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Abstract
Introduction: Use of high-dose androgens causes drastic 
changes in hormonal milieu and is associated with adverse 
medical, psychological, and cognitive effects. Brain-derived 
neurotrophic factor (BDNF), a member of the neurotrophin 
family of growth factors plays a critical role in neuroplastici-
ty, with implications for cognitive function and mental 
health. The impact of long-term, high-dose androgen use on 
BDNF in a natural setting has not been investigated. This 
study examined the association between long-term andro-
gen exposure and BDNF levels, and the links between BDNF, 
heavy resistance exercise, hormones, androgens, and men-
tal health. Methods: We measured serum levels of BDNF and 
sex steroid hormones in male weightlifters (N = 141) with a 
history of current (n = 59), past (n = 29), or no (n = 52) andro-
gen use. All participants completed questionnaires assess-
ing maximum strength and measures of anxiety and depres-

sion. Group differences in BDNF were tested using general 
linear models adjusting for age and associations between 
BDNF and strength, anxiety, and depression using Pearson’s 
or Kendall’s correlations. Results: Both current (mean: 44.1 
ng/mL [SD: 12.7]) and past (39.5 ng/mL [SD: 13.9]) androgen 
users showed lower serum BDNF levels compared to nonus-
ing controls (51.5 [SD: 15.3], p < 0.001, ηp2 = 0.10). BDNF lev-
els were negatively related to maximal strength, and with 
hormonal status in past androgen users, but no significant 
associations were found with measures of depression and 
anxiety. Conclusion: Lower circulating BDNF concentrations 
in current and past androgen users suggest that high-dose 
androgen exposure triggers persistent changes in BDNF ex-
pression. Further studies are needed to verify the relation-
ship and its potential clinical implications.

© 2022 The Author(s).
Published by S. Karger AG, Basel

Introduction

It is well established that steroid hormones influence 
brain development and plasticity [1, 2], and interactions 
have been shown between steroids and neurotrophins 
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[3], a family of growth-associated proteins. Neurotroph-
ins have a critical role in CNS development and for neu-
ronal survival and synaptic plasticity in adulthood. Due 
to its prominent role in neuroplasticity and mental health 
[4, 5], the brain-derived neurotrophic factor (BDNF) has 
attracted great interest, and emerging findings have im-
plicated a prominent interplay between the BDNF, tropo-
myosin receptor kinase B (TrkB) receptor, and sex hor-
mones [3].

Androgens are a family of hormones that include the 
male sex hormone testosterone and its synthetic deriva-
tives. Often these hormones are called anabolic-andro-
genic steroids. However, since all androgens have both 
androgenic as well as anabolic effects, we will hereafter 
only use the more accurate term androgens [6]. While 
androgens are used for medical purposes, their promi-
nent muscle-building properties led to widespread mis-
use among professional athletes in power sports and 
bodybuilders from the 1950s. In the 1980s, androgen use 
spread to the general population, and today most users 
are not elite athletes but males who want to increase their 
muscle mass [7]. The prevalence of such clandestine be-
havior is difficult to estimate, but reports suggest lifetime 
prevalence of around 3% in the general population [8] 
and much higher in certain subpopulations such as ath-
letes (13.4%), recreational sportspeople (18.4%), and sub-
stance use patients (28%) [9].

While constituting a heterogeneous group, androgen 
users typically alternate between heavy use and abstinence 
periods lasting for several weeks or months. Doses taken 
are typically 10–100 times greater than what is produced 
by the testis [10], and exogenous androgens suppress the 
hypothalamic-pituitary-gonadal (HPG) axis due to nega-
tive feedback mechanism [11]. Prolonged suppression of 
HPG may therefore diminish endogenous testosterone 
production and cause hypogonadism upon abstinence. 
The resulting outcomes include low mood, fatigue, anxi-
ety, decreased libido, and erectile dysfunction [12], some-
times leading to depression and suicide [13].

The interplay between sex hormones and neurotroph-
ins and the hormonal disruptions caused by supraphysi-
ological doses of androgens suggest that androgen use 
might influence BDNF levels. This is supported by animal 
studies where high-dose androgen treatment downregu-
lates BDNF mRNA levels in several brain regions [14, 15]. 
Moreover, physical exercise increases systemic as well as 
CNS BDNF levels [16–19], although the findings for re-
sistance training are less consistent than for endurance 
training [17, 20, 21]. Also, findings indicating that BDNF 
increase was more typical in males following exercise 

than in females [19] suggest relevant sex differences. It is 
theorized that physical activity-induced increase in BDNF 
might contribute to enhanced cognition [22, 23] and re-
duced depression, although direct evidence for the latter 
is limited [24]. Notably, for practical reasons, in human 
studies, circulating BDNF levels are mostly measured 
through blood platelets [25], which potentially, but not 
necessarily, reflect brain levels [5].

