

UNIVERSITY OF OSLO
Department of informatics

Capacity and performance
study of IEEE 802.11e in
WLANs and ad hoc networks

Master thesis
60 credits

Frank Roar Mjøberg

2. May 2007

 2

Abstract

Today, WLANs allow users a limited freedom of mobility. This follows from the observation
that these networks rely on access points to extend the network. The new mobile phones with
integrated WLAN access are a step in the right direction to extend the mobility. To overcome
this low mobility approach, a new type of wireless networks is on our front step - the Mobile
Ad Hoc Network (MANET). MANETs are infrastructure-less, self-configuring networks that
consist of STAs with diverse mobility pattern.

This master thesis focuses on the IEEE 802.11e Enhanced Distribution Channel Access
(EDCA). The IEEE 802.11e protocol became an IEEE standard in November 2005 and is a
very popular research topic. Even though the protocol has been tested for faults and errors a
long time there are still research topics to explore. This thesis will try to answer some of those
topics.

The main topic in this thesis is how the IEEE 802.11e MAC operates in a multihop ad hoc
network. We discuss and evaluated the findings along with simulation results, and compare
our work with earlier work on the same topic that used the legacy IEEE 802.11 standard. The
results we present are interesting throughput results that seem to tell us that the new IEEE
802.11e is better then the original WLAN standard when it comes to multihop ad hoc network
forwarding.

 3

Acknowledgments

This thesis concludes my Master Degree in Computer Science, and is submitted to the
Department of Informatics at the University of Oslo.

I would like to thank my advisors Paal Engelstad at Telenor R&I and Frank Young Li at
UNIK for their excellent guidance, thoughts, good comments and helpful advice during my
work.

Thanks to my family and friends for their patience and encouragement.

Finally, I want to thank Telenor R&I and UNIK for making laboratory and office space
available.

 4

Chapter 1.. 6
Introduction ... 6

1.1 Problem statement.. 6
1.2 Chapter overview ... 7

Chapter 2.. 8
The IEEE 802.11 Wireless Local Area Network (WLAN) and MANET 8

2.1 Introduction .. 8
2.2 IEEE 802.11 Legacy ... 9
2.3 IEEE 802.11 Architecture.. 10

2.3.1 Basic Service Set .. 11
2.3.2 Distribution system (DS)... 13

2.4 Network services... 14
2.4.1 STA services ... 14

2.4.2 Distribution services.. 14
2.5 The MAC layer ... 15

2.5.1 MAC frame exchange protocol .. 15
2.5.2 Hidden node problem.. 16
2.5.3 The RTS/CTS mechanism .. 16
2.5.4 Shortcomings of the RTS/CTS solution .. 17
2.5.5 Exposed node problem.. 17
2.5.6 MAC Access modes ... 18

2.6 The PHY layer .. 26
2.6.1 The radio link .. 26
2.6.2 Spread spectrum.. 27

2.7 MANET ... 29
2.7.1 Introduction ... 29
2.7.2 Routing protocols in MANET .. 31
2.7.3 Overview of routing methods ... 32
2.7.4 Destination-sequence distance vector protocol (DSDV) 33
2.7.5 Optimized Link State Routing (OLSR)... 34
2.7.6 The Dynamic Source Routing Protocol for Multihop Wireless Ad Hoc
Networks (DSR).. 35
2.7.8 The Ad Hoc On-Demand Distance-Vector Protocol .. 36

Chapter 3.. 40
IEEE 802.11e: standard overview, simulation study and comparison with
legacy IEEE 802.11.. 40

3.1 Introduction .. 40
3.2 Hybrid coordination function (HCF) ... 41

3.2.1 Coordination function... 41
3.2.2 The frame format .. 42

3.3 Enhanced distributed channel access (EDCA) .. 44
3.4 HCF controlled channel access (HCCA) .. 46
3.5 Contention free burst and Direct link protocol ... 46

3.5.1 Contention free burst .. 46
3.5.2 Block acknowledgments.. 47
3.5.3 Direct link setup .. 47

 5

3.6 IEEE 802.11 DCF versus IEEE 802.11e EDCA... 47
3.6.1 Parameters ... 47
3.6.2 Simulation .. 48
3.6.3 Analysis .. 50
3.6.4 Conclusion.. 50

3.7 QoS in WLAN... 51
3.7.1 Introduction ... 51
3.7.2 QoS limitations of IEEE 802.11 ... 51

Chapter 4.. 52
IEEE 802.11e: performance study in ad hoc networks 52

4.1 The simulation model... 52
4.1.1 Standard parameter setting.. 53

4.2 Verifying the simulation model ... 53
4.2.1 No Ad Hoc routing agent .. 54

4.3 Throughput from 1 STA to 1 base station using No Ad Hoc (NOAH).................... 54
4.4 Throughput of 1 STA to 1 base station using the AODV routing protocol. 56
4.5 Throughput of 2 STA using AODV in adhoc mode. ... 57
4.6 Comparing AODV and DSDV .. 59

4.6.1 Overview .. 59
4.6.2 Resource utilization... 59
4.6.3 Response to mobility ... 60
4.6.4 Throughput simulation of AODV and DSDV... 60
4.6.5 Throughput table DSDV... 62
4.6.6 Throughput table of AODV in ad hoc mode... 63
4.6.7 Other comparisons of the AODV protocol ... 64

4.7 Throughput results... 64
4.8 Study of the RTS/CTS 4-way handshake in WLAN ... 68

4.8.1 Simulation without RTS/CTS .. 68
4.8.2 Scenarios with the RTS/CTS .. 70

4.9 Capacity of a chain of STAs .. 72
4.9.1 Optimum offered load for ad hoc forwarding .. 72

 6

Chapter 1

Introduction

1.1 Problem statement

The increasing demand for wireless communication whenever and wherever is reaching new
limits every year. The demand for a robust protocol to serve this trend is an absolute necessity
since WLAN has become ubiquitous. The trend is seen in the exponential growth with
handheld devices such as cellular phones, laptops and personal digital assistants (PDA). The
cellular phones are more and more capable of running application only seen in laptops before.
Examples are video calls, web-surfing and streaming television programs using either 3G or
WLAN. The new mobile phones have now the ability to search and use WLAN access points
in the same way as laptops, and laptops have taken over as the main computer equipment the
computer users are buying on behalf of stationary computers [5]. The trend is clear: more
people online everywhere.

A consideration pro wireless communication is for companies that is about to deploy a new
network. These companies can get several benefits by making the network wireless [5].
Examples supporting the wireless solution are where physical and environmental factors make
wiring difficult or simply not possible. The structures in existing buildings may be infeasible
to retrofit for wired network access. Existing structures that are very difficult to wire include
concrete- and historical buildings. WLAN are also an alternative because of lower installation
and maintenance cost then experienced when changes needs to be done in traditional wired
LAN infrastructures. No cable means no re-cabling. Lastly, the operational environment may
not accommodate a wired network, or the network may be temporary and operational for a
short time, making the installation of a wired network impractical. Examples where this is
true include scenarios as emergency relief centres, and tactical military environment (e.g.
sensor networks) [1]. These last scenarios are dependent on a functional protocol that is able
to accommodate multihop in ad hoc networks. This is something we investigate in this thesis.

High mobility hotspots as airports, hotels, train stations (even trains themselves) and offices
are deemed to have a wireless network. Taking the rising quality of service demand in data
transmission for people on the move into consideration, the protocol for wireless
communication becomes more and more complex. So with the need for mobility, the ease of
speed and deployment, the flexibility and low costs, it all directs to a total wireless network
environment.

On the other hand, with the increasing popularity of diverse user applications, including both
best-effort traffic and delay- or loss constrained applications; quality of service (QoS) support
in wireless networks has become more and more important in order to fulfil what the users
demands. QoS is also important to provide so the network can function as optimally as
possible.

QoS can be interpreted as the ability of a network to provide some consistent service for
diverse traffic delivery. Compared to wired networks, to provide QoS in wireless networks is
even more difficult since wireless networks have many changing parameters such as: limited

 7

bandwidth, and error prone radio channels, affected by multipath, shadowing, interference
weather, etc. This is making the task of implementing QoS in WLAN to be very difficult.

Since wireless communications and WLAN are such hot topics in the internet today it is
interesting to study how QoS mechanisms perform in WLANs. We will try to investigate
some of these issues here in this thesis along with how the QoS performs in ad hoc scenarios,
since MANETs are emerging. Our problem statement is how the IEEE 802.11e operates in ad
hoc forwarding networks.

Although this thesis is using the IEEE 802.11e EDCA protocol, the focus is not on the
protocol itself, but how good the throughput is at the last hop in a chain of STAs. We want to
investigate this subject because of earlier studies that conclude that the original IEEE 802.11
standard has a very low throughput when it comes to ad hoc forwarding. The IEEE 802.11e
was submitted to enhance the WLAN with QoS so let us see if it can hold water in our study.

1.2 Chapter overview

Chapter 2 The IEEE 802.11 WLAN and MANET An overview of the IEEE 802.11
protocol and outline of MANET technology.

Chapter 3 IEEE 802.11e: standard overview, simulation study and comparison with
legacy IEEE 802.11 Overview of the IEEE 802.11e protocol, comparison IEEE 802.11
versus IEEE 802.11e through simulation scenarios.

Chapter 4 IEEE 802.11e: performance study in ad hoc networks Simulation of several
scenarios to find out how the IEEE 802.11e operates in ad hoc WLANs.

Chapter 5 Conclusion

 8

Chapter 2

The IEEE 802.11 Wireless Local Area Network (WLAN)
and MANET

The IEEE was developing an international WLAN standard identified as IEEE 802.11 [1].
This project was standardised in 1997 and revised in 1999. The scope of the standard is “to
develop a Medium Access Control (MAC) and Physical Layer (PHY) specification for
wireless connectivity for fixed, portable and moving stations within a local area” [1].

2.1 Introduction

The purpose of the standard is twofold [1]:

– “To provide wireless connectivity to automatic machinery, equipment, or stations
that requires rapid deployment, which may be portable, or handheld or which may be
mounted on moving vehicles within a local area”

– “To offer a standard for use by regulatory bodies to standardize access to one or
more frequency bands for the purpose of local area communication”

The standard not only defines the specifications, but also includes a wide range of services
including [3]:

• support of asynchronous and time-bounded (time-critical) delivery services;
• continuity of service within extended areas via a Distributed System, such as Ethernet;
• accommodation of transmission rates;
• support of most market applications;
• multicast (including broadcast) services;
• network management services; and,
• registration and authentication services.

The goal of the IEEE 802.11 standard is to describe a WLAN that delivers the same service
only found earlier in LANs, e.g. high throughput, highly reliable data delivery, and
continuous network connections.

 9

2.2 IEEE 802.11 Legacy

The original version of the standard released in 1997 specifies two raw data rates of 1 and 2
megabits per second (Mbps) to be transmitted via infrared (IR) signals, or in the Industrial
Scientific Medical frequency band at 2.4 GHz by two implementation in the physical layer.
The physical layer implementations are Frequency Hopping Spread Spectrum (FHSS) and
Direct Sequence Spread Spectrum (DSSS). IR remains a part of the standard but has no actual
implementations.

The figure 2.1 below illustrates the IEEE 802.11 protocol architecture.

Figure 2.1: IEEE 802.11 protocol architecture

In 1999, the IEEE 802.11 Working Group standardized two new modulation techniques for
the physical layer. The first using Orthogonal Frequency Division Multiplexing (OFDM) in
the 5 GHz band IEEE 802.11a, and the second using High- Speed DSSS (HS-DSSS) IEEE
802.11b in the 2.4 GHz band. These implementations have made higher maximum throughput
in wireless environment achievable by up to 54 Mbps and 11 Mbps respectively. Although
IEEE 802.11b is slower than IEEE 802.11a, its range is about 7 times greater, which can be
more important in many situations [10].

In 2002, the working group completed the standardization of an extension to IEEE 802.11b,
named IEEE 802.11g, which adds all of the OFDM capabilities to radios operating in the 2.4
GHz band. IEEE 802.11g is backward compatibly with IEEE 802.11b. This has the expense
of additional overhead when IEEE 802.11b and IEEE 802.11g users coexists on the same
access point (AP), reducing the maximum throughput for IEEE 802.11g users.

Like all IEEE 802 standards, the IEEE 802.11 standards focus on the bottom two levels of the
ISO model, the physical layer (PHY) and link layer (see figure 2.2 below). The MAC is a set

 10

of rules to determine how to access the medium/channel and send data. The details of
transmission and reception are left to the PHY.

IEEE 802.11 uses the same IEEE 802.2 Logical Link control (LLC) [8] and 48-bit addressing
as other IEEE 802 LANs, allowing for very simple bridging from wireless to wired networks,
but the MAC is unique to WLANs. The IEEE 802.11 MAC is very similar in concept to IEEE
802.3 [9], in that it is designed to support multiple users on a shared medium by having the
sender sense the medium before accessing it.

 Figure 2.2: Protocol stack

2.3 IEEE 802.11 Architecture

The IEEE 802.11 architecture appears complex. However, this complexity is what provides
WLAN with its robustness and flexibility. It is the level of indirection handled entirely with
the IEEE 802.11 architecture and transparent to protocol users of the WLAN, that provides
the ability of a mobile stations (STA) to roam throughout a WLAN and appear to be
stationary to the protocols above the MAC that have no concept of mobility. [4]
Architecturally, WLANs usually act as a final link between end-users equipment and the
wired structure of corporate computers, servers and routers. The components of IEEE 802.11
LANs are [5]:

STA

STA are devices with wireless network interfaces and may be mobile, portable, or
stationary. A typical STA are a battery-operated laptop. There is no reason why STA
must be portable. In some environments, wireless networking is used to avoid pulling
new cable, and desktops are connected using wireless LANs.

 11

Access points

A WLAN is usually a link to a wired LAN. Frames on an IEEE 802.11 network must
be converted to another type of frame for delivery to the wired LAN. Devices called
access points (AP) perform this function. An AP is a STA that also provides
distribution services which will be discussed later in this chapter. Initially, AP
functions were put into standalone devices. Newer products are dividing the IEEE
802.11 protocol between “thin” AP and AP controllers.

Wireless Medium

The standard uses radio propagation to move frames from STA to STA. The
architecture allows multiple physical layers to be developed to support the IEEE
802.11 MAC.

Distribution system

When several APs are connected to form a large coverage area, they must
communicate with each other to exchange frames for STAs, forward frames to track
mobile STAs, and exchange frames with wired networks. The distribution system (DS)
is the mechanism to forward frames to their destination. The standard does not specify
any particular technology for the DS, nor does it say it has to be a network. Only the
services it must provide are specified. In most commercial products, the DS is
implemented as a combination of a bridging engine and a DS medium, which is the
backbone network used to relay frames. It is often called the backbone network.

2.3.1 Basic Service Set

The basic building block of an IEEE 802.11 network is the basic service set (BSS). The BSS
forms a group of STAs that communicates with each other inside the coverage area which is
called the basic service area. There are two variations of BSSs as the pictures below shows us.

Figure 2.3: Illustration of a BSS Figure 2.4: Illustration of an IBSS

 12

2.3.1.1 Independent BSS

When all of the STAs in the BSS are mobile STAs and there is no relay connection to a wired
network, the BSS is called an independent BSS (IBSS). STAs in an IBSS communicate
directly with each other and must therefore be within each others radio range. IBSSs are
sometimes referred to as ad hoc BSSs, or ad hoc networks, because they often tend to be
short-lived networks. Examples of such ad hoc networks may be tactical military sensor
networks, networks for emergency relief centres, or simply in an office meeting sharing data
between the STAs.

2.3.1.2 Infrastructure BSS

Infrastructure networks are distinguished by the use of an AP. It is called infrastructure BSS,
but simply referred to as BSS. APs are used for all communication in infrastructure networks.
Frames sent between two STAs in the same basic service area and frames to other networks
must be sent to the AP which provides the relay function. Thus, the communication
originating and ending in the same BSS must take two hops. When all communication is
relayed through an AP, this process causes consume of twice the bandwidth as directed links.
Although the multihop transmission takes more transmission capacity then a directed frame
from sender to receiver, the benefits provided by the AP far outweigh this cost. Two major
advantages are:

• The AP can buffer traffic for a STA while that STA is operating in a very low
power state.

• There is no restrictions placed on the distance between STAs, but all STAs

must be inside the range of the AP. Direct communication between STAs
would save transmission capacity but at the cost of complexity in the PHY
layer because of neighbour discovery inside the basic service area.

A STA must associate with an access point to obtain network services in an infrastructure
network. The process of association is where the STA joins the IEEE 802.11 network, which
is similar to plugging in the network cable on an Ethernet. The STA initiate the association
process and the AP may choose to grant or decline access based on the content of the request.
A STA can only be associated with one AP. There is only practical consideration of how
many STAs an AP can serve, due to relatively low throughput in wireless networks.

2.3.1.3 Extended service set (ESS)

One BSS can create coverage in small offices and homes, but one single BSS can not provide
the desirable benefit of total mobility through a bigger building structure of a large company.
To provide this feature we need to link several BSSs into an extended service set (ESS). The
ESS has the appearance of one large BSS to the logical link control (LLC) sublayer of each
STA [1]. An ESS is created by chaining infrastructure BSSs together with a backbone
network. All the APs in an ESS is given the same service set identifier (SSID), which serves
as a network identifier for the users/nodes. The APs communicate with each other to forward
traffic from on BSS to another and to facilitate the movement of the STAs from one BSS to
another. All external networks see the ESS as one single MAC sublayer networks where all
STAs appear physically stationary.

 13

2.3.2 Distribution system (DS)

The distribution system provides mobility by connecting several access points together. This
is the platform where the APs perform their communication. IEEE 802.11 specifies the DS as
implementation independent and can therefore be either a wired or wireless network. The DS
can be thought of as a backbone network that is responsible for MAC-level transmission of
MAC service data units (MSDU) between APs in an ESS [1]. The DS is a thin layer in each
AP that determines if communications received from the BSS are to be relayed back to a
destination in the BSS, forwarded on the DS to another AP, or sent to an external network [5].
Communications received from the DS to an AP is transmitted to the destination STA in the
APs basic service area.

The DS consists not only of the backbone network, because it has no way of choosing
between different APs. The rest of the DS is the APs themselves which operate as bridges.
They have at least one network interface for a wireless and at least one interface for Ethernet
network. A bridging engine controls the relaying of frames between the networks. Since STAs
in a BSS depend on the DS to communicate with each other, every frame sent by a STA in a
BSS must use the DS. The DS becomes complete as the APs inform one another of associated
STAs for delivering of frames relayed by the bridging engine in the APs.

Figure 2.5: Illustration of a distribution system with one Extended BSS and to connected BSS

Figure 2.5 shows us an illustration of a DS. Several STAs in two different BSS is connected
to their APs. The two BSS in the figure is forming an ESS, connected with each other through
the APs. For one STA, in either of the BSS, to transmit a packet to another STA in either its
own BSS or the other BSS, it needs to transmit this through its AP and therefore through the
DS.

 14

2.4 Network services

There are nine services defined by the IEEE 802.11 architecture. These services are divided
into STA services and distribution services.

2.4.1 STA services

Authentication
This service is similar to physically connecting to a network cable in a wired network. The
service is used to prove the identity of a STA. STAs is not allowed to use the network without
proper authentication. The STA will use its MAC address in the identity exchange with an AP.
This happens prior to association.

Deauthentication
The deauthentication is used to terminate an authenticated relationship. The STA can no
longer access the WLAN after being deauthenticated.

Confidentiality
The design goal of this service is to provide a level of protection for data traversing the
WLAN. This service was in the initial version of the IEEE 802.11 called privacy, and
provided by the WEP (wired equivalent privacy) protocol. New encryption schemes now exist
along with IEEE 802.11i.

MSDU delivery
This data delivery service provides reliable delivery of MAC service data units (MSDU) from
the MAC in one STA to the MAC in one or more other STAs.

2.4.2 Distribution services

The below mentioned services allows STAs to roam freely within an ESS, and a WLAN to
connect to a wired network.

Association
Delivery of data frames to STAs is possible because STAs associate with APs. The
association process makes a logical connection between a STA and an AP. The DS use this
registration information to determine where and how to deliver data to the STA. The AP
needs the logical connection to accept data frames from the STA and to allocate resources to
support the STA.

Reassociation
Similar to the association service, described above. When a STA moves between basic service
areas within a single ESS, it must evaluate signal strength and perhaps switch the AP with
which it is associated [5]. The service is initiated by the STA and it includes information
about the AP with which the STA has been previously associated. By using the reassociation
service, a STA provides information to the AP to which it will be associated that allows that
AP to contact the AP with which the STA was previously associated, to obtain frames that
may be waiting there for delivery to the STA [4].

 15

Disassociation
This service can be used by either an AP or a STA to terminate an existing association. An AP
can force a STA to associate elsewhere and inform one or more STAs that it no longer can
give them a network attachment point. A STA can use this service to inform an AP that it no
longer requires the services of the WLAN.

Distribution
Every time a frame is sent in a BSS this service is invoked. An AP uses this service to deliver
the frame to its destination. The distribution service determines if the frame should be sent to
another AP or to a portal.

Integration
The integration service is used for WLAN connecting to other WLANs or LANs. A portal
performs this service and is provided by the DS.

2.5 The MAC layer

The medium access mechanism defined in the standard is Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA). CSMA/CA is a “listen before talk” (LBT) access scheme.
Unlike nodes in wired LANs, the STA in a wireless network can not detect collision while
transmitting and can therefore not use the CSMA protocol with collision detection
(CSMA/CD). This has to do with radio wave propagation where the transmission of a signal
drowns out the ability of the STA to “hear” a collision while transmitting a frame itself. This
is known as the “near/far” problem [1]. If the medium is busy, the STA that is listening will
not begin its own transmission. This feature is the CSMA portion of the access mechanism
and is implemented, in part, using a physical carrier sensing mechanism provided by the
physical layer [4].

The STA will after detecting another ongoing transmission enter a deferral period determined
by the binary exponential backoff algorithm. The algorithm chooses a random number, called
the contention window (CW), which indicates the amount of time that must elapse before the
listening STA may attempt to begin its transmission again. The CW value doubles, until a
max value is reached, every time a STA must enter a deferral period, i.e. the medium is busy.
The value or range of the CW is reduced to its minimum value once a frame is successfully
transmitted [4].

2.5.1 MAC frame exchange protocol

IEEE 802.11 incorporates positive acknowledgments (ACK) on all transmitted frames due to
the fact that if any part of the transfer fails the frame is considered lost. This function is used
because the media used by the IEEE 802.11 WLAN is noisy and unreliable [4]. The sequence
when sending a frame and receiving an acknowledgment is an atomic operation. This means
that it is a single transactional unit although there are multiple steps in the transaction. This
transaction will not be interrupted by other STAs in the BSS since IEEE 802.11 allows STAs
to lock out contention during atomic operations [5]. The frame exchange protocol adds some
overhead beyond that of other MAC protocols because it is not sufficient on a wireless media
to expect that the destination STA has received the frame correctly. The retransmission of
data frames are a trade off between error rate and bandwidth consumption. This mechanism is
best to deal with at the MAC sublayer since higher layer protocols measures retransmissions
timeouts in seconds [4]. In a WLAN we can also not expect all STAs to be in radio range of

 16

each other. This leads to a situation which is called the hidden node problem. The frame
exchange protocol requires the participation of all STAs in the WLAN. For this reason, every
STA decodes and react to information in the MAC header of every frame it receives [4].

