud 
et al.,  2001), highlighting the potential importance of 
lability as an adaptation to environmental variability. 
However, with structured life histories the combined 
effects of nonlinearity in different demographic pa-
rameters on fitness are challenging to predict (Koons 
et al., 2009).

Somewhat contrasting predictions have been made 
as to which demographic parameters should be labile 
or buffered, and the relative importance of each process 
for a given life history. Demographic lability has been 
suggested to affect mainly the demographic param-
eters with least effect on fitness (Hilde et al.,  2020), as 
a consequence of selection for buffering of more influ-
ential demographic parameters. Other studies suggest 
that lability can be equally important to demographic 
buffering, and that it can also occur in highly influential 
demographic parameters (Jongejans et al., 2010; Koons 
et al., 2009; McDonald et al., 2017). Based on the latter 

prediction, recent research suggests that adaptive labil-
ity and buffering can be located at the opposite ends of a 
continuum, encompassing a wide range of demographic 
strategies (Salguero-Gómez,  2021; Santos et al.,  2021). 
Yet, the extent to which lability among the least or the 
most influential demographic parameters can be adap-
tive strategies for coping with varying environments, 
relative to buffering, remains largely unexplored (e.g. 
Barraquand & Yoccoz, 2013).

We thus need a more thorough understanding of how 
the opportunity for selection on demographic buffer-
ing and lability depends on major axes of life history 
variation such as the slow–fast continuum (Gaillard 
et al.,  2016; Salguero-Gómez, Jones, Jongejans, 
et al.,  2016; Stearns,  1992). For instance, populations 
of fast-living species have been predicted to be more 
responsive to environmental variability than those of 
slow-living species, and to be more likely to show adap-
tive lability in their demographic parameters (Dalgleish 
et al., 2010; Iles et al., 2019; Koons et al., 2009; Morris 
et al.,  2008). According to demographic buffering hy-
pothesis, species towards the slow end of the continuum 
benefit most from reduced variance in annual survival 
of the mature stages, while fast-living species gain rel-
atively more from reduction of variance in annual fer-
tility and/or survival of the immature stages (Gaillard 
& Yoccoz, 2003; Hilde et al., 2020; Rotella et al., 2012). 
These effects can be predicted from Tuljapurkar's small 
noise approximation (Tuljapurkar,  1982; Equation  1), 
but we lack a similar expression to describe the net im-
pact of nonlinearity in different demographic parame-
ters of the same life history. Here, we introduce a new 
‘nonlinearity index’ to predict changes in the arithmetic 
mean arising from nonlinearity in different demographic 
parameter responses to an explicit environmental 
driver. We decompose the stochastic growth rate into 
contributions from nonlinearity effects and variance–
covariance effects. We then apply the decomposition to 
study how organisms may combine adaptive buffering 
and lability responses depending on generation time, 
which closely correlates with the species' position along 
the slow–fast continuum (Gaillard et al., 2005). We use 
population models from the COMADRE animal matrix 
database (Salguero-Gómez, Jones, Archer, et al., 2016) 
as a starting point for our calculations, representing a 
broad range of life histories in the mean environment. 
We then add stochastic environmental variation and 
perform the decomposition under different scenarios 
for nonlinearity and covariance among demographic 
parameters (Figure 1). Our study provides a method to 
disentangle the effects of buffering and lability for any 
given life history, and the subsequent analysis addresses 
two main questions: First, what is the opportunity for 
positive effects due to adaptive lability to overcome 
negative impacts through the variance–covariance of 
demographic parameters, and how does this pattern 
depend on generation time? Second, are demographic 
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parameters that show adaptive lability typically the 
least or most influential demographic parameters for 
fitness?