Despite evidence of interplay between sex steroid hor-
mones and BDNF, little is known about the influence of 
long-term high-dose androgen use on BDNF levels. To 
this end, we aimed to compare serum BDNF levels be-
tween current and past androgen users and a group of 
weightlifting controls (WLC). Furthermore, we tested for 
associations between BDNF and levels of sex hormones, 
symptoms of depression and anxiety, and muscle strength.

Material and Methods

Participants
The present study consisted of 141 adult male weightlifters, in-

cluding current (n = 59) and past (n = 30) androgen users and 
weightlifting controls (WLC, n = 52). Data were derived from a 
longitudinal study of the brain, medical and mental health conse-
quences of long-term androgen use [26] at Oslo University Hospi-
tal. Inclusion criteria for androgen users were previous or current 
androgen use corresponding to at least 1 year of cumulative andro-
gen use (summarizing on-cycle periods). Current androgen use 
was defined as having used androgens within the past 6 months, 
whereas past use was defined as androgen use terminated more 
than 6 months ago. Inclusion criteria for WLC were adult males 
engaged in heavy resistance training that never used androgens or 
equivalent doping substances. We strived to match WLC against 
androgen users’ commitment to heavy strength training and tar-
geted men who had managed to bench press 120 kg (∼265 pounds) 
for at least one repetition, where 100 kg (220 pounds) was the min-
imum criteria for inclusion. Demographic and clinical character-
istics of the sample are shown in Table 1. Exclusion criteria in-
cluded self-reported history of severe head injury with loss of con-
sciousness for >1 min, a vascular or neurological disorder affecting 
the brain (e.g., history of diagnosed stroke, brain tumor, Parkin-
son’s disease, or epilepsy), or IQ <80. In addition, WLC reporting 
the use of testosterone replacement therapy were excluded (2 cas-
es). Participants were recruited through social media, online fo-
rums targeting people interested in heavy weight training, body-
building, and forums addressing androgen use. In addition, post-
ers and flyers were distributed in select gyms in Oslo and 
surrounding areas.

The work described has been carried out in accordance with the 
Code of Ethics of the World Medical Association (Declaration of 
Helsinki), and the study was approved by the Regional Commit-
tees for Medical and Health Research Ethics South-East Norway 
(REC; 2013/601 and 2018/736). The participants were compen-
sated (for the travelling to the hospital) with 500 Norwegian kroner 
(approximately USD 60 or Euro 50).
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Questionnaires
After obtaining written informed consents, the participants 

were requested to complete a set of structured questionnaires us-
ing a web solution offered by the Services for Sensitive Data pro-
vided by the University of Oslo. The questionnaires assessed rele-
vant background and health information, characteristics of train-
ing history, including personal lift records in classic powerlifting 
exercises, and other sports achievements (maximum strength). 
Androgen users were also asked about the nature of their androgen 
use, the extent of current or previous androgen use, doses applied, 
and age of initiation.

Depression and anxiety symptoms were measured using the 
Hopkins Symptom Checklist-25 [27]. It consists of a 10-item sub-
scale for anxiety and a 15-item subscale for depression, where each 
item is scored on a Likert scale from 1 (not at all) to 4 (extremely). 
A mean total score of 1.75 or above is a widely used cut-off for sig-
nificant psychological distress [28].

Doping Analysis
Urine samples were collected and analyzed for external use of 

androgens using gas and liquid chromatography coupled to mass 
spectrometry at the WADA-accredited Norwegian Doping Labo-
ratory at Oslo University Hospital [29]. The criteria used to deter-
mine external androgen use were (1) urine samples positive for 
synthetic testosterone compounds (2) a testosterone to epitestos-
terone ratio (T/E) >15 equivalent to previous work [26, 29, 30].

Blood Sampling and Laboratory Analysis
Blood was drawn from the antecubital vein in anticoagulant-

free tubes and kept at room temperature for 1 h and centrifuged at 
3,500 g for 15 min at 4°C. The serum layer was aliquoted and frozen 
at −80°C for further analyses. Blood was drawn between 9:00 and 
11:30 a.m.

