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Abstract

Quantum synchronisation has seen rapid development over the last few
years. It was argued that a two-level system lacks a valid limit cycle,
and so could not be synchronised.[1] However, with a different definition
of synchronisation, the issue was resolved and it was shown that a two-
level system can phase lock to an external signal.[2] Recently, an experiment
has confirmed that a two-level systems can synchronise to an external
signal.[3] Phase locking has been found using the Lindblad master equation,
however, this method is unable to study the average frequency of the system.
We attempt to resolve this by using quantum trajectory theory, giving us
pure state unravelings of the Lindblad equation that we can calculate the
frequency of. We demonstrate that two interactions between system and
environment can replicate the Lindblad equation. The interactions are then
used in a numerical simulation to measure the average frequency of a two-
level system. We are able to show that a two-level system can frequency lock
to an external signal, with behaviour similar to classical synchronisation with
noise.
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Introduction

Synchronisation is a strikingly universal concept, observed in a diverse range
of physical systems. It can be observed in biological systems, such as humans,
ranging from heartbeat to circadian rhythm. It can also be observed in larger
systems, such as an applauding crowd and swarms of fireflies flashing in
synchronicity. The phenomenon is widely used in electronics to synchronise
clocks, and the frequency of generators. And, as we will see, it even applies
to the smallest possible system, a quantum two-level system.

It was first discovered by Christiaan Huygens, a famous Dutch
mathematician, physicist and astronomer. While being sick he was confined
to his room where he was watching two clocks suspended from a wooden
beam. He observed that the clocks synchronised and deduced that this was
caused by some imperceptible motion of the beam. In other words, by letting
two autonomous oscillators interact weakly their frequency and phase will
synchronise, referred to as frequency and phase locking.

It has previously been shown that the synchronisation behavior of a
quantum mechanical system can be modelled as a classical system with
noise.[2] This article demonstrates that a quantum two-level system can
achieve phase synchronisation with an external signal, but not full phase
locking because the phase is perturbed by the noise.

In this thesis we develop a model based on quantum trajectory theory[4]
which enables us to directly measure the frequency of several pure states.
This is not possible using the standard description of such a system, the
Lindblad master equation. The solution of the master equation is the density
matrix of the system, which is a mixed state, and hence a statistical mix of
many possible pure states. Trajectory theory gives us an unraveling of the
master equation, giving us the possible trajectories of the many pure states
that, on average, reproduce the statistical mix given by the master equation.

Our goal is therefore to identify one or more possible unravelings for a
two-level system capable of synchronisation, and then use this in a numerical
simulation to find the average frequency of the system when synchronising
it to an external signal. We demonstrate that quantum trajectory theory
can be used to create a model of a two-level system with a limit cycle.
This is achieved by identifying two interactions, corresponding to absorption
and emission, that replicate the Lindblad master equation used in [2].
Furthermore, we are able to numerically simulate the two-level system
synchronising to an external signal, finding frequency synchronisation with
behaviour similar to that of classical synchronisation with noise.
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Chapter 1

Background material

The background material we have used in the development of our model
consists of theory from classical synchronisation, some previous results from
quantum synchronisation, and quantum trajectory theory. We first provide
some basic insight into classical synchronisation, where we explain what is
meant by synchronisation and the characteristics of systems exhibiting this
behaviour. Importantly, this section ends with a short description of classical
synchronisation with noise.

We then discuss previous results and recent developments concerning
quantum synchronisation, before going through the main motivation behind
our investigation, that is, the article[2] by Álvaro Parra-López and Joakim
Bergli. We show how the Lindblad master equation can be solved analytically
for a two-level system, and explain why the system can be considered to have
a valid limit cycle. Then we show how the system can phase lock with a weak
external signal, and explain how the strength of the synchronisation can be
visualised.

The last part of the chapter is dedicated to quantum trajectory theory.
We first explain what the trajectories are and the scheme used to find them.
Then we look at the form of the interactions we consider, and two kinds of
weak measurements we can obtain by using the theory. Lastly, we show how
to recover the Lindblad master equation from trajectory theory. This part
is especially important to follow the derivation of interactions done in 2.1.1.

1.1 Synchronisation

The phenomenon of synchronisation is found many places in nature. It
has been extensively studied, and used in several technologies. It was first
described by Christiaan Huygens (1629-1695) in 1673. The phenomenon can
be observed in physical systems ranging from our own circadian rhythm,
two pendulum clocks hanging on a wall, the sinoatrial nodes responsible
for the beating of our heart, to nanomechanical oscillators.[5] We first go
through the classical description of synchronisation, where we explain what
is meant by a self-sustained oscillator and the limit cycle, and then briefly
explain classical synchronisation with noise. The more recent development
in quantum synchronisation is then discussed before we show how a quantum
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two-level system can phase lock its dynamics to a weak external signal.[2]

1.1.1 Classical Synchronisation

Here we introduce the concept of synchronisation in the classical sense,
explaining the necessary conditions, properties and main features. All the
presented material is based on the excellent book [6] by Pikovsky, Rosenblum
and Kurths. Loosely speaking, the phenomenon is self-explanatory in that it
is the synchronisation of two or more oscillating systems. A simple form
of synchronisation can be visualised by placing two metronomes on top
of a skateboard. Each metronome has a frequency f and a difference,
or detuning, ∆f = f1 − f2 of their respective frequencies. With each
oscillation, the metronomes will give the skateboard a weak push, thereby
slightly displacing it. One metronome pushing the skateboard also pushes the
second metronome, hence, slightly perturbing its oscillations. If we leave this
system like this for a while the metronomes will soon start oscillating with the
same frequency, and we observe synchronisation. Placing the metronomes
back on a steady surface results in their frequencies returning to the original
asynchronous state.

The previous example illustrates most of the necessary conditions for
synchronisation to occur. A metronome is a self-sustained oscillator because
of its internal energy source. It is also dissipative, losing some energy to
its environment due to air resistance. Both of these features are necessary
for a system to synchronise. The second important condition, is that
the two systems are coupled by a weak interaction. If we, on the other
hand, connected the metronomes with a metal bar, their oscillations would
naturally be synchronous. Clearly, this "interaction" does not provide us
with synchronisation. The coupling between the oscillators should, in a
sense, be weak compared to the internal driving force. There is no exact
definition of when an interaction is too strong. However, the interactions
can be extremely weak and still make the metronomes synchronise, which is
what makes the phenomenon interesting to study. Instead of having two or
more oscillators synchronise by being coupled with each other, we can have
one oscillator and synchronise this to a weak external signal. This can be
thought of as being the second metronome in our example, but in this case it
would not itself be influenced by the weak coupling. Instead, it would retain
its original frequency, which the first metronome would synchronise to. This
kind of synchronisation is what we use in our model.

A useful way to characterise self-sustained oscillators is by representing
them in the phase space. The variables needed to unambiguously specify the
system state defines a closed curve in phase space. This is the system’s limit
cycle. Importantly, self-sustained oscillators will return to their limit cycle
after small perturbations. This can be illustrated by a quasilinear oscillator
with a limit cycle given by the sine wave x(t) = A sin(ω0t+ ϕ0), where ω0

is the angular frequency, A is the amplitude and ϕ(t) = ω0t + ϕ0 is the
phase, with ϕ0 being the initial phase. Using A and ϕ(t) as the phase space
variables, we can represent the oscillators limit cycle in the phase space. For
convenience we do this in a reference frame rotating counter-clockwise with
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angular frequency ω0, so that the unperturbed oscillator has a stationary
phase point. This is shown in figure 1.1, and illustrates the behaviour of a
self-sustained oscillator after a perturbation. Looking at (b) in the figure, we
observe that perturbations on the system can permanently change the phase,
and while the amplitude remains stable the phase is free. The phase can be
freely perturbed by an outside force. Hence, it is capable of synchronisation.

Figure 1.1: (a) The unperturbed self-sustained oscillator at a stationary
phase point on the limit cycle, using the amplitude A and the phase ϕ(t)
as the phase space variables. (b) The oscillator after a small perturbation.
Observe that after relaxation the amplitude is preserved while the phase is
perturbed. This figure is copied from [6].

Let us build on this by introducing a weak external force on the system,
of the form Fe(t) = ϵ cos(ωt+ ϕ′e), where ϵ is the strength, ω the angular
frequency and ϕe = ωt+ϕ′e the phase. The detuning is then ∆ = ω−ω0. We
now change the reference frame to that of the external force, such that it is
rotating counter-clockwise with frequency ω. This is useful because we are
interested in the effect of the detuning. When ω0 = ω the detuning is 0 and
the phase space angle ϕ− ϕe is stationary. The limit cycle of this system is
shown in figure 1.2 where the force is assumed to have no amplitude, hence,
strength ϵ = 0.

Figure 1.2: The limit cycle of a quasilinear oscillator subjected to an external
force, the reference frame rotating counter-clockwise with the frequency ω
of the force. (a) The angle variable ϕ − ϕe increases, (b) is stationary, (c)
decreases. This figure is copied from [6].