M ATERI A L A N D M ETHODS

To explore fitness responses to environmental variability 
along the slow–fast continuum, we decomposed the long-
term stochastic growth rate ln

(

�s

)

, a measure of fitness 
(Caswell, 2001; Lande et al., 2003; Tuljapurkar, 1990), into 
main components capturing effects of nonlinearity in de-
mographic parameters as a function of an environmental 
driver z, and effects of variance–covariance among the 
parameters. Our approach builds on Tuljapurkar's ap-
proximation which assumes linear relationships between 
demographic parameters and an IID environmental var-
iable (Tuljapurkar, 1990):

Here λ0 is the arithmetic growth rate in the mean envi-
ronment, which is assumed equal to the mean arithmetic 
growth rate � (ignoring nonlinear responses), while Var(�t)  
is the variance in annual population growth caused by tem-
poral variance and covariance in the demographic param-
eters. We show in the next section that including nonlinear 
effects of the environment on demographic parameters 
mainly affects ln

(

�s

)

 through the mean arithmetic growth 
rate �, but also through the variance–covariance term. 
After defining main components of the stochastic growth 
rate, we perform a theoretical exploration of how the 
different components will vary across generation time, 
using different scenarios regarding nonlinear functions 
for survival and fertility (Figure 1a–c). We also confront 

(1)ln
(

�s

)

≈ ln�0 − �
2, with �

2 =
Var

(

�t

)

2�2
0

.

F I G U R E  1   Framework used to study the effects of environmental variability on fitness (stochastic growth rate ln
(

�s

)

). (a) Our calculations 
define demographic parameters as nonlinear functions of the environmental driver z (see methods), where A(0) (from our selected, standardised 
COMADRE models, Ntot = 154) defines the values of (st)age-specific survival rates sj (0) and fertilities fj (0) in the mean environment (z = 0).  
Different levels of environmental variance levels �2

z
 and environmental strength |

|

�z
|

|

 of z on the demographic parameters were considered. 
In the analytical approach, ln

(

�s

)

 was calculated and decomposed into main components capturing nonlinearity and variance–covariance 
effects following Equation (3). The accuracy of this decomposition was tested using simulations (Supporting Information S4). (b) Two or three 
different link functions were considered for survival sj (z) and fertility fj (z) respectively. (c) Scenarios 1–8: Four combinations were examined 
including logistic functions for all parameters, loglog link functions for all parameters and two combinations of exponential fertilities fj (z) 
(log link) with logistic or loglog link function for sj (z). Positive or negative covariance between survival and fertility was tested for each 
combination, assuming positive covariance between sj (z), and between fj (z). Scenarios 9–11: Scenarios of forced buffering considering 
demographic lability in the fertility coefficients and survival rates of the immature stages (Simmature). Scenarios 12–13: Scenarios of forced 
buffering assuming demographic lability in all survival rates sj (z) or in only the mature stages (Smature). Logistic functions were used to define 
lability while the other rates were held constant and fixed to the values reported in the standardised COMADRE projection matrix.
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hypotheses about demographic lability, through scenarios 
that specifically consider effects of nonlinearity in the de-
mographic parameters of immature or mature individuals 
only, keeping other parameters constant (‘forced buffering’ 
scenarios, Figure 1c). All simulations and calculations were 
performed in R, version 4.0.3 (R Core Team, 2020). R code 
is provided in Supporting Information S7.

Decomposing the stochastic growth rate 
with nonlinear effects

We assume that the environment at each time step is de-
scribed by a stochastic variable z (IID), with mean 0 and 
variance �2

z
. Population growth from one time step to the 

next is given by nt+1 = A
(

zt
)

nt, where nt is the vector con-
taining the number of individuals in each stage at time t, 
and A(z) is the population projection matrix. Elements 
of A(z) are the demographic parameters describing sur-
vival, fertility and transitions as functions of z. To derive 
the stochastic growth rate, we approximate this projection 
matrix using A(z) ≈ A(0) +

�
2
z

2
A��

(0) + � , where � is the 
matrix describing the noise terms with mean elements 0 
(i.e. stochastic deviations from the expectations defined 
by the other two terms on the right side of the equation), 
A(0) is the projection matrix of the mean environment 
(with asymptotic growth rate �0) and A��

(0)=A��
(z)|

|z=0
 

contains the second derivatives of elements of A(z).  
Using this second derivative matrix, the reproductive value 
vector v and the stable stage structure u calculated from the 
matrix A(0), we define a nonlinearity index (Supporting 
Information S3).

which measures the overall degree of nonlinearity in the 
life history defined by A(z). A positive D indicates adaptive 
lability. A matrix element (i.e. demographic parameter) 
with strong convex curvature may still have a low impact 
on D if the corresponding sensitivity of �0 to that element 
is low, and vice versa.

