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Abstract 
 

Background: Novartis submitted their health technology assessment in 2019 to the Norwegian 

Medicine Agency (NOMA), however, in 2020, NOMA discarded the submission by Novartis 

as they deemed Voretigene Neparvovec (Luxturna) to not be cost-effective. However, in 2021, 

NOMA conditionally reimbursed Voretigene Neparvovec and approved it into clinical practice 

in Norway. The condition was that all eligible patients over a four-year period that was treated 

was to be included in a quality registry. When the four years will pass a new decision on the 

reimbursement would be made.  

 

Objective: To assess whether NOMA’s conditional reimbursement can be justified based on a 

value of information analysis. The value of information analysis can help us infer whether the 

additional information acquired over the four-year period can be regarded sufficient, what 

information is important and whether collecting this additional information is resource efficient.   

 

Method: A replication of the cost-utility analysis submitted to NOMA by Novartis was 

performed. For purposes to maximize the uncertainty a willingness to pay threshold of 

2,200,000 Norwegian Kroner was chosen. By running a Monte Carlo simulation to propagate 

uncertainty within the model the probabilistic sensitivity analysis could be stored. This output 

was collected and imported into RStudio to run a value of information analysis to collect EVPI, 

EVPPI, EVSI and ENBS results.  

 

Results: By setting the willingness to pay threshold at 2,200,000 Norwegian Kroner we 

estimated that Voretigene Neparvovec compared to best supportive care would result in an 

incremental cost-effectiveness ratio of 2,200,934 Norwegian Kroner per quality-adjusted life 

year gained. We aggregated the population EVPI to be 9,941,417 Norwegian Kroner. 

Parameters shown to cause a lot of variation within the model from EVPPI results were 

categorized as parameters concerning clinical efficacy and the natural history disease 

progression. EVSI results for clinical efficacy was estimated for a sample size range between 

10 and 500 patients, ENBS was negative for the complete interval and further research was 

therefore considered too potentially not be worthwhile.  

 

Conclusion: Based on the results acquired by value of information analysis, the conditional 

reimbursement of Voretigene Neparvovec cannot be deemed justified. However, as Voretigene 

Neparvovec seek to treat individuals diagnosed with gene mutated RPE65 associated inherited 

retinal dystrophies, which is considered an orphan disease different criterion could be 

considered when assessing whether Voretigene Neparvovec should be included in Norwegian 

clinical practice. Further research is required to reduce decision uncertainty to get accurate 

estimates from the economic evaluation. As there are few eligible patients in Norway, cross-

border co-operation could be considered.  

 

 

  



   III 

Acknowledgement 
 

I want to express my sincerest gratitude to my supervisor Natalia Kunst, PhD, for her 

encouragement, guidance, and invaluable feedback throughout the entire project. Her efforts 

have made this project an enjoyable experience where I have experienced a steep learning 

curve. 

 

Furthermore, I want to acknowledge a most genuine thanks to Hannah Douglass Hylin at 

Novartis Norway for making connections and showing interest, Beth Hancock from Source 

Health Economics London, for guidance on converting the transitional rates from the natural 

history study and David Epstein, PhD, University of Granada, for helping me reviewing the 

Jones et al. (2017) procedure.  

 

I wish also to express my appreciation to all fellow students and professors at the Joint Master’s 

degree program; European Master’s in Health Economics and Management especially within 

the specialization track, Economic Evaluation in Healthcare, your knowledge, cooperation, and 

cultural differences have added so much fun, color and made my studying enjoyable. I highly 

appreciate that I have witnessed the value of international connections while studying during 

the Covid-19 pandemic.  

 

A final and utmost personal thanks to my family and friends for their continuous and 

unconditional encouragement and support during my studies. Studying during the Covid-19 

pandemic has been rough; however, their moral boost has given me the endurance required to 

keep pushing on.  

 

 

Christoffer Nedberg 

Oslo, Norway, June 30th, 2022.  

 

  



   IV 

Table of contents 

ABSTRACT .............................................................................................................................................. II 

ACKNOWLEDGEMENT ........................................................................................................................ III 

LIST OF ABBREVIATIONS ................................................................................................................... VI 

LIST OF CONTENTS ............................................................................................................................. VII 

INTRODUCTION ..................................................................................................................................... 1 

1.1 CHARACTERISTICS OF RPE65 ASSOCIATED INHERITED RETINAL DYSTROPHIES ...................................... 1 

1.2 VORETIGENE NEPARVOVEC (LUXTURNA) REIMBURSEMENT PROCESS IN NORWAY ................................. 1 

1.4 PREVIOUS LITERATURE ................................................................................................................................. 3 

1.5 SCOPE, AIMS AND CONTRIBUTION ................................................................................................................ 4 

1.6 RESEARCH QUESTION.................................................................................................................................... 5 

1.7 THESIS STRUCTURE ....................................................................................................................................... 5 

BACKGROUND AND THEORETICAL FRAMEWORK ........................................................................ 6 

2.1 RPE65 ASSOCIATED INHERITED RETINAL DYSTROPHY ............................................................................. 6 

2.2 DIAGNOSIS OF RPE65 ASSOCIATED INHERITED RETINAL DYSTROPHY .................................................... 6 

2.3 ADMINISTRATION VORETIGENE NEPARVOVEC ........................................................................................... 7 

2.4 MEASURING THE EFFECT OF VORETIGENE NEPARVOVEC .......................................................................... 7 

2.5 ORPHAN DISEASES AND ITS ELEMENTS OF VALUE ....................................................................................... 9 

2.6 THE BASICS OF ECONOMIC EVALUATION .................................................................................................. 10 

2.6.1 Types of Costs-effectiveness analysis ................................................................................................. 11 

2.6.2 Perspective, costs, health effects and outcomes ................................................................................. 12 

2.7 MODELLING IN ECONOMIC EVALUATION ................................................................................................... 13 

2.8 UNCERTAINTY IN ECONOMIC EVALUATION ............................................................................................... 14 

2.9 VALUE OF INFORMATION ANALYSIS ........................................................................................................... 15 

2.10 TIME TO EVENT ANALYSIS ........................................................................................................................ 17 

2.11 TRANSITION PROBABILITIES IN MULTISTATE MODELS WITH COMPETING RISK .................................... 18 

METHOD ............................................................................................................................................... 19 

3.1 PICO ............................................................................................................................................................ 19 

3.2 MODEL STRUCTURE .................................................................................................................................... 19 

3.3 MODELLING GUIDELINES IN NORWAY ....................................................................................................... 21 

3.4 WILLINGNESS TO PAY THRESHOLD IN NORWAY........................................................................................ 22 

3.5 MODEL PARAMETERS .................................................................................................................................. 23 

3.5.1 Miscellaneous parameters .................................................................................................................. 23 

3.5.2 Treatment efficacy and NHx progression parameters ....................................................................... 24 



   V 

3.5.2 Adverse event and mortality parameters ............................................................................................ 27 

3.5.3 Utility parameters ................................................................................................................................ 28 

3.5.4 Costs parameters ................................................................................................................................. 29 

3.6 Half-cycle correction .............................................................................................................................. 29 

3.7 MODEL UNCERTAINTIES ............................................................................................................................. 30 

3.7.2 Probabilistic sensitivity analysis ......................................................................................................... 30 

3.7.3 Value of Information .......................................................................................................................... 30 

3.7.4 Scenario analysis ................................................................................................................................. 30 

3.8 MODEL VALIDATION ................................................................................................................................... 31 

3.8.1 Transition validation ........................................................................................................................... 31 

3.8.2 Outcome validation ............................................................................................................................. 32 

RESULTS ............................................................................................................................................... 34 

4.1 COST-EFFECTIVENESS – PLANE .................................................................................................................. 34 

4.2 COST-EFFECTIVENESS ACCEPTABILITY CURVE ......................................................................................... 35 

4.3 COST-EFFECTIVENESS ACCEPTABILITY FRONTIER.................................................................................... 35 

4.4 VALUE OF INFORMATION ............................................................................................................................ 36 

4.5 SCENARIO ANALYSIS ................................................................................................................................... 38 

4.5.1 Population EVPI Sensitivity ............................................................................................................... 39 

DISCUSSION.......................................................................................................................................... 41 

5.1 MAIN RESULTS ............................................................................................................................................. 41 

5.1.1 NOMA’s conditional reimbursement decision ................................................................................... 42 

5.1.2 Quantification of the expected value of additional information ....................................................... 43 

5.2 MODEL VALIDITY ........................................................................................................................................ 44 

5.2.2 Limitations ........................................................................................................................................... 44 

5.3 STRENGTHS .................................................................................................................................................. 45 

5.4 TRANSFERABILITY ...................................................................................................................................... 46 

5.5 POLICY IMPLICATIONS AND POSSIBLE FURTHER RESEARCH..................................................................... 46 

CONCLUSION ....................................................................................................................................... 48 

REFERENCES ....................................................................................................................................... 49 

APPENDIX ............................................................................................................................................. 55 

 

 

  



   VI 

List of abbreviations 
 
AIC: Akaike’s Information Criterion   

BIC: Bayesian Information Criterion  

BSC: Best supportive care  
CEAC: Cost-effectiveness acceptability curve 
CEAF: Cost-effectiveness acceptability frontier 

CBA: Cost-benefit analysis  
CEA: Cost-effectiveness analysis 
CUA: Cost-utility analysis  
CMA: Cost-minimization analysis 
ConVOI: Collaborative Network for Value of Information group  

DSA: Deterministic sensitivity analysis 
EVPI: Expected value of perfect information  

EVPPI: Expected value of partial perfect information  

EVSI: Expected value of sample information  

ENBS: Expected net benefit of sampling  

EMA: European Medicine Agency  
FDA: Food and Drug Administration  
HTA: Health technology assessments  
HRQoL: Health related quality of life  

HS: Health state  

HOD: Ministry of Health and Care Services  

ICER: Incremental cost-effectiveness ratio  

INMB: Incremental net monetary benefit  
ICER: Institute of Clinical and Economic Review  
IRD: Inherited retinal dystrophies  
KM: Kaplan-Meier  

LCA: Leber congenital amaurosis  
MLMT: Multi-luminance mobility test  

MSM: Multi-state model  
NOMA: The Norwegian Medicine Agency 
NMB: Net monetary benefit  
NIPH: National Institute of Public Health  
NICE: National Institute of Clinical Excellence  
NOK: Norwegian Kroner  
NHx: Natural History 

PSA: Probabilistic sensitivity analysis  
PICO: Patients, intervention, comparator, and outcome  
QoL: Quality of Life  
QALY: Quality adjusted life years  
RRR: Relative risk reduction 
RCT: Randomized controlled trial  
SE: Standard Error  

SD: Standard Deviation  

SAVI: Sheffield Accelerate Value of Information  

VOI: Value of information analysis  
WTP: Willingness to pay 
  



   VII 

List of contents 
 

Tables 
 

Table 3.1: Health state description 

Table 3.2: Norwegian threshold values 

Table 3.3: Miscellaneous parameters 

Table 3.4: Transition count Voretigene Neparvovec (VN) & BSC arm 

Table 3.5: Transition probability matrices for Voretigene Neparvovec (VN) & BSC arm 

Table 3.6: Transition probabilities VN & BSC arm for PSA usage 

Table 3.7: AIC/BIC values NHx data 

Table 3.8: NHx transition intensity rates – Gompertz 

Table 3.9: Probability adverse event 

Table 3.10: Age specific mortality probabilities 

Table 3.11: Utility weights 

Table 3.12: Cost’s parameters 

Table 4.1: Base-case cost-effectiveness results 

Table 4.2: Scenario analysis: Weibull distribution 

Table 4.3: Scenario analysis: 50 years constant treatment effect 

Table 4.4: Scenario analysis: Acaster Lloyd vignette study QALY weights 

 

Figures 
 

Figure 2.1: Visual cycle RPE65 

Figure 2.2: Graphical representation of the administration of Voretigene Neparvovec 

Figure 2.3: Lightning conditions 

Figure 2.4: Example of MLMT course design 

Figure 2.5: MLMT change score 

Figure 2.6: Simplified Economic Evaluation Schematic 

Figure 2.7: Markov Model 

Figure 3.1: Markov model structure 

Figure 3.2: Transition Matrix 

Figure 3.3: Markov traces 

Figure 4.1: CE-plane 

Figure 4.2: CEAC 

Figure 4.3: CEAF 

Figure 4.4: Population EVPI 

Figure 4.5: EVPPI 

Figure 4.6: Clinical Efficacy population EVSI 

Figure 4.7: Population EVPI over different time horizons 

 

  



   1 

Introduction 
 

In this first chapter, we will introduce the characteristics of the disease concerned in this thesis, 

inherited retinal dystrophies (IRD) caused by RPE-65 gene mutations and the reimbursement 

of Voretigene Neparvovec (Luxturna) in Norway will be given. Furthermore, the chapter 

presents uncertainties, ethical and monetary implications within the topic serving as a 

foundation for the scope and relevance of this thesis. Moreover, the research question will be 

outlined at the end of the chapter.  

 

1.1 Characteristics of RPE65 associated inherited retinal dystrophies 
 

Inherited retinal dystrophies can be considered an umbrella-term covering the spectrum of gene 

mutations causing rare vision impairment conditions (Chung et al., 2019).  RPE65 associated 

gene mutations can be therefore classified as several clinical diseases. 

 

RPE65 associated IRD develops between birth and the age of 5 years and causes vision 

impairment progressively progressing to blindness. The disease is characterized by severe 

retinal deterioration whereby patients diagnosed with RPE65 associated IRD experiences visual 

deficiency, which affects the ability to see in the dark, leads to lack of color vision, and a 

gradually constriction of their peripheral sight and visual acuity. Chung et al. (2019) examined 

the natural history of the disease and concluded, although there was some variation among 

patients, that the gradual worsening of vision loss started around age 15-20 and subsequently 

progressed rapidly after the age of 20. Hence, RPE65 associated IRD can be considered a severe 

health condition with substantial impact on the individual health related quality of life (HRQL) 

(Chao, Burr & Pennesi, 2019).  

 

The severity of the disease is supported by The Norwegian Medicine Agency (NOMA) absolute 

shortfall calculations. The absolute shortfall for patients with RPE65 associated IRD is 

estimated to be 28,2 quality adjusted life years (QALY). The absolute shortfall calculations 

would be defined as the difference between the expected QALYs in the general population, and 

the expected total QALYs for the population with RPE65 associated retinal dystrophy, with 

best supportive care in Norway (NOMA, 2019).  

 

However, the prevalence associated with retinal dystrophy caused by mutations in the RPE65 

gene worldwide is low. Gene mutations in the RPE65 gene can both cause Retinitis pigmentosa 

and Leber congenital amaurosis. Published literature suggests that 2.5 million patients are 

suffering from IRD worldwide, whom of 21% to 24% suffer from retinitis pigmentosa and 2.5% 

to 22% suffer from Leber congenital amaurosis (LCA) (Aoun et al., 2021; Chao, Burr & 

Pennesi, 2019). In Norway, a total of eight people has been identified with this condition, and 

it is estimated that there are between 1,000 and 2,000 individuals in the United States. In the 

UK, an estimated prevalence is tough to be around 57 to 564 individuals (NOMA, 2019; NICE, 

2018). Consequently, RPE65 associated IRD can be considered an orphan disease (Franco, 

2012).  

