
Heterogeneous system-on-chip
for AI computing

Understanding the Nvidia Tegra Xavier
architecture for running deep learning

inference using TensorRT

Joakim Foss Johansen

Thesis submitted for the degree of
Master in Programming and system architecture

60 credits

Department of Informatics
The Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2022

Heterogeneous system-on-chip
for AI computing

Understanding the Nvidia Tegra Xavier
architecture for running deep learning

inference using TensorRT

Joakim Foss Johansen

© 2022 Joakim Foss Johansen

Heterogeneous system-on-chip for AI computing

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

In a time where the world is getting more and more automatized
we have seen an increase in using heterogeneous systems-on-chip, to
solve problems of automation. This has lead to an increased pressure
on creating both good hardware and software for problems such as
robotics, image classification, speech recognition and more. To explore
these issues we have looked into one of these heterogenous systems-
on-chip, the Nvidia Tegra Xavier and by getting a better understanding
its architecture we have managed to optimize deep neural networks for
both inference time and power usage, by utilizing Nvidia frameworks
such as TensorRT and CUDA. By taking advantage of these frameworks
along with understanding the architecture of the Nvidia Tegra Xavier, we
have managed to get major reductions in inference time as well as vast
improvements to the power consumption.

1

Acknowledgments

First and foremost I would like to thank my official supervisor Håkon. I
am grateful for all the good advices and friendly conversations. I would
also like to thank you for showing a lot of compassion and understanding
during some difficult times.

Finally I would like to thank my wife, Priscila for her support and
encouragement during these long days of writing and frustration.

2

Contents

Abstract 1

Acknowledgments 2

1 Introduction 1
1.1 Background and Motivation 1
1.2 Problem Statement . 2
1.3 Limitations . 3
1.4 Main Contribution . 4
1.5 Research Method . 5
1.6 Outline . 5

2 NVIDIA Tegra Xavier 7
2.1 Heterogeneous systems on chip 7
2.2 NVIDIA Tegra Xavier . 7

2.2.1 The Volta Graphics processor 8
2.2.2 Carmel processing unit 9
2.2.3 Nvidia Deep Learning Accelerator 10
2.2.4 Comparing the different processing units 11

2.3 Matrix multiplication on the Tegra Xavier 11
2.3.1 Results . 12

2.4 AI computing . 13
2.4.1 Deep Learning . 13
2.4.2 TensorFlow . 14
2.4.3 TensorFlow on heterogenous multi core architectures 14
2.4.4 TensorRT . 16

2.5 The road ahead . 16

3 TensorRT for inference on the NVIDIA Tegra Xavier 17
3.1 TensorRT . 17

3.1.1 ONNX . 17
3.1.2 Workflow . 17
3.1.3 DLA . 18

3.2 MNIST . 19
3.2.1 Inference options . 19
3.2.2 Engine on disk . 19
3.2.3 Build phase . 20
3.2.4 Loading the network 20

3

3.2.5 Inference . 20
3.2.6 Further testing . 21

4 NVDLA 22
4.1 NVIDIA Deep Learning Accelerator 22

4.1.1 Architecture of DLA 22
4.1.2 Running layers on DLA using TensorRT 23

5 Resnet50 on Tegra Xavier 25
5.1 Background . 25

5.1.1 Usage of Resnet50 . 26
5.2 Motivation for analysing Resnet50 on the NVIDIA Tegra

Xavier architecture . 28
5.3 Resnet50 with TensorFlow . 28

5.3.1 OpenCV . 28
5.3.2 NHWC and NCHW 29

5.4 TensorRT on Resnet50 . 29
5.4.1 Programming the Resnet50 model 31

5.5 Build phase . 32
5.6 Loading phase . 33
5.7 Inference . 34

5.7.1 OpenCV with CUDA 35
5.7.2 Resize and normalize 35
5.7.3 Running inference . 36
5.7.4 Processing the output 37
5.7.5 Inference in a nutshell 38

6 Tegra Xavier power overview and management 39
6.1 Overview . 39

6.1.1 Monitoring on Jetson Xavier 39
6.2 Command line tools for performance and energy 41

6.2.1 NVPModel . 41
6.2.2 Jetson Clocks . 42

6.3 Power tuning . 43

7 Results discussion 44
7.1 Introduction to the tests . 44

7.1.1 How the tests are run 45
7.2 TensorFlow on the Xavier architecture 45

7.2.1 Inference time . 46
7.2.2 Power usage . 46
7.2.3 Takeaways from running on GPU and CPU 48

7.3 15W mode . 49
7.3.1 Inference time . 50
7.3.2 Power consumption 50

7.4 10W Mode . 50
7.4.1 Inference time . 52
7.4.2 Power consumption 52

4

7.5 30W Mode . 53
7.5.1 Inference time . 53
7.5.2 Power consumption 53

7.6 Unrestricted power mode . 55
7.6.1 Inference time . 55
7.6.2 Power consumption 55

7.7 Jetson Clocks . 56
7.7.1 Inference time . 57
7.7.2 Power consumption 57

7.8 Standard deviation while running inference 58
7.9 Discussion . 59

7.9.1 TensorRT compared to TensorFlow 59
7.9.2 The benefits of FP16 precision and DLA offloading . 60
7.9.3 The trade-off between power and speed 60

7.10 Limitations of the tests . 61

8 Summary & Conclusions 63
8.1 Summary . 63
8.2 Conclusion . 64
8.3 Contribution . 65
8.4 Future work . 66

8.4.1 Nvidia Orin . 66
8.4.2 PCIe express . 66
8.4.3 Bigger workloads . 67

A Asynchronous and synchronous inference 68
A.1 Asynchronous inference . 68
A.2 Synchronous inference . 69

B Monitoring power on the Tegra Xavier 70

C Loading from disk and getting meta data for inference 72
C.1 Load phase . 72

5

List of Figures

2.1 A diagram of the Tegra Xavier[8] 8
2.2 The Volta GPU with 8 Streaming Multiprocessors[15] 9
2.3 Carmel CPU complex[15] . 10
2.4 Example graph of pythagorean theorem 15
2.5 Single machine and distributed system[4] 15

4.1 Bridge DMA[20] . 24

5.1 Residual learning, on the right with skip connection[16] . . . 26
5.2 Skip Connection[16] . 27
5.3 Stock images used to infer big spotted cats 29
5.4 Difference between NCHW and NHWC [7] 30

6.1 NVPMode gui[30] . 41

7.1 Inference time in milliseconds on the different power modes
using TensorFlow on the GPU 47

7.2 Inference time in milliseconds on the different power modes
using TensorFlow on the CPU 47

7.3 Power consumption in milliwatt on the different power
modes using TensorFlow on the GPU 48

7.4 Power consumption in milliwatt on the different power
modes using TensorFlow on the CPU 49

7.5 Inference time in milliseconds on 15W power mode 51
7.6 Power consumption in milliwatt on 15W power mode 51
7.7 Inference time in milliseconds on 10W power mode 52
7.8 Power consumption in milliwatt on 10W power mode 53
7.9 Inference time in milliseconds on 30W power mode with 4

CPUs . 54
7.10 Power consumption in milliwatt on 30W power mode with

4 CPUs . 54
7.11 Inference time in milliseconds on the unrestricted power mode 55
7.12 Power consumption in milliwatt on the unrestricted power

mode . 56
7.13 Inference time in milliseconds using Jetson Clocks on unres-

tricted power mode . 57
7.14 Power consumption in milliwatt with Jetson Clocks on

unrestricted power mode . 58

6

List of Tables

2.1 NVIDIA Tegra Xavier specifications 8
2.2 Matrix multiplication . 13

3.1 Avarage inference time in milliseconds on the MNIST dataset 21

6.1 Jetson Xavier naming convention for sysfs nodes[30] 40
6.2 Address and Channel for INA3221 on the Jetson Xavier[30] . 41
6.3 Nvidia power mode table. 42
6.4 Nvidia frequency table in Mega Hertz. 42

7

Chapter 1

Introduction

1.1 Background and Motivation

With the increasing use of embedded systems on chips for their use in
autonomous machines, such as commercial robots, medical instruments,
autonomous vehicles and more. There is a need to understand the
architecture of these systems to see where they excel and their limitations.
We see that heterogeneous systems on chips have started to replace more
traditional microcontrollers in these types of systems, for example, the
Tegra X1 in the Nintendo Switch and Exynos in the Samsung Galaxy A
series.