BDNF
Serum BDNF levels were analyzed by using U-plex Metabolic 

Group 1 Multiplex Assay from Meso Scale Discovery (Meso Scale 
Diagnostics; LLC, Rockville, MD, USA) using a QuickPlex SQ120. 
This is a MULTI-ARRAY technology, a combination of electro-
chemiluminescence detection and patterned arrays, and the sam-
ples were assessed according to instructions from the manufac-
turer. Intra-assay and inter-assay variations were 3.4 and 14.2%, 
respectively.

Hormones
All hormone analyses were performed at the Hormone Labora-

tory, Oslo University Hospital, Oslo, Norway, and they were all ac-
credited according to ISO 17025. Follicle-stimulating hormone 
(FSH) (LOQ 0.1 IU/L, CV% 7), luteinizing hormone (LH) (LOQ 0.1 
IU/L, CV% 3.8), sex hormone-binding globulin (SHBG) (LOQ 2 
nmol/L, CV% 7) were analyzed by noncompetitive immunolumino-
metric assays (Siemens Healthineers), estradiol (E2) (LOQ 0.06 
nmol/L, CV% 9) by competitive chemoluminescence (Diaorin Inc.), 
and testosterone (T) (LOQ 0.1 nmol/L, CV% 8) by LCMS (Hormone 
Laboratory, Oslo University Hospital, Norway). Normal range for 
FSH, LH, E2, T, and SHBG in adult males were 0.70–11 IU/L, 0.80–
7.6 IU/L, 50–200 pmol/L, 7.2–24 nmol/L, and 8–60 nmol/L, respec-
tively. Values below the minimum detection level (DL) for FSH, LH, 
and E2 were replaced with DL/√2 suggested as a minimally biased 
method to overcome the left censoring bias in serum steroid mea-

surements [31]. The number of cases below the DL for FSH was 37 
(29%), mainly comprising current androgen users 36 (67%), and 1 
past androgen user (4%). Similarly, 43 cases were below the DL for 
LH where 42 of those were current androgen users (78%), and 1 past 
user (4%). For E2, 29 cases fall below the DL including 12 WLC 
(24%), 11 current (22%), and 5 past androgen users (21%).

Moreover, given the negative feedback loops involved in sex 
hormone regulation – the combined status of different hormones 
together might provide useful information about the hormonal 
condition (e.g., testosterone deficiency), than a single hormone in 
itself. Thus, to extract relevant information from the hormone 
data, a principal component analysis (PCA) was performed, where 
inter-related patterns are likely to provide interlinked grouping of 
the hormones. PCA has recently been shown to provide endocrine 
profiles that with high accuracy distinguished patients with pedi-
atric congenital adrenal hyperplasia according to treatment effi-
cacy and to elucidate biochemical differences between classical and 
nonclassical congenital adrenal hyperplasia [32].

Statistics
Three-group comparisons of demographic data, psychological 

distress, hormones, and other relevant blood biomarkers were per-
formed using analysis of variance, with Bonferroni significant dif-
ference tests for pairwise group comparisons. χ2 or Fisher’s exact 
tests were used for categorical data.

PCA with Direct Oblimin rotation and Kaiser normalization 
were conducted to investigate composite variables of the main hor-
mones. The factorability of the hormone data was inspected by 
Bartlett’s Test of Sphericity, which evaluates the presence of cor-
relations among the included variables and the Kaiser-Meyer-
Olkin (KMO) measure of sampling adequacy, which evaluates the 
degree to which the data are suited for factor analysis.

General linear models were used when covariates were included 
in the model. For instance, models assessing group differences in 
BDNF levels included age, as BDNF levels might level off with high-
er age [33]. Bonferroni post hoc tests were used to test for group dif-
ferences between the three groups. Also, sensitivity general linear 
model analyses were conducted to statistically control for the effect 
of weekly alcohol intake, body mass index (BMI), and current use of 
psychiatric, sleep, or cardiovascular medication on BDNF levels, by 
including these measures as additional covariates in the models. The 
relations among psychological distress, hormones, maximum 
strength, and BDNF levels were investigated with Pearson’s or Ken-
dall’s tau-b correlations upon violation of normality and/or linearity, 
across and within the three groups. To adjust for the age contribution 
to BDNF levels in correlation analyses, standardized residuals from 
a simple regression were computed, and the z-transformed age-ad-
justed variable was used in further analyses.