Applying a Taylor approximation to the mean 
change of the logarithm of the total reproductive value 
Vt =

∑

jnj,tvj, we show in Supporting Information S3 that 
the stochastic growth rate is given by

where D is the nonlinearity index defined above, 
B =

∑

ij

∑

kl

��
0

�Aij(0)

��
0

�Akl(0)
A�
ij
(0)A�

kl
(0) (where A�

(0)=A�
(z)|

|z=0
  

is the matrix of first derivatives), and 
C =

∑

ij

∑

kl

��
0

�Aij(0)

��
0

�Akl(0)
A��
ij
(0)A��

kl
(0). The stochastic growth rate is 

thus decomposed into the growth rate in the mean 
environment, ln�0, plus two additive terms describ-
ing changes mainly due to nonlinearity (ln� − ln�0),  
and changes mainly due to variance–covariance (�2) of 
demographic parameters in a stochastic environment. 
The first term can be positive or negative, depending on 
the nonlinearity index D, and can be further decomposed 
into effects of survival and fertility coefficients (code in 
Supporting Information S7). The second term corresponds 
largely to the variance–covariance term in the approxima-
tion of Tuljapurkar (1982), except that here there is also a 
small effect of nonlinearity through C. However, the effect 
of nonlinearity on the second term is very small compared 
to the effect of nonlinearity on the mean, therefore we refer 
to the first term as the nonlinearity component and sec-
ond term as the variance–covariance component. In the 
Supporting Information S4 we demonstrate the accuracy 
of this approximation using simulations.

Applying the decomposition

To explore life history variation in the main components 
of the stochastic growth rate, we used age- and stage-
structured matrix population models (MPMs) from the 
COMADRE Animal Matrix Database (v.4.20.5; Salguero-
Gómez, Jones, Archer, et al., 2016) as a starting point, con-
sidering different scenarios for effects of the environment 
z on the demographic parameters. Each MPM includes a 
projection matrix that depends on the (st)age-specific fertil-
ities, transitions and survival rates for a given time interval 
(see Figure 1). We let this projection matrix represent the 
matrix in the mean environment, A(0). We selected MPMs 
from unmanipulated and free-ranging populations, consid-
ering only ‘mean’ matrices (i.e. one matrix per population) 
with annual time steps. Before the analysis we standardised 
all MPMs to have �0 = 1 by dividing each matrix element 
by �1 calculated from the original matrix (see Supporting 
Information S1 for complete description of selection crite-
ria). One hundred fifty-four MPMs were selected, describ-
ing two amphibian, 35 bird, 22 bony fish, three insect, 61 
mammal and 31 reptile populations, belonging to 107 
species. Generation time was calculated as the mean age 
of parents at the stable (st)age distribution (Bienvenu & 
Legendre, 2015) and ranged from 1.1 to 265.6 years.

Nonlinear relationships

We added environmental effects to the survival and 
fertility coefficients. Since some models were stage 

(2)D = vA��
(0)u =

∑

ij

��
0

�Aij(0)
A��
ij
(0),

(3)
ln
(

�s

)

= E
[

lnVt+1 − lnVt|Vt

]

≈ ln�0 +
�
2
z

2�0
D

(

1 −
�
2
z

4�0
D

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

ln�− ln�0

−
�
2
z

2�2
0

(

B +
�
2
z

2
C

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�
2

,



2112  |      DEMOGRAPHIC RESPONSES TO ENVIRONMENTAL VARIANCE

structured, we first separated out the two matrices 
containing these coefficients: Each stage structured 
projection matrix can be written as A = GS +QB 
(Vindenes et al., 2021). Here G and Q are matrices de-
scribing the stage transition rates of individuals and 
new offspring, respectively, assumed constant in our 
analysis. The matrix B contains the stage-specific 
fertility coefficients fj(z) on the diagonal and zeroes 
elsewhere, while the matrix S contains stage-specific 
survival rates sj(z) on the diagonal and zeroes else-
where. For each MPM, we chose a link function for the 
survival rates sj(z) (logistic or loglog link) and a link 
function for the fertility coefficients fj(z) (logistic, lo-
glog or log link), defining the relationship of A(z) to 
the environmental driver z. For each scenario we de-
fined different link functions (Figure 1b,c), where sj(0) 
and fj(0) corresponded to the values from the stand-
ardised MPM in COMADRE. For instance, with a 
loglog link function, the survival rates are defined 
as sj(z) = exp