For the last decade, the usage of these heterogeneous systems-on-chip
has exploded. In the world of AI and automotive cars, we continuously
hear of self-driving, lane detection, object detection, etc. However, beneath
all of these buzzwords, there are hardware and software designed to
optimize the speed, safety and power consumption of such systems.
As an example, Nvidia and Audi have gone together to transform the
automotive future through innovation, digitalization, electrification and
improved sustainability[35]. In collaboration with Audi, Nvidia has
developed hardware and software for object detection, signs classification
and line detection in cars. Nvidia Drive embedded supercomputing are
platforms that process data from cameras, radars and lidar(light detection
and ranging) sensors[35]. These are used to perceive the surrounding
environment and localize the car to map out a safe path forward, all to
make driving as safe and energy-efficient as possible. The hardware used
for these processes is different types of Nvidia platforms such as Nvidia
DRIVE Hyperion, NVIDIA DRIVE Orion and Nvidia DRIVE AGX Xavier.
This platform incorporates different types of Nvidia Systems-on-chip, such
as the Orion SoC or the Xavier SoC, which are Nvidias systems-on-chip
designed for AI and autonomous machines[11].

In 2016 Nvidia created the PilotNet single deep learning net-
work(DNN), which takes pixels as an input to create the desired traject-
ory for a self-driving vehicle. This deep learning model ran on the Nvidia
DRIVE AGX platform and could average out 500 kilometres of autonom-
ous steering before requiring a person to take over[3]. As opposed to older

1

applications of artificial intelligence which used handcrafted rules, the Pi-
lotNet model uses neural networks, which uses an extensive collection of
pre-defined examples to solve the issue with autonomy[3].

The realization that GPUs can help accelerate the time of training
Neural Networks, and processing image pixels from a camera or a sensor,
has played a significant role in encouraging the use of neural networks for
autonomous vehicles[3]. Nvidia has developed various systems on chips
specialized in AI computing, including the Tegra Xavier, which we will
look deeper into in this thesis.

However, autonomous driving is not the only field of AI that takes
advantage of the system-on-chip architecture. Another example is utilizing
a system on chip for detecting melanoma cells proposed by Afifi et al[31].
Melanoma is a very aggressive type of deadly skin cancer, and early
treatment can substantially increase the survival risk. By integrating a
system-on-chip to a low-cost handheld device, doctors have a better chance
of catching the disease without waiting for expensive tests that spend a
long time coming up with results[31].

Many real-life applications exist for using a systems-on-chip architec-
ture, whether in mobile phones, self-driving cars or medical equipment.
For this reason, we see motivation in understanding these architectures
better depending on the problems they can help us solve. In autonom-
ous vehicles, we are worried about safety and battery lifetime. So inference
speed in detecting objects on the road might be vital. However, in other
cases, such as in mobile phones or a robotic lawnmower, there might be a
benefit in trading speed for lower power to provide a better user experience
or sustainability.

1.2 Problem Statement

Inspired by the background and motivation in the former section, we have
decided to focus on the architecture of the Nvidia Tegra Xavier for running
inference on some AI workloads. We see this as an important case to
study as the popularity of SoCs in different systems is increasing, be it
automobiles, robotics or even smartphones. The increasing popularity of
deep learning also plays an essential role in defining this project as we see
their use increase in medical instruments, electric cars, drones and other
systems. Because of this, we see the importance of understanding the
architecture to deploy better and safer AI models.

We have decided to investigate how the different components on the
Tegra Xavier affect the speed and power efficiency when running inference.
We will also dive deeper into Nvidia’s frameworks, such as CUDA and
TensorRT.

While running inference, we are often interested in processing speed,
but the power consumption during real-time inference might be just as
important. For electrical systems that run on batteries, we might be as or
even more interested in the power consumption of the system. An example
could be models running on a robotic lawnmower or a smartphone. In

2

these cases, it would be preferable if the system did not drain the battery
too quickly. So the power usage while running inference will be an essential
part of this thesis.

This thesis can be split into three main sections.

• Understanding the different processing units on the Tegra Xavier and
their usage. This section will mainly focus on how the Tegra Xavier
is built and how to utilize the different processing units optimally.
Such as the central processing unit(CPU), the graphics processing
unit (GPU) and the neural processing unit(NPU. Also known as a
deep learning accelerator). All of these have different strengths and
weaknesses, and our task is to understand how to utilize them best.

• Utilizing Nvidia frameworks such as TensorRT and CUDA to optim-
ize inference of deep learning models. Nvidia TensorRT and CUDA
are frameworks developed by Nvidia and used for deep learning op-
timization and graphics card programming. Since the task is focused
on the Nvidia Tegra Xavier architecture, using the different frame-
works developed by Nvidia will be crucial in fully utilizing the cap-
abilities of the SoC.

• Power managing on the Tegra Xavier while running deep learning
models. In this section, we will mainly look into the power
consumption of the Tegra Xavier while running inference.

Thus the question of this thesis can be defined as follows:

Can we optimize deep learning models on the Nvidia Tegra Xavier with emphasis
on the trade-off between speed and power, using TensorRT and Jetson Xavier power
management

1.3 Limitations

There exists a number of SoCs out there, such as Teslas FSD-Chip(Full self-
driving chip), Exynos developed by Samsung or the Apple Silicon series,
which is the basis of most new Mac computers as well as iPhones and
Ipads[5]. However, this thesis will be limited to the Nvidia Tegra Xavier
architecture. This has to do with accessibility to a Jetson AGX Xavier
developer kit as opposed to other heterogeneous systems-on-chip. Nvidia
is also considered one of the world leaders in manufacturing graphics
cards, and they redefined modern computer graphics and revolutionized
parallel computing[2]. In recent years when the popularity of deep learning
exploded, Nvidia GPUs were there to take full advantage of AI computing.
Nvidia GPUs and SoC are widely used in automotive systems, robotics,
gaming, health care and more[2].

Nvidia also provides their users to take advantage of Nvidia’s own
ecosystem, which includes frameworks such as CUDA and TensorRT.
These frameworks are widely used in AI development and are exclusive

3

for Nvidia graphics cards and SoCs[2]. So my thesis will be limited to using
mainly these frameworks for benchmarking the Tegra Xavier. We will go
deeper into these in the following chapters.

We will limit the task to the Resnet50 model when running inference on
the Tegra Xavier. Resnet50 is a neural network developed by Kaiming He
et al. and is one of the most cited neural networks ever created and won
the ImageNet 2015 competition [16]. Resnet is also the base for many other
neural networks and is widely used in transfer learning[16]. We will go
deeper into the details of Resnet and why we chose it in chapter 5. We will
also limit the project to the Resnet50 model trained on the ImageNet data
set. This makes it easier to focus mainly on TensorRT and CUDA and see
how these can be used to optimize already created deep learning networks.
So the task will be limited to optimizing already trained deep learning
models utilizing Nvidia frameworks, not developing neural networks or
training them.

There are more components on the Nvidia Tegra Xavier than the GPU,
CPU and DLA. One of these is the programmable vision accelerator(PVA).
This unit is commonly used when dealing with processing computer
vision. We will be looking into some computer vision in the by running
inference on images with the Resnet50 model. However, since since we
are focusing mainly on the trade-off between inference time and power
consumption, studies done on the PVA will not be a part of this thesis.

1.4 Main Contribution

Throughout this thesis, we have researched how the Nvidia Tegra Xavier
heterogeneous system-on-chip architecture can be used to optimize deep
learning models with TensorRT. As such, we have contributed to several
details regarding these issues.

First and foremost, we have seen how TensorRT reduces the inference
speed on the Resnet50 neural network. Also, we have shown that using
a different precision value while running inference can reduce the power
consumed by the GPU and the SOC as a whole, all while keeping the speed
of inference low.

We have compared the CPU to the GPU and explored why it is
preferable to run deep learning inference on a graphics processing unit
instead of a central processing unit. With this knowledge, we have shown
how we can improve inference further using TensorRT to optimize already
existing models.

The architecture of the Nvidia Tegra Xavier also includes the deep
learning accelerator, a neural processing unit(NPU). We have proved how
this unit can help reduce the power load and memory usage on the GPU
and the SOC. By offloading layers from the optimized Resnet50 TensorRT
engine from the GPU over to the DLA with FP16 precision, we have
reduced the power consumption by up to nine times.

Also, by looking at the power modes of the Tegra Xavier, we have
seen how we can limit the amount of power the SOC is allowed to use.