When the force is turned on it will have the effect of perturbing the
angle by a constant vector of length ϵ and some angle ϕ0. Because of
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this constant angle, which loosely corresponds to the force’s initial angle
ϕ′e, the effect on the systems phase space angle will change along the limit
cycle. There are then two points on the limit cycle where the perturbation
acts perpendicular, one radially outwards, the other radially inwards. The
different perturbations can be seen in figure 1.3. The perturbation in point 1
is the stable equilibrium, while point 2 is unstable. This is easily understood
as the force pushing the phase space coordinate of the oscillator away from
point 2 and towards point 1.

Figure 1.3: The perturbations caused by an external force acting on a
quasilinear oscillator. We observe that the perturbations all move the phase
space coordinate along the limit cycle towards the stable equilibrium (1).
This figure is copied from [6].

We now move on to phase and frequency locking. First we introduce a
new term, the observed frequency Ω. Consider the initial example of the two
metronomes, each have some preset (natural) frequency f1 and f2. When
we introduce some weak coupling between the metronomes, their frequencies
will start to change, instead giving us some observed frequencies Ω1 and Ω2.
The same is true for a quasilinear oscillator subjected to the external force.
If we let the detuning be sufficiently small, there will be a some angle in
phase space where the force balances the rotation and stops the motion of
the phase point. This results in a constant phase shift, and so the observed
frequency is equal to the frequency of the external force Ω = ω. When this
occurs we say that the oscillator is phase locked with the external force, and
unsurprisingly, in this case they are also frequency locked.

As we just discussed, locking occurs if the detuning is sufficiently small.
This can be visualised by comparing the observed frequency Ω with the
detuning ∆. In figure 1.4 a comparison is shown, and we observe that there
is a region in which the oscillator remains perfectly frequency locked with
the external force, but outside this region it increasingly tends towards its
natural frequency ω0. A third dimension to this is the strength of the force
ϵ, which when increased expands the synchronisation region. This is shown
in (b) and (c), the latter is known as the Arnold tongue of the system.
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Figure 1.4: (a) Difference between the observed frequency of the oscillator
Ω and the external force ω as a function of ω, clearly showing a
region of frequency locking. (b) The synchronisation region (in gray)
shown for increasing external force strength ϵ. (c) Representation of the
synchronisation region (in gray) known as the Arnold tongue. This figure is
copied from [6].

For our purpose of studying the frequency synchronisation of a two-
level quantum system with an external signal (corresponding to the external
force above), we want to find a curve similar to that shown in 1.4 (a).
But the quantum mechanical description is stochastic, hence, it introduces
randomness and therefore noise to the frequency of the system. This
causes the phase point to diffuse around the deterministic stable equilibrium
point on the limit cycle. Therefore, we look at the classical description of
synchronisation with noise. The classical behaviour of synchronisation with
noise is shown in figure 1.5, where (a) shows the synchronisation region
for bounded and (b) for unbounded noise. If the noise of the system is
bounded, there is a region where the system will remain fully frequency
locked, but because of the noise, it is smaller. On the other hand, if the
noise is unbounded, there is a certain probability, increased by the detuning,
that the phase diffuses far enough away from the phase space equilibrium
point, and so makes a rotation on the limit cycle. This is called a phase slip,
and so, when the noise is unbounded, the system is only fully synchronised
when the detuning is zero.

Figure 1.5: In the reference frame rotating with the external signal, Ωψ is
the measured frequency and ν the detuning, (a) the system with bounded
noise and (b) with unbounded noise. The dotted line is the corresponding
behaviour without noise. This figure is copied from [6].
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1.1.2 Quantum synchronisation

Early developments in the field of quantum synchronisation was for the
most part theoretical investigations of the quantised driven van der Pol
oscillator[7][8][9], along with proposals for realising this experimentally using
nanomechanical oscillators.[5][10]

Some alternatives, with no classical analog, were suggested as candidates
for studying quantum synchronisation, where the contributions by Roulet
and Bruder have been important.[1] They proposed a spin-1 system subjected
to an external signal as a candidate system, and found the existence of a
limit cycle and synchronisation region theoretically. This has later been
confirmed by experiments.[11] It was suggested in [1] that a three-level
system was the smallest possible system able to synchronise, because it was
argued that qubits could not have a limit cycle. The argument was that the
probabilistic mixture of states, which the density matrix of the system is
made of, would all be some eigenstates lying on the rotation axis. And so a
phase variable for these states can not be found. However, this argument is
open to interpretation, and in [2] Parra-López and Bergli is able to identify
an interpretation allowing a limit cycle for the system.

New experimental results suggest that synchronisation of a single qubit
to an external signal[3] is indeed possible. Furthermore, a very recent article
studies synchronisation, theoretically, in a hybrid optoelectromechanical
system, where a superconducting qubit is synchronised to an external
optical field via a mechanical resonator.[12] The article shows phase
synchronisation between a qubit and optical field via a resonator, using
quantum trajectory theory to simulate the system. Another recent
article, studying two superconducting qubits interacting with a resonator,
theoretically demonstrates an effective synchronisation.[13]

The following theory is based on the previous work done by Parra-López
and Bergli.[2] We focus on covering the important physics describing the
system, and briefly cover the results obtained. The model we develop using
quantum trajectory theory differs quite a lot from what is covered here,
therefore, this section mostly serves as a concise introduction. The stationary
solution of the Lindblad equation can be thought of as a mix of pure states
lying on a circle on the surface of the Bloch sphere, in the plane normal to
the z-axis. By interpreting the quantum system as a classical system with
noise, these pure states then give us a valid limit cycle. Furthermore, the
system can then be phase locked to a weak external signal. The system and
Lindblad master equation used in the article forms the basis for the model
we develop later on, using quantum trajectory theory.

We must first define a dissipative two-level system having some natural
frequency ω0, so that a stable limit cycle can be found. Hence, we consider
a system described by the Hamiltonian

H0 =
ℏ
2
ω0σz.

Additionally, the system can be described by a density matrix on the general
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form
ρ′ =

1

2

(
1 +m′ · σ

)
,

where m′ is the Bloch vector, and σ a vector containing the Pauli matrices.
We may transform to a frame rotating with ω0 Using the transformation
Tω0 = exp(iω0σzt/2), such that, ρ = Tω0ρ

′T †
ω0 , the Bloch vector in the new

frame is denoted as m. The Lindblad equation, in a reference frame rotating
with ω0, is

dρ

dt
=

Γ+

2

[
σ+ρσ

†
+ − 1

2

(
σ†+σ+ρ+ ρσ†+σ+

)]
+

Γ−
2

[
σ−ρσ

†
− − 1

2

(
σ†−σ−ρ+ ρσ†−σ−

)]
.

In this equation, Γ+ and Γ− are the absorption and emission rates,
respectively. These corresponds to the gain and damping of the dissipative
system. We also use the ladder operators σ± = (σx ± iσy)/2. Then, using
ṁ = 0, the stationary solution is found to be

mx = 0; my = 0; mz =
Γ+ − Γ−
Γ+ + Γ−

.

The stationary solutions can then be represented on the surface of the Bloch
sphere as a mixture of pure states, in a plane normal to the z-axis, as shown
in figure 1.6. Importantly, the system is not in a superposition of these
states, but certainly in one of them at any time. Seeing as these states will
precess around the z-axis in the non-rotating reference frame, we get a limit
cycle.

Figure 1.6: We may realise the stationary solution as a probabilistic mixture
of pure states in the plane normal to the z-axis, lying on the blue circle.
Each state moves along the same circle, with a periodic motion, and so gives
rise to a limit cycle. In this figure Γ+/Γ− = 3 was used as the transition
rate ratio. This figure is copied from [2].
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The system is then synchronised to a weak signal, using a classical drive
in the rotating wave approximation. This is described by the Hamiltonian

Hsignal = iℏ
ϵ

4

(
eiωtσ− − e−iωtσ+

)
,

where ω is the frequency and ϵ the signal strength parameter. This time,
we transform to a frame instead rotating with the signal, and so we use the
transformation

Tω = ei
ω
2
σzt,

resulting in the Lindblad equation

dρ

dt
= − i

2

[
∆σz + ϵσy, ρ

]
+

Γ+

2

[
σ+ρσ

†
+ − 1

2

(
σ†+σ+ρ+ ρσ†+σ+

)]
+

Γ−
2

[
σ−ρσ

†
− − 1

2

(
σ†−σ−ρ+ ρσ†−σ−

)]
.

where ∆ is the detuning ω0 − ω. From this, we again find the stationary
solution

mx =
4ϵ(Γ+ − Γ−)

(Γ− + Γ+)
2 + 8(ϵ2 + 2∆2)

, (1.1)

mx =
16ϵ∆(Γ+ − Γ−)

(Γ− + Γ+)
[
(Γ− + Γ+)

2 + 8(ϵ2 + 2∆2)
] , (1.2)

mx =
(Γ− − Γ+)

[
(Γ− + Γ+)

2 + 16∆2
]

(Γ− + Γ+)
[
(Γ− + Γ+)

2 + 8(ϵ2 + 2∆2)
] . (1.3)

We can then transform back to obtain the state operator in the non-rotating
reference frame, using the relation ρ′ = T †

ωρTω. Giving us the Bloch vector
components

m′
x = mx cos(ωt)−my sin(ωt),

m′
y = mx sin(ωt) +my cos(ωt),

m′
z = mz.

