
UNIVERSITY OF OSLO
Department of Informatics

Towards Automatic
Management and Live
Migration of Virtual
Machines

Master Thesis

Ingard Mev̊ag
Oslo University College

May 23, 2007

Towards Automatic Management and Live
Migration of Virtual Machines

Ingard Mevåg
Oslo University College

May 23, 2007

II

Abstract

This project will concider management of a Xen-based virtual infrastructure
in several aspects. First, management of the infrastructure itself with config-
uration and provisioning of virtual machines, followed by a proof-of-concept
model for dynamic resource sharing for the virtual machines using the newly
introduced Xen-API for resource consumption monitoring. Experiments will
document the feasibility of such a model, using both single, independent vir-
tual machines and various size private networks connected by local bridge de-
vices. Two applications, XeniNFO for resource consumption monitoring and
XenGuard for load balancing of the virtual infrastructure using live migration,
have been developed. XenGuard, which utilizes the features of XeniNFO, has
been merged with the open source virtual machine management tool MLN
(Manage Large Networks) and will be publicly available in a future release
of MLN while XeniNFO has been contributed to XenSource and is publicly
available from the Xen-Unstable repository.

IV

Acknowledgements

First of all I would like to extend my utmost gratitude to my project advisor,
Assoc. Professor Hårek Haugerud. Thank you for your time, effort, our nu-
merous discussions about everything, related and unrelated and last but not
least for keeping my spirits up.

Kyrre Begnum deserves equal gratitude. Thank you for being an ever in-
spiring person, coming up with the project idea, showing great interest in my
progress and for general, much valued, conversations and input on just about
everything regarding this project work. Also, much appreciated was your
help and effort on rewriting and adopting MLN to suit this project’s needs. I
hope we will have the opportunity to extend the cooperation and make MLN-
XenGuard an official release in the future.

Thanks to Alexander Andersen for fruitfull discussions, text editing aid,
being a worth tabletennis opponent and for being my number 1 competitor in
our struggle to achieve good grades throughout our time in the OUC Network
and System Administration masters program. To Edson Ochoa for being my
partner in crime for the last five year here at OUC as well as also being a wor-
thy tabletennis opponent. To the rest of my classmates, thank you for many
good times at ”kroa” and other social events.

Thank you mom and dad, for motivating talks, free meals and proof-reading
help.

Finally i would like to thank my friends, Asle Nødtvedt, Eskil Kristiansen,
Alf Marius Foss Olsen, Yngve Tetlivold, Vegard Hamnes, Christian Fossmo
and everyone else i have forgotten for believing in me, continuous support,
keeping my spirits up and being good friends throughout the duration of this
work.

Once again, Thank you all!

Oslo University College, May 2007

Ingard Mevåg

V

VI

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Challenges . 3
1.3 Configuration and change management for virtual- machines

and infrastructure . 4
1.4 Open source . 6
1.5 Automated load balancing for a virtual infrastructure based on

resource consumption statistics 7
1.6 Thesis outline . 8

2 Background 9
2.1 The dawn of virtualization . 9
2.2 What is Virtualization . 9

2.2.1 Common techniques . 10
2.2.1.1 Full virtualization 11
2.2.1.2 Paravirtualization 11

2.3 The main contributors . 12
2.3.1 VMware . 12
2.3.2 Xen . 12

2.4 Hardware development . 13
2.4.1 IBM . 13
2.4.2 Others . 13

2.5 Achievements . 14
2.5.1 Redundancy - Towards less downtime 14
2.5.2 Reduced cost . 15
2.5.3 Maintenance . 15
2.5.4 Server migration . 15

2.6 Overhead and performance . 16
2.7 Resource utilization . 19
2.8 Summary . 20

3 Methodology 21
3.1 Equipment and Software . 21

3.1.1 ATA over Ethernet . 22

VII

CONTENTS

3.1.2 Logical Volume Management 23
3.2 Testbed setup . 24

3.2.1 SAN setup . 26
3.3 Xen API . 27
3.4 MLN . 28

4 Software development 37
4.1 XeniNFO - A Xen API example 37
4.2 MLN Xenguard . 38

5 Measurements and results 43
5.1 Building a MLN project . 43

5.1.1 Independent virtual machines 45
5.1.2 Private networks . 49

5.2 Automated live migration with Xenguard 52
5.3 Chunk migration . 58
5.4 Chunk complexity VS Network reconnection time 67

5.4.1 pingtest . 68

6 Discussion and Conclusion 71
6.1 Technical challenges . 72
6.2 Remote Storage . 72
6.3 Virtual Infrastructure Management 73
6.4 Contributing to Open Source development 74
6.5 Hypervisor interaction . 75
6.6 Software development . 76

6.6.1 Xen-API documentation 76
6.6.2 Programming language selection 77
6.6.3 XML-RPC module selection 78

6.7 XenGuard analysis and lab results 78
6.8 Xenguard and High Availability 79
6.9 Future work and further development 80
6.10 Conclusion . 81

A Appendix I
A.1 Source Code . I

A.1.1 XeniNFO . I
A.1.2 MLN Xenguard . I

A.2 Configuration files . I
A.2.1 MLN . I

A.2.1.1 Project Simple . I
A.2.1.2 Project ftX . III

VIII

Chapter 1

Introduction

Virtual Machines, or guest-hosts, are individual hosts separated from the phys-
ical hardware of a PC or server by a virtual machine monitor. The virtual ma-
chine monitor (VMM) is a thin software layer acting as a mediator between the
software and the hardware. The guest-hosts have no notion of the the actual
physical hardware, but see only the virtual hardware provided by the VMM.
Every guest host operates with the same abstracted hardware since the VMM
provides an uniform view of the actual physical hardware independent of the
vendor. This, in turn, yields numerous advantages. To mention a few:

• All software written for the physical hardware will work on any guest
host - Programmers, software engineers and developers will not have
to concider different hardware architectures. Legacy software solutions
will be compatible while system administrators can update and renew
operating systems and applications

• Server consolidation increases server utilization percentage and reduces
server proliferation and equipment costs

• Server migration - Hardware upgrades and maintenance is easily dealt
with. Migrating a server from one physical host to another is simplified
to the extent of a few mouse clicks or commands and results in reduced
maintenance time and costs and eases server management severely

• Backup and disaster recovery - Backups of whole virtual machines can
be restored, and services brought back by simply booting up the backup
with a known ”good” state

• On-demand services - Virtual machines providing any services can be
started and stopped anywhere in the virtual infrastructure when it is
needed

1

CHAPTER 1. INTRODUCTION

• Resource distribution - With a virtual infrastructure, and a proper setup,
the combined resources of all the physical servers can be looked at as
one united pool of resources and can be re-allocated to suit changes in
the virtual machines load and/or needs.

1.1 Motivation

The virtualization technology has been around for decades. The area of usage
has changed somewhat back and forth over time as prices for hardware and
floorspace have varied. Vendors have developed and implemented virtual-
ization support in their products and software, both open and closed source,
has been made available for more operating systems and with support for a
greater range of hardware as well as offering more advanced solutions.

At present time, virtualization in general is getting increased attention by sev-
eral groups within the information technology community. There are solutions
for ”home” usage such as running Microsoft Windows applications in a sep-
arate window on top of for instance a Linux or Macintosh OS X operating
system. In system administration communities, products such as the VMware
ESX server and the XenSource Xen hypervisor, are seeing increased produc-
tion usage to host fully virtual infrastructures which is beneficial in terms of
resource usage and sharing, redundancy, ease of management, cost and many
more.

The resurrection of virtualization technology in the system administration as-
pect is what has motivated the author to start working in this field. Oslo Uni-
versity College (OUC) has been using virtual machines in various teaching
scenarios regarding both system administration, networking and operating
systems in general. The author has experienced a growing interest in this field
both by playing with various VMware products at home and also through the
virtualization lab at OUC. Several aspects of virtualization research has been
conducted at OUC in recent time:

• A tool for virtual machine creation, together with a simple interface for
change management[1][2]

• An evaluation of the live migration feature of Xen in an automated fail-
over scenario[3]

• Benchmarks of virtualized cluster deployment and computation performance[4]

There are still, however, multiple, un- or partially explored challenges re-
lated to virtual infrastructures. The VMware product family has seen a lot of

2

1.2. CHALLENGES

improvement over the years and they have a lot of features to offer through
standalone, or different combinations of their products. VMware, however, is
not using open source products, nor do they offer free licenses for research.
They also have a user agreement license which restricts publications of any
comparisons or benchmark including their products.

This makes the XenSource opensource Xen hypervisor a lot more attractive
when conducting research on virtual infrastructures, hence it was the obvious
choice for this project. Some particular challenges, which is the motivation
behind this project, concerns the deployment and management of the infras-
tructure as well as providing sufficient resources for the virtual machines to
operate as though they would have the physical hardware to themselves.

1.2 Challenges

To narrow down the scope of the research even further, these are the challenges
this project aims to address:

• Configuration and change management for virtual- machines and infras-
tructure

– Commercial products exist already - This project will focus on find-
ing a proper open source solution that will allow for expansion eas-
ily

• Focus on open source

– Support further development and introduction of new competitive
features for the open source community tools

• Automated load balancing for a virtual infrastructure based on resource
consumption statistics

– Main focus - An extension to a management tool will have to be
made from scratch

The latter of these challenges, as pointed out, is where this project has fo-
cused the most. The following sections will address how these challenges are
met and how they are intended to be solved. Table 1.1 will explain some of
the acronyms and conventions used in this thesis as well as in virtualization
technology in general.

3

CHAPTER 1. INTRODUCTION

Expression Meaning
VM Virtual Machine
VMM Virtual Machine Monitor
VI Virtual Infrastructure
Physical host/node A physical server in the virtual infrastructure
Guest (host) A virtual machine
Hypervisor Thin software layer which handles all interaction

between virtual machines and hardware
Dom(ain)0 The control domain of a Xen server

(also a virtual machine)
HVM guest/host A virtual machine running on top of virtualization

friendly hardware
PV guest/host A virtual machine using the ParaVirtualization

technology
LVM Logical Volume Manager - Software used to

”partition” storage volumes
AoE ATA over Ethernet - Software used to share storage

volumes across the network
SAN Storage Area Network - Technology for remote

storage with redundancy
MLN Manage Large Networks - Software used to configure,

provision, monitor and manage the virtual machines
Service host A MLN term - The physical server on which the

VM resides

Table 1.1: Acronyms and conventions used in this thesis and virtualization
research in general

1.3 Configuration and change management for virtual-
machines and infrastructure

Managing virtual machines and a virtual infrastructure can be done in many
different ways. The Xen hypervisor has its own ”control domain”, which is,
as all other guest hosts, a virtual machine running on top of the hypervisor
software. This VM however, can control, configure and provision other VMs.
From a localhost perspective, an administrator can log in on Dom0 as nor-
mally on a console and is presented with a regular Linux prompt. With root
user access the administrator can control every aspect of the server, both re-
garding the Xen hypervisor’s configuration and that of the virtual machines
using Xensource built in tools. This might be a viable solution if the virtual
infrastructures consist of a conveniently small number of servers. However, n

4

1.3. CONFIGURATION AND CHANGE MANAGEMENT FOR VIRTUAL-
MACHINES AND INFRASTRUCTURE

Xen servers will be n times the labour if all aspects of configuring the virtual
infrastructure is to be manual labour, hence an infrastructure wide manage-
ment tool is both convenient and necessary.

The following list of software (not complete), taken from the Xensource wiki1

and the Xen-users mailinglist2, are some of the most used and renowned open-
source remote monitoring and management solutions:

• LibVirt

• Virtual Workspace Service

• XenMan

• DTC-Xen

• Enomalism

• openQRM

• Argo

• PHPmyXen

• MLN

• Virt-manager

There are other non-freeware solutions as well mentioned on the Xensource
wiki, but this project is focusing on opensource, non cost, tools.

For the management of the testbed virtual infrastructure, this project choose
to use MLN. This is an opensource tool developed partly at OUC and written
in the Perl programming language. Both being an advantage for this project
as the main developer could easily be reached, and was frequently consulted,
for usefull discussions.

From an infrastructure management perspective, there are quite a few bonuses
when changing from physical to virtual machines. MLN has the following key
features which makes it a very usefull tool to manage and monitor the virtual
infrastructure:

• Centralized management and distributed workload - Each Xen node in
the infrastructure is running the MLN daemon which handles all VMs on
each respective physical server. The management node communicates
with these daemons over a Unix socket

1http://wiki.xensource.com/xenwiki/XenRemoteManagementInterfaces
2http://lists.xensource.com/xen-users

5

CHAPTER 1. INTRODUCTION

• Built in support for remote storage through AoE3 and LVM4

• On the fly change management, (live) migration and re-provisioning

MLN, however, is not using any of Xen’s built in remote management
interfaces, but rely on the local daemons to communicate with the hypervi-
sor through the tools provided locally. Namely the xm python program.This
project found that the new Xen-API which was released as a preview for the
Xen 3.0.4 release, holds more potential to dig out more detailed and accurate
measurements and information. This monitoring of the virtual infrastructure
is then in turn meant to be analyzed and provide an administrator with de-
tailed information of the status of all physical and virtual hosts. The new Xen-
API5 is using XML-RPC for client/server communication and is meant to stan-
dardize the data model used internally. The API, which is scheduled for a v1.0
release in the upcoming Xen 3.0.5 release, is the new long-term maintained
interface of Xen.

1.4 Open source

This project will maintain a strong focus on developing a solution to the chal-
lenge in section 1.5 with open source in mind. A open source management
tool will be used, and modified, to suit the automated resource distribution
mentioned. Commercial products exist, mainly from VMware, that focuses on
dealing with this, but with a an extensive pricetag attached. Even Xen is in-
cluding management of for instance remote storage in their XenServer and Xe-
nEnterprise editions of the Xen hypervisor, but no solution exist for automatic
live migration of the virtual machines. Many strong factors recommends this
sort of development:

• Other opensource products such as Linux itself and MySQL are doing
very well and have other business strategies such as marketing support
only

• Research with virtualization is rarely done with pure commercial prod-
ucts and a continued effort in developing a wider variety of solutions
and features for Xen will help stimulate further progress and raise the
interest in creating a better qualified competitor to the best commercial
products

• Commercial products often have licenses which restricts the use of the
software and limits further modifications to suit individual needs. Some

3http://www.coraid.com/documents/AoEDescription.pdf
4http://sources.redhat.com/lvm2/
5http://wiki.xensource.com/xenwiki/XenApi

6

1.5. AUTOMATED LOAD BALANCING FOR A VIRTUAL
INFRASTRUCTURE BASED ON RESOURCE CONSUMPTION STATISTICS

times it even limits the rights to publish benchmarks and similar com-
parisons which in turn might have produced healthy competition and
helped spread higher integrity information to the general public

Open source products allows for re-use, changes and further development,
depending on which license is chosen by the author. The XeniNFO application
was mentioned as an example to communicate with the Xen-API using the
Perl programming language on the Xen Summit conference of April 2007, and
was also contributed to Xensource, under the creative commons license6, for
possible inclusion in the next release for the same reason.

1.5 Automated load balancing for a virtual infras-
tructure based on resource consumption statis-
tics

All virtual machines in any given infrastructure has its own set of defined
static variables which tells how much resources they get in terms of virtual
memory and diskspace. CPU resources however is dynamically allocated for
the virtual machines depending on what CPU sharing algorithm the VMM is
programmed with and the needs of the virtual machine at any given time. If a
virtual machine, lets say it is running a webserver service, is peaking in usage
at any point, the underlying infrastructure can only allow it to use as much
CPU resources as is available on the physical host at that point in time. This
will change depending on the usage level of the different virtual machines,
but available resources will allways be limited by the restraints of the physi-
cal hardware which is shared among them. This project will strive to achieve
an application that can live migrate virtual machines to other physical loca-
tions where more resources are available, i.e. where the physical resources
are less utilized or more capable of serving higher load. This process will hap-
pen through resource utilization monitoring and calculating where virtual ma-
chines should be placed for the distribution of resources to be spread evenly
across the infrastructure.

The previously mentioned Xen-API is a key feature of Xen for gathering re-
source consumption statistics, both from the physical and the virtual machines.
During the course of work on this project an application called XeniNFO was
created to gather these statistics on a continuous basis. This application was
built around the Xen-unstable development release and as such was constantly
improving along with new features being introduced in the development repos-
itory.

6http://creativecommons.org/

7

CHAPTER 1. INTRODUCTION

This application, and the Xen-API it communicates with, was at a later stage
merged into the source code of MLN. The reasons for doing this was simply to
not reinvent the wheel as both MLN and XeniNFO brought different features
to the table. XeniNFO provided detailed resource usage numerics which could
be analyzed and used to make decisions about possible re-location of one or
more virtual machines in order to balance resource consumption across the vir-
tual infrastructure. Further development on the automated live migration of
domains was accompanied with the XeniNFO add-on to change name to Xen-
Guard. The goal for this work was to create an application that could analyze
resource utilization on the virtual infrastructure and, through live migration,
distribute and balance the total load across all available physical servers.

The following is the inner workings of the XenGuard application in short form:

1. XeniNFO: Gather information about the virtual infrastructure, its virtual
machines and the total resource consumption and distribution

2. XenGuard: Run logic for load balancing and decide what needs to be
relocated where

3. XenGuard + MLN: Activate the live migration process to come to terms
with what was decided and configured in step 2

1.6 Thesis outline

This report will go through the following chapters:

• Chapter 2 will discuss background information about virtualization in
general

• Chapter 3 will give an introduction to tools and software used through-
out this project work

• Chapter 4 will discuss the development process and functionality of the
tools produces by this project

• Chapter 5 will explain all experiments and results

• Chapter 6 will discuss the whole work process, the results found in chap-
ter 5 and end with a final conclusion

Some key words and statements have been selected to describe the work:
Virtual infrastructure management, Live migration, Live migration of complete net-
works, Xen, Open source, Load balancing, Autonomic management and Dynamic
resource distribution

8

Chapter 2

Background

2.1 The dawn of virtualization

Virtualization[5][6] has been a recurring topic of interest since the late 1960’s.
At first, VMMs were developed to better utilize the little, not to mention expen-
sive, mainframe hardware and its resources so that multiple applications and
servers could coexist on the same physical host. Present technology is head-
ing somewhat in the same direction again, but now also considering redun-
dancy and ease of management/downtime as benefits. In-between present
time and the dawn of the VMMs however, the industry experienced a lack of
interest when hardware-costs dropped and modern operating systems were
introduced. The ideas of the 80’s and 90’s did not include saving floorspace by
virtualization of multiple servers and applications in one physical server. The
motivation for research in this field today is increasing dramatically as more
hardware is developed with built in native virtualization support and more
software solutions appear. The trends in modern system administration are
gradually moving towards a virtualized infrastructure.

