
A&A 662, A29 (2022)
https://doi.org/10.1051/0004-6361/202038876
c© ESO 2022

Astronomy
&Astrophysics

Solitons in the dark: First approach to non-linear structure
formation with fuzzy dark matter

Mattia Mina, David F. Mota, and Hans A. Winther

Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo, Norway
e-mail: mattia.mina@astro.uio.no

Received 8 July 2020 / Accepted 1 January 2022

ABSTRACT

We present the results of a full cosmological simulation with the new code SCALAR, where dark matter is in the form of fuzzy dark
matter (FDM), described by a light scalar field with a mass of mB = 2.5 × 10−22 eV and evolving according to the Schrödinger-
Poisson system of equations. In comoving units, the simulation volume is 2.5 h−1 Mpc on a side, with a resolution of 20 h−1 pc at
the highest refinement level. While the resulting large-scale resolution prevents us from studying the general properties of the FDM
structure formation, the extremely high small-scale resolution allows a detailed analysis of the formation and evolution of central
solitonic cores, which are found to leave their imprints on dark matter density profiles, resulting in shallower central densities, and
on rotation curves, producing an additional circular velocity peak at small radii from the centre. Despite the limitations on the large-
scale resolution, we find that the suppression of structures due to the quantum nature of the scalar field reveals indications of a
shallower halo mass function in the low-mass end compared to the case of a ΛCDM simulation, in which dark matter is expected to
cluster at all mass scales even if it was evolved with the same initial conditions as used for FDM. Furthermore, we verify the scaling
relations characterising the solution to the Schrödinger–Poisson system for both isolated and merging haloes, and we find that they
are preserved by merging processes. We characterise each FDM halo in terms of the dimensionless quantity Ξ ∝ |Ehalo| /M3

halo, and we
show that the core mass is tightly linked to the halo mass by the core–halo mass relation Mcore/Mhalo ∝ Ξ1/3. We also show that the
core surface density of the simulated FDM haloes does not follow the scaling with the core radius, as observed for dwarf galaxies.
This is a challenge for the FDM model as the sole explanation of core formation.

Key words. methods: numerical – dark matter

1. Introduction

The dynamics of the large-scale structures that are observed
today is well captured by the standard model of cosmology,
the ΛCDM model, in which our Universe is described in
terms of ordinary matter and radiation (∼5%), cold dark mat-
ter (CDM) (∼25%), and dark energy in the form of a cosmo-
logical constant (∼70%) (Planck Collaboration VI 2018). The
formation and evolution of structures in our Universe, seeded
by small density inhomogeneities, has found its main driver in
the dark matter component. This form of cold and pressure-
less medium heavily dominates the matter content of the Uni-
verse, accounting for ∼85% of the total non-relativistic matter
component. The fluid description of CDM accurately describes
the properties of the observed Universe at large scales, and
the ΛCDM model is well constrained down to galactic scales.
At galactic and subgalactic scales, the formation and evolution
of structures is highly non-linear and can mainly be investi-
gated by means of numerical simulations. Since the first studies
of this type, cosmological N-body simulations (Aarseth 2003;
Teyssier 2002; Springel 2005) have improved in many differ-
ent aspects. Initially (Aarseth & Hoyle 1964), N-body simula-
tions could only model the dynamics of a small group of parti-
cles interacting by nothing else but gravity, thus describing the
CDM component of the Universe. Current purely cosmologi-
cal N-body simulations have evolved into hydrodynamic simula-
tions (Vogelsberger et al. 2014; Dubois et al. 2014; Schaye et al.
2015), including not only the baryonic physics, but also a large

variety of astrophysical phenomena, which are required for sim-
ulating realistic galaxies. However, the ΛCDM model struggles
to reproduce some basic small-scale properties of the observed
Universe, and at galactic and subgalactic scales, it fails to repro-
duce observations accurately.

Cosmological dark matter-only simulations have found a
universal density profile describing dark matter haloes of any
mass and size. Density profiles of individual CDM haloes peak
in their innermost region and are well fitted by a cuspy Navarro-
Frenk-White (NFW) profile (Navarro et al. 1996),

ρNFW(r) = ρ0

 r
Rs

(
1 +

r
Rs

)2−1

, (1)

where ρ0 corresponds to the central density of the dark halo. The
scale radius Rs marks the transition point between a log-slope
of γ ∼ −1 in the central part and a log-slope of γ ∼ −3 in
the outskirts of the dark halo. However, many observations of
rotation curves in dwarf galaxies have shown a preferred cored
isothermal profile (Burkert 1995), with a nearly constant den-
sity within its core radius (Moore 1994; Flores & Primack 1994;
Gentile et al. 2004; Donato et al. 2009; de Blok 2010).

In addition, due to the cold and collisionless nature of CDM,
dark matter clumps exist at all scales. Dark haloes are populated
by substructures of any size that are also known as subhaloes.
The presence of these subhaloes was soon verified by the first
numerical simulations, but the count of the number of substruc-
tures far exceeds the number of subhaloes found in the Local
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Volume (Klypin et al. 1999; Moore et al. 1999). The number of
subhaloes of a galaxy such as the Milky Way is roughly one
order of magnitude smaller than predicted by the ΛCDM model.

Furthermore, several studies have shown that the process of
star formation is very sensitive to astrophysical and environmen-
tal processes, and it can be highly stochastic in low-mass haloes.
However, many substructures predicted by the ΛCDM model are
simply too massive to have failed star formation. This is an addi-
tional source of discrepancy (Boylan-Kolchin et al. 2011, 2012).

Moreover, in spite of the wide diversity of structures found in
the Universe, astronomical observations suggest a tight connec-
tion between the dynamical and baryonic properties of galaxies.
These scaling relations still represent a great challenge for the
ΛCDM model at small scales. An example is the baryonic Tully–
Fisher relation (BTFR), which links the total baryonic mass of
a galaxy with its asymptotic circular velocity (McGaugh et al.
2000). While within the ΛCDM model the latter scales as V3

circ ∝

Mb with baryonic mass, the observed trend suggests a scaling of
V4

circ ∝ Mb. In general, despite the enormous improvement in
numerical techniques and astrophysical models, it is still diffi-
cult to reproduce all scaling relations at once.

It is currently still unclear where the discrepancies between
theoretical predictions of numerical simulations and astronom-
ical observations at small scales originate. On one hand, dark
matter cannot be as cold and collisionless as previously thought,
but its true nature remains unknown. On the other hand,
small-scale baryonic astrophysical processes might very well
resolve these differences (Governato et al. 2012; Brooks et al.
2013; González-Samaniego et al. 2017), but their dynamics is
extremely complex, and hydrodynamic simulations might not
capture all the relevant physics involved in small-scale astro-
physical phenomena.

Today, weakly interactive massive particles (WIMPs) are
still considered by many to be one of the most likely dark
matter candidates. Without any success so far, many ongoing
experiments are trying to detect such particles, but the unprobed
region of the parameter space is about to reach the neutrino floor.
Beyond the neutrino floor, it would be impossible to observe any
signature left by WIMPs, as the signal would be drowned in the
solar neutrino background.

This motivates the search for alternative dark matter can-
didates. Current models involving ultra-light scalars, such as
ultra-light axions (ULAs) and fuzzy dark matter (FDM), are
among the most promising alternatives to WIMPs (see e.g.
Dine & Fischler 1983; Preskill et al. 1983; Lee & Koh 1996;
Peebles 2000; Hu et al. 2000; Marsh 2016; Hui et al. 2017). This
class of models is very appealing, and the models gained much
attention in the past decade. Not only do they predict distinct
and observable signatures at small scales, but they can allevi-
ate the differences between theoretical predictions of the ΛCDM
model and astronomical observations. The dynamics of FDM
and ULAs is described by the classical Schrödinger equation.
Recently, an exiguous number of numerical tools where devel-
oped to study the dynamics of this class of models, and the first
numerical simulations were performed.