 

1.2 Voretigene Neparvovec (Luxturna) reimbursement process in Norway 
 

Luxturna gained Food and Drug Administration (FDA) approval on December 19, 2017, 

making it the first ever FDA approved gene therapy and the only available treatment for RPE65 
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associated IRD. The European Medicine Agency (EMA) followed with an approval on 

November 23, 2018 (Gao, Hussain & Weng, 2020).  

 

In 2019, Novartis submitted their technology appraisal for Luxturna in Norway with an 

economic evaluation of Luxturna compared to best supportive care which resulted in an 

incremental cost-effectiveness ratio (ICER) of 1,109,132 Norwegian Kroner (NOK) per QALY 

gained. However, in 2020, the National System for Managed Introduction of New Health 

Technologies decided that Luxturna should not be included in the Norwegian clinical practice 

based on NOMA’s cost-effectiveness analysis and recommendations. More specifically, 

NOMA changed some of the assumptions in the cost-effectiveness analysis of Luxturna 

submitted by the manufacturer and estimated an ICER of 2,374,253 NOK per QALY which 

exceeds the willingness to pay (WTP) threshold of NOK 825,000 per QALY gained, suggested 

to be used for the most severe diseases (SLV, 2019; HOD, 2015-16).  

 

As previously mentioned, Luxturna is considered an orphan-drug and its clinical efficacy is 

thus subject to uncertainty due to lack of data. The outcome of the health economic model 

would consequently rely on modelling assumptions. Some of the most important modelling 

assumption discrepancies gathered from NOMA (2019) is now highlighted below.  

 

In the cost-effectiveness evaluation, NOMA opted for different long-term treatment effect, 

relative risk reduction (RRR) and utility weights compared to the base-case analysis submitted 

by Novartis. NOMA had received 4 years of additional effectiveness data from the phase 3 

study. This showed that after these four years additional years, 5 out of 20 patients experienced 

deterioration. The long-term effect was thus considered to be speculative. While Novartis 

assumed a 50-year constant treatment effect, NOMA adjusted this to 15 years. However, it 

should be noted that the 15-year treatment effect also was arbitrarily chosen and therefore 

uncertain and that no empirical evidence for such assumptions existed. Novartis assigned the 

Voretigene Neparvovec-arm with a 25% RRR, because 25% of the retina is treated with 

Luxturna. NOMA adjusted this RRR to 50% to persevere some of the treatment effect. Novartis 

conducted a literature review to assign health related utility weights to their model- wherein no 

such values were collected for patients with RPE65 associated IRD. Novartis consequently 

decided that the utility weights in the literature should not be used in the health economic model 

because it was deemed unfit due to structural differences with the diseases in question. 

Eventually, Novartis opted for an expert elicited vignette study by Acaster Lloyd Consulting 

assigned by Spark Pharmaceuticals. However, NOMA had concerns regarding this study and 

decided to apply for utility values from both Brown et al. (1999) and Rentz et al. (2014), which 

were also used by the National Institute of Clinical Excellence (NICE) in their evaluation 

(NOMA, 2019; NICE, 2017).  

 

Although NOMA found Luxturna to be cost-ineffective and recommended against its approval, 

other countries such as the Unite Kingdom and Germany concluded that Luxturna was cost-

effective in their country specific settings and approved its implementation in clinical practice 

(Viriatio et al., 2020; Uhrmann, Lorenz & Gissel., 2020). 

 

One year after the decision of the National System of Managed Introduction of New Health 

Technologies to not implement Luxturna, NOMA reconsidered their evaluation and 

recommended to reimburse Luxturna. More specifically, the National System for Managed 

Introduction of New Health Technologies decided to give Luxturna a so-called conditional 

reimbursement, requiring that every treated individual was to be registered into a quality 

registry over a four-year period. After four years, NOMA would perform a new evaluation 
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using gathered additional evidence from the manufacturer and the decision about Luxturna’s 

reimbursement would yet again be evaluated.  

 

NOMA estimated that Luxturna would have a budget impact of around NOK 35,5 million per 

year, in the first two years. And NOK 8,8 million in the third and fourth year. Accumulated, the 

total cost of IRD would surpass 97,7 million NOK. This estimation was based on the incidence 

and assumed prevalence of LCA in Norway as there are 8 eligible patients with and incidence 

rate between 0.5 and 1 new patient per year.  

 

1.4 Previous literature 
 

As Luxturna gained FDA’s and EMA’s approval in 2017 and 2018, respectively, available 

clinical evidence and literature is still limited. To the authors knowledge, the most relevant 

clinical trials, as well as previously performed CEAs are now briefly outlined below.    

 

In the phase I trial by Maguire et al. (2009), twelve patients were included to examine 

Luxturna’s safety and efficacy. The patients age ranged from 8 to 44 years and no patients 

experienced any severe adverse event. All included patients showed improvement in retinal 

function; however, the effect was observed best in younger patients.   

 

The phase III trial by Russell et al. (2017) compared treatment effectiveness of Luxturna 

compared to no treatment. A total of 31 patients with a mean age of 15.1 years were included 

in this trial, 21 were given Luxturna and ten patients were assigned to no treatment. Whereas 

one patient from each group withdrew after consent. Effectiveness was compared at 30, 90, 180 

and 365 days after administration. Primary endpoint was multi-luminance mobility test 

(MLMT) change (i.e., change in luminance (lux) score, see Figure 2.3) whereas a positive 

change indicates passing the MLMT at a lower light level. 13 out of 20 participants in the 

intervention group passed the MLMT at the lowest tested level, non from the control group. 

The most common adverse events experienced were mostly mild and transient and included 

elevated intraocular pressure, cataract, and retinal tear.  

 

As for previously conducted CEAs, five unique analyses are recognized. The Institute of 

Clinical and Economic Review (ICER) developed a two-state Markov model. The two possible 

states were ‘alive’ and ‘dead’. The model outcomes were visual acuity, visual field, and quality 

of life. Age-related mortality rates allowed for the modelling of life expectancy. A US health 

care system perspective was used. The analysis resulted in an ICER of $643.813 per QALY 

gained in a US healthcare system perspective, and of $480.130 per QALY gained in a societal 

perspective (ICER, 2018).  

 

Zimmermann et al. (2019) developed a decision-analytical model and performed a CEA. The 

results they obtained were in line with the results presented by the ICER Institute mentioned 

above.  

 

Uhrmann et al. (2020) had a similar modeling approach as ICER Institute and Zimmermann et 

al. as well, however, they performed their CEA from a German perspective. Luxturna led to an 

additional incremental QALY gain of 4.82 which resulted in a ICER of €156,853 per QALY. 

Based on these results, the authors stated that Luxturna will have important implications for 

future gene therapies and thus considered it to be cost-effective from a societal perspective over 

a lifetime horizon.  
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Johnson et al. (2019) developed a decision-analytical model with 5 health states. The authors 

informed transition probabilities for Luxturna using data on treatment efficacy progression. 

Transition probabilities in the standard of care-arm were based on natural history data. 

Furthermore, they used an expert elicitation for utility weights. Patients were modelled trough 

a lifetime horizon with 1000 Monte Carlo simulations. Several sensitivity analyses were 

performed, resulting in a variety of ICER. However, at a WTP threshold of $150.000, Luxturna 

was suggested cost-effective. 

 

As with Johnson et al. (2019), Viriatio et al. (2020) utilized a Markov state transition model 

with five disease specific health states. A lifetime horizon with 1 year cycle lengths was 

implemented. The model consisted of two phases; the initial states based on transition specific 

count data from the phase III trial by Russell et al. (2017) and a long-term phase with multistate 

survival data from the natural history data by Chung et al. (2019). Quality of life (QoL) data 

was elicited from specialists with both EQ-5D and HUI3 instruments. As a PSA they ran 10,000 

iterations resulting in an incremental QALY gain of 6.4 and an ICER of £95,072 per QALY 

gained. Because of significant improvement from standard care, Luxturna was ought to be 

eligible for WTP threshold valuation under the NICE highly specialist technology framework 

and was thus inferred cost-effective.  

 

As portrayed, several modelling approaches has been previously performed. There has been 

some conflicting inference whether Luxturna is considered cost-effective or not. This is a result 

of the respective countries policies or which perspective the researchers have chosen. However, 

going forward with this thesis, a model based on clinical data progression with multiple states 

as Johnson et al. (2019) and Viriatio et al. (2020), will be utilized.  

 

1.5 Scope, aims and contribution  
 

All decisions are subject to uncertainty. This is also the case when conducting a cost-

effectiveness analysis to determine the optimal medical intervention. Value of information 

analysis (VOI) is a set of methods used to quantify uncertainty. VOI allows researchers to 

evaluate the uncertainty in the decision made, based on the currently available evidence and to 

determine if the currently available evidence is sufficient to make the decision, or if there is a 

high value in collecting additional evidence before making the decision (Claxton & Sculpher, 

2006). VOI results helps to determine the need and focus of future research studies to improve 

decision-making. 

 

When assessing a new health technology, monetary criterions are not always exhaustive. When 

deciding on an individual’s health, there would always be ethical and equity implications to 

account for. Ideally, health technology assessments and its constraints should capture these 

aspects. Whether these constraints are always followed is however debatable. Health 

technologies used to treat rare disease will naturally serve different prerequisites. As the first 

gene-therapy, Luxturna could contribute to technological advancement and as it is the only 

available treatment option for patients with IRD, it could ensure mental stability in the form of 

hope (Lakdawalla et al., 2018). Moreover, the health technology assessment framework should 

work as a consistent and reliable guideline for decision makers to make technology appraisals. 

The framework should thus, ought to be as exhaustive as possible to safeguard patients from 

both technical modelling discrepancies, but also – more interpersonal inconsistencies. This is 

especially relevant for technologies that is considered an orphan drug as the model might be 

subject to considerably uncertainties, the price would likely be considered high and both 
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patients and caretakers tend to have strong emotions regarding whether or not the technology 

are implemented within clinical practice.  

 

Given that Luxturna is a novel and orphan drug with a scarcity of available evidence of 

effectivity, it is important to highlight the need to evaluate the decision uncertainty in the health 

economic evaluation of Luxturna. Especially, as there are to the authors knowledge no previous 

studies that have performed a value of information analysis on implementation of Luxturna in 

clinical practice will be conducted. A VOI analysis can thus help identify parameters that drive 

the uncertainty and should be targeted in further research. 

 

Consequently, VOI analysis can be used to examine the evidence available at the time of 

Luxturna’s cost-effectiveness evaluation in Norway and to quantify the expected value of 

additional information that could be gathered if NOMA would recommend a conditional 

reimbursement and whether this is justified by the estimated budget impact. To infer whether 

the conditional reimbursement could be vindicated, a prerequisite for this study is to assume 

that that I have the same information as NOMA had been portrayed back in 2019 when the 

reimbursement application form Novartis was provided to NOMA.   

 

1.6 Research question 
 

The evidence on Luxturna’s effectiveness is limited and it is an expensive treatment with a list 

price of NOK 7,1 million for two injections. A VOI analysis has the potential to help improve 

decision-making on the implementation of Luxturna in clinical practice. 

 

The research question of this thesis is as follows:  

 

“Does value of information analysis support NOMA’s decision to gather more evidence on 

Luxturna for patients with RPE65 associated IRD, eligible to be treated with Voretigene 

Neparvovec (Luxturna) in Norway before providing Voretigene Neparvovec (Luxturna) with a 

full reimbursement and implementing it in the clinical practice?” 

 

1.7 Thesis structure 
 

This thesis consists of five additional chapters. Chapter one has served as an introduction to the 

problem framework which this thesis operates within. Chapter two outlines further background 

information on the disease in question and the theoretical framework surrounding economic 

evaluation. Chapter three explains the applied method referring to the theory outlined in 

Chapter two. Chapter four presents the result from the performed economic evaluation, 

including both the cost-effectiveness analysis and the value of information analysis. Chapter 

five discusses the findings, study limitations, and potential policy implications. Finally, Chapter 

six provides a concluding remarks, as well as an answer to the research question.   
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Background and Theoretical framework 
 

In this chapter, relevant information on gene mutated RPE65 associated IRD, the disease 

concerned in the present study will be provided. Furthermore, we outline the theoretical 

framework for the decision-analytical methods used in this thesis will be presented.  

 

In Chapter 2.1 to 2.4, we provide some information on how RPE65 gene mutation and its impact 

on the visual cycle, and how clinicians can effectively and accurately diagnose RPE65 

associated IRD, how Voretigene Neparvovec is administrated and possible ways to measure the 

effect of Voretigene Neparvovec through MLMT scores. Chapter 2.5, we provide insights on 

the characteristics of diseases that are classified as orphan diseases. In chapter 2.6 to 2.11, we 

provide the theoretical framework for health economic evaluation and theoretical concepts 

applied in the present thesis.  

 

2.1 RPE65 associated Inherited Retinal Dystrophy 
 

The RPE65 gene can be found on chromosome 1 and it specifically codes the retinal pigment 

epithelium-specific 65 kDa protein (Aoun et al., 2021). The RPE65 gene is what affects the 

visual cycle through a series of processes. More specifically, when the eye is exposed to light 

it is converted into electrical signals transmitted to the brain. When the light reaches the 

photosensitive pigments in the retina it converts 11-cis-retinal to all-trans-retinal. RPE65 is then 

acting as an isomerase (i.e., converting one isomer to another) that re-converts all-trans-retinal 

back to 11-cis-retinal making it ready for a new photoisomerization (i.e., absorption of light) 

event (Ciulla et al., 2020; Ripamonti et al., 2014). A graphical presentation of the visual cycles 

is presented in Figure 2.1 below. RPE65 is thus essential for regeneration of the visual 

pigmentation after exposure to light. A non-functioning RPE65 gene will not respond to the 

exposure of light and hence leave the individual with visual impairment. 

 

 
Figure 2.1: Visual cycle RPE65 (Hollander et al., 2008).  

 

2.2 Diagnosis of RPE65 Associated Inherited Retinal Dystrophy 
 

To be eligible for treatment with Voretigene Neparvovec, mutations in the RPE65 must be 

biallelic (i.e., in both alleles) and the patients must have viable photoreceptors (NOMA, 2019). 

As there are more than 300 variations of RPE65 mutations identified, diagnosis is key to 

distinguish viable patients. Although clinicians can attempt to establish the diagnosis using 

some specific criteria, gene testing is the only procedure that is considered a reliable way to 

diagnose RPE65 associated IRD with certainty. However, gene testing is associated with high 
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cost as it requires avant-garde technology. Nevertheless, segregation studies are seen as the 

most appropriate to conduct alongside genetic testing since by testing all relevant relatives, 

determining the pathogenicity is considered eased (Aoun et al., 2021).   