We observe that m′
x and m′

y evolves in time with the frequency of the signal,
hence, phase locking the system to the external force.

The phase space of a two-level system can be represented using the
Husimi Q quasi-probability distribution, defined by

Q(θ, ϕ) =
1

2π
⟨ρ|θ, ϕ|ρ⟩ .

Here, θ and ϕ are the polar coordinates of the Bloch sphere. The states |θ, ϕ⟩
are the eigenstates of the spin operator σn = n ·σ along the axis of the unit
vector n in the direction given by the polar coordinates. Representing the
stationary solution (1.1) in this way, we get the Q-function in terms of the
Bloch vector components as

Q(θ, ϕ) =
1

4π
[1 +mx cosϕ sin θ +my sinϕ sin θ +mz cos θ].
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In our case, the value of Q(θ, ϕ) is a measure of how much every pure state
on the Bloch sphere contributes to the density matrix, of the stationary
solution. Additionally, one can measure the strength of synchronisation using
the synchronisation measure, which is on the form

S(ϕ) =

∫ π

0
dθ sin θQ(θ, ϕ)− 1

2π
.

Solving the integral for the stationary solution, we get

S(ϕ) =
1

8
(mx cosϕ+my sinϕ).

The Arnold tongue of the system can be found by varying the signal strength
ϵ and the detuning ∆, and for each point (ϵ,∆) finding the maximum value
of the synchronisation measure S(ϕ). This corresponds to what was shown
for classic synchronisation in figure 1.4 (c), but the behaviour is in this case
diffusive.

1.2 Quantum trajectory theory

Here we cover the essential parts of quantum trajectory theory used to
develop the numerical model later in the thesis. The theory was developed by
Howard Carmichael[14] in the early 1990s, initially for the field of quantum
optics. All material covered follows closely to the article by Todd A. Brun
[4]. The theory can be used to describe the time evolution of open quantum
systems by monitoring the environment they interact with. Open quantum
systems, in this sense, are systems interacting with an environment. For
all of the theory we discuss here, we restrict ourselves to studying two-
level systems, or quantum bits (qubits). The use of this theory has largely
belonged to the field of quantum optics, but has also garnered interest in the
fields of quantum foundations and measurement theory.

In the following sections we begin with a brief overview of theory,
explaining how monitoring successive interactions between system and
environment enables us to find trajectories. We briefly discuss a possible
physical realisation of such a process, before clarifying some of the
simplifications we use. Next we discuss interactions and measurements,
where we specify the form of the weak interaction and the behaviours
that can result from weak measurements. Finally, the relation between
trajectories and master equation is shown, providing the theoretical
framework linking interactions to Lindblad operators.

1.2.1 Introduction

Our reason for using quantum trajectory theory, QTT, is to find the average
frequency of a two-level system. This is not obtainable from the Lindblad
master equation because its solution is a statistical mix, represented by a
density matrix, of an ensemble of pure states. QTT allows us to simulate such
an ensemble consisting of several trajectories, that on average, approximates
the master equation solution. This is what is meant by unraveling the master
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equation. We can then find the frequency of each single trajectory, and by
taking the average for several trajectories, we find the average frequency of
the two-level system.

Trajectories are found by simulating an open system which is successively
interacting with a monitored environment. A simplified version of this
process is shown in figure 1.7. In the figure we see how, for each time
step δt, an environment qubit |E⟩ interacts with the system |ψ⟩ and is
subsequently measured. After the interaction, |ψ⟩ and |E⟩ are entangled.
We would therefore expect that measuring |E⟩ disturbs the system, and in
doing so the time evolution. In QTT this problem is solved by making the
interaction U weak, close to a unitary operator, and so only a small amount
of information about the system is obtained in each measurement. Because
of this, the system is allowed to evolve, and with the information obtained
by measuring |E⟩, we can construct its trajectory.

Figure 1.7: Schematic representation of the quantum trajectories method. At
each time step δt, an environment qubit interacts with the system state and
is subsequently measured. New environment qubits successively interacts,
and are measured, in the same way.

An approximate physical realisation of this is explained in [4], where
an electromagnetic mode is trapped inside a cavity together with a single
photon. We can assume the cavity to be completely reflective, and so the
system has no energy loss, and the photon never escapes. We then allow some
atoms to successively pass through the cavity, measuring them afterwards.
These atoms can be realised as Rydberg atoms being in a superposition
of two neighbouring electronic states. The electronic state of these atoms
are then measured upon leaving the cavity. The Rydberg atoms serve both
as environment and measurement probe of the system, making it a good
representation of the process that we study.

The evolution of the two-level system that we consider uses some
important simplifications. The system qubit is in a state |ψ⟩ in Hilbert
space HS = H2 with Hamiltonian HS , and the environment is similarly in
state |E⟩ ∈ HE = H2 with Hamiltonian HE . And so their joint Hilbert
space is HS ⊗HE = H2 ⊗H2. Their Hamiltonian is

H = HS ⊗ 1E + 1S ⊗HE +Hint,

with Hint as their interaction. This interaction is what causes this composite
system to get entangled as it evolves in time. Our model assumes that

11



only a single such interaction occurs at each time step, and that the
environment qubit is measured and the new system state found before the
next interaction takes place. Additionally, we assume that the environment
has no Hamiltonian HE = 0, and that all interacting environment qubits
start in some inital pure state.

1.2.2 Interactions

As a general assumption of the trajectory model, the interactions we consider
should be weak, meaning that they are close to the identity. To achieve this,
an interaction on the form

Hint =
∑
j

Aj ⊗Bj ,

must be chosen, where each part of the tensor product is a 2 × 2-matrix
constructed from the basis set {1, σx, σy, σz}. The A-part acts on the Hilbert
space of the system, while the B-part acts on the environment Hilbert space.
It is then possible to parameterise the interaction, bringing it to the form

U(θ) = exp(−iθHint) = exp

−iθ
∑
j

Aj ⊗Bj

,
and effectively making it a weak interaction. We later make use of this
by finding the interactions linked to a master equation with the specific
dynamics we want, and then expanding the parameterised version to second
order in θ. This second-order expansion is then used in the successive
interactions between environment and system, giving us the discrete time
evolution that we want.

1.2.3 Measurements

An important property of quantum trajectories is that a measurement of
the environment state after interacting with the system should be a weak
measurement, that is, yield a small amount of information on average about
the system state. Consequently, the system state is, on average, only slightly
disturbed by the measurement. This allows us to monitor the system state by
successively measuring environment states that have weakly interacted with
the system state, hence, indirectly obtaining information about the system.
Without explaining further, it should be noted that in the actual trajectories
simulation, the measurements turn out to be weak because the interactions
we use are weak. So the measurements we perform turns out to be similar
to those we look at in this section, without us directly making them to be
so.

A measurement in quantum mechanics can be described in a general
way as a positive operator valued measurement (POVM). It requires a set of
positive operators which sum to the identity∑

n

En = 1,

12



where for a mixed state the probability of outcome n is given by pn =
Tr(Enρ). Knowing En is not sufficient to determine the state after the
measurement. We must also know a set of operators Ank such that

En =
∑
k

A†
nkAnk.

Using these operators, the new mixed state can be found after a measurement
outcome n as

ρ′ =
1

pn

∑
k

AnkρA
†
nk.

This measurement does not preserve the purity of states, unless each En has
a single Ank, in which case the new state is |ψ′⟩ = An |ψ⟩ /

√
pn.

Now, let us look at two types of weak measurements for a two-level
system. A weak measurement is in general a kind of POVM, where we
parameterise the measurement operators En with an ϵ ≪ 1. The first type
of weak measurement has a high probability of a small change to the state,
and consequently, a low probability of a large change to the state. To obtain
this behaviour the following two operators can be found

E0 ≡ |0⟩⟨0|+ (1− ϵ) |1⟩⟨1| = A2
0, A0 ≡ |0⟩⟨0|+

√
1− ϵ |1⟩⟨1| ,

E1 ≡ ϵ |1⟩⟨1| = A2
1, A1 ≡

√
ϵ |1⟩⟨1| .