4

This shows we can configure the SOC to perform within a specific limit,
allowing us to limit the power usage to different sorts of problems. One
might want to limit the power in cases where we have to decide between
speed or power usage.

We have proven that the Tegra Xavier is a versatile and robust system-
on-chip. Specialized in AI workloads, it has shown to be able to fit many
different scenarios. With the help of TensorRT, one can get the most out
of the architecture. This has proven that the compatibility between Nvidia
Tegra Xavier hardware and Nvidia’s deep learning framework can give us
high inference speeds along with low power usage.

1.5 Research Method

The research methodology used for this thesis is built mainly around a
design methodology. This methodology is based on the design paradigm
proposed in 1989 by Denning et al., from ACM [9].

For this project, we will look into subjects such as machine learning,
parallel programming on the GPU, image processing and computer vision.
These subjects are somewhat based on mathematics, electrical engineering
and software architecture.

The experimental part of this thesis will be rooted in developing
a hypothesis and constructing a model around this hypothesis. Then,
designing an experiment based on the model before collecting data and
analyzing the results.

We will look into how the architecture of the Tegra Xavier performs
machine learning algorithms and how the different components of the
architecture can be used for optimization, mainly focusing on speed and
power. By implementing a program to run deep learning models on the
Tegra Xavier and later analyzing the results, we believe we can better
understand the architecture.

1.6 Outline

This thesis is structured into seven different chapters. The first two chapters
are made as an introduction and explain the background of the research
conducted. Chapter three through six explains the background of the work
done and the theory behind it. The last chapter focuses on the research
results and a final conclusion.

Chapter 2 introduces the reader to systems on chips and mainly the
Tegra Xavier architecture. It gives some introduction to parallel computing
on the GPU as well as the frameworks used in this project.

Chapter 3 Looks into running inference on the Tegra Xavier using
TensorRT, as well as giving some introduction to TensorRT using the
MNIST dataset. It also gives the reader an introduction to the workflow
of TensorRT and the design pattern of how we will be implementing the
code.

5

Chapter 4 In this chapter, we will look into the NVDLA itself and see
what motivations Nvidia had for implementing it. As well as make some
assumptions on how it will affect inference regarding speed and power.

Chapter 5 focuses on the running Resnet50 on the Tegra Xavier and how
we have proceeded with using TensorRT for optimization. This chapter
gives a detailed description of the process of creating software that runs
TensorRT on the architecture. We also explain other frameworks used in
the program and our justification for choosing them. The chapter also gives
a thorough background of the Resnet50 model and explains why we think
it is a relevant model for this thesis.

Chapter 6 shows the reader some technical information about the
power monitoring on the Jetson Xavier AGX developers kit. Also, some
related tools and techniques for managing the power on the SoC.

Chapter 7 Brings it all together by analyzing the research results.
Here we draw up our final conclusion and give suggestions for further
improvements.

6

Chapter 2

NVIDIA Tegra Xavier

In this chapter, we will introduce the Nvidia Tegra Xavier architecture.
We will look into the Tegra Xavier components commonly used when
running inference on deep learning models. Later we will discuss some
of the tools used for this thesis. We will also discuss the benefits of using
the GPU for doing specific calculations instead of using the CPU. These
tasks include problems related to image processing and inference on deep
learning models. Which are problems that are parallel in nature, and we
will see why it might be beneficial to solve these types of calculations on
the GPU.

2.1 Heterogeneous systems on chip

A heterogeneous system architecture is a system architecture that integ-
rates multiple processing units, such as a central processing unit and a
graphics processing unit, onto the same system bus, with shared memory.
This form of architecture aims to reduce the latency between the different
units on the chip. The system architecture makes the devices more compat-
ible by giving a framework to move data between the different processing
units.

2.2 NVIDIA Tegra Xavier

The Nvidia Tegra Xavier is a heterogeneous system-on-chip designed by
Nvidia. It was introduced in 2018 and is marketed for AI computing. It
comprises eight 64-bit ARMv8 cores and a Volta GPU with 512 CUDA
cores; parallel processors are used to process the data fed in and out of
the GPU, typically used for any graphics computing, such as video game
rendering or image processing. The Volta GPU is specified for AI and
improving [14].

A detailed list of specifications can be seen on table2.1.
We will now go deeper into the different processing units on the Tegra

Xavier. We have chosen to mainly focus on the processing units that are
most relevant for deep learning inference. These units inlcude the Volta

7

Table 2.1: NVIDIA Tegra Xavier specifications
GPU 512-core Volta GPU with Tensor Cores
CPU 8-core ARM v8.2 64-bit CPU, 8MB L2 + 4MB L3

Memory 32GB 256-Bit LPDDR4x | 137GB/s
Storage 32GB eMMC 5.1

PCIe x8 PCIe Gen4/x8 SLVS-EC
NPU(DLA) 2 Nvidia Deep Learning Accelerators

Graphics processor, the octa-core ARM Carmel CPU cluster and the Nvidia
Deep learning accelerator. For an illustration of the Xavier architecture, see
figure 2.1 borrowed from WikiChip[8].

Figure 2.1: A diagram of the Tegra Xavier[8]

2.2.1 The Volta Graphics processor

The Tegra Xavier is a system-on-chip explicitly designed for AI computing,
and we can not talk about AI computing without digging deeper into the
GPU. With the Volta architecture, Nvidia has developed a new Streaming
Multiprocessor(SM) optimized for deep learning [14]. According to Nvidia,
the new Volta SM was created to enable a significant performance boost. It
has been built with programmable Tensor cores, whose purpose is to run
deep learning tensor operations for INT8, FP16 and FP32 precision[24]. We
will get deeper into what these precision points mean in later chapters.
We can now describe them as instructions to accelerate integer and

8

mixed-precision matrix-multiply-and-accumulate operations (IMMA and
HMMA)[36]. As we will see, these operations are essential when running
inference on the Xavier. As of now, we can content ourselves with saying
that these operations perform D= AxB + C where A, B, C and D are 4x4
matrices of floating-point 16 or 32. The Volta streaming multiprocessor
also provides an enhanced L1 data cache for higher performance and lower
latency, promising higher clocks and power efficiency[36]. The Tensor
Cores on the Volta GPU have been integrated with cuBLAS, cuDNN, and
TensorRT and are programmable through CUDA[15].

The Volta graphics processor has a dedicated hardware block where
most graphics functions are performed; this is called the Graphics
Processing cluster. This cluster comprises four Texture processing
clusters(TPC), which contain two Volta SMs. These SMs units create, man-
age, and execute instructions for parallel threads[36].

The Volta Graphics processor is specialized for running deep learning
networks. See figure 2.2, taken from the Nvidia Jetson AGX Xavier webinar
in 2019[15], for an illustration of the Volta architecture.

To see how the GPU compares to the CPU, we are now going to
create a program to perform matrix multiplication over matrices of various
sizes. Hopefully, this will introduce GPU programming, which will play a
significant role when we later want to run inference on neural networks.

Figure 2.2: The Volta GPU with 8 Streaming Multiprocessors[15]

2.2.2 Carmel processing unit

The Nvidia Tegra Xavier chip features eight Carmel cores, which is
Nvidia’s 64-bit ARM core. These cores are implemented with ARMv8.2

9

and include a dual execution mode.
The cluster consists of 4 duplexes sharing a 2 MB of L2 cache. The L2

cache is the cache memory of the CPU and is located outside and separated
from the chip core. At the edge, the CPU complex has a 4MB L3 cache.
This cache is a bit slower but holds a higher memory level and is shared
among the whole complex[24]. All the cores are cache coherent to avoid
data inconsistency. The Carmel CPU complex provides a high-performance
System Coherency Fabric(SCF), which connects all CPU clusters and
enables simultaneous operations of all CPU cores. This creates a true
heterogeneous multi-processing(HMP) environment[24]. This coherence
is extended to the chip’s GPU and other accelerators. For an illustration
of the Xaviers CPU cluster, have a look at figure 2.3 borrowed from the
Nvidia webinar on the Jetson Xavier[15].

The CPU also supports power management with multiple power
domains. We will get a little deeper into this in chapter six. However,
briefly explained, it allows the user to change the power mode depending
on the situation. As an example, running on different power modes
changes the number of active CPUs and their maximum frequency. By
default, the system has four cores running with a max frequency of
1200Hz[24]. All the cores consume about 500 - 1500 mW each[15].