Traditionally, two main categories of numerical algorithms
have been developed for this purpose. The Madelung formula-
tion of quantum mechanics (Madelung 1926) defines a system
of hydrodynamic equations in which the quantum nature of a
collection of extremely light bosons is encoded in a pressure-
like term, called quantum pressure. On scales below the boson
de Broglie wavelength, quantum pressure prevents the collapse
of dark matter particles by counteracting gravity. The Madelung
equations can be used to model the physics of ULAs and FDM

in particle-based fluid simulations. In this case, different numer-
ical schemes have been designed in order to discretise the quan-
tum pressure, and the Madelung equations are solved by means
of traditional smoothed particle hydrodynamics (SPH), as sug-
gested by Marsh (2015). For example, by using a particle-based
approach, Zhang et al. (2018) and Nori & Baldi (2018, 2021)
successfully reproduced the expected density profiles of dark
haloes. Although they are faster than other algorithms imple-
mented in grid-based codes, the hydrodynamic approach can
lack accuracy. The Madelung formulation is known to break
down in extremely low-density regions, such as voids and inter-
ference nodes, as the quantum pressure can develop singularities
(Uhlemann et al. 2014).

Alternatively, the dynamics of the ULAs and FDM can
be described by solving the Schrödinger-Poisson system in a
grid-based approach. In this case, the wave function is discre-
tised on a grid and the non-linear Schrödinger equation can be
solved using different techniques. For example, several grid-
based codes implement spectral methods, and they solve the
governing equations in Fourier space (Woo & Chiueh 2009;
Mocz et al. 2017, 2020; Edwards et al. 2018). Other grid-based
codes employ a Taylor method to discretise the time-evolution
operator in order to compute the formal solution of the non-
linear Schrödinger equation (Schive et al. 2014a; Li et al. 2019;
Mina et al. 2020). The general evolution of a Universe with
FDM was initially investigated in Woo & Chiueh (2009), while
the first high-resolution cosmological simulation with FDM was
performed in Schive et al. (2014a), who studied the behaviour
of the FDM fluid within dark haloes. Mocz et al. (2017, 2020)
instead simulated the formation and evolution of galaxies and
dark haloes with the Bose-Einstein condensate dark matter
(BECDM) model.

The Schrödinger-Poisson system has also been introduced
as an alternative tool for sampling the six-dimensional phase-
space of a system of collisionless self-gravitating particles
(Widrow & Kaiser 1993). In this regard, Kopp et al. (2017) and
Mocz et al. (2018) showed that it is possible to recover the
classical behaviour in the limit of ~ → 0, with excellent
agreement with the solution of the standard Vlasov equations.
Although grid-based numerical methods are very accurate, they
are also slower than particle-based codes. For this reason, only
two-dimensional applications were considered in some of these
works, as full three-dimensional applications were too expensive
in terms of computational resources.

Although they agree qualitatively, different numerical stud-
ies have reached different quantitative conclusions. In particular,
the core and halo masses are expected to be tightly linked by
the core–halo mass relation, but the scaling between the two is
found to be different in almost every numerical study of struc-
ture formation involving ULAs and FDM (Schive et al. 2014a,b;
Schwabe et al. 2016; Mocz et al. 2017, 2018). These differences
can be attributed to many factors, including numerical algo-
rithms. An exhaustive benchmark study of different numerical
tools is still lacking, but it is important to test and verify the
dynamics of ultra-light scalar fields with different codes in order
to reach a quantitative agreement on the theoretical predictions
of this class of models.

In this paper we present a high-resolution cosmological sim-
ulation of a Universe in which the entire budget of dark matter
is in the form of FDM. The simulation is performed by using the
Simulation Code for ultrA Light Axions in RAMSES (SCALAR)
code. The purpose of this work is to investigate and charac-
terise the dynamics of dark matter haloes within the paradigm
of FDM, together with the formation and evolution of their
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central solitonic cores, which are a key signature of models
based on ultra-light scalar fields. The study of the formation
and evolution of these cores is essential for testing the model
against observations. For example, a soliton core is found to fit
the cores observed in some dwarf galaxies very well, which in
turn were used to constrain or even determine the mass of the
light boson, assuming that the formation mechanism of these
cores is solely due to the phenomenology of ULAs or FDM
(Schive et al. 2014a; Marsh & Pop 2015; Calabrese & Spergel
2016; González-Morales et al. 2017; Bozek et al. 2015). On the
other hand, Burkert (2020) recently argued that the dark matter
cores previously predicted by cosmological simulations involv-
ing this class of models are inconsistent with observations
if FDM dark haloes form following the classical hierarchical
paradigm.

The structure of the paper is as follows: in Sect. 2 we
describe the theory behind the class of dark matter models
involving light scalar fields, and in Sect. 3 we introduce the
simulation andbriefly describe the numerical methods we used
to solve the Schrödinger-Poisson system. Then, we present the
results of the simulation in Sect. 4 and the results of our conver-
gence tests in Sect. 5 before we conclude in Sect. 6.

2. Theory

In this section we summarise the phenomenology and the
dynamics of light scalar fields in a general context, without
introducing any specific model motivated by particle physics.
Then, starting from the phenomenology of a light scalar field,
we describe them in cosmological context, derive the governing
equations, and briefly describe their dynamics. The equations are
given in natural units, where c = ~ = 1.

2.1. Scalar fields as dark matter

A complex scalar field has an internal global U(1) symmetry
that is spontaneously broken when it acquires a vacuum expec-
tation value. Thus the two components of the complex scalar
field are reconfigured in a massive mode and a Goldstone boson.
The Goldstone boson is a massless angular degree of freedom,
which is invariant under shift transformations. However, at some
energy scale, non-perturbative physics becomes relevant, and it
explicitly breaks the shift symmetry, leading to a preferred field
configuration and, thus, a potential for the Goldstone boson.
The potential must respect the residual discrete shift symmetry
because the Goldstone boson still represents an angular degree
of freedom, and it must therefore be periodic. By denoting with
φ the Goldstone boson, with fφ the energy scale of the sponta-
neous symmetry breaking, and with Λφ the energy scale at which
non-perturbative effects become relevant, the potential can gen-
erally be written as V(φ) = Λ4

φU(φ/ fφ), where U(φ/ fφ) is peri-
odic. Although the explicit form of the potential depends on the
underlying model, one of its simplest forms is

V(φ) = Λ4
φ

[
1 − cos

(
φ

fφ

)]
. (2)

In order to study the dynamics of φ in a model-independent way,
we only consider small displacements of the field from the min-
imum of the potential. Thus, the potential can be expressed as
a Taylor series. The leading term of the Taylor expansion is the
mass term, and the potential can be approximated as follows:

V(φ) ∼
1
2

m2
Bφ

2, (3)

where mB = Λ4
φ/ f 2

φ corresponds to the mass of the boson.
Higher-order contributions to the Taylor expansion of the poten-
tial would include terms describing self-interactions and inter-
actions with other standard model fields. However, those terms
are suppressed by higher powers of fφ, and we do not con-
sider them, as they are not relevant for this work. Typically, the
parameter fφ lies in between the traditional energy scale of the
grand unification theory EGUT ∼ 1016 GeV and the Plank energy
EPl ∼ 1018 GeV. Again, the energy scale of non-perturbative
physics is extremely sensitive to the details of the underlying
model and is not relevant for this work.

The only relevant assumption in the context of dark mat-
ter cosmology revolves around the boson mass. Typical FDM
models consider a scalar field with a mass in the range of
10−24 < mB < 10−22 eV, which is of particular interest for cur-
rent observations (see e.g Marsh & Ferreira 2010; Marsh & Pop
2015; Calabrese & Spergel 2016; González-Morales et al. 2017;
Bar et al. 2019a). Because their mass is extremely low, FDM
particles manifest their wave nature on astronomical scales.
While large-scale predictions would essentially be the same as
for the ΛCDM model, the quantum nature of the dark matter
fluid would suppress the formation of structure at small scales,
providing a natural solution to the small-scale problems of the
ΛCDM model (Marsh & Pop 2015; Hui et al. 2017). The corre-
sponding de Broglie wavelength of FDM particles,

λdB =
λ

2π
=

1
mBv

, (4)

is far larger than the mean inter-particle separation. Under these
circumstances, FDM particles have a high ground-state occupa-
tion number and form a Bose-Einstein condensate (BEC). As
a consequence, the system behaves as a macroscopic quantum
state, and it can be described by a single wave-function evolving
according to the classical Schrödinger equation.

