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Abstract

Regression modelling often presents a trade-off between predictiveness and
interpretability. Highly predictive and popular tree-based algorithms such as
Random Forest and boosted trees have limited interpretability. With these
algorithms it is not easy to quantify the effect that each predictor has on a
particular prediction. Interpretable algorithms on the other hand, such as
GLMs, GAMs and MARS, are typically less predictive. Another trade-off
concerns ease of use. Random Forest and boosted trees automatically handle
variable selection, interactions and non-linear relationships. Therefore Random
Forest and boosted trees can be easier to use than algorithms that do not
provide automatic handling of these matters, such as GLMs and GAMs. In
this master thesis a new regression algorithm, Automatic Piecewise Linear
Regression (APLR), is proposed. Like Random Forest and boosted trees,
APLR automatically handles variable selection, interactions and non-linear
relationships. Therefore APLR is comparable to Random Forest and boosted
trees when it comes to ease of use. Like methods based on linear regression,
APLR is interpretable. Finally, based on tests presented in this paper, APLR
looks competitive with Random Forest on predictiveness. This indicates that
APLR can reduce the loss in predictiveness when increasing interpretability.
APLR has been implemented in C++ and wrapped in a Python package as a
Scikit-learn compatible estimator. For more information about this package
and how to install it, please see https://github.com/ottenbreit-data-science/aplr.
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CHAPTER 1

Introduction

sec:intro
Having worked as a Data Scientist in financial services since 2015, I have
experienced that there is a need for regression models that are highly predictive
and interpretable. A company having better predictive models than the
competitors can get a competitive advantage. For example, an insurance
company that prices more accurately than the competition will increase profits
by attracting customers with good risk/reward and repelling those with poor
risk/reward. A good model should predict unseen data well. In a regression
setting this is often measured by mean squared error (MSE) on a test dataset
that is independent from training data [HTF09, ch 7]. The lower MSE the
better.

It is often necessary to understand the reasons for why a model predicts
the way it does. For example, an insurance company using a customer scoring
model to price customers might face questions from customers who recently had
a high premium increase. Then it can be important to have a good answer from
an interpretable model. Interpretability can be important for other reasons as
well, for instance when doing sanity checks on model predictions. Interpretable
regression algorithms provide an interpretable description of how the predictors
(inputs) affect the prediction. Linear regression is an example of an interpretable
algorithm [HTF09, sec 3.1].

Regression modelling often presents a trade-off between predictiveness and
interpretability. Highly predictive and popular tree-based algorithms such as
Random Forest [HTF09, ch 15] and boosted trees [HTF09, ch 10] have limited
interpretability. With these algorithms it is not easy to quantify the effect that
each predictor has on a particular prediction. Interpretable algorithms on the
other hand, such as GLMs [Agr15], GAMs [HTF09, sec 9.1] and MARS [HTF09,
sec 9.4] are typically less predictive [HTF09, fig 10.19].

One way to ease the interpretability problem is to use frameworks that
attempt to interpret black-box models such as Random Forests or boosted trees.
LIME [Mol22, sec 9.2] and Shapley values [Mol22, sec 9.5] are two methods for
doing this. LIME attempts to explain predictions from a black box model by
using local and interpretable models trained on a subset of the data. Shapley
values attempt to estimate how much each predictor contributes to a prediction
by running the black box model many times with different predictor values.
Unfortunately LIME and Shapley values suffer from several issues. For example
LIME suffers from instability and Shapley values can be very computationally
intensive.

A different approach is to ease the predictiveness problem by developing
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1. Introduction

an interpretable regression algorithm that comes closer to the predictiveness
offered by tree-based methods. Here this strategy is followed.

Another trade-off concerns ease of use. For Data Scientists and the companies
where they work productivity can be important. An algorithm that is easy to
use may increase productivity by reducing model development time. Variable
selection, handling of interactions and non-linear relationships are tasks that
can be time consuming to address. Algorithms such as Random Forest, boosted
trees and MARS handle those tasks automatically while algorithms such as
GLMs and GAMs often leave at least some of those tasks to the Data Scientist.
By using LIME and/or Shapley values to interpret predictions from Random
Forests or boosted trees, one needs to run these methods on top of the underlying
regression models. This adds code complexity and decreases ease of use.

In this master thesis a new regression algorithm, Automatic Piecewise Linear
Regression (APLR), is proposed. APLR automatically handles variable selection,
interactions and non-linear relationships. Therefore APLR has an ease of use
comparable to Random Forest and boosted trees. APLR is also interpretable.
Test results show that APLR is able to compete with Random Forest on
predictiveness. It is not as predictive as boosted trees though. Nevertheless,
the test results indicate that APLR can reduce the loss in predictiveness when
increasing interpretability.

APLR has been implemented in C++ for speed and memory efficiency that
would be difficult to achieve in languages such as Python or R. Because C++ is
usually not practical to work with in Data Science, the C++ implementation of
APLR has been wrapped as a Python package. In this package APLR is provided
as a Scikit-learn compatible estimator. There is more information about this
package and how to install it on https://github.com/ottenbreit-data-science/aplr.

This master thesis focuses on regression modeling, but an extension of APLR
to classification problems is possible and this could be potential further work.

The rest of the text is organised as follows:

Chapter 2 provides a methodological overview and groundwork for Chapter 3.

Chapter 3 describes Automatic Piecewise Linear Regression (APLR).

Chapter 4 contrasts APLR to other relevant regression algorithms by testing
on real and simulated data.

Chapter 5 draws conclusions and suggests further work.
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CHAPTER 2

Methodological overview

sec:second
Section 2.1 describes fitting procedures that APLR has borrowed ideas from as
well as fitting procedures that APLR is contrasted to in Chapter 4. Because
APLR is a regression algorithm, the focus is solely on regression. Section 2.2
describes methods that can be used to interpret predictions from non-parametric
models and the limitations of them.

2.1 Fitting procedures
sec:fitting_

procedures In regression modeling, a fitting procedure produces a regression model that is
adapted to a training dataset. This model can be used to predict the response
variable for observations not present in the training dataset (unseen data). The
latter assumes that the unseen data has relationships between predictors and
the response variable that are similar to what one can observe in the training
dataset. The fitting procedures presented here vary in terms of predictiveness
and interpretability. There is often a trade-off between those two properties.

2.1.1 Multivariate Adaptive Regression Splines (MARS)

MARS [HTF09, sec 9.4] does stepwise linear regression. It starts with an
intercept term. In each subsequent step two piecewise linear basis function of a
predictor (or an interaction term) are added to the model. These basis functions
form a so-called reflected pair around a constant, t. When the predictor, x, has
a lower value than t, then one of the two basis functions is zero, while the other
basis function is negative and linear. Similarly, when x > t then the function
that was zero when x < t is positive and linear, while the other basis function
is zero. These basis functions can work locally because their values may be zero
for wide ranges of predictor values. This has two useful effects:

1. When the value is zero then there is no contribution to the prediction.
This can be useful in a high dimensional setting when it is an advantage
to use degrees of freedom sparingly in order to avoid overfitting.

2. By working locally, the basis functions allow MARS to capture non-linear
relationships between predictors and the response. For example, if there is
a non-linear relationship between a predictor and the response then MARS
can fit several basis functions that work locally and have different slopes
in the ranges where they are non-zero that capture the non-linearity.
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2. Methodological overview

In each step, except the first step when the intercept term is added, MARS
computes a reflective pair of basis functions for every predictor. For each
reflective pair, the constant t is chosen in order to maximize the reduction in
training loss that would occur if the reflective pair was added to the model. The
reflective pair that reduces the training loss the most is selected as a candidate
pair for entry into the model.

Then, if there are already terms in the model other than the intercept,
potential interaction terms are considered. The latter are defined as products
of the candidate pair with a term already in the model, where each of the two
basis functions in the candidate pair are multiplied by the term that is already
in the model. To prevent higher order powers of a predictor that could increase
or decrease too sharply near the boundaries of the feature space, the term that
is already in the model must not be a function of the same predictor that the
candidate pair are functions of. It is possible to set an upper limit on the order
of interaction. In the pyearth implementation of MARS this can be set by the
hyperparameter max_degree. If there exists pairs of interaction terms that
reduce the training loss more than the candidate pair does, then the pair of
interaction terms that leads to the highest reduction in the training loss is
entered into the model. Otherwise, the candidate pair enters the model.

The above process of adding terms continues until a stopping criterion has
been reached. In the pyearth implementation of MARS, this stopping criterion
is governed by the hyperparameter max_terms, which specifies the maximum
number of terms to add. After completing the above process of adding terms
the model can have too many terms and overfit. Then MARS does a stepwise
pruning.

The pruning process is a backward process. In each step MARS removes
the term that causes the smallest increase in training loss. At the end of this
process there is an estimated best model for each number of terms. The final
model is the one of these that has the lowest generalized cross validation (GCV)
error. MARS uses GCV instead of cross-validation to lower the computational
costs at the expense of a more accurate validation. For each number of terms
in the model, λ, the generalized cross validation error is estimated as follows,

GCV (λ) =
∑N
i=1(yi − f̂λ(xi))2

(1−M(λ)/N)2 ,

where the numerator is the training loss and the denominator is a function
of the effective number of parameters in the model, M(λ), and the number
of observations, N . Everything else equal, GCV is an increasing function of
M (as long as M < N , otherwise the model overfits and the GCV calculation
is invalid). The formula for calculating M is M(λ) = r + cK, where r is the
number of terms in the model (assumed to be linearly independent, which may
not hold if predictors are correlated), K is the number of knots selected (one
knot is selected for each basis function when the constant t is selected) and
c is a penalty term per knot selected. By default c = 3 (or 2 if the model
is restricted to be additive). According to [HTF09, sec 9.4], there are some
mathematical and simulation results suggesting that c should be equal to 3 for
selecting a knot in a piecewise linear basis function in linear regression.

The hyperparameters max_degree and max_terms can be tuned for
example by cross validation. The former specifies the assumed model structure
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2.1. Fitting procedures

(the depth of interactions) and the latter can be seen as a way of controlling the
bias-variance trade-off. Low values of max_terms can produce models with
few terms and consequently higher bias but lower variance. On the other hand,
high values of max_terms may produce models with many terms, lower bias
but higher variance.

Some advantages of MARS:

1. Interpretability. MARS is interpretable because it uses linear regression.
Consequently, the effect that a model term has on the prediction can be
quantified by multiplying the term with its regression coefficient.

mars:basis 2. Suitable for high dimensional settings because the basis functions that
are used can work locally.

3. Ease of use. MARS can be easy to use because it automatically handles
variable selection, interactions and non-linear relationships.

Some disadvantages of MARS:

1. Predictiveness. MARS is often less predictive than non-parametric
algorithms [HTF09, table 10.1].

The MARS algorithm is described in Algorithm 1.

Algorithm 1 MARS [HTF09, sec 9.4]
alg:mars

1. Estimate the intercept.

2. Repeat the following until a stopping criterion is reached:

a) For each predictor xj fit two basis functions to the response variable:

max(xj − t, 0)

min(xj − t, 0)

where t is a value that gives the greatest reduction in training error.
b) The winning predictor x∗ has the pair of basis functions that reduced

training error the most in the above step. This pair is called a
candidate pair.

c) Products of the candidate pair with a term already in the model are
considered. A restriction in the formation of such interaction terms
is that each predictor can appear at most once in a product.

d) Either the candidate pair or an interaction term involving the
candidate pair is added to the model. The criterion for this choice is
reduction in training error.

3. Prune the model. At each step this process deletes the term that causes
the smallest increase in residual squared error. This produces an estimated
best model for each number of terms. Generalized cross validation (GCV)
is used to choose the number of terms in the final model.
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2. Methodological overview

2.1.2 Regression trees
sec:tree

Regression trees [HTF09, sec 9.2.2] are supervised learning tools that model the
data by iteratively splitting the data on disjoint sets and associating a response
value to each of them. The fitting of a regression tree model starts with one
node containing all observations in the training data. When using the squared
error loss function (see the last paragraph of section 2.1.6 for a definition) the
prediction of this model is the average response value for the observations in
that node. The next step is to split the node into two. The algorithm searches
for the predictor and split value that reduce training loss the most. Then it
splits the single node into two leaf nodes accordingly. For an observation that
belongs to the first leaf node, the prediction is the average response value for
the training observations in the first leaf node. Similarly, the prediction for an
observation that belongs to the second leaf node is the average response value
for the training observations in the second leaf node. An observation belongs to
a node if its predictor values satisfy the requirements of the node. For example,
if a node requires that the predictor x1 is greater than 10, then all observations
(this also applies when predicting unseen data) with x1 > 10 belong to the node.
After the split has been done, the original single node is no longer a leaf node,
but has become a parent node.