Figure 2.3: Carmel CPU complex[15]

2.2.3 Nvidia Deep Learning Accelerator

The Nvidia deep learning accelerator(NVDLA) is a type of neural pro-
cessing unit known as a deep learning accelerator. The DLA is an electronic
circuit designed for deep learning algorithms. Each Xavier platform has
two of these DLA engines integrated and has a peak performance of 5 Tera
operations per second (TOPS) for int8 precision and 2.5 Tera floating points

10

operations per second (TFLOPS) for fp16 precision. These cores optimize
power efficiency and consume about 500 - 1500 mW[15]. The engines are
programable with TensorRT and are one of this thesis’s main points of in-
terest. We will go deeper into their architecture in chapter 4.

2.2.4 Comparing the different processing units

In this thesis, we will look into the different processing units that have been
optimized for deep learning. We hope to see differences in power usage
and speed of inference when running deep learning models. However,
to give a taste test of the differences between the GPU and CPU, we will
create a simple program that runs a matrix multiplication algorithm on
the CPU using the C programming language. Then we will compare this
to a matrix multiplication algorithm on the GPU using CUDA, a C++
framework developed by Nvidia for programming on the GPU[21].

2.3 Matrix multiplication on the Tegra Xavier

To get to know the Tegra Xavier, we implemented a simple matrix
multiplication algorithm in CUDA. This was to test how a typical parallel
algorithm can be optimized using the GPU. The benefit of using the GPU
to process such algorithms is that the GPU is specialized in computing
highly parallel computations, which is what graphics rendering is all about.
Programs that process large data sets can be optimized using a parallel
programming model[21]. See the code below.

void matrixmul (i n t * a , i n t *b , i n t * c , i n t s i z e)
{

for (i n t i = 0 ; i < s i z e ; i ++)
{

for (i n t j = 0 ; j < s i z e ; j ++)
{

for (i n t k = 0 ; k < s i z e ; k++)
{

c [i * s i z e + j] += a [i * s i z e + k] * b [k * s i z e + j] ;
}

}
}

}

This code uses C to run matrix multiplication on the Carmel CPU.

11

__global__ void gpu_matrixmul (i n t * a , i n t *b , i n t * c , i n t s i z e)
{

i n t row = blockIdx . y * blockDim . y + threadIdx . y ;
i n t column = blockIdx . x * blockDim . x + threadIdx . x ;

i n t sum = 0 ;
i f ((row < s i z e) && (column < s i z e))
{

for (i n t i = 0 ; i < s i z e ; i ++)
{

sum += a [row * s i z e + i] * b [i * s i z e + column] ;
}

}
c [row * s i z e + column] = sum ;

}

This code uses CUDA to run matrix multiplication on the Volta GPU.

2.3.1 Results

Performing a matrix multiplication of the same matrices will have a big-O
notation of O(N3), which can be significantly improved by transferring it
to the GPU and running the computation in parallel.

As one can see looking at the code examples on the following page, the
original algorithm is a triple for loop doing calculations on the matrices. As
mentioned, this algorithm will run in O(N3) time, and with the increasing
size of the matrices, the time to run the algorithm will increase significantly,
as seen in table 2.2. We are running the algorithm as a nested for loop
on the CPU; one can see how inefficient it is. On a 512x512 sized matrix,
the algorithm uses, on average, just above a second and on a 1024x1024,
we get over 10 seconds of calculations. From it ramps up, on a 2048x2048
matrix, the algorithm spends almost up to a minute and a half. When we
increase the size even further up to 4096x4096, it takes about 14 minutes
to run the total calculations. Comparing that amount of time to the GPU
run time, we can see where a parallel algorithm’s benefits come in. On all
sizes calculated, the run time kept pretty consistent at 0.100ms. This makes
sense considering the size of the problem and the technique used.

The implementation has been significantly simplified to run in parallel.
Decreasing the algorithm from O(N3) to O(N), shows what benefits one can
achieve by optimizing an algorithm by transferring the computations over
to the GPU.

12

Table 2.2: Matrix multiplication
Size 512x512 1024x1024 2048x2048 4096x4096
CPU 1.21s 10.55s 86.98s 887.42s
GPU 0.100ms 0.109ms 0.124ms 0.130ms

2.4 AI computing

There has been an explosion in the progress of AI computing over the last
decade. AI computing is the simulation of human intelligence processing
done by computers. Typical applications of AI computing include natural
language processing, speech recognition and computer vision. The huge
popularity growth of the AI world has been Nvidias motivation for
developing their heterogeneous systems-on-chip, such as the Nvidia Tegra
Xavier[15]. As mentioned introductory to this thesis, Xavier architecture
has already seen its use in the automotive industry.

The parallelism capabilities of the GPU have proven able to train large
neural networks[18]. AI computing and machine learning are used in
many aspects of modern society, from web searches, content filtering and
recommendations on e-commerce websites[37].

2.4.1 Deep Learning

Deep learning is a part of the broader field of machine learning and AI
computing. Deep learning allows computational models to learn data
representations with multiple levels of abstraction[37].

Deep learning uses back propagation algorithms to indicate how
to perceive specific structures in large data sets. The limitations of
conventional machine learning were that they were very limited in
processing data in its raw form. For a long time, constructing pattern
recognition was an extremely daunting and engineer-heavy task. However,
with representation learning, it became possible to feed with raw data, to
discover representations for detection or classification automatically[37].
Deep learning methods are representation learning methods with multiple
levels of representation[37], which means that the algorithms use multiple
levels of abstraction. By going from simple raw data to transforming
it for each layer into a higher, more abstract level[37]. By doing these
sorts of transformations layer by layer, very complex patterns can be
recognized, and thus very complex functionality can be learned. The key
feature of deep learning that separates it from other types of AI computing
and machine learning paradigms is that most of the learning is done
automatically instead of being heavily designed by engineers. We mean
they are learned from data using general-purpose learning procedures or
algorithms[37].

As explained, Nvidia has developed GPUs for a long time, and with the
increased popularity of deep learning and the benefits of GPU parallelism,
Nvidia has become one of the leading companies in AI hardware. Deep
learning is also the primary tool used for object detection in NVIDIA’s

13

DRIVE platforms[32].
In this thesis, we will limit ourselves to running inference on models

already created and trained on big data sets. We will look a little bit into
Deep Learning frameworks. Many different frameworks exist for deep
learning, such as Pytorch and TensorFlow. We will satisfy ourselves by
looking into TensorFlow to give some background to how deep learning
models work, as it will give us a baseline for inference speed. However,
the main interest will be in optimizing these models using TensorRT.

2.4.2 TensorFlow

TensorFlow is a framework for expressing deep learning algorithms and
can be used for many tasks. In TensorFlow machine learning algorithms
are represented as computational graphs[10]. This means we have a data
structure where each vertex represents an operation. Such an operation can
have zero or more inputs as well as zero or more outputs. These operations
can, for example, represent mathematical operations, variables, control
flows, I/O operations, network communications ports and more. The
edges represent the data flowing between the vertices; in TensorFlow, these
are known as Tensors. In TensorFlow, tensors are defined programmatically
as multidimensional arrays[10]. They are immutable objects; their contents
can never be updated; one can only create new ones[33]. To put it into a
simple example, we can look at an elementary mathematical function like
the Pythagorean theorem a2 + b2 = c2 we can picture a simple graph of
tensors and operations. The a and b variables would be two tensors of
only one dimension; a scalar shape. They would be represented on the
graph as the edges connected to a vertex representing the square operation.
The tensors representing the output of this operation would be a2 and b2.
These tensors would be the edges connecting to a new vertex representing
the addition operation, and the output operation of this tensor would be
c2. This graph is shown in figure 2.4. Of course, this is a very simplified
example of how one would use TensorFlow, but it works for illustrating
purposes.

Upon executing the graph, TensorFlow will start at an output node that
has been requested and work its way backwards by examining the graphs
dependencies [10]. The nodes in the graph can then be assigned to one or
many processing units (such as CPU or GPU). Within the execution model
for TensorFlow, there are two degrees of scalability[10]. First and foremost,
the number of machines doing the computation, as the operations might
be distributed over many machines. Secondly, the number of devices there
are on one machine(in the case of TensorFlow, devices refer to physical
execution units such as CPUs and GPUs).