2.2 What is Virtualization

Virtualization[7] is when one, using a software layer, decouples hardware from
software and creates a logical representation of the underlying physical hard-
ware so that resources can be controlled, distributed and presented in ways
that might be more suitable than the actual configuration. The virtualization
is thereby not restricted to the actual physical configuration. For instance, in a
multi processor setup, the CPUs could be represented as one single processing
unit so that software developed to only utilize one CPU could in fact utilize all
the processing power available.

A Virtual Machine[8] is a guest host and a virtual environment created by a

9

CHAPTER 2. BACKGROUND

VMM which sees the presented abstraction as its original hardware. The VM
operates with a notion of being a standalone host as the VMM provides total
mediation of all interaction between the actual physical hardware and the VM
itself resulting in the VM to be completely isolated. Or as Gerald J. Popek and
Robert P. Goldberg [9] puts it: ”A virtual machine is taken to be an efficient,
isolated duplicate of the real machine”.

Popek and Goldberg also characterize the VMM with the following charac-
teristics: ”First, the VMM provides an environment for programs which is es-
sentially identical with the original machine; second, the programs run in this
environment show at worst only minor decrease in speed; and last, the VMM
is in complete control of system resources”.

Popek and Goldberg describes three main properties when analyzing the en-
vironment created by a VMM:

1. Equivalence: a program running under the VMM should exhibit a be-
havior essentially identical to that demonstrated when running on the
original machine directly.

2. Resource control: the VMM must be in complete control of the virtual-
ized resources.

3. Efficiency: use the native hardware of the physical machine to as great a
degree as possible.

Although stated more than 30 years ago, these properties are still valid. The
VMMs of today are typically assumed to satisfy properties 1 and 2, and par-
tially 3 depending on which virtualization technologies are used.

Different virtualization techniques will be discussed in the subsequent section.

2.2.1 Common techniques

There are several ways of presenting a virtual hardware layer, and the many
Virtual Machine Monitors solve the problems in different ways. The approach
depends on the underlying hardware. Support for full virtualization was never
a part of the x86 architecture[10] which results in very sophisticated techniques
having to be used in order to trap and virtualize the execution of certain in-
structions. Hardware such as the IBM System 370[11][12][13]/390/zSeries or
Motorola MC68020[14] which allows a virtual machine to run native does not
incur any conciderable overhead compared to the x86 architecture.

The x86, or IA-32, architecture does not meet the virtualization requirements

10

2.2. WHAT IS VIRTUALIZATION

that [9] Popek and Goldberg describe in their paper. This is because the VMM
loses control of the total resource pool if a guest host tries to perform a privi-
leged mode operation like disabling interrupts. However efficient virtualiza-
tion is possible as the x86 architecture supports 4 different privilege levels. The
x86 privilege levels are generally described as ring0 through ring3, ring0 be-
ing most privileged. The operating system usually runs all its code in ring0,
while applications run in unprivileged mode - ring3. If one modifies the oper-
ating system to run in ring1 and the VMM runs in ring0, one would get a sys-
tem that never relieves the VMM of its control because code that executes in
ring1-3 is not allowed to do privileged instructions and thus has to go through
the VMM. Modifications like these is what is used in the paravirtualization
technology. A CPU architecture is virtualizable if it supports the basic VMM
technique of direct execution, meaning execution of the virtual machine on the
real machine while letting the VMM remain in control of the CPU. The most
prevalent techniques for solving this problem is paravirtualization [15][16][17]
and direct execution combined with fast binary translation [6][18].

2.2.1.1 Full virtualization

Full virtualization is achieved when the VMM simulates the complete under-
lying hardware so that unmodified operating systems and its applications can
run on what seems like legacy hardware. The operating systems does not have
to be designed for the actual underlying hardware, and will have no notion
of its existence. However, in order to achieve full virtualization on architec-
tures such as the x86, which doesn’t support native virtualization, one has to
translate portions of the original instruction set in order for the VMM to keep
control of the CPU even when the virtual host for instance turns off interrupts.
VMware is using this technique[6] in their products and what happens is that
the VMM does translation of all the instructions on the fly which are not vir-
tualizable into other equivalent virtualizable instructions. So the VMM keeps
control of the CPU but turns off interrupts for the current virtual machine until
told otherwise by the machine itself.

2.2.1.2 Paravirtualization

To avoid the drawbacks and overhead induced by the full virtualization tech-
nology another alternative known as paravirtualization has been introduced.
The VMM presents an abstraction that is similar, but not identical to the un-
derlying hardware. This approach is perhaps the most prevalent as it pro-
claims near native performance, but it does require modifications made to the
operating system intended to run in a guest host. The VMM builder defines
the virtual machine interface by replacing nonvirtualizable instructions in the

11

CHAPTER 2. BACKGROUND

original code with more efficient equivalent instructions which are easier to
virtualize.

2.3 The main contributors

2.3.1 VMware

The VMware history[19] began in the late 1990’s when researchers at Stand-
ford University started to look into the potential of virtual machines for using
commodity OSs on parallel processing machines. These machines were hard
to program and could not run any existing operating systems. With the use
of virtual machines they discovered that they could make the complex un-
derlying architecture look sufficiently similar to existing platforms to leverage
current OSs. This project was the start of the ideas, and the people behind
them that has now formed into VMware Inc.1

VMware offers a range of different products. VMware Workstation[20], VMware
ESX server[21][17][22][18]and VMware Server which is built on the deprecated
VMware GSX server and is now VMware’s free alternative. The free edition,
version 1.0.0 was released in October 2006, is available for the Microsoft Win-
dows and the Linux platforms. It is currently, as of May 2007, at version 1.0.2
released in February 2007.

Allthough the different VMware products vary somewhat in features and im-
plementation, they all share the general principle of execution. Code segments
are scanned and instructions identified as non-virtualizable are either trans-
lated on the fly so that it jumps to the VMM or substituted with sequences
of equivalent instructions which trap or safely perform the original operation.
This results in a full virtualization system which allows for unmodified op-
erating systems to work as if all instructions where executed directly on the
hardware.

2.3.2 Xen

XenSource2, as well as VMware, have both commercial and free, open source
products. To compete with VMware, both in terms of management and sup-
port, they have the XenServer which only supports Windows virtualization
and XenEnterprise which is XenSource’s alternative to VMware ESX. The hy-
pervisor, however, is the same in all of XenSource’s products.

1http://www.vmware.com
2http://www.xensource.com

12

2.4. HARDWARE DEVELOPMENT

The Xen hypervisor[17] is an open-source project which utilizes the paravir-
tualization technology. They implement a small software layer, called the hy-
pervisor, between the hardware and the operating system. With the paravirtu-
alization technology it is required to patch, or modify, the guest operating sys-
tem(s) that is to be used in order to go around the on the fly binary translation
that induces a substantial overhead. When the operating system is modified it
can use the hardware directly without leaving the hypervisor without its con-
trol of the total resourcepool.

The current release as of late May 2007, is Xen 3.1.0 which has had built in
support for the AMD Pacifica and Intel Vanderpool hardware virtualization
technologies since early 2006. The new technologies from Intel and AMD satis-
fies Goldberg and Popeks[9] requirements for virtualizable architecture and is
thereby able to support unmodified operating systems, i.e. running Windows
on top of Xen. As of the latest Xen release, 3.1.0, support for live migration
of hardware virtualized domains is also available which makes Xen an even
stronger competitor for VMware’s enterprise ESX release.

2.4 Hardware development

2.4.1 IBM

IBM has since the release of their IBM System 370 mainframes[11][12][13][23]
in June 1970 supported full native virtualization[24]. They have been pioneer-
ing the virtualization technology on the mainframe side ever since. The Sys-
tem 370 underwent many architectural improvements in its 20 year lifespan
until it was replaced by the System 390[25] in the 1990s. The mainframeseries
was renamed to XA/370 in the 1980s when they started supporting 32bit pro-
cessing and more recently, in 2000, replaced by the new [26][27]IBM zSeries
mainframes supporting 64bit processing.

2.4.2 Others

With the release of Intel’s Vanderpool[28] and AMD’s Pacifica technology, Xen
is now able to support running unmodified operating systems and VMware
may in the future no longer be needing their on the fly binary translator. What
they both do is adding a new execution mode to the CPU so that the VMM
can safely and transparently use direct execution for running virtual machines
rather than making existing modes virtualizable. To improve performance the
mode attempts to reduce both the traps needed to implement virtual machines
and the time it takes to perform the traps.

13

CHAPTER 2. BACKGROUND

2.5 Achievements

Back in the 60s and 70s the birth of the virtual machine monitor meant bet-
ter utilization of large and expensive mainframe computers. The VMM pro-
vided a compelling way of multiplexing resources amongst different appli-
cations and the technology was very prosperous. Then, in the 80s and 90s
commodity hardware became cheaper and use of the virtualization technology
disappeared to the extent that hardware architectures no longer supported vir-
tualization in the way that Goldberg and Popek had layed out. Nowadays re-
searchers and academics are working continuously to better the virtualization
technology. The drop in hardware costs had led to a proliferation of servers
which all occupied floorspace and induced substantial management overhead.
The complexity of modern operating systems which made them so powerful
was also an origin for failures and vulnerabilities. Here is where the virtu-
alization technology comes in. System administrators started resorting to one
application per server in order to protect against break-ins and system crashes.
This again led to an increase in hardware requirements, a higher equipment
budget and more time spent on maintenance. Moving applications and ser-
vices that once ran on separate hardware servers onto virtual machines and
consolidating those machines onto one or a few physical servers reduces hard-
ware costs and time spent on maintenance and increases the use percentage of
the available resources justifying expensive server hardware.

The trend seems to be that from a VMM being a utility for multiplexing
resources and multitasking, the future of this technology is more and more
a solution for security, redundancy and reliability. Functions such as server
migration have proven to be difficult to achieve on satisfactory levels and seem
more suitable to implement on a virtual infrastructure. Innovative operating
system solutions can be developed and deployed while keeping the existing
software base.

2.5.1 Redundancy - Towards less downtime

Reliability and redundancy are key features in modern virtualization technol-
ogy. Mission critical applications do not tolerate downtime and corporations
can quickly loose money[29] if their availability is affected by either mainte-
nance, hardware- or software failure or malicious activity. A virtual infras-
tructure can utilize live server migration to move running production servers
to other network hosts in order to do for instance scheduled maintenance or
replace faulty hardware. This makes the network setup very fault-tolerant and
eliminates any maintenance or management downtime.

14

2.5. ACHIEVEMENTS

2.5.2 Reduced cost

Data center managers are faced with the challenge of limiting IT-spending and
reducing server proliferation. The practise of dedicating one server to each
service or application is costly and precious IT-resources are stretched thin
procuring, provisioning and maintaining a growing number of under-utilized
servers. Business continuity requires continuous server uptime and meeting
this demand is costly in terms of redundancy, management and maintenance.
The solution could be a virtual infrastructure.

With the ability to separate applications and services from the hardware
and use all servers as a united pool of resources one can easily deploy or move
any services to a system in that pool. This, in turn, makes administrators able
to look at resources in a whole new way. Old and new equipment can be
used to its full potential when sharing resources and no individual network
component is a potential bottleneck if something should go wrong.

2.5.3 Maintenance

Server maintenance is the biggest factor in downtime at high availability sites.
Studies[30] show that scheduled maintenance is the cause for 75-90% of all
server downtime. Despite this fact , no practical approach exists to combat
this problem. Most administrators typically deploy their servers on redundant
hardware to protect against hardware failure, but this does not help if for in-
stance a motherboard or a disk controller is failing, or any other part that is not
possible to duplicate in a redundant server setup. Virtual machine technology
deals with this challenge with just simply moving the virtual machine(s) from
the physical host that needs maintenance onto other server hardware while
the virtual machine is running and maintaining service availability. With the
virtual machines running elsewhere there is no harm in doing a server shut-
down in order to do maintenance quick and undisturbed. The same migration
possibilities also applies for situations like equipment lease ends and server
hardware upgrades.

There are also other approaches to minimize downtime when doing sched-
uled maintenance. One is using what D.E. Lowell et. al. named devirtualizable
virtual machines[30], which is a solution for enabling virtualization only when
doing maintenance and upgrades/updates. When virtualized the microvisor
in their solution causes 5.6% CPU overhead and no overhead at all when de-
virtualized.

2.5.4 Server migration

Manual server migration is still common but with virtualization and the ease
of server migration it offers, this is about to change. Administration of clusters

15

CHAPTER 2. BACKGROUND

and datacenters is made easy with the possibility of live server migration[31].
The complete separation of hardware and software increases fault tolerance in
the network and simplifies load-balancing and server hardware maintenance.
Load balancing is simplified when administrators can monitor either manu-
ally or automatically the complete resource pool of datacenters or clusters. If
resources become scarce on one physical host one can simply migrate a run-
ning virtual machine to another physical host in the network that has more
resources available. Another alternative is to instantiate a clone or generate a
new virtual host from a template and bring it up on a host with more resources
available and do loadbalancing between two or more virtual machines.

Xen has built in live server migration tools and the VMware Enterprise so-
lution comes with a management product called VirtualCenter which handles
what VMware calls VMotion[32]. Both Xen and VirtualCenter with VMotion
lets administrators move virtual machines across the network of connected
physical hosts in for instance a datacenter or a cluster while at the same time
maintaining continuous service availability.

2.6 Overhead and performance

Is the overhead caused by the VMMs justifiable? Lowell et al.[30] claim that
high availability sites would not sacrifice a 10-20% overhead at ”typical enter-
prise workloads”. They continue by stating that they believe enterprise cus-
tomers will resist even paying a 10% performance penalty at times of peak
load to let them perform infrequent maintenance without downtime.

Barham et al.[17], presents a series of different benchmarking results compar-
ing both VMware’s ESX server and Xen to native performance. Their findings
show that the paravirtualized approach used in Xen performs no less than at
least 93% compared to native while the ESX server performed as low as only
13% on very I/O intensive benchmarks. The tests include benchmarking of
the PostgreSQL databaseserver and the Apache HTTP server. They conclude:
”the performance of XenoLinux over Xen is practically equivalent to the per-
formance of the baseline Linux system”.

Both Menon et al.[33] and Kiyanclar[18] present results in their respective
studies that show Xen to perform within 5% of native performance on heavy
I/O operation tasks. None of them offer quantitative results for the ESX server
because of license restrictions on benchmarking. However Kiyanclar concludes
with both The VMware ESX server and Xen to be attractive candidates for his
On-Demand Secure Cluster Computing project and says ”While ESX server is
noted in the Xen work as having better performance than the hosted VMware
editions (VMware Workstation), the same notes that Xen still outperforms the

16

2.6. OVERHEAD AND PERFORMANCE

higher-end VMware product.”

Little recent, as of 2007, information is available. Comparisons of for instance
all virtualization technologies and how they use the newly introduced hard-
ware which support virtualization, namely Intel’s VT and AMD’s V chips,
could be very interesting. Instead we have to monitor what the makers of
the software release themselves in various white papers and presentations.
As the continued reading of this section will display, commercialization has a
negative impact on both research progression and spreading of high integrity
information. Subjective test results and other types of biased information is
spread by developers and others in trying to promote their products. This is
not very fruitful, neither for research nor cooperation on improving technol-
ogy.

Technology, virtualization capable wise, is maturing fast after the virtualiza-
tion trend has picked up its pace, and equally so is the software that runs on
top of it. Comparisons and benchmark results introduced in section 2.6 are
ageing quickly as improvements are made, new technology is available and
more mature products are released to the public. VMware still does not allow
anyone to publish performance benchmarks without their concent, but pub-
lish their own comparison benchmarks as they see fit since Xensource does not
have any license difficulties regarding this. In late January 2007, VMware pub-
lished a whitepaper entitled ”A Performance Comparison of Hypervisors”[34]
which strongly suggest that the Xensource hypervisor, Xen 3.0.3 was used, is
not ready for an enterprise production environment. The following is a quote
taken from the conclusion of the mentioned paper:

We found that VMware ESX Server is far better equipped to meet
the demands of an enterprise datacenter than the Xen hypervisor.
While Xen-based virtualization products have received much at-
tention lately, customers should take a closer look at the enterprise
readiness of those products. The series of tests conducted for this
paper proves that VMware ESX Server delivers the production-
ready performance and scalability needed to implement an efficient
and responsive datacenter. Furthermore, we had no problems set-
ting up and running virtual SMP and virtual machine scalability
tests with the reliable and proven third-generation VMware ESX
Server hypervisor. Despite several attempts, we were not success-
ful in running similar tests with the Xen hypervisor.

The paper was also accompanied by numerous graphed measurements such
as the one in figure 2.1. This graph, and the wording in the previous quote,
implies a rather subjective comparison.

17

CHAPTER 2. BACKGROUND

speaks for itself. It states loud and clear that this research is neither pro-
fessional, nor meant to be taken into consideration by anyone trying to get an
overview of virtualization products in a scientific scenario.

Figure 2.1: Figure taken from a VMware white paper comparing Xen 3.0.3 and VMware ESX
3.0.1

After submitting, and getting an approval from VMware, Xensource pub-
lished their own white paper entitled ”A Performance Comparison of Com-
mercial Hypervisors”. This paper did the same comparison except they used
the XenSource XenEnterprise 3.2 release which is the Xen equivalent to VMware’s
ESX solution. Both products being commercial. Figure 2.2 shows one of many
graphs in the white paper XenSource published as an answer to the VMware
comparison released earlier the same year (2007). Figures 2.1 and 2.2 both
show the result from SPECjbb2005 benchmarking.

As the graphs show, XenSource’s results might seem more plausible, how-
ever, XenSource could not refrain from returning the somewhat sarcastic word-
ing in VMware’s comparison. The following quote is taken from the Xen-
Source published comparison:

Additionally, VMwares implementation and configuration of the
Xen hypervisor could not be checked, and it is likely that inadver-
tent incorrect configuration by the testers influenced their results. It
should be stressed that Xen 3.0.3 is a code base, and not a commer-
cial product, and so it is difficult to understand what VMware was

18

2.7. RESOURCE UTILIZATION

Figure 2.2: Figure taken from a XenSource white paper comparing XenEnterprise 3.2 and
VMware ESX 3.0.1

trying to achieve. Finally, the description of the test setup for the
VMware benchmarks is incomplete, making it difficult to under-
stand how some results are generated (for example their network
performance appears to exceed the bandwidth capacity of a GigE
NIC). As a result, the VMware results should be viewed as being of
little value. They relate to a VMware specific implementation of a
developing open source code base and not to any vendors product.