2.5.2 Hidden node problem

Figure 2.6: Illustration of the hidden node problem

Due to the wireless and mobility features in IEEE 802.11 we can not expect every STA in the
WLAN to communicate directly with every other STA or to know the whereabouts of every
other STA. This is the reason why there exists a hidden node problem. An example explains
this best (see figure above): We have two STAs in a basic service area. STA A and STA B
only can communicate with the AP which is located in the middle of these two “edge” STAs.
If STA A and STA B start transmission simultaneously or before each others transmissions is
completely received at the AP, a collision will occur at the AP and both frames will be
unrecognizable. The AP will be the only one knowing a collision has occurred because it is a
local collision. The result is that both transmissions are lost and the frames need to be
retransmitted. To deal with this problem in the wireless media IEEE 802.11 has introduced
two additional frames in the MAC frame exchange protocol, called RTS and CTS. These two
frames are further discussed in the next section.

2.5.3 The RTS/CTS mechanism

To prevent collisions STAs sends out a Request to send (RTS) and Clear to send (CTS)
frames to signal that a transmission is about to happen and find out if the media is busy or not.
The source STA sends the RTS frame to its destination which returns a CTS frame back to the
source. The RTS and CTS frames serve to announce to all STAs in the neighbourhood of both
source and receiver the upcoming frame transmission. The information received via these two
frames tells the STAs receiving them how long the transmission will occur and to delay any
transmissions of their own.

Figure 2.7: Illustration of the RTS/CTS mechanism

 17

The figure 2.7 above shows us that two contending STAs wants to get hold of the channel at
the same time. A RTS frame is sent from both STA A and STA B to the AP. The AP receives
the RTS from STA A first and issues a CTS frame which tells all hearing STA that STA A is
the STA that is allowed to use the channel first. This information is contained in the CTS and
STA A starts transmitting with a data frame. The AP acknowledges the data frame with an
ACK.

The RTS frame, CTS frame, the data frame, and the ACK are all part of the same atomic
operation and solve the hidden node problem. If this frame exchange fails at any point, the
state of the exchange and the information carried in each of the frames allow the STAs that
have received these frames to recover and regain control of the medium in a minimal amount
of time. The source will retransmit a frame that has not been acknowledged after rules for
scheduling retransmissions. To prevent the MAC from being monopolized by attempts to
deliver a single frame, there are retry counters and timers to limit the lifetime of a frame [4].

The RTS/CTS procedure is a required function of the MAC, but it may be adjusted by setting
the RTS threshold in the device driver or disabled. This four-way frame exchange is
performed for frames larger then the threshold. Frames shorter then the threshold are simply
sent [5].

2.5.4 Shortcomings of the RTS/CTS solution

Toh in [7] and Xu, et al in [14] describes why the RTS/CTS mechanism is not a perfect
solution to the hidden node problem. Consider four STAs where STA B is granting a CTS
frame to the RTS frame sent by STA A. This frame can collide with the RTS frame sent by
STA D at STA C. STA D is a hidden node from STA B. Because STA D does not receive the
expected CTS frame from STA C, it retransmits the RTS frame. When STA A receives the
CTS frame, it is not aware of the collision at STA C and proceeds with a data frame to STA B.
This data frame will collide with the CTS frame sent by STA C in response to STA D’s RTS
frame since STA B hears and receives both STA A and STA C’s transmissions.

Toh brings up another problem scenario that can occur when multiple CTS frames are granted
to different neighbouring STAs. STA A transmits a RTS frame to STA B. When STA B is
returning a CTS frame back to STA A, STA C transmits a RTS frame to STA D. Because
STA C cannot hear the CTS frame sent by STA B while it is transmitting a RTS frame to
STA D, STA C is not aware of the communications between STA A and B. STA D sends a
CTS to STA C and since both STA A and C are granted transmission a collision will occur
when both start sending data.

2.5.5 Exposed node problem

The exposed node problem occurs when one STA overhears a transmission from
neighbouring STAs. An exposed STA is a STA in radio range of the transmitter, but out of
radio range of the receiver. In IEEE 802.11 the sensing range can be up to 550 meters, will the
transmission range is up to 250 meters. A STA overhearing a transmission becomes silent, but
could in fact be transmitting it self in the opposite direction without interfering with the
already ongoing transmission, and thereby wasting bandwidth in the WLAN. Toh describes
two different solutions to the exposed node problem with the use of separate control and data
channels or the use of directional antennas.

 18

In the figure 2.8 we see four STAs where the transmission from STA C to STA D is interfered
because STA C hears STA B transmission to STA A. Both transmission could be sent and
received without interference but the sensing range in the radios to the STAs picks up, in this
example, to much information.

Figure 2.8: Illustration of the exposed node problem

2.5.6 MAC Access modes

The IEEE 802.11 standard describes a mandatory support for asynchronous data transfer as
well as optional support for distributed time-bounded services. Asynchronous data transfer
refers to traffic that is not dependent of having stringent quality of service (QoS) needs. An
example of this kind of data traffic is electronic mail and file transfers. Time-bounded traffic,
on the other hand, has certain criteria for QoS, such as delay and jitter, to be able to achieve
acceptable throughput. To support both asynchronous and time-bounded services the standard
holds two different MAC schemes. The first scheme, distributed coordination function (DCF),
is equal to plain IP network with best effort service. The DCF is designed for asynchronous
data traffic, where the nodes with traffic to send compete on a fairly manner for channel
access. The second scheme, point coordination function (PCF), is based on controlled polling
by an AP. This scheme is primarily designed for delay sensitive data traffic.

2.5.6.1 Carrier-sensing functions and the Network Allocation Vector

There are two carrier-sensing functions described by the IEEE 802.11: the physical and the
virtual. Both are used to detect if the medium is busy or not. The MAC reports to higher
layers if the medium is busy.

Physical carrier-sensing functions are provided by the physical layer and depend on the
medium and modulation used [5]. Since hidden nodes can be a potential treat this function
cannot provide all the necessary information.

Virtual carrier-sensing is provided by the network allocation vector (NAV). The NAV is a
timer that indicates the amount of time the medium will be reserved in microseconds [5].
STAs set the NAV to the time they expect to use for the upcoming transmission, including
any frames necessary to complete the operation. When the NAV is non-zero, the medium is
busy, otherwise the medium is idle. By using the NAV, STAs can ensure that atomic
operations, like the four-way frame exchange, are not interrupted. All STAs detecting the
transmission will defer access to the medium and count down from NAV to 0 before
attempting to access the medium again.

2.5.6.2 Timing intervals

A STA decides if the medium is idle before beginning its own transmission based on timing
intervals [4]. Two basic intervals are determined by the PHY: the short interframe space
(SIFS) and the slot time. Three other intervals are built from the two basic intervals: PCF

 19

interframe space (PIFS), DCF interframe space (DIFS), and the extended interframe space
(EIFS). Using different interframe spaces create the possibility to differentiated types of
traffic [5]. High-priority traffic has a chance of accessing the network before lower priority
traffic because high-priority traffic doesn’t have to wait as long after the medium has become
idle.

Short interframe space (SIFS)
This is the shortest interval and used for high-priority transmissions such as RTS/CTS frames
and positive acknowledgment. High-priority traffic can begin once the SIFS has elapsed and
the medium becomes busy.

PCF interframe space (PIFS)
This interval is used by the PCF during contention-free operation. STAs with data to transmit
in the contention-free period can transmit after the PIFS has elapsed.

DCF interframe space (DIFS)
The DIFS is the minimum medium idle time for contention-based services. STAs may
transmit if it has been free for a period longer then DIFS.

Extended interframe space (EIFS)
This interval is only used when an error has occurred in the frame transmission.

The figure 2.9 illustrates the relationship between the different interframe spaces.

Figure 2.9: Interframe spacing relationship

2.5.6.3 Distributed coordination function (DCF)

DCF works as a “listen-before-talk” scheme based on CSMA/CA where stations listen to the
wireless channel to determine if it is free. DCF is a contention-based access control scheme
targeted at delivering classic data services, and allows multiple STAs to interact without
central control. This MAC scheme can be used in either IBSS networks or BSS networks, i.e.,
both in independent and infrastructure networks. In practice, most 802.11 products in the
market only support DCF.

When a STA has data to send, it requests its MAC to transmit a frame. Before attempting to
transmit, each STA checks whether the medium is idle with the physical and virtual carrier
sensing functions and initiate a backoff counter. The backoff counter is a uniformly
distributed random number between 0 and contention window (CW). If both sensing functions
indicate that the medium is not in use for an interval of DIFS, or EIFS, the MAC may begin
transmission of the frame. If the medium is busy the STA must defer access. The MAC will
select a backoff interval using the binary exponential algorithm and increment a retry counter.

 20

Each time the medium is sensed idle by both carrier-sensing functions, the backoff counter is
decremented by one slot time. Once the backoff counter has reached zero and the medium is
still free, the MAC begins transmission. After a data frame has been successfully transmitted
and received at the destination, an ACK frame will be transmitted in return to the source.
Between a data frame and its ACK frame, a SIFS is used to prevent other stations from
accessing the channel.

If the medium becomes busy in the middle of the decrement of the backoff counter, the station
freezes this counter, and resumes the countdown after deferring for a period of time, which is
indicated by the NAV stored in the winning station’s packet header and a DIFS period.
In case of a collision, where two or more stations begin to transmit at the same time, the CW
is doubled, a new backoff interval selected, and the backoff countdown begins again. This
process will continue until the transmission is sent successfully or it is cancelled [4].

Collisions are inferred by no ACK from the receiver. After a collision, all the involved
stations double their CWs (up to a maximum value, CWmax) and compete to gain control of
the medium the next time. When a station succeeds in channel access, thus receives an ACK,
the station resets its CW to CWmin.

Figure 2.10: DCF operation with NAV and 4-way handshake

Figure 2.10 shows how the DCF operation works. After the source STA has deferred access to
the channel for DIFS time and the channel is idle, the source sends a RTS frame to its
destination. With this RTS frame the NAV is set, such that other listening STAs can set their
NAV accordingly, and indicates that the medium will be occupied for the time of the return of
the ACK to the transmitted RTS. The destination STA waits for a SIFS time before sending a
CTS frame back to the source of the RTS frame, and the NAV set accordingly like the RTS
did. After a SIFS period of time the source starts its data transmission. Again the NAV is set
to as long the data frame and its belonging ACK is going to occupy the channel. Upon
receiving the data frame the destination STA sends back to the source an ACK. After DIFS
time the channel can be accessed again by any STA in the BSS.

 21

DCF does not provide QoS support since all stations operate with the same channel access
parameters and have the same probability to gain control over the medium. There is no
mechanism to differentiate different stations and different traffic [2].

2.5.6.4 Point coordination function (PCF)

To support applications that require near real-time service, the IEEE 802.11 standard includes
the point coordination function. The PCF has not been widely implemented and is an optional
part of the standard, though STAs that implement only the DCF will interoperate with point
coordinators [5]. The PCF is built over the DCF, and both operate simultaneously.

This centrally controlled access mechanism uses a poll and response protocol to eliminate the
possibility of contention for the medium. A point coordinator (PC) controls the PCF and is
always located in the AP, thus access to the medium is restricted by the PC. STAs associated
with this AP can only transmit data when they are polled by the PC. Although access is under
control of the PC, all frames must be acknowledged.

In PCF time is divided into super frames. A super frame includes a contention period (CP),
where DCF is used, and a contention-free period (CFP), where PCF is used. A super frame
starts with a beacon management frame transmitted by the PC.

The PCF may be used if contention-free delivery is required, but contention-free service is not
provided full-time. Periods of contention-free service alternate with the standard DCF-based
service. The relative size of the contention-free period can be configured, but the standard
requires that the contention period be long enough to contain at least one maximum length
frame and its acknowledgment.

2.5.6.4.1 PCF operation

STAs that have data to send, request that the PC register them on the polling list. The PC then
regularly polls the STAs (usually in a round-robin manner) according to a predetermined
order for traffic while also delivering traffic to the STAs.

The PCF uses the PIFS, which is a shorter time interval then DIFS, to take control over the
medium. After gaining access to the medium the PC begins a period of operation in the CFP,
and transmits a beacon frame. The beacon announcement tells all STAs receiving the beacon
to adjust their NAV according to the maximum duration of the CFP to lock out DCF-based
access to the medium.

The CFP is called contention free because access to the medium is completely controlled by
the PC and the DCF is prevented from gaining access to the medium. Once the PC is in
control, it begins to deliver traffic to STAs in its BSS and may poll STAs that have requested
to be on the polling list. The PC sends a contention-free poll (CF-poll) frame to STAs that
have requested for contention-free service. The STAs receiving the CF-poll can transmit one
frame for each CF-poll received. Since all contention-free transmissions are separated by the
SIFS and the PIFS, no DCF-based STAs can gain access to the medium because both these
intervals are shorter then the DIFS.

 22

Figure 2.11: PCF operation with NAV

As for QoS support, PCF has some problems. For example, it is very difficult to predict
transmission time of a polled station because the polled station can transmit a frame of any
length between 0 and the size of the maximum MSDU (1500 bytes).

2.5.6.5 Fragmentation

Some large management frames may need to be broken into smaller pieces to fit through the
wireless channel. Fragmentation may also help to improve the reliability in the presence of
interference. Wireless STAs can fragment transmissions so that interference affects only small
fragments, not large frames. The fragmentation feature can result in higher effective
throughput when the amount of data that can be corrupted is reduced [5]. To reassembly the
fragmented frames each frame have the same sequence number and also an ascending
fragment number. Frame control in the packet header gives information if there is coming
more fragmented frames. When a packet is being fragmented, all of the fragments that
comprise the packet are normally sent in one fragmentation burst, which is shown in figure
2.12 below.

Figure 2.12: Fragmentation burst with NAV

 23

There exists a fragmentation threshold set in bytes. This is commonly sat to the same value as
the RTS threshold is. In this master thesis these to thresholds has the same value.

The figure 2.12 above illustrates how the NAV and SIFS are used in combination to control
access to the shared channel. Fragments and their ACKs are separated by the SIFS, so a STA
remains in control of the channel during a fragmentation burst. The NAV is also used to
ensure that other STAs do not use the channel during the burst. The NAV is set, as usual,
from the expected time to the end of the first fragments in the air. The next fragments form a
chain of fragments. Each fragment set the NAV to hold the medium until the end of the ACK
of the next frame. Fragment 0 sets the NAV to hold the channel until ACK1 is finished,
fragment 1 sets the NAV to hold the channel until ACK 2 is finished, and so on. After the last
fragment and its ACK have been sent, the NAV is set to 0, indicating that the channel will be
released after the fragmentation burst completes.

2.5.6.6 Frame format

The IEEE 802.11 protocol defines three different classes of frames: data, control and
management frames. Data frames are used for sending data between STAs, to deal with
handshaking before sending data and acknowledgments the MAC uses the control frames.
Management is used for beacon frames, association, disassociation, authentication,
deauthentication, and for distribution of different kinds of parameters. Each of these frames
has a header with a variety of fields used within the MAC sub layer. There are also some
headers that are used by the physical layer that mostly deal with the modulation techniques
used. These till not be further discussed in this master thesis.

The MAC of the IEEE 802.11 names the data frames as MAC service data units (MSDUs).
The MAC accepts these MSDUs from layers higher up in the protocol stack (see figure 1.2),
e.g. the network layer, for the meaning of reliable sending of those MSDUs to the network
layer in another STA. The MAC adds headers and trailer to create a MAC protocol data unit
(MPDU). With these headers and trailer the MAC can pass the MPDU to the physical layer
for sending over the wireless medium to the other STA. The header and trailer information, in
combination with the information received as the MSDU, is referred to as the MAC frame.
We will discuss in more details the contents of the frame in the next sections.

2.5.6.6.1 The data frame

The format of the data frame is shown in figure 2.13 below. It is more complex than the
format of other LAN protocols. The frame starts with a MAC header. The first two bytes of
the header is the frame control field. The frame control field will be described in details later.
The field contains the information the MAC requires to interpret all of the subsequent fields
of the header. The second field of the frame is the duration field which tells how long this
frame will occupy the channel along with its ACK. This field is responsible to how other
STAs manage the NAV mechanism. The frame header also contains four address fields. The
first two is the source address and the destination address. The nest two address fields are
used for the source base station and destination base station if the frame enters intercell traffic.
The sequence field numbers the fragments if any. The data field contains the data and the
header is ended with a checksum. All these fields are not used in all frames.

 24

Figure 2.13: Illustration of the IEEE 802.11 frame format

2.5.6.6.2 Frame control

The frame control field contains the information the MAC needs to interpret all of the
subsequent fields of the MAC header. The next subsections will provide some details about
the different fields that are contained in the frame control field.

Protocol version

In the frame control field, the protocol version is the first field. This field allows two versions
of the protocol to operate at the same time, since there is only one MAC version of the IEEE
802.11 currently this field is set to zero. If the protocol version indicates that the frame
received was not constructed by a MAC version the STA understand, the STA must discard
the frame and not transmit any response on the channel.

Type and subtype

The next field called type specifies if the frame is either a data, control or management frame.
These three frames can have several subtypes. See table 3-1 in [4 and 5] for full listing of all
frame type and subtype combinations.

To DS and From DS

The To DS field is only used in data frames. Like the name indicates this field tells if the
frame is destined for the DS. Every data frame sent from a STA to the AP will have this bit
set. The bit is set to zero in control and management frames.

There are four combinations for these two subfields. They indicate direct transmission
between two STAs, transmission to or from the DS, or that the WLAN is being used as the
DS. This last combination is to allow the DS to occupy the same medium as the BSS. This
last case is when two AP transmits frames to each other.

More fragment

Like the name indicates this field distributes information if the frame is a fragmented frame or
not. It’s set to zero whenever the last fragment of a data or management frame is transmitted,
in all control frames, and in any non fragmented frames.

 25

Retry

Whenever there happens that a frame need to be retransmitted, this field indicates this with
the bit set to one to aid the receiving STA in knowing that it is a duplicate frame.

Power management

A STA uses this field to announce its power management state. After completion of an atomic
frame exchange this bit is set to one to indicate that the STA will be in power saving mode,
and set to zero if it is still available to communication.

More data

This bit in the frame control fields is used by the AP to indicate to a STA that there is at least
one data frame buffered in the AP to that STA. One indicates there exist a frame and zero
indicates that there are no frames buffered.

WEP/Protected frame

This field indicates with the bit set to one that the frame has been encrypted by link layer
security protocols. This bit may only be set to one in data frames and management frames of
subtype authentication. In all other frame types or subtypes it is set to zero.

Order

The last bit in the frame control field is order. This tells the MAC when the bit is set to one
that the content of the data frame was provided to the MAC with a request for strictly ordered
service. This additional processing information is given to the AP and DS to allow this sort of
service.

 26

2.6 The PHY layer

The second major component of the IEEE 802.11 architecture is the physical layer, from now
on called PHY. We find the PHY at the bottom of the Open System Interconnection (OSI)
stack. The PHY is the interface between the MAC and the radio link. It is responsible for
transmission and receiving of data frames over a shared wireless medium. The PHY is divided
into two sub layers: the physical layer convergence procedure (PLCP) sub layer and the
physical medium dependent sub layer (PMD). Figure 2.14 illustrates the PHY and the binding
to the MAC. The PLCP receives frames from the MAC and adds its own header to help
synchronize transmissions. The PMD is responsible for transmitting any bits it receives from
the PLCP into the air using the antenna. It uses signal carrier and spread spectrum modulation
to transmit data frames over the media. The PHY also incorporates a carries sense indication
function to indicate back to the MAC when a signal is detected [4, 5].

Figure 2.14: The PHY layer with bindings to the MAC

2.6.1 The radio link

Three physical layers were standardized in the initial revision of the IEEE 802.11 [5]:

• Frequency-hopping spread-spectrum (FHSS) radio PHY
• Direct-sequence spread-spectrum (DSSS) radio PHY
• Infrared light (IR) PHY

Later, three further PHY based radio technology were developed [5]:

• 802.11a: Orthogonal frequency division multiplexing (OFDM)
• 802.11b: High-rate direct sequence (HR/DS or HR/DSSS)
• 802.11g: Extended rate PHY (ERP)
• 802.11n: Multiple input multiple output (MIMO) or the high-throughput PHY

The infrared physical layer will not be further discussed because of the lack of
implementations in commercial products.

 27

2.6.2 Spread spectrum

Traditional radio communications focus on getting as much signal as possible into as narrow a
band as possible. Spread spectrum works by using mathematical functions to diffuse signal
power over a large range of frequencies. The receiver performs the inverse operation, and the
signals are reconstituted as a narrow-band signal. Any narrow-band noise is also smeared out
so the signal is easy to detect [5].

2.6.2.1 Frequency hopping spread spectrum (FHSS)

There are two good reasons to use FHSS. First, the electronics used to support FH modulation
are relatively cheap and have low power requirements. Second, a great number of networks
can coexist with reasonable high throughput. Today FH networks have become only a
footnote in the history of IEEE 802.11 largely because of higher-throughput specifications [5].

2.6.2.1.1 Frequency-hopping transmissions

FH uses a predetermined, pseudorandom pattern to rapidly change the transmission frequency.

Figure 2.15: Illustration of Frequency Hopping

The vertical axis of the graph in figure 2.15 divides the available frequency into a number of
slots. Time is also divided into a series of slots. The success of FH transmissions is based on
timing the hops accurately, and that both transmitter and receiver must be synchronized so the
receiver is always listening on the correct frequency.

2.6.2.1.2 FHSS modulation and channel hopping

The modulation used by the FHSS PMD to transmit is two-level Gaussian frequency shift key
(2GFSK) at the basic rate of 1 Mbit/s. This modulation technique encodes data bits as shifts in
the transmission frequency from the channel center. Channels are defined by their center
frequencies, which begin at 2.402 GHz in North America and in Europe (excluding Spain and
France). The number of hopping channels is 79 and spaced uniformly across the 2.4 GHz
band occupying a bandwidth of 1 MHz (2.402 – 2.479 GHz). Channel hopping is controlled
by the FHSS PMD. The hop rate in the U.S. is at least 2.5 hops per second with a minimum
hop distance of 6 MHz [4, 5].

 28

2.6.3.1 Direct sequence spread spectrum (DSSS)

The DSSS had data rates of 1 Mbps and 2 Mbps, the same as frequency hopping. Although, it
quickly became clear that direct sequence technologies had the potential for higher speeds
then FH technologies. In 1999, the IEEE 802.11b was standardized and provided rates of 5.5
Mbps and 11 Mbps. The older 1 and 2 Mbps PHYs and the newer higher data rates PHYs are
often combined into a single interface, even though they are described by different
specifications [5].