2.4.3 TensorFlow on heterogenous multi core architectures

As noted in the previous section, a device in the context of TensorFlow
refers to the physical unit performing the computation. The simplest
way to look at an exectution of a session is on a single device such as

14

Figure 2.4: Example graph of pythagorean theorem

the CPU. This means that all the vertices of the graph is executed and
managed by the device. This means that the master process which keeps
track of the nodes in the graph is also responsible for the execution[4]. A
more efficient solution is to distribute the execution out to more devices.
This means that one can utilize multiple processing units to perform
the calculations. Tensors are defined as multidimensional arrays, and
operations on them can be heavily optimized by running these in parallel.
These problems can typically be optimized by running the calculations
on the GPU. Considering this, these types of problems should be able to
utilize the architecture of the NVIDIA Tegra Xavier to the fullest. A typical
TensorFlow process implementation can be seen in figure 2.5 borrowed
from the paper by by Abadi et al[4]. Here we see one master process which
controls the worker that runs the computation on multiple processing
units.

Figure 2.5: Single machine and distributed system[4]

15

2.4.4 TensorRT

TensorRT is an SDK developed by NVIDIA for high-performance deep
learning inference. It is used to optimize neural network models in all
major frameworks, such as TensorFlow or Pytorch. It was developed
in CUDA and is made to significantly reduce application latency, a
requirement for many real-time services[25].

With this in mind, TensorRT should be a perfect candidate for further
optimization. Especially considering its tight integration with TensorFlow,
this allows one to utilize the full potential of a model created in a deep
learning framework like TensorFlow on the Tegra Xavier. In later chapters,
we will dig further into what TensorRT is and how it is used in optimizing
deep learning models, as it is one of the main problem statements of this
thesis.

2.5 The road ahead

First and foremost, it will deal with getting a more thorough understanding
and hands-on experience with the frameworks, mainly TensorRT. Utilizing
the tools will be a prerequisite for the main task of this thesis: benchmark
the Xavier by running inference on Resnet50 and optimize it for speed and
power. After that we will dig deeper into the Resnet50 model itself to
optimize it using TensorRT. We will then look into the power sensors on
the Tegra Xavier and the different power modes to see what trade-offs we
can get between the speed of inference and the power usage on the SoC.

16

Chapter 3

TensorRT for inference on the
NVIDIA Tegra Xavier

This chapter will introduce us to TensorRT by running a workload on the
MNIST dataset. We will look at the typical workflow when designing code
with TensorRT and make some thoughts on how to proceed when we later
try to analyze how to utilize TensorRT with the Tegra Xavier architecture
best.

3.1 TensorRT

As already mentioned, TensorRT is an inference framework developed
by Nvidia. It is considered the fastest inference framework for Nvidia
hardware and is designed to be compatible with a list of famous machine
learning frameworks such as TensorFlow, Pytorch and MXNet[26]. The
framework does not focus on training neural networks but improves
inference on newly created networks on Nvidia hardware.

3.1.1 ONNX

ONNX stands for Open Neural Network Exchange and is a way to
represent trained machine learning networks. Neural networks created
by frameworks such as TensorFlow or PyTorch can be represented in
the ONNX model. TensorRT comes with a library to parse the models
represented in the ONNX format and allows us to start running inference
on the models in TensorRT quickly. Parsing an ONNX file in TensorRT is
done in just a few lines of code and allows the programmer to quickly start
optimizing without knowing much about the frameworks used to create
the model[27].

3.1.2 Workflow

The TensorRT workflow consists of a build phase and a runtime phase. In
the build phase, one creates the network to define how to run the model.
This can be done in multiple ways. One can construct and define the

17

network step by step using the TensorRT’s Layer and Tensor interfaces.
Alternatively, one can use the already built-in ONNX parser interface,
IParser, to parse already created models. This is preferred since we will be
working on running inference on the Tegra Xavier to test the architecture
and not analyze the models themselves. To use the ONNX parser, one
needs to include the NvOnnxParser header file and a couple of lines of
code.

After creating a network for the parser, one uses the IBuilderConfig
interface to specify how TensorRT will optimize. With these two interfaces,
it is possible to create the builder, which is called to create the engine. The
builder creates a serialized engine, a plan, which can be stored on a disk or
deserialized to run immediately. When creating an engine in TensorRT, the
engine is created specifically to run on the GPU where it was created, and
on the version of TensorRT used. This means it is impossible to create the
engine on a Geforce RTX 3060 card and transfer it to the Tegra Xavier, or
vice versa.

The runtime phase is the execution phase of TensorRT. This phase
starts with deserializing the plan to create an optimized engine. After
that, an execution context will be created, where we invoke inference by
passing data. This data can, for example, be a picture, such as in the
MNIST network. Here we have a .pgm file which represents a handwritten
number. The task of the model is to be able to guess which number is
represented on the image. We can use the execution context to run inference
by passing the buffer to either the execute or the enqueue functions.
The execute function runs inference synchronously while the enqueue
functions does so asynchronously [26].

The build phase is done sequentially as the builder times algorithms to
determine which will be fastest. Since this is the case running the builder in
parallel would lead to poor optimization[26]. It has to be done on one GPU
and can be stored to disk. After that, we can parse the engine for running
inference. Running inference on the execution can be done asynchronously;
however, we see no benefits in doing so on such a small data set.

3.1.3 DLA

Deep Learning Accelerators or DLAs are processors dedicated to running
inference. These processors are to be seen on many Nvidia SoCs and
are supported by TensorRT. It is possible to run parts of the network
on the DLAs and the rest on the GPU. The Tegra Xavier SOC is fitted
with two of these DLA cores, as seen in figure 2.1. These processors
are made for deep learning operations, and it should be interesting to
see how they might help optimize for inference. Nvidia has named their
DLA the NVIDIA Deep Learning Accelerator(NVDLA). This open-source
hardware neural network AI accelerator exists on the Xavier SOC. As the
name explains, the NVDLA is just an accelerator, and the process to use
it must be scheduled by a CPU or GPU. The TensorRT developer guide
NVIDIA explains that "DLA is designed to do full hardware acceleration
on convolutional neural networks"[26]. This means that the DLAs are well

18

suited for deep learning models dealing with image processing. We will
look more into the architecture of the NVDLA in chapter four. DLA can
only be run on FP16 or INT8 precision.

3.2 MNIST

As a starter project, we have been looking into the MNIST dataset. MNIST
stands for Modified National Institute of Standards and Technology, and
it is an extensive database of pictures of handwritten numbers[34]. There
exist already pre-trained models on recognizing which number is written
on the image. This is a good starting point for getting to understand the
workflow of TensorRT and getting familiarized with the libraries.

As mentioned, the phases of TensorRT consist of first building the
network from a pretrained model, which would be the MNIST.onnx model.
This model comes with installing TensorRT, and the builders create a
serialized engine from the ONNX model. During the build phase one
can choose the level of precision for the network; FP32, FP16, INT8. In
TensorRT, the default is set to FP32. The Tegra Xavier architecture does
not support INT8 precision. So we will content ourselves with running the
tests on FP32 and FP16.

The program itself follows the typical TensorRT workflow described in
the previous section. Firstly it checks if the engine already exists on the
disk; it builds the engine before loading the network. If the engine exists
on the disk, it skips the building part and jumps directly to loading the
network for inference. Lastly, it runs inference.

3.2.1 Inference options

Since there are so many options for running inference using TensorRT, we
saw a need to be able to pass options. Currently, the options list only
contains a few choices, and these are made in a struct called Configurations.
The options available for the moment are the decision to choose whether
one is using 16 floating-point precision, maxWorkspaceSize and DLA core.

s t r u c t Conf igurat ions {
/ / Using 16 p o i n t f l o a t s f o r i n f e r e n c e
bool FP16 = f a l s e ;
/ / Max GPU memory a l l o w e d f o r t h e model .
i n t maxWorkspaceSize = 40000000 ;
/ / DLA
i n t dlaCore = 0 ;

} ;

3.2.2 Engine on disk

As mentioned, there is a possibility to write the engine to disk. We decided
to serialize the name using the engine configurations to check if an engine

19

with the same configurations already exists. This means an engine can
be stored to and loaded from disk using the name based on the options.
All engines start with the string "trtengine", and after that, we append
the options used to the name. An example name can be something like
trt.engine.fp16.dla; this means that one uses floating-point 16 and a DLA
core to run inference. We found this naming convention very useful and
will continue with it for the rest of this thesis.