The process of splitting leaf nodes continues until a stopping criterion is
reached or until there are not enough observations to split further. A stopping
criterion can be the minimum number of observations required in a terminal
node (minimum node size). If minimum node size is low then the tree will likely
overfit because a prediction will be based on the few training observations in
the leaf that it belongs to. A tree that overfits can be pruned by collapsing
nodes. A technique for doing this is cost-complexity pruning [HTF09, sec 9.2.2,
eq 9.15 and eq 9.16]. For a regression tree, T , the cost-complexity criterion, C,
is defined as:

Cα(T ) = L+ α|T |,

where L is the training loss (the sum of squared errors if a squared error loss
function is used), |T | denotes the number of terminal nodes in T and α is a
hyperparameter that can be tuned, for example, by using cross validation. C is
computed for each possible node size, starting with the full grown tree. In each
subsequent step the node that results in the smallest increase in training loss is
collapsed. This process continues until one node remains. Finally, the tree that
minimizes C is chosen.

Regarding potential tuning parameters, minimum node size can be tuned by
for example cross validation. A lower minimum node size can decrease the bias
and increase variance. This is because when minimum node size is low then
each prediction is based on few training observations.

When predicting an observation, parent nodes are used to traverse the tree
in order to find the leaf node that the observation belongs to.

Some advantages of regression trees are:

1. Interpretability. A regression tree can be interpreted but is less
interpretable than parametric algorithms such as linear regression or
MARS [HTF09, table 10.1]. In a parametric model it is possible to
quantify the effect that a term has on a prediction by multiplying the
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2.1. Fitting procedures

term value by its estimated regression coefficient. This is not possible in a
regression tree, where interpretation happens in a less accurate way, such
as by traversing the tree to find the regions of one or more predictors that
lead to the prediction.

2. Resistance to outliers.

a) Regression trees are resistant to outliers in predictor values. Such
outliers in the training data only affect the prediction through the
corresponding response variable values. A new observation that is an
outlier in terms of predictor values belongs to the most appropriate
terminal node. Its prediction is determined by the response values
in the training data for that node.

b) Regression trees are resistant to outliers in predictions. This is
because the predictions are bounded by the response values in the
training data. An advantage of this is that one can be certain that
whenever a prediction is very high or very low then this is because
there exists observations in the training data having very high or very
low response values, and not because of, for example, compounding
errors in the model.

3. Ease of use. Regression trees can be easy to use because they automatically
handles variable selection, interactions and non-linear relationships.

Some disadvantages of regression trees are:

1. Predictiveness. The variance, σ2, of a prediction from a regression tree
is often high [HTF09, ch 9]. This is because even small changes in the
training data can significantly alter the splits. If, for example, the first split
changes then the effect propagates down the tree. Because of the tendency
to have a high variance, a regression tree is usually less competitive on
predictiveness [HTF09, table 10.1].

2. Lack of smoothness [HTF09, sec 9.2.4]. Since predictions are piecewise
constants, the predictions jump discontinuously when moving from one
leaf to another.

3. Difficulty capturing additive structures [HTF09, sec 9.2.4]. Especially if
there are several additive effects in the data then it is likely that the tree
will not be able to capture this when splitting the data into regions.

4. Cannot extrapolate. The reason is that the predictions are bounded by
the response values in the training data. Hence, the resistance to outliers
in predictions can turn into a disadvantage if one wishes to build a model
that can extrapolate.

The algorithm for fitting a regression tree is described in Algorithm 2.
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2. Methodological overview

Algorithm 2 Regression tree [HTF09, sec 9.2.2]
alg:tree

1. Initialize the tree. The tree starts with one terminal node that contains
all training data. When using a squared error loss function the initial
estimate from the tree is the average response value in training data.

2. For each terminal node:

a) For each predictor xj find the split point sj with the lowest loss.
Only observations in the node are considered in this search.

b) Find the predictor x∗ with the lowest loss from the previous step.
c) Split the node into two child terminal nodes. Observations in the

node having x∗ ≤ s∗ are assigned to one of the child terminal node
and the remaining observations are assigned to the other terminal
node. The original node is no longer a terminal node.

3. Repeat the above step until a stopping criterion has been reached or until
there are not enough observations to split further.

4. If minimum node size is low then the tree will likely overfit and should
be pruned by collapsing some of the nodes. This can be done using cost
complexity pruning [HTF09, sec 9.2.2, eq 9.15 and eq 9.16].

5. The estimate ŷi from the regression tree for observation i is based on the
response values in the terminal node that i belongs to. When using the
squared error loss function, ŷi becomes the average response value in that
terminal node.

2.1.3 Random Forest

Random Forest [HTF09, ch 15] regression consists in averaging many regression
trees. As for bagging, a large number B of regression trees are trained on
different bootstrap samples drawn from the common training data set and
their results are averaged. All trees use the same hyperparameters. In contrast
to bagging, an effort to reduce the correlation among trees is performed by
Random Forest to reduce the variance component of the prediction error. For
B identically distributed trees, the variance of the average prediction is

ρ · σ2 + 1− ρ
B
· σ2 (2.1) {eq:rf}

where σ2 is the variance of a single tree and ρ denotes pairwise correlation
between the trees. When B is sufficiently large the second term disappears and
one is left with ρ · σ2. B should be large enough so that the second term in 2.1
is immaterial. 200 trees could be enough [HTF09, fig 15.3]. A too large B adds
unnecessary computational costs. The difference between bagging and Random
Forest is that the former only reduce the second term in 2.1 while Random
Forest may also reduce the first term by reducing the pairwise correlation
between the trees through variable sampling.

The hyperparameter m defines how many predictors to randomly select
when searching for the best split of a node in a tree. It has an impact on ρ.
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2.1. Fitting procedures

A lower m may decrease ρ and the variance of the estimate at the expense of
increased bias. Cross validation can be used to tune m [HTF09, sec 7.10]. When
tuning m, it can be useful to try a wide range of values, including m = p, where
p denotes the number of predictors in the training data. A scenario where m = p
(implying that bagging is used and not Random Forest) may be optimal if only
a small fraction of the predictors are relevant while the remaining predictors
represent noise that cannot predict the response variable. In this case, m = p
ensures that relevant predictors are considered in every split. Otherwise some
of the splits would likely be based purely on noise predictors that can degrade
predictiveness.

As for regression trees (section 2.1.2), it is also possible to tune the minimum
node size of each tree, for example by cross validation. A higher minimum
node size can build more robust models where each prediction is based on more
observations. This may result in lower variance but could increase bias.

Predictions from Random Forest can be difficult to interpret due to the
large number of trees. While it is possible to compute an estimate of overall
feature importance in the training data, this cannot be used to quantify the
effect that each predictor has on a particular prediction. However, the estimated
overall feature importance may still be useful for understanding which predictors
are important in the model and which are not. The feature importance of
a particular predictor can be estimated by accumulating the reductions in
training loss that occurred in the splits of each tree where the predictor was
used [HTF09, sec 15.3.2]. This gives a relative measure of feature importance
that the predictors can be ranked on.

Some advantages of Random Forest are:

1. Good predictiveness [HTF09, sec 15.1].

2. Resistance to outliers for the same reasons that apply to a regression tree.

3. Ease of use. Random Forest can be easy to use because it automatically
handles variable selection, interactions and non-linear relationships.

Some disadvantages of Random Forest are:

1. Lack of smoothness, for the same reasons that apply to a regression
tree. However, the problem is smaller than in regression trees, because
a Random Forest consists of many trees that may have different splits.
Random Forest is thus likely to have more unique potential predictions
than a single tree.

2. Difficulty capturing additive structures for the same reasons that apply
to a regression tree.

3. Interpretability.

4. Cannot extrapolate for the same reasons that apply to a regression tree.

The Random Forest algorithm for regression is described in Algorithm 3.
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2. Methodological overview

Algorithm 3 Random Forest for regression [HTF09, alg 15.1]
alg:rf

1. For b = 1 to B regression trees:

a) Given training data with N observations, draw a bootstrap sample
Zb of size N from the training data.

b) Fit a regression tree Tb to Zb. For each node repeat the below steps
until the minimum node size nmin is reached:
i. Randomly select m predictors from all p predictors available in

the training data.
ii. For each predictor in m calculate the split point that gives the

greatest reduction in training error.
iii. From these split points select the one that gave the greatest

reduction in training error. Use this split point to split the node
into two child nodes.

2. The final estimate is:

f̂(x) = 1
B

B∑
b=1

Tb(x)

where x is the covariate vector.

2.1.4 Gradient boosting
sec:gboost

Boosting is a powerful learning method [HTF09, sec 10.1]. Gradient boosting
[BY03] builds an additive model in a stepwise manner. In each boosting step, a
base learner is fitted to the negative gradient (first order differentiation) of the
loss function computed at the estimate from the previous boosting step. A base
learner can be any fitting procedure, such as a regression tree, linear regression,
etc. The final estimate is the sum of the predictions from each base learner.
One way of conceptually understanding how gradient boosting is fitted is that
in each boosting step the base learner is trained to predict the training loss
that remains from the predictions made by all of the baser learners in previous
boosting steps.

There are two important hyperparameters in gradient boosting [HTF09, sec
10.12.1]:

1. The number of boosting steps, mstop.

2. The learning rate, v ∈ (0, 1].

They are dependent on each other. A smaller value of v will give a higher
optimal value of mstop. Hyperparameters should be tuned so that the model
performs as well as possible on unseen data. A common approach is to select
hyperparameters that minimize cross-validation prediction error [HTF09, sec
7.10]. Empirical results indicate that the best hyperparameter tuning strategy
is to set v ≤ 0.1 and tune mstop. If mstop is too low then the model will underfit.
If mstop is too high then the model will overfit. For the same reason as keeping
v ≤ 0.1 one can argue that the base learner should be weak (high bias) and
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2.1. Fitting procedures

not strong (low bias), since a weak learner learns less in a boosting step than a
strong learner.

In addition to mstop and v, the base learners may have hyperparameters of
their own that should be tuned.

Some advantages of gradient boosting:

1. High flexibility:

a) It is possible to select which base learners to use. There can even be
different base learners in each boosting step.

b) It is possible to restrict the number of predictors that can be used
by the base learner in a boosting step. Componentwise gradient
boosting (2.1.6) is an example of this.

c) It is possible to estimate model parameters. An example of this
is componentwise gradient boosting with parametric learners (see
section 2.1.6).

2. Gradient boosting is capable of capturing additive model structures
because it builds an additive model. This capability may depend on
the type of base learners used.

3. Suitable for high dimensional settings especially when the base learners
are weak. In a high dimensional setting it is an advantage to use degrees
of freedom sparingly. This can be achieved by using a weak learner and/or
a low learning rate.

4. Other advantages are specific to the way one chooses to implement gradient
boosting. These may, for example, relate to the type of base learners
used or to restrictions on the number of predictors that can be used in a
boosting step.

Disadvantages of gradient boosting are implementation specific. For example,
they are affected by the type of base learners used. Implementation specific
advantages and disadvantages of gradient boosting are discussed in sections 2.1.5
and 2.1.6. The general gradient boosting algorithm is described in Algorithm 4.
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Algorithm 4 General gradient boosting [BY03]
alg:gboost

1. Initialize the estimate. For example f̂0(x) = 0, where x is the covariate
vector.

2. For each m = 1 to mstop boosting steps:

a) Compute the negative gradient:

um = −∂L(y, f̂m−1(x))
∂f̂m−1(x)

where L is the loss function, y is the response variable and f̂m−1(x)
is the estimated response at the previous boosting step.

b) Fit a base learner to the negative gradient. Here this fit is defined
as hm(um,x).

c) Update the estimate:

f̂m(x) = f̂m−1(x) + v · hm(um,x)

where v is a learning rate and 0 < v ≤ 1.