2.6.3.1.1 Direct sequence transmission

The basic approach of direct-sequence techniques is to spread a signal over a wider bandwidth
at a reduced radio frequency (RF) power level. Changes in the radio carrier are present over a
wide band, and receivers can perform correlation processes to look for changes. The basic
approach is shown in the figure 2.16 below.

Figure 2.16: Illustration of direct spread spectrum

The initial signal is a traditional narrowband radio signal. It is processed by a spreader, which
take the narrowband input and flatten the amplitude across a relatively wide frequency band.
The transmitted signal looks like low-level noise because its RF energy is spread across a very
wide band. Receivers can by monitoring a wide frequency band, pick up the signal by looking
for changes in the entire band. A correlator recovers the initial signal by inverting the
spreading process. Correlation gives DS transmission also protection against interference
since noise is usually relatively narrow pulses. The correlation function spreads out noise
across the band, and the correlated signal is easily picked up since its amplitude now are of
much greater power then the noise [5].

DS modulation works by applying a chipping sequence to the data stream. The modulation
type used by the DSSS PMD is differential phase shift keying (DPSK), which uses a balance
in-phase/quadrature (I/Q) modulator to generate an RF carrier. The RF carrier is phase
modulated and carries symbols. The chip in the chipping sequence is a binary digit used by
the spreading process. Bits are higher-level data, while chips are binary numbers used in the
encoding process. Chipping streams, which are also called pseudorandom noise codes (PN
codes), must run at a much higher rate then the underlying data. An 11-bit code is combined
with the single data bit, which produce 11 chips that carry the single data bit. This process
spreads the signal power over a much wider bandwidth. The number of chips used to transmit
a single bit is called spreading ratio. Doubling the spreading ratio means doubling the required
bandwidth, but higher spreading ratio improves the ability to recover the transmitted signal [4,
5].

 29

2.7 MANET

2.7.1 Introduction

MANET (mobile ad hoc networking) [26] are describes as a distributed, mobile, wireless,
multihop network that operate without the benefit of any pre-existing infrastructure, except
for the nodes themselves using radio as the communication medium.

A MANET is composed of autonomous, potentially mobile, wireless nodes that may be
connected at the edges to the fixed, wired Internet, communicating without the intervention of
a system administrator or centralized access point.

DARPA discovered the merits of having an infrastructure less network in the 1970s [29].
DARPA had a packet radio project (ALOHA) with a technology that extended the concept of
packet switching to the domain of broadcast radio networks. The ALOHA project first
demonstrated the possibility of using the broadcasting property of radios to send and receive
data packets in a single radio hop system. Later the ALOHA project evolved to a multihop
multiple-access packet radio network (PRNET) with sponsorship from the Advanced
Research Project Agency (ARPA). The difference from ALOHA to PRNET is that PRNET
permits multihop communications over a wide geographical area [29].

2.7.1.1 Motivation

The concept of mobile packet radio networks, where every node in the network is mobile and
where wireless multihop (store-and-forward) routing is utilized comes from the U.S.
Department of Defence (DoD) DARPA PRNet program [27]. Their original motivations for
MANET were for military operations and battlefield survivability. With the freedom of
movement and mobile wireless communications system for coordination, single point of
failures such as centralized control stations was avoided. Another motivation for the military
to use MANET is that military operations often are battled in environments where there is no
terrestrial communications infrastructure, or the infrastructure is destroyed before entering. A
third motivating factor for using MANET is the store-and-forward behaviour that makes
MANET possible to use beyond line of sight (LOS), i.e. using multihop to transfer
information, see figure 2.17 below which shows the principle.

Figure 2.17: The figure shows that node A needs node B as router to reach node C and E in an ad hoc network.

 30

2.7.1.2 Design issues

“A rapidly deployable, self-organizing mobile infrastructure is the primary factor that
differentiates MANET design issues from those associated with commercial cellular systems
[27]”.

As a result of not relying on any existing infrastructure and the use of radio communication,
multihop ad hoc networks have several salient and unique features:

Network topology
The network topologies are dynamic and changes often rapidly because of unpredictable and
arbitrary node movement, repeater failures or recovery, and network congestion state. It is
possible to have cases of very high node mobility without changes in link connectivity,
typically when military units move in same direction, and cases with rapid changes in link
connectivity with no node mobility because of inoperative nodes due to dead batteries. The
density of a network is defined by the number of nodes within a given geographic area.

Shared medium
This feature makes the availability of resources at one node being affected by its contending
neighbours – local interference conditions. Thus, node interconnectivity and link properties
such as capacity and bit error rate cannot be pre-determined. This is one of the major
difficulties when operating with MANETs.

Environment
MANETs can operate in terrain that may prevent LOS operation (urban, rural, maritime, etc).
Distance between the two end links, obstacles, externally generated noise and interference
cause by other transmissions will make the capacity of a wireless link reduced and to be
highly variable. Therefore, the wireless link has a bandwidth-constrained and variable
capacity [28].

Energy
Because of the power-constrained lightweight batteries in MANET nodes, the limited power
supply limits the transmission range, data rate, communication activity and processing speed.
Since there are no fixed base stations in a MANET, the energy burden cannot be transferred to
such and entity in the network. Upon designing a MANET one must take in consideration the
energy consumption of the layers above the physical layer. An inefficient data link, MAC, or
network layer design can result in additional packets being transmitted (and/or re-transmitted)
and more energy being used [27]. There exist several energy-saving techniques such as
shutting down one node. But then the question on how and when to wake up a sleeping node
must be answered.

Distributed operation
Only local information is known to any node in the network since there may not be any
centralized administration to send out global information to the nodes. This implies that
distributed operation is required on every node.

Medium access
TDMA or FDMA schemes are not suitable for medium access because of no centralized
control and global synchronization. Scheduling of frames for timely transmission to support
QoS is difficult because many MAC protocols do not deal with host mobility. Since the

 31

medium is shared the MAC protocol must contend for access to the channel while at the same
time avoiding possible collisions with neighbouring STAs. Access to the shared channel must
be made in a distributed manner, through the presence of a MAC protocol in ad hoc networks
[29].

There are also other MANET design issues that need to be considered. First, distinguish
network nodes from endpoints. Second, user traffic, does the traffic that is supposed to take
advantaged of the network have QoS demands or not? Third, regulatory power spectral
density requirements must be met. Forth, performance metrics must be acknowledged and
implemented and lastly cost-versus-performance tradeoffs must be made if the MANET
design is to be implemented.

2.7.2 Routing protocols in MANET

Since ad hoc networks has several different features then existing networks, the routing
protocols supporting ad hoc networks must be designed specifically to their kind. First, the
routing protocols must provide a self-starting behaviour [27]. Second, the limitations of the
wireless links and devices such as limited bandwidth, finite battery power and limited
computing power added with the dynamic nature of MANETs makes the design of routing
protocols a very challenging task [30]. Lastly, since MANETs operating in wireless medium it
requires that whichever routing protocol chosen must be modified.

The MANET working group in IETF is responsible for developing and evaluating MANET
routing protocols. Many routing protocols have been developed and many are still under
development, configuring and evaluation.

We can classify ad hoc routing protocols in three main groups:

1. Unicast routing protocols
a. Topology based routing

i. Proactive protocols
ii. Reactive protocols

iii. Hybrid protocols
b. Geographical assisted routing protocols

2. Multicast routing protocols
3. Broadcast routing protocols

Figure 2.18 Overview of ad hoc routing protocols

 32

2.7.3 Overview of routing methods

A data packet sent from a source contains always a destination STA identifier in its header
[27]. When this data packet arrives at a STA it checks the header information and forwards it
to its next hop. This forwarding procedure continues until the packet reaches its destination.
How routing tables are maintained is different from one routing method to another. The
common objective is to attempt to route the packet along the optimal path. The next-hop
routing methods can be categorized into two main classes: link-state and distance-vector.

2.7.3.1 Link-state algorithm

In the link-state approach each STA maintains a view of the network topology with a cost for
each link. The STAs maintains this view via periodically broadcasting the link costs of its
outgoing links to all other STAs using a flooding protocol. Wrong information about link cost
can occur because of long propagation delays.

An example of a link-state routing protocol is Open Shortest Path First (OSPF). The link-state
approach has large overhead because of the periodically broadcasting, and will also
experience scalability problems in large MANETs.

2.7.3.2 Distance-vector algorithm

In distance-vector routing each router sends routing information to its neighbours. The
information sent is an estimation of the routers path costs to all its neighbouring STAs.
Distance estimate information is kept up to date via monitoring the cost of its outgoing links
and periodically broadcasts, to all its neighbours, its current estimate of the shortest distance
to every other STA in the network. The routers determine the next-hop information using the
distributed Bellman-Ford algorithm on the received estimated path costs.

One example of a distance-vector routing protocol is the Routing Information Protocol (RIP).
RIP has the counting-to-infinity problem, and has limited usefulness regarding ad hoc
networks because it was not designed to handle rapid topology changes [27]. Like link-state,
distance-vector routing has scalability problems in large MANETs.

2.7.3.3 Proactive routing

The link-state and distance-vector routing protocols are proactive meaning that every STA
maintains routing information to every other STA in the network. This is done by regularly
updating routing tables in every STA via periodically update messages. When the topology
changes the STAs must send information to the other STAs, causing overhead in the network.
The positive is that routes are always known and available on request.

Two examples of proactive routing protocols are Destination-sequence distance vector
(DSDV) and Optimized Link State Routing (OLSR) both will be further discussed later in this
chapter.

 33

2.7.3.4 Reactive routing

Reactive routing protocols make route paths on-demand. A STA initiate a route request to its
packets destination STA and a route reply will be returned if the destination STA is accessible.
No route table or routing information exists in the STAs before a request for a route is made.
Reactive routing protocols wastes less bandwidth then proactive protocols because there is no
routing table information to maintain.

AODV and DSR are two reactive routing protocols that will be further discussed later in this
chapter.

2.7.3.5 Hybrid routing

The hybrid routing protocols combines the advantages to both the proactive and reactive
approach. This master thesis will not further discuss any hybrid routing protocols, only
mention an example in Zone Routing Protocol (ZRP) [33, 34].

2.7.4 Destination-sequence distance vector protocol (DSDV)

The DSDV protocol [11] uses destination sequence numbers in the routing table at every STA
to provide loop-free routes. The consistency of the tables is maintained by triggered updates
to propagate topology changes when these are discovered, but the routing tables are also
periodically updated. These packets are sent using broadcast or multicast and will indicate to
each STA which STA are accessible and the number of hops necessary to reach them.

2.7.4.1 Route advertisements

The DSDV protocol requires that every STA broadcasts its own route table. Since the entries
in the routing tables can change very rapidly, the advertisements must be made often enough
to ensure that every STA can almost always locate every other STA in the entry list [27].
With DSDV every STA must agree to relay data packets to other STA upon request.

2.7.4.2 Route table

The data broadcasted or multicasted by the STAs will contain its new sequence number and
the following information for each new route [27]:

• The destination address
• The number of hops required to reach the destination
• The sequence number of the information received regarding that destination

When transmitting the route tables, the header also contains the hardware address, and the
network address of the STA transmitting if appropriate. The transmitting STA will also create
a sequence number. Upon deciding the forwarding routes, routes with recent sequence
numbers are always preferred. When two routes have the same sequence number, the route
with the smallest metric will be used. Routing information is distributed between STAs by
sending full dumps infrequently and smaller incremental updates more frequently.

The time between sending the routing information packets, is one of the most important
parameters to be chosen. A STA will retransmit any new or substantially modified route

 34

information as soon as possible. This quick rebroadcast can introduce a problem called the
broadcast storm problem [38]. This problem will degrade the shared channel upon STA
movement.

DSDV was one of the early algorithms available to MANETs [37]. It is better for creation of
ad hoc networks with a small amount of STAs. The algorithm presented has no commercial
implementation. But there has been done some modification on the algorithm such as the
AODV protocol, which may be viewed as an on-demand modification of DSDV [Perkins
2001].

2.7.5 Optimized Link State Routing (OLSR)

OLSR [31] is a proactive, table driven routing protocol for MANETs. The protocol utilizes a
technique called multipoint relaying for message flooding and collects data about available
networks and calculates an optimized routing table [32]. OLSR is a hop-by-hop routing
protocol, distributed, and based on the traditional link-state algorithm. The protocol is best
suited for large and dense MANETs, because of the MPRs optimizing of the link-state routing.

The RFC 3626 [35] divides OLSR into two functioning groups. The first is core functioning,
which is always required for the protocol to operate. The second group is called auxiliary
functioning and provides not-mandatory functionality.

2.7.5.1 Multipoint Relays (MPR)

A STA needs to find its neighbours in the network before selecting its MPR. MPR is the key
advantage in OLSR. Via the HELLO message a STA finds its one-hop neighbours and two-
hop neighbours through their response, called neighbour discovery. MPRs are selected one-
hop STAs that’s has the best routes to the two-hop STAs (see figure 2.19). MPRs reduce the
control traffic overhead in the network by forwarding the packets instead of using flooding as
the mechanism to reach other STAs.

 Figure 2.19: MPR selection routine

The HELLO messages are exchanged between neighbours only and each STA broadcast is
periodically via its MPRs. The HELLO message contains the STAs address, a list of known
neighbours, and link status (symmetric or asymmetric). OLSR achieve optimization when it

 35

uses the MPRs as the only STAs to forward the broadcasts messages into the network, thus
reducing message overhead.

2.7.6 The Dynamic Source Routing Protocol for Multihop Wireless Ad Hoc
Networks (DSR)

2.7.6.1 Introduction

The dynamic source routing protocol (DSR) [39] is specifically designed for use in multihop
wireless ad hoc networks with mobile STAs. The two main mechanisms of the protocol
named “Route Discovery” and “Route Maintenance” works together to allow the STAs to
discover and maintain routes to all other destination in the network. The protocol is entirely
an on-demand routing protocol, which give little routing packet overhead, and makes DSR
scale automatically to only that needed to react to changes in the routes currently in use. With
source routing, i.e. the STAs knows the complete hop-by-hop route to the destination, the
protocol allows packet routing to be loop free. The routing is “soft-state”, which avoids the
need for up-to-date routing information in the intermediate STAs through which packets are
forwarded, and allows STAs that are forwarding or overhearing packets to cache the routing
information in them to their own use. These source routes are carried in the data packet header
and stored in a route cache in the STAs. Other advantages in the protocol are rapid recovery
when the routes change. The draft tells us that the protocol is designed mainly for mobile ad
hoc networks of up to about two hundred STAs, even with high mobility among the STAs.

2.7.6.2 Route Discovery and Route Maintenance

The two main components of the DSR protocol work together to allow the discovery and
maintenance of source routes in the ad hoc network.

Route Discovery is used when a STAs wants to send a packet to a destination and does not
already know the route to it. Route discovery works by flooding the network with route
request packets (RREQ). The RREQ is piggybacked with a route reply packet (RREP) and
can contain other small data packets [27].

With Route Maintenance a STA is able to detect if the network topology has changed such
that it can no longer use its route to a specific destination, i.e. a link along the route has
broken down. When Route Maintenance indicates that a source route is no longer working,
the STA can attempt to use any other route to the destination it happens to know, or it can use
Route Discovery again to find a new route, if any. The Route Maintenance mechanism is only
used upon a STA is actually sending packets to a known destination [27].

When a STA in the ad hoc network wants to send a data packet to a destination for which it
does not already know the route, it uses the route discovery process to dynamically determine
such a route. Each STA receiving an RREQ rebroadcasts it, unless it is the destination or it
has a route to the destination in its route cache. Upon receiving a RREQ a STA replies with a
RREP that is routed back to the original source STA. RREQ and RREP packets are also
source routed. The RREQ builds up the path traversed across the network. The RREP packet
route itself back to the source by traversing this path backwards. The route carried back by the
RREP packet is cached at the source STA for future use. The caching of multiple routes at
each STA avoids the overhead incurred by performing a new route discovery every time a
route in use breaks.

 36

A route error packet (RERR) is sent to the source STA if any link in a source route is broken.
The STAs using this link removes this from its cache. A new route discovery process must be
progressed if the source STA still needs this particularly route.

The DSR protocol has another feature called Send Buffer [27]. The send buffer keeps a copy
of the packets that the sending STAs has no source route established to yet. Each packet is
time stamped and is discarded after residing in the send buffer for some time-out period. FIFO
or other empty-queue mechanism can be used to prevent overflow the buffer. A STA should
occasionally initiate a new route discovery process for the packets destination address in a
limited rate fashion. To reduce new route discovery DSR uses exponential backoff to limit the
rate at which new route discoveries may be initiated by any node for the same target.

Several additional optimizations have been proposed and have been evaluated to be very
effective by the authors of the protocol [40]:

Packet Salvaging: If a source route is broken, an intermediate STA can use an alternate route
from its own cache to salvage the data packet. The salvaging STA sends a RERR to the
source STA, and replaces its own source route into the original source route on the packet
before forwarding it.

Gratuitous route repair: A source node receiving an RERR packet piggybacks the RERR in
the following RREQ. This helps clean up the caches of other nodes in the network that may
have the failed link in one of the cached source routes.

Promiscuous listening: When a node overhears a packet not addressed to it self, it checks
whether the packet could be routed via itself to gain a shorter route. If so, the node sends a
gratuitous RREP to the source of the route with this new, better route. Aside from this,
promiscuous listening helps a node to learn different routes without directly participating in
the routing process.

2.7.8 The Ad Hoc On-Demand Distance-Vector Protocol

2.7.8.1 Introduction

The RFC 3561 [41] tells us that the Ad Hoc On-Demand Distance Vector (AODV) routing
protocol was designed for use by mobile STAs in an ad hoc network. The protocol offers
several features:

• Quick adaptation to dynamic link conditions
• Low Processing and memory overhead
• Low network utilization
• Determines unicast routes
• Loop free with sequence numbers

Perkins and Royer made the initial design of AODV after experiencing with the DSDV
routing algorithm. The goal of AODV is to reduce the need for system-wide broadcast to the
furthest extent possible [27]. This means that when two STAs enter communication range of
each other or when two STAs drift out of communication range there will be no system-wide
broadcast in AODV. Broadcast only occurs in such setting when the link status has affect on
ongoing communication or multicast tree maintenance. In AODV, the only global effect is

 37

when a distant STA tries to use a broken link. In DSDV, local movements have global effects.
With AODV only the STAs using this broken link is informed of the link’s changed status.

Another feature to reduce the number of broadcasts when a link break is when a route
between source and destination are available AODV does not add any overhead to the packets
carrying the data. And whenever routes are not used, they are expired and discarded to reduce
the effects of stale routes as well as the need for route maintenance for unused routes. This
aging of routes is difficult to manage when there is no other timing information.

2.7.8.2 Properties

AODV is on-demand driven. Routes are discovered as needed and are maintained only as
long as they are necessary. The protocol offers loop-freedom by the use of sequence numbers.
Every node increases its sequence number each time a change in the topology requires it. In
this way the most recent routes are used whenever route discovery is processed.

AODV supports unicast, multicast and broadcast. With the support of multicast it is possible
that unicast and multicast can share a common knowledge of the routing information.

In contrast to DSR, AODV has only one entry per destination in its routing table. The route
table where each route table entry is composed of the destination address, next-hop to reach
the destination, destination sequence number, hop-count to the destination, and a lifetime (the
time an entry is valid). The route table is used to store pertinent routing information and for
each destination it also maintains a list of precursor STAs. These precursors may be
forwarding STAs on the route and will be notified if there is detected a loss of the next hop
link.

2.7.8.3 Route establishment

The route discovery process is on-demand and uses a cycle of route request and route reply
messages. See figure 4.1 below, which outline the cycle with picture a representing the
propagation of the RREQ to the destination, and picture b representing the propagation of the
RREP back to the source.

Figure 2.20: AODV route establishment

 38

2.7.8.4 Route Discovery

When a STA wants to send a packet to a destination is does not have a valid entry for in its
routing table, the STA must start the route discovery process by broadcasting a RREQ packet
to its neighbours. See figure 4.1 where source STA A wants to reach destination STA F.

The RREQ packet contains the source IP address and current sequence number, the
destination IP address and last known sequence number. Intermediate STAs can only reply to
the RREQ if they have a route to the destination whose corresponding destination sequence
number is greater than or equal to that contained in the RREQ [29].

The RREQ also contains a broadcast ID. With this ID the receiving STAs can distinguish
several RREQ broadcasted from the same source from each other. Meaning that, if they
receive this packet twice they silently discards it, or otherwise if it is the first time seeing this
packet records the information and processes it. See figure 2.21 below for overview of the
RREQ message format.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type |J|R|G|D|U| Reserved | Hop Count |
+-+
| RREQ ID |
+-+
| Destination IP Address |
+-+
| Destination Sequence Number |
+-+
| Originator IP Address |
+-+
| Originator Sequence Number |
+-+

Figure 2.21 RREQ message format

To process the RREQ packet, the intermediate STAs sets up a reverse route entry for the
source in its route table. This entry contains the source IP address and sequence number, as
well as the number of hops to the source and the IP address from which it received the RREQ.
The intermediate STAs can than use this information for further use when forwarding to the
source another time. Figure 4.1 shows an example where the route to the destination STA is
not known. In such scenarios, the RREQ is only replayed by the destination STA (STA F in
this example), which unicasts back to the source an RREP packet.

2.7.8.5 Expanding ring search

When a RREQ is flooded to a large network, this packet becomes a network-wide broadcast
which can make impact on the network. To reduce network-wide broadcasts the source can
use an expanding ring search technique [27]. To use this technique the source STA defines the
time to live (TTL) parameter of the RREQ. If no luck on the first try, the source increases the
TTL value incrementally. This process continues to the destination is reached. The TTL
increment is recorded for later use to reach the destination.

 39

2.7.8.6 Route Maintenance

The route between a source and a destination is only maintained as long as it is needed by the
source. In AODV we have something called an active path. Only movement along an active
path will trigger action from the protocol. A new route discovery will be initiated if the source
moves during a session. When the destination or some intermediate forwarding STA moves
during a session a route error message is sent to the affected source STAs. This RERR is sent
from the STA upstream of the break, closer to the source. The RERR lists all broken links. If
the broken link was used by more than one STA the RERR is broadcasted by the STA
upstream of the break. The neighbours receiving this RERR must mark their route to the
destination as invalid by setting the destination equal to infinity (∞). When a source receives a
RERR it can reinitiate the route discovery process if the route is sill needed.

Figure 4.3 illustrates the route maintenance routine. The original path from the source A to the
destination E is through B, C, and D. STA D moves or is not reachable for some other reason,
causing a break in connectivity with STA C. STA B notices this break and send a RERR to
the source. Once receiving the RERR, the source determines that it still needs the route, so it
initiates route discovery again. The new route to E is now forwarded through F as we can see
by the new route marked in red in figure 4.3 below.

Figure 2.22: RERR propagation in AODV

2.7.8.7 The hello_interval

An additional aspect to the AODV protocol is the hello_interval. If one STA receives a
broadcast and there is no entry to that destination in the route table, the STA creates one. If a
STA has not broadcasted anything within the last hello_interval, it can broadcast a HELLO
packet to inform its neighbours that it still is alive and reachable.