During the build phase, the program checks if an engine already exists.
If the engine exists, it simply jumps to the loading phase. By saving the
engine on disk, we do not have to build from scratch, which saves us some
time since the build phase can be a little time-consuming. However, we
met a problem regarding running inference on a network loaded from a
disk. For some reason, the inference became slower than when one built
the engine to run inference on it.

At this stage in our testing, we did not yet understand why it executed
slower inference while loading pre-built engines from disk. It was not until
we started looking at the Resnet50 model in chapter 5 that it became clear.
What happens is that CUDA, along with its libraries CuDNN and CuBLAS,
takes some time to initialize. During the build phase, TensorRT uses CUDA
to test for the engine’s best possible optimizations. However, when we load
the engine from storage, CUDA has not yet initialized, making this happen
first in the inference phase. For this reason, it is common to throw away the
first inference before running the main execution.

3.2.3 Build phase

Should there not be an engine already stored on the disk, the program will
build it based on the configurations passed by the user. The build phase
parses the ONNX model before it builds the engine and then stores the
serialized engine to disk before it is loaded and runs inference.

3.2.4 Loading the network

Loading the network is straightforward. It loads the network and preps it
for inference by creating a CUDA engine. It uses this engine for making
the execution context, and the execution context is used for running the
inference.

3.2.5 Inference

The inference phase is the most exciting part for this thesis, as our goal is
to optimize deep learning inference on the Tegra Xavier.

As mentioned earlier, while we ran inference on the MNIST model, we
got much longer inference times when we loaded from the disk than when
we built the engine by parsing the ONNX file. When loading the FP32
engine from the disk we got an inference time of 1.35 seconds as opposed
to 2.056 milliseconds while building it from scratch. As we said, at this
point in time it was not clear to us why this happened. However, with later

20

FP32 DLA FP16
2.056ms x 2.016ms

Table 3.1: Avarage inference time in milliseconds on the MNIST dataset

knowledge, we now know the inference times when building the engine
from scratch best represent the inference time of TensorRT. So in table 3.2.5
we decided to show these numbers instead of the inference times that took
over a second. One thing that would have solved this issue is running
inference multiple times with the same execution context. By throwing
away the first one and getting an average on multiple images would have
been better. However, at this point, we were not aware of this behaviour.

By looking at table 3.2.5 we see that the inference time of FP32 and FP16
are about the same. This is likely due to the size of the test data. We will
look into bigger workloads in chapter 5.

When it came to using the DLA cores, we were disappointed that the
MNIST model did not support offloading the GPU. The layers in this model
were incompatible with computation on the DLA, which led to a fallback
to the GPU, making it simply run with FP16 precision.

We also learned that the Tegra Xavier architecture does not support
INT8 precision. When we tested it out we got an error and the program
would not compile. Saying INT8 was unsupported

3.2.6 Further testing

Further on, we will try to run inference on an image classification model
such as Resnet50. This model is more prominent in size, leading us
to believe there will be more gain from testing different precision and
benchmarking the power usage of multiple inferences. Also, since the
Tegra Xavier has DLA cores designed for deep learning inference, it will
be interesting to see their benefits on models that allow for DLA cores to be
used. Both consider power management and time efficiency.

21

Chapter 4

NVDLA

This chapter will look a little into the details of how Nvidia has designed
their NVDLA architecture. We will see what the NVDLA was designed for
and what problems it aims to solve. We will also make up some thoughts
on how we will use the NVDLA when we look into how we can utilize it
for the tests we will be doing in the following chapter.

4.1 NVIDIA Deep Learning Accelerator

NVIDIA Deep Learning Accelerator(NVDLA) is an open-source architec-
ture created by Nvidia, which is made as a way to design deep learning
inference accelerators. NVIDIA describes NVDLA as "a free and open ar-
chitecture that promotes a standard way to design deep learning inference
accelerators. With its modular architecture, NVDLA is scalable, highly con-
figurable, and designed to simplify integration and portability. The hard-
ware supports a wide range of IoT devices."[20]

4.1.1 Architecture of DLA

The DLA hardware comprises different components, such as the Convolu-
tion Core, an optimized high-performance convolution engine. A convolu-
tion engine is a programmable processor specified for data flows that are
typically convolutional. Data from image/video processing and computer
vision are examples of this. The convolutional engine maps parameters of
different sizes onto the hardware[20].

The single data point processor(SDP) is a single point lookup engine
for activation functions. This means it has a lookup table for implementing
non-linear functions and bias and scaling for linear functions. This makes it
possible for the SDP to support the most common activation functions such
as ReLU, linear activation and PReLU[20]. The ResNet50 model, which we
will look further into later, is implemented with for example, ReLU[16].

In convolutional neural networks, there is a technique to generalize
features in images. This technique is called pooling. By extracting pieces
of an image, we can teach the network to recognize these features, and
by stacking multiple convolutional layers, we can make it possible for the

22

network to recognize complex structures and objects in an image. There
are different types of pooling, such as max pooling or average pooling. By
this, we simply mean we run a filter over the image to extract data[20].
Let us say we have a filter of a 2x2 matrix, which is the most common.
By running this filter over an image of 216x216 pixels, we can extract the
highest number that occurs inside the filter at a given time. Then we stride
the filter by two and do the same here. This gives us an output matrix of the
highest numbers that occur inside the filter at each iteration. This technique
is called max-pooling and is commonly used to recognize a picture value
in different places in the image[20]. This technique is common when
dealing with convolutional neural networks. The Nvidia DLA contains
a processor dedicated to these types of operations, called the Planar Data
Processor(PDP) and supports common spatial operations in CNNs[20].

Often when performing inference on a CNN, we need to reshape or
reconfigure the tensors and copy configurations. For example, when
finding different features of an image, such as the spatial regions, which is
the process of filtering regions of the image using simple geometric shapes
and boolean combinations of shapes[20]. This makes it possible only to
process pixels found with specific shapes, and spatial region filtering does
this by specifying regions of the images. The DLA architecture uses a
data-reshape engine process to do memory-to-meory transformation for
reshaping and changing tensors[20].

Lastly, the NVDLA architecture uses Bridge DMA for data transfer.
Images and processed results are stored in the external Dynamic Random
Access Memory(DRAM), but the bandwidth and latency are generally
insufficient to allow the NVDLA to work optimally. For this reason,
NVDLA uses a secondary memory interface to on-chip Static Random
Access Memory(SRAM)[20]. SRAM is often faster than DRAM but also
more expensive and is often used for the cache and internal registers of a
CPU, compared to DRAM, which is more commonly used for computers’
main memory[20]. To utilize the SRAM one needs to move the data
between the DRAM and the SRAM efficiently. For this purpose, Nvidia
uses Bridge DMA to transfer data between the two. There are two
independent parts, and one copies data from external DRAM to internal
SRAM, and vice versa. It also allows for transfer between external DRAM
and external DRAM as well as internal SRAM to internal SRAM. Both
directions can’t work simultaneously[20]. See figure 4.1

4.1.2 Running layers on DLA using TensorRT

The DLA is designed for full hardware acceleration of convolutional
neural networks, and TensorRT has implemented DLA support for running
specific layers on the SOCs DLA[25]. Running layers on the DLA should
help optimize the workload on the SoC, both on inference time and power
usage.

There are some general restrictions when using DLA for inference with
TensorRT. First of all, when running on any layers, there is a maximum
batch size of 4096. Also, the DLA does not support dynamic dimensions

23

Figure 4.1: Bridge DMA[20]

such as wildcard dimensions for the optimization profiles, which means
the min, max and opts values need to be equal. The DLA also only supports
FP16 and INT8 precision, and this means that the standard value of FP32
will not work with DLA mode. The Tegra Xavier also does not support
INT8 precision, leaving only one option when building our network with
TensorRT, which is running the engine with FP16 precision and DLA. Of
course, it will be interesting to see how this compares to running the engine
with FP32 precision.

Not all layers and layer combination in a network is applicable with
DLA. With most networks, this is also the case. This means that during
the build phase, the program will check if it is possible to run a layer on
the DLA or whether the architecture itself has DLA support. To ensure
that it will not result in an error, one can allow the layer to fall back to
running on the GPU. This is done by simply setting the builder to allow
for GPUFallbackMode and will produce a warning when trying to run on
the DLA and throw the layer back to run on the GPU instead. This is
great when working on multiple platforms or when one is unsure about
the different types of layers on the network.