2.7 Resource utilization

Resource utilization in expensive servers are often at 25% average[35]. As
mentioned earlier the practice of assigning one application or service to its
own physical server can quickly be costly. A virtual infrastructure improves
resource utilization and high priced servers can be justified. Administrators
can look at their servers as a big pool of resources and map virtual machines
with running services to any part of this resource pool without having to think
about available resources on a specific host. This in turn also prevents the
proliferation of physical servers.

19

CHAPTER 2. BACKGROUND

2.8 Summary

The biggest drawback to the paravirtualization technology is incompatibility.
A paravirtualized environment requires modification of the OS to be able to
run on the somewhat different virtualized hardware. This results in incom-
patibility with possibly mission-critical applications and legacy operating sys-
tems. In the years of development of the x86 architecture it has allways been
backwards compatible which again has resulted in huge amounts of legacy
software still in use. This means that giving up compatability is not a trivial
undertaking.

However, building a VMM that supports Popek and Goldbergs requirements,
and also supports legacy operating systems and its software base, has proven
quite a difficult enginering task. VMware, which is the marked leader for x86
virtualization, has done a good job with its on-the-fly binary translator, but
academic research projects are favoring the paravirtualized approach[6].

Recent development in the x86 CPU architecture from both AMD and Intel,
with their respective Pacifica and Vanderpool technologies, has introduced
support for direct execution virtualization. This looks like something that
could change the whole virtualization marked as Xen’s, and others, paravirtu-
alized environment would no longer require guest host OS modification and
VMware’s, and others, binary translators would no longer be a necessary me-
diator for executing privileged instructions like disable interrupts or perform
I/O operations.

Virtual machine technology and its applications, as discussed in this work,
brings new key features to the table and this time around it seems to be here
to stay. The past has shown that hardware supported virtualization can de-
crease overhead to the point that the value of having a fully compatible virtual
machine abstraction overrides any performance benefits gained by the fully
compatible binary translation solution.

20

Chapter 3

Methodology

This chapter will describe the essential pieces of software used to build and
manage the virtual infrastructure as well as give a short introduction on how to
achieve a remote storage solution supporting live migration of virtual marchines.

3.1 Equipment and Software

All pieces of equipment used during this research period has been provided
by Linpro AS. The physical servers, network infrastructure devices and acces-
sories are hosted remotely at Linpro’s offices, but has been managed remotely
by the author. There is a total of five physical servers where four of them
are used for hosting virtual machines. These four servers are addressed by
hostname ”nodeX” where ”X” is a number ranging from 0 through 3. They
have equal specifications, hardware wise, and are installed with the same op-
erating system and complimentary packages required for putting them to use
as Xen hosts. The last, fifth, server is addressed by hostname ”clumaster”,
which is short for clustermaster. As the name implies, this is the ”master”
of the cluster, acting as both network gateway for the rest of the servers and
as the storage backend for any virtual machines running on node0-3. This
server has a slightly different hardware specification as table 3.1 shows. The
network infrastructure device combining these five servers is a 1000 MBit eth-
ernet switch. As for the power distribution of the physical servers, they are
run through an American Power Conversion (APC) rack Power Distribution
Unit (rPDU). This device has, among others, a telnet interface which lets an
administrator remotely control the ”powerbutton” of the connected system.
This device proved to be very helpful.

21

CHAPTER 3. METHODOLOGY

Hardware specifications
Clumaster NodeX

CPU DualCore Intel P4 3 GHz AMD Sempron 3100+
Memory 2048 MB 1024 MB
Harddrive 2 x WD 150 GB SATA Samsung 40 GB SATA
NIC 2 x Intel PRO 1000 Mbps Intel PRO 1000 Mbps

Table 3.1: Hardware specification for the physical servers

3.1.1 ATA over Ethernet

ATA over Ethernet, also known as AoE, is a protocol that encapsulates ATA
commands in ethernet packages. What it does essentially is to allow any sup-
ported operating system to mount block devices across an ethernet connection
seemingly as though the device was attached locally to the physical server.
Xen can utilize this to allow live migration of virtual machines as the exported
block device is visible on all the nodes in the network. This is one of the solu-
tions available to turn a commodity system into a ”home made” Storage Area
Network (SAN). However, AoE by itself can not be comapared to a real SAN in
any way. The ”SAN” used in this thesis does not have any form of redundancy
implemented and is not a setup intended to reflect a professional production
environment. It is merely a proof-of-concept model intended for research in
virtual machine management, monitoring and consolidation. The author sug-
gests the use of for instance DRBD (Distributed Replicated Block Device)[36]
to replicate the storage backend to make it redundant. As it is now, any prob-
lem inflicting instability on the storage server will result in downtime for all
virtual machines using it.

To export an AoE block device the package entitled ”vblade” needs to be in-
stalled on the storage server. In this case, Ubuntu Dapper Drake, is the operat-
ing system of choice and to install the package the following command is used
from a terminal:

apt-get install vblade

This package provides, among others, a binary named ”vbladed”. The follow-
ing command is used to export a block device:

vbladed 0 0 eth1 /dev/sda1

Now to make the shared block device visible to a node in the network, the
node needs to have the ”AoE” module loaded. The Ubuntu Dapper OS has
this module preinstalled, but to import an AoE shared device another set of

22

3.1. EQUIPMENT AND SOFTWARE

binaries must be available. The package needed for the importing part is enti-
tled ”aoetools”. The following commands are used to install the tools needed
for importing AoE shares and load the AoE module.

apt-get install aoetools

modprobe aoe

Once this is done the AoE share can be made visible by using the following
command:

aoe-discover

aoe-stat

Which will result in a similar output as this:

e0.0 107.374GB eth0 up

After this the AoE share is made available locally as the device ”/dev/etherd/e0.0”.
The two numbers following ”e” in the device name reflect the numbers given
when exporting the device from the storage server. These two numbers are, in
AoE terms, referred to as ”shelf” and ”slot”.

3.1.2 Logical Volume Management

Logical Volume Manager (LVM) is, as the name describes, a set of tools to
manage logical volumes on the Linux operating system. There are two version
of LVM

• LVM 1 - The version that is in the 2.4 kernel series

• LVM 2 - New and improved version that uses the device mapper kernel
driver introduced in the 2.6 kernel series

LVM (1) is available in many 2.4 linux kernels, but is no longer in active de-
velopment. Only bugfixes and security updates, if any, will be introduced in
the future. It is, however, a mature product and has been considered stable
for a few years now and there are still some linux distribution using the 2.4
kernel version. At present, the development is focused on the LVM2 project.
This project is almost completely backwards compatible with its predecessor,
except for management of volume snapshots. LVM2 uses the device mapper
kernel driver which is available in the 2.6 linux kernel series. This project is
using the Ubuntu Dapper Drake1 Linux distribution which uses the 2.6.15 ker-
nel as default.

LVM operates with the following terms to describe different ”parts” of the
storage area:

1www.ubuntu.com

23

CHAPTER 3. METHODOLOGY

• PV Physical Volume - This is the physical block device

• VG Volume Group - The volume group holds all logical volumes. A
volume group can be spread across several physical volumes

• LV Logical Volume - This is the abstraction used in LVM2 to symbolize
what could be compared to a partition on a regular harddrive

3.2 Testbed setup

The Linpro virtualization testbed consists of 4 nodes running Xen-unstable
and 1 control node, which is both the gateway of the network and the ”SAN”
host. The Xen-nodes are connected internally over gigabit Ethernet. The Xen-
nodes will be addressed as node0 through node3, and the gateway as clumas-
ter, short for clustermaster. These are the hostnames used in the actual testbed
and so all examples, figures, screendumps, etc will be coherent with the text.
The equipment mentioned in section 3.1 is coupled together in the testbed
setup as figure 3.1 shows.

For any virtual machine to be able to migrate to another host, some prereq-
uisites needs to be taken care of:

• Harddrives, either file or block device, needs to be freely available to all
potential Xen hosts

• Amount of configured, allocated memory for the virtual machine needs
to be available on all potential Xen hosts

• If the virtual machine is a HVM domain, the physical CPU of any poten-
tial host needs to support hardware virtualization

The first prerequisite is dealt with by using Clumaster as the storage backend
for all virtual machines. As figure 3.2 shows, all harddrives for all the virtual
machines are really located on Clumaster, but being visible from all the Xen
nodes makes them mountable on any potential migration target. The software
used to accomplish this is AoE, see section 3.1.1, and LVM, see section 3.1.2.
This will be further explained in the next section.

As for the other prerequisites mentioned previously, memory usage, and free
memory, is dynamic on each Xen host as the configuration for each virtual
machine differs and how many are running at the same time. Hardware vir-
tualization is not supported by any of the nodes in this testbed and is therefor
not considered.

On a sidenote, having the storage server on the same network as the ”data”

24

3.2. TESTBED SETUP

Figure 3.1: Physical network setup

network is not a good idea. Network traffic is generated by all input and out-
put operations on each of the virtual machine’s harddrive(s). This added net-
work traffic could act as a limiting factor in both migration speed, and avail-
able bandwidth for any public service running on any of the virtual machines.
However, the network traffic does not play any part in this work and is only
concidered in section 6.9, Future work.

25

CHAPTER 3. METHODOLOGY

Figure 3.2: SAN illustration

3.2.1 SAN setup

As mentioned in the previous section, the remote storage must be mountable
on all xen hosts in order for live migration to be possible. We use AoE to
accomplish the block device sharing, and LVM to configure the logical vol-
umes used as each virtual machine’s harddrive. AoE, which was discussed in
section 3.1.1, presents each shared device as /dev/etherd/eX.Y, where X and Y
represents the AoE shelf and slot. This shared device is the configured to be a
LVM PV (Physical Volume) which again can be used to create a LVM VG (Vol-
ume Group). For this project the volume group vg xen2 was created on top
of the /dev/etherd/eX.Y device which was first configured to be a LVM PV. The
vg xen2 volume group was then ”found” each xen server in the infrastructure
by issuing the following command on each of the servers:

/sbin/vgscan

The vgscan command produced the following ouput:

Reading all physical volumes. This may take a while...

Found volume group "vg_xen2" using metadata type lvm2

After the volume group was recognized, logical volumes for each virtual ma-
chine could be created seperately on each of the xen servers. Since the same

26

3.3. XEN API

volume group is shared, and used, throughout the infrastructure, each logical
volume created is visible, and mountable, from all the xen servers. However,
mounting a logical volume which does not have a cluster friendly filesystem,
can destroy the filesystem. When a virtual machine is live migrated, it is first
unmounted on the source server before it is mounted again on the destination.
The xen hypervisor takes care of this.

3.3 Xen API

As the need for more complex network scenarios arise, using a management
software like MLN will be more and more valuable in terms of ease of manage-
ment and configuration. However, the configuration of virtual machines is not
the only thing related to a virtual infrastructure which implies the necessity of
a management solution. Other important issues to address are for instance
redundancy and monitoring. There are several good open and closed source
monitoring solutions on the marked, but most of them require some sort of
software being installed on each host we want to monitor. As of Xen 3.0.4,
XenSource included their prerelease code for a management and monitoring
API. The API is meant to take over from its predecessors and be maintained
as the only way of communicating with Xend in the future. The following list
contains the predecessors of the API and will be phased out in future releases
of Xen:

• xend-http-server: Very old and totally broken HTML interface and legacy,
generally working SXP-based interface, on port 8000

• xend-unix-server: Same as above, using a Unix domain socket

• xend-unix-xmlrpc-server: Legacy XML-RPC server, over HTTP/Unix,
the recommended way to access Xend in 3.0.4

• xend-tcp-xmlrpc-server: Same as above, over TCP, on port 8006

In terms of resource consumption on both Dom0 and all its DomUs, the API
is all that is needed to gather the statistics which are generated by Xend itself.
The following are some of the metrics that the API produces:

• For each host:

– Physical CPU utilization float [0,1]

– Physical NIC utilization kbps in/out

– Physical MEM utilization total/free

• For each VM:

27

CHAPTER 3. METHODOLOGY

– Type PV/HVM

– Virtual CPU utilization float [0,1]

– Virtual MEM utilization kbps in/out

– Virtual HDD utilization kbps in/out

– Virtual NIC utilization kbps in/out

All values are computed as an average of last two seconds.2

Using these metrics, it is possible to give a ”calculation” of redundancy[37]
which tells us how many of the physical hosts can go down before there is
no more free resources to keep all the VMs up. The redundancy metric can
be calculated based on different algorithms. The following are suggested by
Begnum[37]:

• Least migrations - reduce the risk of a virtual machine dying during the
migration process.

• Least memory copied - For a virtual machine to be live migrated, all its
memory has to be copied. Less memory reduces migration time.

• Most important last - Some virtual machines are more important than
others, risk less by touching these last.

3.4 MLN

To combat the problem of complex configuration files, network preparations
and file/partition setup that comes hand in hand with installing a Xen domU,
this project has chosen MLN as its companion to take care of the virtual infras-
tructure management part. MLN, Manage Large Networks[1][2], is, simply
put, a tool for administration of virtual machines. It is written in Perl and
supports both Xen and User Mode Linux (UML) VMs and is developed with
simplicity and long term management in mind. The goal of simplicity is man-
aged by using a ”higher” level configuration file with keywords describing the
virtual machine in many aspects:

• Virtualization type - UML or Xen

• Network connection(s) - Connect one or more VMs in private networks
or connect (bridge) one VM to the existing physical infrastructure

• Network setup - Network interface(s) and their IP address(es)

2Information from email correspondance with Ewan Mellor @ XenSource

28

3.4. MLN

Figure 3.3: 1 MLN project, 1 Virtual switch, 2 Virtual machines

• Users management - Define users, passwords and groups

• Operating system - Many different templates are available as the base
operating system installation

• Virtualized hardware specification - Amount of memory, diskspace and
CPUs as well as what kind of storage to use as ”local” harddrive (local
file or partition, or remote block device exported over the network)

• Other configuration - Startup commands and various other configuration
of services

These are only a few of the possibilities the high level configuration file
offers. The important thing is the ease of creating virtual machines ”ready for
deployment” and the possibility of connecting them together in customized
ways. Again with simplicity in mind, the creation of more complex networks
utilizes inheritance inside the configuration file to keep the file short and tidy,
yet powerful and simple.

global {

project simple

}

switch lan {

}

host away {

xen

network eth0 {

switch lan

address 10.0.0.2

netmask 255.255.255.0

}

}

host fly {

xen

network eth0 {

switch lan

address 10.0.0.1

29

CHAPTER 3. METHODOLOGY

netmask 255.255.255.0

}

}

The above example shows a very simple project containing two virtual ma-
chines in a private network. This configuration has a very limited number of
keywords added to it, yet it will create a fully functional private network with
two virtual machines connected to it as seen in figure 3.3. A project with the
example configuration file as shown will assume the MLN defaults for all the
fields not specified. For instance, the virtual machine will utilize a file as its
harddive, it will be based on the default template which is a Debian stable
minimum installation and it will have only the user root with no password
added.

To enable MLN to manage virtual machines across a virtual infrastructure
it has a built in daemon feature. Each physical host which has virtual machines
running must also run the MLN daemon. The following command, or similar,
is used to start MLN in daemon mode:

/usr/local/bin/mln daemon 2>&1 > /var/log/mlnd.log &

It is possible to query MLN for the status of all virtual machines running
on any given host in the virtual infrastructure as long as the MLN daemon
is running. The issued command and an example response from the MLN
daemons at the Linpro testlab are shown below:

cmd: /usr/local/bin/mln daemon_status

Server #proj #vms Mem.Used Mem.Ava Groups

--

192.168.0.10 1 10 416 n/a n/a

192.168.0.11 2 12 480 n/a n/a

192.168.0.12 n/a n/a n/a n/a n/a

192.168.0.13 1 10 416 n/a n/a

--

Total: 4 32 1312 n/a

Hosts that did not answer:

--

192.168.0.12: n/a

192.168.0.10 name.project ID Mem.Used VCPU Status VCPU.sec RX.bytes TX.bytes

192.168.0.10 Domain-0 0 257 1 r----- 25456.8 6082159924010578849

192.168.0.10 away.ft3 60 32 1 -b---- 179.1 19408 159435

192.168.0.10 east.ft3 57 32 1 -b---- 2423.2 0 1497234

192.168.0.10 fly.ft3 51 32 1 -b---- 2615.6 9145739 367759685

192.168.0.10 h1.ft3 53 64 1 -b---- 2331.8 2808104 256349399

192.168.0.10 h2.ft3 50 65 1 -b---- 2409.5 0 1497234

192.168.0.10 h3.ft3 58 64 1 -b---- 2249.4 0 1497234

192.168.0.10 home.ft3 54 32 1 -b---- 2346.8 0 1502400

192.168.0.10 north.ft3 52 32 1 -b---- 2339.8 28 2999634

192.168.0.10 south.ft3 59 32 1 -b---- 2223.8 0 1497234

192.168.0.10 west.ft3 56 32 1 -b---- 2172.9 0 1497234

192.168.0.11 name.project ID Mem.Used VCPU Status VCPU.sec RX.bytes TX.bytes

192.168.0.11 Domain-0 0 257 1 r----- 490702.0 64969673391315244

30

3.4. MLN

192.168.0.11 away.simple 34 32 1 -b---- 3810.0 118920760 140988940

192.168.0.11 away.ft32 1 32 1 -b---- 5153.7

192.168.0.11 east.ft32 2 32 1 -b---- 4970.9 420 2146550

192.168.0.11 fly.simple 35 32 1 -b---- 3758.7 239826250 298959232

192.168.0.11 fly.ft32 3 32 1 -b---- 5068.3 3953406 901546667

192.168.0.11 h1.ft32 4 64 1 -b---- 5165.4 3927420 896721838

192.168.0.11 h2.ft32 5 64 1 -b---- 4979.2 364 2146392

192.168.0.11 h3.ft32 6 64 1 -b---- 5034.2 336 2146434

192.168.0.11 home.ft32 7 32 1 -b---- 4859.7 196 2146728

192.168.0.11 north.ft32 8 32 1 -b---- 4915.2 980 4294568

192.168.0.11 south.ft32 9 32 1 -b---- 4841.3 476 2146528

192.168.0.11 west.ft32 10 32 1 -b---- 4866.9 504 2146822

192.168.0.13 name.project ID Mem.Used VCPU Status VCPU.sec RX.bytes TX.bytes

192.168.0.13 Domain-0 0 257 1 r----- 34401.5 9755559704166925523

192.168.0.13 away.ft31 1 32 1 -b---- 4625.7

192.168.0.13 east.ft31 2 32 1 -b---- 4599.5 196 2148388

192.168.0.13 fly.ft31 3 32 1 -b---- 4671.6 4005844 217206157

192.168.0.13 h1.ft31 4 64 1 -b---- 4815.2 3947632 375336906

192.168.0.13 h2.ft31 5 64 1 -b---- 4632.4 196 2148220

192.168.0.13 h3.ft31 6 64 1 -b---- 4643.1 196 2148220

192.168.0.13 home.ft31 7 32 1 -b---- 4596.0 504 2148804

192.168.0.13 north.ft31 8 32 1 -b---- 4615.7 1904 4298588

192.168.0.13 south.ft31 9 32 1 -b---- 4540.3 504 2148814

192.168.0.13 west.ft31 10 32 1 -b---- 4604.2 504 2148772

As we can see from the output there are four Xen servers with ips from 192.168.0.10
to 192.168.0.13 (node 0 through 3) hosting a total of 32 virtual machines from 4
different projects. A project is denoted with:

global {
project simple

}

in the configuration file, one project per file. The example project ”simple” is
running on node1 (ip 192.168.0.11) as we can see in the screendump:

192.168.0.11 name.project ID Mem.Used VCPU Status VCPU.sec RX.bytes TX.bytes

.