3. The final estimate is:

f̂mstop(x) =
mstop∑
m=1

v · hm(um,x)

2.1.5 Gradient regression tree boosting
sec:tboost

In Gradient regression tree boosting, regression trees are used as base learners
in Algorithm 4. The number of terminal nodes allowed in each of the regression
trees, J , can be an useful additional hyperparameter when tuning boosted
regression trees [HTF09, sec 10.11]. This hyperparameter controls the strength
of the base learner and its ability to automatically handle interactions. The
higher J the stronger the base learner becomes since it can then split the data
into fine grained terminal nodes with few observations in each node. When J > 2
then the regression tree is allowed to make more than one split. In this case it
can use different predictors in each of the splits, and therefore automatically
model interactions. However, if the regression tree handles interactions then
the model will not be fully additive since it will contain interaction terms.
When J = 2 then the model will be additive, because each of the regression
trees will only use one predictor and because the final prediction is the sum
of predictions from each regression tree. As mentioned in section 2.1.4 it is
generally advantageous to use a weak learner in gradient boosting. While J = 2
will result in a weak learner, this learner may be too weak if there are relevant
interactions in the data. According to [HTF09, sec 10.11], J ∈ [4, 8] often works
well in the context of boosting. Tuning of J can, for example, be done by cross
validation, doing a grid search where mstop and J are tuned together.
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Some advantages of gradient regression tree boosting:

1. The procedure can be highly predictive [HTF09, fig 15.1], often beating
other algorithms.

2. Resistance to outliers in predictor values because the base learner is a
regression tree (section 2.1.2).

3. Additive structures are captured when J = 2.

4. Suitable for high dimensional settings especially when J is low and v is
low (weak learner).

5. Ease of use. The algorithm can be easy to use because it automatically
handles variable selection, interactions (when J > 2) and non-linear
relationships.

Some disadvantages of gradient regression tree boosting:

1. Vulnerable to outliers in predictions. Unlike a regression tree or Random
Forest, the predictions are not bounded by the minimum and maximum
of the response values in the training data. This is because the regression
trees are fitted to the negative gradient in every boosting step and not to
the response values. Consequently, prediction errors may compound from
step to step for some observations, resulting in outliers. A potential and
partial remedy for this can be to cap the predictions, for example so that
they are bounded by the minimum and maximum response values in the
training data.

2. Lack of smoothness, for the same reasons that apply to Random Forest.

3. Interpretability. The challenges regarding interpretability are similar to
those that apply to Random Forest. As in Random Forest, it is possible
to compute an estimated overall feature importance.

4. Cannot extrapolate. This is because the base learner is a regression
tree and regression trees cannot extrapolate. While the predictions
from gradient boosted regression trees are not bounded by the minimum
and maximum response values in the training data, this is only due to
propagation of prediction errors from each boosting step, and not because
of an explicit capability to extrapolate.

There are several packages that implement Gradient tree boosting, such as
LightGBM and XGBoost [CG16]. In this master thesis APLR is contrasted to
LightGBM.

2.1.6 Componentwise gradient boosting
sec:cboost

The main difference between general gradient boosting (section 2.1.4) and
componentwise gradient boosting [BY03] is that in the latter the base learner
at each boosting step can only use one predictor, that is automatically chosen
by the algorithm, usually the one that minimizes the loss.

Some advantages of componentwise gradient boosting:
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1. Flexibility, as mentioned in section 2.1.4.

2. Especially suitable for high dimensional settings. This is because the base
learners becomes weaker when each of them is restricted to only use one
predictor.

3. Captures additive structures. This is because interactions cannot be
modeled when each base learner is only allowed to use one predictor.

4. Automatically handles variable selection. This is beacuse in each boosting
step, the predictor that is chosen is usually the one that minimizes the
loss.

Some disadvantages of componentwise gradient boosting:

1. Cannot automatically handle interactions because each base learner
is restricted to only use one predictor. To handle interactions in
componentwise boosting, interaction terms need to be computed as
additional predictors.

A description of the componentwise gradient boosting algorithm is given in
Algorithm 5.

Algorithm 5 Componentwise gradient boosting [BY03]
alg:cboost

1. Initialize the estimate. For example f̂0(xj) = 0, for j = 1, . . . , p, where p
is the number of predictors in the covariate vector x.

2. For each m = 1 to mstop boosting steps:

a) Compute the negative gradient:

um = −∂L(y, f̂m−1(x))
∂f̂m−1(x)

where L is the loss function, y is the response variable and f̂m−1(x)
is the estimated response at the previous boosting step.

b) For each predictor j in p fit a base learner to the negative gradient
that only uses j as a predictor. Here this fit is defined as hm(um, xj).

c) Select the hm(um, xj) that minimizes the loss.
d) Update the estimate:

f̂m(xj) = f̂m−1(xj) + v · hm(um, xj)

where v is a learning rate and 0 < v ≤ 1.

3. The final estimate is:

f̂mstop(x) =
p∑
j=1

f̂mstop(xj)
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Other advantages and disadvantages are implementation specific and depend
on, for example, the type of base learner used. Particularly relevant from this
point of view is the choice between linear or non-linear base learners. In the
former case the base learner hm(um, xj) of Algorithm 5 has the form βjxj .
Componentwise gradient boosting with linear base learners fits a GLM, so the
effect of each predictor on the response (possibly via a link function) is linear.
As a consequence of the iterative nature of boosting, there is also automatic
variable selection, as the regression coefficients for the irrelevant predictors are
never updated. This is implemented in the function glmboost of the R package
mboost that is contrasted to APLR in Chapter 4. The main advantage over
the general componentwise procedure is interpretability, because the model
that the algorithm produces is parametric and the effect of a predictor on the
prediction is its regression coefficient multiplied by the value of the predictor.
The main disadvantage is predictiveness, as linear effects are not able to capture
non-linearities that are often present in the data. According to [Jam+17, fig
2.7], linear regression models are often less predictive than GAM models.

In the case of parametric non-linear base learners, the componentwise
gradient boosting algorithm fits a GAM, so that the effect of the predictors
on the response (possibly via a link function) can be non-linear. In particular,
the algorithm used in this thesis for contrasting to APLR is the one that is
implemented by default in the function gamboost of the R package mboost, so
the base learner hm(um, xj) of Algorithm 5 is a smoothing spline.

A smoothing spline [Jam+17, sec 7.5.1] of a predictor x estimates the
response variable, y, with a smooth function of x. This estimate, s(x), can be
derived by minimizing the following expression,

n∑
i=1

(yi − s(xi))2 + λ

∫
s′′(t)2dt,

where λ is a constant that penalizes lack of smoothness and s′′(t) is the second
order differentiation of s(x) with respect to x. Here, lack of smoothness occurs
when s′′(t) 6= 0, which is the case when s(x) is not a straight line. If λ = 0 then
there is no penalty for lack of smoothness and s(xi) = yi for all observations
in the training data. In the latter case s(x) will overfit and consequently be
unable to predict new observations well. If λ → ∞ then lack of smoothness
will not be tolerated and s(x) will be the straight line that estimates y best in
the training data, producing a result that is similar to linear regression. It is
possible to calculate the effective degrees of freedom for a particular λ. λ = 0
and λ =∞ correspond to n and 2 effective degrees of freedom respectively.

In gamboost, dfbase is a hyperparameter that specifies the desired effective
degrees of freedom to be used for smoothing splines of all predictors. The
default value is 4, which is used in this master thesis when contrasting APLR
to gamboost. [BH07, sec 4.2] recommends to use a low dfbase (such as 4) to
keep the base learners weak.

The main advantage of using smoothing splines as base learners instead of
linear learners is improved predictiveness, whereas the main disadvantage is
reduced interpretability. The former is because smoothing splines can capture
non-linear relationships, while the latter is because a smoothing spline can be a
complex function of its underlying predictor. GAM models are often somewhere
between boosting with linear learners and boosting with trees (section 2.1.5)
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in terms of predictiveness and interpretability [Jam+17, fig 2.7]. One reason
why GAM models may be less predictive than for example boosted trees is that
they do not automatically handle interactions.

When using a squared error loss function, L = (y − f̂m−1(x))2, in gradient
boosting, the boosting procedure is called L2 boosting. In this case the negative
gradient in Algorithms 4 and 5 becomes um = y − f̂m−1(x), which are the
residuals at step m− 1. The squared error loss function is commonly used in
regression. Glmboost and gamboost implement L2 boosting [BH07].

2.2 Methods to interpret non-parametric models
sec:

interpreting_ml There are methods that can be used to interpret predictions from non-parametric
models. Three such methods are presented here: LIME (2.2.1), Shapley values
(2.2.2) and Treeshap (2.2.3). Unfortunately, these methods suffer from issues
that may prevent them from accurately interpreting a non-parametric model.
In addition the latter two methods can be computationally expensive.

2.2.1 Local Surrogate (LIME)
lime

Assume that one wishes to interpret a particular prediction ŷ from a black
box model and that the predictor values for this observation are x. LIME
[Mol22, sec 9.2] trains a local and interpretable model on observations with
predictor values in a neighborhood around x, here denoted by xN . The response
variable in this local model are predictions from the black box model in the
neighborhood, ŷN . The idea in LIME is to apply the local model on x and
interpret the prediction from the local model instead of trying to interpret ŷ
directly.

LIME suffers from several issues [Mol22, sec 9.2.5]. One of them is how to
define the neighborhood around x. This can potentially be a time consuming
task. Another issue is that the local models can be very sensitive to small
changes in the neighborhood around x. This can make LIME untrustworthy.
In fact, according to [Mol22, sec 9.2.5], LIME cannot be safely applied due to
the many problems that it suffers from. Therefore, the technique is only briefly
mentioned in this master thesis.

2.2.2 Shapley values
shapley

Shapley values [Mol22, sec 9.5] try to estimate how much each predictor
contributes to a prediction made by a black box model. To do this the Shapley
value algorithm applies the black box model to generate many predictions on
permuted predictor values. The estimated contribution of predictor xj to a
particular prediction is the (weighted) average difference between 1) generated
predictions where xj has its original value and 2) generated predictions where
xj has a randomly drawn value from the training data used to train the black
box model.

More formally, let ŷ be the prediction from a black box model that one wants
to interpret and let x be the predictor values for this observation. The Shapley
values algorithm applies the black box model on N sets of predictor values
different from x to generate N predictions. In a set i in N where predictor xi,j
is different than the corresponding xj in x, the value for xi,j is randomly drawn
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from all possible values of the jth predictor in the training data used to train
the black box model. The N sets of predictor values vary in similarity to x. In
some sets only one predictor, xj , has a different value. There is also a case when
all predictors have values that differ from those in x. In the original Shapley
values algorithm N contains all possible combinations of which predictor values
differ from those in x. The N sets of predictions generated by this are used
to estimate how much each predictor in x contributes to ŷ. Assume that one
wants to estimate how much predictor xj contributes to ŷ. The Shapley values
algorithm does this by calculating:

1. The (weighted) average of predictions in N where xj has the same value
as in x. Here denoted by ẑ | xj .

2. The (weighted) average of predictions in N where xj has a randomly
drawn value. Here denoted by ẑ | xrandom.

3. The estimated contribution of xj to ŷ is then ẑ | xj − ẑ | xrandom.

The N suggested in the original Shapley values algorithm grows exponentially
with the number of predictors, often resulting in a too high computational time.
A solution to alleviate this problem is to use a subsample of N that is large
enough to provide reasonable estimates. Nevertheless, Shapley values require a
lot of computational time and also suffer from other issues [Mol22, sec 9.5.5],
such as:

1. Access is needed to the training data used to train the black box model.

2. When predictors in x are correlated, unrealistic combinations of predictor
values may occur in the sets of predictor values in N . This can degrade
the validity of Shapley values.

2.2.3 Treeshap
treeshap

Treeshap is designed to interpret tree-based black-box models such as Random
Forest and boosted trees [Mol22, sec 9.6.3]. Treeshap can be thought of as
a variant of Shapley values. Instead of using N sets of predictor values (or
a subsample of the N sets) to calculate N predictions, the node structure of
the trees in the black box model is used to compute the expected prediction
conditioned on a subset S of x. This is done for all possible subsets of x. If
S contains all predictor values in x then the expected prediction is ŷ. For a
single tree, if S is empty then the expected prediction is the weighted average
prediction of all terminal nodes, weighted by node size. For a single tree, if S
contains some of x then predictions from unreachable nodes are ignored when
calculating the weighted average. Unreachable nodes are defined as nodes where
the decision path in the tree contradicts predictor values in S. By ignoring
unreachable nodes Treeshap avoids the problem of unrealistic combinations
of predictor values that is an issue in Shapley values. Treeshap is also faster
than Shapley values. However, Treeshap can produce erroneous estimates when
predictors are correlated. For example, a predictor xj that has no influence on
the prediction may erroneously get a non-zero Treeshap value if xj is correlated
with another predictor xk that has an influence on the prediction. This can
degrade the validity of Treeshap values.
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CHAPTER 3

Automatic Piecewise Linear
Regression (APLR)

sec:third APLR applies componentwise gradient boosting on parametric learners
(Algorithm 5) that are piecewise linear basis functions. Section 3.1 describes
these basis functions. Section 3.2 describes the APLR fitting procedure. Section
3.3 describes how APLR can be tuned.