Results

Demographics
Table  1 summarizes key clinical and demographic 

characteristics. No significant differences in age were 
seen between WLC and androgen users (p = 0.374), but 
the current users were significantly older than the past 
users. Current users had less education compared to 
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WLC and were heavier and stronger than WLC for all 
measures and past users on some strength measures. 
Anxiety scores were higher for current users compared to 
WLC. The majority of WLC (96.2%), current (83.1%), 
and past users (93.3%) reported no current use of pre-
scribed psychotropic medication, although significant 
group differences were found, with current users being 
the highest consumers. Significant group differences 
were also seen for sleep and blood pressure medications, 
with highest use reported by current users. There were 
few group differences in the lifetime engagement of sport 

activities, except for bodybuilding/fitness that was more 
typical of the androgen users.

Characteristics of Androgen Use
On average, androgen use was initiated at 22.7 years 

(SD = 8.1, range 15–55) and had been used for 11.5 years 
(SD = 8.4, range 1–35), and the mean weekly applied an-
drogens dose was 1,114 mg (SD = 735, range 125–4,500). 
Current and past androgen users did not differ in age of 
androgen debut, or the doses used; however, current us-
ers had used androgens for 13.1 years (SD = 9.1, range 

Table 1. Demography of the study participants

WLC (n = 52)
mean (SD)

AAS current 
(n = 60)
mean (SD)

AAS past 
(n = 29)
mean (SD)

Main effect of group

F p value ηp2

Age 37.5 (8.6) 40.8 (11.3) 34.6 (8.5) 4.249 0.016a 0.06
Education, years 16.5 (2.9) 14.2 (2.9) 15.2 (2.2) 8.458 <0.001b 0.12
Alcohol, units/week 3.6 (3.8) 3.4 (3.1) 3.2 (3.2) 0.068 0.934 0.00
Weight, kg 93.0 (8.4) 102.1 (15.5) 97.9 (15.3) 5.805 0.004b 0.09
Height, cm 182.6 (5.9) 181.9 (5.8) 182.1 (6.7) 0.134 0.875 0.00
BMI, kg/m2 27.9 (2.7) 30.8 (4.4) 29.5 (4.1) 7.126 0.001b 0.11
Strength training, min/week 322.0 (159.1) 395.9 (224.4) 252.9 (164.5) 4.91 0.009a 0.08
Endurance training, min/week 114.3 (151.8) 93.5 (158.5) 95.4 (107.9) 0.267 0.766 0.00
Squats max, kg 179.4 (34.0) 227.6 (56.2) 208.3 (48.5) 11.104 <0.001b 0.17
Bench max, kg 141.1 (17.9) 181.8 (36.4) 163.3 (30.4) 22.783 <0.001c 0.28
Ground lift max, kg 200.5 (39.2) 248.5 (57.2) 241.0 (45.5) 11.239 <0.001b, d 0.18
HSCL total 1.22 (0.3) 1.40 (0.4) 1.38 (0.4) 2.828 0.064 0.06
HSCL anxiety 1.14 (0.4) 1.36 (0.4) 1.31 (0.4) 3.678 0.029b 0.07
HSCL depression 1.27 (0.4) 1.43 (0.4) 1.43 (0.4) 1.933 0.151 0.04

% % % X2 p

Smoker 0.0 9.4 12.0 5.97 0.03
Student 8 11.3 28.0 4.91 0.08
Working 93.5 94.3 84.0 7.90 0.10
Norwegian origin 97.80 96.20 92.00 1.44 0.49
Psychopharmaceutics (current) 4.30 18.90 8.00 5.11 0.07
Sleep medication (current) 2.20 24.50 8.00 20.33 0.00
Cardiovascular medications (current) 2.20 17.00 4.00 11.25 0.02

Training classification (lifetime)
Bodybuilding/fitness 32.60 71.70 60.00 15.53 0.00
Weightlifting 28.30 30.20 28.00 0.61 0.97
Combat sports 32.60 34.00 36.00 0.84 0.96
Recreational exercise 30.40 9.40 32.00 8.30 0.16

Of note, there are some missing cases for background measures (besides age), where mean values or percentages are based on 46 
nonexposed, 53 current, and 25 past users of androgens. Psychopharmaceutic includes current use of anxiolytics, antidepressants, attention 
deficits hyperactivity disorder medication, or opiate maintenance treatment, while sleep medication is presented separately. For training 
classification, the most frequently mentioned sports ever engaged in are reported. Note that multiple responses were allowed. Fisher’s 
exact test was applied when responses for a category were less than 5. HSCL, Hopkins symptom checklist. a Current androgen use significantly 
different from past androgen use. b Current androgen use significantly different from WLC. c All groups significantly different from one 
another. d Past androgen use significantly different from WLC.
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1–35), which was significantly longer (t = 3.3, p = 0.002) 
compared to past users (mean 7.7 years, SD = 5.1, range 
1–20). Among current users, 77% reported using andro-
gens at the time when blood was sampled. Previous users 
had on average stopped using androgens 3.2 years ago 
(SD = 2.7, range 1–8).