.

192.168.0.11 away.simple 34 32 1 -b---- 3810.0 118920760 140988940

.

192.168.0.11 fly.simple 35 32 1 -b---- 3758.7 239826250 298959232

.

.

MLN uses a naming scheme for the virtual machines consisting of the host-
name specified in the configuration file and the project name put together as
”hostname.projectname”. The hostnames are defined in the configuration file,
as we saw earlier, like this:

host away {
.
.
}

where every virtual machine has its own specific settings defined inside this
segment.

31

CHAPTER 3. METHODOLOGY

As mentioned earlier, the screendump shows that there are four physical servers
running the MLN daemon and a total of 32 virtual machines alltogether. How-
ever, the command mln daemon status was not run from any of these four
servers, but from a fifth ”control node”. This node does not run the Xen-
source virtual machine monitor, it is solely used for management purposes.
The ”management node” has a list of ip addresses of nodes running the MLN
daemon, this is how it knows which nodes are in the virtual infrastructure, and
the address on which to contact them. The following segment is an example
from the configuration file of MLN itself /etc/mln/mln.conf on the management
node:

templates /opt/mln/templates
files /opt/mln/files/root/$USER
projects /opt/mln/projects/root
uml /opt/mln/uml
default_kernel /opt/mln/uml/uml-2.6.12-rc2-mm3/linux
default_modules /opt/mln/uml/uml-2.6.12-rc2-mm3
daemon_status_query 192.168.0.10
daemon_status_query 192.168.0.11
daemon_status_query 192.168.0.12
daemon_status_query 192.168.0.13
service_host 192.168.0.1

The daemon status query 192.168.0.1[0-3] lines has the keyword ”daemon status query”
which, as already mentioned, tells MLN about the different physical nodes
which hosts the virtual infrastructure. On the other end of the communica-
tion, each MLN daemon needs to have a line similar to this:

daemon_allow 192.168.0.1

to allow for ”management” commands to be accepted and dealt with. If this
line is missing from the configuration, all queries to the MLN daemon will be
dropped. The service host keyword seen in the configuration file screendump
of the management host, is also needed in the configuration file of the virtu-
alization nodes. This is to tell each host using MLN which ip address each
host should be responsible for. This setting is necessary in distributed man-
agement when the same keyword service host is used in a projects configura-
tion file where it symbolizes which physical host should take care of building
the virtual machines, and their virtual infrastructure devices if any, in that
project. Now to use the example with project simple again, this time the key-
word service host is added to ”distribute” this project to be built on one of the
virtualization nodes instead of the node where the build command is issued.

global {
project simple

$sh = 192.168.0.11

32

3.4. MLN

}
switch lan {
service_host $sh
}

The variable $sh is defined in the global block where it can be utilized by any
other block in the configuration file. Defining the variable in the global block
makes changing the service host option in the project more convenient. Upon
building the project, the command is issued from the management node, the
”service host” will be contacted to start the build process locally. The following
excerpt is an example on building the simple project and shows a part of MLNs
output referring to the distributed building process.

root@clumaster:/home/i/mln-files# mln build -f simple.mln
..
Sending project to 192.168.0.11:34001
Collecting reports from servers...
.
.

MLN has recently been further developed to support live migration of virtual
machines, however this feature is at the time of writing only available in the
beta release. It is the Xen functionality described in section 2.5.4 that MLN
now is able to take advantage of. As upon creation, MLN also uses the config-
uration files to update, upgrade or (live) migrate virtual machines. In order to
migrate the project, the only change that needs to be made is to redefine the
$sh variable in the global block. After that, the following command is issued:

mln upgrade -f simple.mln

MLN will then proceed to calculate the difference(s) between the stored, and
possibly running, configuration of the project, and the newly edited file. If
any differences are found, in this case the service host keyword is affected, ap-
propriate actions to adjust the differences will be taken. When service host is
changed, it means the project should move to a the new defined host. MLN
will try to contact the host with the specified ip address and send the project
there.

In order for live migration to work, the file system of the virtual machines
needs to be freely available to all possible receiving hosts. Presently, this is
another beta feature, MLN supports block device sharing across the network
with LVM (Logical Volume Manager, see section 3.1.2) and AoE (ATA over
Ethernet, see section 3.1.1).

LVM has been supported in MLN for use as hardrives in VMs for quite awhile.
It is not until recently that AoE was utilized as well. For more detail regarding
the setup of the shared storage, see section 3.2.1. Using AoE makes all par-
titions for each virtual machine visible, and mountable, to all Xen nodes. It

33

CHAPTER 3. METHODOLOGY

is the same for each VM itself, hence live migration is possible. To configure
MLN to utilize LVM for harddrive storage, something similar to the following
is added to the configuration file of MLN:

lvm_vg vg_xen2

This line states that the VG to be used for new LVs is called ”vg xen2”, and
hence all LVs on top of it are expected to be found under ”/dev/vg xen2/”.
This keyword, and feature, however can be used without having a distributed
setup such as the one described in this thesis. This introduces the need for
another keyword, san path, which is in many ways the same as lvm vg, except
this keyword explicitly tells MLN that the VG accompanying this keyword can
be found on all MLN nodes. Something like the following is added to MLNs
configuration file:

san_path vg_xen2

Now in order to use the example project ”simple” in a live migration scenario,
it needs to be configured for using the networked storage instead of local par-
tition or file. The modified configuration of project ”simple”, fully supporting
live migration, is shown below:

global {
project simple
$sh = 192.168.0.11

}
switch lan {

service_host $sh
}
superclass {

hosts {
lvm
xen
service_host $sh
network eth0 {

switch lan
netmask 255.255.255.0

}
}

}
host away {

superclass hosts
network eth0 {

address 10.0.0.2
}

}
host fly {

34

3.4. MLN

superclass hosts
network eth0 {

address 10.0.0.1
}

}

As mentioned earlier in this section, MLN utilizes inheritance in the configu-
ration file of virtual machines. In the example above, the superclass hosts is
introduced. As you can see, all the common variables are kept in a ”super-
class” segment and the separate host config segment inherits the values from
the superclass hosts with the simple statement superclass hosts. At the same
time, the network devices are configured individually by putting the address
statement in each hosts network settings. This will produce a network with
hosts away and fly connected to a virtual switch ”lan” on eth0, they will both
use harddrives mounted from a LV, they will both be running on service host
192.168.0.11 and they will have ip addresses 10.0.0.1 and 10.0.0.2 respectively.
This private network does not have a connection to the internet nor any part
of the existing network, virtual or physical. To connect the private network to
another network, for instance the physical network which allows for access to
the internet, another network device is added to one of the hosts. This will in
effect mean that this virtual machine will act as the gateway for the rest of its
private network. The following is an example of a modified host block for the
virtual machine fly:

host fly {
superclass hosts
network eth0 {

address 10.0.0.1
}
network eth1 {

address dhcp
}

}

Since the network block for eth1 on host fly does not contain the keyword
switch, MLN will assume that this particular network interface card should be
connected to the default Xen bridge xenbr0. This is the default bridge created
by Xen which is connected to the underlying physical network. Hence, host
fly will send and receive dhcp requests and offers from a dhcp server either
connected to the physical network itself or through the virtualization layer.

The small private network is now connected to the rest of the network, but
routing is not in place. This is not something that Xen, itself, deals with, but
again MLN proves helpful. By adding a few more keywords to the configura-
tion file we get a fully virtualized, working, private network which is bridged
to the physical network and does routing between the two networks:

host away {

35

CHAPTER 3. METHODOLOGY

superclass hosts
network eth0 {

address 10.0.0.2
gateway 10.0.0.1

}
}
host fly {

superclass hosts
network eth0 {

address 10.0.0.1
}
network eth1 {

address dhcp
}
startup {

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
echo 1 > /proc/sys/net/ipv4/ip_forward

}
}

Now if either the dhcp server does not tell the requesting host about the dns
servers of the network, or simply overriding the settings is wanted, the key-
word nameserver is added to the configuration of each virtual machine in the
host block similar to the following:

host away {
superclass hosts
nameserver 192.168.0.100
network eth0 {

address 10.0.0.2
gateway 10.0.0.1

}
}

36

Chapter 4

Software development

Developing a prototype tool that would be able to deal with virtual infrastruc-
ture management issues like load balancing, monitoring and provisioning has
been a goal for this research. A tool for monitoring the virtual infrastructure
is a prerequisite when doing load balancing based on live migration, i.e. re-
provisioning, of virtual machines. In order to monitor a Xen based virtual in-
frastructure one can either use Xen’s built in tools locally on the command line,
or use its API which can be reached remotely. A newly introduced, brushed
up, API appeared on a testing, not completed, stage in Xen 3.0.4. That version
of the API was only intended to be a preview, followed by a final release in
the coming version. The next Xen release, 3.1.0, was released in late May 2007
with a fully working finalized Xen-API version 1.0. This is the API that this
project based its virtual infrastructure monitoring on, and it is the only inter-
face to Xend that will be backward-compatible maintained in the long term.
This very interface allows for the extraction of some, if not all, of the metrics
that the xm and xentop programs provide.

4.1 XeniNFO - A Xen API example

The challenges met while testing the API can be summarized as follows:

• Decide on a programming language

• Find a suitable XMLRPC implementation

• Figure out the Xen API by reading source code, unfinished documenta-
tion and by testing

• Implement

As mentioned in section 3.3 the Xen API uses XML Remote Procedure Calls
(RPC) to communicate with Xend. After deciding on a programming language

37

CHAPTER 4. SOFTWARE DEVELOPMENT

to use, a suitable xmlrpc implementation had to be found. I ended up using
Perl as programming language and so the XML-RPC client module by Randy
Ray was chosen for the API interaction. It is freely available from, among other
places, CPAN.

When the work of this project started in January 2007, no examples existed
for connecting to the Xen API using Perl. For the problems related to the
XML-RPCs the use of the interactive python shell ”iPython” was used. An
interactive shell like this is very suitable for testing before implementation as
variables are stored and function calls return output directly in the shell as
they are typed.

While having spent quite a few hours on exploring the features of the API
with iPython, implementing it in Perl was a different story. Both while testing
and implementing a lot of effort had to be put in to mapping out the different
RPCs needed to collect the resource consumption statistics needed. This was
primarily due to the fact that the API documentation was not coherent with
the actual source code and secondly because the API itself was still heavily de-
veloped with changesets being submitted to the repository allmost daily. Some
of the features that was not yet implemented was listed in the API documen-
tation and vice versa. Differences and bugs, both contributed to making this a
tedious process, but the XenSource mailinglist for the API proved to be helpful,
more specificly the answers provided by XenSource developer Ewan Mellor.
The dialogue with him, both regarding changesets in the API and bugs, was
very helpful. The author was also asked to contribute some of this project’s
work to XenSource for use as an example on how to implement API commu-
nication using Perl.

The full script, entitled ”XeniNFO”, which was contributed to XenSource can
be found in section A.1.1.

4.2 MLN Xenguard

The work described in section 4.1 was further developed to make dynamic
adjustments to the virtual infrastructure as resource consumption throughout
the infrastructure varied. Since the XeniNFO application was contributed to
Xensource, the work was forked and renamed to XenGuard. Figure 4.1 shows
how XenGuard interacts with the the Xen-API.

The goal of this application was to create a proof-of-concept model which
could utilize resource consumption monitoring to make dynamic live migra-
tion decisions to provide load balancing for the whole infrastructure. If one

38

4.2. MLN XENGUARD

Figure 4.1: Xenguard, running on clumaster, connects to the Xen API on node1 and node3

or more virtual machines consumes more than a configured max level of the
total resources on a physical server, live migration would be used as a means
to distribute resources more evenly amongst all the virtual machines.

At first, Xenguard was calling MLN with command line arguments to make
MLN take care of the reprovisioning of virtual machines. However, after some
tests revealed that calling MLN through Xenguard resulted in noticeable exe-
cution time overhead, XenGuard was implemented as a command line argu-
ment in MLN and added to its source code. Both applications are written in
Perl and so this process was rather quick. In order to accomplish this, however,
MLN had to undergo some rewriting to make the Xenguard part of it able to
utilize existing code from within the application and not provoking reprovi-
sioning through MLN command line arguments only.

39

CHAPTER 4. SOFTWARE DEVELOPMENT

In order for XenGuard to be considered for inclusion in MLN, the code had
to meet certain quality standards. However, MLN-XenGuard is still at a beta
stage and only the future holds the answer to wether or not we will see an
official release of MLN including the XenGuard functionality. As of May 2007,
future work during summer and fall is planned to make this happen.

The following is a summarized step-by-step list of how XenGuard works:

1. Gather resource consumption statistics from all physical and virtual servers.

2. Evaluate resource consumption and decide if reprovisioning is necessary

3. Calculate possible targets for reprovisioning based on current resource
consumption on targets plus added load from all virtual machines to be
moved there

4. Find virtual machine dependencies

5. Call appropriate MLN functions to update configuration of virtual ma-
chines and their connected networking infrastructure devices to be re-
provisioned

6. Call MLN function to upgrade projects changed by the previous com-
mand

These steps might be thought to be trivial to implement, however, calcu-
lating virtual machine dependencies in context of private networks and their
virtual internal networking equipment was not. A MLN project can consist
of virtually an indefinite number of virtual machines connected over equally
many private networks. What has to be detected is which virtual machines
are connected in a private network, and thus needs to be located on the same
physical server. One can state that a MLN project can consist of many inde-
pendent ”chunks” of virtual machines, a chunk being a number of virtual ma-
chines and their interconnected networking devices. To discover these chunks,
a recurring function call is used to loop through all the virtual machines of a
project:

1. Find first virtual machine in a project

2. Check if this virtual machine is connected to a virtual networking device

3. If found, try to find (other) hosts connected to this device

4. For each host found to be connected, goto step 2

40

4.2. MLN XENGUARD

5. Return complete chunk

As far as the author could find, no other virtual infrastrcuture management
tool has the capability to manage, monitor and use live migration as a means
to distribute resources dynamically across a virtual infrastructure in a load
balancing matter. MLN-XenGuard introduces this feature not only for single
non-networked virtual machines, but also for private networks of unlimited
size. The additional live migration of whole networks enables an administra-
tor to have the flexibility for all non- and networked hosts which has only been
seen for single virtual machines in the past.

41

CHAPTER 4. SOFTWARE DEVELOPMENT

42

Chapter 5

Measurements and results

This project is largely based on an open source solution to the combined fea-
tures of what VMware calls ”VMotion” and ”Distributed Resource Schedul-
ing” (DRS). These features, respectively, are the key words for what can be
described as the second and third generation virtualization:

• 1st generation: Servers run on virtualized hardware. More than one op-
erating system can run at the same time on one physical machine creating
the abstraction that a single physical server appear as multiple separated
ones

• 2nd generation: Virtualized servers are no longer bound to a physical
host. While running and without loss of uptime, servers can be relocated
to other parts of the physical infrastructure as long as the target location
provides enough free resources

• 3rd generation: Automated relocation of running virtual machines based
on configurable policy parameters

5.1 Building a MLN project

In this section we will discuss the use of MLN as a virtual infrastructure man-
agement tool. More specific, MLN is used to configure, build and start a set of
apache webservers based on the Ubuntu server template provided by MLN.
If it is not already present, the template of choice needs to be downloaded
from the sourceforge webserver. The following command will start the tem-
plate download selection where the user will be prompted to download each of
the templates offered on sourceforge.net where MLN is hosted:

mln download_templates

43

CHAPTER 5. MEASUREMENTS AND RESULTS

Each of the templates created by the MLN authors are meant to be building
blocks for users that have different requirements for different needs. The tem-
plates vary in both make and distribution to support flexible solutions. How-
ever, if the operating system of choice is not presented as an option when is-
suing the template download command above, it is easy to create customized
ones based on any make or distribution the user might see fit. Creating cus-
tomized templates, however, will not be covered in this work. If creating a
customized template is the best solution for an administrator, then installing
customized software for different services is a natural addition. MLN sup-
ports the creation of additional plugins for exactly this need with its plugin
API. Plugins can be created, and their feature keywords can be used in the
configuration file just as any other ”original” options the user chooses. The
creation of these plugins will not be covered here, but the example that follows
will demonstrate the use of a template with the apache webserver pre-installed
and the use of a custom plugin to configure webserver specific options such
as document root and domain name. These options are specified in the webserver
block for each host in the configuration file:

global {
project simpleweb
$nameserver = 192.168.0.100

}
superclass {

hosts {
lvm
xen
free_space 500M
memory 128M
nameserver $nameserver
network eth0 {

address dhcp
}

}
}
host dagbladet.no {

superclass hosts
service_host 192.168.0.10
webserver{

domain www.dagbladet.no
doc_root /var/www

}
mount {

192.168.0.101:/var/www/dagbladet.no /var/www nfs defaults
}

}
host vg.no {

superclass hosts
service_host 192.168.0.11
webserver{

domain www.vg.no

44

5.1. BUILDING A MLN PROJECT

doc_root /var/www
}
mount {

192.168.0.101:/var/www/vg.no /var/www nfs defaults
}

}
host aftenposten.no {

superclass hosts
service_host 192.168.0.13
webserver{

domain www.aftenposten.no
doc_root /var/www

}
mount {

192.168.0.101:/var/www/aftenposten.no /var/www nfs defaults
}

}

This configuration file is a slightly modified version of the simple project used
in section 3.4. The simpleweb project, as this is called, has three virtual machines
which are all meant to provide a webserver service each. The three webservers
are configured to be hosted on separate physical machines, note the ip address
following the service host keyword, which indicates that MLN will distribute
the separate parts of the project to the service host indicated. The MLN daemon
on these hosts will build the separate virtual machines and configure them as
specified by the separate blocks in the configuration file. Figure 5.1 shows the
network topology for the current setup. The mount block specifies the NFS
(Network File System) share which holds the actual content to be hosted by
the webserver. Management of this content can be done in any number of
ways, this is merely an example of one possible solution. The project is built
with the following command:

mln build -f simpleweb.mln

And upon completion of the building, and configuring, process, the whole
project is started with:

mln start -p simpleweb

This will, ultimately, result in the Xend command xm create being called by
MLN on the different service hosts defined. The command will be accompa-
nied by the Xen configuration file, created by MLN, for the individual virtual
machine, which will cause the booting process to start.