3.1 APLR basis functions
sec:basis

Basis functions can be used to model the effect of the predictors on the response,
such as non-linear effects. APLR uses basis functions in order to capture non-
linearity and interactions through local effects. There are two types of basis
functions used in APLR, described in subsections 3.1.1 and 3.1.2.

3.1.1 APLR basis functions without interactions
subsec:basis

APLR basis functions without interactions are similar to the basis functions
used in MARS (algorithm 1). However, they are used differently than in MARS.
In MARS a reflected pair of basis functions is entered into the model in each
step, while in APLR only one basis function can enter in a boosting step. The
first reason for this is that in componentwise gradient boosting (5) the base
learner only uses one dimension. The second reason is that in gradient boosting
(Algorithm 4) it is advantageous to use weak learners. A single basis function
is a weaker learner than a pair of them. Definition 3.1.1 formally defines APLR
basis functions without interactions.

aplr:basis Definition 3.1.1 (APLR basis function). A basis function in APLR for a
predictor x is one of the following two piecewise linear functions:

max(x− t, 0)

min(x− t, 0)

where t is a value that defines the split point for the basis function.
A basis function of the form max(x− t, 0) is defined as a right basis function

because non-zero values of it are to the right of the split point when plotted on
the x-axis in a chart. Conversely a basis function of the form min(x− t, 0) is
defined as a left basis function.
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The split point for a right basis function is defined as right split point and
the split point for a left basis function is defined as left split point. The number
of effective observations neff is defined as the number of observations that do
not get a zero value due to the max or min functions.

These basis functions have the ability to work locally since their values can be
zero for wide ranges of predictor values. This also enables them to be weaker
learners than a linear effect which is useful in gradient boosting (Algorithm 4).
The type of APLR basis functions described in 3.1.1 cannot handle interactions
unless x itself is an interaction term.

3.1.2 APLR basis functions with interactions
subsec:basis_int

The MARS-like basis functions described in 3.1.1 work well in the case of
independent covariates, but may have problems when interaction terms are
relevant. In MARS interactions are handled by allowing terms that are products
of MARS basis functions. Such product terms can cause problems. For
example higher order interactions form higher power products that may result
in interaction terms with very large values (potentially causing computational
problems) or very small values (potentially causing rounding errors), depending
on the data. Another problem is related to the meaning of the interaction term
when the sign of the predictors that interact changes. To illustrate this, let
x1 and x2 be two predictors and let x12 = x1 · x2 be the estimated interaction
between them. The combination x1 = 1 and x2 = −1 gives x12 = −1. But the
combination of x1 = −1 and x2 = 1 also gives x12 = −1. These two sets of
combinations could have vastly different response values but x12 would not be
able to discriminate between them.

In APLR interactions are handled in a way that avoids the above mentioned
problems. This method has similarities with the handling of interactions in
regression trees. In regression trees interactions are formed by subsetting the
data. As an example, let the first split in a regression tree be on x1 ≤ 50. The
next split could be on x2 > 10 when x1 ≤ 50. Then x2 and x1 form a local
interaction when x1 ≤ 50. An APLR basis function with an interaction term
gets values of zero when the interaction term has a value of zero. This type
of basis function produces interaction terms that work on local subsets of the
data. Definition 3.1.2 formally defines these basis functions.

aplr:basisint Definition 3.1.2 (APLR basis function with interactions). A basis function in
APLR with interactions is similar to Definition 3.1.1 except that the form can
be either of the following:

max(x− t, 0) · 1(i 6= 0)

min(x− t, 0) · 1(i 6= 0)

where i is an APLR basis function of a covariate, x∗, with or without interactions.
1 is an indicator function with value 1 if its argument is true and 0 otherwise.

The depth of interactions is called interaction level. Interaction level is
zero for a basis function without interactions (3.1.1). For a basis function with
interactions, interaction level is one more than the interaction level of i.

The number of effective observations neff is as in 3.1.1 except that it also
excludes observations that get a zero value due to the indicator function.
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3.2 APLR fitting procedure
sec:fitting

Algorithm 6 shows a high level overview of the fitting procedure. The fitting
procedure consists of data preparation (step 1), initialization (step 2) and fitting
of APLR basis functions to the training data (step 3). These steps are described
in the following subsections.

Algorithm 6 APLR fitting procedure overview
alg:aplr

1. Split the data into training and validation sets. See Algorithm 7.

2. Initialization of parameters and terms. See Algorithm 8.

3. APLR basis functions (3.1.1 or 3.1.2) of covariates in training data are
used as predictors. Componentwise gradient boosting is used to estimate
regression coefficients. See Algorithm 9.

3.2.1 Data preparation
subsec:dataprep

In gradient boosting it is important to determine the optimal number of boosting
steps mstop (see 2.1.4). Tuning mstop in APLR by doing a grid search or similar
would be computationally expensive. Because APLR uses parametric learners it
is possible to store regression coefficients for each boosting step with immaterial
computational costs. APLR automatically tunes mstop by 1) splitting the data
into a training and validation set and 2) selecting the mstop that minimizes
validation loss. This significantly reduces computational costs compared to
a grid search or similar because mstop is estimated in one run of the APLR
fitting algorithm. The user needs to specify the number of boosting steps to
try, M . The default value of M is 1000, but this default is not appropriate for
all datasets. Plotting validation loss versus boosting step can help the user to
determine a reasonable value of M . The goal is to select M so that there are
enough boosting steps to find the minimum validation loss (if it exists) while
avoiding unnecessary computational costs associated with a too high M . The
optimal mstop is affected by learning rate. The learning rate hyperparameter, v,
has a default value of 0.1 in APLR, which is reasonable (low enough) according
to empirical results referred to in 2.1.4 and [BH07].

By default APLR does a random split of the data where 80% of them form
the training set and the remainder form the validation set. This default gives
a fairly high data utilization for training but requires that the remaining 20%
of observations are enough to validate the model on. The hyperparameter
validation_ratio specifies the proportion of the data to use as a validation set
so that the user can adjust the default. Sometimes it is not feasible to split
the data randomly. As an alternative, APLR provides a possibility to specify
observations that form the validation set. This can be useful for example in
modeling of time series where it can be important to ensure that the validation
set has more recent observations than the training set.

A potential drawback of splitting the observations into training and
validation sets like described above is that data utilization is lower than by
cross validation. On the other hand, cross validation is usually significantly
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more computationally intensive. While multiple models are validated by cross
validation, the final model that uses all the data is not. So if mstop is determined
by cross validation then it might potentially be sub-optimal for the model that
uses the full data set. The data splitting procedure in APLR avoids this
problem and further reduces computational costs (at the expense of lower data
utilization) by not retraining the model on the full data set. Whether to use a
validation set or cross validation to tune m could have been an user setting in
APLR. Implementing such functionality would increase code complexity, but it
can potentially be added to APLR in the future.

APLR allows the user to specify observation weights. This can be useful for
example when handling data that is over- or undersampled. If sample weights
are specified then they are also split into training and validation sets.

Algorithm 7 formally describes how training data is prepared.

Algorithm 7 APLR fitting step 1: Preparing training data
alg:aplrdata

1. Load training data:

• X is a matrix of predictors with n observations (rows) and p
predictors (columns).

• y is a vector of the response variable with n observations.
• w is an optional vector with n observations containing sample weights.

If not specified then observations are equally weighted.
• t is an optional vector specifying which of the n observations are to

be treated as a validation set.

2. Split X, y and w into training and validation sets:

Xtrain, ytrain, wtrain

Xval, yval, wval

• If w is not provided then only X and y are split into training and
validation.

• If t is provided then observations in t form the validation set while
the remaining observations form the training set.

• If t is not provided then observations are randomly split into training
and validation based on a hyperparameter, validation_ratio, that
specifies the fraction of observations forming the validation set. By
default validation_ratio = 0.2.

3.2.2 Initialization
subsec:init

APLR starts with a zero intercept term and no other terms in the model. This
is similar to the initialization in Algorithm 5.

In the first boosting step the set of potential terms that can enter the model
are APLR basis functions without interactions (3.1.1) of all predictors in the
training set, Xtrain. This set is called P . After a term other than the intercept
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has entered the model then P can potentially expand in each following boosting
step if interaction terms (3.1.2) are added to it. P can grow large and it can
become computationally heavy to evaluate each potential term in every boosting
step. APLR provides hyperparameters that can prevent all terms in P from
being evaluated in each boosting step. This process is described in 3.2.3.3. To
facilitate this functionality the set E holds terms that can be evaluated in the
next boosting step. Initially E = P so that all terms in P are eligible in the
first boosting step.

The final initialization step is to define an empty set C for storing terms
other than the intercept that are included in the model. C can increase by
up to one additional term in each boosting step. If C does not increase in a
boosting step then the regression coefficient for a term already in C can be
updated.

Algorithm 8 formally describes how APLR estimates are initialized.

Algorithm 8 APLR fitting step 2: Initialization
alg:aplrinit

1. Initialize the intercept. β̂0 = 0.

2. Initialize a set of potential additional terms, P , so that P contains an
APLR basis function (3.1.1) for each predictor in Xtrain.

3. Initialize a set of additional terms eligible in the next boosting step, E,
so that E = P . E is a subset of P .

4. Initialize an empty set C for storing terms included in the model other
than the intercept.

3.2.3 Componentwise boosting
subsec:aplrboost

Each boosting step starts with a calculation of the negative gradient on training
data using the squared error loss function and the model estimate from the
previous boosting step. For boosting step m, the set that holds terms in the
model other than the intercept, Cm, is initialized to being the same as in the
previous boosting step (Cm−1).

The next step is to find optimal split points for each eligible term in E.
Then interaction terms are considered. This is described in 3.2.3.1 and 3.2.3.2
respectively. Updating the intercept term is also considered. Afterwards the
following scenarios are possible:

1. Add a new term from E to the model (Cm).

2. Update a term already in Cm that is also in E.

3. Add a new interaction term to Cm.

4. Update the intercept term.

5. Terminate the boosting procedure if none of the above options reduce
training error. In this case no more boosting steps are carried out.
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The choice that results in the lowest loss is selected. Unless the boosting
procedure is terminated, eligibility of terms (E) for the next boosting step is
updated. This is described in 3.2.3.3. Then validation loss is calculated and
stored for boosting step m. Upon completion of all boosting steps, the final
model uses terms and regression coefficient from the boosting step with the
lowest validation error.

Algorithm 9 formally describes how componentwise boosting is done in
APLR.

Algorithm 9 APLR fitting step 3: Componentwise boosting
alg:aplrboost

1. For each m = 1 to M boosting steps:

a) Compute the negative gradient using the squared error loss function:

um = ytrain − f̂m−1(Cm−1)

where f̂m−1(Cm−1) is the estimated response and Cm−1 is the set
of non-intercept terms in the model at the previous boosting step.

b) Initialize Cm = Cm−1.
c) For each term ej in E find the APLR basis function (3.1.1 or 3.1.2),

hm(um, ej), that fits best to um by having the lowest loss. See
subsection 3.2.3.1.

d) The term in the above step having the lowest loss, hm(um, e∗), is
selected as a candidate for entry into Cm.

e) Consider interactions. See subsection 3.2.3.2. If any interaction
terms are added to P in this step then the one having the lowest loss,
hm(um, z∗), is selected as a candidate for entry into Cm instead of
hm(um, e∗).

f) Test if updating the intercept reduces the loss more than hm(um, e∗)
or hm(um, z∗). The intercept update is estimated as the (weighted)
mean of um multiplied by the learning rate v.

g) Update the regression coefficient for the term from the previous three
steps that reduced the loss the most. Add this term to Cm unless it
is the intercept term or a term already in Cm.

h) Update predictor eligibility. See subsection 3.2.3.3.
i) Calculate the validation loss.

2. The final estimate uses the regression coefficients from the boosting step
with the lowest validation loss, mv:

f̂mv (Cmv ) = 1 · β̂0,mv +Cmv · β̂Cmv ,mv

3.2.3.1 Fitting an APLR basis function to the negative gradient
subsec:fitbasis

When fitting an APLR basis function to the negative gradient um, the first step
is to determine if there are any observations for which the APLR basis function
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will be zero as a consequence of interactions (3.1.2). For such observations the
prediction from a linear regression model using the APLR basis function as the
only predictor would be zero and the loss contribution would not change from the
prior boosting step. It is computationally more efficient to avoid recalculating
the loss for such observations. Therefore such observations are excluded from
the remaining steps except that the loss contribution from them (unchanged
from the previous boosting step) is used in the final step to determine the
overall loss for the APLR basis function.