(

− exp
(

− β0 − βzS z
))

, and the parameter 
�0 is defined as β0 = − ln

(

− ln
(

sj(0)
))

. The parameter 
βzS defines the strength of the environmental effect 
on sj(z), and affects the curvature and variance of 
survival probability in stage j (Figure  1a; Figure  S6 
shows survival and fertility coefficients for different 
βzS and βzF values). Fertility coefficients are defined in 
a similar way, but here we also defined a maximum 
MaxF =M × fj(0) with M  =  2.5 (results for different 
values of M are shown in Supporting Information S5), 
so that the fertility in the mean environment was set 
as a proportion of the maximum fertility. The values 
in the mean environment sj(0) and fj(0), defined by 
the standardised MPM, affect the second derivatives 
of the link functions (Figure  1a; Figure  S2). A com-
plete description including equations for all link func-
tions and their derivatives is provided in Supporting 
Information S2 and S7.

To limit the number of scenarios we made the sim-
plifying assumption that survival rates of different 
(st)ages all have the same value of �zS, and similarly 
all fertility coefficients have the same �zF. This means 
that there is always positive covariance among sur-
vival rates of different (st)ages and among fertilities 
of different (st)ages (but curvature and variance vary 
according to the demographic parameter values in 
the mean environment; Figure S2), while covariance 
between survival and fertility is controlled in our 
scenarios by the sign of �zS and �zF. The assumption 
of positive covariance is biologically relevant for 
populations where individuals of different (st)ages 
live in the same environment, and where survival of 
different stages and reproduction of different stages 
are affected in the same direction by a key driver. 
A range of other scenarios are also possible but not 
considered here, such as no covariance among demo-
graphic parameters.

Scenarios

We decomposed the stochastic growth rate under 13 sce-
narios (Figure 1c) varying (1) the type of link function de-
fining sj(z) and fj(z), (2) the covariance between survival 
and fertility; negative or positive (scenarios 1–8), and by 
applying (3) special cases of forced buffering, turning off 
the effect of z for certain demographic parameters (thus 
nonlinearity, variance and covariance of demographic 
parameters were affected; scenarios 9–13). In the first 
eight scenarios, effects of z were added to survival and 
fertility of all stages as described above. Four combi-
nations of link functions were tested, including logistic 
functions for all parameters, loglog link functions for all 
parameters and two combinations of log-link function 
for fj(z) with logistic or loglog link functions for sj(z). 
Each of these four combinations was tested using posi-
tive or negative covariance between survival and fertility 
(Figure 1). In the scenarios of demographic lability with 
forced buffering, mature stages were defined as all stages 
equal to or larger than the stage with first non-zero fer-
tility, and immature stages as all stages preceding this 
stage. Either smature(z) or all sj(z) (scenarios 9–11), or all 
fj(z) and simmature(z) (scenarios 12–13) were held constant 
and equal to their value in the mean environment as re-
ported in the standardised COMADRE MPM. We used 
logistic functions for the other demographic parameters 
(Figure  1c). These scenarios reflect different assump-
tions of demographic lability and buffering within the 
least or the most influential demographic parameters on 
population growth, assessed qualitatively depending on 
the position of the populations along the slow–fast con-
tinuum of life histories (Gaillard & Yoccoz, 2003; Sæther 
& Bakke,  2000; Stearns,  1989). Survival of immature 
stages and fertility coefficients are assumed to show a 
higher contribution to population growth in fast-living 
species, while survival rates of the mature stages are as-
sumed to be more influential for slow life histories.