5.1.1 Independent virtual machines

The three web servers is an example on how to quickly provision a fully work-
ing set of servers. Fully working meaning allmost no more configuration is

45

CHAPTER 5. MEASUREMENTS AND RESULTS

Figure 5.1: Project simpleweb with 3 Xen hosts each running 1 VM with a specific webserver
service

needed before any of these servers could act as a production webserver. This
is of course relative to the magnitude of customized tweaking in every aspect
of software configuration, but again it also comes down to the complexity,
and reach, of customized plugins one chooses to write. The plugin interface
allows for customized additions to MLNs configuration files which leads to
customized configuration of any templates the plugin is meant for. For exam-
ple, the two Linux distributions SUSE and Ubuntu might do things differently
in regard to where configuration files of the Apache webserver are placed or
what version of the software is included, and their respective settings.

The templates are also meant to be user customized. Different companies
will have different preferences on what operating systems to use for differ-

46

5.1. BUILDING A MLN PROJECT

ent services and so they should make their own templates with appropriate
software preinstalled. Having such templates, and or plugins, will allow for a
speedy provisioning of new servers, decrease time spent on migrating servers
or their services and minimize downtime due to maintenance or hardware er-
rors. For example, if usage statistics over time implies that one or more of
the webservers from the previous example are being used excessively, another
virtual machine serving the same content in a high availability scenario could
be brought up instantly if templates and/or plugins are available. Both the
dispatcher itself and the webservers it dispatches requests to can be ran as vir-
tual machines. With proper configuration, additional virtual machines can be
brought up and connected to the dispatcher on a demand only base. Figure 5.2
shows such a setup with one dispatcher and two webservers hosting the same
service.

Provisioning, and configuring, a new server can be time consuming when
done with manual labour. Using a management tool, not only to provision,
but also to configure the new system, will greatly reduce the total time spent
until the new service is up and running. Apart from the webserver example,
other virtual machines fitting together, not necessarily by type, but maybe by
for instance client/customer, can be put in the same project. Allthough the
virtual machines have nothing, directly, to do with each other, it can be con-
venient to ”group” them together in the same configuration. Examples could
be a set of gaming servers such as World of Warcraft (WoW), Battlefield or
Counter Strike (CS), or a set of servers belonging to a customer such as sepa-
rated email-, web- and database servers.

Allthough the examples with web- and gaming servers mentioned above are
somewhat modest, it does not imply a limitation. MLN has a plugin called
autoenum which purpose is to easily be able to configure and deploy any num-
ber of similar hosts only modifying their service host, ip address and hostname.
This feature can be used to deploy for instance a virtual High Performance
Computing (HPC) cluster[4] or an on-demand rendering farm[2]. Large vir-
tual clusters, limited only by subnet size, can be configured and brought up in
a fraction of the time it would take to deploy them on physical hardware. The
solution is extremely flexible as the cluster state can be saved, taken offline,
and brought back up on demand. CPUs of today are seeing a tremendous per-
formance increase in very short timeframes as development improves their in-
ner workings. As such, in an environment where computing power is the key
element such as in clusters it is important to keep the underlying hardware
updated to maximize performance. If need be, the hardware of the underlying
physical nodes in the cluster can be replaced or upgraded without affecting
the virtual cluster at all.

47

CHAPTER 5. MEASUREMENTS AND RESULTS

Figure 5.2: Three Xen hosts running a high availability setup with one dispatcher and two
webservers on virtual machines

It is important to note that allthough this report goes on to describe more ad-
vanced features of virtual networking and management of the virtual infras-
tructure, the needs and demands of many will stop on independent virtual
machines such as the examples described in this section. Xenguard, described
in section 4.2, will deal with these independent hosts in the same way it deals
with bigger, interconnected groups of virtual machines when it comes to re-
configuration of for instance the service host of each virtual machine. The fol-
lowing sections will talk about building private, isolated networks, which is
a feature of MLN (section 3.4), and how Xenguard controls the live migration
process of virtual machines based on resource consumption analysis. Section
5.2 will then go on to describe the inner processes of Xenguard in more detail
while live migrating bigger, interconnected private networks.

48

5.1. BUILDING A MLN PROJECT

5.1.2 Private networks
In some situations and scenarios virtual, private networking between virtual
machines is wanted for higher efficiency, lower latency, less traffic on the phys-
ical network or other similar reasons.

In a learning environment, students and their teachers can experiment with
networks as big as physical resources allow instead of single virtual machines
connected on a network where changes might inflict loss of connectivity and
damage to the rest of the physical network. A private network of virtual ma-
chines can act as a sandbox for one or more students in a learning environment
where practical experience is key to learning. The virtual network, both hosts
and network infrastructure devices, can be rebuilt, reset or reconfigured with-
out influencing anyone, or anything, else. Figure 5.3 shows such an example.

Figure 5.3: Two completely separate networks which can be reconfigured in any way with-
out influencing each other.

Another scenario where private networking can be usefull is in a typical web-
server frontend and database backend setup as figure 5.4 shows. The web-

49

CHAPTER 5. MEASUREMENTS AND RESULTS

server needs to be publicly reachable, while the database does not. In fact, it
does not need to be reached by anyone except for the webserver. All network
traffic to and from the database server, such as requests and downloads of soft-
ware updates, configuration management, logging and maintenance sessions
will be routed through the frontend node. An example configuration of a small
private network with two nodes and internal routing as described in this para-
graph can be found in section A.2.1.1.

Currently, a private network with virtual machines, handled by MLN, uses

Figure 5.4: Two public webservers hosting separate domains supported by a backend
database on a private network

the brctl command to create virtual switches, or bridges. The snippet of the
configuration file for the example project which details the virtual switch is
the following:

switch {
lan {

service_host 192.168.0.11
bridge lan.simple

50

5.1. BUILDING A MLN PROJECT

hosts {
away eth0
fly eth0

}
}

}

MLN is, at the time of writing, still not officially supporting Virtual Private
Network tunnels (VPN), but the code is allmost ready. Configuring VPN tun-
nels between bridge devices on need would remove the last obstacle of com-
plete resource sharing between virtual machines on private networks. How-
ever, it will introduce an additional layer of networking, more potential points
of error, re-introduce the private network traffic on to the physical network
and at the same time re-introduce the network limitations of the physical net-
work.

As it is today, the virtual machines connected over a virtual network (bridge or
virtual switch) has to be on the same physical Xen server in order to commu-
nicate over a specific bridge. Inter-VM communication on the virtual network
has no networking limits except for available CPU resources and networking
drivers used by the guest operating systems. The physical network neither
sees, or is impacted by the network traffic running over the virtual network-
ing devices. The fact that the complete network, including the switch and all
connected VMs, has to be migrated at the same time, and to the same place
to maintain network connectivity, is a downside to virtual private networks.
If for instance one of the virtual machines acting as the network gateway, or
the bridge device over which the internal networking happens, is migrated to
another physical host than the rest of the private network group, it will be as
if the switch or network gateway was removed from the physical network. I.e.
there will no longer be a network, but a group of (partially connected) hosts
without the ability to communicate internally or externally of the ”network”.

When doing virtual machine migration, it is important to have the discussed
dependencies related to virtual private networks in mind. A MLN project with
more than one private network group is not considered to be dependant of
each other in a full mesh, i.e. complete connectivity, kind of way. There are
only two dependencies:

• All virtual machines connected to the same private network group has to
be on the same physical machine in order to maintain an open commu-
nication channel

• Upon (live) migration, there has to be enough available resources on any
potential target host for the whole private network

51

CHAPTER 5. MEASUREMENTS AND RESULTS

However, separate private networks does not, even if they are in the same
project, depend on each other. As seen with standalone virtual machines with
bridged networking in project simpleweb earlier in this section, the separate
networks can be distributed to different service hosts for maximized resource
utilization and performance. The resource utilization however, will not be dis-
tributed internally in the private network group itself since all elements of this
group has to be residing on the same physical host. A set of virtual machines
and its interconnected virtual network infrastructure devices, is introduced as
a chunk. The chunk is not limited by for instance subnets, a better way to think
of it would be: As far as the virtual network can reach before traffic is sent
over physical hosts or networking equipment. With multiple virtual switches
(bridge devices), a chunk can consist of unlimited subnets as long as the vir-
tual machines takes care of the internal routing of the virtual private network.
The term chunk will be used as a descriptor for VMs and bridge devices which
depend on each other in order to maintain communication.

5.2 Automated live migration with Xenguard

Xen is undergoing rapid changes and as an opensource solution with its source-
code repository open for public checkouts, end users can take advantages
of newly introduced features, bugfixes and updates at any time they wish.
With the introduction of hardware virtualization support in the commodity
and server CPU market, Xensource, and their competitors, is working hard
to achieve live migration of hardware virtualized domains. This feature, at
the time of writing, has not yet been fully introduced, meaning it does work
partially in some of the latest unstable versions, but not reliably or stable. How-
ever, these changes are very recent and this project has based itself on the
assumption that the test- virtual infrastructure does not serve any hardware
virtualized guests.

This experiment is a typical proof-of-concept test of a scenario where avail-
able computing resources are being depleted on the physical host. The project
simple with hosts fly (frontend/gateway node) and away (backend node) was
introduced for the first time in section 3.4. (See figure 3.3) This experiment will
use the same project again. The project could have been a typical setup for a
webserver frontend connected to a database on the backend network.

The assumption for the remainder of this experiment is that these two vir-
tual machines could both introduce substantial CPU load through either the
database running heavy sql queries or the webserver for instance pulling heavy
php/jsp/asp pages. However for simplicity, instead of running these services
on fly and away and generating high CPU utilization through them, excessive
resource consumption is introduced in the control domain.

52

5.2. AUTOMATED LIVE MIGRATION WITH XENGUARD

To accomplish this, the control domain (Domain-0) was set to compile the lat-
est revision of the Xen sourcecode. First all source updates are pulled from
the repository using the command hg pull -u inside the xen-unstable source di-
rectory. This command will update all files affected by changes in the source
committed after the source was downloaded or the last time it was updated
locally. Thereafter the source is compiled using the command make world. This
command uses all available CPU resources and on a previously idle node in
the Linpro virtualization testbed it took 99.46 minutes, i.e. approximately 1.5
hours.

This is a fictional scenario where the control domain itself consumes all avail-
able CPU resources, however this project is merely a proof-of-concept that a
virtual infrastructure can adapt itself to resource consumption based on policy
decisions. The Xenguard script has the following configuration options which
acts as policy defined limits to when server relocation needs are apparent:

CONFIG
%xenhosts = ("192.168.0.13" => {"port" => "9363"},

"192.168.0.11" => {"port" => "9363"});
.
.
$host_cpu_utilization_low = 0.1;
$host_cpu_utilization_high = 0.7;
.
CONFIG END

This configuration is somewhat simple, containing only adjustable parameters
for which hosts to monitor and CPU utilization limits to check for. As the con-
figuration reflects, CPU was chosen as the most important parameter to look at
when creating this proof-of-concept model. This is not solely attributed to the
importance of CPU resources however. The virtualization testbed used in this
research does not reflect how a production setup would, or should, look like.
Both storage and ”real” network traffic runs on the same network equipment
and through the same network interfaces on the physical hosts. This makes it
hard to isolate, and perform tests, on separate parameters such as I/O inten-
sity or network throughput. In a production environment it would be natural
to isolate the storage traffic by installing a second network only for remote
storage traffic.

The configuration shows which Xen enabled hosts to monitor in the %xen-
hosts variable. As figure 5.5 shows, two Xen nodes in addition to the control
node are used in this experiment.

The following text will explain the logic of this proof-of-concept model. Snip-
pets of MLNs verbose output will be included as appropriate while the progress
is detailed:

53

CHAPTER 5. MEASUREMENTS AND RESULTS

Figure 5.5: The control node, clumaster, is used to monitor the two Xen nodes; node1 and
node3

root@clumaster:/home/i/tmp# ./mln xenguard
Connected successfully to 192.168.0.13..
Connected successfully to 192.168.0.11..

192.168.0.11

CPUiNFO: 0.96286288466006043
MEMiNFO: Total: 959.62109375 MB - Free: 204.12109375 MB
PiFiNFO: peth0 READ: 502.95419299561399 - WRITE: 1014.9075663827996

192.168.0.13

CPUiNFO: 0.0040338969971721256

54

5.2. AUTOMATED LIVE MIGRATION WITH XENGUARD

MEMiNFO: Total: 1007.55859375 MB - Free: 315.77734375 MB
PiFiNFO: peth0 READ: 96.001396199504896 - WRITE: 32.000465399834965

The script connects to Xen’s API and pulls resource consumption statistics for
the physical hosts. The screendump snippet details the current CPU utilization
displayed as a number between 0 and 1, total, and free, physical memory in
megabytes and transfer rates (RX and TX) for the physical network interface
displayed in KiB/s.

node1 cpu utilization = 0.96286288466006.. Supporting 2 VMs..
Starting migration logic..

This information is then analyzed, and if the cpu utilization is above the de-
fined $host cpu utilization high value, measures for possible relocation of the
virtual machines are taken. Illustration in figure 5.6

Dom0 is using 0.96286288466006, Lets evacuate all possible VMs..
Evacuating all VMs from node1..
We found 192.168.0.13 possible target hosts with less cpu usage than 0.1..

Domain0 (the control domain) was found to consume 96% of the available
CPU resources. Since this domain can not be migrated off of the physical host,
the only course of action in order to make more resources available to the vir-
tual machines is by moving the virtual machines themselves. As the snippet
above shows, node3 (192.168.0.13) was found to be a suitable target as it has
less that 0.1 CPU utilization.

..Found suitable target: 192.168.0.13.. With 315.77734375 MB free mem.. (we need 64 MB..)

Service_host on fly set to 192.168.0.13

Service_host on away set to 192.168.0.13

Service host on lan set to: 192.168.0.13

Xenguard, at the time of writing, will only make sure that the two most critical
system resources are available before classifying another physical host as a
potential recipient for one or more virtual machines:

• Total CPU utilization - If this number (ranging from 0 to 1) is below the
configured $host cpu utilization low value, it will be added to the poten-
tial targets list

• Available memory - After the ”low CPU usage” list has been generated,
each element will be checked for available memory

The first host that passes both of these requirements will be used as the recip-
ient for the virtual machines. Xenguard then updates the configuration file of
the project by inserting the service host keyword in the host block for each vir-
tual machine and in the switch block for its connected bridge device(s) to point
to the newly found target.

55

CHAPTER 5. MEASUREMENTS AND RESULTS

Figure 5.6: Xenguard, as resource consumption policy dictates, decides to relocate virtual
machines away from host node1 to free more resources

+---> Upgrade Info:
The Following Diff has been calculated
host {

fly {
service_host 192.168.0.13

}
away {

service_host 192.168.0.13
}

}
+---> UPGRADING simple
- fly will migrate from 192.168.0.11 to 192.168.0.13
- away will migrate from 192.168.0.11 to 192.168.0.13
Sending project to 192.168.0.13:34001

56

5.2. AUTOMATED LIVE MIGRATION WITH XENGUARD

Done
Saving Config file: /opt/mln/projects/root/simple/simple.mln

If any changes were made to a projects configuration file, MLN will accomo-
date the changes in the best possible way. In this experiment only the ser-
vice host was changed. As described in section 3.4, this will result in a live
migration of the virtual machines as well as the recreation of any virtual net-
working devices that might have been attached to it. As the snippet above
entails, the configuration of hosts fly and away was changed to reflect the Xen
host on ip address ”192.168.0.13” to be their new host and so the MLN daemon
is contacted to live migrate the project to its new destination. An illustration
can be found in figure 5.7.

Figure 5.7: Virtual machines fly and away are live migrated from node0 to node3

57

CHAPTER 5. MEASUREMENTS AND RESULTS

5.3 Chunk migration
This experiment will take the previous one a step further and at the same time
shed light on some of the more detailed internal function calls. The project
called simple, which has been used up until now, will now be replaced with
three identical projects called ft1, ft2 and ft3. Each of these projects has a con-
figuration file similar to that of project simple, but with 10 networked hosts on
three different subnets divided in two separate networks as figure 5.8 shows.
The complete configuration file for projects ftX can be found in the appendix
section A.2.1.2. The configuration related to Xenguard remains similar to the
previous experiment except this time all four Xen servers are used:

CONFIG
%xenhosts = ("192.168.0.10" => {"port" => "9363"},

"192.168.0.11" => {"port" => "9363"},
"192.168.0.12" => {"port" => "9363"},
"192.168.0.13" => {"port" => "9363"});

.