24

Chapter 5

Resnet50 on Tegra Xavier

This chapter will take a deep look into the Resnet50 model. We will look
into the background of Resnet50 to see how it works. Then we will go into
how we use TensorRT to parse an ONNX model of Resnet50 that we can
save to the disk to run inference. We will look in detail at how we have
designed the code that we will later use to run tests on the Tegra Xavier.

5.1 Background

Resnet, short for Residual networks, is a convolutional neural net-
work(CNN) used for image classifications. This network was introduced
to make it easier for the learning algorithm to find a solution in the pres-
ence of very deep neural networks. It does this by introducing something
called skip connections [18]. When neural networks started to have more
and more layers, it stopped being able to learn what it was supposed to,
given a higher capacity than 18 layers[16]. This resulted in the network
being unable to learn what it was supposed to, and it occurs because of
problems such as vanishing/exploding gradients[16].

When deeper networks were able to converge, a degradation problem
occurred; with the depth of the networks increasing, accuracy quickly
becomes saturated and starts decreasing [16]. Adding more layers to these
networks only seemed to increase the training error, although the idea was
that more layers should only enrich the models. This problem was solved
in Resnet by introducing something called skip connections[16]. This
concept makes learning the identity function easier for neural networks.
The two main reasons for introducing skip connections are to avoid the
vanishing gradients or mitigate the accuracy saturation[16]. Skipping
layers in the initial stages simplifies the network and reduces the problem
of the vanishing gradients[16]. Then it gradually restores the model,
which is called residual learning, because it is learning based on the
remainder after greater parts of the network have been skipped before
being reintroduced[16]. See figure 5.1 and 5.2. Both borrowed from the
article by He et al. [16] .

With Resnet-152, it was possible to introduce 152 layers to the network.
However, "only" 50 layers have been shown to be sufficient in practice[18].

25

For this section, we will look into using the ResNet50 with TensorRT to
look for optimizations for speed, power usage and the limits and benefits
of NVDLA-cores.

Figure 5.1: Residual learning, on the right with skip connection[16]

5.1.1 Usage of Resnet50

Resnet is, as described, an image classification CNN and is used to extract
specific information from an image to be able to classify it. This can, for
example, be used to classify animals or objects in an image or whether
the image contains certain characteristics interesting to a researcher. An
example can be a group of images of areas where people live to see whether
it is a rural or suburban area.

The original Resnet50 was proposed by He. K et al[16]. was initially
trained on the imagenet data set and was used to classify over a thousand
different images. However, Resnet50 has also proven to be very useful
in Transfer learning[16], the idea in machine learning that you can use
knowledge of solving one problem by applying it to a different issue.
In 2019 Ishrat Zahan Mukti and Dipayan Biswas used transfer learning
with Resnet50 to classify plant diseases on 38 different classes of plant leaf

26

Figure 5.2: Skip Connection[16]

images with the best performance of 99.80 accuracy[38]. The procedure was
done using a dataset of different categories of healthy and sick plants and
was used to train the model to categorize the leaves. The motivation behind
this is that food security is threatened by different factors, such as climate
change, pollinator degeneration, plant diseases and more[38]. Dealing with
plant disease costs farmers much time and financial resources, and it is hard
for the human eye to detect early. Suppose machine learning can be used to
diagnose plants as quickly as possible. In that case, it will be much easier
to enact countermeasures, which can increase productivity and save the
farmers from unnecessary spendings[38].

Another example of using Resnet50 has been seen in biometric recogni-
tion systems such as fingerprint analysis. A study from 2018 showed that it
was possible to run a simple fingerprint recognition model for classifying
fingerprints with Resnet50[29]. It was shown that it was possible to main-
tain the model’s accuracy without adjusting the model except for a change
in the input size.

A more recent and highly relevant usage of image classification with
Resnet50 was classifying pneumonia cells in x-ray pictures of lungs[6]. In
2021 Çınar et al. used an improved Resnet50 model to classify pneumonia
cells in images with a high level of accuracy[6]. Pneumonia is one of
the most common causes of death, especially in children under five years
old. Where about 15% deaths are caused by pneumonia. So it is evident
that early diagnosis is vital to start treatment as quickly as possible. The
most common way to diagnose pneumonia is by analyzing images of chest
x-rays. These analyses are quite complex and need to be examined by
specialists, and this can be problematic in cases where there are not enough
experts. So by using digital aid in the form of image classification, there
might be a possibility of earlier diagnosing and speeding up treatment[6].

27

5.2 Motivation for analysing Resnet50 on the NVIDIA
Tegra Xavier architecture

There exist real-life examples of usage for the Resent50 model, either by
tweaking it to fit the goal or using it as is. So Resnet is an excellent base
for other models and thus a good model for transfer learning. The Tegra
Xavier is an architecture specially designed for artificial intelligence. Since
Resnet allows some of its layers to be run on DLA, it can also be used to
benchmark how the different components behave.

5.3 Resnet50 with TensorFlow

Running the Resnet50 neural network is a simple task with TensorFlow and
Keras. Keras is an open-source library for Python. It focuses on artificial
neural networks and is only supported by TensorFlow. On their webpage,
they write, "Keras is an API designed for human beings, not machines.
Keras follows best practices for reducing cognitive load: it offers consistent
& simple APIs, it minimizes the number of action required for common use
cases... " [17]. Keras have hundreds of already implemented commonly
used neural networks, and Resnet50 is one of them. Thus we can create
a simple Python script to easily import and run inference on Resnet50 on
some sample images to classify them. We have chosen images of Leopards,
Cheetahs and Jaguars. The reason behind this is that they are very similar
animals, and it will be interesting to see if they get classified successfully,
especially after optimizing with TensorRT. Having an optimized model
does little good if the correctness is lost.

The reason for checking how Resnet50 works with TensorFlow is to
have a baseline to compare the optimized model in TensorRT. Other
frameworks exist, for example, Pytorch or SONNET, as well as other
variations of TensorFlow. Our reason for deciding to use TensorFlow, with
some help from Keras, is simply because it is a popular framework, and
we already have some introductory knowledge of it. As well as being one
of the most popular frameworks, it also has easy access to Keras and its
models. Resnet50 already exists in Keras, and one can quickly upload the
model and run inference on a dataset.

5.3.1 OpenCV

To be able to run inference on some images using Resnet50, there is a need
to be able to process these images efficiently. For this, we have chosen
to use OpenCV as it is considered one of the most popular open-source
frameworks for computer vision. It makes it easy to process images from
the disk without doing too much trickery. Also, it comes with a vast library
of algorithms for use in computer vision [28]. It has a C++ and Python
interface, making it easier to implement with this project.

28

Figure 5.3: Stock images used to infer big spotted cats

5.3.2 NHWC and NCHW

The first issue we have experienced with OpenCV and TensorRT is that
TensorRT stores images on the NCHW form and OpenCV on the NHWC.
The way to understand the difference between the two is to see what each
letter signifies. The N signifies the number of images in the batch. C stands
for the channels of the image, which will be whether it is RGB, greyscale etc.
RGB has C equals 3 and greyscale 1, which makes sense considering how
the images are layered. W and H stand for width and height of the image
[7]. When it comes to NHWC compared to NCHW, it speaks of in what
shape the image is stored. RGB has already been mentioned; this means
that the picture is made of three channels; Red, Green and Blue. With
NCHW for each colour, the pixels are stored together with their respective
channels. This means all read pixels are stored together, the green pixels
and finally all the blue pixels. NHWC on the on the other hand stores each
pixel in RGB values, which means the first pixel is stored in R[0], G[0] and
B[0] order. See Figure 3.1. Since TensorRT expects pictures on the NCHW
format and OpenCV is in NHWC we will have to do a transformation. See
figure 5.4.

5.4 TensorRT on Resnet50

When optimizing the Resnet50 Onnx model with TensorRT, we expect
that there will be a decent upgrade in the inference time performance.

29

Figure 5.4: Difference between NCHW and NHWC [7]

The reason for believing this is that when one creates a network with a
framework like TensorFlow or Pytorch, the network consists of a certain
number of layers. TensorRT aims to fuse certain layers into one. This is
called Kernel Fusion and is done to improve GPU utilization[26]. With
fewer kernel launches, there should be an improvement in memory usage
and bandwidth. There are two primary fusions. Vertical fusion; combines
sequential kernel calls, and Horizontal fusion; combines the same kernels
with a common input and output[26].