This HELLO message is a special RREP that contains the STAs IP address and current
sequence number. It will not be rebroadcasted outside its neighbourhood because of the TTL
value that is set to 1 [27].

AODV has this feature so the protocol can work with IEEE 802.11 without relying on any
other underlying protocol when in comes to connectivity information.

 40

Chapter 3

IEEE 802.11e: standard overview, simulation study and
comparison with legacy IEEE 802.11

The new MAC of IEEE 802.11e [11] enables the values of the new interframe space AIFS
(arbitration interframe space), CWmin (contention windows minimum value), CWmax
(contention window maximum value) and TXOP (transmission opportunities) to be set on a
per-class basis for each STA. At each STA traffic is directed to up to four different queues,
with each queue assigned different MAC parameter values. This is intended to greatly benefit
the challenging QoS management in wireless networks.

3.1 Introduction

The wireless medium has relatively limited bandwidth and much higher packet-error rates
with high packet overhead, contrary to wired networks. Real-time applications such as Voice
over IP (VoIP) telephony and other multimedia applications are causing challenging QoS
requirements in wireless networks. Together with the demand for more and more bandwidth
in the wireless environment, network administrators need a mechanism to control these QoS
requirements. End-users expect not only the mobility provided by the IEEE 802.11, but also
QoS support when they are on the move. This is the reasons why IEEE developed the 802.11e
standard, which brings QoS enhancement to the IEEE 802.11 standard. The IEEE 802.11e
standard is limited to specifying the PHY layer and to enable the MAC layer to do
prioritization and classifying services over a WLAN. But since QoS is a system-level concept
it may involve higher layers to provide end-to-end QoS services. While IEEE 802.11e
provides some mechanisms to control the use of available wireless bandwidth, there is no
such thing as guaranteed QoS over a WLAN connection [5].

 The key benefits of the IEEE 802.11e standard are [6]:

• Reduces latency by prioritizing wireless packets based on traffic type
• Enables AP to schedule resources based on client/STA data rate and latency needs
• Improves wireless bandwidth efficiency and packet overheads

When networks become overloaded with the basic access scheme used in IEEE 802.11, the
performance becomes equally poor for all users and all type of data. QoS modifies the access
rules to provide a useful form of “controlled unfairness”. The IEEE 802.11e MAC provides
techniques to classify different data traffic types into different classes and give higher priority
traffic/classes preferential access to the medium.

 41

The IEEE 802.11 has a coordination function in PCF as an option to deliver QoS. Although
the PCF has potential, it has too many limitations to support QoS in WLAN [6]:

• Lack of mechanisms to differentiate different traffic types
• No mechanism for the STAs to communicate their QoS requirements to the AP
• No management interface to control an setup CFP
• The polling schedule is not tightly controlled

The hybrid coordination function described in IEEE 802.11e is supposed to provide the
functions that the PCF does not have, for the support of QoS in a wireless environment, along
other functions and capabilities. The hybrid coordination function will be further discussed in
the next section.

The IEEE 802.11e standard also brings new names for a STA and an AP. A STA that supports
QoS is referred to as a QoS enhanced STA (QSTA) and it is mandatory to implement the HCF.
A QoS supported AP is referred to as a QAP. A QoS supported BSS is called a QoS BSS,
abbreviated QBSS, and the simplest type of an IEEE 802.11e WLAN is the QoS independent
basic service set (QIBSS), i.e. an ad hoc QBSS.

3.2 Hybrid coordination function (HCF)

The IEEE 802.11e QoS framework defines a new coordination function called the hybrid
coordination function (HCF). This coordination function multiplexes between two medium
access modes: a distributed scheme called enhanced distributed channel access (EDCA), and a
centralized scheme called HCF controlled channel access (HCCA). See figure 3.1 which
illustrates the relationship between IEEE 802.11e HCF and the legacy DCF and PCF of the
IEEE 802.11 standard. The HCF replaces the DCF and PCF in a STA that has implemented
IEEE.802.11e.

Figure 3.1 The IEEE 802.11e architecture

3.2.1 Coordination function

The coordination function is the logical function that determines when a STA within a BSS is
allowed to transmit frames and may be able to receive protocol data units (PDUs) via the
wireless medium. The coordination function within a BSS may have one hybrid coordination
function (HCF), or it may have one HCF and one PCF and will have one distributed
coordination function (DCF). A QBSS will have one DCF and one HCF [11].

 42

The legacy PCF has different access rules based on polling by a point coordinator in an AP.
To separate between a contention-free period and a contention period the PC uses special
control frames called Beacon frames to divide the time. During a CFP there is a continuing
exchange of frames between the STA and the AP with no collisions. Unlike the PCF, the HCF
defines a uniform set of frame exchange sequences that are usable at any time.

Both access schemes, EDCA and HCCA, enhance or extend functionality of the original
MAC coordination function methods, DCF and PCF, specified in IEEE 802.11a/b/g. See
figure 3.2 which illustrates the relationship and differences between DCF, PCF and HCF.

During the contention period, EDCA is used for channel access, whereas during the
contention free period, HCCA is mostly used.

Figure 3.2: MAC coordination functions

While PCF use polling technique and DCF has an equally fair access probability to the
wireless medium, the HCF allocates a QSTAs the right to transmit data through transmit
opportunities (TXOP). A TXOP grants a QSTA the right to use the medium at a defined start
time and with a maximum duration time. During this time the QSTA can transmit a series of
frames if it wants to. This TXOP is a new option whereas the legacy 802.11 technology only
provides the opportunity to send one frame at a time. The duration of the TXOP is globally
communicated in the Beacon frame from the QAP for STAs using EDCA.

3.2.2 The frame format

The HCF introduces two new acknowledgment options: no acknowledgment and block
acknowledgment. These options are specified in the QoS control field of the data frames. See
figure 3.3 for the frame format in IEEE 802.11e.

The no acknowledgment option is useful for applications where the data would not be useful
after the delay of a frame that had to be retransmitted, such as streaming using multimedia
applications. The block acknowledgment option is optional to implement but can increase
efficiency by collecting the ACK frames for multiple received data frames into a single
response, thus reducing overhead in the channel.

 43

Figure 3.3: Frame format in QoS

The only new field in the MAC header from the original IEEE 802.11 frame format is the
QoS control field. The QoS control field will be further discussed later.

The two new subtype bits in the frame control field indicate whether this is a QoS packet or
not. The new control frame subtypes are block acknowledgment (BlockAck) and block
acknowledgment request (BlockAckReq).

The IEEE 802.11e expands the IEEE 802.11 standard with eight new data subtypes. These
subtypes were reserved before and correspond to the non-QoS data subtypes in the IEEE
802.11 standard.

3.2.2.1 QoS control field

The TID (traffic identifier) subfield in the QoS control field describes the traffic category of
traffic stream of the data in the frame. The first bit of this field decides if the next one is in use.
The next three bits indicate if the QoS is a user priority (UP) for a prioritized traffic class
(TC), or a traffic stream identifier (TSID) for traffic parameterized stream. We can see the
QoS control field in figure 3.4. More details about this field can be found in table 5-3 in [4] or
in [11].

Figure 3.4 Outline of the QoS control field

The EOSP (end of service period) bits tells the QSTA that the current frame is just what the
name says, the end of the service period. The ACK policy indicates normal ACK, no ACK, no
explicit ACK or block ACK. All the details to ACK policy can be found in table 5-4 in [4].
The last subfield called TXOP has several roles and depends if the frame is transmitted by a
HC or a QSTA that is not an AP.

 44

3.3 Enhanced distributed channel access (EDCA)

This is the prioritized carrier sense multiple access with collision avoidance (CSMA/CA)
access mechanism used by QSTAs in a QoS basic service set (QBSS). This access mechanism
is also used by the QAP and operates concurrently with the hybrid coordination function
(HCF) controlled channel access (HCCA), which will be discussed in the next section.

EDCA contention access is an extension to the DCF and includes prioritized access to the
wireless medium [4]. QoS support in EDCA is realized by introducing four different access
categories (AC) based on the IEEE 802.1D standard [12], defined to provide priorities. The
mapping from UP to AC is shown in table 3.1 below.

Table 3.1 User Priority to Access Category mapping

AC_VO is the highest priority and is intended for voice traffic that has stringent demands
regarding jitter, latency and bandwidth. AC_VI is the next highest priority and used by video
traffic and have high bandwidth demands, but lesser demands regarding jitter and latency as
AC_VO. AC_BK is meant for background traffic and has higher priority then AC_BE which
is similar to the legacy best effort standard in IEEE 802.11.

As shown eight user priority levels are available, which is mapped to an AC and corresponds
to one of four transmit queues. The priority between the ACs is defined by the EDCA
parameter set maintained and advertised by the QAP.

Table 3.2 EDCA parameters

Access
Category AIFS CW_min CW_max

AC_VO 2
((AC_min + 1)/4) -
1

((AC_min + 1)/2) -
1

AC_VI 2
((AC_min + 1)/2) -
1 AC_min

AC_BK 3 AC_min AC_max
AC_BE 7 AC_min AC_max

 45

Table 3.2 shows the recommended EDCA parameters to be used with IEEE 802.11e. The
differentiation between the four ACs is AIFS and the minimum and maximum values of the
contention window. These three parameters can be used together or alone to obtain
differentiation. All the parameters will by decreasing them give better chance to win the
contention of the wireless medium, since the lower the values are the higher priority you get.
The parameters are announced in the beacon frames sent by the HC. This will have the effect
that all STA uses the same parameter setting for each AC and thereby produce fairness.

Figure 3.5 displays the internal contention for the medium in EDCA. Each AC contends
independently for TXOPs using a set of EDCA parameters received from the QAP in Beacon
frames and in all Probe Response and (Re) Association Response frames. The CW and
backoff times are adjusted to change the probability of gaining access to favour higher
priority classes. The parameter set can be adjusted dynamically and are stored locally at the
QSTA. The parameters will be different for each AC. STAs and APs use the same access
mechanism and contend on an equal basis at a given priority.

When a collision occurs within a QSTA, the collision is resolved in the QSTA by granting the
TXOP to the AC with the highest priority. The data frame of the lower priority AC behaves
like there has been an external collision, thus it doubles its CW.

Contention-based medium access can experience very low channel throughput when
overloaded. In overloaded conditions the CWs become large because of many external or
internal collisions and the STAs spend more time in backoff delays than sending data. By
using admission control it is possible to regulate the amount of data contending for the
medium.

EDCA admission control is mandatory at the AP, but optional at the STA. In this master
thesis the STAs does not support admission control. The reason for this is that this feature is
not relevant for our problem definition. See [15] for detailed discussion on DiffServ [23] with
admission control in 802.11e EDCA, and [24] for a measurement- and model-based approach
of admission control in EDCA.

 Figure 3.5: Internal contention in EDCA

 46

3.4 HCF controlled channel access (HCCA)

HCCA uses a hybrid coordinator (HC) to centrally manage the medium access to provide
parameterized QoS. The intent of this coordination function is to increase efficiency by
reducing the contention on the medium, with a polled-based mechanism. Parameterized QoS
refers to the capability of providing QoS flows from applications with specific QoS
parameters for the benefit of having tighter control of latency and scheduling.

The HC has a highest medium access priority over all QSTAs because it has the shortest
waiting time of all contending QSTAs. The HC assigns TXOP under consideration of the
current QoS requirements in the BSS. The difference between a HC and the legacy PC is that
the HC can control the medium in both the CFP and the CP. A nearly continuous sequence of
frame exchange can be maintained with short, fixed delays between frames, under the control
of the HC. The interframe delay does not increase with increasing traffic, unlike the CW
parameter used in EDCA mode.

The HC is responsible for controlling the allocation of time on the medium through the use of
polled TXOPs. The traffic-flow requirements of the QSTAs are specified using traffic
specifications (TSPEC), and describe requirements such as data rate, delay, packet size and
service interval. TSPECs are requested by the QSTA, and the QAP may grant or deny a
TSPEC. The IEEE 802.11e specifies the use of TSPECs for negotiating admission control for
both EDCA and HCCA [4, 6].

Different priority classes in HCCA are implemented by the so-called Traffic Stream (TS)
operation. TSs are a set of MSDUs transmitted with the same traffic characteristics and QoS
requirements as defined in the Traffic Specification (TSPEC) element during the creation of a
traffic stream performed by QSTAs.

The TSPEC describes the TS characteristics such as the data rate, MSDU size, service
interval, delay bound and the service start time. QSTAs requesting TXOPs indicate to which
TS the TXOP shall belong to. If there are no TS fulfilling the traffic flow’s QoS requirements
available, new TS can be created by the requesting QSTA. Every QSTA can support up to
eight TSs from the HC to itself and eight in the opposite direction. After the HC has received
all the TXOP requests, it schedules their assignment according to a scheduling algorithm. The
IEEE 802.11e standard does not specify a mandatory scheduling algorithm but proposes a
simple scheduler based on the mean data rate, nominal MSDU size and maximum service
interval or delay bound information provided in the TSPEC.

3.5 Contention free burst and Direct link protocol

Together with block acknowledgments the contention free burst (CFB) and direct link setup
(DLS) are the optional features in the IEEE 802.11e standard.

3.5.1 Contention free burst

If a STA or an AP has time left in an already granted TXOP, a CFB can be used to send
additional data frames. Without contending for the medium the STA or AP can resume
transmitting after a SIFS time delay. The CFB must fit within the TXOP that was given in
first place under EDCA or HCCA. As we tell, CFB is able to improve efficiency in the

 47

channel by eliminating some contention, and by that a little less delay and bandwidth lost in
idle time.

3.5.2 Block acknowledgments

We mentioned the control frame subtypes, block acknowledgment and block acknowledgment
request before. This feature is new to IEEE WLAN [4]. With the legacy IEEE 802.11 all
frames sent was acknowledged by an ACK from the MAC. With block ACK several data
frames can be transmitted without the hassle of being ACKed every time a frame is
successfully received. This efficiencies the wireless channel for the better to all user since
every frames sent has a significant overhead for radio transmissions. This feature is initiated
through a setup and negotiation process between STA and AP. After the setup, multiple
frames can be transmitted in a CFB with SIFS delay in between.

3.5.3 Direct link setup

With the direct link setup (DLS), two STAs in a QBSS can send directly to each other without
the hassle of going through the AP. The legacy IEEE 802.11 MAC demands that every packet
must traverse the AP to be sent, even to the nearest neighbor in the BSS. The DLS is setup via
the AP, since it is not allowed in the ordinary cases to transmit directly between each other,
through request and response frames. After the handshake setup, every AC in each STA can
communicate with another AC in another STA. In the ad hoc mode this feature can not be
pulled, with the lack of AP.

3.6 IEEE 802.11 DCF versus IEEE 802.11e EDCA

Since we now have talked about both the IEEE 802.11 standard and the IEEE 802.11e
standard. Let us see in a simulation environment how they behave and what the differences
are.

3.6.1 Parameters

The experiment IEEE 802.11 versus IEEE 802.11e is with the original parameters that both
standards recommend. The legacy DCF has MAC settings as this: DIFS 2, minimum
contention window 31 and maximum contention window 1023. DIFS are set in microseconds
and the contention windows in slots. The EDCA parameters are different for each AC:

Flow AIFS CW_min CW_max
AC_VO 2 7 15
AC_VI 2 15 31
AC_BK 3 31 1023
AC_BE 7 31 1023

The TXOP parameter for every AC is set to zero, meaning that this parameter will not matter
in this simulation.
The packet length is 1500 byte and the 7 STA are spread on a chain with 200 meters apart. In
the simulation of IEEE 802.11 the increment increase the offered load with 100 kbps each
time. The experiment has 30 increments meaning that the maximum offered load is 3000
kbps. The IEEE 802.11e simulation has 4 ACs with each AC starting and increasing with 25
kbps, which equals the IEEE 802.11 simulation run. The data rate is 2 Mb and the PHY

 48

equals IEEE 802.11b standard for both. It is important to notice that this simulation is without
the RTS/CTS mechanism. The RTS/CTS mechanism will be analyzed later in this thesis.

3.6.2 Simulation

First we simulate with IEEE 802.11e and its 4 access categories.

Throughput IEEE 802.11e

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000 3500

Offered load (Kbps)

Ch
ai

n
th

ro
ug

hp
ut

 (K
bp

s) Throughput AC_VO (Kbps)

Throughput AC_VI (Kbps)

Throughput AC_BK (Kbps)

Throughput AC_BE (Kbps)

Figure 3.6: Throughput of IEEE 802.11e with 4 ACs.

The figure 3.6 shows that the differentiation the standard was developed for is functioning.
The AC_VO gets the highest throughput and remains in control of the channel from the start
and throughout the simulation. We can see that the lowest priority is given almost nothing in
bandwidth. The AC_VI is given a fairly good throughput, but still well below the upper
priority.

We have to see the total throughput of the figure above to compare with the throughput of
IEEE 802.11 standard.

 49

Total Throughput 802.11e all ACs (Kbps)

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500

Offered load (Kbps)

C
ha

in
 th

ro
ug

hp
ut

 to
ta

l (
Kb

ps
)

Total Throughput all AC
(Kb)

Figure 3.7: Throughput of IEEE 802.11e all ACs

As we can see from figure 3.7 the total throughput of all four ACs together is on average
between 300 kbps and 250 kbps. This gives us a throughput on average for all ACs of 275
kbps. In the throughput table, which is the basis of these figures, I can see that the average
throughput is fairly close to 275 kbps.

Now that we have the comparable throughput graph of IEEE 802.11e let’s see how the IEEE
802.11 will perform in the same simulation environment.

Total throughput 802.11

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500

Offered load (Kbps)

C
ha

in
 th

ro
ug

hp
ut

 to
ta

l (
Kb

ps
)

Total throughput
(Kb)

Figure 3.8: Throughput graph of IEEE 802.11

 50

The figure 3.8 shows that the IEEE 802.11 has a crack in the throughput early in the
simulation run, but is stable from the drop point on throughout the simulation. The other
interesting thing to notice in this figure is that the average throughput seems to outperform the
throughput of IEEE 802.11e displayed by figure 3.7. When I look at the throughput table of
figure 3.8 it’s clearly that the total throughput is greater then the table of figure 3.7. On
average the IEEE 802.11 is 10 kbps better then IEEE 802.11e when we look at the total
throughput.

3.6.3 Analysis

If we look at the differentiation the IEEE 802.11e provides in figure 3.6, it is clear that this is
working on behalf of the higher priority class(es). Higher priority is given higher throughput.
The problem with this “hard” differentiation is that in heavy load cases, a low priority transfer
is given a very small chance to get data through the channel. The higher priority classes starve
the lower priority classes.

It is important to analyse the throughput graphs a little further. A multimedia application will
be better off using IEEE 802.11e even though the IEEE 802.11 graph show greater total
throughput. The reason for this assumption is that if we had been using the IEEE 802.11 best
effort case with four applications, they would have seen there throughput been divided by
four, since the channel access is given on an equally fair basis. This means that the average
throughput would have been 285 kbps divided by four, approximately. This equals 71.25 kbps
per application. This is not good enough for a multimedia application running in a wireless
environment. The bandwidth demand is far more greater then this for several multimedia
applications.

If we had being using IEEE 802.11e the application with the stringent demands for QoS, like
a multimedia application, would have been granted the AC_VO parameters and obtained a
throughput on average well above the 71.2 kbps that the best effort service which IEEE
802.11 grants. If we take a look at the figure 4.6 again, we can see that the AC_VO is actually
having a “throughput run” of around 190 kbps throughout the simulation. This is closer to
what a multimedia application demands, but this application would presumably not be
resident as the last hop in an adhoc chain though.

3.6.4 Conclusion

The conclusion of this simulation is that IEEE 802.11 gives the best total throughput. But the
standard to use if you have QoS demanding applications is IEEE 802.11e. To be sure of the
delivery of QoS to real time traffic with IEEE 802.11e one must have some kind of admission
control and scheduling regime. This will also help the fairness of the channel access to the
lower priority classes.

 51

3.7 QoS in WLAN

With the increasing popularity of multimedia applications, QoS support in communication
networks, both wired and wireless, has become more and more important. QoS can be
interpreted as the ability of a network to provide consistent parameters as bandwidth, delay,
jitter and latency. This is a more challenging task to handle in wireless networks because of
the nature of the network meaning, limited bandwidth, error-prone radio channels, multipath,
shadowing, interference, and so on.

3.7.1 Introduction

Different applications have different QoS demands. File transfer applications like e-mail and
video are not delay sensitive. Web-surfing are more delay sensitive, while real-time
applications such as IP-telephony and video-streaming have strict delay demands.

Audio is more sensitive to jitter than video. If you are streaming a video no harm to the view
is done if all frames are delayed by exactly the same time. By this way the viewer does not
see any shimmering in the video he or she is watching. But if the transmission time varies
randomly, the result on the screen will be in many cases not watch able. A jitter of even only a
few milliseconds will clearly ravage an IP-phone conversation.

3.7.2 QoS limitations of IEEE 802.11

To begin with I will summarize the QoS limitations of IEEE 802.11.

The DCF lacks support beyond best-effort service. This is a major factor to be to provide QoS
to multimedia applications in WLAN. Further, the DCF has no guarantee in bandwidth,
packet delay or jitter and the throughput decreases by many factors in heavy load
environment.

The PCF has firstly an inefficient central polling scheme. Further, it has unpredictably
beaconing delay due to incompatible cooperation between CP and CFP. A third driving factor
to why PCF is not scheduled to run QoS in WLAN is that the transmission time of the polled
STA is not known. Therefore it can be quite difficult to calculate when the next STA can
transmit its packets.

 52

Chapter 4

IEEE 802.11e: performance study in ad hoc
networks

The Ns2 [15] discrete event simulator version 2.28 is used for the simulations in this thesis.
The Ns2 version is patched with the IEEE 802.11e EDCA extension model implemented by
the Telecommunication Networks Group (TKN) at the Technical University of Berlin,
Germany [16]. This EDCA extension model is an upgrade from the EDCF patch used together
with Ns2 version 2.26. Our simulation model can choose between using ns2 version 2.26 or
2.28.

The simulations in this thesis could also have been tested with the J-Sim [17] or OPNET [18].
The Ns2 was chosen because of the already implemented IEEE 802.11e functionality. With
either J-Sim or OPNET the whole functionality of the IEEE 802.11e would had to be
implemented. This would have caused a lot of unnecessary work contrary to use and extend
the already implemented 802.11e functionality in the Ns2 event simulator. In the early stage
of this master thesis we taught that comparing Ns2 with OPNET would be a good idea. But
this was put on hold because of the trouble of the expensive license to this simulator both at
UNIK [19], IFI [20] and Telenor R&I [21]. Only Telenor had one license to this product (at
that time being), but the licence was in use by an employee at Telenor.