2.2. Fuzzy dark matter

In general relativity (GR), a spin-0 real scalar field minimally
coupled with the metric is described by the action

S φ =

∫
d4x
√
−g

[
1
2
gµν∂µφ∂νφ − V(φ)

]
. (5)

This action is only valid after the symmetry is spontaneously
broken and once non-perturbative effects are switched on. The
equation of motion of the field can be obtained by varying the
action with respect to the field itself, and it is in the form of the
Klein-Gordon equation,

1
√
−g

∂µ
[√
−g gµν∂νφ

]
−
∂V
∂φ

= 0. (6)

The corresponding energy-momentum tensor can instead be
derived by varying the action with respect to the metric,

T µ
ν = gµα∂αφ∂νφ −

δ
µ
ν

2

[
gαβ∂αφ∂βφ + V(φ)

]
. (7)

Background evolution. The background evolution of the
field can be studied under the assumption of homogeneity and
isotropy. When the d’Alembert operator is computed for the
Friedman-Robertson-Walker (FRW) metric and the potential is
replaced with its Taylor expansion up to the leading order, the
equation of motion of the field for this purpose reduces to

d2φ

dt
+ 3H

dφ
dt

+ m2
Bφ = 0, (8)
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where H denotes the Hubble expansion rate. This equation cor-
responds to a simple harmonic oscillator, with a time-dependent
friction term determined by the underlying background cosmol-
ogy. The damping ratio of the system can be defined as

ζ =
3H
2ω0

, (9)

where ω0 = mB corresponds to the natural frequency of the sys-
tem. The behaviour of the system can be characterised by two
regimes. At early stages, the mass term is completely negligible
compared to the Hubble term. In this regime, we can therefore
disregard the mass term, and Eq. (8) describes an overdumped
harmonic oscillator, as ζ � 1. In this case, the value of the field
remains frozen to its initial value. However, as the Hubble rate
drops as H ∼ t−1, the damping ratio decreases, and at t = tosc, the
condition ζ = 1 defines the crossover between the overdumped
regime and a new regime in which the field starts to oscillate
coherently. In the limit of ζ � 1, we can neglect the friction
term in Eq. (8), and the system is described by an underdumped
harmonic oscillator. In particular, when the Universe is matter
dominated, the scale factor evolves as a ∝ tp and the exact solu-
tion of Eq. (8) reads

φ(a) = a−3/2(t/tini)1/2 [C1Jn(mBt) + C2Yn(mBt)], (10)

where n = (3p − 1)/2, Jn(x) and Yn(x) are Bessel function of the
first and the second kind, respectively, and tini is the initial time.
In order to better understand the behaviour of the field, we can
define its background energy density and pressure as follows:

ρB =
1
2

(dφ
dt

)2

+ m2
Bφ

2

, (11)

pB =
1
2

(dφ
dt

)2

− m2
Bφ

2

· (12)

In the overdumped regime, the first term between parentheses in
both Eqs. (11) and (12) is negligible, and the field has an effective
equation of state wB = pB/ρB = −1. As a consequence, at early
stages, the field effectively behaves as a dark energy component.
On the other hand, by plugging Eq. (10) into Eqs. (11) and (12),
it is possible to show that in the underdamped regime, the equa-
tion of state is the same as any non-relativistic component (e.g.
CDM) and the background energy density evolves as ρ ∝ a−3.
As long as the crossover ζ = 1 occurs before the matter-radiation
equality, this type of models is suitable as alternative dark matter
models. In the ΛCDM model, the Hubble rate at matter-radiation
equality is roughly H(aeq) ∼ 1028 eV. This poses a lower bound
to the boson mass: models involving a scalar field with a mass
higher than ∼1028 eV represent a potential dark matter candidate.

As a consequence, assuming that the transition between the
two regimes takes place within the radiation-dominated epoch,
the present-day relic abundance of FDM can be written as

ΩFDM = 0.1
( mB

10−22 eV

)1/2
(

fφ
1017 GeV

)2

. (13)

Non-linear dynamics. In the context of cosmological struc-
ture formation, we focus on the underdamped regime and assume
throughout the remaining paper that the whole dark matter bud-
get of the Universe is in the form of FDM. In order to study
the growth of perturbations in an FDM Universe, we consider
a perturbed FRW metric instead in the Newtonian gauge. In the
weak-field limit, the metric tensor is therefore given by

ds2 = − (1 + 2Φ) dt2 + a2(t) (1 − 2Φ) dr2, (14)

where Φ denotes the Newtonian gravitational potential. Plug-
ging the non-zero components of the metric tensor in the Klein-
Gordon equation, Eq. (6), leads to

(1 − 2Φ)
∂2φ

∂t2 + 3H
(
∂Φ

∂t
− 2Φ + 1

)
∂φ

∂t

− (1 + 2Φ)
1
a2∇

2φ − m2
Bφ = 0. (15)

Instead, plugging the non-zero components of the metric tensor
in the “00” component of the energy-momentum tensor, Eq. (7),
gives the energy density of the field,

ρB =
1
2

[
(1 + 2Φ)

∂φ

∂t
+ mBφ

2 +
(1 − 2Φ)

a2 ∂iφ∂iφ

]
. (16)

However, since rapid temporal fluctuations of the density of the
field do not contribute at all to the gravitational potential, we
can explicitly disregard the high-frequency part of the spectrum
by considering the non-relativistic limit. For this purpose, we
express φ in terms of a complex scalar field ψ,

φ =
1
√

2mB

(
ψe−imBt + ψ∗eimBt

)
, (17)

thus filtering out the contribution of high-frequency modes, that
is, ω ∼ mB. As a consequence, we can safely assume that |ψ̈| �
mB|ψ̇|, and the equation of motion for the complex scalar field ψ
reduces to

i
(
∂ψ

∂t
+

3
2

Hψ
)

=

− 1
2m2

Ba2
∇2 + mBΦ

ψ. (18)

Equation (18) corresponds to a non-linear Schrödinger equation,
generalised to the case of an expanding Universe. Furthermore,
in the non-relativistic limit, the leading term in the energy den-
sity of the field, Eq. (16), corresponds to

ρB = mB |ψ|
2 . (19)

In order to study the non-linear clustering of dark matter in a cos-
mological context, Eq. (18) is coupled to the Poisson equation,
which reads under the previous assumptions

∇2Φ = 4πGa2(ρB − ρB), (20)

and it describes the reaction of the gravitational potential to fluc-
tuations in the density field.

It is also possible to recast the Schrödinger equation in a
system of hydrodynamic equations. In this case, we express the
wave-function ψ in polar coordinates,

ψ =

√
ρB

mB
eiθ, (21)

and we describe the behaviour of the dark matter fluid in terms
of the macroscopic quantities

ρ = mB |ψ|
2 , (22)

u =
∇θ

mB
· (23)

When we replace the previous definitions into the Schrödinger
equation and consider the real and imaginary parts separately,
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the dynamics of the macroscopic fluid follows the system of
equations

∂ρ

∂t
+ 3Hρ +

1
a
∇ · (ρu) = 0, (24)

∂u

∂t
+ Hu +

1
a

(u · ∇) u =
1

mBa
∇ (Φ + Q). (25)

Here, the term Q is the so-called quantum potential, and it is
defined as

Q = −
1

2mBa2

∇2 √ρ
√
ρ
· (26)

Equations (24) and (25) correspond to the Madelung formula-
tion of quantum mechanics. Density and velocity now assume
a classical meaning. While equation Eq. (24) is the same as the
classical continuity equation and describes the conservation of
mass, the Euler-like equation Eq. (25) expresses the conservation
of momentum. In contrast to its classical counterpart, Eq. (25)
does not have a classical pressure term. However, the term Q is
equivalent to a pressure term, generating a certain stiffness in the
field, which in turn resists the compression due to gravity. The
quantum pressure only acts in certain regions of the Universe. In
particular, when the density field tends to zero, the term Q van-
ishes. As a consequence, when the quantum potential is absent
or negligible, Eqs. (24) and (25) describe a system of particles
that only interact by means of gravity, and they have the same
form as the CDM fluid equations. In the cosmological context,
the quantum pressure is expected to be high in extremely high-
density regions, such as the innermost part of a dark matter halo,
and on scales of the de Broglie wavelength of dark matter par-
ticles, but everywhere else, the fields behave as in the classical
CDM.