.
$host_cpu_utilization_low = 0.1;
$host_cpu_utilization_high = 0.7;
.
CONFIG END

Figure 5.8: Project ft with 10 hosts on 2 networks divided in 3 subnets

As mentioned in section 4.2, there are certain restrictions when creating
private networks of virtual machines. Project ft has 10 hosts connected over
3 virtual switches, but completely separated in 2 different networks as figure

58

5.3. CHUNK MIGRATION

host / network lan21 lan12 lan11
10.1.0.0 10.0.2.0 10.0.0.0 chunk #1 chunk #2

h1 x x
h2 x x
h3 x x
home x x
fly x x
away x x
north x x x
east x x
south x x
west x x

Table 5.1: 10 virtual machines divided into 3 subnets and 2 chunks

5.8 shows. All elements in these separated network segments, with both con-
nected hosts and virtual network devices, has to exist on the same physical
host. Each of these segments are referred to as chunks. Table 5.1 shows which
hosts and bridge devices that are connected to each chunk. For each of the
different subnets involved in this project there is a bridgedevice. (see table 5.1)
Instead of the virtual machine’s network interface being bridged directly to
the physical network through Xenbr0, hosts on the same subnet are connected
to the same bridge device and use only one of the virtual machines as the
gateway to reach the rest of the network. Figure 5.8 shows hosts fly and h1 to
be gateways to the physical network and host north being the bridge between
lan11 and lan12 (10.0.0.0 and 10.0.2.0). As host north connects the two subnets,
it means they are both part of the same chunk as they are both dependant on
host north being alive and forwarding network traffic in order to maintain net-
work communication. As mentioned earlier, all ”members” of a chunk needs
to exist on the same physical host, which means they all have to be (live) mi-
grated to the same destination. With this in mind, if automated live migrations
are to take place as a result of heavy resource consumption, the combined re-
sources used by all members of a chunk needs to be considered when finding
a potential target for migration.

This experiment is constructed to force a split of the hosts in the project
upon migration as no potential receiving host will have enough free memory
to host all the virtual machines. Xenguard will be forced to decide which hosts,
and switches, are dependant on each other, construct the chunks, and then,
if possible, move each of them to a different physical host. Table 5.2 shows
the details of the memory utilization in the ftX projects while table 5.3 shows
the utilization across the whole virtual infrastructure. If the two tables are
compared, it is obvious that both chunks of the project can not fit on the same

59

CHAPTER 5. MEASUREMENTS AND RESULTS

host chunk #1 chunk #2
h1 64 MB
h2 64 MB
h3 64 MB
home 32 MB
fly 32 MB
away 32 MB
north 32 MB
east 32 MB
south 32 MB
west 32 MB
TOTAL 192 MB 224 MB

Table 5.2: Memory usage by hosts in project ft

Server Projects VMs Mem used Mem free
192.168.0.10 1 10 416 MB 267 MB
192.168.0.11 1 10 416 MB 267 MB
192.168.0.12
192.168.0.13 1 10 416 MB 267 MB

Table 5.3: Memory usage on physical nodes in the virtual infrastructure

target host upon migration. These details, as well as information about cpu
and network usage, can also be found in the output of the mln daemon status
command. There is an example of this command in section 3.4 when it has
been run while all ftX and the simple projects were running.

As with the previous experiment, compiling the Xen sourcecode inside the
control domain makes sure all available CPU resources are spent. The follow-
ing text will explain what happens in the background when Xenguard is run,
and has to make a decision on which virtual machines to move where. Figure
5.9 shows the complete virtual infrastructure before Xenguard is run.

root@clumaster:/home/i# mln xenguard
Connected successfully to 192.168.0.13..
Can’t connect to 192.168.0.12 :(
Connected successfully to 192.168.0.11..
Connected successfully to 192.168.0.10..

192.168.0.10

60

5.3. CHUNK MIGRATION

Figure 5.9: The virtual infrastructure consists of 4 Xen enabled hosts supporting 30 virtual
machines in 3 MLN projects

CPUiNFO: 0.94563318263637197
MEMiNFO: Total: 959.62109375 MB - Free: 267.2109375 MB
PiFiNFO: peth0 READ: 559.59314363205294 - WRITE: 1343.0235447169271

192.168.0.11

CPUiNFO: 0.30627105141596539
MEMiNFO: Total: 959.62109375 MB - Free: 265.390625 MB
PiFiNFO: peth0 READ: 69.995869641843711 - WRITE: 133.99209331438652

61

CHAPTER 5. MEASUREMENTS AND RESULTS

192.168.0.13

CPUiNFO: 0.0040290885864005463
MEMiNFO: Total: 1007.55859375 MB - Free: 315.77734375 MB
PiFiNFO: peth0 READ: 64.000221253206291 - WRITE: 0.0

In this experiment all physical nodes available are used. The host node2 with
ip address 192.168.0.12 is not included due to hardware failure, hence the ex-
periment is constructed with two chunks instead of three to demonstrate the
splitting of virtual machines to the remaining two physical hosts when all re-
sources are consumed on node0. As shown in the above snippet, Xenguard is
unable to connect to node2, but continues execution and displays information
about the nodes it was able to query. node0, where the load has been artifi-
cially increased, shows CPU utilization of 94%, node1 shows 30% utilization
while node3 has 0.4% utilization.

node0 cpu utilization = 0.945633182636372.. Supporting 11 VMs..
Starting migration logic..

Xenguard will attempt to balance the load distribution if one or more nodes are
found to be above the host cpu utilization high limit. It finds that node0 is using
excessive resources and starts the process of finding alternative solutions.

Looks like h2.ft3 has higher load than 0 with 0.00286752124916157
which is higher than 0..

Looks like home.ft3 has higher load than h2.ft3 with 0.00316418524360976
which is higher than 0.00286752124916157..

Looks like Domain-0 has higher load than home.ft3 with 0.945633182636372
which is higher than 0.00316418524360976..

Dom0 is using 0.945633182636372, Lets evacuate all possible VMs..
Evacuating all VMs from node0..

At this point the decision to migrate the virtual machines has been taken and
as such the dependencies involved with the migration of whole projects has to
be dealt with. Xenguard must determine which of the virtual machines needs
to to be on the same physical host after relocation as well as their virtual net-
working equipment. A recursive function is called to determine which parts
of the project is connected and divides these parts into chunks. The result is an
associative table where node-, and bridgedevice names are grouped together
and tagged with their current servicehost. The snippet below shows a part of
this datastructure with the two chunks that make up project ft3:

$VAR1 = ’ft3’;
$VAR2 = [

{
’servicehostip’ => ’192.168.0.10’,

62

5.3. CHUNK MIGRATION

’hosts’ => [
’south’,
’north’,
’away’,
’fly’,
’home’,
’west’,
’east’

],
’servicehostname’ => ’node0’,
’switches’ => [

’lan12’,
’lan11’

]
},
{
’servicehostip’ => ’192.168.0.10’,
’hosts’ => [

’h1’,
’h3’,
’h2’

],
’servicehostname’ => ’node0’,
’switches’ => [

’lan21’
]

}
];

After the ”migration logic” is started, Xenguard will try to determine which of
the virtual machines is causing the excessive resource consumption. To accom-
plish this, it will loop through an internal list of statistics per virtual machine
based on blocks of information like the following snippet:

’home.ft3’ => {
’memory’ => {

’static_min’ => ’32’,
’static_max’ => ’40’,
’dynamic_min’ => ’32’,
’dynamic_max’ => ’40’

},
’vifs’ => {

’eth0’ => {
’read’ => ’0.0’,
’write’ => ’0.0’

}

63

CHAPTER 5. MEASUREMENTS AND RESULTS

},
’vbds’ => {

’hda1’ => {
’read’ => ’0.0’,
’write’ => ’0.0’

}
},
’vcpus’ => {

’0’ => ’0.0028142869686770462’
},
’type’ => ’PV’

},

To adjust, if it finds more than one virtual CPU (vCPU), it will add the uti-
lization per vCPU together and divide by number of vCPUs to get a number
between 0 and 1. This number is compared to the next virtual machine in
the list, and it will recursively go through the list until it has found the vir-
tual machine with the highest resource consumption. Note that the output
said ”supporting 11 VMs”, this is because the control domain (Dom0) is also
counted as a virtual machine, but it can not be moved away from its physical
host. In this case, as in the previous experiment, Xenguard finds that it is the
control domain which is using the most resources. Since it can not be moved,
the best thing to do would be to evacuate all possible virtual machines while
the control domain finishes the work it is currently doing in order to balance
available resources more appropriately.
We found 192.168.0.13 possible target hosts with less cpu usage than 0.1..

..Found suitable target: 192.168.0.13.. With 315.77734375 MB free mem.. (we need 193 MB..)

Service_host on h1 set to 192.168.0.13

Service_host on h3 set to 192.168.0.13

Service_host on h2 set to 192.168.0.13

Service host on lan21 set to: 192.168.0.13

this is our local copy

Saving Config file: /home/i/mln-files/ft3.mln

Config saved:

reconfigure chunk completed..

As shown in the introductory resource consumption statistics, node3 was only
using 0.4%, i.e. 0.004, which is well below the defined host cpu utilization low
value and as such that node was, as the snippet above details, chosen as a
potential target. Xenguard thereafter continues to check if enough free mem-
ory is available for the whole chunk on the target host. In the first pass the
chunk with hosts h1, h2 and h3 was found to utilize 193 MB of total memory
which was within the limits of node3 with its 315 MB free memory. When this
is confirmed, Xenguard proceeds to change the service host variable for each
host and bridge device in the chunk in the configuration file of the project.
DOH! We can’t migrate chunk

$VAR1 = [

’south’,

’north’,

’away’,

’fly’,

64

5.3. CHUNK MIGRATION

’home’,

’west’,

’east’

];

.... from node0 to 192.168.0.13 as this host only has 122.77734375 MB and we need 224 MB.. :(

node3 was found to have only 122 MB free memory after the reconfiguration
of the first chunk which was not enough to support the requirements of the
second chunk. This second chunk, as seen above, consists of hosts north, east,
south, west, fly, home and away and has a total memory cost of 224 MB.

Evacuating all VMs from node0..
We found 192.168.0.13 possible target hosts with less cpu usage than 0.2..
DOH! We can’t migrate chunk

Xenguard has so far managed to evacuate the first chunk with the first three
hosts and their connected bridge device. In order to migrate the rest of the
virtual machines Xenguard searches for potential recipients by adding 10%
CPU utilization to the host cpu utilization low value. On the second pass, as
seen above, Xenguard looks for potential targets with CPU utilization below
20%.

Evacuating all VMs from node0..
We found 192.168.0.13 possible target hosts with less cpu usage than 0.3..
DOH! We can’t migrate chunk

The low utilization parameter is raised again, but the search still yielded only
one result and the same result of nothing happening stays the same.

Evacuating all VMs from node0..

We found 192.168.0.11 192.168.0.13 possible target hosts with less cpu usage than 0.4..

..Found suitable target: 192.168.0.11.. With 265.390625 MB free mem.. (we need 224 MB..)

Service_host on south set to 192.168.0.11

Service_host on north set to 192.168.0.11

Service_host on away set to 192.168.0.11

Service_host on fly set to 192.168.0.11

Service_host on home set to 192.168.0.11

Service_host on west set to 192.168.0.11

Service_host on east set to 192.168.0.11

Service host on lan12 set to: 192.168.0.11

Service host on lan11 set to: 192.168.0.11

this is our local copy

Saving Config file: /home/i/mln-files/ft3.mln

Config saved:

reconfigure chunk completed..

On the forth pass the low CPU utilization parameter is raised yet another time,
and this time it is above the CPU utilization of the second host in the virtual
infrastructure with ip address ”192.168.0.11”. node3 can not receive the last
chunk still, but node1 has 265 MB of free memory which is more than sufficient.
All hosts and bridge devices are reconfigured to use ”service host” 192.168.0.11
and the project file is saved again.

65

CHAPTER 5. MEASUREMENTS AND RESULTS

Invoking local upgrade method

+---> UPGRADING ft3
Collecting Status information for ft3
- south will migrate from 192.168.0.10 to 192.168.0.11
- h1 will migrate from 192.168.0.10 to 192.168.0.13
- fly will migrate from 192.168.0.10 to 192.168.0.11
- west will migrate from 192.168.0.10 to 192.168.0.11
- east will migrate from 192.168.0.10 to 192.168.0.11
- h2 will migrate from 192.168.0.10 to 192.168.0.13
- north will migrate from 192.168.0.10 to 192.168.0.11
- away will migrate from 192.168.0.10 to 192.168.0.11
- h3 will migrate from 192.168.0.10 to 192.168.0.13
- home will migrate from 192.168.0.10 to 192.168.0.11

All hosts, both chunks, have been reconfigured and its time to execute the relo-
cation. Xenguard calls MLNs internal upgrade function and the live migration
process is started.

Checking if all MLN daemons are running on new service hosts
.
.
[192.168.0.13] ---> Building switch lan21
[192.168.0.13] h1: creating start and stop scripts
[192.168.0.13] h2: creating start and stop scripts
[192.168.0.13] h3: creating start and stop scripts
.
.
[192.168.0.11] Saving Config file: /opt/mln/projects/root/ft3/ft3.mln
node1 cpu utilization = 0.306271051415965.. Nothing to be done..
node3 cpu utilization = 0.00402908858640055.. Nothing to be done..

After first checking if the MLN daemon is running on the selected target host(s),
Xenguard proceeds to live migrate the virtual machine to their new physical
location. The start and stop scripts which MLN uses in order to start and stop
projects are generated, and stored, on the new physical host. Also the bridge
device(s) that might have been connected to that chunk must also be created.
After all this is accomplished, the updated configuration file is saved on the
new location of the chunk. The two remaining hosts, node1 and node3, are
checked as well, but as mentioned earlier, and seen above, they have CPU uti-
lization well below the configured threshold and no action is required. Figure
5.10 shows the virtual infrastructure and its running virtual machine after the
experiment has been conducted.

66

5.4. CHUNK COMPLEXITY VS NETWORK RECONNECTION TIME

Figure 5.10: The virtual infrastructure and its 30 supported virtual machines after relocation
based on resource sharing has been performed by Xenguard

5.4 Chunk complexity VS Network reconnection time

During a live migration, the virtual machine is essentially put in a ”sleep”
state which allows for its memory to be copied to the target host on which
the virtual machine will resume its responsabilities. The virtual network in-
terfaces of the specific VM, if any, needs to be re-created on the new physical
host if the network is to be reconnected upon resurrection of the VM. While
the Xen hypervisor takes care of this, MLN takes care of any virtual network

67

CHAPTER 5. MEASUREMENTS AND RESULTS

infrastructure devices that might be connected to the VM as well. Previous
experiments[3] shows that network reconnection time is low enough that users
of such services as live radio broadcasts or gameing servers did not notice
any connectivity outage. The experiments conducted by E. Braastad, however,
only deals with one xen host being live migrated. As shown by the following
experiments, the network reconnection time is extended by far when a more
complicated private network of xen hosts are to be migrated, and reconnected,
at once.

5.4.1 pingtest

For this experiment we have an imaginary setup of two virtual machines con-
nected over a private network in which one of them acts as the gateway to the
virtual infrastructure. Upon migration, MLN takes care of the recreation of the
virtual switch, while the Xen hypervisor takes care of the virtual network inter-
faces of the virtual machines. This is an imaginary scenario where for instance
we could have a webserver frontend communicating with a database backend
over a private network. The reason for doing this could be, separation (and
protection) of the database from the webserver and also for faster network
communication since the two hosts would communicate over a virtual switch
and thus the internal traffic would not be seen outside of the physical host and
would not be limited by the specifications of a physical networking device
such as a switch or hub. Both virtual machines are based on the Debian-3.0r0-
V1.1.ext2 default template provided by MLN and they both have the debian
”ssh” package, which contains the OpenSSH client and server, installed.

The following is the result of running the command ”ping 192.168.0.1” on
host fly. The ip-address being pinged here belongs to the SAN/gateway node
”clumaster” which is the network gateway for the whole virtual infrastructure.
The host fly is the frontend server in the private network which for instance
could be a webserver connected to a database backend over a private network.

fly:

64 bytes from 192.168.0.1: icmp_seq=130 ttl=64 time=0.3 ms

64 bytes from 192.168.0.1: icmp_seq=131 ttl=64 time=0.8 ms

64 bytes from 192.168.0.1: icmp_seq=133 ttl=64 time=0.3 ms

64 bytes from 192.168.0.1: icmp_seq=134 ttl=64 time=0.5 ms

As we can see here we have a packetloss of exactly 1 packet which makes the
network reconnection time for this node approximately 1 second.

The following is the result of running the command ”ping 10.0.0.1” on host
away. This host is the backend server in the private network which could be
for instance a database backend to a webserver.

68

5.4. CHUNK COMPLEXITY VS NETWORK RECONNECTION TIME

away:

64 bytes from 10.0.0.1: icmp_seq=19 ttl=64 time=0.5 ms

64 bytes from 10.0.0.1: icmp_seq=20 ttl=64 time=0.9 ms

64 bytes from 10.0.0.1: icmp_seq=39 ttl=64 time=0.5 ms

64 bytes from 10.0.0.1: icmp_seq=40 ttl=64 time=0.5 ms

We can see that the packetloss for this host has increased noteworthy with as
much as 18 ICMP echo requests being unanswered.

The following is the result of running the command ”tcpdump -i eth0” on host
fly.

fly:

19:40:44.240042 IP away > fly: icmp 64: echo request seq 5120

19:40:44.240109 IP fly > away: icmp 64: echo reply seq 5120

19:41:03.119057 IP away > fly: icmp 64: echo request seq 9984

19:41:03.119126 IP fly > away: icmp 64: echo reply seq 9984

As we can see there is a gap in the packet capturing of 19 seconds span-
ning from 19:40:44 until 19:41:03. This means that the ”backend” host away is
not completely reconnected to the private network until after 19 seconds have
passed making the total network reconnection time being not 1 second, but 19
for the whole network.

Towards the end of this project, the author was made aware of the Spanning
Tree Protocol (STP) used in Linux bridge devices. The default settings for a
newly created bridgedevice can be displayed using the following command:

brctl showstp <name of bridge device>

The output of this command ran on one of the bridge devices from the ft3 MLN
project is shown below:

root@node3:~# brctl showstp lan.ft3

lan2.ft3
bridge id 8000.feffffffffff
designated root 8000.feffffffffff
root port 0 path cost 0
max age 20.00 bridge max age 20.00
hello time 2.00 bridge hello time 2.00
forward delay 15.00 bridge forward delay 15.00
ageing time 300.00
hello timer 1.40 tcn timer 0.00
topology change timer 0.00 gc timer 0.05
flags

The important fields to note here are the bridge forward delay and bridge hello
time entries. As seen from the above snippet the hello time is set to 2.00 while

69

CHAPTER 5. MEASUREMENTS AND RESULTS

the forward delay is set to 15.00. Added together the total becomes 17.00 (sec-
onds) of wait before any packet forwarding is done. The author draws the
conclusion that these two settings make out 17 of the total 19 seconds of the to-
tal network reconnection time. When factored in that the live migration itself
takes some time as well as the bridge device has to be created, the conclusion
must be that the default settings of the bridge device creation is what gener-
ates the extended total network reconnection time.