Performing this POVM on a state |ψ⟩ = α |0⟩+β |1⟩, we find the probabilities

p0 = Tr(E0 |ψ⟩⟨ψ|) = |α|2 + (1− ϵ) |β|2 = 1− ϵ|β|2,
p1 = Tr(E1 |ψ⟩⟨ψ|) = ϵ|β|2,

with the new states being

|ψ0⟩ =
1

√
p0
A0 |ψ⟩ =

1
√
p0

(
α |0⟩+ β

√
1− ϵ |1⟩

)
,

|ψ1⟩ =
1

√
p1
A1 |ψ⟩ =

1√
ϵ|β|2

(
β
√
ϵ |1⟩

)
= |1⟩ .

We observe that the measurement outcome 1 greatly changes the state,
but has a small probability. So on average the state will only be slightly
changed in accordance with measurement outcome 0. The second type of
weak measurement instead have probabilities p0 ≈ p1 ≈ 1/2 with both
outcomes only slightly changing the state. We define the operators

E0 ≡
(
1 + ϵ

2

)
|0⟩⟨0|+

(
1− ϵ

2

)
|1⟩⟨1| = A2

0,

E1 ≡
(
1− ϵ

2

)
|0⟩⟨0|+

(
1 + ϵ

2

)
|1⟩⟨1| = A2

1,

A0 ≡
√

1 + ϵ

2
|0⟩⟨0|+

√
1− ϵ

2
|1⟩⟨1| ,

A1 ≡
√

1− ϵ

2
|0⟩⟨0|+

√
1 + ϵ

2
|1⟩⟨1| .
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We find the probabilities

p0 = Tr(E0 |ψ⟩⟨ψ|) =
1

2

(
1 + ϵ

(
|α|2 − |β|2

))
,

p1 = Tr(E1 |ψ⟩⟨ψ|) =
1

2

(
1 + ϵ

(
|β|2 − |α|2

))
,

with the new states being

|ψ0⟩ =
1

√
p0
A0 |ψ⟩ ≈ α

(
1 + ϵ|β|2

)
|0⟩+ β

(
1− ϵ|α|2

)
|0⟩ ,

|ψ1⟩ =
1

√
p1
A1 |ψ⟩ ≈ α

(
1− ϵ|β|2

)
|0⟩+ β

(
1 + ϵ|α|2

)
|0⟩ .

With ϵ sufficiently small, the trajectories evolve in a diffusive way, where
the measurement outcomes are almost equally likely and the changes to the
system state are small. The first type of measurement on the other hand
will give us trajectories which have some large jumps in their evolution. It
should be noted that these measurement schemes are not directly applied in
our method. Rather, the weak interactions that we define for the trajectories
simulation, and the basis in which we choose to measure the environment,
will give us measurements corresponding to either diffusive measurements or
measurements with jumps.

1.2.4 Master equation

The time evolution of a density matrix is found by solving the Lindblad
master equation. For an introduction to this, see reference [15].

dρ

dt
= − i

ℏ
[HS , ρ] +

∑
k

[
LkρL

†
k −

1

2

(
L†
kLkρ+ ρL†

kLk

)]
(1.4)

Here, HS is the system Hamiltonian and Lk Lindblad operators. Now, we
want to relate the discrete time evolution of QTT to the master equation. By
doing so we can find how our choice of interaction and environment specifies
a certain master equation, and importantly the corresponding Lindblad
operators. Let us first assume some general unitary interaction U acting
on the composite Hilbert space HS⊗HE , where S denotes the system space,
and E denotes the environment state. We may write this as a sum of product
operators. As before, we have the interaction on the form

Hint =
∑
j

Aj ⊗Bj ,

with A acting on the system, and B on the environment. Applying this
unitary transformation on the initial composite system state |Ψ⟩ = |ψ⟩⊗|E⟩,
where |ψ⟩ is the system state and |E⟩ is the environment state, gives us a
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new density matrix for the system ρ′S .

ρ′S = Trenv

[
Hint |Ψ⟩ ⟨Ψ|H†

int

]
=

∑
j,j′

Trenv

[(
Aj |ψ⟩ ⟨ψ|A†

j′

)
⊗
(
Bj |E⟩ ⟨E|B†

j′

)]
=

∑
j,j′

Aj |ψ⟩ ⟨ψ|A†
j′ ⟨E|BjB†

j′ |E⟩ (1.5)

From this we find the self-adjoint matrix Mj,j′ ≡ ⟨E|BjBj′ |E⟩. This matrix
gives us a set of orthonormal eigenvectors µk with real eigenvalues λk such
that ∑

j′

=Mjj′µkj′ = λkµkj =⇒ Mjj′ =
∑
k

λkµkjµ
∗
kj′ .

Note that the elements of the eigenvectors µk are indexed by j. Using this
we may define a new set of operators Ok,

Ok ≡
√
λk

∑
j

µkjAj ,

that lets us simplify expression (1.5). We then get it on the form

ρ′S = Trenv

[
Hint |Ψ⟩ ⟨Ψ|H†

int

]
=

∑
k

Ok |ψ⟩ ⟨ψ|O†
k

Then, after n interactions between system and environment we have

ρ
(n)
S =

∑
k1...kn

Okn . . . Ok1 |ψ⟩ ⟨ψ|O
†
k1
. . . O†

kn
.

As we can see, this is the expected behavior of a discrete master equation.
Next, we will consider the case where we instead have some unitary

operator U , close to the identity. We can achieve this by parameterising the
interaction Hint with some real number θ ≪ 1, so that we get it on the form:

U(θ) = exp(−iθHint) = exp

−iθ
∑
j

Aj ⊗Bj

.

If we then expand the evolved density matrix ρ′S to second order in θ using
this operator we find:

ρ′S = Trenv

[
U(θ) |Ψ⟩ ⟨Ψ|U(θ)†

]
≈ |ψ⟩ ⟨ψ| − iθ

∑
j

[Aj , |ψ⟩ ⟨ψ|] ⟨E|Bj |E⟩+ θ2

2

∑
jj′

⟨E|Bj′Bj |E⟩

×
(
2Aj |ψ⟩ ⟨ψ|Aj′ −AjAj′ |ψ⟩ ⟨ψ| − |ψ⟩ ⟨ψ|AjAj′

)
(1.6)

The full derivation of the above result is not essential to follow the argument,
but can be found in the appendix. Furthermore, we can make the simplifying
assumption that the first-order term vanishes:∑

j

Aj ⟨E|Bj |E⟩ = 0, (1.7)
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which is easily achieved by subtracting any non vanishing terms in the sum
from our unitary operator as a correction to the exponentiated matrix. As
shown for equation (1.5) we may define the self-adjoint matrix Mjj′ ,

Mjj′ = ⟨E|BjBj′ |E⟩ ,

that has orthonormal eigenvectors µk and real eigenvalues λk. Additionally,
we impose a duration δt for the interaction so that equation (1.6) can
approximate the time derivative of the master equation (1.4). Having this,
we can define operators

Lk =

√
θ2λk
δt

∑
j

µkjAj =

√
θ2λk
δt

αk. (1.8)

Writing equation (1.6) in terms of these operators then gives us

ρ′ − ρ

δt
=

∑
k

[
LkρL

†
k −

1

2
L†
kLkρ−

1

2
ρL†

kLk

]
,

=

(
θ2

δt

)∑
k

λk

[
αkρα

†
k −

1

2
α†
kαkρ−

1

2
ρα†

kαk

]
, (1.9)

which has the form of the master equation with no effective Hamiltonian.
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Chapter 2

Method

Having covered the necessary background material, we now move on to
explain how quantum trajectory theory can be used to find frequency
synchronisation in a dissipative two-level system. The goal of this chapter
is to thoroughly explain every step involved when constructing quantum
trajectory simulations, and to demonstrate the validity of our results.

The first section covers how to find interactions between system and
environment that results in the dissipative behavior necessary to study
synchronisation. This follows closely from the background material in section
1.2.4. Having identified the interactions, we then show how statistics for the
transition rates can be included into our model by modifying the interaction
strength parameter θ. We then demonstrate how the new system state is
determined after the interaction, by measuring the environment state.

After the basic method is covered, the structure and use of the numerical
model is explained. To test the method’s validity, we compare results from
QTT simulations with the master equation. Figures of single trajectories
and their corresponding density matrix, represented on the Bloch sphere,
are shown. Additionally, we compare QTT simulations with different
temperatures to the master equation, testing the statistics of the model.

The final part explains how a system Hamiltonian can be applied to the
simulations, along with figures to show the validity of the implementation.
Finally, the method for calculating angular frequencies for individual
trajectories, and thereby measuring the angular frequency of the system,
will be covered. This enables us to study how the synchronisation to an
external signal changes with detuning.
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2.1 Developing a model using quantum trajectory
theory

2.1.1 Deriving QTT interactions

To make our quantum trajectory simulations reproduce the behavior of a
dissipative system, like the one studied in [2], we need to find interactions
corresponding to the operators of the Lindblad master equation describing
such a system. A description of how to find Lindblad operators from these
types of interactions can be found in section 1.2.4. The relationship between
interactions and Lindblad operators is of a kind that we are unable to solve
directly. Therefore, we approach the problem by identifying the properties
of the Lindblad operators, and then simplifying to make an ansatz of the
correct interaction. The interactions are of the form

Hint =
∑
j

Aj ⊗Bj ,

where A operates on the system state, and B on the environment. Their
basis matrices are {1, σx, σy, σz}. Our goal is to find someHint corresponding
to the absorption and emission Lindblad operators

L+ = γ+ |1⟩ ⟨0| = γ+σ+, L− = γ− |0⟩ ⟨1| = γ−σ−, σ± =
1

2
(σx ± iσy).