None of the WLC tested positive for synthetic andro-
gens or had T/E ratio above threshold. Positive doping 
tests were seen in 73.3% (n = 44) of current users (6 miss-
ing) and in 0% (n = 25) of previous users (4 missing). The 
mean T/E ratio for the groups was 1.1 (SD = 1.0, range 
0.1–4.8) for WLC (n = 47), 40.5 (SD = 39.4, range 0.1–

127.5) for current users (n = 53), and 1.7 (SD = 1.8, range 
0.0–8.8) for previous users, where previous users and 
WLC were significantly different from current users (df 
= 125, F = 35.4, p < 0.001, ηp2 = 0.37).

PCA of Main Hormones
Inspection of the correlation matrix revealed several 

coefficients r ≥ 0.30. The KMO value was 0.69, exceeding 
the recommended value of 0.60, and Bartlett’s Test of 
Sphericity was significant (p < 0.001), suggesting that fac-
tor analysis is appropriate [34]. PCA revealed two com-
ponents with eigenvalue >1, explaining 77.3% of the total 

Table 2. Hormone levels in weightlifting controls, current, and past androgen users

Hormone WLC (n = 51)
mean (SD)

Current androgen 
use (n = 54)
mean (SD)

Past androgen 
use (n = 25)
mean (SD)

Main effect of group

F p value ηp2

Follicle-stimulating hormone, IU/L 5.0 (3.0) 0.9 (1.7) 4.4 (2.7) 40.68 <0.001a, b 0.39
Luteinizing hormone, IU/L 4.7 (1.8) 0.7 (1.4) 3.7 (1.5) 89.50 <0.001a, b, c, d 0.59
Estradiol, nmol/L 79.6 (31.4) 207.9 (225.5) 78.8 (24.5) 12.01 <0.001a, b 0.16
Testosterone, nmol/L 19.4 (7.0) 39.5 (37.4) 12.9 (5.5) 12.81 <0.001a, b 0.18
Sex hormone-binding globulin, nmol/L 42.0 (19.5) 21.7 (17.7) 31.7 (13.1) 17.00 <0.001a 0.21
PCA factor 1 0.7 (0.8) −0.8 (0.7) 0.2 (0.6) 58.94 <0.001a, b, c, d 0.50
PCA factor 2 −0.3 (0.3) 0.6 (1.4) −0.5 (0.2) 16.01 <0.001a, b 0.21

FTI, free testosterone index; SHBG, sex hormone-binding globulin; PCAfac1, principal component analysis factor 1; PCAfac2, principal 
component analysis factor 2; WLC, weightlifting controls. The Bonferroni post hoc test. a Current androgen use significantly different from 
WLC. b Current androgen use significantly different from past androgen use. c All groups significantly different from one another.

Fig. 1. Serum levels of brain-derived neu-
rotrophic factor (BDNF, ng/mL) in weight-
lifting controls, current, and past androgen 
users. BDNF, brain-derived neurotrophic 
factor; WLC, weightlifting controls.
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variance of the included hormone data. Based on inspec-
tions of the scree plot in online supplementary Figure S1 
(for all online suppl. material, see www.karger.com/
doi/10.1159/000526418), this two-factor solution was 
chosen. The first factor had high loading for LH, FSH, and 
SHBG, with loading ranging from 0.77 to 0.88. The sec-
ond factor had high loading for testosterone and E2 with 
similar strong loadings on both components (0.92). See 
online supplementary Table S1 for details.

Blood Biomarkers
Group Differences in Sex Hormone Levels
As expected, significant group differences in hormone 

levels between the three groups were found, with current 

users diverging from WLC on all hormones and from 
past users on all besides SHBG. All groups were signifi-
cantly different from one another on LH and the PCA 
factor 2 comprising the gonadotropins and SHBG, see 
Table 2 for details.

Associations between Androgen Use and BDNF
Figure 1 shows BDNF distributions for all three groups. 