Further inquiries on this problem was not done as the management tool that
creates the bridgedevices must be used to set the values of the bridgedevices
in order for the whole process to be automated. This, in turn, would require
added / modified code in the management tool.

70

Chapter 6

Discussion and Conclusion

In chapter 1, Introduction, three main challenges or points of interest were
defined:

• Configuration and change management for virtual- machines and infras-
tructure

• Focus on open source

• Automated load balancing for a virtual infrastructure based on resource
consumption statistics

These challenges have been met and the work has been discussed extensively
in the previous chapters. This chapter will summarize and briefly discuss the
following points, and last but not least give a conclusion and summary of the
entire project work.

1. Technical challenges

2. Remote storage solutions in context of live migration of Xen virtual ma-
chines

3. Virtual infrastructure management

4. This projects involvement in open source development

5. Xen hypervisor interaction

6. XeniNFO and XenGuard development

7. An analysis of the XenGuard logic and lab results

8. XenGuard and high availability

9. Future work and further development suggestions

71

CHAPTER 6. DISCUSSION AND CONCLUSION

Sections 6.1 and 6.2 will cover the preface, section 6.3 will cover the virtual
infrastructure management, section 6.4 will cover the focus on open source
contribution while sections 6.5, 6.6, 6.7 and 6.8 will cover the development,
and usage, of the tools that are used to do automated load balancing for the
virtual infrastructure. Section 6.9 will then cover future work before section
6.10 summarizes and concludes the total work and experiment results during
this project period.

6.1 Technical challenges

In order to complete the goals of this project a few prerequisites had to be in
place, namely four ”xenified” servers and an additional server meant to be
used as remote storage as well as the management and monitoring node of the
setup. The Xen-unstable release, which is a continuous work-in-progress, was
chosen to be used in this project as the latest official release, Xen 3.0.4, only had
a preview release of the new standardized Xen-API. This, in turn, meant that
the source code had to be mirrored to the testbed and compiled locally before
it could be installed on the Xen servers. In previous work[3], GNBD (Global
Network Block Device)1 was used for remote storage. Compiling the GNBD
module for the latest Xen-unstable release, as of Feb 2007, proved to be difficult
and after much time was spent, the effort was discontinued. Time restraints
suggested to try a different solution, and so using AoE (ATA over Ethernet)
combined with LVM (Logical Volume Manager)[38] became the solution. The
Xen-unstable release already contained the AoE module, hence this solution
was easily deployed. Other alternative solutions will be discussed more in the
next section.

6.2 Remote Storage

In section 6.1, some experienced difficulties that occurred while installing and
configuring the virtual infrastructure were discussed. There are several solu-
tions for remote storage that could have been tried, and probably used, for
the testbed infrastructure. However, the challenges this project is trying to ad-
dress, and the experiments conducted, was based on a experimental setup and
does not reflect how a production environment would, or should, look like.
The solutions introduced are merely proof-of-concept ideas which are not in-
fluenced by a less-than-optimal remote storage solution.

In a production environment, first of all, we would want redundant and highly
available storage without any single point of failure. With an enterprise SAN

1http://sourceware.org/cluster/gnbd/

72

6.3. VIRTUAL INFRASTRUCTURE MANAGEMENT

solution also comes an ”enterprise solution” pricetag. For an as-good-as-it-
gets ”home made” remote storage with modest hardware costs involved the
author would suggest DRBD (Distributed Replicated Block Device)[36] for
the redundant storage as well as heartbeat and a redundant set of dispatcher
servers and network equipment to process the I/O operations of the remote
storage. DRBD is a piece of software that mirrors any storage device between
two or more servers so that in the case of one storage server going down a
completely mirrored storage server would be able to take over and process all
I/O operations without the virtual machines knowing about it or any opera-
tions being interrupted.

Apart from the redundant storage itself, the software that actually shares the
devices across the network is merely one of many possibilities. Another open
source solution which has gotten substantial publicity is open-iscsi2 which is
based on the iSCSI protocol.[39] Open-iscsi, in effect, does allmost the same as
AoE; sharing a block device across the network. However, AoE is limited by
the hardware layer, i.e. switching, while iSCSI shares the block device across
an IP routed network. XenEnterprise, which is XenSource’s commercial enter-
prise version of the Xen hypervisor, includes iSCSI support for remote storage
and live migration for its virtual machines.[40]

6.3 Virtual Infrastructure Management

Virtual infrastructure management is not necessarily a complex task, it all boils
down to the number of physical and virtual machines to control. This project,
at max, had 5 physical servers with 40 virtual machines running. Unfortu-
nately, one of the ”Xenified” servers died in the middle of the project period
resulting in a maximum of 30 virtual machines hosted on 3 physical servers
with remote storage connected from the last physical host running at the same
time. This was also the number of virtual machines used in the most extensive
experiment.

Managing 30, let alone 40, virtual machines divided over a set of physical
servers require structured management to maintain uptime. Having a man-
agement software which can configure, provision and maintain any number
of virtual machines is very important, and usefull, in terms of both scalabil-
ity of the infrastructure and management costs. As mentioned in section 1.3,
there are many alternatives both commercial and open source to perform such
a task. MLN (Manage Large Networks) is one of them. This tool is written
in the Perl programming language, which the author is familiar with. One of

2http://www.open-iscsi.org/

73

CHAPTER 6. DISCUSSION AND CONCLUSION

its two main programmers works at OUC (Oslo University Collage), which
proved to be very helpful. The author had some experience with it from the
virtualization lab at OUC, and last but not least it is fully command line based
which was necessary for XenGuard to utilize its functionality. These were all
factors that contributed to the selection of MLN as the infrastructure manage-
ment tool.

MLN makes management easy by using very high level, easy to understand,
configuration files for its virtual machines as well as templates for various op-
erating systems. The configuration files can contain a lot of options which
are not set by Xen itself, such as hostname, users and passwords, routing ta-
ble, firewall rules and even service specific configuration such as for instance
www root for webservers. The templates makes bringing up new services very
easy as one can preconfigure and preinstall software needed for certain ser-
vices and then use MLNs configuration files to do the last configuration upon
(re-)provisioning of a virtual machine.

6.4 Contributing to Open Source development

Contributing to open source development has been a strong motivator for this
project. Both the virtual infrastructure management tool (MLN) and the Xen
hypervisor itself are renowned open source projects used by many teaching in-
stitutions and companies worldwide. A variety of commercial products exist
for a lot of what has been done in this project, but with a conciderable pricetag
attached. Open source projects such as Linux itself, the MySQL database and
the Apache webserver are all well known products of a ever growing trend
of sharing experience and expertice in development of equal, and sometimes
better, competitive solutions to well known commercial products. XeniNFO
and XenGuard can hopefully contribute, and inspire, others to continue the
development of other similar tools which again will aid the opensource com-
munity in competing against the commercial products in virtual machine man-
agement.

This project has produced two tools; XeniNFO which can already be found in
the Xen-unstable repository as a Xen-API interaction example written in Perl:

XeniNFO:

http://folk.uio.no/ingardm/thesis/xensource.xeninfo.pl

http://xenbits.xensource.com/xen-unstable.hg?rev/6145e5508d6b

http://xenbits.xensource.com/xen-unstable.hg?diff/6145e5508d6b/

tools/examples/xeninfo.pl

74

6.5. HYPERVISOR INTERACTION

This work was also discussed by Ewan Mellor in his talk about the Xen API at
the Xen Summit conference of April 2007 in New York:

Xen Summit:

http://www.xensource.com/xen/xensummit.html

http://www.xensource.com/files/xensummit_4/

XenSummit_API_Slides_2007-04-18_Ewan.pdf

The second part of this project, XenGuard, has been contributed to, and
implemented in, the MLN management solution for virtual machines:

MLN official release:

http://mln.sourceforge.net/

MLN-XenGuard (beta, not official):

Will be found in a future release of MLN

Temporary: http://folk.uio.no/ingardm/thesis/mln-xenguard

Apart from these products, this project while using the Xen-unstable beta
version of the Xen-API found, and solved the following bug:

Xen-API bugfix: Fix VM_metrics.get_vcpus_utilisation.

http://xenbits.xensource.com/xen-3.1-testing.hg?rev/1e592e4557c1

A quick run-through of the prices VMware operates at is a strong signal
that such a feature that Xenguard introduces in the opensource community
is strongly needed. VMware Infrastructure Enterprise (USD 5750 for 2 pro-
cessors + support), VMware VirtualCenter Management Server (USD 5000
per VirtualCenter application instance + support), VMware VMotion add-on
(USD 1400 for 2 processors + support) and VMware DRS (USD 2000 for 2
processors + support) is the total cost on a software setup that would allow
automated resource balancing to become reality in a VMware powered virtual
infrastructure.[41]

6.5 Hypervisor interaction

This project was focused primarily on the Xensource Xen hypervisor, but the
virtual infrastructure monitoring and migration analysis applies to all virtu-
alization technologies that allows for live migration of guests. Xenguard was
designed to connect to the Xen hypervisor using its newly introduced API with
XML-RPC calls.

Further development will not require much additional changes in the program
logic to support other VMMs such as VMware’s ESX server, Microsoft’s Win-
dows Server Virtualization or Kernel-based Virtual Machines (KVM) as the

75

CHAPTER 6. DISCUSSION AND CONCLUSION

analysis of resource consumption will stay the same. However, the process
of interacting with these VMMs will have to be added to the XenGuard code
as each has its own API and different function calls to gather the information
needed. This is where the LibVirt3 library could be a solution. LibVirt can be
looked at as an additional layer between the program code and the product
API that standardizes the communication between them and by only chang-
ing certain parameters allows for communication with the different APIs with
equal function calls.

This is first and foremost a C library for interaction with the Xen hypervisor,
but both Perl and Python bindings exists. If the bindings to the LibVirt library
was used consequently, then supporting other virtualization technologies, as
LibVirt is further developed, would require little or no changes to the Xen-
guard code. LibVirt currently supports Xen, QEmu and KVM virtualization
and products such as for instance the RedHat Virt-Manager is based on this
library.

Xenguard, however, as developed for the Xen hypervisor, connects directly
to the XML-RPC server in the Xen-API and as such might be faster than tun-
neling the connection through LibVirt Perl bindings, LibVirt itself and then
connecting to the Xen-API. This is not tested.

6.6 Software development

Software development, and as mentioned open source contribution, was a big
part of this project. The author wanted a technical programming challenge
alongside with continued research in virtual infrastructure management.

Before starting the development some prerequisites needed to be in place:

1. Documentation on how to interact with the Xen-API

2. A final decision on which programming language to use

3. Finding a module that would allow for the selected programming lan-
guage to interact with the Xen-API

6.6.1 Xen-API documentation

When this project started in January of 2007, Xen 3.0.4 was the latest official
build of the open source Xen hypervisor. With it, XenSource had included a

3http://libvirt.org/

76

6.6. SOFTWARE DEVELOPMENT

preview of the upcoming Xen-API which was not complete, nor well docu-
mented. The author quickly realized that the API version included in 3.0.4
was not sufficient for this projects needs. As mentioned in section 6.1, the Xen-
unstable development repository was selected as install base when the vir-
tual infrastructure was installed and configured. The installed version of Xen-
unstable had a more complete API version included, and was continuously
updated throughout this projects time frame. Never the less, the documenta-
tion was not very good and since the API kept changing as more features was
added by the XenSource developers, the interaction between the developed
application and the API kept changing as well.

To compensate for somewhat lacking and incorrect documentation, the author
partly had to explore the API source code itself, which was written in python,
as well as a period of trial and error testing. This testing was done in an inter-
active python shell which was a good choice for this task. The iPython4 shell
gave responses as the commands were typed in, i.e. much like programming
and getting feedback on the program itself while actually writing it. XenSource
did provide some python examples which made this process fairly convenient.
After some weeks of testing, enough information about the various function
calls to the API was documented and the development process could go to the
next step.

6.6.2 Programming language selection

The selection of programming language for the development process was based
on former experience with serverside scripting. Both Perl and Python were
strong candidates, but Perl was chosen in the end. There were pros and cons
with either language; XenSource has written their tools using Python, and as
such provided simple examples on how to use Python to interact with their
API. However, the author had limited experience with Python. Perl, on the
other hand, is a familiar scripting language for the author as well as being the
langauge used by the MLN developers. In the beginning of the project, it was
not clear wether or not the software which was going to be developed would
be included in MLN. At a later stage the decision was made to include it, but as
this was not certain from the beginning, choosing Perl for this projects devel-
opment would make an addoption by MLN more comprehendable. However,
there was no examples or documentation to guide the way for a Perl imple-
mentation of interaction with the Xen-API using XML-RPC.

In the end Perl was chosen to be the programming language of choice.

4http://ipython.scipy.org

77

CHAPTER 6. DISCUSSION AND CONCLUSION

6.6.3 XML-RPC module selection

After the selection of programming language, the next step was to find a suit-
able XML-RPC module as this is the selected way of communication with the
Xen-API by XenSource. The official XML-RPC webpage[42] was consulted
to find available Perl implementations. The webpage listed three alternatives
where only two had working links. Randy Ray’s XML::RPC::Client module5

was selected after a trial and error period where both alternatives where tested.

6.7 XenGuard analysis and lab results

As a proof-of-concept virtual infrastructure load-balancing model, Xenguard
has proven its point. Experiments on migration of both singel nodes and net-
works of various sizes has been conducted with satisfying results.

As discussed in section 6.3, MLN was chosen to be the infrastructure man-
agement tool used in this project. With its high level configration files, it is
easy to configure, deploy and manage virtual machines throughout a virtual
infrastructure. It does not necessarily have to be virtual machines connected
in a network, but as the name implies (Manage Large Networks), it supports
the management of extensive networks of virtual machines as well. In chap-
ter 5, we concider management of both single nodes, for instance a set of web
servers, and various size networks, for instance a web server frontend with
a database backend. We show that with live migration based on resource
consumption statistics is possible, not only for the non-networked virtual ma-
chines, but also for the ones that are connected over backend networks using
bridge devices. The bridge devices, which acts as virtual switches on the pri-
vate lan, binds the virtual machines connected to it to the same physical host.
If either of the connected virtual machines are migrated to a different location
than the rest of the private network, they will experience a loss of connectivity.

With the private network connectivity in mind, XenGuard had to be developed
to support detection of these networks and make sure all connected nodes
would be migrated to the same place upon a relocation decision. Consider a
scenario where a school is building a virtualization lab hosting 20 sets of pri-
vate networks meant for networking education. MLN can build, deploy and
manage all these virtual machines including their internal networking from 1
single configuration file. However, upon XenGuard finding the resource con-
sumption to be too high on one of the physical nodes, it is important that all
nodes in each of the private networks is live migrated to the same location and
are not split up.

5http://search.cpan.org/ rjray/RPC-XML-0.59/

78

6.8. XENGUARD AND HIGH AVAILABILITY

Hence, XenGuard needed a way to tell apart the different virtual machines
that are bound together in a private network. To solve this problem, a recur-
sive function was developed to scan through all virtual machines of a MLN
project. The function will find all connected virtual hosts and switches by sim-
ply checking for network interfaces, and what they are connected to, and build
a list of ”chunks” (see section 5.3), a chunk meaning all hosts and switches
which needs to be on the same physical host in order to maintain connectivity.

The live migration process it self, is triggered by the total resource consump-
tion on a physical server surpassing a defined maximum limit. Upon detection
of excessive resource use, XenGuard will build a list of potential live migration
targets based on the physical servers with the most resources available. It will
then calculate the total memory consumption for each chunk of virtual ma-
chines, and check the list of potential targets to see if there is enough available
memory to live migrate them all.

As far as the author could find, only VMware supports similar load balancing
functionality through its Distributed Resource Scheduling (DRS). Allthough
VMware’s product is far more mature and supports a wider variety of config-
ured policies and maintenance scenarios, this work has shown that XenGuard
is capable of using live migration as a tool to balance out resource consump-
tion throughout the virtual infrastructure and by this making sure the virtual
machines have sufficient resources to maintain proper responsetime.

6.8 Xenguard and High Availability

DRS is not the only impressive feature VMware has introduced to the virtu-
alization market. They also, through their HA add-on (USD 2000 + support
for 2 processors)[41], provide High Availability (HA) using a similar solution
as the Linux project Heartbeat6. Research in this field, based on the Heartbeat
project and the Xensource hypervisor, was conducted by E. Braastad in his
master thesis of May 2006 entitled Management of high availability services using
virtualization. Braastads research showed that Xen+Heartbeat could monitor
physical servers, and their virtual machines, and perform automatic live mi-
gration upon server failure.

This feature could be included in XenGuard by allowing either XenGuard or
the management software of choice to update Heartbeats configuration as to
the physical location of each virtual machine that is re-located. Braastad[3] has

6http://www.linux-ha.org/

79

CHAPTER 6. DISCUSSION AND CONCLUSION

already created an addition to Heartbeat itself to perform the live migration.
Only additional code to interact with Heartbeat to provoke the live migration
would have to be introduced to perform this. By estimate, this should not be
substantial additional work as the key parts are already in place due to this
project and Braastads work.

6.9 Future work and further development

In Xenguards analysis, only CPU resources was taken into account. Simple
services such as for instance webservers without any heavy scripting language
such as JSP, ASP or PHP would not require much CPU and as such might bene-
fit more from an analysis of network throughput on the physical server and its
virtual machines all together in order to find the most appropriate service host
in the infrastructure.

The ideal approach for Xenguard would be to concider all of the following
factors before making a relocation decision for any virtual machine:

• Local: Total CPU utilization by all other virtual machines, including the
control domain - Identify where most resources are spent, and try to be
smart about even load distribution throughout the virtual infrastructure

• Local: CPU utilization over time by the virtual machine in question -
Identify ”peaks”; Is high resource consumption at the moment caused
by bursty use of a particular service? Can we find trends and take pre-
emptive action?

• Local: Magnitude of I/O operations - Live migration is based on the
filesystem being stored on a storage network. All I/O will result in addi-
tional network traffic which again might have an impact on network ser-
vices provided by other virtual machines communicating over the same
network segment

• Local: Network traffic - Does the virtual machine provide a service that
results in high network load?

• Local: Consumed memory - How much memory do we need?

• Remote: Available CPU resources over time - Was a potential target host
added to the list because of less CPU utilization caused by bursty usage?
Trend analysis and load averages could prove beneficial.