APLR has a hyperparameter to control model robustness called
min_observations_in_split. It will prevent terms with a lower number
of effective observations (neff ) than min_observations_in_split from enter-
ing the model (Cm). This hyperparameter is comparable with minimum node
size in a regression tree (Algorithm 2). The main idea is to avoid having
terms in the model that rely on too few observations. The default value for
min_observations_in_split is 20. It can be tuned for example by using cross
validation. For large datasets a larger value of min_observations_in_split
can be optimal while for very small datasets a lower value can be optimal.
If neff is less than min_observations_in_split then the fitting procedure is
aborted, setting loss to infinity so that the APLR basis function cannot enter
the model.

The goal of fitting an APLR basis function to the negative gradient is to find
the optimal split point. Searching for this split point by iterating through all
observations is computationally intensive. To ease the computational burden,
APLR implements an approximation technique inspired by the approximate
algorithm for split finding in the XGBoost implementation of gradient tree
boosting [CG16, sec 3.2]. XGBoost discretizes data into bins and uses the
discretized data to find optimal splits.

APLR sorts predictor values x, the negative gradient um and, if provided,
sample weights w ascending by x. Then APLR discretizes these sorted vectors
into bins. The maximum number of bins that APLR can create in this process
is determined by the hyperparameter bins. The default value of bins is 300.
This value decreases the computational burden significantly for larger datasets
and does not seem to degrade predictiveness (see 4.2.2.3). When splitting the
data into bins, APLR first finds the left edges of the bins. The left edge of
a bin is the lowest value of x in the bin. The first observation in the sorted
x is always a left edge since it has the lowest value of x. Apart from that,
the first or last min_observations_in_split observations cannot be left edges.
Potential left edges are found by iterating through the sorted x, starting from
the lowest value. Potential left edges are required to have a higher value of x
than the previous observation, otherwise the bins would overlap. If the number
of potential left edges, b, is less than bins, then APLR creates a bin for each
potential left edge. For ordered categorical variables with no more categories
than bins, this enables each category to get a separate bin. If b = 0 then one
bin will contain all the observations. In the latter case, the APLR basis function
cannot have split points and can only be used as a linear effect. If b > bins
then APLR first creates the two bins that have the lowest and highest potential
left edges. This ensures that bin edges are placed as close as possible after
the first and before the last min_observations_in_split observations. Then,
APLR calculates a minimum number of observations, nmin, that any further
bins must contain, so that the number of bins created does not exceed bins.
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By iterating through the remaining potential left edges, further bins are added
under the constraint that they must contain at least nmin observations. Once
the left edges for all the bins are known, it is trivial to compute the right edges.

For each bin the discretized values of x and um are averages of x and
um respectively for observations in the bin. If sample weights were provided
by the user then, for each bin, the discretized values of w are sums of w for
observations in the bin. Otherwise, the discretized values of w are, for each bin,
the number of observations in the bin. The goal is to weight the bins by the
number of observations that they contain.

To increase computational efficiency, the creation of bins and discretization
of x and w is only executed the first time that the APLR basis function is fitted
to the negative gradient. For APLR basis functions without interactions, which
are eligible in the first boosting step, this happens only in the first boosting
step. For an APLR basis function with interactions this only happens in the
boosting step when it is added to P . However, discretization of um happens in
every boosting step when the APLR basis function is eligible.

The next step is to find the best split point by using the discretized data
xd, um,d and wd. A copy of the APLR basis function is made. This copy, here
defined as f(xd), uses xd as predictor instead of x. For each bin the loss is
calculated for the left and right split points, respectively. In addition, the loss
is calculated for a linear effect of xd (without any split). The split point (or
linear effect) with the lowest loss is selected. If there is a tie, then the split
point (or linear effect) giving the largest neff is preferred to increase model
robustness. When calculating the loss for a split point, the weighted linear
regression coefficient βd is estimated as follows,

βd = v ·
∑bins
i=1 f(xd,i) · wd,i · um,d,i∑bins

i=1 f(xd,i)2 · wd,i
,

where v ∈ (0, 1] is the learning rate hyperparameter. The loss is then
Ld = (um,d − f(xd) · βd)T · (um,d − f(xd) · βd).

Finally, the loss is calculated for the original APLR basis function, f(x),
using the approximately optimal split point (or linear effect) that was estimated
on the discretized data. The weighted linear regression coefficient β is estimated
as follows:

β = v ·
∑neff

i=1 f(xi) · wi · um,i∑neff

i=1 f(xi)2 · wi

If sample weights were not provided by the user then β is estimated without
the w terms. The loss is L = (um − f(x) · β)T · (um − f(x) · β) + L0 where L0
represents the loss from observations excluded in the first step mentioned in
3.2.3.1. Algorithm 9 selects candidates for entry into Cm (the model) based on
L for each APLR basis function considered.

Algorithm 10 summarizes how an APLR basis function is fitted to the
negative gradient.
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3.2. APLR fitting procedure

Algorithm 10 APLR fitting step 3 details: Fit an APLR basis function to um
alg:fitbasis

1. If the APLR basis function has interactions (3.1.2) then exclude
observations where i = 0. For these observations the interaction term is
zero and loss is unchanged from the previous boosting step.

2. If the number of (remaining) observations is less than
min_observations_in_split (hyperparameter) then abort the fit-
ting procedure.

3. Sort predictor values x, sample weights w and um ascending by x.

4. Create bins for the sorted x. The maximum number of bins is specified
by the hyperparameter bins.

5. Discretize sorted x and um by taking the average value for each bin.
Discretize sorted w by taking the sum for each bin (or the number of
observations in the bin if w was not provided by the user).

6. Find the best split point on the discretized data.

a) For each left and right split point calculate loss.
b) Select the split point with the lowest loss. If there is a tie, then

prefer the split point resulting in the largest neff .

7. Calculate loss on the non-discretized sorted data. This loss can be
compared with losses for other APLR basis functions.

3.2.3.2 Considering interactions
subsec:

interactions In each boosting step, before interactions are considered, APLR has already
found a candidate term for model update from E (see 3.2.3). Then APLR
considers interactions between terms already in the model other than the
intercept (Cm) and terms in E. If any interaction terms are added then they
are added to both P and E. An interaction term is an APLR basis function
with interactions (3.1.2), where the predictor, x, is a term from E and i is
a term in Cm. Considering all possible interactions may be computationally
intensive. APLR can reduce the number of interaction terms added with the
help of three hyperparameters that can be tuned for example by cross validation:

1. The hyperparameter max_interactions specifies the maximum number
of interaction terms that can be added to P .

2. The hyperparameter max_interaction_level specifies the maximum
interaction level allowed in an interaction term.

3. The hyperparameter max_eligible_predictors sets a limit on how many
of the terms in Cm can be considered as interaction partners for terms in
E. If max_eligible_predictors is less than the number of terms in Cm

then the max_eligible_predictors terms in Cm with the lowest previous
loss are considered. For each term in Cm previous loss pertains to the
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loss in the most recent boosting step when the term was either added to
C or had its regression coefficient updated.

The loss is calculated for each interaction term fitted to the negative gradient.
Only interaction terms having a lower loss than the candidate term for model
update from E (see 3.2.3) can be added to P and E. These interaction terms
are added to P and E starting with the term having the lowest loss, then the
term having the second lowest loss, and so on, as long as the total number of
interaction terms in P does not exceed max_interactions. The reasons for not
adding terms with higher losses are:

1. To increase the likelihood that interaction terms in Cm are predictive.
This can be especially relevant if max_interactions is low. In such case
it can be advantageous to only add the most promising interaction terms.

2. To avoid evaluating terms that are likely less predictive in future boosting
steps. This can potentially reduce the computational burden.

If any terms are added to P and E by the above procedure then the term with
the lowest loss becomes a candidate for entry to the model.

Algorithm 11 formally describes how interaction terms are considered.

Algorithm 11 APLR fitting step 3 details: Interactions
alg:interactions

1. If the number of interaction terms already in P is less than
max_interactions (hyperparameter) then:

a) Previous loss for each term hi in Cm is defined as loss in the boosting
step when the most recent update of β̂hi

occurred.
b) For each ej in E and for each of up to max_eligible_predictors

(hyperparameter) terms in Cm having the lowest previous loss:
i. Create an interaction term z(hi, ej) between hi and ej if the

interaction level is not greater than max_interaction_level
(hyperparameter). The interaction term is an APLR basis
function (3.1.2) with i = hi and x = ej .

ii. If an interaction term was created in the previous step then
find the APLR basis function (3.1.2), hm(um, z(hi, ej)), that
fits best to um by having the lowest loss.

c) The interaction terms from the previous step having a lower loss
than hm(um, e∗) are added to P and E as long as the number of
interaction terms in P is not greater than max_interactions.

3.2.3.3 Updating eligibility of terms
subsec:

eligibility Evaluating all terms in P in every boosting step may be computationally
costly. At the end of each boosting step APLR decides which terms in
P will be eligible in the next boosting step by redefining E. First, only
the max_eligible_predictors (hyperparameter) terms in E with the lowest
loss are kept. The main idea is to avoid evaluating less predictive terms in
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every boosting step. Terms removed from E become ineligible for the next
ineligible_boosting_steps_added boosting steps. Finally, terms that have
already been ineligible for ineligible_boosting_steps_added boosting steps are
reentered into E. The reason is that a previously less predictive term may
become more predictive compared to other terms in the future because the
model may already contain those other terms by then.

The above hyperparameters allow the user to control how and if terms can
become ineligible for some future boosting steps. The aim is to reduce computa-
tional burden without significantly degrading predictiveness. The default values
for max_eligible_predictors and ineligible_boosting_steps_added are 5 and
10 respectively. These defaults can notably reduce the computational burden
and do not seem to degrade predictiveness (see 4.2.2.3).

Algorithm 12 summarizes how eligibility of terms is updated at the end of
each boosting step.

Algorithm 12 APLR fitting step 3 details: Updating term eligibility
alg:eligibility

1. The max_eligible_predictors terms with the lowest loss remain
in E. Other terms are removed from E and become ineligible
for ineligible_boosting_steps_added (hyperparameter) future boosting
steps.

2. Terms in P but not in E reenter E after having been ineligible
for ineligible_boosting_steps_added boosting steps. For example,
if ineligible_boosting_steps_added is 10 then a term that becomes
ineligible at the end of boosting step 1 will be ineligible in boosting
steps 2 to and including 11, but will reenter E in boosting step 12.

3.3 Tuning APLR’s hyperparameters
sec:tuning

APLR has hyperparameters that should be tuned. Since APLR splits training
data into training and validation datasets, it is possible to tune APLR without
doing additional data splitting outside of APLR. The primary benefit of this is
significantly lower computational costs compared to for example cross validation.
However, especially for smaller datasets the better data utilization that can
be achieved by using cross validation may be important. In such cases the
user can do cross validation outside of APLR, for example, in Python, by
using GridSearchCV in the sklearn package. Below there is a complete list of
hyperparameters in APLR featuring advices on how to tune them.

1. M is the maximum number of boosting steps to try. Ideally it should be
large enough to find the minimum validation error (if it exist) but not so
large that unnecessary computational costs are incurred. A reasonable
tuning strategy may be to start with the default value of 1000 and increase
it if the validation error does not flatten out during those 1000 boosting
steps. Please note that in the APLR packageM is denoted as m to adhere
to the naming convention of having variable names in lower case letters.
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2. v is the learning rate. It should be reasonably low according to 2.1.4.
The choice of M is affected by the choice of v as the optimal number of
boosting steps usually decreases if v increases. The default value of 0.1
should work in most cases. For some datasets it is possible to speed up
training by increasing v, for example up to 0.5.

3. max_interaction_level specifies the maximum allowed depth of inter-
actions. This hyperparameter should be tuned by for example doing a
grid search. Examples of particular values that could be tested in such
grid search are 0 (no interactions allowed), 1, 2 and a few higher values.
The default value of 100 puts few restrictions on APLR with respect to
interaction level. It allows APLR to add interaction terms with a high
interaction level if doing so reduces the training loss more than adding
terms with a lower interaction level would.

4. max_interactions specifies the maximum number of interaction terms
that APLR can consider. The default value of 0 allows no interaction terms
to be added and results in faster training since not considering interaction
terms reduces the computational load. A reasonable tuning strategy
might be to set max_interactions to a high value that is computationally
affordable and tune max_interaction_level in a grid search.

5. min_observations_in_split determines the minimum number of effective
observations (neff ) that a term in the model must have. Higher values
may give more robust models where terms rely on more observations.
However, higher values may also increase bias because fewer terms are
allowed to enter the model. The default value is 20. This hyperparameter
should be tuned in a grid search or similar. A reasonable strategy can
be to try higher values for larger datasets and lower values for smaller
datasets. This is because the probability of increasing bias when increasing
min_observations_in_split is lower for larger datasets.