Decomposition

For each population in each scenario, we calculated and 
decomposed the stochastic growth rate ln

(

�s

)

 following 
Equation (3). Since all the MPMs from COMADRE were 
standardised so that ln

(

�0

)

= 0, the stochastic growth 
rate is a sum of the nonlinearity and the variance–
covariance components. The sign of the stochastic 
growth rate directly reflects whether the fitness effects 
of environmental variance (�2

z
) are positive or negative in 

that population and scenario. All calculations shown in 
the main text use the value �2

z
= 1, and altering this value 

only affects the magnitude of the effects (Supporting 
Information  S4). In our analyses, ∣ �zF ∣ and ∣ �zS ∣ were 
both set to 0.4 (Figure 1a; results for other values shown 
in Supporting Information S4).
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RESU LTS

Combined effects of nonlinearity and variance–
covariance among demographic parameters

In all scenarios, life histories with short to intermediate 
generation times (<10 years) showed consistently stronger 
fitness responses to environmental variability than slow 
life histories (Figures 2 and 3). Whether these responses are 
positive or negative, strongly depends on the combined im-
pacts of covariance structure between the (st)age-specific 
survival rates and fertility coefficients and their curvatures.

Positive effects of lability on the mean fitness ln
(

�
)

 were 
found mainly among the fast-living species, and positive ef-
fects occurred through both survival and fertility (Figures 2 
and 3, right panel). The nonlinearity index D correlated 
almost perfectly with this nonlinearity component (i.e. 

ln� − ln�0 in Equation 3; Spearman coefficient >0.999 and 
0.928 in all scenarios without and with bony fish MPMs 
respectively), suggesting that this is a reliable indicator of 
adaptive lability. However, as fitness ln

(

�s

)

 also depends on 
the variance–covariance structure of the demographic pa-
rameters, this must also be taken into account.

With positive covariance between survival and repro-
duction, ln

(

�s

)

 was consistently reduced compared to the 
mean environment, regardless of the type of link functions 
used (e.g. Figure 2a,b). In these scenarios, positive nonlin-
earity components still occurred, but were not sufficient 
to overcome the negative variance–covariance compo-
nent. In contrast, populations of fast-living species could 
show an overall positive fitness ln

(

�s

)

 if survival and fer-
tility covaried negatively (Figures 2 and 3), although less 
frequent when sj(z) and fj(z) were defined by loglog link 
functions (Figure 2d). Positive effects were stronger when 

F I G U R E  2   Mid panels: Stochastic growth rate (fitness) ln
(

�s

)

 across generation time, under four scenarios of covariance and link 
functions of the demographic parameters. Left panels: Illustration of scenarios, with black and grey lines corresponding to the (st)age-specific 
survival rates sj (z) and fertility coefficients fj (z) respectively (functions varied for each stage depending on sj (0) and fj (0); only one function is 
shown for survival and fertility here). We assumed positive covariance between survival rates of different (st)ages and between the fertilities 
of different (st)ages. For each scenario and for each population, positive (panels a, b) or negative (panels c, d) covariance between fj (z) and 
sj (z) were considered, treating fj (z) and sj (z) as logistic functions (panels a, c) or loglog link functions (panels b, d) of the environment z. Right 
panels: Decomposition of ln

(

�s

)

 into main components capturing variance–covariance effects (blue triangles) and lability effects generated 
by nonlinear responses of fj (z) (red circles) and sj (z) (orange circles). Results for bony fish populations and populations with generation time 
>62 years are not shown (NMPMs = 129; see Figure S14 for all MPMs).
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we used a log-link function for the fertility coefficients, so 
that they increased exponentially with the environmental 
driver z leading to strong convexity (Figure 3c,d). For bony 
fish MPMs, the signs of the nonlinearity and variance–
covariance components were the same as for the other 
MPMs, but the magnitude was stronger. Here the under-
lying models from COMADRE showed very high fertility 
coefficients and low survival rates, yielding extremely high 
variance in demographic parameters. Under scenarios 
using loglog link functions for sj(z) and/or fj(z), the small 
noise assumption behind our decomposition of ln

(

�s

)

 was 
violated to a degree where the approximation broke down 
for these MPMs (Supporting Information S6).

Demographic lability with forced buffering

In these scenarios, some survival probabilities and fertility 
coefficients were kept constant and buffered, while others 
were allowed to vary. The identity of labile demographic 
parameters, together with the position of the species 

along the slow–fast continuum, affected each fitness com-
ponent and their combined impact on fitness (Figure 4). 
When lability in all survival rates sj(z) or in only the ma-
ture stages smature(z) was combined with a constant fertil-
ity (Figure 4a,b), only the fastest-living species showed a 
positive ln

(

�s

)

. This positive fitness resulted from a posi-
tive nonlinearity effect of survival rates and a low negative 
variance–covariance effect, reflecting buffering. When la-
bility in fertility fj(z) and survival rates of the immature 
stages simmature(z) was combined with constant survival 
rates in all stages or mature stages, positive values of ln

(

�s

)

 
were also detected, especially when immature survival 
rates and reproduction covaried negatively (Figure 4c–e).