 

2.3 Administration Voretigene Neparvovec 
 
Voretigene Neparvovec is administrated under general anesthesia with a subretinal injection of 

1,5 x1011 vg Voretigene Neparvovec for a total of subretinal volume of 0,3 mL on the worst 

functioning eye or based on patients’ preferences. Voretigene Neparvovec is a genetically 

modified non-replicating adeno-associated virus serotype 2 (AAV2) vector containing RPE65 

cDNA. The vector is purified, and a surfactant is added to prevent subsequent vector loss during 

storage and administration. Patients receive 1 mg/kg of prednisone orally for 7 days, however 

at a maximum dose of 40mg/day regardless of weight, whereas the prednisone is given three 

days before the procedure. The second eye are treated after 6 to 18 days after the first initial 

treatment. A standard vitreoretinal technique for subretinal surgery is utilized (i.e., the surgeon 

performs a vitreous detachment) including a three-port pars plana posterior cortical vitrectomy 

(Russell et al., 2017; NOMA, 2019; Ciulla et al., 2020; Aoun et al., 2021). 

 

 
Figure 2.2: Graphical representation of the administration of Voretigene Neparvovec. 

 

2.4 Measuring the effect of Voretigene Neparvovec  
 
Visual field and visual acuity measures have long been widely recognized as suitable visual 

predictors of mobility performance. These measures construct the patient’s mobility 

performance as a percentage of the preferred walking speed on a controlled surface. However, 

Chung et al (2016) argue that these tests have been subject to heterogenic residuals. As there is 

little evidence on the effect on mobility performance during varying lightning conditions, to 

account for this, Chung et al (2016) developed the multi-luminance mobility test. 

 

Contrary to other mobility tests which is performed on controlled surfaces, patients assigned 

with multi-luminance mobility test scores are informed to follow designated paths indicated by 

arrows throughout the course as they are trying to avoid hurdles on or alongside their trace, 

additionally they must keep an eye out for elevated steps and finally to identify their exit. A 

visual example of such course is provided in Figure 2.4. This is repeated several times, each 

time with different lightning conditions listed in Figure 2.3. Furthermore, which eye the patients 
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can use will be differing whereas one is patched and finally, with both un-patched (Chung et 

al., 2016)  

 

 
Figure 2.3: Lightning conditions (Chung et al., 2016). 

 
Patients who are tested for multi-luminance test score are to be tested three times over the course 

of one year to identify any change. Twelve distinct configurations of the course were developed, 

and the assigned course was randomized before each visit (Chung et al., 2016) 

 

 
Figure 2.4: Example of MLMT course design (Chung et al., 2016). 

 

Independent graders are used to assess when the participant passes or fail the course. To pass, 

the patients could maximum commit three fouls (i.e., touching obstacles, falling etc.) to serve 

as a test of accuracy. Moreover, the course had to be done within a total time of 180 seconds. 

MLMT score are then being evaluated between the difference in baseline score, at the lowest 

light level passed, and the lowest light level passed at the last – one year visit (Chung et al., 

2016) 

 

 
Figure 2.5: MLMT change score (Chung et al., 2016). 
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2.5 Orphan diseases and its elements of value 
 

Much of the research is funded by pharmaceutical companies (DiMasi, Grabowski & Hansen, 

2016). Given that these companies invest substantial resources on research and development of 

new drugs, they often prefer to invest in the development of drugs that can be expected to 

provide the highest return on investment. Consequently, pharmaceutical companies prefer to 

invest in developing drugs that would treat, for example, high-prevalence diseases, diseases 

with high severity and diseases with few treatment options. Given the high costs these new 

drugs are protected by patents to ensure that the companies receive the return on investment in 

developing new drugs. The general term of a patented drug is 20 years. By the time the 

companies have discovered, developed, tested, and registered their new product an estimated 

cost between $60 million and $2.6 billion has accrued (van der Gronde, Uyl-de Groot & Pieters, 

2017). After the new compound has been marketed the company has only a limited time left to 

recoup a profit from sales while the product still has monopoly because of the patent protection. 

The income is only affected by two factors, volume, and price. Depending on the target 

population the price is likely to decrease or increase (Gregson, Sparrowhawk, Mauskopf & 

Paul, 2005).  

 

Orphan drugs is a classification of a set of health technologies which aim is to benefit patients 

with rare diseases. As already established, pharmaceutical industry is interested in investing in 

interventions that have high potential for return on investment. Consequently, orphan drugs are 

not prioritized because the number of people to be treated is small. There is no clear-cut 

definition to the term “rare disease”, however both prevalence and severity are common factors 

(Franco, 2012). Furthermore, as outlined in Franco (2012), the European Union defines an 

orphan disease as “a life threatening or chronically debilitating condition affecting no more 

than 5 in 10,000 persons in the community…” while the United States defines it only on the 

basis of prevalence, “a disease or a condition, which affects fewer than 200,000 patients in 

US”. 

 

Hughes-Wilson et al (2012) states that the legislation from 2000 (i.e., EC No.141/2000) has 

been widely considered a success. Which is an orphan drug legislation to incentivize orphan 

drug discovery which includes accelerated reimbursement processes, additional market 

exclusivity and additional research funds. However even though a company acquire orphan 

designation, the drug can fail in development (Franco, 2012; Joppi, Bertele & Garattini, 2013). 

As more orphan drugs are being approved and included in the market, patients with previously 

unmet need gains thus a possibility to get treated. Even though the drug itself initiates high 

costs, the overall budget impact could sometimes be considered relatively low since orphan 

drugs seek to cover diseases with low prevalence. However, with the increased focus on orphan 

drugs, governments and decision makers are worried for the future impact it may pose. More 

specifically, given that the resources are scarce, it is essential to allocate them with caution. 

Luzzatto et al. (2018) gives merit to possible solutions between the government and 

manufacturer such as market access agreements as risk sharing and performance-related 

payments. 

 

However, monetary thresholds may not be an exhaustive criterion when considering orphan 

drugs. Since the price of the drug can be significant, it may not be possible to meet a cost-

effectiveness threshold established for treatments of more common diseases. Health technology 

assessments (HTA) bodies should thus strive for a pre-determined, orphan drug-specific 

framework when considering reimbursement dossiers. Lakdawalla et al (2018) has defined 
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other elements of value than only cost-effectiveness which could be taken into consideration 

when performing economic evaluations.  

 

As beforementioned, IRD with associated RPE65 mutations has substantial impact on an 

individual’s life. A study by Taylor et al. (2017) suggests that individual place a substantially 

higher weight on improvements for worse health states than health states which are less severe. 

Moreover, Lakdawalla et al., (2018) argues that patients will implicitly gain a benefit in terms 

of value of hope. Even though the effectiveness of the intervention is surrounded by uncertainty, 

people suffering from the disease are more willing to take the chance for an improvement in 

their health-related quality of life. Hope also relates to the fact that a new treatment may be 

their only real option. As there are currently no other effective treatments for patients with 

RPE65 associated IRD, Luxturna represents the only drug that has the potential to treat this 

disease. Furthermore, rarity and unmet need can be considered closely related to equity. From 

a patient with a rare disease stance, they can feel alienated and unfairly treated, if viable 

treatments for them are considered unwarranted based on just costs. Moreover, as the first 

approved gene therapies, Luxturna poses substantial impact on future technological 

advancements. By approving novel drugs, researchers can gather evidence and gain further 

knowledge in how this technology works such that the current approved drug could clear the 

path of new innovative drugs in the future (Lakdawalla et al., 2018). 

 

2.6 The basics of Economic Evaluation  
 

The Norwegian healthcare system is a universal system funded through taxation (Ringard, 

Sagan, Saunes & Lindahl, 2013). Thus, allocation of resources should arguably be distributed 

equally and non-discriminatory. For this reason, as public health authorities operate within a 

finite health care budget, all new treatments must undergo a cost-effectiveness evaluation and 

only those treatments that are considered cost-effective should be approved and included in 

clinical practice. Cost-effectiveness analysis is a type of full economic evaluation examining 

costs and effects of at least two interventions. Cost-effectiveness is something which should 

then be endeavored. By opting for one alternative, you explicitly forgo the second option, in 

economic theory this is referred to as opportunity costs. When considering several health 

technologies this opportunity cost may create a gap between what is medically possible, and 

what is economically reasonable. The purpose of economic evaluation is to identify the 

interventions which diminish this gap. Moreover, it possesses two distinct features. Economic 

evaluations aim to estimate both costs and health effects associated with the interventions 

considered. The second characteristic is that economic evaluation scrutinizes and compare 

choices (Drummond et al., 2015). Hence, it is crucial to understand that the choice of 

comparator and the economic evaluation assumptions is paramount, using different 

comparators and assumptions could result in contrasting results. 
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Figure 2.6: Simplified Economic Evaluation Schematic. 

 

2.6.1 Types of Costs-effectiveness analysis 

 

Depending on the type of health outcomes considered, four types of an economic evaluation 

can be distinguished. A brief outline of these four types is provided below.  

 

In CEA health outcomes are expressed in health natural units. Natural units in this case can be 

described as consequences with more natural impact. Examples of such natural units are life 

years, number of days with vision or numbers of days that the patient can work. The CEA is 

most applicable when a decision maker is to choose between interventions within a limited 

field. However, when assessing interventions on such specific endpoints it could fail to asses’ 

other aspects in the patient’s life because it forgoes all other implications from the intervention 

(Drummond et al., 2015). 

 

Instead of using natural units as health outcomes, a cost-utility analysis (CUA) utilizes a generic 

measurement of health. Such generic measurement is often measured in QALYs. Given that 

many economic evaluations use QALYs as the analyzed health outcome, the results can be 

compared across different studies, subpopulations, and if relevant across different disease and 

other settings. (Drummond et al., 2015). The concept of QALYs is further explained in Chapter 

2.6.2 below.  

 

CEAs and CUAs can be explained as research which seek to optimize the allocation of 

resources within an already existing and finite budget. However, in cost-benefit analysis (CBA) 

the research seeks to assess whether a budget should be increased. As with CUAs, CBAs utilizes 

effects in terms of generic measurements. The differentiation is that the CBA seeks to translate 

the effects into a monetary value. This could either be done by presenting the result as a ratio 

of costs to benefits or presenting the sum of costs and benefits (Drummond et al., 2015). 

 

When there are more than two viable options that are homogenous in terms of consequences a 

cost-minimization analysis (CMA), could be conducted. Thus, a CMA evaluates only the costs 

associated with the interventions considered. However, estimates are always subject to 

uncertainty which should make the researcher questioning whether such analysis is appropriate 

(Drummond et al., 2015). 
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2.6.2 Perspective, costs, health effects and outcomes 

 

Before collecting information about costs and effects the researcher should determine the 

perspective of the analysis. This is dependent on the analysis settings such as country and health 

system. For a societal perspective the researcher should collect information about all possible 

costs (both direct and indirect costs) associated with the interventions considered. When opting 

for a health care perspective, only direct costs and effects explicitly borne by the health care 

system should be accounted for (Brouwer & Koopmanschap, 1999; Drummond et al., 2015).  

 

As beforementioned, a QALY is a generic measure which can be compared across different 

diseases. The concept of a QALY is that it is a measure with a multi-dimensional perspective. 

A QALY considers both time and a valuation of each health state included in the decision-

analytical model, the valuation is thus based on the health-related quality of life in question. A 

QALY can take on a value in the range from zero to one, with zero representing the worst 

possible state, i.e., death, and one representing perfect health. For some cases, the QALY could 

be negative if the health state is considered worse than death (Weinstein Torrance & McGuire, 

2009; Drummond et al., 2015). 

 

As researchers often investigates interventions with future implications it is also important to 

adjust the results for time preferences. As both individuals and as societies we tend to prefer 

gains now, instead of sometime in the future. Discounting is often thought of as a strictly 

financial term and utilizes to present a monetary value in its net present form. However, this is 

not necessarily the case. As society we invest resources in health today to gain health benefits 

in the future. Discounting both costs and effects allows researchers to assess future gains in 

today’s valuation (Drummond et al., 2015). 

 

After gathering data on all the costs and effects, the result of an economic evaluation analysis 

is presented in form of an ICER. The ICER represents the incremental change in costs and 

effects when comparing the intervention to the comparator. By dividing the incremental costs 

with the incremental effects, hence – the ICER presents a measure which consists of costs per 

effect gained.   

 

𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 (𝐼𝐶𝐸𝑅) =  
𝐶𝑜𝑠𝑡𝑠 𝐴 − 𝐶𝑜𝑠𝑡𝑠 𝐵

𝐸𝑓𝑓𝑒𝑐𝑡𝑠 𝐴 − 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 𝑏
 

 

This allows decision makers to assess whether an intervention is cost-effective towards what 

society is willing to pay. The WTP threshold is thus a societal criterion based on what society 

deems an additional effect, or QALY is worth.  

 

The WTP threshold are thus varied due to pre-specified criteria. For instance, in Norway 

severity is one of the criteria that the WTP threshold is dependent on. This disease severity is 

calculated based on the absolute shortfall, i.e., how many quality-adjusted life years are lost 

due to early death or reduced quality of life due to sickness. While for diseases with the lowest 

severity suggested WTP threshold is NOK 275.000, for diseases with the highest severity this 

WTP increases to NOK 825.000 (HOD, 2015).  

 

Another way to present the results of an economic evaluation is in form of incremental net 

monetary benefits. Using the estimated incremental effects (e.g., QALYs) and incremental costs 

in addition to the WTP threshold, the incremental net monetary benefit (INMB) can be 

calculated (Briggs, Schulpher & Claxton, 2006). 
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𝐼𝑁𝑀𝐵 = (𝑊𝑇𝑃 ∗ ∆𝐸𝑓𝑓𝑒𝑐𝑡𝑠) − ∆𝐶𝑜𝑠𝑡𝑠 

 

2.7 Modelling in economic evaluation  
 

To make it possible for researchers to investigate whether an alternative intervention is superior 

to another intervention, which is often currently used in clinical practice, modelling techniques 

are often utilized. Modelling techniques makes it possible to determine health and cost 

consequences for interventions considered over a long perspective of time. This time is often 

referred to as the time horizon and should reflect the natural characteristics of the disease. The 

extrapolated parameters can then be iterated several times to account for any uncertainty in the 

estimates. In health economic modelling there are many types of decision analytical models, 

however two main ways to structure your model are through decision trees and Markov models.  

 

The decision tree will portray all the possible prognoses for a certain individual after a specific 

or several interventions. For each prognosis there is a pathway with a given probability which 

connects both costs and effects. This makes it possible for the researcher to calculate the 

expected value for each possible outcome. Decision trees suffer nevertheless under the 

limitation that everything that is happing in the model is given by a discrete instantaneous time 

periods. Furthermore, some diseases consist of an array of possible interventions and health 

states, a decision three could thus be immensely complicated. Implementing time dependencies 

such as, discounting and calculating the overall survival will thus be cumbersome (Drummond 

et al., 2015). 