In the next section we show how the γ-factors, which correspond to the
transition rates, can be calculated to suit our model. For now, we focus
on finding interactions that give the Lindblad operators the correct matrix
representation. They should in our case be represented by the raising and
lowering operators σ±. The Lindblad operators correspond to the choice of
interaction by equation (1.8). Repeated here for convenience:

Lk =

√
θ2λk
δt

∑
j

µkjAj = γ
√
λkαk, γ =

√
θ2

δt
, αk =

∑
j

µkjAj ,

where λk are the eigenvalues and µk the eigenvectors of the self-adjoint
matrix Mjj′ . The self-adjoint matrix is constructed from the environment
state and B by Mjj′ = ⟨E|BjBj′ |E⟩. The above equation suggests that
a single Hint could be identified to directly give us two operators for the
master equation. However, we make the assumption that two interactions
can be applied in the trajectories simulation. The simulation will then work
by alternating evenly between the two interactions, so that for the first time
step the interaction corresponding to L+ is used, and then the interaction
corresponding to L− for the next time step, and so on. This assumption
is not necessary, there should exist a more complicated interaction which
directly gives us two Lindblad operators. The assumption is a convenient
way of simplifying the procedure. Therefore, we are looking for two Hint±
each corresponding separately to L±.

We begin by observing that we may choose

A1 = σx, A2 = σy,
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such that
αk =

∑
j

µkjAj = µk1σx + µk2σy.

If Mjj′ has a single nonvanishing eigenvalue, the problem is reduced to
identifying a B so that µ = (1, i). The sign of µ2 is unimportant because we
are free to change the sign of A2. Furthermore, expressing Mjj′ explicitly,
we have

Mjj′ =

(
⟨E|B2

1 |E⟩ ⟨E|B1B2 |E⟩
⟨E|B2B1 |E⟩ ⟨E|B2

2 |E⟩

)
.

We can limit B to only contain basis matrices, hence we have the property
that B2

j = 1, and so all diagonal elements will be 1. From this we observe
that a matrix with the properties we are looking for is

M =

(
1 −i
i 1

)
,

with µ = (1, i) and λ = 2. We then see that the problem can be solved by
identifying B1 and B2 so that

⟨E|B1B2 |E⟩ = i.

Now, recall that the Pauli matrices satisfy

σiσj = δij1 + iϵijkσk, with {σ1 = σx, σ2 = σy, σ3 = σz}.

(Here δij is the Kronecker delta and ϵijk is the Levi-Civita.) From the
antisymmetry of ϵijk we observe that

⟨E|B1B2 |E⟩ = +i =⇒ ⟨E|B2B1 |E⟩ = −i.

In our case, we may take the assumption in equation (1.7) to imply that
⟨E|Bj |E⟩ = 0 for j = 1 and 2. In doing so, we make the assumption more
limiting than it has to be, but this is a helpful restriction on B because it
excludes the basis matrices {1, σE}, as these would give nonvanishing inner
products. The notation σE means that, if we choose |E⟩ in the z-basis
{|0⟩ , |1⟩} we have σE = σz. By this last step, we have more or less uniquely
determined B1 and B2 for any given |E⟩.

Now, we look at the case of having the environment in the z-basis
|E⟩ = |0⟩. Our choice for B is then

B1 = σx, B2 = σy,

since the only other option is rearranging the order. (Which simply amounts
to a sign change.) We then get the self-adjoint matrix

Mjj′ =

(
⟨0|σ2x |0⟩ ⟨0|σyσx |0⟩

⟨0|σxσy |0⟩ ⟨0|σ2y |0⟩

)
=

(
1 −i
i 1

)
.

Hence, we get µ = (1, i) with λ = 2 and the resulting Lindblad operator is

L+ =

√
θ2

δt

√
2(σx + iσy) =

√
θ2

δt
2
√
2σ+.
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Thus, we have found the interaction corresponding to the absorption
operator in the master equation. We then swap the sign of A2 which then
directly gives us the emission operator. For convenience, we include a factor
1/4 on both A1 and A2, thus the resulting interactions found for |E⟩ = |0⟩
are

Hint+ =
1

4
(σx ⊗ σx + σy ⊗ σy),

Hint− =
1

4
(σx ⊗ σx − σy ⊗ σy).

And the corresponding Lindblad operators are

L+ =

√
θ2

2δt
σ+, L− =

√
θ2

2δt
σ−.

The interaction we found above is then parameterised and exponentiated so
that we obtain weak interactions on the form

U(θ) = exp

−iθ
∑
j

Aj ⊗Bj

 = exp{−iθHint}.

In simulating QTT, we expand these interaction operators to second order
in θ for θ ≪ 1:

U(θ) ≈ 1 − iθHint −
θ2

2
H2

int.

2.1.2 Time evolution and statistics

In this subsection we will cover the general scheme for simulating QTT. We
start with some initial pure state for the system |ψ0⟩. For every time step
δt, the system state and the environment bit is described by the product
state |Ψ⟩ = |ψ⟩⊗ |E⟩, which we evolve using (a second-order expansion of) a
weak interaction U(θ). We then perform a measurement of the environment
qubit, where we are free to choose the basis for the measurement. This will
be discussed further in the next section. After the measurement is taken we
are left with a new system state |ψ′⟩ and the same scheme is then repeated
N times.

In the previous section we showed how to derive interactions correspond-
ing to absorption and emission. Therefore, we have two weak interactions
U±(θ) that we use to evolve the system. As mentioned in the previous
section, a simple way of achieving this is by alternating between the two
interactions, switching between U+(θ) and U−(θ) every time step. Addition-
ally, we want the strength of the weak interactions to be scaled with the
absorption and emission rates Γ±. These rates should in turn be determined
by the energy or temperature T of the system. The temperature dependence
can be found using some simple statistics. Since we have a two-level system
the energy is ∆E = E1−E0, where E0 is the energy of the ground state and
E1 of the excited state. This gives us the partition function and probabilities

Z = e−βE0 + e−βE1 , p0 =
1

Z
e−βE0 , p1 =

1

Z
e−βE1 .
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Where β = 1/kBT , kB is the Boltzmann constant and T is the temperature
of the system. The absorption and emission rates can be related to these
probabilities by

Γ−
Γ+

=
p0
p1

=
e−βE0

e−βE1
= eβ∆E . (2.1)

Now, we assume the rates are given by the Bose-Einstein distribution

n =
1

eβ∆E − 1
, Γ+ = n, Γ− = n+ 1.

This gives us the explicit rates

Γ+ =
1

eβ∆E − 1
, Γ− =

eβ∆E

eβ∆E − 1
,

which satisfies relation 2.1. For our numerical simulations we will simplify
by using kB = 1, but keeping the temperature as a parameter.

Having found expressions for the rates, we then scale the interaction
strength parameter θ for the weak interactions. This leaves us with two
interaction strength parameters, one for the absorption and one for emission:

θ+ =
√
Γ+θ, θ− =

√
Γ−θ

Having this, we get the Lindblad operators

L± =

√
θ2±
2δt

σ± =

√
Γ±θ2

2δt
σ±.

Inserting these into the master equation, we get

ρ′ − ρ

δt
=
θ2

δt

(
Γ+

2

[
σ+ρσ

†
+ − 1

2
σ†+σ+ρ−

1

2
ρσ†+σ+

]
+

Γ−
2

[
σ−ρσ

†
− − 1

2
σ†−σ−ρ−

1

2
ρσ†−σ−

])
,

which is of the same form as the approximated master equation (1.9) with
the addition of the transition rates.

2.1.3 Measurements

Here we explain the measurement part of the QTT time evolution scheme
that was described in the previous section. We aim to find the new system
state |ψ′⟩ after the weak interaction with the environment bit. This is found
by measuring the environment bit in the entangled state, hence we need
to determine probabilities for the measurement outcomes. After the weak
interaction has been applied to the product state we get the new entangled
state |Ψ′⟩. This can be expressed on a general form as∣∣Ψ′〉 = c00 |00⟩+ c01 |01⟩+ c10 |10⟩+ c11 |11⟩

= (c00 |0⟩+ c10 |1⟩)⊗ |0⟩+ (c01 |0⟩+ c11 |1⟩)⊗ |1⟩ .
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In the following, assume that the environment qubit is measured in the x-
basis {|x+⟩ , |x−⟩}. The first step is to rewrite the above state with the
environment qubit in this basis,∣∣Ψ′〉 = (c00 |0⟩+ c10 |1⟩)⊗

1√
2
(|x+⟩+ |x−⟩)

+ (c01 |0⟩+ c11 |1⟩)⊗
1√
2
(|x+⟩ − |x−⟩),

=
1√
2
{(c00 + c01) |0⟩+ (c10 + c11) |1⟩} ⊗ |x+⟩

+
1√
2
{(c00 − c01) |0⟩+ (c10 − c11) |1⟩} ⊗ |x−⟩ ,

=
∣∣ψ′

+

〉
⊗ |x+⟩+

∣∣ψ′
−
〉
⊗ |x−⟩ .