3. Simulation

In this section we summarise the numerical setup we adopted
for our simulation and the steps involved when computing the
initial conditions. In addition, we highlight the main numerical
schemes used by SCALAR in order to solve the governing equa-
tions of FDM.

3.1. Numerical setup

For this work, we simulated a Universe in which the whole
dark matter budget was in the form of FDM. For this pur-
pose, we employed the new adaptive mesh refinement (AMR)
code SCALAR to evolve a scalar field with a mass of mB =
2.5 × 10−22 eV, in a cosmology with present-day matter and
dark energy density parameters of ΩFDM = 0.3 and ΩΛ = 0.7,
respectively, a dimensionless Hubble constant of h = 0.67, and
a linear power spectrum normalisation of σ8 = 0.8. The sim-
ulation volume of 2.5 h−1 Mpc on a side was discretised with
5123 cells at the domain grid, and with up to eight refinement
levels. In this simulation, the maximum density allowed at the
domain grid corresponded to ρ/ρc = 10, and each cell in the
AMR grid was refined every time the density exceeded ten times
the maximum density of the current AMR grid. Thus, while the
resolution of the domain grid was limited to ∆x ∼ 5 h−1 kpc,
the effective resolution of our simulation was approximately
∆x ∼ 20 h−1 pc. According to Eq. (4), if we consider the typ-
ical circular velocity profile in the innermost part of an aver-
age dark matter halo, quantum effects are expected appear on
scales of roughly 1 h−1 kpc. Thus, the extremely high resolu-
tion is enough to capture the behaviour of the field in high-
density regions dominated by quantum effects. The initial linear

power spectrum was computed with the publicly available code1

AxionCAMB (Hlozek et al. 2015) and was used to construct the
initial conditions for the scalar field at redshift z = 200 (see
Appendix A for thegeneration of the initial conditions). The Uni-
verse was then evolved until redshift z = 2.5. We did not run the
simulation further because the computational time required for
running the simulation until the present day was too long and
was not required for the purpose of this paper. The same initial
conditions, generated with a truncated initial power spectrum,
were used to simulate a ΛCDM Universe with the same cosmol-
ogy using the RAMSES code.

3.2. Numerical schemes

In SCALAR, the solution of the non-linear Schrödinger equa-
tion is discretised on an AMR grid, where finer resolutions are
only employed in regions in which features of the wave-function
are more demanding. Provided the wave-function at time tn,
the formal solution of the non-linear Schrödinger equation at
tn+1 = tn + ∆t reads

ψ (x, tn+1) = U (tn+1, tn)ψ (x, tn). (27)

The propagator U (tn+1, tn), also known as the time-evolution
operator, links the wave-function at different times and is dis-
cretised as follows:

U (tn+1, tn) = exp
[
−iĤ (x, tn) ∆t

]
, (28)

where Ĥ (x, tn) denotes the Hamiltonian of the system. The Lie-
Trotter formula is used to split kinetic and potential terms in
the Hamiltonian, which are denoted by K̂ (x, tn) and Ŵ (x, tn),
respectively. Thus, the solution of the non-linear Schrödinger
equation at time tn+1 is computed as

ψ (x, tn+1) = exp
[
−iŴ (x, tn) ∆t

]
exp

[
−iK̂ (x, tn) ∆t

]
ψ (x, tn).

(29)

First, the term involving the free kinetic part of the Hamiltonian
is expanded in Taylor series and is applied to the wave-function
as follows:

ψ̄ (x, tn+1) =

1 +

(
i∆t

2mB
∇2

)
+

1
2

(
i∆t

2mB
∇2

)2

+ . . .

ψ (x, tn). (30)

Here, the Laplacian is computed by using the standard second-
order finite difference formula. Furthermore, in Eq. (30), SCALAR
only considers terms up to O(dt3). Then, the phase rotation
induced by the potential is calculated and the wave-function at
time tn+1 is computed as

ψ (x, tn+1) = exp [−imBΦ (x, tn) ∆t] ψ̄ (x, tn+1). (31)

In order to ensure good conservation properties, SCALAR can
employ a secondary solver. For this purpose, density currents
j between AMR cells are computed at cell interfaces and at half
time-step. Then, the associated continuity equation is solved on
top of the non-linear Schrödinger equation as

ρ (x, tn+1) = ρ (x, tn) −
∆t
∆x

[
j
(
xi+1/2, tn+1/2

)
− j

(
xi−1/2, tn+1/2

)]
.

(32)

1 The code is availiable at https://github.com/dgrin1/
axionCAMB
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Fig. 1. Projection along the z-axes of the dark matter density field, normalised by the critical density of the Universe. The box is 2.5 Mpc h−1 in
comoving units, and it represents the entire simulation box.

The new dark matter density is used to rescale the wave-function
that was previously advanced by the Schrödinger solver. This
process ensures a good level of mass conservation, which is
needed for cosmological simulations.

The algorithm used by SCALAR to solve the Poisson equation
is instead the same as the algorithm that was originally imple-
mented in the RAMSES code. At the domain level, the gravita-
tional potential is computed in Fourier space by using a spectral
solver. At finer levels of the AMR hierarchy, SCALAR switches
to its multi-grid solver, which determines the solution of the
Poisson equation by using a successive over relaxation (SOR)
scheme. We refer to the original papers of Mina et al. (2020) and
Teyssier (2002) for further details about the implementation of
numerical schemes.

4. Results

In this section we present the results of our simulation. The anal-
ysis was partially made with a modified version of the YT python
package (Turk et al. 2011), and the halo catalogues were com-

puted using the Amiga halo finder (Knollmann & Knebe 2009).
A virial overdensity ∆vir = 200 was used when haloes were
located.

4.1. General evolution of an FDM Universe

In Fig. 1 we project the FDM density field along the line of sight,
normalised by the critical density of the Universe. The two-point
correlation function of matter density perturbations is described
by the matter power spectrum. By considering the Fourier trans-
form of the density contrast,

δ(k) =

∫
d3x δ(x) exp(−ik · x), (33)

the power spectrum P(k) can be defined in terms of the autocor-
relation function,

〈δ(x)δ(x + r)〉 =

∫ ∞

0

dk
k

k3P(k)
2π2

sin(kr)
kr

, (34)
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Fig. 2. Slice along the z-axis across one of the first structures that formed in our simulation box. Each panel represents a slice of 200 h−1 kpc on a
side in comoving units. The density is normalised by the critical density of the Universe.

or, alternatively, in its dimensionless form,

∆2(k) =
k3P(k)

2π2 · (35)

For k � 1 h−1 Mpc the power spectrum probes modes in the
density field that are still in the linear regime, thus describing
the large-scale structure of the Universe. On the other hand, at
k � 1 h−1 Mpc, the power spectrum encodes information about
the evolution of the Universe at galactic and subgalactic scales,
evolving in the non-linear regime.

Because of the quantum nature of the scalar field, the
FDM model predicts a sharper cutoff on non-linear scales than
the ΛCDM model. The quantum pressure generated in high-
density regions and on scales of the de Broglie wavelength
suppresses the formation of structures above the corresponding
Jeans wavenumber, which can be estimated by linear theory as
(Marsh 2016)

kJ =
66.5

(1 + z)1/4

(
ΩFDM h2

0.12

)1/4 ( mB

10−22 eV

)1/2
Mpc−1, (36)

where ΩFDM corresponds to the present-day dark matter relic
abundance. Thus, the redshift dependent comoving Jeans wave-
length λJ = 2π/kJ is given by

λJ =
(1 + z)1/4

10.6

(
ΩFDM h2

0.12

)−1/4 ( mB

10−22 eV

)−1/2
Mpc. (37)

In contrast to the CDM case, the presence of the Jeans wave-
length in the FDM model is directly connected to the quan-
tum pressure. As a consequence, below scales comparable to

the Jeans wavelength, structure formation is heavily suppressed.
Thus, the corresponding Jeans mass can be defined as follows:

MJ =
4
3
πρB (λJ/2)3

= 1.47 × 107(1 + z)3/4
(
ΩFDM h2

0.12

)1/4 ( mB

10−22 eV

)−3/2
M�.