6. validation_ratio specifies the fraction of randomly selected observations
from training data to be used for validation instead of training. If a random
selection is not desired then the hyperparameter validation_set_indexes
can be used instead of validation_ratio to specify a vector containing
indices for observations in training data to be used for validation instead
of training. None of these two hyperparameters are intended for tuning,
but rather for determining how APLR should do validation.

7. Hyperparameters that are intended for reducing computational costs:

a) max_eligible_predictors limits 1) the number of terms already in
the model that can be considered as interaction partners for terms
in E in a boosting step and 2) how many terms from E remain in
E in the next boosting step.

b) ineligible_boosting_steps_added controls how many boosting steps
a term in E that becomes ineligible has to remain ineligible.

c) bins determines the maximum number of bins that can be created
for discretizing the data when searching for the optimal split point
in an APLR basis function.
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CHAPTER 4

Test results

sec:fourth
4.1 A description of the testing methodology used

sec:
test_description APLR has been tested on simulated and real datasets. Section 4.2 describes

test results on simulated datasets and section 4.3 describes test results on
real datasets. In all tests, APLR is contrasted to boosted trees (LightGBM
implementation), Random Forest (sklearn implementation), MARS (pyearth
implementation), as well as gamboost and glmboost from the mboost R package.
For each dataset the data was split into a training and test dataset. Then,
all models were trained and tuned on the training dataset to minimize cross
validation or validation mean squared error. Finally, the tuned models were
contrasted on the test dataset.

4.1.1 Tuning of hyperparameters
subsec:tuning

This subsection describes how APLR and the other algorithms were tuned. The
main idea was to tune each algorithm well in order to get the most out of them.

4.1.1.1 APLR
subsec:

tuning_aplr On the smallest dataset described in 4.3.1 APLR was tuned by a five fold cross
validation. On the remaining datasets APLR was tuned by using its built-in
splitting of training data into a training and validation part. The latter was done
to substantially reduce the training time, potentially at the expense of a more
robust hyperparameter tuning. The hyperparameters max_interaction_level
and min_observations_in_split were tuned in a grid search, while M , v and
max_interactions were constant.

The values allowed for max_interaction_level in the grid search were 0, 1,
2, and 100. These values test the special case of no interactions (0) as well as
low depths of interactions (1 and 2) and interactions with a potentially high
depth (100). The related hyperparameter max_interactions was held constant
at 100000 for all datasets to allow APLR to fit as many interaction terms as
possible in accordance with max_interaction_level.

The values allowed for min_observations_in_split in the grid search were
dataset specific. The idea was to test higher values for larger datasets in order
to build more robust models with terms that did not rely on few observations.

M was initially 1000 for each dataset but was increased for datasets where
validation loss continued to decrease as the number of boosting steps approached
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1000. This resulted in M being up to 3500. Generally, the larger datasets
required a larger M to be tuned properly. These datasets also required a higher
v of 0.5 instead of the default of 0.1 to avoid the computationally costly need
of increasing M further.

4.1.1.2 LightGBM
subsec:

tuning_gbm LightGBM was tuned by a five fold cross validation. LightGBM was the fastest
to train algorithm among the algorithms tested. Therefore it was allowed to
try more unique combinations of hyperparameters in the tuning process. The
hyperparameters n_estimators (number of boosting steps) and num_leaves
(maximum number of leaves in each tree) were tuned by using the Bayesian
probabilistic model-based approach for finding optimal hyperparameters found
in the Optuna package for Python. The allowed ranges of integers for these
hyperparameters were [1, 3000] and [2, 128] respectively. This range is quite
wide and allows to test models with few or many trees and varying interaction
depth. 100 unique hyperparameter combinations were tried. Learning rate, v,
was held constant at 0.1, which is reasonably low as mentioned in 2.1.4.

4.1.1.3 Random Forest
subsec:tuning_rf

Random Forest was tuned by a five fold cross validation. The hyperparameters
max_features (fraction of predictors allowed in each split in a tree) and
min_samples_leaf (minimum number of observations required in a node)
were tuned in a grid search.

The allowed values in the grid search for max_features were in
{0.125, 0.25, 0.5, 0.75, 1.0} for all datasets. Since the fraction of predictors
allowed in each split in a tree is greater than 0 and not more than 1, the values
of max_features tested in the grid search should sufficiently cover important
parts of the search space.

The allowed values for min_samples_leaf depended on the dataset.
Generally, higher values were tested for larger datasets. Higher values can
produce more robust models because then the nodes in the regression trees rely
on more observations, but this potentially comes at the expense of higher bias.

Regarding the number of trees to grow, n_estimators, the initially tested
value was 100 for all datasets. Then it was increased to 300. The increase only
resulted in marginally better predictions for most of the datasets, indicating
that 300 trees was more than enough in order to (almost) minimize the variance
of the Random Forest models.

4.1.1.4 MARS
subsec:

tuning_mars On the smallest dataset described in 4.3.1 MARS was tuned by a five fold cross
validation. To substantially reduce training time on the remaining datasets
(potentially at the expense of a more robust tuning), MARS was tuned by
randomly splitting the training data into a training and validation part. The
hyperparameters max_degree (maximum interaction depth) and max_terms
(maximum number of terms generated prior to pruning the model) were tuned
in a grid search. The allowed hyperparameter values depended on the dataset.
Whenever the cross-validation or validation results indicated that the best
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hyperparameter values for max_degree or max_terms were the highest values
allowed in the grid search, even higher values were tested in order to tune
MARS well enough.

4.1.1.5 gamboost and glmboost
subsec:

tuning_mboost The hyperparameter mstop (maximum number of boosting steps) was tuned
by a five fold cross validation using the built-in cvrisk function found in the
mboost R package. The learning rate, nu, was held constant. The maximum
allowed value for mstop was 5000 for all datasets. The constant value of nu
depended on the dataset. It was 0.1 for most of the datasets, but some of them
required a higher value to tune properly within 5000 boosting steps.

4.2 Simulated datasets
sec:simdata

The purposes of testing APLR on simulated datasets are to:

1. Test scenarios that may identify where APLR has strengths and weaknesses
relative to other algorithms.

2. Contrast predictions from the algorithms tested to the true model, since
the latter is known in simulated datasets.

Machine learning algorithms such as boosted trees, Random Forest and APLR
have the ability to automatically handle non-linear relationships and interactions.
The scenarios simulated here attempt to test and compare these abilities. In all
scenarios there are non-linear dependencies between predictors and the response.
To provide an additional challenge for the algorithms contrasted, all scenarios
also feature noise predictors that do not affect the response variable. The
following scenarios have been simulated:

1. The true model is additive (no interactions). Predictors are uncorrelated.
See section 4.2.2.

2. The true model is additive. Predictors are correlated. See section 4.2.3.

3. The true model is not additive (has interactions). Predictors are
uncorrelated. See section 4.2.4.

4. The true model is not additive. Predictors are correlated. See section
4.2.5.

Each scenario was simulated 10 times. Each of the 10 simulations generated
60000 observations, whereof half were randomly assigned to a training dataset
and the remaining half were assigned to a test dataset. 30000 training
observations was close to the upper limit on the computer used to test the
algorithms because of high memory usage by gamboost and glmboost. Each
simulation simulated 20 predictors (correlated or uncorrelated depending on the
scenario) from the multivariate standard normal distribution. Afterwards the
true model for the response variable was calculated (additive or non-additive
depending on the scenario).
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4.2.1 Hyperparameter values tested in the model tuning
sim:tuning

1. APLR

a) min_observations_in_split: {1, 20, 50, 100, 200} were tested in
all scenarios except for the non-additive scenario with correlated
predictors where {20, 100, 200, 300, 500} were tested. The reason
for the deviation in the latter scenario was that validation results
during the hyperparameter tuning showed that increased values of
min_observations_in_split reduced validation loss more.

b) M : 3000.
c) v: 0.5 in the non-additive scenario with correlated predictors and 0.1

in the other scenarios. In the former scenario a higher learning rate
prevented an increase of M that would have been significantly more
computationally intensive.

d) Otherwise as described in 4.1.1.1.

2. LightGBM. As described in 4.1.1.2.

3. Random Forest

a) min_samples_leaf : {1, 20, 50, 100, 500} tested.
b) Otherwise as described in 4.1.1.3.

4. MARS

a) max_degree: {1, 2, 3, 4, 5, 6} tested.
b) max_terms: {10, 50, 100, 150} tested.
c) Otherwise as described in 4.1.1.4.

5. gamboost

a) nu: 0.1 and 0.3 in the non-additive and additive scenarios
respectively.

b) Otherwise as described in 4.1.1.5.

6. glmboost

a) nu: 0.1.
b) Otherwise as stated in 4.1.1.5.

4.2.2 Additive model with uncorrelated predictors
subsec:add-
uncorrelated In this scenario there are 20 uncorrelated predictors simulated from the

multivariate standard normal distribution. The relationship with the response
variable is additive and non-linear. The true model is defined in the following
way,

y = c+
10∑
j=1

βjx
dj

j + ε ,
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where y is the response variable, ε is an error term randomly drawn from
a normal distribution with zero mean and standard deviation equal to the
standard deviation of a simulated observation of the predictable component
of y (y without the error term), c is a constant chosen to equal 5, βj is the
regression coefficient for predictor xj and xj is raised to the power of dj . The
regression coefficients are randomly drawn from a standard normal distribution
and the power coefficients are randomly drawn from an uniform distribution
with values in the interval [2, 4]. The last 10 predictors are noise predictors that
do not affect the response variable. The best estimator for y is:

ŷ = E(y) = c+
10∑
j=1

βjx
dj

j

4.2.2.1 Best hyperparameter values in the first out of ten simulations
subsec:

best_hyp_add_1 The below best values refer to hyperparameter values that gave the lowest cross
validation or validation MSE in the hyperparameter tuning.

1. APLR

a) max_interaction_level: 0. This was correctly guessed by the
hyperparameter tuning as there were no interactions in the dataset.

b) min_observations_in_split: 50.
c) Best number of boosting steps selected by APLR: 2931.

2. LightGBM

a) n_estimators best value: 1358.
b) num_leaves best value: 2. Correctly guessed because there were no

interactions in the data.

3. Random Forest

a) max_features 0.5.
b) min_samples_leaf : 1.

4. MARS

a) max_degree: 3. Incorrectly guessed since there are no interactions.
b) max_terms: 150.
c) 11 other hyperparameter combinations gave the same results.

5. gamboost

a) mstop: 3669.

6. glmboost

a) mstop: 283.
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4.2.2.2 Test results
add_results_1

Table 4.1 shows test results for the additive scenario with uncorrelated predictors.
In this table, MSE∗ is the MSE relative to MSE for the best estimator, while
std means standard deviation.

Algorithm MSE∗ mean MSE∗ std R-squared mean R-squared std
Best estimator 1.000 0.000 0.5010 0.0037

gamboost 1.006 0.001 0.4979 0.0035
APLR 1.009 0.002 0.4964 0.0034
MARS 1.018 0.008 0.4920 0.0029

LightGBM 1.050 0.006 0.4761 0.0037
Random Forest 1.084 0.021 0.4607 0.0096

glmboost 1.491 0.126 0.2561 0.0645

Table 4.1: Test results for the additive scenario with uncorrelated predictors. table:add_1

The parametric algorithms that are able to automatically handle non-linear
relationships performed best in this scenario and were very close to the
predictiveness of the best estimator. Gamboost did marginally better than
APLR. APLR performed marginally better than MARS. It is perhaps not
surprising that these parametric algorithms did best in this special case since
they assume an additive model. Glmboost had a low predictiveness compared to
the best estimator in this scenario, most likely because it cannot automatically
handle non-linear relationships. The tree-based algorithms were able to predict
reasonably well, but not as good as the parametric algorithms other than
glmboost. When considering the best hyperparameters from the hyperparameter
tuning in the first out of ten simulations (4.2.2.1), the best results for APLR
were obtained when the hyperparameter max_interaction_level was zero.
This makes sense since there were no interactions in this scenario. LightGBM
achieved its best hyperparameter tuning results with num_leaves = 2. This is
not surprising since a regression tree with two nodes has no interactions. An
odd fact is that MARS had slightly better hyperparameter tuning results with
max_degree ≥ 3, while one could expect that max_degree = 1 should have
given better results.