Throughput is measured per hop, and the traffic is aggregated at the first STA in the chain
with linearly increasing offered load. The last hop in the chain is the only throughput results
shown in this thesis. The other hops are not included, but can be displayed if desired. The
total offered load in the chain is shared between the four different ACs the IEEE 802.11e
provides. There is no other weighting then the underlying differentiation in the EDCA MAC
between the four ACs. Since the IEEE 802.11e MAC implements a scheduling system
between the four different ACs, it is interesting to find out how this scheduling system
differentiates between the classes, and how this affect the throughput compared to the legacy
IEEE 802.11 MAC.

The simulation model used for this thesis also measures minimum, average and maximum
latency between the STAs in the chain. These results are not presented, but are available if
desired.

4.1 The simulation model

Many different scenarios have been tested in order to develop as realistic simulation as
possible and to discover the same results that [22] did in their work. It is important that we
find scenarios that are as realistic as possible to make reasonable assumptions, and find
scenarios that we can compare the simulations in [22] with IEEE 802.11e scenarios.

 53

The scenarios explored use a chain topology with no AP and varying number of STAs. The
traffic is always aggregated from the first STA in the chain and is destined to the last STA in
the chain.

In this master thesis we have during the simulation runs used for the most the same set of
parameters. These parameters are set as like as [22]. If some of the test runs or other
simulation scenarios does not used the same parameter set, it will be noted in detail which
parameter(s) that differ.

4.1.1 Standard parameter setting

Packet length 1500 bytes
Traffic type EXP
Transport protocol UDP
Start time 2 seconds
Stabilize time 28 seconds
Stop time 330 seconds
Queue length 50
Node distance 200 meters
MAC data rate (data frames) 2 Mbps
MAC basic rate (control frames) 1 Mbps
Contention Free Burst disabled
Admission control disabled
Beacon handler disabled
Admitted rate disabled
Ad Hoc mode enabled
Physical layer settings IEEE 802.11b
EDCA parameters:

AC_VO: [2, 7, 15, 0]
[AIFS, CWmin, AC_VI: [2, 15, 31, 0]
CWmax, TXOP limit] AC_BK: [3, 31, 1023, 0]
 AC_BE: [7, 31, 1023, 0]

The antenna height of transmitter and receiver is 1.5 meters. The propagation model is Two
Ray Ground model. The Two Ray Ground model is used because we have line-of-sight
between the STAs (chain topology) and reflection of ground is considered.

4.2 Verifying the simulation model

The first thing we had to do was to verify our simulation model. We run several simulation
runs to verify that or simulation model was correct. The first test run was about to show us
that the scripts gave almost the same result running NOAH with 1 base station and 1 STA,
and running AODV in the same matter. AODV is specifically designed for MANETs, as
mentioned earlier, but can also be used in wired networks as well. Here we use the protocol
with a link to a base station.

The test run showed us that our simulation model was up and running, tested, and now also
verified.

 54

The parameters differs some from the rest at this master thesis. The parameters that are not the
same as the rest of the simulation runs in this master thesis are the simulation run time, this
test run is run in 130 seconds of simulation time. The fact that we used base station in this test
run is only because the tcl script was written this way at the time we did the test. This test is
also different because of the use of base station and therefore not in ad hoc mode, unlike the
rest of this thesis. The node distance here in this test is only 0.5 meters, and the packet length
is 1024 byte. Also, the data rate at the MAC layer is 16 Mbps. This is different from other
simulations done is this thesis. The main simulations done her are ran with a data rate of 2
Mbps.

4.2.1 No Ad Hoc routing agent

AODV is described very well another place in this thesis, but NOAH has not been introduced
yet.

NOAH was, together with AODV, chosen to be used in the verification of our simulation
model. They both can be used link to a base station, thus without the use of the ad hoc mode.
This will create a stable simulation where the result is meant to equal each other as much as
possible.

NOAH is a wireless routing agent and can be used in Ns2 as the routing protocol although it
does not send any routing related packets. This routing agent is typically used as the name
says, in no ad hoc mode, where direct communication between two STAs or between a STA
and an AP. It also supports mobile nodes in cases where Mobil IP [25] is used.

4.3 Throughput from 1 STA to 1 base station using No Ad Hoc (NOAH)

The result from the first scenario with 1 STA and 1 BS using NOAH was as expected.

We can clearly see the differentiation upon using IEEE 802.11e with four access categories
classes in the figure 4.1. This differentiation is expected and shows that the highest access
category AC_VO is given the highest throughput over time. Likewise the lower ACs is treated
with expected manner. The AC_VI is given the second most throughput, and so on.

 55

Throughput 802.11e NOAH 1STA 1 BS

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

Total offered load (Kbps)

Ch
ai

n
th

ro
ug

hp
ut

 (K
bp

s)

Throughput AC_VO (Kbps)

Throughput AC_VI (Kbps)

Throughput AC_BE (Kbps)

Throughput AC_BK (Kbps)

Figure 4.1: Diagram of throughput test run with NOAH

The throughput table can in detail show how the throughput is for each AC and also the total
of them all.

Total Recv kbps
AC_VO

Total Recv kbps
AC_VI

Total Recv kbps
AC_BE

Total Recv kbps
AC_BK

Total BW
kbps

103,3829 103,5882 94,9644 107,5921 409,5277
193,4195 201,8379 203,0699 199,374 797,7013
303,2702 292,2852 300,7036 297,6237 1193,8827
399,1587 404,9079 401,5199 400,596 1606,1824
505,0055 500,6936 504,6975 502,6442 2013,0409
614,9589 580,8744 610,031 584,7756 2390,64
692,8811 702,4289 710,2314 690,4172 2795,9585
791,5415 784,663 793,8001 803,9638 3173,9683
894,5137 891,2285 909,708 903,5482 3598,9984
979,7251 1005,2885 999,6419 1001,1819 3985,8373
1076,1268 1076,9481 1094,6064 1102,7168 4350,3981
1170,9886 1174,5818 1203,8411 1191,6241 4741,0357
1279,1967 1305,2734 1276,7328 1283,098 5144,3009
1374,2638 1383,5036 1388,1235 1333,0955 5478,9864
1476,6201 1473,5402 1470,5629 1143,9879 5564,711
1575,3831 1598,6879 1580,003 872,0302 5626,1043
1663,4691 1674,1461 1533,2908 787,5376 5658,4435
1756,5855 1766,6466 1452,802 711,1553 5687,1895
1856,8885 1868,3869 1321,3917 661,6712 5708,3383
1958,8341 1964,378 1210,5143 597,506 5731,2325
2051,7453 2067,2476 1132,4895 500,0776 5751,56
2177,7143 2146,9151 1006,1098 446,0762 5776,8154

 56

2264,7736 2253,8912 921,5144 364,0475 5804,2268
2346,3917 2339,7185 815,7702 318,1566 5820,0371
2435,915 2340,7452 761,3582 290,9505 5828,9689
2526,4648 2302,4514 725,323 283,456 5837,6953
2634,4676 2219,4987 734,0495 256,866 5844,8818
2753,4555 2163,0334 687,0292 248,9608 5852,479
2820,598 2124,0209 667,831 243,725 5856,1749
2903,448 2075,7687 653,5607 225,656 5858,4335
3001,2871 2013,6569 640,625 210,2564 5865,8253

Table 4.1 Listing of throughput with 1 base station and 1 STA using NOAH

The total throughput of 5865,8253 kbps is a very high number. Remember that we are
simulating with a possible data rate of 16 mbps in these scenarios.

4.4 Throughput of 1 STA to 1 base station using the AODV routing protocol.

It is not easy to see any difference in the throughput diagram below (figure 4.2) for the
AODV protocol in contrast from the diagram with the NOAH protocol above. This tells us
that our simulation test run is very similar, and that was the thing we wanted to discover. If
these two simulation runs have had big differences in throughput our simulation model would
have been wrong.

Throughput AODV 1STA 1BS 802.11e

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

Total offered load (Kbps)

C
ha

in
 th

ro
ug

hp
ut

 (K
bp

s)

Throughput AC_VO (Kbps)

Throughput AC_VI (Kbps)

Throughput AC_BE (Kbps)

Throughput AC_BK (Kbps)

Figure 4.2: Throughput graph of 1 BS and 1 STA using AODV

To see the difference we must look at the throughput table for the AODV simulation run as
well. The graphs are not able to tell us exactly how similar these two simulation runs are.

 57

Total Recv
kbps AC_VO

Total Recv
kbps AC_VI

Total Recv
kbps AC_BE

Total Recv
kbps AC_BK

Total kbps all
AC

102,9723 97,6337 106,4628 97,0177 404,0865
201,9406 206,8685 200,4006 198,5527 807,7624
301,2169 297,4184 303,0649 290,0265 1191,7268
407,3718 397,6187 403,8812 400,9039 1609,7756
504,1842 508,7014 498,127 488,5792 1999,5918
600,5859 619,1682 592,4755 604,8978 2417,1274
694,0104 694,2157 698,3223 689,4932 2776,0417
793,5948 797,496 790,6175 793,4921 3175,2003
877,9848 898,2096 899,4416 898,8256 3574,4616

1015,0416 1003,0298 998,5126 984,8583 4001,4423
1084,2373 1108,5687 1072,0202 1114,1126 4378,9388
1199,7346 1186,3882 1208,6664 1183,8216 4778,6108
1261,6411 1288,2312 1295,8283 1277,4514 5123,152
1383,0929 1385,5569 1388,8421 1322,0077 5479,4997
1462,1444 1485,5519 1472,1029 1143,2692 5563,0684
1597,1479 1583,9042 1575,8964 877,6768 5634,6254
1668,9103 1687,8005 1527,3362 779,1191 5663,1661
1757,7148 1779,8903 1432,2691 712,6953 5682,5696
1846,5194 1859,4551 1354,2443 647,4008 5707,6197
1956,1649 1963,2487 1236,3857 579,1291 5734,9284
2027,6192 2053,1826 1142,2426 527,8996 5750,944
2123,9183 2141,9872 1036,6011 473,2823 5775,7888
2231,2024 2249,2713 925,8263 391,5615 5797,8616

2349,369 2334,688 822,1354 315,7953 5821,9877
2446,0787 2342,2852 766,2861 278,5281 5833,1781
2539,9139 2292,6983 736,3081 272,471 5841,3912
2622,9693 2254,6099 699,657 265,4898 5842,7259
2736,6186 2164,2653 705,4061 245,1623 5851,4523
2824,3965 2144,3485 652,0207 233,0479 5853,8136
2908,6839 2066,3236 664,4431 222,4735 5861,9241
3021,9226 2001,2345 638,1611 205,5339 5866,852

Table 4.2 Listing of throughput with 1 base station and 1 STA using AODV

With a total throughput of 5866,852 kbps the AODV protocol is the “winning” protocol by 1
kbps. Obviously, the two protocols are very similar in use for this simple scenario.

Comparing the AODV protocol with the NOAH protocol shows that the two protocols are
very similar with the same scenario. The difference in throughput does almost not exist. This
result is great for us and for our further work.

Since our research work in this master thesis is done in ad hoc mode, is it important to also
verify that the simulation model is running as it should in ad hoc mode. The phyton and tcl
scripts we have created and that makes the simulation running is able to switch between ad
hoc mode and infrastructure mode.

4.5 Throughput of 2 STA using AODV in adhoc mode.

We will do the same scenario check here like we have done above. First we run the simulation
to get a graph of the throughput.

 58

Throughput AODV 2 STA in adhoc mode

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

Offered load (Kbps)

C
ha

in
 th

ro
ug

hp
ut

 (K
bp

s)

Throughput AC_VO (Kbps)

Throughput AC_VI (Kbps)

Throughput AC_BK (Kbps)

Throughput AC_BE (Kbps)

Figure 4.3: Diagram of the throughput of 2 STA using AODV I adhoc mode

The figure 4.3 shows that the throughput result running in adhoc mode is quite similar the
other two simulation run using the infrastructure mode. Once again we have to see the
throughput table to tell if there are any differences. All parameters are still the same, only the
switch from infrastructure to adhoc mode has changed.

Offered
Load

Throughput
AC_VO
(Kbps)

Throughput
AC_VI
(Kbps)

Throughput
AC_BK
(Kbps)

Throughput
AC_BE
(Kbps)

Total
Throughput
all AC
(Kbps)

100 99,8923 100,8163 99,379 101,227 401,3146
200 200,298 202,3513 206,0472 192,0848 800,7812
300 298,8557 301,0116 300,293 297,829 1197,9893
400 398,5427 406,2425 410,5544 402,9572 1618,2968
500 501,1043 501,8229 502,0282 504,1842 2009,1396
600 590,6275 592,9888 596,89 599,5593 2380,0656
700 695,1397 693,5998 690,3145 701,9156 2780,9696
800 795,5454 803,8612 789,5908 776,8605 3165,8579
900 893,1791 899,1336 893,8977 893,3844 3579,5949

1000 991,7368 997,6913 957,0363 984,7556 3931,22
1100 1080,2334 1074,5868 1089,8838 1085,5719 4330,2759
1200 1191,4188 1190,0841 1198,1946 1175,3005 4754,998
1300 1273,1395 1311,844 1264,3104 1276,3221 5125,616
1400 1382,169 1384,7356 1379,9104 1343,8752 5490,6901
1500 1480,008 1477,1334 1472,2055 1133,7215 5563,0684
1600 1556,5956 1590,8854 1566,862 906,1148 5620,4577
1700 1684,3099 1676,1994 1539,2453 762,8981 5662,6527
1800 1752,9923 1759,4601 1456,2926 714,6459 5683,3909
1900 1870,1322 1846,9301 1325,1903 664,5458 5706,7984

 59

2000 1950,2103 1968,1766 1215,0316 598,2247 5731,6431
2100 2055,0305 2095,2749 1120,9911 485,294 5756,5905
2200 2171,4518 2193,9353 991,2235 429,4446 5786,0552
2300 2279,7626 2224,7346 925,1077 374,8272 5804,4321
2400 2348,8557 2324,1136 832,2992 314,974 5820,2424
2500 2434,683 2339,6159 764,2328 296,1864 5834,718
2600 2518,2517 2311,5885 739,2854 267,5431 5836,6687
2700 2625,7412 2238,2863 730,6616 250,8088 5845,4978
2800 2703,9714 2213,6468 681,896 249,2688 5848,7831
2900 2816,0807 2133,1581 676,7628 229,5573 5855,5589
3000 2923,2622 2073,0995 656,9486 207,4845 5860,7948
3100 3004,367 2022,8966 619,9895 217,1349 5864,388

Table 4.3: Throughput table of 2 STA using AODV in adhoc mode.

The results in table 4.3 show that the simulation model is correct. The adhoc simulation run is
only 1 and 2 kbps less, at the maximum offered load in total throughput, then the other two
simulation runs. This verifies that our simulation model works in both infrastructure and
adhoc mode.

4.6 Comparing AODV and DSDV

Both AODV and DSDV use the distance vector routing algorithm. The distance vector
routing algorithm operate by having each router (i.e. STAs in MANETs) to maintain a route
table giving the best known distance to every destination and which link to use to get there.

4.6.1 Overview

The AODV is a strictly on-demand reactive routing protocol. This means that the route a STA
needs to use to reach a destination is discovered upon request only when needed, by route
discovery, and only maintained as long as this path is still necessary.

The DSDV is a proactive table driven routing protocol. Using DSDV every STA has route
tables that list all available destinations and the number of hops to each one of them. Each
STA is required to broadcast to each of its current neighbours its own routing table.

4.6.2 Resource utilization

In the way AODV is reactive and on-demand driven, this protocol is sensitive to resource
usage. Most of the control traffic is emitted during route discovery and this protocol consumes
most of the resource and bandwidth of the channel under actual packet transmission.

Because information about all neighbours to a STA needs to be maintained at all times using
DSDV, the protocol requires a large amount of storage complexity and channel usage. Hence,
there is a greater demand for storage capacity for STAs in MANETs then when using AODV.

The control overhead adds to the necessary processing in each STA is also increasing the
battery depletion time and channel utilization.

Another downside to DSDV compared to AODV is that every STA must maintain
information about routes to destination that may never be used. This wastes possibly scarce
resources in the MANET.

 60

AODV greatly simplifies the storage complexity and reduces energy consumption by keeping
only the information needed about active routes stored at a STA. The processing overhead is
less than with DSDV, as little or near no useless routing information is maintained.

4.6.3 Response to mobility

AODV and DSDV have different strengths and weaknesses when it comes to node mobility in
MANETs. Unlike wired networks, the topology in wireless ad-hoc networks may be highly
dynamic, causing frequent link breaks to on-going packet transmission.

When a link break occurs, new routes to a destination need to be found. As DSDV always has
one or more route entry to one destination in its route table information, routes can be
immediately re-routed to a new link reaching the same destination.

Because AODV is a reactive protocol, this immediate re-routing is not possible like DSDV is
capable of, so a route discovery process must be initiated by the source STA to find a path to
the same destination STA.

In situations where the network traffic is sparse, DSDV offers less routing overhead due to
having found the routes pro-actively up front. AODV, on the other hand, will have to first
discover a route before the actual data packet can be transmitted. This calls for more control
overhead per packet. In cases where the network traffic is more or less static, however,
AODV may perform better, as the amount of control overhead per packet decreases.

4.6.4 Throughput simulation of AODV and DSDV

It is easier to show the differences regarding AODV and DSDV when used in the same
simulation environment by diagram examples and tables.

The diagram for both AODV and DSDV are displaying only the result of throughput at the
last hop in a chain topology with 7 STAs, thus the hop between STA 6 and STA 7. The
bandwidth starts for each AC at 100 kbps. For each increment all four access categories of the
IEEE 802.11e standard is raised by 100 kbps in offered bandwidth. The simulation run is
without the RTS/CTS mechanism. The packets sent are all 1500 byte big and the traffic type
is EXP (exponential poison).

As we can se in diagram 4.4 the DSDV throughput is somewhat not consistent. The AC_VO
gets the most of the channel throughput, which is expected, but the swing in throughput when
the offered load in the chain is at 1400 kbps is strange. As we can see from figure x.1 the
AC_VO and AC_VI gets a deep fall in throughput. This behaviour is seen in all my
simulation runs with DSDV, but I cannot explain it that much. It may be the DSDV protocol
that behaves this way, or it may be a fault in my Ns2 simulator model. But the highest ACs
gets the best throughput, in the same way as the standard says it should. And the
differentiation in AC’s is also as it shall be.

 61

Throughput 802.11e using DSDV Adhoc mode

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000

Total offered load (Kbps)

Ch
ai

n
th

ro
ug

hp
ut

 (K
bp

s)

Throughput AC_VO (Kbps)

Throughput AC_VI (Kbps)

Throughput AC_BK (Kbps)

Throughput AC_BE (Kbps)

Figure 4.4: Throughput of using DSDV in ad hoc mode

The figure 4.5 of AODV in the same simulation environment shows no sign to drop in
throughput at any specific offered load instance. With AODV the AC_VO gains quickly
control of the channel. The diagram also shows that the channel throughput for all four ACs is
steady and that is expected.

It is not easy to see the difference in the overall throughput of the channel comparing AODV
and DSDV in the diagrams, so we will look at the throughput tables that made the diagrams.
But we can see that AC_VO is given a far better throughput with AODV then with DSDV.
The same goes to AC_VI, AODV is better then DSDV. The third thing we can see is that with
AODV the best effort class AC_BE is given nearly nothing as throughput.

 62

Throughput 802.11e using AODV AdHoc mode

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000

Total offered load (Kbps)

Ch
ai

n
th

ro
ug

hp
ut

 (K
bp

s)

Throughput AC_VO (Kbps)

Throughput AC_VI (Kbps)

Throughput AC_BE (Kbps)

Throughput AC_BK (Kbps)

Figure 4.5: Throughput using AODV in ad hoc mode

The figure 4.5 also shows that AODV has very stable throughput and that the four access
categories classes of IEEE 802.11e is given a differentiated throughput of the channel as
expected. The AC_BE and AC_BK have been mixed up in this figure. The simulation run is
showing the right result, but the text box to the right of the diagram has named the two AC
wrong. The yellow throughput is the AC_BK and the cyan throughput is AC_BE.

4.6.5 Throughput table DSDV

We can see in table 4.4 that the routine of getting the STAs in the network to get route
information in their routing table to its neighbours is taken up considerably amount of the
channels throughput. This control packet overhead is mainly at the first increment and then
the channel utilization evens out.

Nr of
Nodes

Measured
Hop

Offered
Load

Total Recv
kbps AC_VO

Total Recv
kbps AC_VI

Total Recv
kbps AC_BK

Total Recv
kbps
AC_BE

Total
Recv
kbps

7 6 100 87,1875 91,6406 69,1406 28,1641 276,1328
7 6 200 165,3125 67,5391 10,625 4,2188 247,6953
7 6 300 168,2031 60,9375 9,5312 3,7109 242,3828
7 6 400 145,3516 57,7344 12,7344 1,4844 217,3047
7 6 500 164,5312 63,125 10,4297 1,3672 239,4531
7 6 600 150,7422 54,5312 10,5859 2,2266 218,0859
7 6 700 166,1719 65,5469 12,0703 4,4141 248,2031
7 6 800 165,7812 65,4297 11,7969 3,5156 246,5234
7 6 900 161,6016 63,0469 9,6484 1,7578 236,0547
7 6 1000 168,8281 66,4062 11,0547 0,8594 247,1484
7 6 1100 169,9219 64,8438 9,4531 1,1719 245,3906

 63

7 6 1200 163,0078 63,3203 11,4453 1,3281 239,1016
7 6 1300 149,2188 57,5781 9,4922 3,0078 219,2969
7 6 1400 93,3594 39,4531 6,9531 1,4453 141,2109
7 6 1500 173,5156 63,8672 9,6094 0,9375 247,9297
7 6 1600 155,2734 63,8281 12,3828 3,3203 234,8047
7 6 1700 149,4141 53,5156 7,9297 1,1719 212,0312
7 6 1800 125,1562 53,75 12,5 6,1328 197,5391
7 6 1900 172,3438 63,8672 8,0469 0,8984 245,1562
7 6 2000 143,4766 55,0781 8,5156 2,3047 209,375
7 6 2100 168,75 64,4922 10,4688 1,875 245,5859
7 6 2200 168,4766 66,6406 10,7031 3,3984 249,2188
7 6 2300 167,8125 66,7578 11,8359 0,5859 246,9922
7 6 2400 161,4453 66,9141 10,5859 2,3828 241,3281
7 6 2500 169,6094 65,2344 9,2969 0,6641 244,8047
7 6 2600 149,375 56,2891 9,7656 2,2266 217,6562
7 6 2700 151,9531 59,6875 11,875 4,1797 227,6953
7 6 2800 148,9844 59,1016 8,9844 1,3281 218,3984
7 6 2900 161,9531 59,9219 11,0156 0,7812 233,6719
7 6 3000 144,2578 53,3203 12,6562 3,3594 213,5938

Table 4.4: Throughput of DSDV with 7 STAs in ad hoc mode measured at the last hop

Why the DSDV simulation run experience a significant drop at increment 14, i.e. at 1400
kbps offered load in the channel, is not known. We run the same simulation several times but
this crack in throughput delivery happened every time at the 14.increment.