In contrast, for intermediate and slow-living species, 
labile survival rates of the reproductive stages smature(z) 
combined with constant fertility fj(z) and constant sur-
vival of immature stages simmature(z) (Figure  4b) always 
produced negative nonlinearity components, and very 
small negative variance–covariance components, leading 
to an overall negative ln

(

�s

)

. The scenarios of lability in fer-
tility coefficients combined with constant (st)age-specific 

F I G U R E  3   Mid panels: Stochastic growth rate (fitness) ln
(

�s

)

 across generation time, considering positive (panels a, b) or negative (panels 
c, d) covariance between (st)age-specific survival rates sj (z) and fertilities fj (z), treating sj (z) as logistic (panels a, c) or loglog (panels b, d) link 
functions of the environment z and fj (z) as log link functions. We assumed positive covariance between survival rates of different (st)ages 
and between the fertilities of different (st)ages. See Figure 2 for explanation of left and right panels. Results for bony fish populations and 
populations with generation time >62 years are not presented (NMPMs = 129; see Figure S15 for all MPMs).
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survival rates or in only the mature stages (Figure 4c–e) 
showed a weak negative variance–covariance component 
while the nonlinearity component was zero or slightly 
positive, leading to overall fitness ln

(

�s

)

 having values 
close to zero. In other words, constant (st)age-specific sur-
vival rates associated with labile fertility coefficients have 
a stabilising effect on ln

(

�s

)

 of slow life histories (genera-
tion time >10 years; Figure 4c vs. Figure 4a,b).

DISCUSSION

This study emphasises the importance of consider-
ing explicit links between environmental drivers and 
demographic parameters to understand the effects of 

environmental variability on fitness, as these links 
allow effects on nonlinearity to be quantified. We ex-
tended Tuljapurkar's approximation of the stochastic 
growth rate to incorporate effects of nonlinearity in 
demographic parameters. We also defined a nonlinear-
ity index to measure the overall nonlinearity in a given 
life history, reflecting the potential for positive fitness 
effects of environmental variability. Our decomposi-
tion of the stochastic growth rate into nonlinearity and 
variance–covariance components creates a new frame-
work to study their joint impacts on fitness, expanding 
earlier theory focusing mainly on buffering through the 
variance–covariance component. Applying this decom-
position across a range of scenarios and life histories, we 
identified the faster-living species as the most responsive 

F I G U R E  4   Results from scenarios of forced buffering assuming demographic lability only in (a) (st)age-specific survival rates, (b) survival 
rates of the mature stages only, (c) (st)age-specific fertilities and (d, e) fertilities and survival rates of the immature stages. For each scenario, the 
long term fitness ln

(

�s

)

 and its main components reflecting variance–covariance effects (blue triangles) and lability effects due to nonlinearity 
of fj (z) (red circles) and sj (z) (orange circles) are plotted against generation time (mid and right panels; see Figure S16 for all MPMs). See 
Figure 2 for explanation of left panel.
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to environmental fluctuations, both through the nonlin-
earity and variance–covariance components. Positive fit-
ness values were only found when positive nonlinearity 
components were combined with negative covariance be-
tween survival and fertility, leading to a smaller negative 
variance–covariance component. In scenarios with some 
demographic parameters being constant (forced buffer-
ing), lability in both the least and the most expected in-
fluential demographic parameters was found to benefit 
fitness to some extent, but mainly for short-lived species. 
Our decomposition provides a step forward in our un-
derstanding of potential adaptations to environmental 
variability in a wide range of life histories, and stresses 
the importance of characterising both nonlinearity and 
covariance structure of demographic parameters with 
respect to key environmental drivers. Our framework 
is also useful for predicting population responses to in-
creased variability under global change.