(38)

When we assume that the solitonic core extends to the virial
radius of the dark halo, Eq. (38) provides a lower bound on the
mass of FDM haloes.

4.2. Dark halo growing in an FDM Universe

In our simulation, the first structures start forming around red-
shift z ∼ 10. In Fig. 2 we present the dark matter field, nor-
malised by the critical density of the Universe, and we show
how it evolves as it forms one of the first structures. Start-
ing from a small clump in form of a filament, dark matter is
increasingly accreted towards the deepest point of the gravita-
tional potential well. As the system evolves towards a coherent
state, the macroscopic wave-function develops the first interfer-
ence fringes, revealing the quantum nature of the dark matter
fluid for the first time. In the region around the minima of the
gravitational potential, density grows over time, forming a small
gravitationally bound structure: the first FDM halo. At the same
time, on scales comparable with the de Broglie wavelength of
the scalar field, the quantum pressure builds up as the scalar
field collapses further, pushing energy from the highest-density
region of the dark halo to its outskirts. A coherent and stable
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Fig. 3. Comoving density (left panel) and circular velocity (right panel) profiles of Halo 2 at redshifts z = 5.0, 4.6, 4.2, 3.6, 2.8, and 2.5. At these
redshifts, Halo 2 is characterised by a mass of Mz=5.0 = 1.71 × 108 M�, Mz=4.6 = 3.44 × 108 M�, Mz=4.2 = 5.73 × 108 M�, Mz=3.6 = 9.73 × 108 M�,
Mz=2.8 = 2.09 × 109 M�, and Mz=2.5 = 2.25 × 109 M�.

configuration develops in the innermost region of the collapsed
object, forming a soliton with nearly constant density at the
centre. Outside the soliton radius, the field acquires its typical
granular structure, which significantly differs from the classical
CDM halo. These small coarse-grained clumps originate in the
superposition of multiple plane-waves, resulting from the flow
of energy promoted by the quantum pressure.

For illustrative purposes, we followed the evolution of a sin-
gle FDM halo during the expansion of the Universe. To do this,
we selected an isolated halo, called Halo 2, from the most mas-
sive haloes that formed in our simulation. As shown in Fig. 3,
we tracked its density profile as the scalar field collapsed under
the effect of gravity. Because of the quantum nature of the scalar
field, the innermost region of the dark halo exhibits a solitonic
core with an almost constant density at all redshifts, which char-
acterises the soliton solution of the non-linear Schrödinger equa-
tion. The solitonic core extends on scales corresponding to the
coherence length of the scalar field, or its de Broglie wavelength.
On larger scales, where no high level of coherence is achieved,
the density profile quickly drops as a power law.

In Fig. 4 we only consider Halo 2 at redshift z = 2.5. In
the upper panel, we fit the innermost region of its density profile
with the soliton profile,

ρ(r) = 1.9 × 109 h a−1

( mB

10−23 eV

)−2
(

Rcore

kpc h−1

)−4

1 + 9.1 × 10−2

(
r

Rcore

)28

M�
(kpc h−1)3 ,

(39)

leaving the core radius as the only free parameter. This formula
was first suggested by Schive et al. (2014a) and defines the core
radius as the point at which the density drops by half its central
value. In this case, the solitonic core is well fitted by Eq. (39)
with a core radius of Rcore = 0.35 h−1 kpc, in comoving units. At
the same time, we fit the density profile at larger radial distances
with the NFW profile given by Eq. (1). In this case, the free
parameters of the fit are the central density ρ0 and the concentra-
tion of the halo, defined as cNFW = Rvir/Rs. When the same virial
radius found for the FDM halo is assumed, the best fit yields
an NFW profile characterised by a comoving central density of
ρ0 = 4.26×106 M� (h−1 kpc)−3 and a concentration parameter of

cNFW = 10.08. In the bottom panel of Fig. 4, we instead plot the
circular velocity of the FDM halo, which is computed according
to the formula:

vcirc(r) =

√
GMenc

r
, (40)

where G denotes the Newton gravitational constant, and Menc
corresponds to the mass enclosed within the radius r.

By redshift z = 2.5, the ΛCDM Universe simulated on a
side has produced more structures and substructures because
low-mass halo formation is suppressed within the FDM model.
This makes a direct match between FDM and CDM hard. For
this reason, we selected a dark halo in the simulated ΛCDM
Universe with virial properties (Mvir = 1.78 × 109 M�, Rvir =
28.64 h−1 kpc, and cNFW = 2.82) similar to Halo 2. In Fig. 4
we plot its density profile and rotation curve. The circular veloc-
ity profile of the CDM halo is characterised by a single peak
located at Rmax = (α/cNFW)Rhalo, with α ∼ 2.16. In the case
of the FDM halo, the circular velocity peak is instead located
at much smaller radii than the CDM halo because a small com-
pact and prominent solitonic core lies at the centre of the dark
halo. In other cases, the circular velocity profiles of FDM haloes
exhibit two peaks, one connected to the solitonic core at the cen-
tre, and the other connected to the NFW-like outer region contri-
bution, as discussed in Sect. 4.3. In some cases, the presence
of such a solitonic core can be disfavoured if circular veloc-
ity profiles are compared with real observed dwarfs (Bar et al.
2018, 2019b). Finally, at redshift z = 2.5, Halo 2 has a virial
mass and a comoving virial radius of Mvir = 1.56 × 109 M� and
Rvir = 24.21 h−1 kpc, respectively.

4.3. Non-linear regime at low redshift

At redshift z = 2.5, we selected a sample of five representa-
tive haloes found in our simulation box, spanning over three dex
in virial mass. The density profiles of the five haloes are plot-
ted in the left panel of Fig. 5, and in the right panel, we plot
their rotation curves computed according to Eq. (40). By using
the soliton profile, Eq. (39), we fit the innermost region of the
density profiles, estimating the core radius of each halo in this
way. Except for some scatter beyond the soliton radius due the
complex dynamics, the outer part of each FDM halo decays in a
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Fig. 4. Density (upper panel) and circular velocity (bottom panel) pro-
files of Halo 2 at redshift z = 2.5. The solid lines show the FDM
(green) and the CDM (blue) haloes. While the dotted green line repre-
sents result of the fit of the solitonic core found in the FDM halo, the
dotted blue line represents the result of the NFW fit of the CDM halo.

similar way to the classical CDM halo, following an NFW pro-
file. The transition between the soliton profile and the NFW out-
skirts is found to universally occur at a radius of r ∼ 3 Rcore. Typ-
ically, high-mass FDM haloes are characterised by more promi-
nent solitonic cores, with higher core masses and smaller core
radii than low-mass FDM haloes. This reflects the core mass–
radius and core–halo mass scaling relations, which are investi-
gated in detail in Sect. 4.4.

By computing the moment of intertia tensor, we can esti-
mate the shapes of the FDM haloes, which can have important
observational consequences. In contrast to the results obtained
in Mocz et al. (2020) for the case of BECDM, where dark haloes
were found to be more triaxial than typical CDM haloes, we find
that FDM haloes follow the characteristic triaxial configuration
of CDM haloes, with axis ratios of b/a ∼ c/a ∼ 0.55−0.85.