The main GLM univariate analyses revealed significant 
group differences in BDNF levels (F(3, 135) = 7.90, p = 
0.001, ηp2 = 0.11). Post hoc tests revealed that current us-
ers (mean = 44.1 ng/mL [SD = 12.7]) and previous users 
(38.5 ng/mL [13.9]) had significantly lower BDNF levels 
compared to WLC (51.5 ng/mL [15.3]), but no differenc-

Fig. 2. Associations between serum brain-derived neurotrophic factor (BDNF, ng/mL) and sex hormones. Visu-
alization of the relationship between serum BDNF levels and hormones in weightlifting control (blue), current 
(orange), and previous users of androgens (red). Note that for some hormones, there are a substantial proportion 
of tests at the lower end and also below detectable levels that being replaced, leading to a left-shewed distribution 
of data toward low values. BDNF, brain-derived neurotrophic factor; SHBG, sex hormone-binding globulin; LH, 
luteinizing hormone; FSH, follicle-stimulating hormone; PCA factor 1, principal component analysis factor 1; 
PCA factor 2, principal component analysis factor 2; WLC, weightlifting controls.
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es between current and past users. Age had minor influ-
ence on the model (ηp2 = 0.01) but was still adjusted for 
in further correlations. Online supplementary Table S2 
shows the results after correcting for use of alcohol, BMI, 
and current use of medications for sleep disturbances, 
cardiovascular conditions, and mental illness. Adjusting 
for these potential confounders had minimal influence on 
the findings and rather increased the explained variance 
attributable to group belonging to 16% (online suppl. Ta-
ble S2).

Relationship of Serum BDNF and Hormone Levels
Figure 2 shows correlations between BDNF and sex 

hormones for each subgroup. In past users, BDNF was 
negatively correlated with the PCA factor 1 with me-
dium effect size (τ = −0.4, p < 0.01). No other significant 
associations between BDNF and hormone levels were 
found.

Association between BDNF, Heavy Resistance 
Exercise, and Mental Health
Figure 3 shows the associations between psychological 

distress, lift records on the base powerlifting exercises, 
and BDNF levels across groups. All lift records were neg-
atively associated with BDNF levels, indicating that high-
er reported maximum strength was associated with lower 
BDNF. These associations could not be explained by an-
drogen use, as the strongest correlation was seen in WLCs 
with no history of androgen use (online suppl. Fig. S2). 
No significant associations were observed for psycholog-
ical distress as measured by the Hopkins Symptom Check-
list-25 and BDNF levels across or within groups.

Discussion

Accumulating evidence suggests that long-term ste-
roid use may have harmful consequences for the brain, 
cognition [26, 30, 35–37], and mental health [38]. These 

Fig. 3. Associations between serum brain-derived neurotrophic factor (BDNF, ng/mL), maximum strength, and 
psychological distress. Correlations between serum BDNF levels and maximum lift records on the base power-
lifting exercises (upper row), and symptoms of anxiety and depression (lower row), across groups. HSCL, Hop-
kins symptom checklist; WLC, weightlifting control subjects.
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effects are thought to be mediated through reduced neu-
rotrophic support to specific brain regions. In a sample of 
androgen-exposed and nonexposed weightlifters, we ex-
amined the relationship between long-term high-dose 
androgen-exposure and serum BDNF levels and tested 
whether BDNF levels were related to sex hormones, 
symptoms of depression and anxiety, and maximal 
strength. We found that past or current long-term high-
dose androgen users showed lower serum BDNF com-
pared to WLC. BDNF levels were not significantly related 
to anxiety or depression; however, an unexpected nega-
tive correlation was seen between maximum strength and 
BDNF levels.

Use of High-Dose Androgens Associated with 
Markedly Lower Serum BDNF
The markedly reduced levels of BDNF in current and 

past androgen users are in line with emerging evidence 
that suggests a link between sex-hormones [3, 39], andro-
gen use [14, 15, 40], and BDNF. In animal models, andro-
gen treatment is found to reduce hippocampal [41], pre-
frontal cortex [14, 15], and striatal [15] BDNF. Further-
more, 1 year of gender-affirming hormone therapy in 
transwomen (male-to-female) resulted in a significant 
drop in BDNF serum levels [40] which supports the ex-
ogenous sex hormone control of BDNF also found in our 
study. The observed BDNF findings could not be ex-
plained by BMI, alcohol, or current use of heart medica-
tions or pharmacotherapy for mental illnesses or sleep 
disorders. Instead, the explained variance by current or 
past use of androgens increased when adding these co-
variates, which strengthens the interpretation that the ob-
served group differences are caused by current or past use 
of androgens. In addition, the objective verification of the 
drug androgen history with antidoping drug screening, 
showing a strikingly good fit, is consistent with a recent 
report [42] and supports the interpretation of the find-
ings.