4.6.6 Throughput table of AODV in ad hoc mode

Nr of
Nodes

Measured
Hop

Offered
Load

Total kbps
AC_VO

Total kbps
AC_VI

Total kbps
AC_BK

Total kbps
AC_BE

Total kbps
all ACs

7 6 100 98,9844 101,2109 74,2969 31,9922 306,4844
7 6 200 192,5 78,8672 10,8984 2,2656 284,5312
7 6 300 190,3125 73,2031 9,8828 0,7812 274,1797
7 6 400 187,4219 73,5938 13,7891 0,7031 275,5078
7 6 500 188,5156 73,1641 11,8359 1,0156 274,5312
7 6 600 191,8359 69,4922 12,4219 0,625 274,375
7 6 700 192,9688 71,4062 8,7891 0,9766 274,1406
7 6 800 192,4219 69,6094 12,7734 0,7812 275,5859
7 6 1000 187,5391 74,8438 11,9531 0,7812 275,1172
7 6 1100 189,1797 75,6641 9,375 0,9375 275,1562
7 6 1200 187,1875 72,3047 11,2109 1,25 271,9531
7 6 1300 190,8594 69,9219 12,3828 1,0156 274,1797
7 6 1400 191,7969 70,7422 11,0938 0,5469 274,1797
7 6 1500 194,5703 67,9688 10,5469 0,5078 273,5938
7 6 1600 192,7344 71,1328 10,5078 0,7031 275,0781
7 6 1700 192,1094 74,4922 8,0469 0,7422 275,3906
7 6 1800 188,4766 74,1797 12,9688 0,8594 276,4844
7 6 1900 191,25 71,6406 11,6797 1,1719 275,7422
7 6 2000 191,3281 73,5938 10,7812 0,8203 276,5234
7 6 2100 190,9375 72,0703 11,3281 1,0547 275,3906
7 6 2200 189,8828 71,7578 11,6406 0,9375 274,2188
7 6 2300 188,0078 73,9844 10,1562 0,7812 272,9297
7 6 2400 188,3594 74,5703 9,4531 1,4062 273,7891

 64

7 6 2500 191,9531 73,3203 9,9609 0,7031 275,9375
7 6 2600 191,7188 72,8125 10,8594 0,8594 276,25
7 6 2700 194,4141 70,3125 10,4688 0,8594 276,0547
7 6 2800 190,1172 73,4766 9,2969 0,8984 273,7891
7 6 2900 191,0547 73,6328 8,8672 0,8203 274,375
7 6 3000 189,8828 69,9219 12,8516 1,0547 273,7109

Table 4.6: Throughput of AODV with 7 STAs in ad hoc mode measured at the last hop

By comparing the two tables 4.5 and 4.6 we can see that overall AODV gets a better
throughput then what DSDV does. AODV does not have the starting downfall in throughput
because of the nature of the simulation. In the simulation for both AODV and DSDV it is only
the first STA in the chain that generates packets. All this packets are to be sent to the last node
in the topology, thus STA 7. The

Overall AODV only manage to utilize to channel with an average total throughput of 267
kbps. DSDV on the other hand makes on average of 231 kbps on the total throughput.

The DSDV simulation also show much less stability in its total throughput than AODV does.
AODV is steady, at most around 275 kbps, while the DSDV fluctuates from 141 of total kbps
to 276. The throughput for DSDV stays in the area of around 217 kbps to 245 kbps at most of
the time though. If we sum the total kbps all ACs in the two tables, the channel is able to give
over a 1000 kbps of throughput in this scenario. This shows that over time AODV is much
better than DSDV. So the conclusion is that AODV is the routing protocol to use running
IEEE 802.11e in adhoc mode.

Further in this master thesis we will use the AODV protocol as it seams to be the best routing
protocol for our simulation.

4.6.7 Other comparisons of the AODV protocol

AODV is a well established routing protocol in MANET. It has been compared against
several other routing protocols, see [40] for AODV compared to DSR and [42] for AODV
compared with OLSR.

4.7 Throughput results

In this section we investigate how the throughput develops through scenarios with 2, 3, 5 and
8 STAs. Since the STAs are separated by 200 meters, the number 2 STA in the chain need to
forward packets from STA 1 to STA 3 and so on.

In the figure 4.6 we see the throughput results from a scenario with 2 STAs. This scenario
measures the throughput at the first hop, i.e. from STA number 1 to STA number 2. STA 1 in
this scenario will not experience any interference from other STAs trying to forward packets
at the same time, so the throughput is as good as it gets for simulation in a wireless ad hoc
environment.

 65

Throughput 2 STA 802.11e

0

50

100

150

200

250

300

0 500 1000 1500 2000

Offered load (kbps)

C
ha

in
 th

ro
ug

hp
ut

 (k
bp

s)

Throughput AC_VO (kbps)

Throughput AC_VI (kbps)

Throughput AC_BK (kbps)

Throughput AC_BE (kbps)

Figure 4.6: Throughput of 2 STAs.

The differentiation in throughput between the four ACs is as expected in this simulation. All
four classes increase linearly initially, bur as the offered load gets higher the greedy AC_VO
is granted more and more of the available bandwidth. The highest class makes the throughput
of the two lower classes to reach almost zero by the end of this scenario. The AC_VI class
gets a throughput higher then the average between the lower classes and the AC_VO class.

 66

Throughput 3 STA 802.11e

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000

Offered load (Kbps)

Ch
ai

n
th

ro
ug

hp
ut

 (K
bp

s)

Throughput AC_VO (Kbps)

Throughput AC_VI (Kbps)

Throughput AC_BK (Kbps)

Throughput AC_BE (Kbps)

Figure 4.7: Throughput of 3 STAs.

The result for this scenario was as expected. As the graph shows in the figure 4.7, the
throughput of the four ACs initially increase linearly up to the point where AC_VO becomes
greedy and the throughput of the two lower classes decrease dramatically. The AC_VI class
still gets a fair share of the offered load, but as we can see experience a downfall too in
throughput near the end of the simulation. The AC_BK and AC_BE get close to zero
throughput in the end. The throughput of AC_VO in this scenario is over 100kbps lower then
in the scenario of only 2 STAs. This has to do with the interference the channel experience
when the second STA in the chain most forward packets to the destination STA for the
aggregating STA. The downfall from the first scenario were the AC_VO had a peak
throughput in the end by around 280 kbps to around 165 kbps in the scenario with 3 STAs is
60 percent. This is a huge downfall in throughput, and clearly demonstrates the difficulties of
providing QoS in WLAN.

 67

Throughput 5 STAa 802.11e

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000

Offered load (Kbps)

C
ha

in
 th

ro
ug

hp
ut

 (K
bp

s)

Throughput AC_VO (Kbps)

Throughput AC_VO (Kbps)

Throughput AC_VO (Kbps)

Throughput AC_VO (Kbps)

Figure 4.8: Throughput of 5 STAs.

The throughput results for 3, 5 and 8 STAs scenario are very similar. The difference in
throughput is only minimal as shown in figure 4.8 and 4.9. The same conclusion for 5 and 8
STA scenario can be drawn from these figures as from figure 4.7 and will not be repeated.

Throughput 8 STA 802.11e

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000

Offeread load (kbps)

Ch
ai

n
th

ro
ug

hp
ut

 (k
bp

s)

Throughput AC_VO (Kbps)

Throughput AC_VI (Kbps)

Throughput AC_BK (Kbps)

Throughput AC_BE (Kbps)

Figure 4.9: Throughput of 8 STAs.

 68

Scenarios with 10 and 12 STAs is similar to the figure 4.9, so there is no point in displaying
them in addition to the already displayed scenarios. .

4.8 Study of the RTS/CTS 4-way handshake in WLAN

We outlined the RTS/CTS mechanism in 2.5.3 earlier in this thesis so we will not go into
detail how the RTS/CTS functionality works here. The 4-way handshake is meant to refrain a
STA that has enabled this function from sending a data frame until the STA completes a
handshake with the receiving node. This can either be another STA or an AP. In our scenarios
it is always another STA since we are running throughput results in ad hoc mode.

The RTS/CTS mechanism was not implemented in the Ns2 version 2.28, with TKN Berlin
802.11e EDCA patch, we where using. This issue had to be solved since the paper we are
where about to analyze used this method in there simulation study capacity of ad hoc wireless
networks. Geir Egeland , a PhD candidate at University of Stavanger and research scientist at
Telenor R&I, was already trying to solve this matter for his PhD study. We was both situated
at Telenor and made contact. I gave him with my error messages after numerous scenarios
and the code I was using, and he managed to debug the code and locate the problem in the
code. TKN Berlin meant they had implemented the mechanism, but writes on their home page
that the RTS/CTS solution was not verified and could not be trusted. The RTS/CTS did not
function at all when we tried our test scenarios. So the debugging work was absolutely needed
for this RTS/CTS mechanism to work.

In IEEE 802.11 the RTS/CTS mechanism is not able to work unless the three radio ranges
transmission range, carrier sensing range and interference range work properly. To deal with
interference problems in the wireless channel IEEE 802.11 needs both the RTS/CTS
handshake and the physical carrier sensing.

The transmission range is for the most determined by transmission power and radio
propagation properties and is the range within which a packet is successfully received. The
packet is received successfully when there is no interference from other radios.

The second radio range to be aware of in the wireless environment is the carrier sensing range
which is the range within which a transmitter triggers carrier sense detection. The transmitter
does not start a transmission unless the media it senses are free. This range is determined by
the antenna sensitivity.

The interference range which is the range where a STA can be interfered by an unrelated
transmitter is the last radio range to take into consideration.

4.8.1 Simulation without RTS/CTS

We start this section with scenarios without the RTS/CTS mechanism. We will display
scenarios running both standards, i.e. IEEE 802.11 and IEEE 802.11e, and than make some
conclusion of the results. The throughput in the scenarios is still measured at the last hop in
the chain of 7 STAs.

The figure 4.10 shows the throughput result of IEEE 802.11e. This is the same figure as 3.7
shown earlier in this thesis, but the focus here is comparison with and without RTS/CTS
between legacy IEEE 802.11 and IEEE 802.11e.

 69

Throughput all AC (Kbps)

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500

Offeredload (Kbps)

Ch
ai

n
th

ro
ug

hp
ut

 (K
bp

s)

Throughput all AC (Kbps)

Figure 4.10: Throughput graph of IEEE 802.11e without the RTS/CTS functionality.

As we can see the total throughput for the scenarios displayed in figure 4.10 and 4.11 is a
little better in the scenario running the original WLAN standard.

Total throughput 802.11

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500

Offered load (Kbps)

Ch
ai

n
th

ro
ug

hp
ut

 to
ta

l (
K

bp
s)

Total throughput
(Kb)

Figure 4.11: Throughput graph of IEEE 802.11 without the RTS/CTS functionality.

 70

The difference is not significant and one must put to mind that since the IEEE 802.11e
differentiates the channel throughput to four different ACs that standard is better to than the
best effort standard in IEEE 802.11.

4.8.2 Scenarios with the RTS/CTS

The next thing to do then is to simulate scenarios with the RTS/CTS function enabled. This is
done by setting the RTSThreshold_ value to 0. By doing this we tell the scripts running the
network simulator that every data frame that is about to be sent must use the RTS/CTS 4-way
handshake before transmission.

The figure 4.12 shows the result of the total throughput of all ACs when running IEEE
802.11e. The throughput compared with figure 4.10 which is without RTS/CTS are as we can
see a little bit lower. This result is as expected. The throughput could not have been higher
with the RTS/CTS function since this function brings overhead to the channel.

Throughput all ACs (Kbps)

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500

Offered load (Kbps)

Ch
ai

n
th

ro
ug

hp
ut

 (K
bp

s)

Throughput all ACs (Kbps)

Figure 4.12: Throughput IEEE 802.11e with RTS/CTS turned on.

This scenario faulted in the 10. increment and in the 29. increment, i.e. when the offered load
in the channel was at 1000 kbps and at 2900 kbps. This is because the RTS/CTS function is
not perfectly implemented in the Ns2 code yet. This should not infect the result in any
statically way.

 71

The next scenario is throughput of the legacy WLAN standard with the RTS/CTS function
turned on. The figure 4.13 displays the result from this scenario. The graph below has a clear
downfall in throughput in the beginning of the scenario. After the decrease the graph is stable
around 225 kbps even the offered load increase throughout the scenario. If we compare the
figure 4.13 with figure 4.12 the throughput of the scenario with IEEE 802.11e is now greater
then IEEE 802.11 contrary to the scenarios without the RTS/CTS 4-way handshake.

Total throughput (Kbps)

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500

Offered load (Kbps)

C
ha

in
 th

ro
ug

hp
ut

 (K
bp

s)

Total throughput (Kbps)

Figure 4.13: Throughput of IEEE 802.11 with RTS/CTS

The crack in throughput in the beginning of the scenario happens because of the lack in the
IEEE 802.11 MAC to schedule greedy senders the optimally for ad hoc forwarding [22]. This
statement will we investigate further in the next section, and try to see if the IEEE 802.11e
behaves in the same way as the legacy MAC does.

The conclusion to the scenarios studying the RTS/CTS 4-way handshake is that the RTS/CTS
function brings overhead to the channel which leads to a decrease in throughput contrary to
scenarios without this function. A wireless Ad hoc network does not need more packets to
send. But the reason for using the RTS/CTS is to clear out the possibility of hidden nodes in
the network. This has to be taken under consideration. If the topology and the mobility of the
nodes are known for the ad hoc network it is much easier to see if the effect of the 4-way
handshake is to a benefit of the throughput or not. In [13] the authors make a good point in
that the carrier sensing range can be manipulated so the RTS/CTS function does not need to
be used.

The focus in this thesis is how the IEEE 802.11e operates in a multihop ad hoc network, and
from that point of view it seems from the scenarios that the IEEE 802.11e functions better
then the legacy standard. It is also shown in the graphs that the throughput in the last hop of
the chain is better running scenarios without the 4-way handshake.

 72

4.9 Capacity of a chain of STAs

In this section we are ready to investigate how the IEEE 802.11e operates in a wireless ad hoc
network with forwarding of packets from the first to the last STA in a chain of STAs. We start
this study by trying to find the same result as the authors in [22] did. The next scenario we
will do is to see if the IEEE 802.11e protocol makes a better display then what the IEEE
802.11 does.

In [22] the study is based upon how the IEEE 802.11 MAC interactions with ad hoc
forwarding, their effect on the network capacity, and the scaling behavior of per node capacity
as networks grow bigger.

4.9.1 Optimum offered load for ad hoc forwarding

The authors in [22] have found a peak rate which is not maintained by the IEEE 802.11 MAC.
By that fact they mean that the original MAC in IEEE 802.11 is not able to schedule greedy
senders optimally for ad hoc forwarding. The figure 4.14 displays this scenario.

Total throughput IEEE 802.11

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500

Offered load (kbps)

Ch
ai

n
th

ro
ug

hp
ut

 (k
bp

s)

Total throughput

Figure 4.14: Throughput graph of peak rate in IEEE 802.11

Figure above shows the same result as figure 4 does in [22]. This graph shows throughput
delivery of 8 STA in a chain using 1500 bytes packets. The graph displays the fact that IEEE
802.11 MAC is not able to maintain the optimum peak rate and does not schedule greedy
senders optimally for ad hoc forwarding.

 73

Throughput 802.11 8STA AdHoc mode

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Chain throughput (Kbps)

O
ffe

re
d

lo
ad

 in
 in

cr
em

en
ts

 (K
bp

s)

Throughput Kbps

Figure 4.15: Throughput graph of peak rate in IEEE 802.11

Same simulation as the figure 4.14 above, the only difference is the scale on the x and y axis
to point out the difference contrary to the IEEE 802.11e throughput displayed in figure 4.16.

Throughput 802.11e 8STA 4AC AdHoc mode

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Chain throughput (Kbps)

O
ffe

re
d

lo
ad

 in
 in

cr
em

en
t (

K
bp

s)

Total BW all AC (Kb/s)

Figure 4.16: Throughput graph of peak rate in IEEE 802.11e

 74

We can clearly see the difference between IEEE 802.11 throughput graph in figure 4.15 and
the IEEE 802.11e throughput graph in figure 4.16. The figure displaying IEEE 802.11e does
not have any crack in its graph. The graph shows us that the IEEE 802.11e experiences a tiny
decrease in throughput in the beginning of the scenario, but as the offered load increase the
throughput does not fall significantly. This shows us that the IEEE 802.11.e MAC is more
stable than what was found in [22].

To draw a conclusion the IEEE 802.11e MAC is shown better then it is predecessor in IEEE
802.11. The throughput measured at the last hop in a multihop ad hoc network is experienced
better with IEEE 802.11e when it comes to forwarding packets in a chain of STAs.

 75

Chapter 5

Conclusion

In this thesis we have studied the performance of the IEEE 802.11e in WLANs and in ad hoc
networks. We have compared the protocol against the legacy WLAN standard, i.e. the IEEE
802.11 protocol. The goal of this thesis was to see how the throughput in the last hop of a
chain of STAs was and if IEEE 802.11e was better then IEEE 802.11 to provide QoS in this
environment.

Our research showed that IEEE 802.11e is better then IEEE 802.11 upon forwarding packets
in ad hoc networks. The study also made the observation that IEEE 802.11e is more stable in
throughput then IEEE 80.11.

This study can prove to some point that IEEE 802.11e can provide QoS in ad hoc networks.
Our scenarios show that the protocol has better throughput then its predecessor.

 76

References

[1] Crow, B.P; Widjaja, I; Kim, L.G; Sakai, P.T , ‘IEEE 802.11 wireless local area networks’.

[2] IEEE 802.11. 1999 standard

[3] http://www.cisco.com/warp/public/ 784/packet/jul01/pdfs/whitepaper

[4] Bob O’Hara and Al Petrick, ‘IEEE 802.11 Handbook, A designer’s companion’.

[5] Matthew S. Gast, 802.11 wireless networks, the definitive guide’.

[6] Intel: Providing QoS in WLANs, how the IEEE 802.11e standard QoS enhancements will
affect the performance of WLANs.

[7] Ad Hoc mobile Wireless Networks – C – K Toh

[8] http://standards.ieee.org/getieee802/download/802.2-1998.pdf

[9] http://www.ieee802.org/3/

[10] Computer networks – Tanenbaum

[11] IEEE Std 802.11.e – 2005

[12] http://www.ieee802.org/1/files/private/d-rev-drafts/d4/802-1d-D4.pdf

[13] Xu, Gerla, Bae, How Effective is the IEEE 802.11 RTS/CTS Handshake in Ad Hoc
Networks?

[14] Aleksander Bai, Interoperation between 802.11e EDCA and differentiated services with
admission control, Master thesis, University of Oslo, 2006.

[15] http://nsnam.isi.edu/nsnam/index.php/Main_Page

[16] http://www.tkn.tu-berlin.de

[17] http://www.j-sim.org

[18] http://www.opnet.com

[19] http://www.unik.no

[20] http://www.ifi.uio.no/

[21] http://www.telenor.com/rd

[22] Li, Blake, Couto, Lee and Morris, Capacity of Ad Hoc wireless networks, MIT
Laboratory for Computer Science

 77

[23] RFC 2475 - An Architecture for Differentiated Services

[24] Gao, Cai and Ngan, Admission control in IEEE 802.11e wireless LANs

[25] Charles Perkins, D. Cong & M. Hamlen, RFC 2006 - Mobile IP MIB Definition using
SMIv2

[26] Corson and Macker, RFC 2501 -Mobile Ad hoc Networking (MANET),

[27] Charles E. Perkins, Ad hoc networking

[28] Dan Li and Peng-Yong Kong, A scheme to provide proportionally differentiated end-to-
end packet delay in wireless multi-hop ad hoc networks

[29] C – K Toh, Ad Hoc mobile Wireless Networks

[30] IETF MANET working group - http://www.ietf.org/html.charters/manet-charter.html

[31] http://www.olsr.org/

[32] http://en.wikipedia.org/wiki/OLSR

[33] http://en.wikipedia.org/wiki/Zone_Routing_Protocol

[34] http://people.ece.cornell.edu/%7Ehaas/wnl/Publications/draft-ietf-manet-zone-zrp-04.txt

[35] http://www.ietf.org/rfc/rfc3626.txt

[36] http://www.cs.virginia.edu/~cl7v/cs851-papers/dsdv-sigcomm94.pdf

[37] http://en.wikipedia.org/wiki/Destination-Sequenced_Distance_Vector_routing

[38] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu,
The Broadcast Storm Problem in a Mobile Ad Hoc Network

[39] Johnson, Maltz, Hu, The Dynamic Source Routing Protocol for Mobile Ad Hoc
Networks (DSR), draft-ietf-manet-dsr-10.txt, (Work in progress)

[40] Perkins, Royer, Das and Marina, Performance Comparison of Two On-Demand Routing
Protocols for Ad Hoc Network .