In addition, for both the FDM and the CDM simulations,
we computed the halo mass function (HMF) by counting the
number of structures falling in a given mass bin. Because the
size of the box is small, we can only probe mass scales up to
M . 1010 M�, corresponding to typical dwarf masses. In Fig. 6
we compare the two HMFs with the ΛCDM estimate provided
by Tinker et al. (2008). First, we note that the smallest haloes in
the simulated FDM Universe at redshift z = 2.5 have a virial

mass of 7.14 × 106 M�, which is consistent with the minimum
mass estimate provided by Eq. (38). Then, we note that the HMF
of the simulated FDM Universe is suppressed at all mass scales.
In the CDM run, the HMF also shows signs of suppression at
masses Mhalo . 109 M�, but this is an artificial effect because
we also employed the FDM initial conditions for the CDM run
(the initial linear power spectrum is suppressed at small scales).
However, below Mhalo . 108 M�, the HMF computed for the
CDM run exhibits the same trend as expected for the ΛCDM
model, growing as

dn
dM
∝ M−2. (41)

The stellar mass function (SMF) measured for observed galaxies
is also suppressed at typical mass scales of dwarf galaxies. In this
case, the observed suppression is attributed to various feedback
mechanisms dominating in low-mass and dark matter-dominated
systems, resulting in strong star formation inefficiencies. Within
the ΛCDM model, this large difference between the HMF and
the SMF is at the origin the missing satellite and too-big-to-fail
(Boylan-Kolchin et al. 2011) problems. In the case of an FDM
Universe, the suppression of the HMF above Mhalo ∼ 108 M�
can probably be attributed to the lack of statistics, but the sup-
pression found in the low-mass end is a direct consequence of
the quantum nature of the scalar field and clearly shows the
capability of this model to work in the right direction to solve
the aforementioned small-scale problems. As found in previous
numerical investigations (e.g. Schive et al. 2016), the increas-
ing trend found in the HMF towards low masses can reflect
the formation of spurious haloes. These numerical artefacts are
extremely difficult to identify, especially in grid-based simula-
tions, but we do not expect them to have an impact on the other
probes we investigate here.

Furthermore, the existence of a circular velocity peak due to
a small compact core, shown in Figs. 4 and 5, can have strong
consequences for the FDM model (Bar et al. 2018). If baryonic
physics were included in the treatment, small compact solitonic
cores might in principle enhance gravitational cooling and accre-
tion of gas towards the centre of dark matter haloes in systems
with virial masses above a critical mass of Mhalo & 108 M�.
As suggested by Schive et al. (2014b), formation of ultra-dense
gas in the centre of the dark halo could promote major star-
burst and early forming quasars (Mortlock et al. 2011). On the
other hand, because of the bursty star formation that is observed
in dwarf galaxies, stellar feedback often prevents gas accretion,
leading to a complex interplay between gravitational cooling and
heating processes resulting from various feedback mechanisms.
Baryonic processes are known to be very strong even in dark
matter-dominated systems, such as dwarf galaxies, and therefore
we cannot draw any conclusion based on the results obtained
from our simulated FDM Universe alone. We reserve a proper
numerical investigation including baryonic physics for a future
work, as well as relevant astrophysical processes such as stellar
feedback.

4.4. Scaling relations

Since the first numerical studies about the formation and the evo-
lution of FDM haloes, it has been shown that the general prop-
erties of FDM haloes are tightly linked by a series of interesting
scaling relations that result from the intrinsic scaling symme-
tries of the Schrödinger-Poisson system. When no net angular
momentum is assumed, an FDM halo is primarily characterised
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Fig. 5. Dark matter density profiles (left panel) and rotation curves (right panel) of a representative sample of five FDM haloes found at redshift
z = 2.5. The density of each individual halo is expressed in units of its central density. Similarly, the radial distance is normalised to the core radius
of each individual halo. In both panels, the vertical dashed line corresponds to r = 3 Rcore, marking the point where the solitonic profile breaks.
The masses of the haloes shown in this figure are M1 = 6.52 × 109 M�, M2 = 1.55 × 109 M�, M3 = 2.25 × 109 M�, M4 = 2.30 × 108 M�, and
M5 = 8.46 × 107 M�.

Fig. 6. Halo mass function computed for the FDM and CDM simula-
tions. The solid black line corresponds to the analytical estimate of the
HMF in a ΛCDM cosmology at z = 2.5, based on Tinker et al. (2008).

by a single dimensionless parameter,

Ξ =
|Ehalo| /M3

halo

mBG
, (42)

which is a scale-free invariant of the Schrödinger–Poisson sys-
tem (Mocz et al. 2017; Bar et al. 2018). In Eq. (42), Mhalo corre-
sponds to the viral mass of the dark halo, and |Ehalo| is its total
energy, which can be approximated as

|Ehalo| ∼
GM2

halo

Rhalo
· (43)

As in other numerical studies, we find a fundamental scaling
relation between the core mass Mcore and Ξ of the form

Mcore/Mhalo = α Ξβ. (44)

This means that given its initial mass and energy, each FDM halo
can be uniquely described by the Ξ parameter. In order to quan-
tify the scaling of the core mass with the scale-free invariant Ξ,

we used Eq. (44) to fit a data sample containing the selection of
the five haloes described in Sect. 4.3, together with the different
temporal realisations of Halo 2 presented in Sect. 4.2. Including
the 1σ error on the parameters, the fit yields α = 1.21 ± 0.162
and β = 0.39 ± 0.043, which is consistent with the results
of Mocz et al. (2017) (see also Schwabe et al. 2016; Du et al.
2017). Thus, when the parameter β is fixed to 1/3, the core–halo
mass relation is given by

Mcore/Mhalo = 0.73 Ξ1/3, (45)

and it is shown in the upper panel of Fig. 7. If the total energy
of the halo were furthermore approximated as |Ehalo| ∝ M5/3

halo,
Eq. (45) would imply a scaling of Mcore ∝ M5/9

halo between the core
and the halo masses. To verify the validity of this approximation,
we also fit the same data sample with

Mcore = 10α
′

(1 + z)1/2
(

Mhalo

M�

)β′
M�, (46)

where we take the redshift dependence suggested by Schive et al.
(2014b) explicitly into account. As expected, the fit yields α′ =
2.29 ± 0.709 and β′ = 0.55 ± 0.081. In the lower panel of Fig. 7,
we show the alternative form of the core–halo mass relation pro-
vided by Eq. (46), and we note that the largest scatter among the
data corresponds to Halo 2 at redshift z = 5 and to Halo 5 at
redshift z = 2.5, which are characterised by small masses and
might not yet be fully virialised. Other studies have found a sim-
ilar core–halo mass relation, but with different values for the β′
exponent in Eq. (46). For example, Mocz et al. (2018) reported
a value of β′ = 1/9, while Schive et al. (2014b) found a value
of β′ = 1/3. The core–halo mass scaling has interesting impli-
cations. As mentioned by Schive et al. (2014b), the uncertainty
principle in quantum mechanics is a local relation, but the core–
halo mass relation links a local property such as the core mass
to a global property such as the virial mass of the halo, implying
that the uncertainty principle in this case holds non-locally.

At the same time, the core radius and its mass are tightly
connected by the core mass–radius relation. With our defini-
tion of core radius, the solitonic core encloses roughly 25% of
the total soliton mass. As a consequence, the core mass can be
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Fig. 7. Core–halo mass scaling relation for a representative selection of
five FDM haloes.

Fig. 8. Core mass–radius scaling relation for a representative selection
of five FDM haloes.

expressed as

Mcore = 2.1 × 1010 h a−1
( mB

10−23 eV

)−2
(

Rcore

kpc h−1

)−1

M�. (47)

This equation can be obtained by integrating the soliton profile
given by Eq. (39). In Fig. 8 we show how the core mass com-

puted for our sample of FDM haloes scales according to the core
radius.

4.5. Merging two FDM haloes

The merging process between FDM matter haloes has not been
studied before in a realistic cosmological environment. Ini-
tially, collisions between self-gravitating solitons were studied
in Bernal & Guzmán (2006). In this work, it was shown that if
the total initial energy of a binary system is positive, the two
solitons pass through each other, while in case of a negative total
initial energy, the two soliton merge into one virialised structure.
In Schive et al. (2014b), Mocz et al. (2017), and Schwabe et al.
(2016), the merger between solitons has been reproduced from
an idealised set of initial conditions, and it was shown that the
core mass–radius and the core–halo mass scaling relations are
preserved by the merging process. Furthermore, Schwabe et al.
(2016) showed that the core mass resulting from a binary merger
only depends on the mass ratio and on total initial mass and
energy, while it is independent of the initial phase difference
and angular momentum. In addition, when the progenitors have
non-zero angular momentum, the final core becomes a rotating
ellipsoid, which otherwise would be spherical.