 

A Markov model consists of a set of possible mutually exclusive ‘health states’ which a patient 

can occupy over the course of the disease. Researchers can consult clinical experts to elicit 

these health states to somewhat portray the natural disease progression. How the simulated 

patient moves between the health states is determined by transition probabilities. The frequency 

of simulated patients moving between the health states in are decided by a series of discrete 

time periods which is called cycles. Cycles should, as with the health states and transition 

probabilities, reflect the natural history of the disease. More precisely, it should be short enough 

to capture all important events, but not too short to not make the model too complex and ease 

computational burden. A Markov model allow us to analyse a longer time perspective and 

account for risk of various health states over time, reflecting the continuous risk of transition 

between health states, which is typical progressive diseases. Costs and effects are assigned to 

each health states and implemented in each cycle and varied accordingly to the number of 

simulated patients in each specific health state (Briggs, Sculpher & Claxton, 2006; Drummond 

et al., 2015). Figure 2.7 below, visualizes a simplified Markov model, with three identified 

health states with death as a naturally absorbing state.  
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Figure 2.7: Markov Model. 

 

2.8 Uncertainty in economic evaluation  
 

Though researchers strive to include all relevant parameters in their economic evaluation, such 

analysis will always be subject to uncertainty. Patients are unique, how a patient experience 

quality of life and responds to a treatment will always differ. This is a consequence of that there 

are only samples of the population of interest that are included in research studies and not the 

total population, which eventually leads to uncertainty in obtained estimates. Parameters 

collected and estimated will never be known, the parameters will always be an estimated mean 

on the observed sample. However, there are several techniques to account for this structural 

uncertainty within an economic evaluation.  

 

A scenario analysis, also called deterministic sensitivity analysis, is used to assess structural 

uncertainty within the model (Drummond et al., 2015). The researcher chooses a base case 

assumption which is deemed the most appropriate. By explicitly changing certain assumptions 

or parameters the researcher could assess the impact of such change on the obtained results. 

However, this way to explore uncertainty is a rather stepwise approach, since the researcher 

can only change few parameters to know exact what’s causing the impact. Some structural 

changes could include the use of different discount rates or different values for utility weights. 

 

Over the recent years the probabilistic sensitivity analysis (PSA) has grown in importance. In a 

PSA each parameter is assigned with a statistical probability distribution to represent the 

uncertainty within the parameter estimation. Thereafter a Monte Carlo simulation is ran which 

will draw random samples within the distributional range for each parameter. After running a 

given number of iterations (e.g., a thousand of iterations), the mean average within the 

distributional uncertainty range could be estimated (Drummond et al., 2015). The researcher is 

thus left with the expected mean value for each parameter. The economic evaluation will after 

a performed PSA account for the propagated uncertainty effect for all parameters and estimate 

the mean expected result.  

 

Through a scatterplot, popularly called a cost-effectiveness plane each simulated expected 

mean result can be graphically presented in a two-dimensional chart which shows the 

relationship between the two variables. The more scattered the plots are, the more uncertainty 

in the estimates. However, to present uncertainty in cost-effectiveness estimates a cost-

effectiveness acceptability curve (CEAC) is often utilized. The CEAC show the probability at 

which WTP threshold the intervention is considered cost-effective. The CEAC is constructed 

by estimating the proportion of all interventions considered cost-effective for a range of WTP 
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thresholds. This makes the CEAC to take a cumulative distributional shape, representing 

probability values for being cost-effective ranging from zero to one over several WTP 

thresholds. By reading of the WTP thresholds one can infer at which likelihood the intervention 

is considered cost-effective over the simulated outputs. Since a CEAC only infer on the 

probability that the intervention is considered cost-effective at a given threshold, it is not 

suitable to assess whether the intervention is considered optimal (Barton, Briggs & Fenwick, 

2008; Fenwick & Byford, 2005; Fenwick, O’Brien & Briggs, 2004).  

 

To determine which options is the better option it is necessary to calculate the option with the 

highest expected net monetary benefit (NMB). The cost-effectiveness acceptability frontier 

(CEAF) portrays the strategy with the highest expected NMB at each given WTP threshold. 

This makes it possible for decision makers to choose the optimal economic strategy (Barton, 

Briggs & Fenwick, 2008; Fenwick, Claxton & Schulpher, 2001).  

 

2.9 Value of information analysis 
 

Scenario analysis, PSA, CEAC and CEAF are useful to handle and present uncertainty in 

economic evaluations. However, for decision makers it is hard to determine whether the 

uncertainty in the underlying evidence is too substantial to make the decision now and 

eventually what type of evidence is needed to make more informed choices. As already 

established, clinical studies and research are associated with high costs and there will always 

be a consideration of conducting further study or allocate money somewhere else. Hence by 

using VOI as a tool to guide decision maker it will ensure coherent, transparent, and educated 

decisions. VOI analysis could thus be considered key for society to make better judgements for 

the future.  

 

A VOI analysis is an analytical framework to inform decision makers on whether additional 

research is worthwhile. VOI quantifies the degree of uncertainty in the economic evaluation 

and assigns a monetary value or benefit on the reduction of this particular uncertainty. The 

output from the PSA can be used to perform VOI and to determine the expected value of 

hypothetical elimination or reduction of the uncertainty and to identify parameters that drives 

the uncertainty (Minelli & Baio, 2015). The VOI framework is rooted in Bayesian decision 

theory and statistical theory and is also used in other sectors than healthcare. VOI measurements 

are dependent on what the researchers assigns as a WTP threshold and is thus consistent with 

the objectives of health care resource allocation (Claxton & Schulpher, 2006). There are three 

important steps in VOI analysis: 1) calculation of expected value of perfect information (EVPI), 

2) expected value of perfect partial information (EVPPI) and 3) expected value of sample 

information (EVSI). 

 

EVPI calculates the expected net monetary gain in eliminating all uncertainty for all parameters 

in the model. Thus, EVPI is the difference between the expected value of the decision made 

with hypothetical perfect information and the decision made with current information. By 

aggregating the EVPI with the discounted incidence of the disease over a pre-specified time-

horizon, we estimate EVPI on a population level. If the expected value of removing all 

uncertainty on the population level exceeds the expected costs of further research, the research 

is potentially deemed justified (Rothery et al., 2020; Briggs, Schulpher & Claxton, 2006; 

Wilson, 2014; Tuffaha, Gordon & Scuffham, 2014). However, because removing all possible 

uncertainty is not feasible, EVPI represents only the first step in VOI analysis. The parameters 

that drive the uncertainty also needs to be identified, to further elaborate on the preferred study 

design.  
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𝐸𝑉𝑃𝐼 = 𝔼Θ(𝑚𝑎𝑥𝒰(𝑑, 𝜃)) −  𝑚𝑎𝑥𝔼Θ(𝒰(𝑑, 𝜃)) 

 

𝒰(𝑑, 𝜃) = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛 𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐸𝑉𝑃𝐼 = 𝐸𝑉𝑃𝐼 ∗ ∑𝑡=0
𝑇

𝐼𝑡

(1 + 𝑟)𝑡
 

𝐼𝑡 = 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 

𝑇 = 𝑇𝑖𝑚𝑒 − ℎ𝑜𝑟𝑖𝑧𝑜𝑛 

𝑟 = 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 

 

After establishing whether further research is justified, it is of importance to identify the focus 

of further study. The researcher has a choice of investigating one parameter at a time or combine 

specific parameters in groups – if additional data to inform these parameters can be collected 

in one study. Essentially, when conducting EVPPI the researcher isolates selected parameters 

of interests to identify whether the respective parameters drive the uncertainty within the model. 

Thus, the estimated EVPPI is the difference in the maximum expected net benefit with perfect 

parameter information subtracted the expected value of current, uncertain, information 

(Rothery et al., 2020; Briggs, Schulpher & Claxton, 2006). As with EVPI, the EVPPI can be 

multiplied with the discounted incidence to get the population EVPPI serving as an upper bound 

of benefit for reducing uncertainty in the parameters of interest.  

 

𝐸𝑉𝑃𝑃𝐼(𝜃𝑖) = 𝔼𝜃𝑖
(max𝔼𝜃𝑐|𝜃𝑖

(𝒰(𝑑, 𝜃𝑖,𝜃𝑐)) −  𝑚𝑎𝑥𝔼Θ(𝒰(𝑑, 𝜃)) 

 

𝜃𝑖 = 𝑉𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 

𝜃𝑐 = 𝑆𝑒𝑡 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

 

As already established, reducing uncertainty completely is irrational to believe is possible. With 

EVSI, we estimate the value of reducing uncertainty through the collection of sample data 

through pre-specified sample sizes. EVSI calculates the expected difference between a decision 

made after collecting sample data on a subset of identified parameters and the expected value 

of a decision with current information, i.e., the net benefit with current information. EVSI 

framework is thus highly dependent on a 2-level Monte Carlo simulation and impose a 

computational burden. The outer loop creates plausible sample sets, conditional on these sets, 

the inner loop generates samples from a posterior distribution. The expected net monetary 

benefit is then calculated for each loop (Tuffaha et al., 2016; Tuffaha et al., 2014). However, 

several approximation methods have been developed and these methods ease the computation 

burden. For example, with output from a PSA, it is possible to run a non-parametric regression 

based EVSI method proposed by Strong et al. (2015). By calculating EVSI for a vector of 

sample sizes it eventually converges towards the already calculated population specific EVPI 

as uncertainty in the model is being reduced, as with other VOI measure the researcher can 

obtain population EVSI by multiplying the per patient calculated EVSI with the population of 

interest (Tuffaha et al., 2016; Strong et al., 2015; Tuffaha et al., 2014).  

 

 

 

𝐸𝑉𝑆𝐼 =  𝔼𝑥(𝑚𝑎𝑥𝔼𝜃|𝑥(𝑁𝐵(𝑑, 𝜃)) −  𝑚𝑎𝑥𝔼𝑥(𝔼𝜃|𝑥(𝑁𝐵(𝑑, 𝜃)) 

 

𝑁𝐵(𝑑, 𝜃) = 𝑁𝑒𝑡 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛 𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝑋 =  𝑉𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑓𝑟𝑜𝑚 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 
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After calculating EVSI we can estimate the expected net benefit of sampling (ENBS). This is 

done by subtracting the expected research cost on the population EVSI. By calculating ENBS 

for a vector of sample sizes the researcher will figure out at which sample size that maximizes 

the expected benefit (Ades & Claxton, 2004).  

 

𝐸𝑁𝐵𝑆(𝑛) = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐸𝑉𝑆𝐼 − 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ 𝑐𝑜𝑠𝑡 

 

2.10 Time to event analysis 
 

For researchers to extrapolate parameters to simulate future results, statistical analysis must be 

applied. Clinical studies often seek to gather information on an unambiguous and pre-defined 

endpoint over a transient period. Time-to-event analysis requires the researchers to follow up a 

sample of patients over a series of established time intervals, over the course of the whole 

follow-up the researcher notes when or if patients are experiencing the already defined endpoint 

of interest. It is of importance that both the event and the time is noted as the goals is to get 

information on how the endpoint progresses over time. After collecting binary endpoint and 

continuous time events a non-parametric Kaplan-Meier (KM) curve could be constructed to 

visually portray how the disease evolves. This allows the researcher to estimate a survivor 

function (i.e., probability that the event has not yet occurred) and the hazard rate (i.e., the 

endpoint rate over the given time interval). To simulate the outcome over the finite and already 

observed follow-up researchers can fit parametric curves onto the already constructed KM 

curve through regression analysis. This allows the researcher to analytically and visually 

present and infer how the disease would progress over a longer time frame (Schober & Vetter, 

2018).  

 

It is, however, important to choose the parametric distributions carefully as each parametric 

distribution holds their own unique characteristics (i.e., survivor function and hazard rate). As 

Latimer (2013) portrays this could change the results of an CEA substantially. It is therefore 

essential to follow selection criteria in a transparent and coherent manner. The most basic way 

to assess whether the parametric distribution suitability is by visual inspection. By comparing 

the KM curve to the parametric distribution, one could infer whether there are any 

discrepancies. Nevertheless, curves could occur similar at one time interval and vary at another, 

and visual inspection only is thus deemed insufficient.  

 

Through statistical analysis Akaike’s Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) values can be calculated to serve as a statistical test of the relative fit of 

parametric curves on the nonparametric KM curve where a lower value indicates the better fit 

(Latimer, 2011).  

 

Furthermore, it is indicative that the researcher assesses whether the curve seems plausible from 

a clinical point of view. Controlling for clinical validity could be key to identify discrepancies 

from extrapolated outcome to what experts deem biological plausible. Furthermore, comparing 

previously estimated clinical data from other external sources could be a useful tool when 

evaluating the parametric distributional choice, however – it is then of importance that 

heterogeneity between the study samples is carefully examined to assess whether the results are 

transferable or not (Latimer, 2011). 
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2.11 Transition probabilities in multistate models with competing risk 
 

In longitudinal studies such as time-to-event analysis patients can experience several 

intermediate health states or endpoints over the study period. Modelling a multi-state model 

(MSM) is then often utilized for simulating patients to transition through a finite number of 

states. In MSM the transition between states is referred to as intensities and provides the hazard 

rate from moving from one state to another (Meira-Machado et al., 2009). As all transient and 

absorbing health states competes against each other for the event, MSM models is causing 

competing risk situations. MSM models with competing risks violates the time-independence 

a Kaplan-Meier curve assume. It would be erroneously to assume that the hazard rate for one 

patient who had experienced the event of interest is the same as one patient who had 

experienced a competing event. A patient who had experienced a competing event would 

certainly not have experienced the event of interest at the same point in time (Putter, Fiocco & 

Geskus, 2007).  

 

Hazard rates from MSM models represent the instantaneous incidence of transition to one state 

to another, rate to probability conversions is necessary as Markov models utilizes transition 

probabilities to reflect the movement between health states. This is often calculated using the 

“simple” formula whereas t represents time, r refers to the rate and e is the mathematical 

constant, Euler’s number (Briggs, Schulpher & Claxton, 2006; Jones, Epstein & Garcia-

Mochon, 2017). 
 

𝑝(𝑡) = 1 − 𝑒−𝑟𝑡 

 

However, Jones et al. (2017) argues that this conversion is unprecise when dealing with MSM 

models as the individual could experience two or more transitions within one discrete time-

period. They propose a method to solve the Kolmogorov equations through the diagonalization 

approach. The aim is to calculate the n x n transition-probability matrix P(t) given a transition-

rate matrix Q. The forward solution would thus have the unique solution: 

 

𝑃(𝑡) = 𝐸𝑥𝑝(𝑄𝑡) =  ∑𝑟=0
∞ 𝑄𝑟

𝑡𝑟

𝑟!
 

 

However, to simplify P(t) if Q has an eigen-decomposition the matrix exponential could be 

expressed as: 

 

𝐸𝑥𝑝(𝑄𝑡) = 𝑈 𝐸𝑥𝑝(𝐷𝑡)𝑈−1 

 

Whereas D is a diagonal matrix of the eigenvalues of Q, and U is the corresponding matrix of 

eigenvectors.  