Lability and buffering in fast versus slow 
life histories

Several studies have shown evidence that populations 
located at the fast end of the slow–fast continuum are 
more sensitive to changes in the different components of 
climate change. These populations tend to respond more 
strongly to changes in climate drivers (e.g. Compagnoni 
et al., 2021), to environmental variability (e.g. Dalgleish 
et al.,  2010; Drake,  2005; Koons et al.,  2009; Morris 
et al., 2008, but see Le Coeur et al., 2021; Santos et al., 2021), 
to shifts in temporal autocorrelation in the environment 
(e.g. Paniw et al., 2018), and to shifts in the correlation 
structure of demographic parameters (Iles et al., 2019). 
In line with these previous studies, we found that popula-
tions of faster-living species have larger absolute values 
of both nonlinearity and variance–covariance compo-
nents of fitness in a stochastic environment compared 
to those of slow-living species. On one hand, fast-living 
species are more vulnerable to environmental fluctua-
tions due to higher negative variance–covariance com-
ponents, as reported in previous studies (e.g. Dalgleish 
et al., 2010; Morris et al., 2008). On the other hand, they 
have the largest potential for adaptive lability through 
convex demographic responses. Our results show that a 
positive nonlinearity component can overcome the nega-
tive variance–covariance and lead to increased fitness 
especially when there is a negative correlation between 
fertility and survival (we assumed a perfect correlation 
in our analysis). We found that the nonlinearity index D 
is a reliable predictor of the nonlinearity component of 
the stochastic growth rate (Equation 3).

A majority of studies have focused on effects of the 
variance–covariance component alone, without explicit 
reference to the underlying environmental drivers, even 
though other studies (Drake, 2005; Henden et al., 2008; 
Koons et al.,  2009) highlighted the potentially critical 

importance of including such links. Our results support 
this conclusion, and show that the total impact of envi-
ronmental fluctuations on the fitness of structured pop-
ulations may be either positive or negative if nonlinear 
demographic responses are present (Equation 3). The net 
effect depends on the variance–covariance component, 
the shape of the environment–demographic parameter 
relationship, and the strength of the nonlinearity in demo-
graphic parameters. Evidence of convex relationships be-
tween demographic parameters or underlying vital rates 
and key environmental drivers is still limited for natural 
populations, due to data limitation or a priori linear as-
sumptions in the statistical models. Our study highlights 
the need for empirical research to determine more sys-
tematically the shape and curvature of demographic pa-
rameter responses to accurately predict fitness responses 
to environmental variance. Quantifying the relationships 
between environmental drivers and all demographic pa-
rameters remains, however, a statistical challenge for wild 
populations (e.g. separating link functions; Gill,  2001) 
and requires long-term monitoring data (see Lee, 2017 for 
an alternative method to study nonlinearity in the growth 
rate response to an environmental driver with discrete 
levels). This highlights the need to continue and increase 
the ongoing collection of demographic data.

The decomposition of the stochastic growth rate 
considers nonlinearity and variance–covariance of de-
mographic parameters, which in turn are functions of 
underlying vital rates. For instance, fertility depends on 
both fecundity and survival of offspring or parents, de-
pending on the census of the matrix model. Studies ap-
plying the method for specific empirical systems should 
carefully consider how the demographic parameters 
depend on lower-level parameters as functions of envi-
ronmental drivers. Our qualitative conclusions on de-
mographic buffering and lability across generation time 
are general, but quantitative differences are likely pres-
ent for instance for models based on pre- versus post-
reproductive census, when environmental effects arise 
through lower-level parameters. This presents an inter-
esting area for future research using the decomposition.

Role of temporal covariance between (st)age-
specific demographic parameters

While negative covariance between demographic 
parameters could arise from life history trade-offs 
(Stearns, 1989) or opposite responses to the same envi-
ronmental driver, positive covariances between these 
parameters are just as likely to occur in a population. 
Previous theoretical work has shown that positive covar-
iance enhances the variance in population growth while 
negative covariance reduces it (Tuljapurkar, 1982, 1990). 
Our results are in line with this result, showing reduced 
negative variance–covariance component when survival 
and fertility covaried negatively compared to positively.
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Interestingly, there is no general consensus on the de-
gree to which positive or negative covariance in demo-
graphic parameters are more common in the wild, nor 
if the sign, magnitude or type of (st)age-specific demo-
graphic parameters involved correlate with the position 
of a species along the fast–slow continuum (but see a re-
cent comparative study, Fay et al., 2022). From empirical 
studies, positive covariances have been reported predom-
inantly in long-lived species (e.g. Dahlgren et al.,  2016; 
Rotella et al.,  2012; van de Pol et al.,  2010) with sub-
stantial (e.g. Coulson et al., 2005) or weak (e.g. Altwegg 
et al., 2007; Compagnoni et al., 2016; Johnson et al., 2010) 
effects on fitness. In contrast, negative covariances were 
less often detected (Fay et al., 2022), with often small ef-
fects on ln

(

�s

)

. To our knowledge, relatively few studies 
have specifically addressed this question among species 
towards the fast end of the continuum.