[41] Perkins, Royer, Das, Ad Hoc On-Demand Distance Vector (AODV) routing protocol,
RFC 3561

[42] Kenneth Holter, Wireless Extensions to OSPF: Implementation of the Overlapping
Relays Proposal, Master thesis, University of Oslo, 2006

 78

Appendix

 79

adhoc.tcl by Frank Roar Mjøberg
A X-node example for ad-hoc simulation with AODV

Globals and flags

set ns [new Simulator]

Define options

set opt(chan) Channel/WirelessChannel ;# channel type
#set opt(prop) Propagation/FreeSpace ;# radio-propagation
model LOS u/refl
set opt(prop) Propagation/TwoRayGround ;# LOS med
refleksjoner
set opt(netif) Phy/WirelessPhy ;# network interface
type
set opt(mac) Mac/802_11e ;# MAC type
#set opt(ifq) Queue/DropTail/PriQueue ;# interface queue type
for 802.11
set opt(ifq) Queue/DTail/PriQ ;# interface queue type
for 802.11e
#set opt(ifq) CMUPriQueue ;# interface queue type
for DSR
set opt(ll) LL ;# link layer type
set opt(ant) Antenna/OmniAntenna ;# antenna model
#set opt(ifqlen) 50 ;# max packet in ifq
#set val(nn) 7 ;# number of
mobilenodes
#set opt(adhocRouting) AODV ;# routing protocol
set opt(x) 670 ;# X dimension of
topography
set opt(y) 670 ;# Y dimension of
topography
#set val(stop) 130 ;# time of simulation end
#set opt(packet_size) 1024 ;# bytes per packet

#Phy/WirelessPhy set bandwidth_ 0Mb ;# PHY data rate

Changing this parameter caused no effect in sim runs
#Phy/WirelessPhy set freq_ 2.464e9 ;# channel-13. 2.472GHz

#set val(seed) 2222222 ;# random seed
value
#set randGen [new RNG] ;# random seed values

#set rng [new RNG]

#$randGen seed 214748364
#$randGen seed 2147483646
#$randGen next-substream

#$rng exponential
#$rng seed 1123456

#for generating random integer b/n min and max
set nextseed 0.0
puts "utenfor RNG lokken"
proc randomNumber {0 2147483646} {

 80

puts "inni RNG lokken"
global nextseed
global defaultRNG
$defaultRNG seed $nextseed
set nRNG [new RNG]
$nRNG next-substream
set num_ [new RandomVariable/Uniform]
$num_ set min_ 0
$num_ set max_ 2147483646
$num_ use-rng $nRNG
set nextseed [expr round([$num_ value])]
return $nextseed
}

Load the parameter file
set opt(param) "/home/ns2/simulation/tmp/parameters"
source $opt(param)

Needed because of fragmentation, can be set to the same as RTS_Threshold
Agent/UDP set packetSize_ $opt(packetSize)

set MAC dataRate_ in Mb
if { $opt(mac) == "Mac/802_11e" } {
 if { $opt(MACdataRate) != 0 } {
 Mac/802_11e set dataRate_ $opt(MACdataRate)Mb
 #puts "Using Mac_dataRate_" $MACdataRate "Mb"
 }
}

if { $opt(mac) == "Mac/802_11" } {
 if { $opt(MACdataRate) != 0 } {
 Mac/802_11 set dataRate_ $opt(MACdataRate)Mb
 #puts "Using Mac_dataRate_" $MACdataRate "Mb"
 }
}

set MAC control frames rate in Mb
Mac/802_11e set basicRate_ 1Mb

set opt(rep) 5

if {$opt(rep) > 1} {
puts "Usage: ns rng-test.tcl \[replication number\]"
exit
}
set run 1
if {$opt(rep) == 1} {
set run [lindex $argv 0]
}
if {$run < 1} {
set run 1
}

if {$argc > 1} {
puts "Usage: ns rng-test.tcl \[replication number\]"
exit
}

set run 1
if {$argc == 1} {
 set run [lindex $argv 0]

 81

}
if {$run < 1} {
 set run 1
}

seed the default RNG
global defaultRNG
$defaultRNG seed $opt(seed)

create the RNGs and set them to the correct substream
set arrivalRNG [new RNG]
set sizeRNG [new RNG]
for {set j 1} {$j < $run} {incr j} {
 $arrivalRNG next-substream
 $sizeRNG next-substream
}

arrival_ is a exponential random variable describing the time
between consecutive packet arrivals
set arrival_ [new RandomVariable/Exponential]
$arrival_ set avg_ 5
$arrival_ use-rng $arrivalRNG

size_ is a uniform random variable describing packet sizes
set size_ [new RandomVariable/Uniform]
$size_ set min_ 100
$size_ set max_ 210000
$size_ use-rng $sizeRNG

print the first 5 arrival times and sizes
for {set j 0} {$j < 5} {incr j} {
 puts [format "%-8.3f %-4d" [$arrival_ value] \
 [expr round([$size_ value])]]
}

#Phy/WirelessPhy set CPThresh_ 10.0 ;# capture threshold 10dB
#Phy/WirelessPhy set CSThresh_ 5.011872e-12 ;# carrier sense threshold in
W
 # receiver sensitivity -83dBm
#Phy/WirelessPhy set RXThresh_ 1.02054e-10 ;# receive threshold in dB

Use of RTS/CTS or not.
if { $opt(mac) == "Mac/802_11e" } {
 if { $opt(rts_cts) == 1 } {
 Mac/802_11e set RTSThreshold_ 0
 puts "Using RTS/CTS mechanism"
 } else {
 Mac/802_11e set RTSThreshold_ 3000
 puts "No RTS/CTS mechanism"
 }
}

if { $opt(mac) == "Mac/802_11" } {
 if { $opt(rts_cts) == 1 } {
 Mac/802_11 set RTSThreshold_ 0
 puts "Using RTS/CTS mechanism"
 } else {
 Mac/802_11 set RTSThreshold_ 3000
 puts "No RTS/CTS mechanism"
 }

 82

}

number of nodes
set num_wired_nodes 0
set num_bs_nodes 0 ;# number of base stations
set num_nodes [expr $num_wired_nodes + $num_mobile_nodes + $num_bs_nodes]
#set bs_id $num_wired_nodes

set opt(nn) $num_nodes

set windowVsTime2 [open win.tr w]
set namtrace [open simwrls.nam w]

ADDED BY PAAL ENGELSTAD
FOR LOAD TRACING
set opt(smooth_cc) "0" ;# smooth MAC load? ("0"=NO and
"1"=YES)
set testTrace [open $opt(test) w]
puts $testTrace "This is just a test for use of files..."

create trace object for MAC load - MT
if { $opt(mac) == "Mac/802_11e" } {
 if { $opt(lt) != "" } {
 puts "Opening loadtrace file..."
 set loadTrace [open $opt(lt) w]
 puts $loadTrace "This is the first line of the loadtrace file with
info."
 puts $loadTrace "Test results should follow here:"
 } else {
 set loadTrace $opt(lt)
 }
}

set up MAC load scanning - MT
if { $opt(lt) != "" } {
 Mac/802_11e set scan_int_ 0.001 ;# scanning interval
 Mac/802_11e set scan_len_ 200 ;# scan count for each probe
 if { $opt(smooth_cc) == "1" } {
 Mac/802_11e set smooth_scan_ 1 ;# smooth the scanned values
 puts "Smooth scan turned on"
 } else {
 Mac/802_11e set smooth_scan_ 0 ;# don't smooth the scanned values
 puts "Smooth scan turned off"
 }
}
END (PAAL ENGELSTAD)

ADDED by Alex
Mac/802_11e set admission_control_1_ $opt(ac1) ;# disable admisson
control
Mac/802_11e set admission_control_2_ $opt(ac2) ;# disable admisson
control
Mac/802_11e set beacon_int_ $opt(bi) ;# scanning interval
Mac/802_11e set beacon_handler_ $opt(beaconHandler) ;# enable
beacon handler or not
Mac/802_11e set offered_load_0_ [expr (1 / $packetInterval_0)]
Mac/802_11e set offered_load_1_ [expr (1 / $packetInterval_1)]
Mac/802_11e set offered_load_2_ [expr (1 / $packetInterval_2)]
Mac/802_11e set offered_load_3_ [expr (1 / $packetInterval_3)]

if { $opt(mac) == "Mac/802_11e" } {

 83

 if { $opt(beaconHandler) != 0 } {
 puts "Opening beacontrace file..."
 set beaconTrace [open $opt(beacontrace) w]
 }
}
End Alex

#set up for hierarchical routing when you have both wired and wireless
network together
#(needed for routing over a basestation)
#This is not likely to cause any effect running this script
#$ns node-config -addressType hierarchical

AddrParams set domain_num_ 1 ;# number of domains
lappend cluster_num 1 ;# number of clusters in each domain
AddrParams set cluster_num_ $cluster_num
lappend eilastlevel $num_mobile_nodes ;# number of nodes for each cluster
AddrParams set nodes_num_ $eilastlevel

$ns trace-all $ntr
$ns namtrace-all-wireless $namtrace $opt(x) $opt(y)

set chan [new $opt(chan)]
set topo [new Topography]
$topo load_flatgrid $opt(x) $opt(y)

Create God
set god [create-god $num_mobile_nodes]
#create-god $val(nn)

#$god set-dist 1 $num_mobile_nodes $num_mobile_nodes
#$god set-dist 1 2 2

Create nn mobilenodes [$num_mobile_nodes] and attach them to the channel.

if { $layer == "MAC" } {
 $ns node-config -adhocRouting $opt(adhocRouting) \
 -llType $opt(ll) \
 -macType $opt(mac) \
 -ifqType $opt(ifq) \
 -ifqLen $opt(ifqlen) \
 -antType $opt(ant) \
 -propType $opt(prop) \
 -phyType $opt(netif) \
 -channel $chan \
 -topoInstance $topo \
 -wiredRouting OFF \
 -agentTrace ON \
 -routerTrace ON \
 -macTrace ON \
 -movementTrace OFF
}

if { $layer == "AGT" } {
 $ns node-config -adhocRouting $opt(adhocRouting) \
 -llType $opt(ll) \
 -macType $opt(mac) \
 -ifqType $opt(ifq) \
 -ifqLen $opt(ifqlen) \
 -antType $opt(ant) \
 -propType $opt(prop) \

 84

 -phyType $opt(netif) \
 -channel $chan \
 -topoInstance $topo \
 -wiredRouting OFF \
 -agentTrace ON \
 -routerTrace ON \
 -macTrace OFF \
 -movementTrace OFF
}

for {set i 0} {$i < $num_mobile_nodes} {incr i} {
set wl_node_($i) [$ns node] ;# 1.0.[expr $i +1]]

$wl_node_($i) random-motion 0
puts "wireless node $i created ..."
BS not used here -> adhoc
#$wl_node_($i) base-station [AddrParams addr2id [$BS(0) node-addr]]
$wl_node_($i) set X_ [expr $i*$nodeDistance + (300-
(($num_mobile_nodes-1)/2*$nodeDistance))]
$wl_node_($i) set Y_ [expr 300 + $nodeDistance]
$wl_node_($i) set Z_ 0.0
#puts [expr $i*$nodeDistance + (300-(($num_mobile_nodes-
1)/2*$nodeDistance))]
#puts [expr 300 + $nodeDistance]
}

nodene skal stå på rekke som i en kjede derfor Y = 100 på alle noder
ingen adresser da noden er i adhoc modus
for {set i 0} {$i < $num_mobile_nodes} {incr i} {
 set wl_node_($i) [$ns node] ;# 1.0.[expr $i +1]]

 $wl_node_($i) random-motion 0
 puts "wireless node $i created ..."
 # BS not used here because of ad hoc mode
 #$wl_node_($i) base-station [AddrParams addr2id [$BS(0) node-addr]]
 $wl_node_($i) set X_ [expr $i*$nodeDistance + (300-(($num_mobile_nodes-
1)/2*$nodeDistance))]
 $wl_node_($i) set Y_ 100
 $wl_node_($i) set Z_ 0.0
 #puts [expr $i*$nodeDistance + (300-(($num_mobile_nodes-
1)/2*$nodeDistance))]
}

ADDED BY PAAL ENGELSTAD
Binding load trace to trace file for mobile nodes...
NOTE: Binding load trace to wired nodes is not indended here...

if { $opt(mac) == "Mac/802_11e" } {
 for {set i 0} {$i < $num_mobile_nodes } {incr i} {
 # bind MAC load trace file - MT
 # puts "DEBUG: Using load-trace command..."
 [$wl_node_($i) set mac_(0)] load-trace $loadTrace
 # Evt: $wl_node_($i) load-trace $loadTrace ...??? Check...
 }
}
END (PAAL ENGELSTAD)

MODIFIED BJØRN SELVIG
source "/home/ns2/simulation/scripts/common/generateFlow.tcl"

 85

for each station put up the same flows
for {set j 0} {$j < $num_mobile_nodes} {incr j} {
if {$packetInterval_0 != "-1.0" } {
generate_flow 0 $packetLength_0 $packetInterval_0 $trafficType_0
$startTime $wl_node_($j) $BS(0) [expr $j*4 + 0]
}
if {$packetInterval_1 != "-1.0"} {
generate_flow 1 $packetLength_1 $packetInterval_1 $trafficType_1
$startTime $wl_node_($j) $BS(0) [expr $j*4 + 1]
}
if {$packetInterval_2 != "-1.0"} {
generate_flow 2 $packetLength_2 $packetInterval_2 $trafficType_2
$startTime $wl_node_($j) $BS(0) [expr $j*4 + 2]
}
if {$packetInterval_3 != "-1.0"} {
generate_flow 3 $packetLength_3 $packetInterval_3 $trafficType_3
$startTime $wl_node_($j) $BS(0) [expr $j*4 + 3]
}
}
END BJØRN SELVIG

##Edited by Frank Roar Mjøberg
BS is no longer the destination node as before. The dest_node is now the
last node since we are
about to measure the capacity in a chain of nodes where throughput to the
last node in the
chain is of interest.

Tatt bort BS(0) og satt [expr $num_mobile_nodes - 1] som dest_ node

source "/home/ns2/simulation/scripts/common/generateFlow.tcl"

for each station put up the same flows
#for {set j 0} {$j < $num_mobile_nodes} {incr j} {

 if {$packetInterval_0 != "-1.0" } {
 generate_flow 0 $packetLength_0 $packetInterval_0 $trafficType_0
$startTime $wl_node_(0) $wl_node_([expr $num_mobile_nodes - 1]) 0
 }

 if {$packetInterval_1 != "-1.0"} {
 generate_flow 1 $packetLength_1 $packetInterval_1 $trafficType_1
$startTime $wl_node_(0) $wl_node_([expr $num_mobile_nodes - 1]) 1
 }

 if {$packetInterval_2 != "-1.0"} {
 generate_flow 2 $packetLength_2 $packetInterval_2 $trafficType_2
$startTime $wl_node_(0) $wl_node_([expr $num_mobile_nodes - 1]) 2
 }

 if {$packetInterval_3 != "-1.0"} {
 generate_flow 3 $packetLength_3 $packetInterval_3 $trafficType_3
$startTime $wl_node_(0) $wl_node_([expr $num_mobile_nodes - 1]) 3
 }
#}

source "/home/ns2/simulation/scripts/common/generateFlow.tcl"

for each station put up the same flows
for {set j 0} {$j < $num_mobile_nodes} {incr j} {

 86

if {$packetInterval_0 != "-1.0" } {
generate_flow 0 $packetLength_0 $packetInterval_0 $trafficType_0
$startTime $wl_node_(0) $wl_node_(2) [expr $j*4 + 0]
}
if {$packetInterval_1 != "-1.0"} {
generate_flow 1 $packetLength_1 $packetInterval_1
$trafficType_1 $startTime $wl_node_(0) $wl_node_(2) [expr $j*4 + 1]
}
if {$packetInterval_2 != "-1.0"} {
generate_flow 2 $packetLength_2 $packetInterval_2
$trafficType_2 $startTime $wl_node_(0) $wl_node_(2) [expr $j*4 + 2]
}
if {$packetInterval_3 != "-1.0"} {
generate_flow 3 $packetLength_3 $packetInterval_3
$trafficType_3 $startTime $wl_node_(0) $wl_node_(2) [expr $j*4 + 3]
}
}

source "/home/ns2/simulation/scripts/common/generateFlow.tcl"

for each station put up the same flows
for {set j 0} {$j < $num_mobile_nodes} {incr j} {
if {$packetInterval_0 != "-1.0" } {
generate_flow 0 $packetLength_0 $packetInterval_0 $trafficType_0
$startTime $wl_node_([expr $num_mobile_nodes - $num_mobile_nodes])
$wl_node_([expr $num_mobile_nodes - 1]) [expr $j*4 + 0]
}
if {$packetInterval_1 != "-1.0"} {
generate_flow 1 $packetLength_1 $packetInterval_1
$trafficType_1 $startTime $wl_node_([expr $num_mobile_nodes -
$num_mobile_nodes]) $wl_node_([expr $num_mobile_nodes - 1]) [expr $j*4 + 1]
}
if {$packetInterval_2 != "-1.0"} {
generate_flow 2 $packetLength_2 $packetInterval_2
$trafficType_2 $startTime $wl_node_([expr $num_mobile_nodes -
$num_mobile_nodes]) $wl_node_([expr $num_mobile_nodes - 1]) [expr $j*4 + 2]
}
if {$packetInterval_3 != "-1.0"} {
generate_flow 3 $packetLength_3 $packetInterval_3
$trafficType_3 $startTime $wl_node_([expr $num_mobile_nodes -
$num_mobile_nodes]) $wl_node_([expr $num_mobile_nodes - 1]) [expr $j*4 + 3]
}
}

END FRM

Define node initial position in nam
for {set i 0} {$i < $num_mobile_nodes} {incr i} {
 $ns initial_node_pos $wl_node_($i) 20
 }

##Edited by Frank Roar Mjøberg
Kommentert ut fordi det ikke brukes beaconHandler i adhoc mode
(foreløpig..)
#if { $opt(beaconHandler) != 0} {
$ns at [expr $stopTime - 1] "[$BS(0) set mac_(0)] beacon-print test]"
#}
##End FRM

Tell nodes when the simulation ends

 87

for {set i 0} {$i < $num_mobile_nodes } {incr i} {
 $ns at $stopTime "$wl_node_($i) reset";
}

proc stop {} {
 global ns ntr
 close $ntr
 #close $nf
}

#$ns at $stopTime "puts \"NS EXITING...\" ; $ns halt"
#$ns at $stopTime "stop"

ADDED BY PAAL ENGELSTAD
proc finish {} {
 global ns loadTrace testTrace ntr namtrace
 puts "DEBUG fra proc finish: Lukker filene..."
 close $loadTrace
 close $testTrace
 close $ntr

 close $namtrace
 puts "NS EXITING...(from proc finish)"
 $ns halt
 #exit 0
}

TRIED TO REPLACE:
$ns at $stopTime "puts \"NS EXITING...\" ; $ns halt"
$ns at $stopTime "stop"
WITH:
$ns at $stopTime "finish"

END (PAAL ENGELSTAD)

run the simulation
$ns run

 88

The python script:

#!/bin/sh
""":"
exec python $0 ${1+"$@"}
"""
import shutil, os, re, sys, time, string
from time import gmtime, strftime

print "==="
print "Simulation started"

###
##########
################## PARAMETER SETTINGS

###
##########

Added by Frank Roar Mjøberg autum 2006

Ad hoc parameter - used for simulation of ad hoc mode
1 = on (ad hoc mode), 0 = off (infrastruture mode)
Ved adhoc mode endres adhoc/AdHocRegular.tcl, ved infrastructure mode
endres regular.tcl
adhoc = 1

RTSThreshold parameter: do you want to use RTS/CTS mechanism or not?
1 = Use RTS/CTS and 0 = No RTS/CTS
rts_cts = 1

Which (AdHoc) routing protocol to use:"AODV", "DSR", "DSDV" or "NOAH"
adhocRouting = "AODV"

nodeDistance should be 200 meters in according to paper
if adhoc == 0:
 nodeDistance = 0.5
else:
 nodeDistance = 200

Endre resultat fil for å kunne ta ut throughput på siste node og
mellomliggende.
1 = true, 0 = false
resultsOnlyLastHop = 0

Set UDP packet size (Agent/UDP set packetSize_) to prevent fragmentation
packetSize = 1500

Set seed value - 3333 is recommended after several runs to find the one
who let AC_VO send first
Default RNG value is 1234
seed = 3333

Set MAC dataRate_ in Mb
MACdataRate = 2

###
#################
############## PARAMETERS ONLY USED IN AD HOC MODE
#####################################

 89

###
#################

0 = chain topology, 1 =.. osv.
ikke i bruk enda
#topology = 0

evt bruke default verdier. Må evt regne om til Txpower eller threshold
eller noe liknende...
CSThresh_ verdien bestemmer om en ramme blir detektert av mottaker eller
ikke.
#transmissionRange = 250

evt bruke default verdier. Må evt regne om til Txpower eller threshold
eller noe liknende..
RxThresh_ en ramme må ha større styrke (høyere verdi) enn denne verdien
for å bli korrekt mottatt etter mottagelse.
#interferenceRange = 550

###
##################
########################### ARBEIDSPLAN:

###
##################

1) Kjøre med AODV i steden for NOAH (bruke infrastruktur mode som
allerede er laget) # Teste ut at adhoc = 0 og adhoc = 1 gir
omtrent samme resultater

2) Lage en chain topologi med 2 noder (alt ellers likt), det betyr droppe
BS, # Node distance = 0.5 fremdeles osv. - gjøre
målingene på den siste noden

3) Lage en 3 node topologi
4) Lage en n-node topologi
5) Kunne forandre på nodeDistance
6) Kunne forandre på transmission Range (bør kunne settes i meter -
krever trolig omregning)
#set opt(txPower) 1.4 ;# transmitting power in mW = 1.4

7) Kunne forandre på interference range (bør kunne settes i meter)
#set opt(sensePower) 0.00000175 ;# sensing power in mW

8) Ta ut resultater på ulike noder i en rekke... Finne et bra format for
resultatfilen.
Bør kunne ta ut throughput på alle 4 klassene for node 1,2,3,4,5,6 +
siste node i rekken. # (Siste node i rekken bør komme først).