4.2.2.3 Testing APLR hyperparameters that are intended for reducing
computational costs

subsec:
hyperparameters For one of the simulated datasets for the scenario in 4.2.2, APLR was tested with-

out utilizing the hyperparameters that are intended for reducing computational
costs: bins, max_eligible_predictors and ineligible_boosting_steps_added.
Comparing with the test results obtained when the above mentioned hyperpa-
rameters had the default values that were described in Chapter 3, the resulting
mean squared error increased to 82.31 from 82.27 and R2 decreased to 0.4980
from 0.4983 when these hyperparameters were not utilized. There was no
improvement in predictiveness and training time increased from 1 minute to
24 hours. While it is possible that on some datasets there could be a gain
in predictiveness by not utilizing the above mentioned hyperparameters, the
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associated computational costs make this unfeasible. Because of these computa-
tional costs, APLR has not been tested on other datasets when not utilizing
these hyperparameters.

4.2.3 Additive model with correlated predictors
subsec:add-
correlated This scenario is similar to the scenario in 4.2.2 except that the simulated

predictors are correlated with pairwise Pearson correlation coefficients of 0.9.

4.2.3.1 Best hyperparameter values in the first out of ten simulations
subsec:

best_hyp_add_2 The below best values refer to hyperparameter values that gave the lowest cross
validation or validation MSE in the hyperparameter tuning.

1. APLR

a) max_interaction_level: 0. Correctly guessed, since there are no
interactions in the dataset.

b) min_observations_in_split: 100.
c) Best number of boosting steps selected by APLR: 2997.

2. LightGBM

a) n_estimators best value: 276.
b) num_leaves best value: 5. Incorrectly guessed in the hyperparame-

ter tuning since there are no interactions.

3. Random Forest

a) max_features 0.5.
b) min_samples_leaf : 1.

4. MARS

a) max_degree: 2. Incorrectly guessed since there are no interactions.
b) max_terms: 50, 100 and 150 gave the same result.

5. gamboost

a) mstop: 3734.

6. glmboost

a) mstop: 2161.

4.2.3.2 Test results
add_results_2

Table 4.2 shows test results for the additive scenario with correlated predictors.
In this table, MSE∗ is the MSE relative to MSE for the best estimator, while
std means standard deviation.
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Algorithm MSE∗ mean MSE∗ std R-squared mean R-squared std
Best estimator 1.000 0.000 0.4983 0.0076

gamboost 1.006 0.001 0.4956 0.0075
APLR 1.010 0.002 0.4934 0.0072
MARS 1.019 0.006 0.4887 0.0070

LightGBM 1.064 0.017 0.4667 0.0105
Random Forest 1.073 0.021 0.4623 0.0119

glmboost 1.568 0.162 0.2130 0.0848

Table 4.2: Test results for the additive scenario with correlated predictors. table:add_2

With respect to predictiveness, the above test results are similar in conclusion
to those in 4.2.2.2. This might be a bit surprising, considering that one could
expect that correlation among predictors would give the algorithms an additional
challenge. It could be that the additive true model made the prediction task
easier. When considering the best hyperparameters from the hyperparameter
tuning in the first out of ten simulations (4.2.3.1), only APLR guessed the
correct interaction level in the hyperparameter tuning.

4.2.4 Non-additive model with uncorrelated predictors
subsec:int-
uncorrelated In this scenario the predictors are simulated in the same manner as in 4.2.2.

However, the relationship between the predictors and the response is not additive.
The true model is defined as the Euclidean distance between pairs of predictors
in the following way,

y = β ·

√√√√ 10∑
j=2

(xj−1 − xj)2 · ε ,

where y is the response variable, β is a regression coefficient chosen to equal 1.2,
xj is the jth predictor and ε is an error term randomly drawn from an Uniform
distribution with values in the interval [0.5, 1.5]. The best estimator for y is:

ŷ = E(y) = β ·

√√√√ 10∑
j=2

(xj−1 − xj)2

4.2.4.1 Best hyperparameter values in the first out of ten simulations
subsec:

best_hyp_int_1 The below best values refer to hyperparameter values that gave the lowest cross
validation or validation MSE in the hyperparameter tuning.

1. APLR

a) max_interaction_level: 2. The hyperparameter tuning correctly
guessed that interaction terms are relevant in this scenario.

b) min_observations_in_split: 50.
c) Best number of boosting steps selected by APLR: 2971.
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2. LightGBM

a) n_estimators best value: 391.
b) num_leaves best value: 8. Correctly guessed that interaction terms

are relevant.

3. Random Forest

a) max_features 0.5.
b) min_samples_leaf : 1.

4. MARS

a) max_degree: 2. Correctly guessed that there are relevant interaction
terms.

b) max_terms: 100 and 150 gave the same result.

5. gamboost

a) mstop: 615.

6. glmboost

a) mstop: 0. It seems that only a null model was fit.

4.2.4.2 Test results
int_results_1

Table 4.3 shows test results for the non-additive scenario with uncorrelated
predictors. In this table, MSE∗ is the MSE relative to MSE for the best
estimator, while std means standard deviation.

Algorithm MSE∗ mean MSE∗ std R-squared mean R-squared std
Best estimator 1.000 0.000 0.5310 0.0030

MARS 1.056 0.006 0.5047 0.0050
LightGBM 1.081 0.005 0.4936 0.0049
APLR 1.108 0.009 0.4804 0.0050

Random Forest 1.260 0.006 0.4276 0.0062
gamboost 1.589 0.015 0.2547 0.0046
glmboost 2.132 0.013 0.0000 0.0001

Table 4.3: Test results for the non-additive scenario with uncorrelated predictors. table:int_1

As expected, this scenario was more difficult for the algorithms to predict
due to the non-additive true model. When considering the algorithms that
automatically handle interactions, one may claim that MARS, LightGBM and
APLR predicted reasonably well, while Random Forest did not. Somewhat
surprisingly, MARS was most predictive in this scenario, followed by LightGBM
and APLR. However, APLR was not far behind MARS. The algorithms that
do not handle interactions automatically, gamboost and glmboost, performed
poorly. This was especially the case for glmboost that seemed to mostly fit
null models without predictive power. The best hyperparameters from the
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hyperparameter tuning in the first out of ten simulations (4.2.4.1) for APLR,
LightGBM and MARS seem to be more or less in line with expectations
considering that there are interactions in this scenario.

4.2.5 Non-additive model with correlated predictors
subsec:int-
correlated This scenario is similar to the scenario in 4.2.4 except that the simulated

predictors are correlated with pairwise Pearson correlation coefficients of 0.9.

4.2.5.1 Best hyperparameter values in the first out of ten simulations
subsec:

best_hyp_int_2 The below best values refer to hyperparameter values that gave the lowest cross
validation or validation MSE in the hyperparameter tuning.

1. APLR

a) max_interaction_level: 100. The hyperparameter tuning correctly
indicated that interaction terms are relevant in this scenario, but the
estimated interaction depth was higher than in subsection 4.2.4.

b) min_observations_in_split: 300.
c) Best number of boosting steps selected by APLR: 2993.

2. LightGBM

a) n_estimators best value: 2730.
b) num_leaves best value: 4. Correctly indicated that interaction

terms are relevant, but the estimated interaction depth was lower
than in subsection 4.2.4.

3. Random Forest

a) max_features 1.0.
b) min_samples_leaf : 1.

4. MARS

a) max_degree: 2. Correctly indicated that there are relevant
interaction terms. The estimated interaction depth is the same
as in subsection 4.2.4.

b) max_terms: 100 and 150 gave the same result.

5. gamboost

a) mstop: 1822.

6. glmboost

a) mstop: 53.
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4.2.5.2 Test results
int_results_2

Table 4.4 shows test results for the non-additive scenario with correlated
predictors. In this table, MSE∗ is the MSE relative to MSE for the best
estimator, while std means standard deviation.

Algorithm MSE∗ mean MSE∗ std R-squared mean R-squared std
Best estimator 1.000 0.000 0.5311 0.0040
LightGBM 1.184 0.010 0.4460 0.0067
APLR 1.350 0.011 0.3707 0.0070

Random Forest 1.454 0.009 0.4003 0.0070
MARS 2.026 0.342 0.0506 0.1597

gamboost 2.124 0.018 0.0042 0.0007
glmboost 2.133 0.018 0.0000 0.0001

Table 4.4: Test results for the non-additive scenario with correlated predictors. table:int_2

This was as expected the most difficult scenario for the algorithms to predict
because of the combination of correlated predictors and a non-additive model
structure. LightGBM had the highest predictiveness, followed by APLR
and Random Forest. While these three algorithms did not predict well
compared to the best estimator, one may claim that they were still able to
fit predictive models. The remaining algorithms, on the other hand, were
unable to fit predictive models. While MARS performed surprisingly well in
4.2.4.2 when predictors were uncorrelated, its performance was poor in this
scenario. For APLR, LightGBM and MARS, the best hyperparameters from
the hyperparameter tuning in the first out of ten simulations (4.2.5.1) are more
or less in line with expectations since there are interactions in this scenario.

4.3 Real datasets
sec:realdata

APLR has been tested on three datasets that are publicly available on UCI
Machine Learning Repository [DG17]. The datasets vary in size and the number
of predictors. They also seem to vary with respect to the level of interactions
between predictors.

4.3.1 Auto MPG dataset
sec:mpgdata

This dataset stems from the StatLib library which is maintained at Carnegie
Mellon University. It is a slightly modified version of the original dataset from
StatLib, where 8 of the original instances were removed because they had
unknown mpg values. In this dataset there are 398 observations. The response
variable is mpg (miles per gallon). There are eight potential predictors:

1. cylinders. An integer denoting the number of cylinders in the car.

2. displacement. Denotes the displacement of the car.

3. horsepower. Specifies car engine power measured in horsepowers.
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4. weight. The weight of the car.

5. acceleration. The acceleration of the car.

6. model year. An integer denoting the year when the car was produced.

7. origin. Categorical variable denoting the country/region of origin for the
car. Its categories are USA, Europe and Japan.

8. car name. String that is unique for each instance.

All predictors except car name were used here. The latter was dropped
for simplicity. The categorical predictor origin was transformed into three
dummy variables, one for each category in origin. Six observations that had
partially missing data were dropped. The remaining 392 rows were randomly
split into a training set consisting of 274 observations (approximately 70% of
the observations) and a test set consisting of 118 observations. The average
absolute value of pairwise Spearman rank correlation between the predictors
in the training dataset is 0.47, indicating that there is a presence of correlated
predictors.

4.3.1.1 Hyperparameter values in the hyperparameter tuning
mpg:tuning

1. APLR

a) max_interaction_level: Best value: 2.
b) min_observations_in_split: {1, 10, 20, 30, 50} tested. Best value:

30.
c) M : 1000. Best number of boosting steps selected by APLR: 315.
d) v: 0.1.

2. LightGBM

a) n_estimators best value: 98.
b) num_leaves best value: 7.

3. Random Forest

a) max_features best value: 0.75.
b) min_samples_leaf : {1, 20, 50, 100} tested. Best value: 1.

4. MARS

a) max_degree: {1, 2, 3, 4, 5} tested. Best value: 3.
b) max_terms: {5, 10, 20, 30, 50} tested. Best value: 20.

5. gamboost

a) mstop best value: Model fit failed, probably due to a bug in the
mboost package.

b) nu: 0.1.

6. glmboost

a) mstop best value: 1925.
b) nu: 0.1.
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4.3.1.2 Test results
mpg:results

Table 4.5 shows test results for the Auto MPG dataset.

Algorithm MSE R-squared
APLR 9.07 0.8712

Random Forest 9.42 0.8706
LightGBM 9.55 0.8666
MARS 9.59 0.8628

glmboost 14.39 0.8019

Table 4.5: Test results for the Auto MPG dataset dataset. table:mpg

All algorithms except glmboost had similar predictiveness on this dataset.
R-squared was relatively high, perhaps indicating that there is not much
unpredictable noise in the data. APLR performed marginally better than the
other algorithms, slightly ahead of Random Forest, followed by LightGBM
and MARS. Glmboost performed somewhat worse. This is likely because of
non-linear dependencies between the predictors and the response, and because
glmboost does not automatically handle interactions. It was not possible to train
a gamboost model for this dataset, probably due to a bug in the mboost package.
The best values from the hyperparameter tuning for max_interaction_level
in APLR (best value of 2) and for num_leaves in LightGBM (best value of 7)
indicate that the depth of interactions in the Auto MPG dataset was relatively
low, but that relevant interaction terms exist. The best value of max_degree
in MARS was 3, indicating that interactions with a higher depth may also exist.
However, in the simulated datasets MARS demonstrated to have a lower ability
than APLR and LightGBM to correctly indicate during the hyperparameter
tuning whether there are interactions or not.