The notation might seem ambiguous, but
∣∣ψ′

±
〉

denotes the system states
resulting from measuring the environment state in either |x+⟩ or |x−⟩,
and importantly have nothing to do with absorption and emission. To
find the probabilities of measuring the environment qubit in either of the
measurement basis states we find the environment density matrix by tracing
over the system.

ρ′E = Trsys
[∣∣Ψ′〉 〈Ψ′∣∣]

=
∑
i

(〈
i
∣∣ψ′

+

〉 〈
ψ′
+

∣∣i〉 |x+⟩ ⟨x+|+ 〈
i
∣∣ψ′

+

〉 〈
ψ′
−
∣∣i〉 |x+⟩ ⟨x−|

+
〈
i
∣∣ψ′

−
〉 〈
ψ′
+

∣∣i〉 |x−⟩ ⟨x+|+ 〈
i
∣∣ψ′

−
〉 〈
ψ′
−
∣∣i〉 |x−⟩ ⟨x−|),

=
∑
i

(〈
ψ′
+

∣∣i〉 〈i∣∣ψ′
+

〉
|x+⟩ ⟨x+|+ . . .

)
,

=
〈
ψ′
+

∣∣ψ′
+

〉
|x+⟩ ⟨x+|+ · · ·+

〈
ψ′
−
∣∣ψ′

−
〉
|x−⟩ ⟨x−| .

Now, having found the density matrix of the environment the probabilities
are the coefficients we get from the system state after performing the trace.
Thus, we identify the probabilities as

p+ =
〈
ψ′
+

∣∣ψ′
+

〉
, p− =

〈
ψ′
−
∣∣ψ′

−
〉
,

with corresponding system states

∣∣ψ′〉 = {
1√
p+

∣∣ψ′
+

〉
, environment measured in |x+⟩ with probability p+,

1√
p−

∣∣ψ′
−
〉
, environment measured in |x−⟩ with probability p−.

The updated system states and measurement probabilities for the z and y
basis are found with the same method. The entangled state is expressed
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with the environment in the measurement basis, and so for z and y we have∣∣Ψ′
z

〉
= {c00 |0⟩+ c10 |1⟩} ⊗ |0⟩
+ {c01 |0⟩+ c11 |1⟩} ⊗ |1⟩ ,∣∣Ψ′

y

〉
=

1√
2
{(c00 − ic01) |0⟩+ (c10 − ic11) |1⟩} ⊗ |y+⟩

+
1√
2
{(c00 + ic01) |0⟩+ (c10 + ic11) |1⟩} ⊗ |y−⟩ .

2.2 Trajectories simulation and testing

2.2.1 Numerical simulation of the model

In the previous sections we demonstrated the time evolution of a system state
|ψ(t)⟩ using quantum trajectory theory. To test the model, we implement
it numerically and use a Monte Carlo method. This entails simulating a
number of trajectories, calculating the density matrix for each, and then
take the mean of these density matrices. If our model works as intended,
this should then approximate the solution given by the Lindblad master
equation. To allow the reader to follow the figures and tests of the model, it
is helpful to go through the structure of the numerical implementation.

We start with the initial system state |ψ0⟩ and construct the product
state of the initial system and the environment by |Ψ⟩ = |ψ0⟩ ⊗ |E⟩. Next,
the system state and the environment qubit interact, which we implement by
applying the weak interaction operators U±(θ), expanded to second order in
θ. To get both the absorption and emission behaviour, we alternate between
using U+(θ) and U−(θ) each time step. This gives us an updated entangled
state |Ψ′⟩. The final step is to compute the probabilities of measuring the
environment bit in either {|f+⟩ , |f−⟩}, for some basis f that we choose. The
new system state |ψ1⟩ is then chosen by using a random number generator
to determine the measurement outcome. This process is then repeated N
times, until the whole trajectory of the system state,

|ψ(t)⟩ = (|ψ0⟩ , |ψ1⟩ . . . |ψN−1⟩),

has been determined. Using this scheme we then simulate S trajectories,
and for each we find the density matrix

ρj(t) = |ψj(t)⟩ ⟨ψj(t)| .

Taking the mean of these density matrices we then find

ρ(t) =
1

S

S∑
j=1

ρj(t),

which approximates the solution found using the Lindblad master equation.
There are several key elements and parameters used in the simulations.

For clarity, we repeat them here. The first element we need to choose before
starting a QTT simulation is the environment qubit |E⟩. The state of
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the environment, as we saw in section 2.1.1, affects the form of the weak
interactions that we use in the simulation. Secondly, we need to choose
θ ≪ 1 to ensure that the interactions are weak. Additionally, a choice must
be made for the time step δt and the number of time steps N . As we
are approximating the master equation (1.9), we must choose δ sufficiently
small for the approximation to be valid. Consequently, we must choose N
sufficiently large to allow us to observe the time evolution. The number
of trajectories S determines how exact the approximation follows the time
evolution of the master equation. Naturally, increasing S directly increases
the time it takes to complete the simulation. Finally, we need to initialise
the simulation with some temperature T and an initial system state |ψ0⟩.

2.2.2 Comparison with Lindblad

Trajectories are simulated as described in the previous section to find the
density matrix approximation of the master equation. To visualise the
results, we compare the Bloch vector components for both the QTT and
the master equation solution. Recall, a density matrix ρ can be described
using the Bloch vector r as

ρ =
1

2
(1 + r · σ), σ = (σx, σy, σz).

The density matrix can be expressed in terms of the vector components as

ρ =
1

2

(
1 + rz rx − iry
rx + iry 1− rz

)
,

where the components are found from

rx = ρ12 + ρ21,

ry = i(ρ12 − ρ21),

rz = ρ11 − ρ22.

Testing numerically implemented methods against known equations is
always good practice. Comparing our model to the Lindblad master equation
should therefore be a convincing way of proving its validity. All master
equation results were obtained numerically, using the QuTiP (Quantum
Toolbox in Python) function mesolve.[16] The first simulations we present
in this section were carried out with the initial system state as |ψ0⟩ = |x+⟩,
the environment as |E⟩ = |0⟩ and the measurements are made in the x-
basis. Additionally, the following parameters were used: θ = 0.01, δt = 0.01,
T = 0.5, and N = 2 × 105. As a test of the accuracy of the method,
separate simulations computing S = 64 and S = 512 trajectories were carried
out. The comparison is presented in figure 2.1. We clearly observe that the
simulation produces accurate results, even for relatively few trajectories.
Increasing the amounts of trajectories has the expected effect of further
reducing the noise of the simulation results.

To further illuminate the behaviour of the simulated trajectories we plot
a few samples on the Bloch sphere. Using the same conditions as in section
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figure 2.1. Six samples are presented in figure 2.2. We observe that the
behaviour of the individual trajectories are clearly diffusive, similar to what
was explained for the second positive operator valued measurement in section
1.2.3. Additionally, three simulations with initial states |1⟩, |x+⟩ and |y−⟩,
are shown on the Bloch sphere in figure 2.3. These results suggest the model
is working independently of the chosen initial state.

Comparing a set of simulations with varying temperature to the master
equation, to test that our statistics are giving results with the behaviour
we expect. The behaviour indicates that lowering the temperature takes
the rz component closer to 1, meaning the system state approaches |0⟩.
Meanwhile higher temperatures should lie closer to the center of the Bloch
sphere, r = (0, 0, 0), which is the maximally mixed state. The temperatures
chosen were T = 0.2, 0.4, 0.6 and 0.8, and the results are presented in figure
2.4. We observe a strong correlation between lowering the temperature, and
reducing the noise of the system.
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Figure 2.1: Figure comparing the Bloch vector components of the quantum
trajectories model, with the solutions given by the Lindblad master equation.
The trajectories were simulated using |E⟩ = |0⟩, |ψ0⟩ = |x+⟩ and
measurements in the x-basis. The following parameters were used in this
figure: interaction strength θ = 0.01, time step δt = 0.01, and temperature
T = 0.5. The blue QTT simulation used S = 64, while the red used S = 512.
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Figure 2.2: Samples of single trajectories represented on the Bloch sphere.
The state is plotted every 100 time step. The initial state is |ψ0⟩ = |x+⟩,
same as the blue result in figure 2.3. Parameters for the trajectories are the
same as in figure 2.1

Figure 2.3: Bloch vectors of three different initial states represented on
the Bloch sphere. The trajectories simulation presented in figure 2.1 is
represented in blue. Two additional simulations with initial states |1⟩ and
|y−⟩ are represented in red and green, respectively. The master equation
solution is represented in black. The parameters, environment state and
measurement basis used were the same as in figure 2.1
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Figure 2.4: Trajectories simulated with temperatures T = 0.2, 0.4, 0.6, 0.8.
The parameters, environment and measurement basis are the same as in 2.1,
with S = 256, and for several temperatures.
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2.3 Synchronisation with external signal

2.3.1 Applying a classical drive signal Hamiltonian

The goal of our model is to study frequency synchronisation, and to do so we
require that the system evolves with an effective Hamiltonian. As was done
in [2] and covered in section 1.1.2, we use the classical drive Hamiltonian.
This Hamiltonian acts as an external signal with frequency ω and strength
ϵ. In the rotating wave approximation, the Hamiltonian is given by

Hsignal = iℏ
ϵ

2

(
eiωtσ− − e−iωtσ+

)
.