 

𝑄 = 𝑈𝐷𝑈−1 𝑎𝑛𝑑 𝑄𝑡 = 𝑈𝐷𝑡𝑈−1 

  

 

By using algebraic software such as wxMaxima for the calculation of eigenvalues, eigenvectors 

and the algebraic formulas for transition probability conversion could effortlessly be 

implemented into spreadsheets for transparent utilization in PSA (Jones, Epstein & Garcia-

Mochon, 2017).   
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Method 
 
In this third chapter, we will outline and delineate the method applied to replicate the cost-

effectiveness of Voretigene Neparvovec in Norway. Patients, intervention, comparator, and 

outcome (PICO) is presented for the reader to provide an overview of settings and assumptions 

of the economic model. The model and its prerequisites will therefore be accounted and justified 

for, as a more thorough description of the framework of the model are provided. This includes, 

how transition probabilities, costs and effects are utilized and applied within the model. An 

overview of every parameter base case value, its confidence interval, chosen distribution and 

source is presented to ensure transparency for the reader. To validate the results and to ensure 

credibility and accountability an internal validation will be provided and discussed. 

 

3.1 PICO 
 

PICO is the abbreviation of population of interest, intervention of interest, which comparator 

deemed fit and what the outcome is measured by. As in this thesis, we are replicating the HTA 

dossier provided to NOMA by Novartis, the choice of PICO correlates in exact fashion to what 

is outlined in NOMA (2019).  

 

The population considered is Norwegian patients with biallelic RPE65 mutations with 

substantially viable retinal cells left before treatment. From the phase III trial, this is defined as 

retinal thickness of > 100 m in posterior pole,  3 pupil diameters without atrophy or pigment 

deterioration in posterior pole and remaining peripheral sight of > 30 degrees (NOMA, 2019).  

 

Intervention of interest is considered a subretinal injection of 1,5 x1011 vg Voretigene 

Neparvovec. While the comparator of interests is best supportive care (BSC), as no other viable 

option exists.  

 

However, as the clinical studies are focused on endpoints such as MLMT, visual acuity and 

visual field scores, the analysis performed in the present work is focused on health economic 

evaluation results including QALYs, costs, ICER, population EVPI, EVPPI, EVSI and ENBS.   

 

Population: Norwegian patients with biallelic RPE65 mutation associated IRD 

Intervention: Subretinal injection of 1,5 x1011vg of Voretigene Neparvovec for a total 0,3 mL 

Comparator: Best supportive care 

Outcome: QALY, costs, ICER, population – EVPI, -EVPPI, -EVSI and -ENBS. 

 

3.2 Model structure 
 

As this thesis aims to replicate the Novartis submitted HTA to NOMA and extend it with a VOI 

analysis, the structure of the model relies heavily on the assumptions and documentation 

provided in that submission. However, the committee report by the National Institute of Clinical 

Excellence (NICE) is more comprehensive with information, it is thus used to gather 

complementary data.  

 

The model is a multistate Markov cohort model. It includes six identified health states whereas 

the sixth and final state is seen as an absorbing state, “death”, description of the other health 

states are assigned through valuation of visual acuity and visual field are outlined in Table 3.1. 

It is considered that the model consists of three phases – the initial phase, the stabile phase, and 
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the progressive phase. The patients are modelled through lifetime, which is considered 85 

cycles, with a cycle length of one year as patients are assumed 15 years at baseline, this 

correlates with the mean age in the phase III study by Russell et al (2017). Half cycle-correction 

is only applied the first cycle.  

 

 
Table 3.1: Health state description. 

 

In the initial phase, it is assumed that the distribution of patients starting at baseline (i.e., in 

cycle 0), follows the same distribution as the clinical data from the phase III study relies on. As 

the patients can experience a positive treatment effect from the administration of Voretigene 

Neparvovec it is assumed that the patients are allowed to transition to better health states during 

the initial phase. Thus, for this exact phase the transition probabilities are provided by the 

transition count data gathered from the phase III study. The initial phase is only set to last one 

cycle.  

 

The stable phase is seen as the phase where the effect obtained from Voretigene Neparvovec 

has a constant effect, this lasts for 15 cycles for the Voretigene Neparvovec-arm and are 

naturally non existing for the BSC-arm, as they are not treated with the intervention.  

 

The progressive phase, or the long-term phase is where the effect from Voretigene Neparvovec 

is considered uncertain, and this is where patients start to progress. This phase lasts from cycle 

16 (i.e., where patients are assumed 31 years) for patients modelled with Voretigene 

Neparvovec and cycle 2 for patients simulated with BSC. From the regression output from the 

natural disease history by Chung et al (2019) provided in the committee report by NICE, 

transition probabilities were calculated by applying the proposed procedure by Jones et al 

(2017). A 50% relative risk reduction (RRR) should have been applied to the patients receiving 

Voretigene Neparvovec to prevail some treatment effect as the assumed constant effect was 

shortened. However, in the present analysis, we decided to not implement the 50% RRR 

assumption and will provide a justification for this choice in the model validation in Chapter 

3.7.2.   

 

The structure of the Markov model is presented in Figure 3.1 and is provided below. As the 

patients are expected to gain effect from Voretigene Neparvovec administration in the first 

phase, arrows between the health states indicate that transition to better health states is possible. 

However, do note that this is only relevant for the first initial phase. As patients do not naturally 

die from RPE65 associated IRD mortality probabilities is calculated separately with age-

specific mortality rates gathered from the Norwegian population.  

 

Naturally, all costs and effects are applied to each health state for cycles deemed relevant, 

outlined in the HTA submission to NOMA (2019).  
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Figure 3.1: Markov model structure. With associated health states: Moderate, Severe, Profound, CF (Counting 

Fingers), HM, LP, NLP (Hand Movement, Light Perception, No Light Perception) and the absorbing state, 

Death.  

 

3.3 Modelling guidelines in Norway  
 

As HTA submission follows different procedures, these guidelines should be scrutinized and 

followed accordingly to the respective country the economic evaluation should take place. In 

Norway, there are at least two official bodies which provides HTA submission guidelines. 

NOMA is the official body which is in charge market legislation and reimbursement of new 

drugs in Norway and have provided guideline since 2002, whereas the most recently was 

updated in 2020. However, the most recently updated is from the National Institute of Public 

Health (NIPH) from 2021. The discrepancies between these two guidelines are deemed 

insignificant, however as it is NOMA’s decision this present work seek to investigate the 

guidelines provided by NOMA is chosen as the most appropriate guideline to follow. 

Prerequisite requirements for HTA submission in Norway from NOMA (2021) are hence 

briefly outlined below.  

 

The population should be described precisely according to patient characteristics in Norway. 

Furthermore, the intervention evaluated should be outlined with the characteristics and 

mechanisms of action. The choice of comparator, as a main rule, should be the intervention 

currently practiced. If there are several interventions performed in clinical practice, all relevant 

interventions should be included and evaluated accordingly.  

 

A CUA is the recommended type of economic evaluation in Norway, this is to obtain a generic 

measurement of the clinical and economically effectiveness. This is to ensure comparability 

across diseases and interventions. When a CUA is performed, severity calculations should be 

calculated by using absolute shortfall estimations. And the time horizon should be long enough 

to capture all relevant future costs and effects between the alternatives.  

 

The analysis should follow an extended healthcare perspective. More specifically, it should 

include effects over the patient’s lifespan, the patients, and caregiver(s) HRQoL must be 

included. Moreover, treatment or prevention costs covered by a healthcare provider or 

caregiver, transport costs linked to treatment and patients and caregivers associated time-costs 

should also be included in the analysis. As HRQoL measure, QALYs should be used as a group 

measurement and should be based on an EQ-5D questionnaire reported by patients directly 
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from the clinical study. If other questionnaires or methods are applied a justification should be 

provided. Uncertainty should be examined through sensitivity, scenario analysis and a PSA.  

 

Resource use and costs should preferably follow the private sectors market prices and should 

be given in the Norwegian currency, NOK. If conversion is needed, converting calculations 

should be provided.  

 

To compare future benefits and costs in their present value, discounting procedures should be 

employed. For long time-horizons the rate should be 4% for year 0 – 39, in the years 40 – 75 

the rate is decreased to 3% and from year 75 and onwards, 2% discount rate should be applied. 

The rates and when they are applied is equal for effects and costs. 

 

Uncertainty must be investigated and discussed. This can be done with a deterministic 

sensitivity analysis (DSA) whereas selected variables are changed to explore the sensitivity the 

outcomes are with respect to selected variables. However, a DSA is not sufficient and thus a 

PSA should therefore also be conducted to explore the propagated parameter uncertainty and 

must be presented with a CEAC. VOI analysis can be conducted to quantify the value of further 

investigation. Finally, the results should be presented with and ICER, with cost per QALY 

gained. 

 

3.4 Willingness to pay threshold in Norway 
 

The outcome from the economic model in the HTA submission is used as a prerequisite to 

decide whether the intervention is considered cost-effective. This is done by comparing the 

estimated ICER towards the WTP threshold in the given country.  

 

In a note from NOMA, a working group from different decision makers in Norway outlined 

important decision criteria when assessing new health technologies. They argued that both 

utility, resources and severity should be considered. The new health technology is to be given 

higher priority, if the intervention is associated with increased utility, the budget impact is 

considered incremental and finally, priority should be according to the severity associated with 

the disease (NOMA, 2018). 

 

However, the priority could decrease if the uncertainty associated with the clinical evidence or 

estimation is considered substantial, nevertheless, for orphan disease more uncertainty could 

however be accepted. Furthermore, for orphan diseases a larger ICER could be accepted 

(NOMA, 2018). However, this is not as clearly defined, such as in NICE Highly Specialised 

Technology appraisal guidelines – where they have specified a ten-fold WTP threshold for 

highly specialized treatments providing a WTP threshold from £200.000 to £300.000 (Powell, 

O’Donnell., 2019).  

 

As mentioned, in Norway the WTP threshold is defined by a severity specific threshold 

delineated from the Norheim-committee from 2015 assigned by the Ministry of Health and Care 

Services (HOD) Norway. They proposed a stepwise approach with six unique threshold values. 

These steps are identified and specified according to how severe the disease is calculated to be, 

according to absolute shortfall estimations. Even though there are six steps, the most severe is 

threshold is only a threefold of the baseline WTP threshold (HOD, 2015).  
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Table 3.2: Norwegian threshold values. 

 

3.5 Model parameters 
 

In the following chapter, an overview over all parameters included in the model is provided. As 

parameters are assigned distributions to propagate for uncertainty a justification for the 

distributional choice will be provided. Base case values with available standard errors (SE), 

standard deviation (SD) or alphas, betas and the sample size will be included. Where 

quantification of the uncertainty was unknown and rather assigned arbitrary a rationalization 

for the exact values will follow. For parameters where conversion was necessary for model 

implementation a delineation of the procedure will be given and any hard calculations will be 

provided in the appendix.  

 

3.5.1 Miscellaneous parameters 

 
As some of the parameters are not subject to variation, these values were clustered together for 

transparency purposes. All patients are not assumed to start in in health state 1 (HS1) at the 

beginning of the model. They are rather expected to follow the distribution that is the equivalent 

distribution of patients in the phase III trial by Russell et al (2017). Hence, the proportion of 

patients identified in HS1 are as in the phase III trials, set to 23%, giving us 230 patients of the 

assumed 1000 in total. The parameters for the distribution of patients are identified by the 

abbreviation “dist” for distribution.  

 

As previously mentioned in Chapter 3.3, modelling in Norway requires several values when 

discounting for longer time periods. These are indicated by “dr” for discount rate. “Mid” is for 

year 40 – 79 and “Low” is for the following years, the one without any unique identification is 

thus for the first 0 – 39 years. Even though the values are equal for benefits and costs, two 

identical set were employed for distinction purposes.  

 

WTP threshold is not listed are not listed below, however, this was set to 2,200,000 NOK per 

QALY.  

 
Table 3.3: Miscellaneous parameters. 
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3.5.2 Treatment efficacy and NHx progression parameters  

 

In this section parameters for both treatment transition and natural history disease progression 

are listed. 

 

3.5.2.1 Treatment efficacy parameters  

 

This section includes transition probabilities used in the initial phase and held constant in the 

stabile phase and was gathered from transition count data from the phase III study by Russell 

et al. (2017). In the Voretigene Neparvovec - arm 20 individuals were included whereas in the 

BSC-arm nine individuals was registered. These tables were reported in the NICE committee 

report (NICE, 2017).  

 

 
Table 3.4: Transition count Voretigene Neparvovec (VN) & BSC arm. 

 

Patients are assumed to move with a probability equal to the total number observed in each 

health state divided upon the total number transitioned from that exact health state. 

Furthermore, Novartis assumed that patients without any transition data could transition the 

same amount of health states as the patients could in the next least severe health state, creating 

some transition probabilities that where not observed with any counts, this resulted in what 

Novartis called “Exact TP matrix”. These probabilities were also provided in the NICE 

committee report as above.  

 

 
Table 3.5: Transition probability matrices for Voretigene Neparvovec (VN) & BSC arm. 

 

The matrices presented in Table 3.5, do not include all possible transition included in the 

Markov model. These values were only used in the base-case deterministic analysis. For PSA 

purposes a 0.1 prior was added to each possible transition count. This allowed patients to move 

through every health state possible. Furthermore, it allowed us to assign a probability 

distribution to all input parameters associated with transition probabilities to propagate the 

parameter uncertainty. As these parameters represents multinominal probabilities which 

naturally should sum to 1 for each health state, Dirichlet was the distributional choice. This 

resulted in possible transition parameters in the initial stage as given below in Table 3.6. 

 

The created abbreviations were structured as follows, “tp” indicated that it was a transition 

probability, “VN” or BSC” indicated which arm, hence either Voretigene Neparvovec or BSC. 

Moreover, the first Hs number indicate the current state, the second Hs in the naming regime, 

indicated which health state the simulated patient transitioned to.  
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Table 3.6: Transition probabilities Voretigene Neparvovec & BSC arm for PSA usage. 

 

3.5.2.2 NHx disease progression parameters 

 

Transition intensity rates from the natural history (NHx) of RPE65 mutated associated IRD are 

calculated from the transition counts by Chung et al (2019) and are provided by the NICE 

(2017). These counts are based on an observational study on 283 patients whereas 28 transitions 

counts were observed. These intensity rates are important model parameters since they serve as 

the extrapolated transition probabilities in the long-term phase. They have been calculated using 

the procedure by Crowther & Lambert (2016) MSM procedure. These transitional intensity 

rates are converted through the procedure by Jones et al (2017). The wxMaxima output for the 

calculation of eigenvalues, eigenvectors, and algebraic conversion formulas will be provided in 

the appendix. By implementing these conversion formulas directly into Excel, variation within 

a PSA analysis was allowed. The transition intensities rates provided in Table 3.8, had to be 

converted to hazards to allow the conversion between hazards and probabilities. This was done 

by calculating the hazard function for the respective distribution. For transparency, the rates 

listed are rates calculated when extrapolating using a Gompertz distribution. The complete list 

where rates for Exponential, Weibull etc. will also be provided in the appendix. 