9) Implementere funksjonalitet som gir større innsikt i paperet, enn det
som er skrevet der...
###
##########

Edited by Frank Roar Mjøberg
Modified and ported version of the old python file from Bjørn Selvig and
Alex Bai
END FRM

Debug - provides more output during simulation
1 = on, 0 = off

 90

debug = 1

Result file
resultFile = "results-frank-AODV-8STA-21april-250kbps-4ac"

which ns version to use
1 = ns2-2.28, 0 = ns2-2.26
nsVer = 1

Number of nodes (Infrastructure: Excluding the BS, Ad hoc: Number of
nodes)
#num_wireless_nodes = [2,3,4,5,6,7,8,9,10]
num_wireless_nodes = [8]

Specify bandwidths in Kb/s
Bandwidth is specified at the IP layer

parameters for flow with priority 0
bandwidth_0 = 250.0
bandwidthInc_0 = 250.0
trafficType_0 = "EXP"
txop_budget_0 = 0.10
admittedRate_0 = 100.0

parameters for flow with priority 1
bandwidth_1 = 250.0
bandwidthInc_1 = 250.0
trafficType_1 = "EXP"
txop_budget_1 = 0.10
admittedRate_1 = 100.0

parameters for flow with priority 2
bandwidth_2 = 250.0
bandwidthInc_2 = 250.0
trafficType_2 = "EXP"
txop_budget_2 = 0.10
admittedRate_2 = 100.0

parameters for flow with priority 3
bandwidth_3 = 250.0
bandwidthInc_3 = 250.0
trafficType_3 = "EXP"
txop_budget_3 = 0.10
admittedRate_3 = 100.0

Packet Lengths for the simulation, specify in Bytes at the IP layer
packetLengthSets = [[1500,1500,1500,1500]]
#packetLengthSets = [[1024,1024,1024,1024]]
#packetLengthSets = [[512,512,512,512]]
#packetLengthSets = [[64,64,64,64]]

BJORN SELVIG, 08.06.2005, added for stabtime testing
Specify startime, stoptime and stabilizetime for the simulation
timeSets = [[2,300,28]]

Number of bandwidth increments for each timeset
bandwidthIncrements = 4

Enable Admitted Rate or not
0 = disabled, 1 = enabled
admittedRate = 0

 91

enable Admisson Control 1 (measurement based)
0 = disabled, 1 = enabled
admissionControl_1 = 0

enable Admisson Control 2 (model based)
0 = disabled, 1 = enabled
admissionControl_2 = 0

Enabled beacon handler
beaconHandler = 0

Specify beacon interval time in seconds
beaconInterval = 0.1

set CFB, 0 disables CFB, 1 enables CFB
cfb = 0

loadtrace
#loadtraceScanLength = 200
#loadtraceScanInterval = 0.001
loadtraceScanLength = 0
loadtraceScanInterval = 0

Queue length
ifqLength = 50

set whether latency distribution file for finding percentile results
should be created or not
0 = disabled, 1 = enabled
createDelayDistributionFile = 0

set granularity for latency distribution,number of intervals between
minimum and maximum latency
DistributionFileGranularity = 1000

Percentile for results
percentile = 95

Which IEEE 802.11 version to use:
set to 'a' or 'b'
specVersion = 'b'

##EDCF parameters for the simulation.802.11e parameterfile will be updated
with these parameters.
#EDCFparametersets = [[2,3,7,1.5,
2,7,15,3.0,
3,15,1023,1.5,
7,15,1023,0]]

EDCA parameter set if you run one class only. Use only AC_BK with
2,31,1023,0- like 802.11
#EDCFparametersets = [[99,1023,2047,0,
99,1023,2047,0,
2,31,1023,0,
99,1023,2047,0]]

EDCA parameter set used in the thesis
EDCFparametersets = [[2,7,15,0,
 2,15,31,0,
 3,31,1023,0,

 92

 7,31,1023,0]]

Reversert for å finne ut hvilken AC kontroll-data trafikk går over (skal
være AC_VO iflg std)
#EDCFparametersets = [[7,31,1023,0,
3,31,1023,0,
2,15,31,0,
2,7,15,0]]

#"Original" TXOP_Limit values:
#EDCFparametersets = [[2,7,15,0.003264,
2,15,31,0.006016,
3,31,1023,0,
7,31,1023,0]]

Specify buffer size in seconds for the delay computation.
Packets that have longer delay
than this specified value will be considered as dropped
delayBufferSize = 10

Specify which layer to measure latency, AGT or MAC
layer = "MAC"

set whether MAC callback drop should be included in latency computations.
0 = disabled, 1 = enabled
dropDelayIncluded = 0

do we want to force a recompile?
0 = no, 1 = yes
forceCompile = 0

###
#######################
################## DO NOT TOUCH ANYTHING BELOW THIS

###
#######################

current paths
PATH_OLD=os.environ['PATH']

if nsVer == 0:
 nsPath = "/home/ns2/ns-allinone-2.26/ns-2.26/"
 delayProg = "/home/ns2/ns-allinone-2.26/bin/avgdelay"
 TCL_PATH="/home/ns2/ns-allinone-2.26/tcl8.3.2/library"
 LD_PATH="/home/ns2/ns-allinone-2.26/otcl-1.0a8:/home/ns2/ns-allinone-
2.26/lib"
 NEW_PATH="%s"%(nsPath)
 print "NS-2 version: 2.26"
else:
 nsPath = "/home/ns2/ns-allinone-2.28/ns-2.28/"
 delayProg = "/home/ns2/ns-allinone-2.28/bin/avgdelay"
 TCL_PATH="/home/ns2/ns-allinone-2.28/tcl8.4.5/library"
 LD_PATH="/home/ns2/ns-allinone-2.28/otcl-1.9:/home/ns2/ns-allinone-
2.28/lib"
 NEW_PATH="%s:/home/ns2/ns-allinone-2.28/tcl8.4.5/unix:/home/ns2/ns-
allinone-2.28/tk8.4.5/unix"%(nsPath)
 print "NS-2 version: 2.28"

set new path
os.environ['PATH']="%s:%s"%(PATH_OLD,NEW_PATH)

 93

os.environ['LD_LIBRARY_PATH']="%s"%(LD_PATH)
os.environ['TCL_LIBRARY']="%s"%(TCL_PATH)

tmpPath = "/home/ns2/simulation/tmp/"
commonPath = "/home/ns2/simulation/scripts/common/"
if adhoc == 0:
 resultPath = "/home/ns2/simulation/results/%s"%(resultFile)
 logPath = "/home/ns2/simulation/results/%s-ac2.log"%(resultFile)
else:
 resultPath = "/home/ns2/simulation/AdHocResults/%s"%(resultFile)
 logPath = "/home/ns2/simulation/AdHocResults/%s-ac2.log"%(resultFile)

errorFile = "%s-error"%(resultPath)

if admissionControl_1 and admissionControl_2:
 print "WARNING!\nYou CAN NOT use both admission controls at once!"
 sys.exit(0)

if admissionControl_1 == 1:
 nsFile = "%sac1.tcl"%(commonPath)
 print "NOTICE! The actual scenario is specified in %s"%(nsFile)
elif admissionControl_2 == 1:
 nsFile = "%sac2.tcl"%(commonPath)
 print "NOTICE! The actual scenario is specified in %s"%(nsFile)
elif adhoc == 1:
 #nsFile = "%sAdHocRegular.tcl"%(commonPath)
 nsFile = "%sadhoc.tcl"%(commonPath)
 print "Running in AdHoc Mode\n"
else:
 nsFile = "%sregular.tcl"%(commonPath)
 print "Infrastructure Mode\n"

EDCFParamFile_ = "%smac/802_11e/priority.tcl"%(nsPath)
MACTclFile_ = "%stcl/lan/ns-mac.tcl"%(nsPath)
MACTclFile_a_ = "%stcl/lan/ns-mac_11a.tcl"%(nsPath)
MACTclFile_b_ = "%stcl/lan/ns-mac_11b.tcl"%(nsPath)
MACTclFile_a_CFB = "%stcl/lan/ns-mac_11a-CFB.tcl"%(nsPath)
MACTclFile_b_CFB = "%stcl/lan/ns-mac_11b-CFB.tcl"%(nsPath)
MACHeaderFile_ = "%smac/802_11e/mac-802_11e.h"%(nsPath)
MACHeaderFile_a_ = "%smac/802_11e/mac-802_11e-a.h"%(nsPath)
MACHeaderFile_b_ = "%smac/802_11e/mac-802_11e-b.h"%(nsPath)

make sure we are not running as root
cmd = "whoami > %swho"%(tmpPath)
os.system(cmd)
infile = open("%swho"%(tmpPath), 'r')
line = infile.readline()
if string.find(line, "ns2") == -1:
 print "WARNING!!\nYou MUST run as user ns2"
 sys.exit(0)

###
#######################
######################## Definitions

###
#######################

#IP_HEADER_LENGTH = 120
#UDP_HEADER_LENGTH = 8

 94

#RTP_HEADER_LENGTH = 12
#LLSnap_HEADER_LENGTH = 8

pattern1 = r"802.11a"
pattern2 = r"802.11b"
pattern3 = r"CFB-enabled"
version = 0
file_CFB = 0
compile = False
linkCapasity = 0

if specVersion == 'b':
 linkCapasity = 0
elif specVersion == 'a':
 linkCapasity = 24000

###
#######################
Compile with correct 802.11 version and EDCA parameters
####################################
###
#######################

MACTclFile = open(MACTclFile_, 'r')
MACHeaderFile = open(MACHeaderFile_, 'r')

line = MACTclFile.readline()
line1 = MACTclFile.readline()
line2 = MACHeaderFile.readline()
match1 = re.search(pattern1,line)
match2 = re.search(pattern2,line)
match3 = re.search(pattern1, line2)
match4 = re.search(pattern2, line2)
match5 = re.search(pattern3, line1)
if match1 and match3:
 version = 'a'
elif match2 and match4:
 version = 'b'
if match5:
 file_CFB = 1

MACTclFile.close()
MACHeaderFile.close()

print "802.11 Version: %s\n"%(version)

Replace header files with correct version
if (version != specVersion) or (file_CFB != cfb):
 compile = True
 if specVersion == 'a':
 if cfb == 1:
 copy_cmd = ("cp %s %s"%(MACTclFile_a_CFB, MACTclFile_))
 else:
 copy_cmd = ("cp %s %s"%(MACTclFile_a_, MACTclFile_))
 copy_cmd2 = ("cp %s %s"%(MACHeaderFile_a_, MACHeaderFile_))
 os.system(copy_cmd)
 os.system(copy_cmd2)
 elif specVersion == 'b':
 if cfb == 1:
 copy_cmd = ("cp %s %s"%(MACTclFile_b_CFB, MACTclFile_))
 else:

 95

 copy_cmd = ("cp %s %s"%(MACTclFile_b_, MACTclFile_))
 copy_cmd2 = ("cp %s %s"%(MACHeaderFile_b_, MACHeaderFile_))
 os.system(copy_cmd)
 os.system(copy_cmd2)

Replace with correct EDCA parameters

for EDCFparameterset in EDCFparametersets:
 copy_cmd = ("cp %s %s_copy"%(EDCFParamFile_,EDCFParamFile_))
 os.system(copy_cmd)

 EDCFParamFile = open(EDCFParamFile_, 'w')
 EDCFParamFile_copy = open(("%s_copy"%(EDCFParamFile_)), 'r')
 while 1:
 line = EDCFParamFile_copy.readline()
 if not line:
 break
 newLine = re.sub("Prio 0 AIFS .*","Prio 0 AIFS
%d"%(EDCFparameterset[0]), line)
 newLine = re.sub("Prio 0 CW_MIN .*","Prio 0 CW_MIN
%d"%(EDCFparameterset[1]), newLine)
 newLine = re.sub("Prio 0 CW_MAX .*","Prio 0 CW_MAX
%d"%(EDCFparameterset[2]), newLine)
 newLine = re.sub("Prio 0 TXOPLimit .*","Prio 0 TXOPLimit
%f"%(EDCFparameterset[3]), newLine)
 newLine = re.sub("Prio 1 AIFS .*","Prio 1 AIFS
%d"%(EDCFparameterset[4]), newLine)
 newLine = re.sub("Prio 1 CW_MIN .*","Prio 1 CW_MIN
%d"%(EDCFparameterset[5]), newLine)
 newLine = re.sub("Prio 1 CW_MAX .*","Prio 1 CW_MAX
%d"%(EDCFparameterset[6]), newLine)
 newLine = re.sub("Prio 1 TXOPLimit .*","Prio 1 TXOPLimit
%f"%(EDCFparameterset[7]), newLine)
 newLine = re.sub("Prio 2 AIFS .*","Prio 2 AIFS
%d"%(EDCFparameterset[8]), newLine)
 newLine = re.sub("Prio 2 CW_MIN .*","Prio 2 CW_MIN
%d"%(EDCFparameterset[9]), newLine)
 newLine = re.sub("Prio 2 CW_MAX .*","Prio 2 CW_MAX
%d"%(EDCFparameterset[10]), newLine)
 newLine = re.sub("Prio 2 TXOPLimit .*","Prio 2 TXOPLimit
%f"%(EDCFparameterset[11]), newLine)
 newLine = re.sub("Prio 3 AIFS .*","Prio 3 AIFS
%d"%(EDCFparameterset[12]), newLine)
 newLine = re.sub("Prio 3 CW_MIN .*","Prio 3 CW_MIN
%d"%(EDCFparameterset[13]), newLine)
 newLine = re.sub("Prio 3 CW_MAX .*'","Prio 3 CW_MAX
%d"%(EDCFparameterset[14]), newLine)
 newLine = re.sub("Prio 3 TXOPLimit .*","Prio 3 TXOPLimit
%f"%(EDCFparameterset[15]), newLine)
 if cmp(line, newLine) != 0:
 compile = True
 EDCFParamFile.writelines(newLine)

 EDCFParamFile.close()
 EDCFParamFile_copy.close()

 # Make the ns project with the new EDCF parameter values
 if (compile | forceCompile):
 cmd = ("cd %s; ./configure 1>/dev/null 2>%s; make clean 1>/dev/null
2>%s; make depend 1>/dev/null 2>%s; make 1>/dev/null
2>%s;"%(nsPath,errorFile,errorFile,errorFile,errorFile))

 96

 print "Compiling..."
 os.system(cmd)
 print "Compiling done!"
 compile = False

###
#######################
Write EDCF parameter values to the results file

###
#######################

 # Modified by Alex 02.03.06 - Print all the information needed to run
this simulation
 #outfile = open(resultPath, 'a')
 outfile = open(resultPath, 'w')
 outfile.write("\n\n\n########################### New Simulation
#############################\n")

 if nsVer == 0:
 outfile.write("%s\nNs-2 Version: 2.26\nSpec Version:
%s\n\n"%(strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()), specVersion))
 else:
 outfile.write("%s\nNs-2 Version: 2.28\nSpec Version:
%s\n\n"%(strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()), specVersion))

 outfile.write("Flow\tStart Kbs\tInc Kbs\tTraffic type\tTXOP
Budget\tAdmitted Rate (%)\n")

outfile.write("Prio0\t%f\t%f\t%s\t%f\t%f\n"%(bandwidth_0,bandwidthInc_0,tra
fficType_0,txop_budget_0,admittedRate_0))

outfile.write("Prio1\t%f\t%f\t%s\t%f\t%f\n"%(bandwidth_1,bandwidthInc_1,tra
fficType_1,txop_budget_1,admittedRate_1))

outfile.write("Prio2\t%f\t%f\t%s\t%f\t%f\n"%(bandwidth_2,bandwidthInc_2,tra
fficType_2,txop_budget_2,admittedRate_2))

outfile.write("Prio3\t%f\t%f\t%s\t%f\t%f\n\n"%(bandwidth_3,bandwidthInc_3,t
rafficType_3,txop_budget_3,admittedRate_3))

 outfile.write("Flow\tAIFS\tCW_min\tCW_max\tTXOP_limit\tTraffic Type\n")

outfile.write("Prio0\t%d\t%d\t%d\t%6f\t%s\n"%(EDCFparameterset[0],EDCFparam
eterset[1],EDCFparameterset[2],EDCFparameterset[3], trafficType_0))

outfile.write("Prio1\t%d\t%d\t%d\t%6f\t%s\n"%(EDCFparameterset[4],EDCFparam
eterset[5],EDCFparameterset[6], EDCFparameterset[7], trafficType_1))

outfile.write("Prio2\t%d\t%d\t%d\t%6f\t%s\n"%(EDCFparameterset[8],EDCFparam
eterset[9],EDCFparameterset[10], EDCFparameterset[11], trafficType_2))

outfile.write("Prio3\t%d\t%d\t%d\t%6f\t%s\n\n"%(EDCFparameterset[12],EDCFpa
rameterset[13],EDCFparameterset[14], EDCFparameterset[15],trafficType_3))

 outfile.write("Packet lengths\nPrio0\tPrio1\tPrio2\tPrio3\n")
 outfile.write("%d\t%d\t%d\t%d\n"%(packetLengthSets[0][0],
packetLengthSets[0][1], packetLengthSets[0][2], packetLengthSets[0][3]))
 outfile.write("Number of increments: %d\n"%(bandwidthIncrements))
 outfile.write("Queue Length: %d\n"%(ifqLength))
 outfile.write("Node Distance: %f\n\n"%(nodeDistance))

 97

 if cfb == 1:
 outfile.write("CFB enabled\n")
 else:
 outfile.write("CFB disabled\n")

 if admittedRate == 1:
 outfile.write("Rate Configuration enabled\n")
 else:
 outfile.write("Rate Configuration disabled\n")

 if admissionControl_1 == 1:
 outfile.write("Admission control 1 enabled\n")
 beaconHandler = 1
 elif admissionControl_2 == 1:
 outfile.write("Admission control 2 enabled\n")
 beaconHandler = 1
 else:
 outfile.write("Admission control disabled\n")

 if beaconHandler == 1:
 outfile.write("Beacon Handler enabled\n")
 outfile.write("Beacon interval: %d\n"%(beaconInterval))
 else:
 outfile.write("Beacon handler disabled\n")

 outfile.write("Latency measured at layer: %s\n"%(layer))
 outfile.write("Delay buffer size: %d\n"%(delayBufferSize))
 if dropDelayIncluded == 1:
 outfile.write("MAC callback drop for latency computations:
included\n\n")
 else:
 outfile.write("MAC callback drop for latency computations: NOT
included\n\n")

 if createDelayDistributionFile == 1:
 outfile.write("createDelayDistributionFile enabled\n")
 outfile.write("DistributionFileGranularity: %d\npercentile:
%d\n\n"%(DistributionFileGranularity, percentile))
 else:
 outfile.write("createDelayDistributionFile disabled\n\n")

 outfile.write("Loadtrace scanlength: %d\nLoadtrace scanInterval:
%d\n\n\n"%(loadtraceScanLength, loadtraceScanInterval))

 outfile.write("StartTime\tStopTime\tStabilizeTime\t")
 outfile.write("Status\tNodes\tMeasured Hop\tOffered Load\tTotal Recv BW
0 (Kb/s)\tTotal Recv BW 1 (Kb/s)\tTotal Recv BW 2 (Kb/s)\tTotal Recv BW 3
(Kb/s)\tTotal BW all (Kb/s)\tGrepped BW 0 (Kb/s)\tGrepped BW 1
(Kb/s)\tGrepped BW 2 (Kb/s)\tGrepped BW 3 (Kb/s)\tTotal Grepped
BW(Kb/s)\tAverage Channel load\tAvg Latency 0\tAvg Latency 1\tAvg Latency
2\tAvg Latency 3\tAvg Lat Square 0\tAvg Lat Square 1\tAvg Lat Square 2\tAvg
Lat Square 3\tMax Lat 0\tMax Lat 1\tMax Lat 2\tMax Lat 3\tMin Lat 0\tMin
Lat 1\tMin Lat 2\tMin Lat 3\tIFQ drop 0 (%)\tIFQ drop 1 (%)\tIFQ drop 2
(%)\tIFQ drop 3 (%)\tRTR CBK drop 0 (%)\tRTR CBK drop 1 (%)\tRTR CBK drop 2
(%)\tRTR CBK drop 3 (%)\tTotal Offered BW 0 (Kb/s)\tTotal Offered BW 1
(Kb/s)\tTotal Offered BW 2 (Kb/s)\tTotal Offered BW 3 (Kb/s)\tPacket Length
0 (B)\tPacket Length 1 (B)\tPacket Length 2 (B)\tPacket Length 3 (B)\tAvg
Lat RTR CBK 0\tAvg Lat RTR CBK 1\tAvg Lat RTR CBK 2\tAvg Lat RTR CBK
3\tpercentile lat 0\tTau 0\tTau 1\tTau 2\tTau 3\tSat 0\tSat 1\tSat 2\tSat
3\tRo 0\tRo 1\tRo 2\tRo 3\tColl 0\tColl 1\tColl 2\tColl 3\n")

 98

 outfile.close()
###
#######################
######### Simulate
###

###
#######################
 j = 0
 for timeSet in timeSets:
 j = j + 1
 print "Getting ready to simulate with timeset %d: [%d, %d,
%d]"%(j,timeSet[0],timeSet[1],timeSet[2])

 for num_wireless_node in num_wireless_nodes:
 for packetLengthSet in packetLengthSets:
 bw_0 = bandwidth_0
 bw_1 = bandwidth_1
 bw_2 = bandwidth_2
 bw_3 = bandwidth_3

 # Alex - 06.02.06
 for i in range(0, bandwidthIncrements + 1, 1):
 if admittedRate == 1:
 if bw_0 >
(admittedRate_0*linkCapasity)/(100*num_wireless_node):
 bw_0 =
(admittedRate_0*linkCapasity)/(100*num_wireless_node)

 if bw_1 >
(admittedRate_1*linkCapasity)/(100*num_wireless_node):
 bw_1 =
(admittedRate_1*linkCapasity)/(100*num_wireless_node)

 if bw_2 >
(admittedRate_2*linkCapasity)/(100*num_wireless_node):
 bw_2 =
(admittedRate_2*linkCapasity)/(100*num_wireless_node)

 if bw_3 >
(admittedRate_3*linkCapasity)/(100*num_wireless_node):
 bw_3 =
(admittedRate_3*linkCapasity)/(100*num_wireless_node)

 outfile = open(resultPath, 'a')
 if adhoc != 1:
 outfile.write("%2f\t%2f\t%2f\t"%(timeSet[0], timeSet[1],
timeSet[2]))
 outfile.close()

 print "\tIncrement run %d:"%(i)
 if adhoc == 1:
 cmd = "python %sAdHocNs_run_inner.py %f %f %f %d %f %f %f %f
%s %s %s %s %d %d %d %d %d %f %s %s %f %s %s %d %d %f %d %d %d %f %f %f %f
%f %d %s %s %d %d %s %d %d %s %d %d %d %d"%(\
 commonPath, timeSet[0], timeSet[1], timeSet[2],
num_wireless_node, bw_0, bw_1, bw_2, bw_3, trafficType_0, trafficType_1,
trafficType_2, trafficType_3, \
 packetLengthSet[0], packetLengthSet[1], packetLengthSet[2],
packetLengthSet[3], loadtraceScanLength, loadtraceScanInterval, nsFile,
resultPath, \

 99

 delayBufferSize, delayProg,layer, dropDelayIncluded, ifqLength,
nodeDistance, createDelayDistributionFile, \

 DistributionFileGranularity,percentile,txop_budget_0,txop_budget_1,tx
op_budget_2,txop_budget_3,beaconInterval,admissionControl_1,tmpPath,errorFi
le,beaconHandler,debug,logPath,admissionControl_2,rts_cts,adhocRouting,resu
ltsOnlyLastHop,packetSize,seed,MACdataRate)
 else:
 cmd = "python %sns_run_inner.py %f %f %f %d %f %f %f %f %s
%s %s %s %d %d %d %d %d %f %s %s %f %s %s %d %d %f %d %d %d %f %f %f %f %f
%d %s %s %d %d %s %d %d %s"%(\
 commonPath, timeSet[0], timeSet[1], timeSet[2],
num_wireless_node, bw_0, bw_1, bw_2, bw_3, trafficType_0, trafficType_1,
trafficType_2, trafficType_3, \
 packetLengthSet[0], packetLengthSet[1], packetLengthSet[2],
packetLengthSet[3], loadtraceScanLength, loadtraceScanInterval, nsFile,
resultPath, \
 delayBufferSize, delayProg,layer, dropDelayIncluded, ifqLength,
nodeDistance, createDelayDistributionFile, \

 DistributionFileGranularity,percentile,txop_budget_0,txop_budget_1,tx
op_budget_2,txop_budget_3,beaconInterval,admissionControl_1,tmpPath,errorFi
le,beaconHandler,debug,logPath,admissionControl_2,rts_cts,adhocRouting)

 os.system(cmd)
 bw_0 += bandwidthInc_0
 bw_1 += bandwidthInc_1
 bw_2 += bandwidthInc_2
 bw_3 += bandwidthInc_3
###
#####################
###
######################
################################## Finish
###
###
###
#######################

Replace '.' with ',' in the resultfile
outfile = open(resultPath, 'r')
outfile2 = open("%s_"%(resultPath), 'w')
while 1:
 line = outfile.readline()
 if not line:
 break
 newLine = re.sub(r'\.', ',', line)
 outfile2.writelines(newLine)
outfile.close()
outfile2.close()
cmd = "rm %s; mv %s_ %s"%(resultPath, resultPath, resultPath)
os.system(cmd)

print "==="
print "Simulation done!"
print "Results are left in %s"%(resultPath)
if admissionControl_2 == 1:
 print "Logging results for the admission control are left in
%s\n"%(logPath)

 100

 print "Remember that the actually scenario and settings are left in
%s"%(nsFile)
elif admissionControl_1 == 1:
 print "Logging results for the admission control are left in
/home/ns2/simulation/results/dynamic-ATL.tr"
 print "Logging results for the atl values are left in
home/ns2/simulation/results/atl-values\n"
 print "Remember that the actually scenario and settings are left in
%s"%(nsFile)
print "Errors (if any) are left in %s"%(errorFile)