To simplify calculations we use ℏ = 1, unless otherwise stated. We transform
the system to a reference frame rotating with the signal frequency ω by using
the transformation

Tω = exp
{
i
ω

2
σzt

}
.

By doing so, we obtain the system Hamiltonian

Hsys =
∆

2
σz +

ϵ

2
σy, (2.2)

where we have introduced ∆ = ω0 − ω, ω0 as the system frequency. This
Hamiltonian is on an ideal form for studying synchronisation because it lets
us vary the detuning ∆ and the strength of the external signal ϵ.

The system Hamiltonian can then be implemented in a similar way to the
weak interactions U(θ) described in section 2.2.1. In the standard formalism
the time evolution of a state is described by the Schrödinger equation

d

dt
|ψ⟩ = −iH(t) |ψ⟩ .

For numerical simulations we treat time as a discrete variable δt and find
the time evolution as a series of unitary operations on the system state. For
a δt≪ 1 one can find unitary operators on the form

U = exp{−iδtH} ≈ 1 − iδtH − δt2

2
H2 + . . . ,

which then can be applied for each time step to get

|ψN ⟩ = UNUN−1 . . . U1 |ψ0⟩ .

In the simulation scheme we apply the unitary Hamiltonian to the system
state for every time step after the measurement outcome is resolved. To
ensure that the addition of a system Hamiltonian is compatible with the
trajectories simulation we once again compare the results to the master
equation. The comparison is presented in figure 2.5. We observe that the
Bloch vector clearly follows the master equation solution, although with
some noise. Additionally, we observe that the stationary solution is reached
after approximately 1500 time units. Since we are going to be measuring
the average frequency of the stationary solution of the Bloch vector, we will
need to run each trajectory for this time before measuring the frequencies.
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Figure 2.5: Trajectories simulation compared to the Lindblad master
equation, with the system Hamiltonian as in equation (2.2) having ∆ = 0.01
and ϵ = 0.01. Using the same simulation parameters as in figure 2.1, but
with S = 256.
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2.3.2 Measured frequency

Having successfully simulated quantum trajectories with an external signal
Hamiltonian applied to the system, we now need to find the angular
frequency of each trajectory. Synchronisation around the z-axis, with the
angle ϕ about the z-axis. To do so, we find the angle ϕ from the x-axis in the
xy-plane of the Bloch sphere, for each trajectory, using ϕ = arctan (ry/rx),
where rx and ry are the x and y components of the Bloch vector.

Figure 2.6: Single trajectories represented on the Bloch sphere in the left
column, and the angle ϕ of the corresponding trajectories as a function of
time in the right column. The parameters used for the trajectories are the
same as in figure 2.5.

Next, we compute the accumulated angle Φ the trajectory has moved
about the z-axis of the Bloch sphere. Having this we can compute a measured
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angular frequency Ω for each trajectory from

Ω =
Φ

τ
,

where τ = N × δt is the total simulation time. The accumulated angle
Φ is found using the numpy function unwrap. This function detects each
full rotation and let the angle accumulate indefinitely, thus, unwrapping
the angle. With this we have the numerical tools necessary to simulate
trajectories and measure the angular frequency of each. For a simulation
of S trajectories we take the mean of the measured angular frequencies,
and this is what is meant by Ω from here on out. Identifying frequency
synchronisation can then be done by running quantum trajectory simulations
where the detuning value ∆ of the system Hamiltonian is changed, and for
each value a measured angular frequency Ω is computed.

Figure 2.7: In this figure we show the angle ϕ as a function of time for
the same trajectories as in figure 2.6 in the left column. The corresponding
unwrapped angles are shown in the right column.

32



Chapter 3

Results

The results of the simulations indicate synchronisation behaviour similar to
classical synchronisation with noise. We present the findings by plotting
measured frequencies Ω against dentuning ∆. The standard deviation of the
means, σM = σ/

√
S, is included for every second point as an error bar in

the y-direction.

3.1 Frequency synchronisation

The main goal was to find a clear indication of frequency locking of a two-
level system to an external signal. This was achieved using the model
developed in the previous section, where the trajectories simulation was run
for different detuning values, and the frequency of the resulting trajectories
were measured. The average frequency Ω of each set of trajectories were
then computed and plotted against the corresponding detuning value ∆.
In figure 3.1 it was done for signal strength ϵ = 0.05, 0.01, 0.015, and
0.02. The resulting plot clearly shows similar behaviour to the unbounded
synchronisation region as shown in figure 1.5. A better view of the behaviour
close for smaller ∆ values is presented in 3.2, where we observe that the
measured frequency only reaches zero when the detuning is zero.

To further illuminate effect of varying the singal strength, even smaller
values of ϵ is presented in figure 3.3. Because the relative strength of the
detuning has a larger span in this figure, we confirm that the measured
frequency indeed approaches the natural frequency ω0 of the system when
the detuning is large compared to the signal strength. In all of the results,
the synchronisation region increases with increased signal strength, which is
exactly the behaviour we expect. This is consistent with the Arnold tongue
1.4 (c).

As per the observations made of the varying temperature in figure
2.4, when the temperature decreases, so does the observed noise in the
system. We therefore replicated the signal strengths in figure 3.3, but for a
temperature T = 0.1. The result is presented in figure 3.4. We observe that
the synchronisation region increases when the temperature is decreased.
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Figure 3.1: Measured angular frequency Ω plotted against detuning ∆. The
trajectories simulations used to find the frequency data had |E⟩ = |0⟩,
measurements in the x-basis, θ = 0.01, δt = 0.01, T = 0.5, N = 4 × 105,
Nburnin = 1.5× 105 and S = 512.
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Figure 3.2: A closer look at the synchronisation region of figure 3.1.
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Figure 3.3: Measured angular frequency Ω plotted against detuning ∆, for
smaller values of ϵ. Simulation parameters are the same as in figure 3.1, but
with S = 256.
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Figure 3.4: Same simulation parameters as in figure 3.3, but for temperature
T = 0.1.
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Chapter 4

Discussion and outlook

The results we obtained using our method clearly shows frequency synchron-
isation and subsequently does not require much discussion. However, we still
wish to discuss the development of our method, the reasons for our choice
of simulation parameters and possible improvements. Furthermore, the be-
haviour of trajectories resulting from different choice of environment and
measurement basis is briefly discussed. Lastly, we give some ideas for set-
ting up a model of two qubits using quantum trajectory theory.

4.1 Numerical method

The development of the numerical model was a long and tedious process
of trial and error. We started by directly implementing the stochastic
Schrödinger equations derived by Brun[4], successfully reproducing the
Lindblad equation with one Lindblad operator. However, the Lindblad
equation that we were looking for had to be found in some other way. After
realising that two alternating interactions could be used, the implementation
almost gave the expected results. The final piece of the puzzle was to
correctly implement the measurements of the environment and the resulting
updated system states. The main workhorse during this process has been to
compare our results to the Lindblad equation.

Another hurdle came about when calculating the frequency of trajector-
ies. Because of the randomness of the trajectories it proved hard to work out
a general algorithm to keep track of their rotations on the Bloch sphere. An
attempt at creating such an algorithm was made with some success. A vari-
ant using a fast Fourier transform was also made, but both methods failed
to achieve very good results. In the end we luckily discovered, as so often is
the case, that numpy had just the function we needed.

The choices made for simulation parameters, such as interaction strength
θ, time step δt and temperature T , came about quite organically. After
numerous tests it was clear that θ = δt = 0.01 was a good choice since
it gave relatively small errors and the simulations did not take too much
time to accomplish. T = 0.5 was the standard choice when working on
the implementation. As we have shown, lower temperatures have much less
noise, and so using this value ensured that our implementation was working
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as intended even with a fair amount of noise.
A good numerical improvement would be to estimate the burn-in time of

the Monte Carlo method more rigorously. Our approach was to use the same
initial state for every trajectory, often choosing |ψ0⟩ = |x+⟩, and observe
the time it took the system to reach the stationary state. This is not the
correct way of estimating burn-in time. Instead, we should have chosen a
random pure state, from the ensemble given by the stationary solution of
the Lindblad equation. Analogous to the circle drawn on the Bloch sphere
in figure 1.6. This way, the simulation would already be in the stationary
state, and so the burn-in time could be properly estimated.