 

For Gompertz the hazard function is: ℎ(𝑡): 𝑒𝑡. 
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The positive scale value , is the natural logarithm of the parameter named “constant”, which 

represents HS2 in the present model. For each respective health state calculation after HS2, it 

is calculated through use of the natural logarithm of for example “constant” + “Hs1Hs3” for 

HS3 etc. As there are no values for HS1, HS1 is thus equal to 1 – HS2 + HS3 + HS4 +HS5. 

The shape parameter, , is the exponential of “gamma”, which is multiplied with the cycle 

length (i.e., one year or 365.25 days). To get the yearly rate, the complete formula is multiplied 

yet again with 365.25. To calculate the hazards for other distributions the same reasoning 

applies. All possible transitions can be viewed in the transition matrix in Figure 3.2. 

 

 
Figure 3.2: Transition Matrix. 

 

 

Even though Weibull was considered to have the best statical fit based on AIC and BIC tests as 

shown in Table 3.7, NOMA considered Gompertz to have more clinical plausibility because of 

a more rapid deterioration of visual function and was thus applied to simulate natural disease 

progression in the model.  

 

 
Table 3.7: AIC/BIC values NHx data. 

 

As mentioned, transition counts through all identified health states were not observed within 

the NHx study; however, these were generated through the Jones et al (2019) procedure. 

Normal distribution was used to assign uncertainty to the estimates as this was done by NICE 

(2017). For some of the values, Hs1Hs5, Hs2Hs5 and Hs3Hs5 the standard errors were so 

substantial that these values were held constant to not cause errors within the simulations in 

Excel. The naming structured for the NHx transitional probabilities followed from the statistical 

output. However, Hs1Hs3 indicates the health states the transition starts at and where the 

patients are transitioning to. 
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Table 3.8: NHx transition intensity rates – Gompertz. 

 

3.5.2 Adverse event and mortality parameters 

 
Parameters for adverse events were elicited from the phase 3 trial by Russell et al (2017) are 

given in Table 3.9. The main adverse events included cataracts eye inflammation and increased 

intraocular pressure. Of the 20 participants enrolled in the Voretigene Neparvovec arm three 

patients experienced cataracts, two were subject to eye inflammation and four sustained 

increased intraocular pressure. These parameters correspond to what is reported in the HTA 

submission from NICE (2017). However, these were not used to add disutility. In the report by 

NOMA (2019), disutility for adverse events were added as a one-off which will be explained 

further in the coming sections. However, these proportions are used to include adverse events 

related cost into the model. Beta distribution was chosen as the distribution to propagate the 

uncertainty as recommended by Briggs et al (2006) for probability parameters. To distinguish 

the parameters in the model the lowercase p indicates that it is a probability and “AE” is an 

abbreviation for adverse event.  

 
Table 3.9: Probability adverse event. 

 
As patients with RPE65-associated IRD does not affect mortality, age specific mortality 

probabilities from the mean population can be used to simulate mortality risk within the model. 

NOMA used death-specific data gathered from Norway’s mean population from year 2017 to 

calculate their expected remaining lifetime when calculating absolute shortfall. To include the 

same mortality risk within my model, and to replicate their model, 2017 was naturally selected 

as my reference. The numbers were elicited from Statistisk Sentralbyrå (SSB) Table 05381 

(SSB, 2022) and are presented below in Table 3.10. Data was collected for both woman and 

men and from the age of 15 to 90 plus. For the purpose to be used within the model these 

mortality rates had to be converted to probabilities. As with the probability for adverse events, 

the beta distribution was utilized for the age specific mortality probabilities. To keep 

transparency while modelling, “Mort” is used as an abbreviation for mortality and the numbers 

indicate which age interval these probabilities was relevant for.  
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Table 3.10: Age specific mortality probabilities. 

 

3.5.3 Utility parameters 

 

In the base case model, we used utility parameters that are in line with the parameters used by 

NOMA (2019). These utility weights are taken from Brown et al (1999) and not by from the 

vignette study by Acaster Lloyd which Novartis used in their analysis. These utility weights are 

gathered from a study population of 325 individuals with a mean age of 68. These were elicited 

by using time trade off and standard gamble and measures only visual acuity. Utility values are 

multiplied with the proportion of patients in each health state throughout the model. As utility 

values are binominal data constrained within [0, 1], the Beta distribution is assigned as 

distribution to the utility weights to represent the uncertainty. As these weights are gathered 

from an external source and do not include counts but standard deviations, fitting the Beta 

distribution must be done through methods of moments (Briggs et al, 2006). Parameters are 

structured as “qol” as a short-term for quality of life followed by the health state in question.  

 

As previously mentioned in Chapter 3.5.2, disutility for AE was added as a one off in the first 

cycle of treatment. The utility decrement was 0.12, in line with assumptions made by NOMA 

and was not subject to any change. This is because NOMA conveyed that the disutility caused 

by AE negligibly changed the outcome. Moreover, additional disutility for young relatives was 

included (i.e., for individuals aged 18 or younger) in the model. The values were gathered from 

Wittenberg et al (2013) which investigated HRQoL for individuals with activity limitations 

through EQ-5D questionnaires. As with the QALY weights, the Beta distribution was applied, 

and the uncertainty range was calculated through method of moments.  

 
Table 3.11: Utility weights. 
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3.5.4 Costs parameters 

 

Cost parameters were implemented into the model in accordance with assumptions made by 

NOMA (2019). Voretigene Neparvovec administration associated costs was implemented in 

the initial cycle for all patients in the Voretigene Neparvovec arm. This includes the cost of the 

drug administration, surgery, prednisolone, and admission to surgery costs. Furthermore, AE-

associated costs are only applicable for the first initial cycle. The probability of experiencing 

an AE was multiplied with the total population and its associated cost.  

 

Moreover, some costs were identified by the company to follow the patient throughout their 

entire life. These are costs regarding hospital admission, general ophthalmologic services, 

technical assistance for both children and adults (i.e., the abbreviation “Ext” indicates extended 

help, and is thus considered for children aged 18 or younger), treatment from depression and 

continuously follow up by the health care services. However, all costs were not necessarily 

included in every health state. Hospital admission was relevant from HS2 to HS5, 

ophthalmologic services and follow up was provided in all health states, technical assistance 

was issued for HS4 and HS5 for both children and adults and treatment from depression were 

issued for patients identified in HS3 to HS5.  

 

In accordance with Briggs et al (2006), Gamma distribution was assigned to cost parameters to 

represent the uncertainty. However, as no standard error was provided, an arbitrary of 10% was 

chosen. Even though drug discounts are possible and highly likely, Voretigene Neparvovec 

administration costs was held constant as an arbitrary value in as the gamma distribution would 

cause it to fluctuate to higher amounts which would cause an erroneously large discrepancy as 

it is irrational to believe that the Norwegian health care services would pay above list price.  

 

 
Table 3.12: Cost’s parameters. 

 

3.6 Half-cycle correction 

 

As time-to-event analysis analyze patients at pre-determined points in time it is difficult to 

assess exactly when the patient moves. As the cycle length is set to be one year, the patients 

could move whenever within that timeframe. By taking the average between the first two 

cycles. This causes the events to happen at year 1.5 rather than year 1.   
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3.7 Model Uncertainties 
 

To cope with both structural uncertainty and parameter uncertainty in the model we performed 

several analyses. Scenario analysis (i.e., deterministic sensitivity analysis) are used for handling 

structural uncertainty. As the true values of parameters cannot be known with certainty, a PSA 

propagates parameters uncertainty from input parameters to the model outputs.  

 

3.7.2 Probabilistic sensitivity analysis  

 

To propagate parameter uncertainty utilized within the model, a PSA was conducted. This is 

done by drawing and storing sampling values within each parameters distribution that was 

already assigned appropriately and within their given uncertainty range. Our Monte Carlo 

simulation was iterated 1000 times where the main outcome is represented by the mean value 

over all iterations. Additionally, by storing all the values for all simulations, we estimated a 

range of outcomes which will be represented within the CE-plane. By calculating the NMB 

from every iteration, a CEAC and CEAF can also be visualized.  

 

3.7.3 Value of Information 

 

As previously noted, value of information measurements is a set of methods used quantify the 

decision uncertainty. VOI provides a monetary estimate which can be used by decision makers 

to decide whether it is worthwhile to conduct further research to reduce this uncertainty and 

could thus be used as a tool to design and prioritize by decision makers. After the PSA was 

conducted NMB can be estimated for each iteration by using a defined WTP threshold (i.e., 

2,200,000 NOK). The EVPI can manually be calculated within different software programs 

using the calculated NMB of every iteration. By aggregating the EVPI by the discounted 

population prevalence and incidence over the defined time horizon we get population EVPI.  

 

EVPPI and EVSI is rather cumbersome to calculate manually, so this was done within the “voi” 

R package which is developed by Christoffer Jackson as a project of the Collaborative Network 

for Value of Information group (ConVOI) (Jackson, 2022). Within the voi R package there are 

several different procedures to calculate EVPPI and EVSI. However, for EVPPI the Gaussian 

process regression method by Strong et al. (2013) was utilized. To calculate the EVSI the 

nonparametric regression method by Strong et al. (2015) was applied.  

 

The model parameters will be clustered into relevant groups before being investigated through 

EVPPI and EVSI. This makes it possible to make an informed choice when opting for study 

design when collecting information on fixed and variable costs for the calculation of ENBS.  

 

Estimates for research associated costs for randomized controlled trials (RCT) for the 

construction of ENBS, we utilized cost gathered from Kunst et al. 2019. As the cost were 

reported in 2019 US dollars, we converted it to NOK by using the average exchange rate for 

US dollar to NOK in 2019 gathered from Norway’s Central Bank (Norges Bank). 

 

3.7.4 Scenario analysis 

 

To test the model for structural uncertainty several selected scenario analyses will be 

performed. The clinical effectiveness in the long-term phase is thought to have substantial 

impact on the model outcome. Therefore, as Weibull distribution was chosen by Novartis as 

the base-case distribution to extrapolate disease progression, we investigated how using this 
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distribution would affect the model outcomes. Their AIC/BIC values indicated a rather similar 

statistical fit; however, Weibull was associated with longer distributional tales (i.e., slower 

disease progression) (NOMA, 2017), which could alter the outcome.  

 

Another assumption that should be examined was the constant treatment effect. NOMA opted 

for 15 years of constant treatment effect of Voretigene Neparvovec administration whereas 

Novartis used 50 years as their constant effect. This change is thought to have paramount effect 

on the model outcomes. As previously established, disease progression with RPE65 gene 

mutation associated IRD is rapid, postponing such progression would cause the patients to stay 

much longer in healthier health states associated with higher HRQoL valuation.  

 

A third and final scenario analysis is to use utility weights from the Acaster Lloyd vignette 

study implemented by Novartis.  

 

3.8 Model validation 
 

As data for RPE65 associated IRD is rather scarce, and due to a replication of an already 

existing method, parameters were predominantly gathered from the method evaluation by 

NOMA (2019). However, additional information was gathered from the more exhaustive report 

by NICE (2017). Nevertheless – to infer whether the analysis is precise outcomes from both 

these evaluations can be used for comparison. Moreover, as the CEA authored by Johnson et 

al. (2019) and Viriatio et al. (2020) utilizes similar approaches as the present work so these can 

also be used to control for similarity.  

 

3.8.1 Transition validation 

 

Clinical effects for the initial phase are publicly available, i.e., the exact transition probabilities 

given in Table 3.5, from almost all sources, (NOMA, 2019; NICE, 2019; Viriatio et al., 2020). 

However, as transition probabilities for the long-term phase are to be calculated some variation 

could occur. These values are not given explicitly, however – the statistical output from the 

NHx trial is given by NICE (2017) and provided in the supplementary material from Viriatio 

et al. (2020) and Johnson et al. (2019). There are some discrepancies between the values 

reported. We opted however for the values given by NICE (2017) and Viriatio et al. (2020), as 

these values are comparable, the sample size is larger, and the values are collected directly from 

the HTA submission by Novartis since they are reported by NICE (2017). To determine whether 

the calculations are accurate a comparison of the Markov traces can be done.  
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Figure 3.3: Markov traces. Markov traces from this analysis is presented on top whereas Markov traces from 

NICE (2017) is presented on the bottom. 

 

By comparing our estimated Markov traces, to the Markov traces given in NICE (2017) in 

Figure 3.3, we could infer that these traces seem to match quite reasonably, and we could thus 

conclude that the conversion of transition intensity rates to transition probabilities were done 

satisfactory. 

 

3.8.2 Outcome validation 

 

As we replicated the method assumptions for this analysis it would naturally be of importance 

to compare outcomes such as effects and costs with NOMA (2019). Parameter values that are 

gathered directly from NOMA (2019) and are not subject to any conversion nor indexing and 

should thus be accurate. Since this thesis evaluate the decision made by NOMA in 2019, more 

recent information on values must be discarded as this was not available at that time.  

 

The results will be provided in the Result section, however for comparison purposes our model 

calculated an incremental discounted result of 7,204,660 NOK in terms of costs and 3.273 

incremental QALYs gained, which in turn resulted in an ICER of NOK 2,200,934. By 

comparison, NOMA in their base case analysis the incremental cost is simulated to be NOK 

7,117,688 with 3,0 QALYs gained and resulting in an ICER of NOK 2,374,253. 

 

Here, our analysis is slightly overestimating the incremental costs and QALYs gained. 

However, since both the costs and QALYs are slightly larger, the ICER remains accurate in 

comparison to the result given by NOMA (2019), with a variation in calculated ICER of only 

1.21%. Because of this, it is not expected that the variation in results have any negative impact 

on the VOI results.  
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One important aspect to mention is that RRR was not implemented within the model in 

accordance with the model assumptions made by NOMA (2019). Although this is a flaw in the 

method applied within our model, the RRR is not subject to variation in PSA and because it is 

held constant it does not affect the VOI estimates. It is believed that the accuracy in outcomes 

in this analysis, compared to NOMA’s estimates is crucial to get valid VOI estimates. Which 

in turn is achieved by omitting the RRR implementation.  

 

To validate VOI estimations comparative validation are going to be performed to check whether 

estimates are equal by utilizing different approaches. As established, only EVPI is calculated 

within a spreadsheet (Microsoft Excel) for the purpose of a simple aggregation to the population 

EVPI. EVPPI and EVSI outcomes are going to be gathered from the “voi” package in R.  