Hormonal Disruptions and BDNF
Our hormone findings are similar to what is seen in 

other studies [11, 43] and in accordance with what we 
know about how different phases of androgen adminis-
tration and withdrawal affect the hormonal environment. 
In current users, significantly lower levels of LH, FSH, 
and SHBG were seen, whereas serum testosterone level 
and E2 were markedly elevated [11, 43]. In past users, LH 
levels and PCA factor 1 were significantly different from 
WLC. Also, although no statistically significant group 
differences were seen between WLC and past users for 

other hormones, a high proportion of past users (33.3%) 
had testosterone levels below the reference limit for 
healthy adult males (9.0 nmol/L), although only two (n%) 
when a stricter criterion (6.6 nmol/L) was applied. The 
findings suggest that although few have markedly low tes-
tosterone levels, many users have testosterone levels in 
the lower range years after cessation, as previously report-
ed [11, 12]. The testosterone levels of past and current 
users likely partly reflect the SHBG levels, and the impact 
of androgen abuse on SHBG, given it being the main car-
rier of circulating testosterone [44]. Moreover, the lower 
LH levels seen in past users support long-term impact of 
androgen use on pituitary functioning. BDNF is ex-
pressed in the pituitary [45], indicating that BDNF plays 
a role in endocrine function. Emerging evidence suggests 
that hormonal status might influence the expression of 
BDNF and/or trkB expression (reviewed in [46]). Find-
ings from the Baltimore Longitudinal Study of Aging sup-
port a linkage between circulating hormones and BDNF 
levels. Among middle-aged and elderly men, BDNF levels 
correlated positively with bioavailable testosterone and 
negatively with SHBG levels [47]. Although the group dif-
ferences in BDNF levels between WLC and current and 
past androgen users in our study suggest hormonal influ-
ence on BDNF regulation, the associations are likely com-
plex, and we found no direct support for a linkage be-
tween any single hormone measure and BDNF levels.

Two endocrine profiles emerged from the PCA, one 
factor comprising hormones that are markedly reduced 
by androgen intake, none of which seems to fully recover 
upon quitting, and the second factor consisting of hor-
mones where levels are elevated by use. The PCA factors 
could be useful to understand complex associations, as 
the endocrine profiles probably provide greater insight 
about the endocrine disturbances than indicated by a sin-
gle hormone measure. The negative correlation between 
BDNF and the first PCA factor among past users may 
suggest that a slow recovery of the HPG axis, and result-
ing lower gonadotrophin levels after androgen use poten-
tially could affect the BDNF. Gonadotrophins and SHBG 
are suppressed even with low doses of androgen expo-
sure, whereas the testosterone and E2 level show higher 
variation depending on the compounds being used [48]. 
Also, the action of androgens is mediated via the andro-
gen receptors (AR) [49] and subsequent binding to DNA 
to regulate target gene transcription [49]. There is evi-
dence that testosterone might regulate trkB and BDNF 
mRNA expression in motor neurons [50, 51] and brain 
tissue [14, 15]. Suggested pathways for androgen-mediat-
ed regulation of BNDF involve an androgen-mediated 
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regulation of the calcium-dependent signaling pathway 
for BDNF [52]. They could also be estrogenic in nature, 
through testosterones’ conversion to dihydrotestosterone 
or estrogenic metabolites [53]. Estrogenic regulation of 
BDNF has been reported in several brain regions [54–56], 
and there is evidence of an estrogen response element on 
the gene encoding BDNF, providing a direct mechanism 
for steroid hormone control of BDNF expression [57].

BDNF Negatively Related to Maximum Strength but 
Not Depression
The neurotrophic hypothesis of depression posits that 

BDNF reductions in brain limbic areas in response to 
chronic stress may be responsible for the depressed mood 
[58]. Other associated disorders including schizophrenia, 
eating disorders, neurodevelopmental disorders, and 
substance use disorder also show significant disturbance 
in the neurotrophic support [4, 5]. Lower BDNF levels in 
androgen users, and the higher prevalence of mental 
health problems seen in androgen users fits well with this 
hypothesis. However, we found no support for a direct 
link between serum BDNF and depression or anxiety in 
our sample. Instead, a negative correlation was observed 
between maximum strength gains and BDNF levels. This 
could not be explained by use of androgens, as the asso-
ciation was even more prominent in the WLC group. 
Physical activity has repeatedly been shown to be a pow-
erful modifier of the brain and circulating BDNF, and a 
wealth of data demonstrates that endurance training re-
sults in increased serum and plasma BDNF levels [17, 59, 
60]. However, strongest evidence points to a “transient” 
increase in serum or plasma BDNF following an acute 
aerobic exercise [17], and that the BDNF response to 
training could be modulated by intensity and physical fit-
ness level [61].