4.3.2 YearPredictionMSD dataset
sec:msddata

This dataset is a subset of the Million Song Dataset found on http://labrosa.
ee.columbia.edu/millionsong/, prepared by T. Bertin-Mahieux (tb2332 ’@’
columbia.edu). It is a collaboration between LabROSA (Columbia University)
and The Echo Nest. The dataset consists of 515344 observations. The response
variable is the release year of a song, labeled year. There are ninety potential
predictors that measure attributes of the songs. 12 of them measure timbre
average and the remaining ones measure timbre covariance. All of the predictors
were used here. The authors of the dataset recommend using the first 463715
observations for training and the last 51630 observations for testing to avoid
the "producer effect" by making sure that no song from a given artist ends
up in both the training and test set [DG17]. This recommendation has been
followed here. Overall, the predictors only seem to be slightly correlated, with
the average absolute value of pairwise Spearman rank correlation between the
predictors in the training dataset being 0.11. Gamboost and glmboost were
unable to handle the full training dataset on the test computer because of too
high memory consumption. Therefore, the training datasets for gamboost and
glmboost were subsamples of the full training dataset consisting of 20000 and
30000 randomly chosen observations respectively.
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4.3.2.1 Hyperparameter values in the hyperparameter tuning
msd:tuning

It is possible that one could obtain slightly improved results for APLR, Light-
GBM and Random Forest by expanding the ranges of allowed hyperparameter
values in the hyperparameter tuning. This may be most likely for APLR since
two hyperparameter values in the final model may be sub-optimal, compared
to one for LightGBM and Random Forest. However, more extensive tuning
was not carried out because of the heavy computational load that this dataset
presented to the test computer regardless of which algorithm was tested.

1. APLR

a) max_interaction_level: Best value: 100.
b) min_observations_in_split: {500, 1000, 1500} tested. Best value:

1500. Since the best value equalled the maximum allowed value in
the grid search, it is possible that the model could improve slightly
with a higher value than 1500.

c) M : 2500. Best number of boosting steps selected by APLR: 2485.
This value is close to M . Hence it is possible that slightly better
results could be obtained with M being higher than 2500.

d) v: 0.5.

2. LightGBM

a) n_estimators best value: 2969. Since this was close to the upper
limit of 3000 allowed for n_estimators in the hyperparameter tuning,
it is possible that slightly better results could be obtained with larger
values than 3000.

b) num_leaves best value: 12.

3. Random Forest

a) max_features best value: 0.5.
b) min_samples_leaf : {20, 50, 100, 500} tested. It was not possible

to test a value of 1 because this required more memory than the test
computer had. Best value: 20, which was the lowest value tested. It
is possible that a value lower than 20 would slightly improve results.

4. MARS

a) max_degree: {1, 2, 3, 4, 5} tested. Best value: 4.
b) max_terms: {10, 50, 100} tested. The value 150 was also tested

with max_degree = 4. Best value: 100 and 150 gave the same
result.

5. gamboost

a) mstop best value: 4216.
b) nu: 0.1.

6. glmboost

a) mstop best value: 4350.
b) nu: 0.1.
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4.3.2.2 Test results
msd:results

Table 4.6 shows test results for the YearPredictionMSD dataset.

Algorithm MSE R-squared
LightGBM 80.06 0.3208
APLR 82.25 0.3033

Random Forest 83.60 0.2947
MARS 86.19 0.2686

gamboost 87.01 0.2615
glmboost 90.72 0.2297

Table 4.6: Test results for the YearPredictionMSD dataset. table:msd

LightGBM performed best on this dataset, slightly ahead of APLR and Random
Forest. APLR predicted marginally better than Random Forest. MARS was
somewhat worse than APLR. The best values from the hyperparameter tuning
for max_interaction_level in APLR (best value of 100), for num_leaves in
LightGBM (best value of 12) and for max_degree in MARS (best value of 4)
indicate that there are interactions with some depth in the YearPredictionMSD
dataset. In light of this it is a bit surprising that gamboost almost matched
the predictiveness of MARS, since gamboost does not automatically handle
interactions and because it was trained on a small subset of the data. Glmboost
had the worst performance, indicating that there are non-linear relationships in
the data.

4.3.3 Individual household electric power consumption dataset
sec:electricdata

This dataset is available under the “Creative Commons Attribution 4.0
International (CC BY 4.0)” license. The dataset was created by Georges Hebrail
(georges.hebrail ’@’ edf.fr), Senior Researcher, EDF R&D, Clamart, France,
and Alice Berard, TELECOM ParisTech Master of Engineering Internship at
EDF R&D, Clamart, France [DG17].

The dataset consists of 2075259 observations. Each observation is a
measurement of the electric power consumption in one household located
in Sceaux, France. Approximately 1.25% of the observations contain
missing measurements. These observations are dropped here. There are no
recommendations in [DG17] with respect to which variable should be used
as the response and which variables should be used as predictors. Here,
sub_metering_3 was selected as the response variable. It measured the electric
power consumption by an electric water-heater and an air-conditioner. The
following predictors were used:

1. global_active_power. Measures household global active power.

2. global_reactive_power. Measures household global reactive power.

3. voltage. Measures voltage.

4. global_intensity. Measures household global current intensity.
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5. sub_metering_1. Measures the electric power consumption by the
kitchen.

6. sub_metering_2. Measures the electric power consumption by the
laundry room.

The data was randomly split into training and test datasets containing 60% and
40% of the observations respectively. There seems to be some correlation among
the predictors because the average absolute value of pairwise Spearman rank
correlation between the predictors in the training dataset is 0.28. Gamboost and
glmboost were unable to handle the full training dataset on the test computer
because they used too much memory. Consequently, 30000 randomly chosen
observations were sampled from the full training dataset. These observations
were used as the training dataset for gamboost and glmboost models.

4.3.3.1 Hyperparameter values in the hyperparameter tuning
el:tuning

As in the case of the YearPredictionMSD dataset (see 4.3.2.1), it is possible
that one could obtain slightly improved results for APLR, LightGBM and
Random Forest by expanding the ranges of allowed hyperparameter values in the
hyperparameter tuning. This was not done because of the heavy computational
load that it would present to the test computer.

1. APLR

a) max_interaction_level: Best value: 100.
b) min_observations_in_split: {100, 500, 1000} tested. Best value:

500.
c) M : 3500. Best number of boosting steps selected by APLR: 3500.

It is possible that slightly better results could be achieved with a
higher M .

d) v: 0.5.

2. LightGBM

a) n_estimators best value: 1769.
b) num_leaves best value: 124. This is close to the upper limit of

128 that was allowed in the hyperparameter tuning. Slightly better
results could potentially be achieved by increasing the limit.

3. Random Forest

a) max_features best value: 0.75.
b) min_samples_leaf : {20, 50, 100, 500} tested. Best value: 20. The

best value is the lowest value that was tested. Perhaps a value lower
than 20 would give slightly better test results.

4. MARS

a) A preliminary grid search was done withmax_degree in {1, 2, 3, 4, 5}
and max_terms in {10, 50, 100}. The results indicated that a
higher max_degree could be beneficial. The second grid search
gave better results and was done with max_degree in {6, 7, 8, 9}
and max_terms = 75.
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b) Best values were 8 and 75 for max_degree and max_terms
respectively.

5. gamboost

a) mstop best value: 5000.
b) nu: 1.0. Lower values of nu starting from 0.1 were attempted in

order to get a best value for mstop lower than the maximum number
of boosting steps (5000). However, even with a nu of 1.0 the best
value for mstop remained at 5000. Whether nu was 0.5 or 1.0, the
predictiveness of the model was almost not affected by the change.

6. glmboost

a) mstop best value: 4998.
b) nu: 1.0. The value ended up being 1.0 for the same reasons as in

the gamboost model.

4.3.3.2 Test results
el:results

Table 4.7 shows test results for the Individual household electric power
consumption dataset.

Algorithm MSE R-squared
LightGBM 16.06 0.7744

Random Forest 16.12 0.7736
APLR 17.60 0.7528

gamboost 21.41 0.6993
mars 24.65 0.6538

glmboost 30.78 0.5679

Table 4.7: Test results for the Individual household electric power consumption
dataset. table:electric

LightGBM and Random Forest performed best on this dataset and were very
close to each other in terms of predictiveness. This was the only dataset tested
in this paper where Random Forest predicted better than APLR. However,
APLR was only slightly behind and APLR predicted better than the other
parametric algorithms. The best values from the hyperparameter tuning for
max_interaction_level in APLR (best value of 100), for num_leaves in
LightGBM (best value of 124) and for max_degree in MARS (best value of 8)
indicate that there are interactions with high depth in this dataset. In fact, this
dataset seems to have higher interaction depths than any of the other datasets
that have been tested in this paper. It is therefore surprising that gamboost
beat MARS on this dataset, since gamboost does not automatically handle
interactions and also because gamboost was trained on a small subset of the
data. Glmboost was the worst performer, likely due to non-linear relationships
in the dataset.
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CHAPTER 5

Conclusion and further work

sec:fifth
In this thesis a new regression algorithm, Automatic Piecewise Linear Regression
(APLR), has been introduced. The algorithm is interpretable and automatically
handles non-linear relationships, variable selection and interactions.

The test results in Chapter 4 on simulated data indicate that APLR has a
predictiveness that is similar to other parametric algorithms that automatically
handle variable selection and non-linear relationships in the special case of an
additive and non-linear true model. In this scenario, these parametric algorithms
were better than the tree based algorithms, but the latter were still able to
predict reasonably well.

The test results also indicate that APLR’s predictiveness in scenarios where
interaction terms are relevant is competitive with Random Forest and better
than the predictiveness achieved by the other parametric algorithms. While
MARS handled a particular simulated scenario of interactions in the case of
uncorrelated predictors better than the other algorithms tested in this paper,
LightGBM and APLR were not far behind. In a similar simulated scenario
when the predictors were correlated instead of uncorrelated, LightGBM, APLR
and Random Forest were able to fit predictive models while MARS and the
remaining parametric algorithms failed to fit models that could predict the
response. APLR predicted better than Random Forest on all simulated datasets.

From the test results on real datasets, one can argue that APLR was
competitive with Random Forest on predictiveness and better than the other
parametric algorithms that were tested in this paper. These datasets seem to
contain interactions between the predictors and the response, but the depth
of interactions seems to vary between the datasets, ranging from a relatively
low depth in the Auto MPG dataset (4.3.1) to a high depth in the Individual
household electric power consumption dataset (4.3.3). The pairwise correlation
between predictors in those datasets also varied, being relatively low in the
YearPredictionMSD dataset (4.3.2) and highest in the Auto MPG dataset.
These dissimilarities between the real datasets may increase the robustness of
the conclusions made from the test results, because a broader range of scenarios
are tested.

APLR’s predictiveness relative to the tree-based algorithms on the datasets
tested in this thesis was best when there were no interactions and worsened as
the depth of interactions increased. Only in the Individual household electric
power consumption dataset, which likely has interactions with high depth
judging by the best hyperparameter values for APLR, LightGBM and MARS,
did Random Forest predict slightly better than APLR.
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Considering that APLR is interpretable, unlike the tree based algorithms,
one can argue that based on the test results in Chapter 4, APLR can reduce
the loss in predictiveness when increasing interpretability.

Regarding future work, it is possible to do more tests to ascertain when APLR
predicts well relative to other algorithms and when it does not. In this thesis
some simulated scenarios have been tested, such as non-linear relationships,
additive versus non-additive relationships and correlated versus uncorrelated
predictors. In addition APLR was tested on three real datasets with different
attributes. However, the interactions that were simulated in the non-additive
scenarios were of the same type (Euclidean distance between predictors). It
may be a good idea to test other kinds of interactions. Another task for further
work related to interactions could be to more thoroughly test the effect that
interaction depth has on APLR’s predictiveness relative to tree-based methods.
In addition, APLR could be tested on more real datasets.

In this thesis the focus has been on regression modeling. An area for
further work could be to create a classifier based on APLR that can handle
multi-class problems. Methods for extending MARS to do classification are
mentioned in [HTF09, sec 9.4.3]. These methods can probably also be applied
to extend APLR to do classification. One such method is to, for each class,
train a regression model having a 0/1 indicator response variable that indicates
whether observations belong to the class (response variable has a value of 1) or
not (response variable has a value of 0). Classification can then be made to the
class with the largest predicted response value.

Another area for potential future work could be to create a regression
algorithm that does Automatic Smoothing Spline Regression instead of
Automatic Piecewise Linear Regression. The test results in Chapter 4 showed
that gamboost, doing smoothing spline regression, performed well in additive
settings without interactions. However, gamboost does not automatically handle
interactions. In addition the implementation of gamboost is not memory efficient.
It may be possible to overcome those limitations by implementing smoothing
spline regression in a way that is more similar to the implementation of APLR.
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