In our scenarios, we assumed a perfect, positive tem-
poral covariance between (st)age-specific survival rates 
and between (st)age-specific fertilities, respectively, but 
positive or negative covariances between survival and 
fertility. While these assumptions on the direction of 
covariance between stages and type of demographic pa-
rameters are plausible, they are strong in terms of magni-
tude, and a main environmental driver will never explain 
all of the (co)variance in demographic parameters. Our 
results may therefore overestimate the magnitude of 
the variance–covariance component in the decomposi-
tion, compared to wild populations where correlations 
are likely not perfect. Even though we assumed perfect 
correlation, we found that variance–covariance had neg-
ligible effects on fitness of slow-living populations, re-
flecting a large degree of buffering in these species. For 
fast-living species, covariance had contrasting effects on 
the fitness components. These effects were strengthened 
in scenarios where link functions implied more asym-
metric relationships between demographic parameters 
and environmental driver.

Demographic lability and buffering of different 
demographic parameters

The set of scenarios combining lability in some demo-
graphic parameters with forced buffering in others, 
yielded insights into possible demographic strategies 
along the slow–fast continuum. While different predic-
tions have been made as to which demographic param-
eters should be selected for lability (Hilde et al.,  2020; 
McDonald et al., 2017), we found that demographic la-
bility in the demographic parameters assumed to be the 
most ( fj(z) and/or s

immature
(z)) or least (s

mature
(z)) impor-

tant to fitness, could both lead to enhanced fitness in 
many fast-living life histories due to positive nonlinear-
ity components and reduced variance–covariance com-
ponents. However, such positive effects on fitness were 
stronger and more prevalent with lability in both survival 

of the immature stages and fertility (the most influential 
parameters in fast life histories). In contrast, for slow-
living life histories, lability in the survival rates of ma-
ture stages, believed to have the highest impact on fitness 
led to negative effects on fitness due to negative nonlin-
earity components. Selection for a reduction in variance 
in (and in positive covariance between) the demographic 
parameters that contribute the most to fitness, combined 
with other parameters varying more freely, as stated by 
the demographic buffering hypothesis, seems likely for 
slow-living species, at least those with a similar animal 
life history as in our analysis.

The least and the most influential demographic pa-
rameters in our scenarios were qualitatively assigned 
based on expectations from the demographic buffer-
ing and life history theories (Gaillard & Yoccoz, 2003; 
Sæther & Bakke, 2000; Stearns, 1989). This simple cate-
gorisation, while accurate for some life histories, may be 
different for other populations with the same generation 
time. Further insights would require quantitatively dif-
ferentiating the least and most influential (st)age-specific 
demographic parameters and underlying vital rates in a 
population based on elasticities of the growth rate in the 
mean environment.

In conclusion, this study provides a comprehensive 
framework for assessing the contributions of demo-
graphic lability and buffering on fitness of any given 
population. Positive effects of environmental fluctua-
tions on fitness are only possible to detect if we account 
for the impacts of nonlinear relationships between de-
mographic parameters and environmental drivers. Our 
decomposition of the stochastic growth rate into com-
ponents of nonlinearity and variance–covariance pro-
vides a tool to quantify their relative impacts in different 
life histories and scenarios, and is easily applicable for 
other study systems and scenarios not considered here. 
Across the slow–fast continuum of animal life histories, 
faster-living species have the largest potential for using 
demographic lability as an adaptive response to vari-
ability, while demographic buffering is a main adaptive 
response in slow-living species. These findings have im-
portant implications for predicting population and spe-
cies responses to changes in environmental fluctuations 
under climate change and other anthropogenic impacts.
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