Efforts have been made to establish whether resistance 
training also impacts BDNF levels, but the findings are 
less clear [17, 20, 21]. Many of these studies are of elderly 
individuals examining the effects of resistance training 
interventions on neuroplasticity and age-related cogni-
tive decline [62, 63]. Few have studied the impact of heavy 
resistance training, and the strength status and the inter-
ventions applied in previous studies are not comparable 
with the strength status or training practices of the par-
ticipants in the current study. Many compete on national 
and international level in weightlifting and bodybuilding, 
and the inclusion of WLC who have managed to bench 
press 100 kg makes this study clearly different from other 
studies. Hence, whereas resistance training in untrained 
elderly males might boost serum BDNF [64], our findings 

suggest that the opposite might be the case in more ex-
treme forms of heavy resistance training and achieved 
strength. Of note, the observed BDNF-strength associa-
tion reflects the participants’ maximum achieved strength 
ever, whereas acute effects are not recorded. It is possible 
that both our findings linking androgen use and maxi-
mum strength to BDNF levels could involve HPG axis 
alterations. It has been shown that intensive exercise 
training time attenuates the responsiveness of the pitu-
itary to release hormones and may cause hypogonadism 
[12]. In elite trained weightlifters, stressful strength train-
ing periods are shown to decrease selected serum hor-
mones including testosterone, which again correlate with 
weightlifting performance [65]. More experimental and 
longitudinal studies are needed to understand the impact 
of androgen use and strength training on peripheral and 
brain BDNF signaling, and the potential clinical signifi-
cance of the lower BDNF levels seen in current and past 
androgen users.

The current results should be interpreted considering 
some limitations. First, while the WLC group was care-
fully chosen as a control group that matches the androgen 
users on many aspects, we cannot rule out that use of an-
drogens is associated with lifestyle or other factors with a 
potential influence on BDNF. Although our findings re-
mained significant after the inclusion of covariates relat-
ed to physical and mental health, it is possible that other 
physical consequences of androgen use might explain the 
observed relations. We do not know whether our sample 
is representative of the population of current and past an-
drogen users. In particular, as one major aim of our re-
search was to understand long-term effects of use, we re-
cruited men with at least 1 year of cumulative androgen 
exposure. The average use of 11.5 years emphasizes that 
this sample consists of established users, and users with 
shorter history of androgen use might have less severe 
hormonal disturbances and medical consequences that 
potentially could be linked with the findings. There are 
also other methodological considerations that might in-
fluence the BDNF findings such as time of testing, fasting 
state, and smoking. While blood was sampled in the 
morning, we have less control of those other variables. 
Moreover, to which degree the observed serum levels re-
flect BDNF levels in the brain in this specific population 
is uncertain. The majority (90%) of BDNF found in blood 
is contained in platelets [66]. While serum BDNF levels 
are regarded to resemble BDNF concentrations in the 
brain [59], it has become clear that circulating BDNF is 
not derived from brain blood platelets but is released 
upon platelet activation [25]. Still, there seem to be many 
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shared components in the molecular pathways that regu-
late vesicular release in the brain and in platelets [67], and 
it is possible that the release from platelets could reflect 
BDNF release in the brain [5]. Also, the cardiovascular 
effects of androgen misuse, including a potential increase 
in blood platelets, activity, and aggregation [68] could be 
related to the BDNF findings. Blood platelets store BDNF 
mainly in α-granules [69] and release it into the blood-
stream during platelet activation [70, 71]. Blood platelets 
and megakaryocytes contain estrogen and AR, and it has 
been shown that testosterone regulates AR levels in these 
cells [72]. Although suggesting a putative pathway be-
tween high-dose androgen use and BDNF levels, the di-
rection of the findings does not quite fit including the 
finding of lower BDNF levels in both current and past 
users. Further studies are needed to confirm the observed 
association, understand the underlying mechanisms and 
their potential clinical implications.

In conclusion, our findings suggests that chronic an-
drogen use decreases circulating BDNF levels in both cur-
rent and previous users. The findings are worrying, point-
ing to potential persistent reduced neuroplasticity due to 
androgen use, which could pose a vulnerability or causal 
explanation for psychiatric and somatic pathology that 
sometimes follows androgen use.
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