 

However, by using the Sheffield Accelerate Value of Information (SAVI) tool by the University 

of Sheffield and the EVPI estimation within R, a cross validation is allowed. This makes it 

possible to assess whether EVPI estimations are similar. For EVPPI and EVSI, a Monte Carlo 

error will occur, since collecting sample data will cause different estimations each time the 

analysis is run, however it will be possible to scrutinize common trends.  
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Results 
 
In this fourth chapter, the main findings will be presented. This will include the incremental 

probabilistic discounted outcomes such as costs, QALYs and ICER. This is followed by a 

representation of the variation of results within the PSA visualized by a CE-plane. Furthermore, 

the CEAC and CEAF will be presented to showcase the probability of cost-effectiveness and 

the suggested optimal strategy, at different WTP thresholds. Thereinafter the results from the 

conducted VOI analysis will be presented. To conclude this chapter results from the scenario 

analysis will be given to portray the impact the selected structural changes provide. The base 

case costs and health outcomes are represented in the Table 4.1 below.  

 

 
Table 4.1: Base-case cost-effectiveness results. 

 

The strategy with Voretigene Neparvovec was associated with 21.66 QALYs were accrued over 

a lifetime horizon and total cost accumulated to a total of NOK 7,717,797. The strategy with 

BSC was associated with 18.38 QALYs and total costs of NOK 513,137.  

 

This resulted in incremental QALYs of 3.27, incremental costs of NOK 7,204,660.13 which 

resulted in an ICER of NOK 2,200,934 per QALY gained for Voretigene Neparvovec compared 

to BSC.  

 

4.1 Cost-effectiveness – plane  
 

Results for health and costs outcomes of each iteration of the 1000 Monte Marlo simulations 

are presented in an incremental CE-plane (Figure 4.1). Each dot represents an ICER per QALY 

gained result, which is the product of the incremental cost and incremental QALYs gained. 

These dots are thus representing all simulated ICER’s in the model. 

 

 
Figure 4.1: CE-plane. 
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As seen from Figure 4.1, the variation between incremental QALYs gained with Voretigene 

Neparvovec administration compared to BSC is substantial. Almost exhaustively every 

iteration is in the north-eastern quadrant. This indicates that Voretigene Neparvovec 

administration is associated with both higher cost and QALYs. Whether it can be considered a 

cost-effective strategy depends however on the WTP threshold. The density of dots seems to 

be between one and five incremental QALYs, with outliers stretching from almost negative 

one, to eight incremental QALYs. This indicates uncertainty in either the transitions or the 

utility weights. The reason why transition probabilities are considered uncertain is because 

QALYs are subject of utility weight, and the time spent with that exact utility. In this model, 

time spent in health states which are object for their own unique utility weight is determined by 

how fast the patients transition through the health states. The discrepancy between incremental 

costs is deemed to be narrow and thus rather an exact estimate which could be a result of using 

an arbitrary 10% variation for costs parameters.  

 

4.2 Cost-effectiveness acceptability curve 
 

The CEAC is presented in Figure 4.2, presents the probability of Voretigene Neparvovec and 

BSC to be cost-effective at each WTP threshold considered.   

 

 
Figure 4.2: CEAC. 

 

BSC has the highest probability of being cost-effective when the WTP thresholds are below 

2,200,000 NOK. Furthermore, the strategy with the highest probability of being cost-effective 

switches around approximately this exact threshold value of 2,200,000 NOK, hence from 

thereon out Voretigene Neparvovec is considered to have the highest probability of being cost-

effective. 

 

4.3 Cost-effectiveness acceptability frontier 
 

Since the CEAC can only provide information on strategies’ probability of being cost-effective, 

a CEAF is considered essential when deciding on the optimal strategy since it presents the 

strategy with the highest NMB. Hence, a CEAF presents the optimal strategy and thus the 

intervention with the highest NMB for every WTP threshold.  
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Figure 4.3: CEAF. 

 

Figure 4.3 indicates that Voretigene Neparvovec is associated with the highest NMB at WTP 

thresholds above 2,200,000 NOK.  

 

4.4 Value of Information  
 

As value of information analysis consists of several calculations the results will be presented in 

this following order: individual EVPI, population EVPI, population EVPPI, population EVSI 

and population ENBS. 

 

By comparing the CEAF from Figure 4.3 with the results from Figure 4.4, we can see that the 

highest EVPI is at the WTP threshold where the optimal strategy switched from BSC to 

Voretigene Neparvovec. This point represents the point with greatest uncertainty because both 

Voretigene Neparvovec and BSC are associated with 50% chance of being cost-effective and 

is thus naturally the point where it is most valuable to gain additional knowledge. As we can 

see from Figure 4.4 this is at the WTP threshold of 2,200,000 NOK.  

 

At the WTP threshold of 2,200,000 NOK, the individual EVPI was calculated to be NOK 

927,800. When aggregating the individual EVPI over a prevalence of 8 patients and an 

incidence of one patient per year over a time horizon of 10 years the population EVPI is 

estimated to be NOK 9,941,417. 
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Figure 4.4: Population EVPI. 

 

For the calculation of EVPPI, we created groups of parameters that shared common purpose 

within the model. This was to enable having grouped parameters that we could collect 

additional data for in one research study. This included a group for the natural history of disease 

progression transitional parameters which was labelled “NHx RPE65” (see Table 3.8 in Chapter 

3.5.2 for the list of all parameters included). One group called “Clinical Efficacy” included 

clinical effectiveness parameters from the phase III study by Russell et al. (2017) (see Table 

3.6 in Chapter 3.5.2).  

 

Utility weight measurements gathered from Brown et al (1999) was clustered under “HRQoL” 

and a complete list of the parameters can be found in Table 3.11 in Chapter 3.5.3, including 

parameters concerning disutility. Age specific mortality parameters was congregated into one 

group named “Mortality” (see Table 3.10.) Finally, cost parameters were named “Costs” and 

are provided in Table 3.12 in Chapter 3.5.4.  

 

 
Figure 4.5: EVPPI with associated parameter groups. 
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A parameter group with higher EVPPI value naturally implies that the group is associated with 

higher decision uncertainty. As displayed in Figure 4.5, we can infer that the groups: NHx 

RPE65 and especially Clinical Efficacy has large discrepancies in their parameter interval after 

running the PSA and is thus causing uncertainty within the model. Hence, indicating that further 

research might be worthwhile for parameters within these groups. This is seemed to be a logical 

estimate as we have already established that data regarding RPE65 associated IRD is prone to 

large variability as both Russell et al. (2017) and Chung et al. (2019) suffers from small study 

populations and or few observed events.  

 

Naturally, the other groups cause some level of decision uncertainty, however, in comparison 

this is determined negligible.  

 

We estimated population EVSI and ENBS for the group “Clinical Efficacy” given that this 

group was associated with the highest decision uncertainty where the results is represented in 

Figure 4.6. The results represent the aggregated population EVSI through the discounted 

prevalence and expected incidence. The optimal sample size can be identified as the highest 

point on the ENBS curve, indicating that the optimal sample size for the proposed research was 

10 individuals. Even though EVSI is positive, it is important to note that ENBS valuation is 

considered negative (i.e., ENBS curve do not cross the horizontal zero line) for the complete 

interval. This indicates that the expected cost of further research exceeds the expected value of 

additional information. Therefore, collecting additional data on clinical efficacy of Voretigene 

Neparvovec is considered potentially not worthwhile. 

 

 

 
Figure 4.6: Clinical Efficacy population EVSI. 

 

4.5 Scenario analysis 
 

In the first sensitivity analysis, we extrapolated natural history disease progression using 

Weibull distribution instead of Gompertz distribution, as Novartis opted for in their submission. 

As seen in Table 4.2, this resulted in a lower ICER. The structural change did not affect the 

costs that much, however – the incremental gain in QALYs increased as expected given that 

Weibull distribution is associated with longer tales than Gompertz distribution.  
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Table 4.2: Scenario analysis: Weibull distribution. 

 

In the second scenario analysis, we increased the Voretigene Neparvovec constant clinical 

effect from 15 years (i.e., as NOMA assumed in their base case analysis), to 50 years which 

was reported in the manufacturer’s base-case analysis. Similarly, to the previous scenario 

analysis, this change did not affect the costs to large extent, however, because of the paramount 

change in incremental QALYs gained, the ICER substantially decreased as portrayed in Table 

4.3.  

 

 
Table 4.3: Scenario analysis: 50 years constant treatment effect. 

 

The third structural change that was applied as a scenario analysis concerned the utility weights. 

NOMA originally utilized utility weights elicited from Brown et al. (1999), whereas Novartis 

applied their expert elicited values from Acaster Lloyd vignette study. As presented in Table 

4.4, as with the other structural changes, this change did not alter the costs so much. Moreover, 

the incremental QALYs also stayed rather similar compared to base-case values. Hence, 

resulting in an ICER not that far from the base-case result.    

 

 
Table 4.4: Scenario analysis: Outcomes Acaster Lloyd vignette study QALY weights. 

 

4.5.1 Population EVPI Sensitivity 

 

In the base-case estimation of population EVPI, we assumed a time horizon of 10 years. By 

changing the time horizon to 5 years, a population EVPI resulted in a value of 9.482.081 NOK. 

Thus, resulting in a difference NOK 459,336 less than compared to base-case results. By 

increasing the time horizon to 15 years the population increases to NOK 10,043,855, an increase 

of NOK 102,438. Visually, as portrayed in Figure 4.7, population EVPI values across different 

years are substantially overlapping as the results are quite similar. Indicating that this 

assumption did not have a substantial effect on the obtained VOI results.   

 



   40 

 
Figure 4.7: Population EVPI over different time horizons. 
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Discussion 
 

In this chapter, the main findings from our analysis will be discussed. These results will be used 

as consideration when answering the research question of this thesis. Thus, we ought to interpret 

the results, evaluate the method applied and discuss model assumptions. Finally, we will 

ventilate possible contributions this thesis yield and recommend areas where further research 

is deemed necessary.  

 

Chapter 5.1 presents the main results gathered from this thesis. In subsection 5.1.1, the 

justification of the conditional reimbursement is discussed, whereas in subsection 5.1.2, the 

value of quantified uncertainty is considered. Chapter 5.2 will assess the model’s validity and 

its limitations whereas in Chapter 5.3, the strengths of the model are highlighted. Chapter 5.4 

discusses this thesis’ findings transferability. Finally, in Chapter 5.5, proposed policy 

implications and suggested new research are outlined.  

 

5.1 Main results 
 

This thesis found that Voretigene Neparvovec could be regarded as cost-effective for clinical 

practice implementation in Norway, if the WTP threshold would be above 2,200,000 NOK. 

 

With the already assumed WTP threshold of 2,200,000 NOK, the population EVPI, i.e., the 

value of removing all decision uncertainty within our model, would accrue to 9,941,417 NOK 

over a time horizon of 10 years. This value does not seem to be affected when changing the 

time horizon. The obtained EVPI value is substantially lower than the 97,7 million NOK 

estimated by NOMA, which is the expected budget impact of including the eligible Norwegian 

patient into the quality register. Furthermore, it exceeds the expected research cost estimated in 

this present work to construct ENBS, where a fixed cost of 77,967,300 NOK and a variable cost 

of 76,209 NOK per patient (Kunst et al., 2019), were utilized as RCT associated research cost. 

If this expected cost of further research is correct, we can see already based on the EVPI results 

that the conditional reimbursement should not be considered justified given that the expected 

costs of additional research extend the maximum value that can be gained from that additional 

data collection. Still, to gain a better insight into the decision uncertainty, its drivers, and the 

expected value of additional research we estimated EVPPI, EVSI and ENBS.  

 

We clustered parameters that could represent target outcomes of separate research studies and 

estimated population EVPPI. Parameters related to natural disease progression and clinical 

efficacy were identified to be prone to more decision uncertainty and could thus need more 

research. Furthermore, as identified through the second scenario analysis, the arbitrary constant 

treatment effect applied within the model, precipitate substantial impact on the final outcomes 

and should thus be further evaluated for more accurate estimates.  

 

Parameters within clinical efficacy were chosen for further investigation through EVSI. RCT 

were deemed the best research design as it would require an intervention and comparator to 

gather further relevant clinical evidence. Furthermore, as Voretigene Neparvovec was novel 

back in 2019 it is reasonable to believe that viable quality registers would not exist which 

discard retrospective observational studies. ENBS is maximized at 10 patients, however, ENBS 

was considered negative for the complete sample size interval, indicating that research is 

potentially not worthwhile as the research cost associated is considered too high.  
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5.1.1 NOMA’s conditional reimbursement decision 

 

Using a model analytical approach, our findings suggests that the conditional reimbursement 

given by the National System for Managed Introduction of New Health Technologies in 

Norway is not supported by VOI measurements with an explicit monetary reasoning. Even 

when the WTP threshold were assumed to be 2,200,000 NOK (i.e., the intersection between 

optimal treatment strategy choice where the uncertainty is at its peak and thus the value of 

additional information is considered most significant). The Norwegian health services is 

therefore set out to spend excessive amounts of money over a four-year period, compared to 

the possible additional information collected. Furthermore, portrayed by ENBS, the 

information acquired by the eligible Norwegian population, nor any other larger sample, is not 

considered worthwhile because of the large research cost associated with collecting the 

additional information for clinical efficacy.   

 

The Norwegian National System for Managed Introduction of New Health Technologies 

applies a severity specific WTP threshold to assess whether they regard implementation of new 

health technologies as cost-effective. Arguably, for rare diseases, these thresholds are 

considered low for several reasons including that collecting additional data is difficult and 

costly. As earlier recognized, in Chapter 3.4, NOMA (2018) conveyed that a higher WTP 

threshold for orphan specific diseases could be applied. However, this is clearly an ambiguous 

statement from the Norwegian governmental agency which in turn leaves room for decision-

discrepancies when applied to different orphan drug prospects. Health economic evaluations is 

an applied framework that should aid decision makers to make more informed and reliable 

judgements based on what the society value, or another stakeholder depending on the 

perspective, values and deems beneficial. Even though applying an exhaustive framework that 

covers all aspects might be too optimistic or not feasible. Given that the resources are scarce, 

and they need to allocate wisely, health economic modelling and evaluation can help to make 

more informed decisions. However, it is important that health economic modelling highly 

depends on the assumptions taken in the analysis and those should be chosen carefully so that 

the analysis provides reliable results.  

 

In the United Kingdom, NICE allows for highly specialized treatments, a WTP threshold that 

is a ten-fold of their original £20.000 - £30.000 threshold range (Powell, O’Donnell., 2019). 

This policy will not make the decision making totally explicit, yet it will provide decision 

makers with some guidance towards what society deems as cost-effective within highly 

specialized orphan disease treatments. A similar valuation and guideline could be considered 

implemented into the Norwegian HTA evaluation practice. The society will then provide a 

resource-cap for what is deemed beneficial and affordable for highly specialized treatments 

which perhaps is not captured sufficiently in the already established guidelines. It will ensure 

that society does not overspend and in turn, give manufacturers and patients a more reliable 

reimbursement process.  

 

Moreover, it is outside of this thesis’ scope to valuate different criteria, however, as introduced, 

monetary valuation alone might not be sufficient with regards to orphan drugs. Intangible 

aspects can be hard to value and thus difficult to include and to simulate within an economic 

model. Nonetheless, it should not be underestimated the individual value of having a sense of 

futuristic hope, by having an actual treatment available. Primarily, the true value is associated 

with having a real possibility of postponing the visual deterioration, even though the long-term 

effect is considered uncertain.  
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Gene mutated RPE65 associated IRD is associated with serious future difficulties and QoL 

implications from a young age. This can be expected to require a frequent follow up from the 

Norwegian health bodies and thus imply continuous costs throughout patients’ remaining life. 