In our simulation, the two most massive FDM haloes formed
by redshift z = 4, namely Halo 1a and Halo 1b, start to
approach each other slowly. By redshift z ∼ 3, they collide
head-on and merge into a single large dark matter halo, namely
Halo 1. The two progenitors of Halo 1 have very similar virial
properties: with masses of M1a = 1.9 × 109 M� and M1b =
2.9 × 109 M�, respectively, the merger event would be classi-
fied as a major merger. The final product, Halo 1, is a larger
dark matter halo with a virial mass and comoving virial radius
of M1 = 6.5 × 109 M� and R1 = 39.2 h−1 kpc.

The core radius of the progenitors Halo 1a and Halo 1b
was computed by fitting their soltonic cores with Eq. (39). At
redshift z = 4, right before the merging event starts, we find
Rcore,1a = 0.45 h−1 kpc and Rcore,1b = 0.58 h−1 kpc in comov-
ing units for Halo 1a and Halo 1b, respectively. At redshift
z = 2.5, the final dark matter halo has a comoving core radius of
Rcore,1 = 0.16 h−1 kpc. As shown in Figs. 9 and 10, we also find
that both the core mass–radius and the core–halo mass relations
are preserved by the merging process. With a mass ratio between
the progenitors of approximately µ = M1b/M1a ∼ 1.5, the core
mass of the most massive progenitor is enhanced by the merger,
in agreement with Schwabe et al. (2016), who showed that dis-
ruption of the least massive core is achieved only for mass ratios
above µ > 7/3, and in this case, the least massive core is dis-
persed in the NFW-like outskirts of the most massive halo.

4.6. Core surface density

Dark matter cores have mostly been observed for low-
mass galaxies with stellar masses of M∗ . 1010 M� and
small baryon fractions (Li et al. 2020; Weinberg et al. 2015;
Di Paolo & Salucci 2020). The density profiles of these low-
mass dark haloes are commonly described by means of an
isothermal profile (Burkert 1995),

ρISO(r) = ρ0
r3

0

(r + r0)
(
r2 + r2

0

) , (48)

which provides a better fit to the observed data. In Eq. (48), the
free parameters ρ0 and r0 correspond to the central density and
to the core radius, respectively.
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Fig. 9. Core–halo mass scaling before and after the merging event of
two FDM haloes.

Fig. 10. Core mass–radius scaling relation before and after the merging
event of two FDM haloes.

Observations of dark matter cores have shown that the cen-
tral density and the core radius are tightly related through the
core surface density ΣDM = ρ0 r0 (e.g. Salucci & Burkert 2000;
Burkert 2015; Kormendy 2015; Donato et al. 2009). This rela-
tion can provide strong constraints on any core formation mech-
anism, and Burkert (2020) recently argued that it is challenging
for the FDM model to explain the observed cores. In Fig. 11 we

Fig. 11. Relation between the dark matter surface density and the core
radius of dark matter haloes (top). Relation between the core radius and
the virial mass of dark matter haloes (bottom). The purple circles in both
panelsrepresent the simulated FDM haloes, and the empty squares rep-
resent the properties of dark matter haloes hosting observed LSB dwarf
galaxies (Di Paolo & Salucci 2020). In addition, the dashed black lines
correspond to the result of the URC method presented in Salucci et al.
(2007).

compare our simulated FDM haloes with the properties of dark
matter haloes hosting low surface brightness (LSB) dwarf galax-
ies (Di Paolo & Salucci 2020). We caution that a proper compar-
ison would require a connection of the halo mass to the observed
stellar mass, and we only aim at illustrating the general trend we
found in our simulation for FDM haloes. As shown in the upper
panel of Fig. 11, the observed dwarf galaxies are highly con-
sistent with a constant core surface density, with an average of
ΣDM = 75 M� pc−2. However, in the case of FDM, the trend is
drastically different. Equation (39) implies a scaling between the
central core surface density and the core radius of ΣDM ∝ R−3

core.
In the bottom panel of Fig. 11, we show the dependence of the
core radius on the virial mass of the halo. Whereas the observed
data exhibit a positive scaling between the Rcore and Mhalo, our
simulated FDM haloes follow the relation Rcore ∝ M−5/9

halo .

5. Convergence tests

In order to show the limitations of this study and to highlight pos-
sible resolution issues that in general underlie this type of simu-
lations, we performed two additional simulations of a smaller
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Fig. 12. Evolution of the dimensionless power spectrum ∆2(k) with red-
shift for the runs Fdm1.25

256 (dashed lines) and Fdm1.25
512 (solid lines).

cosmological volume with B = 1.25 h−1 Mpc, with domain-
grid resolution of 2563 cells and 5123 cells. We refer to them
as Fdm1.25

256 and Fdm1.25
512 , and the original simulation is denoted

Fdm2.5
512. Although the resolution at the finest level in the AMR

hierarchy is sufficient to resolve the inner structure of dark
haloes, the goal here was two investigate which physical probes
are sensitive to the resolution achieved in low-density regions.
Clearly, a higher domain-grid resolution improves the large-
scale power spectrum, as shown in Fig. 12, where we plot the
evolution of the dimensionless power spectrum ∆2(k) with red-
shift for simulations Fdm1.25

256 and Fdm1.25
512 . In the linear regime

(i.e. early times and large scales), the evolution of larger modes
for the low-resolution box does not exactly follow the matter
power spectrum predicted by linear theory,

∆2
lin ∝ (1 + z)−2. (49)

This same effect was recently noted in May & Springel (2021),
who found that if the onset of non-linear evolution is not prop-
erly resolved, the power spectrum stops following linear growth
on the largest scales. Moreover, the domain-grid resolution also
affects the choice of the coarse-grid time step, and as a conse-
quence, the onset of matter clustering takes place slightly later
or before, depending on the domain-grid resolution.

In Fig. 13 we compare the dark matter density profiles of
a selection of haloes from the two simulations Fdm1.25

256 and
Fdm1.25

512 . Density profiles and rotation curves do not depend on
the coarse-grid resolution, and the core surface density remains
unchanged.

In Figs. 14 and 15, we show that the form of the scaling law
characterising the Schrödinger-Poisson system is not affected by
the choice of the coarse-grid resolution. However, the scaling
exponent is sensitive to this choice, as pointed out previously
in the literature (Bar et al. 2018, 2019b). In this case, we note
that the scatter in the data points in Fig. 15 is larger than the
difference between the two fits.

Instead, the shape of the HMF is weakly sensitive to the
coarse-grid resolution. The large-scale part of the HMF slightly
improves when the resolution is increased, as shown in Fig. 16.
The reason might be that the large-scale part of the HMF is
affected by the poor statistics at these scales (only a few larger
haloes formed in all simulations) and the haloes form slightly
later in the low-resolution simulation Fdm1.25

256 .
The results of this section clearly show that it is crucial to

resolve both small and large scales to completely study the non-

Fig. 13. Comoving density profiles of a selection of FDM haloes for the
runs Fdm1.25

256 (dashed lines) at z = 2 and Fdm1.25
512 (solid lines) at z = 2.5.

Fig. 14. Core mass–radius scaling relation for a selection of FDM
haloes in Fdm1.25

256 (empty circles) and Fdm1.25
512 (filled circles).

linear structure formation process with FDM. Because of these
limitations of the large-scale resolution, the main results of this
article only describe the properties of single dark matter haloes
or the statistical properties of a small collection of dark matter
haloes that only interact by means of gravity, and they are reli-
able at large-scale resolution as well.