• Remote: Available memory - Free memory has to be available on the
target host

80

6.10. CONCLUSION

• Remote: Network traffic - How much throughput does the target host
have? Will the added network utilization of the added virtual machine
have any impact?

• Remote: Magnitude of I/O operations - Again, the added network traf-
fic from a migrated domain might influence the other virtual machines
already communicating over the same network segment

• General: Type of service provided by the virtual machine - Type of server,
or service, could be taken into account when load balancing of the virtual
infrastructure is being done. Plausible resource consumption statistics
could be matched so that virtual machines running on the same physical
host utilized different aspects of the available resources.

• General: Uptime priority - When live migration to balance load is going
to take place, which virtual machine should be moved first? If a choice
has to be made, which server should be moved and which should be
shut down? There is also a risk involved with migration, maybe a certain
virtual machine should be kept alive by any means possible. This virtual
machine should stay while others are migrated when load balancing has
to be done in order to preserve responsiveness.

6.10 Conclusion

This project has shown that open source software has come a long way in cre-
ating highly conciderable, free of charge competition to commercial long lived
projects to manage and control a virtual infrastructure. XeniNFO and Xen-
Guard have introduced features in MLN that are, as far as the author can tell,
only available in high priced commercial products such as VMware and Xe-
nEnterprise. MLN, as shown through experiments, is highly helpful in man-
aging the virtual infrastructure in a non- time consuming, intuitive and scal-
able way by its high level configuration and use of preconfigured templates.

This project went through technical difficulties such as exploring the newly
introduced XenAPI, in constant development, without completed documenta-
tion and the challenge of finding a suitable remote storage solution that would
allow for live migration of virtual machines. GNBD was given up after much
compiling hassle and AoE was introduced to replace its predecessor from last
years work.[3]

The open source principle was a strong motivator throughout the project
work as well as the lacking of educational licenses for VMware promptly stopped

81

CHAPTER 6. DISCUSSION AND CONCLUSION

any development towards management of their virtual infrastructure solution.
XeniNFO was developed as a resource consumption monitoring tool using the
new API introduced in the latest Xen opensource hypervisor release. The de-
velopment of this tool resulted in it being included as an API interaction exam-
ple for the Perl programming language in the Xen-Unstable branch being pub-
licly available under the creative commons license. XenGuard, which holds
the logic of the distributed resource management for the virtual infrastructure,
was merged with MLNs source to be included in a later official release of MLN
supporting dynamic CPU resource sharing throughout the total infrastructure.

The interaction itself with the Xen API was programmed directly and currently
suffers the inability to support other virtual infrastructure solutions. However,
the programmed logic in XenGuard holds the same value for other solutions
and only interaction with other product’s API needs to be included in order to
utilize this in resource management for for instance KVM or VMware virtual
machines. The LibVirt[43] library could be implemented in MLN in the future
to for instance control resource distribution for KVM hosts as a solution to this.

As described in section 6.6, the Perl programming language was chosen for
both tools developed during this project work. It could very well have been
developed in Python as XenSource presented programming examples for this
language, but the merging with MLN would have been difficult if Python had
been chosen instead. Never the less, Perl is an equally flexible language and
was fully fit to take on this programming challenge.

The XenGuard logic, limited by the duration of the project, was meant to be
a proof-of-concept that an open source tool could perform such advanced fea-
tures as VMware has included in their virtual infrastructure enterprise solu-
tion. XenGuard, at present, only conciders CPU usage upon deciding of op-
timal resource distribution in the virtual infrastructure, but as stated, it was
meant as a proof-of-concept model. However, experiments have shown that
CPU based load balancing of a virtual infrastructure is possible using live mi-
gration of its hosted virtual machines. Experiments have been conducted with
stand-alone nodes as well as with large private networks including 2 switches,
3 subnets and 7 virtual machines. In order to maintain connectivity, all these
virtual machines and their interconnected virtual switches need to reside on
the same physical server. Upon a live migration decision by XenGuard, this
connectivity dependency is detected using a recursive algorithm checking all
virtual machines for connected network devices. If a network device is found,
it will continue to scan all connected host on this network device for connected
networking devices. The algorithm will recurse into the network finding all
connected items and store this information in a list. This list is then consulted
upon live migration to make sure all interconnected virtual machines are live

82

6.10. CONCLUSION

migrated to the same physical location so they can maintain network connec-
tivity.

This is a unique feature of MLN-XenGuard as far as the author could find.
By detecting network connectivity dependencies upon live migration, we al-
low for the same flexibility in management of virtual private networks as seen
with stand-alone virtual machines.

Can we trust the uptime of virtual machines with an added layer of software
which might include bugs, maintenance downtime and additional manage-
ment? The answer to this has got to be yes for anyone to concider chang-
ing to a virtual infrastructure. The advantages are numerous and ever grow-
ing towards features and capabilities much beyond what can be done with
physical servers. High availability is in demand as internet size, and growth,
is climbing. Research on high availability with virtual machines has been
conducted[3], and has proven satisfactory results. This project somewhat builds
on Braastads work[3] on high availability services using virtual machine and
with some additional integration with heartbeat, MLN-XenGuard could easily
adapt support for high availability using live migration. The missing piece of
code is the interaction with heartbeat itself, but the author concludes that this
should be a minimal effort to implement in the future.

The future looks bright for system administrators, and other interested par-
ties, with the option to convert to a virtual infrastructure. At present, VMware
is still ahead on well developed, advanced features such as dynamic resource
allocation and distribution across the virtual infrastructure, but this project
has proven that an open source competing solution could emerge as an offi-
cial, competitive product at a reasonably soon point in time.

During the mere five months this project has been going, satisfactory results
have been provided through experiments showing that a dynamic resource
distribution in a virtual infrastructure can be achieved with open source tools.
Two applications, XeniNFO and XenGuard, for resource consumption mon-
itoring and load balancing of the virtual infrastructure using live migration,
have been developed. XeniNFO, the resource statistics collection part, has
been contributed to XenSource and is publicly available from the Xen-Unstable
repository while XenGuard has been merged with the open source virtual ma-
chine management tool MLN and will be publicly available in a future release
of MLN.[37] Having a solid management solution for the virtual infrastructure
is a must when resource and configuration management, let alone provision-
ing and monitoring, of virtual machines grows in proportion to an expanding
infrastructure.

83

List of Figures

2.1 Figure taken from a VMware white paper comparing Xen 3.0.3 and VMware
ESX 3.0.1 . 18

2.2 Figure taken from a XenSource white paper comparing XenEnterprise 3.2
and VMware ESX 3.0.1 . 19

3.1 Physical network setup . 25

3.2 SAN illustration . 26

3.3 1 MLN project, 1 Virtual switch, 2 Virtual machines 29

4.1 Xenguard, running on clumaster, connects to the Xen API on node1 and node3 39

5.1 Project simpleweb with 3 Xen hosts each running 1 VM with a specific web-
server service . 46

5.2 Three Xen hosts running a high availability setup with one dispatcher and
two webservers on virtual machines . 48

5.3 Two completely separate networks which can be reconfigured in any way
without influencing each other. 49

5.4 Two public webservers hosting separate domains supported by a backend
database on a private network . 50

5.5 The control node, clumaster, is used to monitor the two Xen nodes; node1
and node3 . 54

5.6 Xenguard, as resource consumption policy dictates, decides to relocate vir-
tual machines away from host node1 to free more resources 56

5.7 Virtual machines fly and away are live migrated from node0 to node3 57

5.8 Project ft with 10 hosts on 2 networks divided in 3 subnets 58

5.9 The virtual infrastructure consists of 4 Xen enabled hosts supporting 30 vir-
tual machines in 3 MLN projects . 61

5.10 The virtual infrastructure and its 30 supported virtual machines after reloca-
tion based on resource sharing has been performed by Xenguard 67

84

LIST OF TABLES

List of Tables

1.1 Acronyms and conventions used in this thesis and virtualization
research in general . 4

3.1 Hardware specification for the physical servers 22

5.1 10 virtual machines divided into 3 subnets and 2 chunks 59
5.2 Memory usage by hosts in project ft 60
5.3 Memory usage on physical nodes in the virtual infrastructure . 60

85

Appendix A

Appendix

A.1 Source Code

The source code of the two application this project produced was found to be
too extensive to be included here. Visit the urls mentioned in the following
sections to download either application.

A.1.1 XeniNFO

The source code of XeniNFO can be found online on either of the following
web addresses:

• http://xenbits.xensource.com/xen-unstable.hg?rev/6145e5508d6b

• http://folk.uio.no/ingardm/thesis/xensource.xeninfo.pl

A.1.2 MLN Xenguard

The source code of MLN-XenGuard (beta) can be found online on the follow-
ing web address:

• http://folk.uio.no/ingardm/thesis/mln-xenguard

A.2 Configuration files

A.2.1 MLN

A.2.1.1 Project Simple

global {
$sh = 192.168.0.10

I

APPENDIX A. APPENDIX

project simple
}
switch {

lan {
service_host $sh
xen 1
bridge lan.simple
hosts {

away eth0
fly eth0

}
}

}
superclass {

hosts {
lvm
xen
service_host $sh
nameserver 192.168.0.100
network eth0 {

switch lan
netmask 255.255.255.0

}
}

}
host away {

superclass hosts
network eth0 {

address 10.0.0.2
gateway 10.0.0.1

}
}
host fly {

superclass hosts
network eth0 {

address 10.0.0.1
}
network eth1 {

address dhcp
}
startup {

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
echo 1 > /proc/sys/net/ipv4/ip_forward

}
}

II

A.2. CONFIGURATION FILES

A.2.1.2 Project ftX

global {
project ft3

}
switch {

lan12 {
service_host 192.168.0.10
xen 1
hosts {

north eth0
south eth0
easth eth0
west eth0

}
}
lan11 {

service_host 192.168.0.10
xen 1
hosts {

away eth0
home eth0
fly eth0
north eth1

}
}
lan21 {

service_host 192.168.0.10
xen 1
hosts {

h1 eth0
h2 eth0
h3 eth0

}
}

}
superclass {

hosts {
lvm
xen
nameserver 192.168.0.100
term screen
free_space 100M
network eth0 {

netmask 255.255.255.0
}

III

APPENDIX A. APPENDIX

}
}
host {

h1 {
memory 64M
service_host 192.168.0.10
superclass hosts
network {

eth1 {
address dhcp

}
eth0 {

switch lan21
address 10.1.0.1

}
}
startup {

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
echo 1 > /proc/sys/net/ipv4/ip_forward

}
}
h2 {

memory 64M
service_host 192.168.0.10
superclass hosts
network {

eth0 {
switch lan21
address 10.1.0.2
gateway 10.1.0.1

}
}

}
h3 {

memory 64M
service_host 192.168.0.10
superclass hosts
network {

eth0 {
switch lan21
address 10.1.0.3
gateway 10.1.0.1

}
}

}

IV

A.2. CONFIGURATION FILES

fly {
service_host 192.168.0.10
superclass hosts
network {

eth1 {
address dhcp

}
eth0 {

switch lan11
address 10.0.0.1

}
}
startup {

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
echo 1 > /proc/sys/net/ipv4/ip_forward

}
}
home {

service_host 192.168.0.10
superclass hosts
network {

eth0 {
switch lan11
address 10.0.0.3
gateway 10.0.0.1

}
}

}
away {

service_host 192.168.0.10
superclass hosts
network {

eth0 {
switch lan11
address 10.0.0.2
gateway 10.0.0.1

}
}

}
north {

service_host 192.168.0.10
superclass hosts
network {

eth1 {
switch lan11

V

APPENDIX A. APPENDIX

address 10.0.0.10
netmask 255.255.255.0
gateway 10.0.0.1

}
eth0 {

switch lan12
address 10.0.2.1

}
}
startup {

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
echo 1 > /proc/sys/net/ipv4/ip_forward

}
}
east {

service_host 192.168.0.10
superclass hosts
network {

eth0 {
switch lan12
address 10.0.2.2
gateway 10.0.2.1

}
}

}
south {

service_host 192.168.0.10
superclass hosts
network {

eth0 {
switch lan12
address 10.0.2.3
gateway 10.0.2.1

}
}

}
west {

service_host 192.168.0.10
superclass hosts
network {

eth0 {
switch lan12
address 10.0.2.4
gateway 10.0.2.1

}

VI

A.2. CONFIGURATION FILES

}
}

}

VII

APPENDIX A. APPENDIX

VIII

Bibliography

[1] http://mln.sourceforge.net. Accessed April 2007.

[2] Begnum K. Manage large networks of virtual machines. In Proceedings
of the Twentieth Systems Administration Conference (LISA 2006), page 101,
2006.

[3] Espen Braastad. Management of high availability services using virtual-
ization. Master’s thesis, Oslo University Collage, 2006.

[4] Begnum K. and Disney M. Scalable deployment and configuration of
high-performance virtual clusters. In CISE/CGCS 2006: 3rd International
Conference on Cluster and Grid Computing Systems, 2006.

[5] R. P. Goldberg. Survey of virtual machine research. IEEE Computer Mag-
azine, 7(6):34–45, July 1974.

[6] Rosenblum M. and Garfinkel T. Virtual machine monitors: current tech-
nology and future trends. Computer, 38(5):39–47, May 2005.

[7] http://en.wikipedia.org/wiki/virtualization. Accessed April 2007.

[8] R. P. Goldberg. Architecture of virtual machines. In Proceedings of the
workshop on virtual computer systems, pages 74–112, New York, NY, USA,
1973. ACM Press.

[9] Popek J. Gerald and Goldberg P. Robert. Formal requirements for vir-
tualizable third generation architectures. Communications of the ACM,
17(7):412–421, July 1974.

[10] J. S. Robin and C. E. Irvine. Analysis of the intel pentium’s ability to sup-
port a secure virtual machine monitor. In In Proceedings of the 9th USENIX
Security Symposium, pages 129–144, August 2000.

[11] R. J. Creasy. The origin of the vm/370 time-sharing system. IBM Journal
of Research and Development, pages 483–491, September 1981.

IX

BIBLIOGRAPHY

[12] R. A. MacKinnon L. H. Seawright. Vm/370 - a study of multiplicity and
usefulness. IBM Systems Journal, pages 4–17, January 1979.

[13] http://en.wikipedia.org/wiki/vm (operating system). Accessed April
2007.

[14] http://en.wikipedia.org/wiki/x86 virtualization. Accessed April 2007.

[15] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and
performance in the denali isolation kernel. SIGOPS Oper. Syst. Rev.,
36(SI):195–209, 2002.

[16] http://en.wikipedia.org/wiki/paravirtualization. Accessed April 2007.

[17] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the nineteenth ACM symposium
on Operating systems principles, pages 164–177. ACM Press, 2003.

[18] Nadir Kiyanclar. A survey of virtualization techniques focusing on secure
on-demand cluster computing, November 2005.

[19] http://www.vmware.com. Accessed April 2007.

[20] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtual-
izing i/o devices on vmware workstation’s hosted virtual machine mon-
itor. In Proceedings of the General Track: 2002 USENIX Annual Technical
Conference, pages 1–14, Berkeley, CA, USA, 2001. USENIX Association.

[21] Carl A. Waldspurger. Memory resource management in vmware esx
server. SIGOPS Oper. Syst. Rev., 36(SI):181–194, 2002.

[22] Greg A. Koenig Nadir Kiyanclar and William Yurcik. Maestro-vc: On-
demand secure cluster computing using virtualization. In 7th LCI Inter-
national Conference on Linux Clusters, 2006.

[23] http://en.wikipedia.org/wiki/system/370. Accessed April 2007.

[24] Beng-Hong Lim Michael Nelson and Inc. Greg Hutchins, VMware. Ibm
virtual machine facility/370: Introduction. ibm systems reference library.
December 1977.

[25] http://en.wikipedia.org/wiki/system/390. Accessed April 2007.

[26] http://en.wikipedia.org/wiki/z/architecture. Accessed April 2007.

[27] http://en.wikipedia.org/wiki/zseries. Accessed April 2007.

X

BIBLIOGRAPHY

[28] Intel. Vanderpool technology. http://www.intel.com/technology/computing/vptech.
Accessed April 2006.

[29] David A. Patterson. A simple way to estimate the cost of downtime.
In LISA ’02: Proceedings of the sixteenth Systems Administration Conference,
pages 185–188. USENIX Association, 2002.

[30] David E. Lowell, Yasushi Saito, and Eileen J. Samberg. Devirtualizable
virtual machines enabling general, single-node, online maintenance. In
ASPLOS-XI: Proceedings of the 11th international conference on Architectural
support for programming languages and operating systems, pages 211–223,
New York, NY, USA, 2004. ACM Press.

[31] S. Hand J. G. Hansen E. Jul C. Limpach I. Pratt C. Clark, K. Fraser and
A. Warfield. Live migration of virtual machines. In NSDI’05: In Proceed-
ings of the 2nd ACM/USENIX Symposium on Networked Systems Design and
Implementation, 2005.

[32] Beng-Hong Lim Michael Nelson and Inc. Greg Hutchins, VMware. Fast
transparent migration for virtual machines. In USENIX Annual Technical
Conference 2005, pages 391–394.

[33] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janaki-
raman, and Willy Zwaenepoel. Diagnosing performance overheads in
the xen virtual machine environment. In VEE ’05: Proceedings of the
1st ACM/USENIX international conference on Virtual execution environments,
pages 13–23. ACM Press, 2005.

[34] VMware Technology Network. A performance comparison of hypervi-
sors. Technical report, January 2007.

[35] Tom Bittman and Donna Scott. Gartner symposium presentation - the
new infrastructure: Real time, virtual and connected. Nov-Dec 2004.

[36] http://www.drbd.org/. Accessed May 2007.

[37] M. Disney E. Frisch K. Begnum, I. Mevaag. Towards a policy for virtual
machine management. In Submitted to the 21st Systems Administration Con-
ference (LISA 2007), 2007.

[38] Live migration of xen domains
http://www.linux.com/article.pl?sid=06/07/17/1916214. Accessed
February 2007.

[39] Rfc 3720 - internet small computer systems interface
http://www.faqs.org/rfcs/rfc3720.html. Accessed May 2007.

XI

BIBLIOGRAPHY

[40] http://www.xensource.com/products/xen enterprise/index.html. Ac-
cessed May 2007.

[41] http://www.vmware.com/vmwarestore/buyvi3.html. Accessed May
2007.

[42] http://www.xmlrpc.com/. Accessed February 2007.

[43] http://www.libvirt.org/. Accessed May 2007.

XII