The presentation of the results could in principle always be improved
upon. However, if not for the time constraint, a decent improvement would
be represent the results in the Arnold tongue picture, as shown in figure 1.4.
Additionally, we could scale the signal strength by the absorption rate Γ+ to
present our results in a similar fashion to other articles on synchronisation.

4.2 Interaction and measurement

The link between environment |E⟩ and interactions Hint± was explained in
detail in section 2.1.1. For simplicity we have mostly used |E⟩ = |0⟩ with the
interaction it entails. Changing the choice of environment gives us a family
of interactions on the form

Hz
int± =

1

4
(σx ⊗ σx ± σy ⊗ σy),

Hx
int± =

1

4
(σx ⊗ σy ± σy ⊗ σz),

Hy
int± =

1

4
(σx ⊗ σx ∓ σy ⊗ σz).

Where we denote the choice of environment basis as z, x, y. Changing
between the up and down states in the environment basis results in a sign
change. As we saw in section 2.1.3, we may also measure the environment in
any basis. The choice of environment and measurement basis were added to
the numerical model, and results were compared to the Lindblad equation
solution. The comparisons indicated a symmetry between interactions and
measurement basis. We see this symmetry in figure 4.1, where the behaviour
of the trajectories stay the same, but the measurement corresponding to the
behaviours is permuted. This can also be seen by comparing figure 2.1 to
5.2, where we can see that the noise we get on the x and y Bloch vector
component is swapped between the two methods.

Figure 4.1 compares single trajectories for environments in the z and x-
basis, with measurements in z, x and y-basis, here we use the same random
generator seed to highlight that the trajectory behaviour is completely
equivalent. From this figure we also observe a likeness to the weak positive
operator valued measurements explained in section 1.2.3. Having the
environment in the same basis as the measurement seem to correspond to the
first kind of weak measurement. This is represented as the green trajectory
in 4.1 (a) and the blue trajectory in (b), we clearly observe the trajectories
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"jumping" from one part of the sphere to another. For the measurements
orthogonal to the environment we observe diffusive behaviour, corresponding
to the second kind of weak measurement.

Figure 4.1: Comparing single trajectories with environment in the z-basis
(a) and x-basis (b). Colours represent basis of measurement. The simulation
parameters used were: θ = δt = 0.01, T = 0.1, ϵ = 0.001 and ∆ = 0.05.

4.3 Two-qubit synchronisation

Investigating synchronisation between two qubits would be interesting, but
also mean that a big part of our model must be reworked. Here we express
some initial thoughts about how this could be achieved. We can use the
Heisenberg interaction for the coupling between the two qubits, which can
be written on the form

σ1−σ
2
+ + σ1+σ

2
− =

1

2

(
σ1xσ

2
x + σ1yσ

2
y

)
,

where the superscript 1 and 2 refers to qubit 1 and 2. Both qubits will
also evolve with their respective Hamiltonians Hsys = ω0σz/2. Figure 4.2
shows what this system could look like using the trajectory method. Before
any of the qubits interact with the environment, they interact with each
other, leaving us with an entangled state. Suppose we then interact each
qubit with an environment state. Assuming the environment states only
interact with their respective qubits, it should be possible to obtain a pure
state for the qubits after measurement. This can likely be thought of as first
interacting and measuring one environment state, before doing the same for
the environment state interacting with the other qubit. We then let each
system evolve one time step with their respective system Hamiltonian. The
process is then repeated. The method as described is clearly very simplified,
but could provide a starting point for further investigation.
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Figure 4.2: A schematic outlining the general idea of a two qubit trajectory
model. System 1 and 2 have some interaction Hamiltonian H, and the
environment states successively pass by interacting with each of the systems
before being measured.
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Chapter 5

Appendix

Here, the excess derivations, longer and unnecessary calculations, extra
figures and so forth are presented. As is the nature of the appendix.

5.1 Derivation of evolved system density matrix
expansion

Deriving the expansion to the second order in θ for the evolved system dens-
ity matrix ρ′S .

We have the unitary operator

U = exp

−iθ
∑
j

Aj ⊗Bj

,

where Aj and Bj are hermitian operators acting on the Hilbert space of the
system and environment respectively. Additionally, we have θ ≪ 1. First we
expand U to second order in θ

U ≈ 1 − iθAj ⊗Bj −
θ2

2
AjAj′ ⊗BjBj′ ,

where we simplify the notation slightly by not explicitly writing the
summation. We then insert this approximation into our expression for the
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evolved system density matrix and find all terms up to second order in θ.

ρ′S = TrE

[
U |ψ⟩ ⟨ψ| ⊗ |E⟩ ⟨E|U †

]
≈ TrE

[(
1 − iθAj ⊗Bj −

θ2

2
AjAj′ ⊗BjBj′

)
|ψ⟩ ⟨ψ|

⊗ |E⟩ ⟨E|
(

1 + iθA†
j ⊗B†

j −
θ2

2
A†
jA

†
j′ ⊗B†

jB
†
j′

)]
= |ψ⟩ ⟨ψ| − iθAj |ψ⟩ ⟨ψ|TrE [Bj |E⟩ ⟨E|]

+ iθ |ψ⟩ ⟨ψ|A†
j TrE

[
|E⟩ ⟨E|B†

j

]
+ θ2Aj |ψ⟩ ⟨ψ|A†

j′ TrE

[
Bj |E⟩ ⟨E|B†

j′

]
− θ2

2
AjAj′ |ψ⟩ ⟨ψ|TrE

[
BjBj′ |E⟩ ⟨E|

]
− θ2

2
|ψ⟩ ⟨ψ|A†

jA
†
j′ TrE

[
|E⟩ ⟨E|B†

jB
†
j′

]
Working out the traces over the environment we find

TrE [Bj |E⟩ ⟨E|] =
∑
E′

〈
E′∣∣Bj |E⟩

〈
E
∣∣E′〉 =

∑
E′

〈
E
∣∣E′〉 〈E′∣∣Bj |E⟩

= ⟨E|
∑
E′

∣∣E′〉 〈E′∣∣Bj |E⟩ = ⟨E|Bj |E⟩

TrE

[
|E⟩ ⟨E|B†

j

]
=

∑
E′

〈
E′∣∣E〉

⟨E|Bj
∣∣E′〉

= ⟨E|Bj
∑
E′

∣∣E′〉 〈E′∣∣E〉
= ⟨E|Bj |E⟩ , Bj = B†

j

TrE

[
Bj |E⟩ ⟨E|B†

j′

]
=

∑
E′

〈
E′∣∣Bj |E⟩ ⟨E|Bj′

∣∣E′〉
= ⟨E|Bj′

∑
E′

∣∣E′〉 〈E′∣∣Bj |E⟩ = ⟨E|Bj′Bj |E⟩

TrE
[
BjBj′ |E⟩ ⟨E|

]
=

∑
E′

〈
E′∣∣BjBj′ |E⟩

〈
E
∣∣E′〉

= ⟨E|
∑
E′

∣∣E′〉 〈E′∣∣BjBj′ |E⟩ = ⟨E|BjBj′ |E⟩ .

As with the first trace, the last one is identical to its hermitian conjugate.
Inserting these into our previous equation, we get

ρ′S ≈ |ψ⟩ ⟨ψ| − iθ(Aj |ψ⟩ ⟨ψ| ⟨E|Bj |E⟩ − |ψ⟩ ⟨ψ|Aj ⟨E|Bj |E⟩)

+
θ2

2

(
2Aj |ψ⟩ ⟨ψ|Aj′ ⟨E|Bj′Bj |E⟩

−AjAj′ |ψ⟩ ⟨ψ| ⟨E|Bj′Bj |E⟩ − |ψ⟩ ⟨ψ|AjAj′ ⟨E|Bj′Bj |E⟩
)

= |ψ⟩ ⟨ψ| − iθ[Aj , |ψ⟩ ⟨ψ|] ⟨E|Bj |E⟩+ θ2

2
⟨E|Bj′Bj |E⟩

×
(
2Aj |ψ⟩ ⟨ψ|Aj′ −AjAj′ |ψ⟩ ⟨ψ| − |ψ⟩ ⟨ψ|AjAj′

)
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5.2 Figures

Figure 5.1: Measured frequency against detuning, using |E⟩ = |y−⟩ with
measurements taken in the z-basis. Parameters same as in figure 3.4.
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Figure 5.2: Trajectory method compared to the Lindblad solution.
Simulation using |E⟩ = |y−⟩ and measurements taken in the z-basis.
Parameters same as in figure 2.1, with S = 256.
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