As Norway operates with universal health care, treatments that can possibly stagnate future 

health care and societal costs associated with care for these explicit individuals should be sought 

after. NOMA (2019) calculated a budget impact of 97,7 million NOK covered over four years. 

The Norwegian government health care budget was 210,592 million NOK in 2019 (Prop. 1S, 

2018-2019) and could thus be considered rather bijou in comparison. However, by allowing 

these small “budget adjustments”, to every possible treatment for orphan diseases, net spend 

would promptly accumulate and is thus not regarded as a viable argument. However, by treating 

patients with Voretigene Neparvovec, it would allow researchers to gather more information. 

Technological advancements would only be possible if the technology is getting tested. As gene 

therapies represents novel procedures in health care, their benefits are yet to be fully discovered. 

 

We were therefore unsure over why Novartis did not include a more thorough cost analysis. 

Technical assistance was the only parameter that is not strictly health service associated. 

Mutated RPE65 associated IRD is thought to have severe impact on a person life. Conceivably 

more societal costs could have been identified and included, as Norway utilizes an extended 

health care perspective that allows indirect costs, it is naturally to conclude that the Voretigene 

Neparvovec-arm would benefit if more cost variables were included – as patients within the 

BSC arm would require societal associated costs for a longer time. 

  

Arguably, as a last notation, the population with 8 eligible patients and an incidence rate of 0.5 

– 1 patient a year, Norway is not sufficient to justify an additional collection of information. 

Hence, the need for international cooperation should be desired. Partnership across borders for 

countries with similar patient populations should especially be more relevant for orphan 

diseases as these diseases typically are subject to less reliant data.  

 

5.1.2 Quantification of the expected value of additional information   

 

EVPPI measures presented in Chapter 4.4 can help understand what parameters included in the 

health economic model contributed to the decision uncertainty. From Figure 4.5, it can be 

deduced that clinical data regarding the natural disease progression and clinical efficacy of 

Voretigene Neparvovec are the main drivers for current decision uncertainty. This is not 

perplexing as the natural history study by Chung et al (2018) contains an arguably small sample 

size of 70 individuals as this study serves as material for calculation of transition probabilities 

in the long-term phase. Moreover, provided in the committee report by NICE (2019), transition 

count data are only observed 28 times over 20.78 years, which is deemed insufficient to 

extrapolate accurate disease progression probabilities estimates, which is also reflected in the 

parameter’s standard errors portrayed in Table 3.9 and the appendix.  

 

Even though, there are variability in the other parameters, these were deemed insignificant. For 

instance, variation within the cost’s estimates was chosen at an arbitrary level of 10% whereas 

administration costs for Voretigene Neparvovec were held constant as the “real” price is not 

known. Furthermore, the parameters within “disutility” are not causing any major model 

outcome impact, as they pose such a trivial part of the model with only five parameters, where 

one is held constant.  

 

One aim of this thesis was to evaluate the required sample size required to obtain adequate 

additional information through EVSI and ENBS estimates. By assigning relevant parameters 
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into groups that had the characteristics to be evaluated through the same study design, natural 

disease progression and treatment efficacy were established as main drivers of uncertainty 

within the model. However, clinical efficacy was the only group that were analyzed through 

further VOI measurements. Natural disease progression data could be collected through a 

retrospective observational study. However, this would require removing patient’s possibility 

to get treated with Voretigene Neparvovec. As Voretigene Neparvovec has been approved by 

both FDA and EMA, this would deprive the patients of an opportunity. We perceived this as 

unethical and deemed such a study as unfeasible.  

 

Moreover, there are some structural uncertainties that are not being captured by EVPPI nor 

scenario analysis, which may be worth investigating further. HRQoL values elicited from 

Brown (1999) consists of gathered utility weights from 325 individuals using a disease specific 

questionnaire to test visual acuity. The mean age of the population is 68 years and the patients 

had other retinal diseases than mutated RPE65 gene associated IRD, whereas assumed mean 

population age in question for this thesis is 15 years. This results in an unequal patient 

population. Losing the peripheral functionality at a young age can arguably be considered 

worse. They will be confronted with prolonged life challenges. For instance, these patients 

could struggle or lose the possibility to get an education and start a family which would impact 

their perceived QoL considerably.  

 

Furthermore, as explored in the scenario analysis in Chapter 4.5, the constant treatment effect 

has a substantial impact on the analysis outcome. The efficacy of Voretigene Neparvovec was 

determined from Russel et al. (2017) phase III trial. NOMA assumed that the treatment 

effectiveness was expected to be constant for 15 years. However, in the HTA submission by 

Novartis, they opted for 50 years constant effect, whereas in their submission to NICE (2017) 

they assumed 40 years. It would be erroneously to hypothesize which assumptions is most 

accurate as there are no available data. However, the early follow up from patients enrolled 

within the phase III trial indicates that the treatment effectiveness should not be expected to be 

constant in their remaining life, where 5 of 20 (i.e., 25%) patients have experienced at least one 

point deterioration in MLMT score after 4 years after administration (NOMA, 2019).  

 

5.2 Model validity  
 

It is of importance to examine a models’ validity, when developing a health economic model, 

assumptions are being made which makes it viable to assumption fallacies. Furthermore, as 

modelling relies on simulation, only the mean outcome is reported and not necessarily the truth. 

As researchers we are obliged to discuss our own work carefully and address any limitations. 

This philosophical act can help us identify questions that could be answered in the future and 

is a vital part of keeping research reliable.  

 

5.2.2 Limitations 

 

As this present work is a replication of an already submitted HTA, access to all relevant data 

and assumptions would be unreasonable to presume. This may lead to some model assumption 

discrepancies compared to the original submission. However, by getting in touch with NOMA 

and Novartis we were privileged with information and help we are therefore confident that this 

present replication results are accurate.  

 

After estimating EVSI several times through the R package “voi” by Christopher Jackson 

(Jackson, 2022). In our estimations we experienced a Monte Carlo error (i.e., estimation 
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inaccuracy) which caused some fluctuations in the EVSI results. Furthermore, after running 

EVSI several times using the same assumptions, we noticed that in some runs, the EVSI results 

did not increase with the increasing sample size as we would otherwise expect. This may be 

caused by a shortcoming in our R code or in the used R package and should be further 

investigated. However, we do not expect this limitation to have any impact on the conclusions 

of this thesis given that our EVPI results indicated that further research to collect additional 

information would not be worthwhile. We still performed a full VOI analysis to determine the 

drivers of uncertainty and illustrate how VOI framework could be used in reimbursement 

decisions.  

 

Moreover, this thesis applies an arbitrary WTP threshold of 2,200,000 NOK per QALY gained. 

However, this is well above what Norway recognizes as the highest severe specific WTP 

threshold of 825,000 NOK per QALY. This causes the model to overestimate the uncertainty 

between which interventions is considered the optimal choice. This was however done for 

illustrative purposes only as we wanted to utilize the WTP threshold to maximize the VOI 

measurements. The sole purpose for this is if VOI do not justify NOMA’s conditional 

reimbursement with max values, it could be inferred as an exhaustive conclusion for any other 

WTP threshold levels. However, WTP thresholds for orphan diseases should arguably be 

valued differently. As the United Kingdom utilizes upwards of a ten folded ICER for their 

evaluations of highly specialized technologies whereas Norway has no clear guideline, we thus 

consider it justified to use a higher WTP threshold.  

  

Furthermore, we acknowledge the discrepancies when performing the scenario analysis, 

compared to scenario results reported in HTA submission provided by NOMA (2019). 

Especially, we were quite perplexed with the substantial different estimated outcome with 50-

years constant treatment effect and extrapolating with Weibull distribution. We calculated the 

50-yeaer constant treatment effect ICER to be 435,702 NOK, whereas NOMA reported 

1,555,654 NOK per QALY gained. Moreover, when extrapolating natural disease progression 

with Weibull distribution, NOMA calculates an ICER of 2,355,831 NOK per QALY gained, 

whereas our model computes an ICER of 1,500,198 NOK per QALY gained. In both cases our 

estimated ICER seems to get reduced compared to what’s reported by NOMA. This is believed 

to be caused by an increase in expected incremental QALY gain for Voretigene Neparvovec in 

the scenario analysis compared to base-case (see Table 4.1, 4.2 and 4.3). These inconsistencies 

caused us some bewilderment. However, longer constant treatment effect and extrapolating 

disease progression with Weibull distribution that cause slower disease progression, it is 

arguably natural that the incremental QALY gain for Voretigene Neparvovec in fact should 

increase and thus decrease the estimated ICER. Nevertheless, as the base-case values computed 

accurately in such great extent, this fallacy is believed to not cause any VOI estimation errors. 

 

Finally, it is worth mentioning that we may not be aware of possible discounts, risk sharing 

agreements, or other market access agreements commonly negotiated for orphan drugs 

(Garrison Jr. et al., 2013). As the acquisition cost of Voretigene Neparvovec is predominantly 

the main cost driver, a potential discount could alter the cost-effectiveness and VOI outcome 

substantially.  

 

5.3 Strengths 
 

As any model are notwithstanding any limitations, some strengths are as well present. 

Primarily, the strength of this thesis is the modelling base-case accuracy compared to NOMA’s 

results. With a calculated ICER per QALY gained that only differ with 1.21%, the results can 
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therefore be appraised precise. This is deemed a fundamental element to this thesis as the pivotal 

aim was to replicate their model in exact fashion. This is achieved by utilizing the same 

procedure as Novartis’ and NOMA applied to convert their transitional intensity rates to 

probabilities. By using the same procedures, the structural margin of error gets restricted.  

 

This is achieved by having all relevant parameters publicly available from two official bodies 

(i.e., NOMA and NICE) which is considered beneficial. All relevant information on costs were 

gathered from NOMA and is thus not prone to any transferability issues. Moreover, cost 

estimates are also gathered from the year NOMA made their decision and are given in NOK, 

these estimates are thus not subject to any indexing or conversion issues. Disease specific data 

such as utility weights, distribution of patients and transitional probabilities and NOMA’s 

modelling methods are publicly obtainable and is considered not viable to any transparency 

issues as with costs. 

 

EVPI results are equal when simulating the results through Microsoft Excel, SAVI Web Tool 

(SAVI, 2021) and “voi” package in R and is thus considered accurate. As EVPPI results are 

subject to variation because of Monte Carlo error, equality is not expected. However, SAVI 

Web Tool (SAVI, 2021) determines “Clinical Efficacy” and NHx RPE65” as the main drivers 

of uncertainty within the model as obtained from the “voi” R package.  

 

5.4 Transferability 
 

In its entirety, this thesis is not to be viewed to have global applicability. The conditional 

reimbursement made by the National System for Managed Introduction of New Health 

Technologies in Norway is in its whole purpose made for a Norwegian setting. Hence, estimates 

regarding population VOI results would thus differ. Furthermore, as cost associated questions 

can alter VOI considerations, costs must be considered carefully when contemplating whether 

this thesis’ contribution is transferable, or not. Furthermore, the findings of this thesis are 

tailored to maximize the uncertainty by using the WTP threshold that identifies the switch 

between optimal treatments. However, in real world decision making this exact WTP threshold 

may arguably not be relevant. We therefore acknowledge that this thesis may overestimate the 

value of additional information.  

 

However, as this thesis foundational framework (i.e., parameter valuation and bias) is based 

upon Novartis’ HTA submissions to both Norway and the UK, the individual VOI 

measurements could be reproduced to pertain in other countries. Nevertheless, as aggregated 

population measurements are dependent upon the incidence and prevalence of the disease for 

the country in question, this must be adjusted. 

 

Nevertheless, EVPPI measurements is considered to have globally relevance. At least, if the 

same assumptions and measurements are utilized in the same manner as in this present thesis. 

We acknowledge that this thesis has made its assumptions on past knowledge, and that new 

knowledge may have already been discovered and could thus pose more reliable estimates. 

However, if this is not the case – areas of interests for the discovering of new additional 

knowledge, identified in this thesis, may still apply.  

 

5.5 Policy implications and possible further research 
 

We propose that the Norwegian government should adopt a similar approach to WTP threshold 

guidelines as what NICE utilizes in the UK. This would ensure a more reliant, coherent, and 
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thus ethical application of the health economic modelling framework. Moreover, as the intent 

with the conditional reimbursement was to assess additional information on treatment efficacy 

and long-term effect at a later stage, we suggest that the Norwegian government should take 

initiative for international co-operation.  

 

Further research should focus on the focal point of determining the long-term treatment 

effectiveness as this cause a lot of outcome bias. Moreover, clinical efficacy – how patients 

transition through the disease, should also be examined more thoroughly. Finally, a more 

exhaustive cost examination should be conducted to establish both health service and societal 

related costs to gene mutated RPE65 associated IRD.  
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Conclusion 
 

This chapter will serve as the last section where we give our final concluding remarks on the 

results and future possible contributions this thesis provides.  

 

Based on our VOI results, the conditional reimbursement of Voretigene Neparvovec made by 

the National System for Managed Introduction of New Health Technologies in Norway cannot 

be justified as the assumed budget impact is considered too high compared to population EVPI. 

Moreover, our EVPPI results have provided us with information about the focus on additional 

research as we identified clinical efficacy measures to be the main driver of decision uncertainty 

using our decision-analytical model. However, the additional information provided by 

investigating clinical efficacy is considered to not be worthwhile because the research cost is 

considered too high compared to EVSI results as presented by the ENBS estimate.  

 

However, as RPE65 associated IRD is considered an orphan disease it has been argued that 

monetary criteria should not be considered comprehensive in reimbursement processes. We 

consider this as a potential shortcoming of the health technology evaluation framework in 

Norway. As the framework is dealing with controversial and vulnerable topics for the patients’ 

populations considered, it is considered an ethical abdication of not ensuring patients a reliable 

reimbursement process.  

 

Therefore, we are hesitant based on this present work whether the actual reimbursement is, 

justified. However, our results indicate that the decision of the National System for Managed 

Introduction of New Health Technologies in Norway to gather additional information as 

potentially inappropriate. Our results indicate that the decision on reimbursing Voretigene 

Neparvovec should have been taken based on whether society actually values Voretigene 

Neparvovec, within a reliable framework that values orphan drug adequately.  

 

For future considerations, we suggest that WTP thresholds in Norway should be revised to 

capture societies valuation of orphan drugs to ensure reliable reimbursement processes. 

Furthermore, as orphan disease is prone to small populations, we call for an international 

collaboration to ensure sufficient information to facilitate for future reliable research. 

Additionally, we suggest that VOI analysis should represent a fundamental part of 

reimbursement decisions that considers collecting additional information. Furthermore, it 

would have been interesting to investigate the VOI results from a model that replicated Novartis 

submission, to see whether this would change the conditional reimbursement justification.  
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