6. Conclusions

Within the ΛCDM framework, the process of structure formation
has been extensively studied in the past decades. Numerical sim-
ulations have shown that the collisionless nature of CDM allows
dark matter to form structures at all probed masses, and that dark
matter clusters in gravitationally bound haloes follow the univer-
sal NFW density profile, Eq. (1). However, observations of rota-
tion curves in small, compact, and dark matter-dominated sys-
tems such as dwarf galaxies indicate that the innermost region of
dark matter haloes deviates from the NFW density profile. This
region instead forms a small central core with nearly constant
density. In addition, cosmological simulations have pointed out a
strong mismatch between the number of observed low-mass sub-
haloes and the number of simulated structures. In the recent past,
a variety of alternative dark matter models has therefore been
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Fig. 15. Core–halo mass scaling relation for a selection of FDM haloes
in Fdm1.25

256 (empty circles) and Fdm1.25
512 (filled circles). The dashed line

represents the fit to the core–halo mass scaling relation of the Fdm1.25
256

data, and the dot-dashed line corresponds to the fit to the core–halo mass
scaling relation of the Fdm1.25

512 data.

suggested to describe the properties of the observed structures
better. A promising alternative to the standard CDM is provided
by models in which the dynamics of dark matter is described by
means of an ultra-light scalar field, such as in the FDM model.
High-resolution non-linear simulations are therefore required to
test these models and to map their unique signatures.

In this preliminary work, we simulated a 2.5 h−1 Mpc box
representing a small portion of the Universe in which the whole
dark matter budget is in form of FDM, and it is described by a
light complex scalar field with a mass of mB = 2.5 × 10−22 eV.
While the dynamics of the scalar field is very similar to the CDM
case on large scales, it significantly differs from standard CDM
at small scales because the quantum nature of the scalar field
manifests itself on astronomically relevant scales.

We studied the formation and evolution of FDM haloes and
showed that the dynamics of a scalar field with such a low mass
has many observational consequences that can be used to probe
the true nature of dark matter in a cosmological context. Because
we used a very high small-scale resolution, we were able to
resolve the innermost structure of dark haloes. We also showed
that FDM particles condense in the very centre of each structure,
forming a coherent solitonic core. Among different structures
formed in our simulation, we selected a representative sample

Fig. 16. Halo mass function computed for the Fdm1.25
256 (empty circles)

and Fdm1.25
512 (filled circles) runs. The data of Fdm1.25

256 were taken at z = 2,
and the data of Fdm1.25

512 were taken at z = 2.5. The solid black line cor-
responds to the analytical estimate of the HMF in a ΛCDM cosmology,
based on Tinker et al. (2008).

of five FDM haloes at redshift z = 2.5 within a mass range
108 < Mhalo < 1010 M�, and we showed that the core radius
depends upon the mass of the corresponding soliton, following
the well-known core mass–radius relation. The central density
profile is nearly constant on scales of the coherence length of
the scalar field. While the solitonic core is well approximated by
the soliton profile given by Eq. (39), the NFW-like outer region
decays with a log-slope of γ ∼ −3, similarly to CDM haloes.

We also selected one FDM halo from the sample, and we
studied the formation of the central soliton. We showed that the
solitonic core evolves as the halo collapses under the effect of
gravity, and we analysed its impact on the circular velocity pro-
file of the dark halo. A central compact core leads to a prominent
circular velocity peak in the rotation curve at much smaller radii
from the centre than in the CDM case.

Furthermore, we characterised each dark halo in terms of
the scale-free invariant Ξ, and we find that the simulated FDM
haloes follow the core–halo mass relation Mcore/Mhalo ∝ Ξγ,
characterised by a scaling exponent of γ = 1/3. The form of this
scaling relation has been a critical investigation point for this
class of alternative dark matter models, as different numerical
studies found different scaling exponents for the core–halo mass
relation. Our results are well in line with Mocz et al. (2017),
who reported the same core–halo mass relation for the case of
BECDM.

In addition, mergers between FDM halo have never been
studied in a realistic cosmological scenario. In our simulated
FDM Universe, two of the most massive dark haloes undergo
a major merger between redshifts z ∼ 4 and z ∼ 3, and we find
that the merging process preserves both the core mass–radius
and core–halo mass scaling relations.

Moreover, we compared the core surface density ΣDM of
the simulated FDM haloes with that of real dark haloes hosting
observed LSB dwarf galaxies. For the FDM case, we find that the
trend in both the ΣDM − Rcore and the Rcore − Mhalo relations dif-
fers from the observed properties of real dark haloes. As argued
in Burkert (2020), the negative Rcore − Mhalo scaling found for
the simulated FDM haloes represents a challenge to the FDM
scenario as the sole explanation for the observed dark matter
cores. To further investigate the ΣDM −Rcore and the Rcore −Mhalo
relations, larger numerical simulations with the FDM model are
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required to analyse larger samples of FDM haloes and to cover
a wider range of virial masses. In addition, baryonic physics can
potentially change the predictions of FDM-only simulations in
a non-trivial way. Thus, if the arguments provided by Burkert
(2020) hold, even if FDM is capable of forming large solitonic
cores in the centre of dark haloes, our results, together with
previous results in the literature, suggest that the origin of the
observed dark matter cores in low-mass astrophysical systems
might have to be searched for somewhere else.

One potential shortcoming of this work is that the refine-
ment strategy we adopted in our simulation employs a refine-
ment criterion that is only based on a fixed density threshold
at all refinement levels. As a future improvement, we consider
to further develop SCALAR by improving the refinement strat-
egy, including a criterion based on the Jeans length of collaps-
ing objects. This criterion would be similar to the one adopted
here, but with the difference of having a density threshold that
varies as the Universe expands. Because the Jeans scale of FDM
haloes is redshift dependent, a refinement criterion based on a
constant-density threshold does not guarantee a sufficient reso-
lution to resolve late-forming haloes, which typically have lower
masses than early-forming FDM haloes. With a refinement strat-
egy based on the Jeans length of collapsing object, the resolution
required by these late-forming FDM haloes would automatically
be achieved at any redshift and any mass scale. A refinement cri-
terion based on the fluid velocity, as advocated by Schive et al.
(2014b) to ensure that the field is well behaved in low-density
regions, would also be an interesting investigation point to ver-
ify the robustness of the results obtained in this type of simu-
lation. This is especially important considering that results from
different groups have shown to differ slightly in their quantitative
predictions while reaching similar conclusions.

In addition, we plan to investigate the dynamics of FDM fur-
ther by including the baryonic content of the Universe in our
description. Modelling the gas physics together with the astro-
physical component of structure formation is crucial to make
clear predictions based on numerical simulations of structure
formation. The SCALAR code includes the hydrodynamics solver
required for the gas physics and a sub-grid model for stellar feed-
back, as they were already implemented in the RAMSES code.
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Appendix A: Initial conditions

In order to generate suitable initial conditions, we first
obtained the linear matter power spectrum from the pub-
licly available code AxionCAMB (Hlozek et al. 2015), which
was then used to generate a Gaussian realisation of δ(k, zini).
In order to generate the initial wave-function, we con-
sidered the Schrödinger-Poisson system in the Madelung
form. In particular, by expressing the wave-function in polar
coordinates,

ψ =
√

1 + δ eiθ. (A.1)

Again, macroscopic quantities such as density and velocity are
defined by means of

δ = |ψ|2 − 1, (A.2)

v =
1

amB
∇θ. (A.3)

Here δ represents an overdensity rather than the density itself.
Then, the first Madelung equation can be written as

dδ
dt

+
1
a
∇ · [(1 + δ) v] = 0. (A.4)

In the linear regime, initial conditions can be generated by using
the Zel’dovich approximation (see Kopp et al. 2017 for a more
general description),

δ(x, z) =
D(z)

D(zini)
δ(x, zini), (A.5)

where D is the growth factor. Thus, in the linear regime,

∇2θ(x, zini) = −
mBH(zini) f (zini)

(1 + zini)2 δ(x, zini), (A.6)

where f ≡ d log D/d log a is the growth rate. The Fourier trans-
form of the phase is then calculated according to

θ(k, zini) =
mBH(zini) f (zini)

(1 + zini)2

δ(k, zini)
k2 · (A.7)

Then, overdensity and phase in real space were obtained by per-
forming a backward Fourier transform.
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