Another aspect of TensorRT is the idea of precision calibration. Most
deep neural networks are trained with full precision(FP32). While running
inference, we do not backpropagate an algorithm to supervise the learning
of the artificial network[19]. This step is hard to keep stable and often needs
a higher level of precision. Since there is no backpropagation in running
inference on the model, we can allow for a lower level of precision. FP32
has a dynamic range of -3.4x1038 to 3.4x1038, compared to FP16 and INT8,
which have -65504 to 65504 and -128 to 127, respectively; we can create
a lot smaller model sizes. This will result in lower memory utilization
and latency, hence higher throughput[19]. Especially when running
operations on the Nvidia Tensor Cores, which are, as explained by Nvidia,
"programmable fused matrix-multiply-and-accumulate units that execute
concurrently alongside CUDA cores."[23]. The Tensor Cores are designed
to accelerate dense linear algebraic computations, signal processing and
DL inference[23]. Nvidia calls these matrix-multiply-and-accumulate
units. This simply is the idea that these cores implement instructions for
running half-precision matrix multiply and accumulate(HMMA), which
is for running with FP16 or FP32 precision, as well as the integer matrix
multiply and accumulate(IMMA), for INT8 or INT16[19]. Nvidia libraries
such as cuBLAS, CUDNN, and TensorRT have been updated to utilize these
operations internally. Considering the 64 Tensor Cores and 512 Cuda cores
on the Tegras Volta GPU, we expect significant gains in running inference
with the Resnet50 model.

When optimizing deep learning models with TensorRT, there is the
idea of kernel auto-tuning. Nvidia has implemented multiple-low level
implementation for typical operations[26]. When building a network using
TensorRT, it selects the optimal kernel based on different parameters, such
as precision, workspace size and the target platform. This means that when
creating a TensorRT model on the Tegra Xavier, one will not be able to port
it to another architecture. It is also based on the which CUDA and TensorRT

30

release one uses when building the network[26].
When creating the TensorRT engine one the Tegra Xavier, we will look

into the inference time and power usage performance. We decided to use
the C++ API for solving this part of the project over Python. This is mainly
because of the experience we have with C++ compared to Python as well
as the fact that the Python API is not portable to any Windows platform.
However, we will be using a Linux-based operating system(Ubuntu), but
it is a benefit to have the option of porting the code.

5.4.1 Programming the Resnet50 model

For programming the Resnet50 model on the Tegra Xavier, we will use
the same procedure mentioned in chapter 3. We will use the C++
TensorRT API to parse a pre-trained Resnet50 ONNX model and write
it to disk so we can reuse it for later inference. To make the engine file
from certain configurations, such as precision level, DLA and Workspace
size, we will use a configuration struct. The name of the created
engine will be saved to disk with the name serialized from the active
configurations; trt.precision.batchsize.DLAcore.workspacesize. An example
could be trt.fp16.d1.400000, which would mean trt engine with floating-
point 16 precision, running on DLA core with max workspace size of
400000 bytes. If the name exists, an engine has already been created, and
the program will jump to the load phase. The configurations are given by
the user when running the program.

The TensorRT engine will be implemented as an engine class, consisting
of three public methods; build, loadNetwork and inference. We figured
that the TensorRT engine in itself seemed like a natural object. So using a
class to map out the problem seems like a natural solution. However, it
would not necessarily be needed. Nevertheless, this lets us generalize the
problem to other models as well. It also makes it simpler to adjust and
modify the program for further use.

The engine class also consists of some private methods needed for
building, loading and running inference. As well as some private
properties needed by TensorRT, such as the built engine itself and execution
context for running inference, with some other properties needed by the
network. Such as input height and width, channel number and batch size.
OpenCV needs this to be able to parse the input images. We will use the
same three images for testing inference time as we used with Resnet50
in TensorFlow, see figure 5.3. These are images that the Resnet50 model
has been trained to see along with about 1000 other classes of objects. We
believe that using these images would be sufficient to test the system.

Although we have given a brief walkthrough of the build, load and
inference phases for the MNIST model, we will now give a much deeper
walkthrough for the Resnet50 model. Because the different choices and
configurations will likely have a higher impact on this model, we see it
essential to explain why we have made our choices thoroughly.

31

5.5 Build phase

The build phase of TensorRT is a very generalized operation. In this phase,
we parse the ONNX file and the configurations given by the user. Such as
precision number, DLA core and workspace size. When running inference
using TensorRT, the build phase can be pretty long and may consume a
bit of GPU memory, as well as having a high power consumption. This is
because TensorRT uses information from the configurations, the version of
CUDA, and the system architecture to find which layers to fuse and how
to best optimize the engine for later inference.

For this reason, it is essential to be able to store an already created
engine on the disk. Power consumption is crucial, especially if using an
embedded system running on a battery. If the engine has already been
created with the given configurations, this phase will return true and jump
to the load phase.

Should the engine not already exist, one will have to be created. Firstly
we create the builder object using the IBuilder interface. Here one sets the
max batch size for the system and does some checks to see if the platform
has FP16 and INT8 precision or running on DLA cores. As we already
know, the system does not support INT8 and has two DLA cores. Creating
the network is done using the builder and is later used by the parser to
parse the ONNX model. It parses the model to a C++ vector buffer, and
should there be any errors while parsing, they will be written out to the
console. Then it creates the IBuilderConfig object, which is used to add
the optimization options. This object is made from the builder and is
where we add the optimization profile, precision, DLA, and CUDAstream
for asynchronous running. Firstly we take the optimization profile. This
profile describes the dimensions for each input and the dimensions for
the auto-tuner to use for optimization. When defining the optimization
profile, one uses the dimensions defined by the model, which are the
input dimension(NCHW). These can be obtained from the network by
calling the getInput method on the network object. Then one can call the
getDimensions method on the input object to get the input dimensions. The
channel, height and width will be stored in the input dimension on indexes
1, 2 and 3, respectively, which is in CHW format. On the optimization
profile, one then sets the dimensions. Which will be the input name, kMin,
kOpt and kMax profiles. Setting a default optimization profile is done in
this way for kMin, kOpt and kMax. The belowe code snippet shows how
to set it for the minimum dimension. It is similar for optional and max
dimension.

d e f a u l t P r o f i l e −>setDimensions (inputName ,
O p t P r o f i l e S e l e c t o r : : kMIN, Dims4 (1 , channel , height , width)) ; .

We were also planning to set different optimization profiles, which
would be changing the 1 value between optional values and the max value
based on the batch sizes. However, this does not work as the Resnet50
model only allows for static values. Since this, unfortunately, does not

32

work with Resnet50, it will have to be something to test for future projects.
After this, the building method will look to see if the precision flag has been
set for FP16 or INT8. As the Tegra Xavier does not allow for INT8 precision,
there is not much need to set it. However, to generalize this code to other
platforms, we left it in as there was no point in removing it. If the user tries
to set it to INT8, the program will issue a warning and just run it on FP32,
which is the standard. If no flag is set, it will run on FP32. We then check
if the user has set the engine to run on DLA. Here it is important to check
whether the flags for FP16 or INT8 have been set as DLA does not allow
for fp32. If the user has allowed for FP16 and added the DLA flag, it will
set the device type on the IBuilderConfig object to kDLA and set it to run
on DLA. It is also essential to allow GPU fallback should the layers in the
network not allow running on DLA. Should this be the case, it will simply
print out a statement saying that the layer does not work on DLA and fall
back to be run on the GPU. Finally, one adds the workspace limit of the
engine, which the user adds, which is it for the configurations.

The last part of the building phase is to create a serialized model from
the network and configuration. This serialized model can be deserialized
immediately, loaded for inference, or stored on the disk. We have decided
to always store the models on the disk to be loaded. This is to save
the building time for running the program multiple times. Since we
store the engine based on which configurations the user has put in, we
think it is essential not to build another model each time one wants
to run inference—especially considering the time, memory and power
consumption of the build phase. This way of doing it also translates better
to real-life deployment. After the engine has been written to disk, the build
phase is over, and should there not have been any errors along the way; it
will return true and go on to the loading phase.

5.6 Loading phase

The loading phase finds the engine on the disk based on the engine name.
As described earlier, the engine name is based on the user’s configurations
to ensure that each created engine has a unique name. If the program finds
the serialized engine stored on the disk, it will simply parse it into a buffer
for loading the network; loading one first needs to create a runtime object
using the IRuntime class. This class allows for deserializing a functionally
serialized unsafe engine. By unsafe, we mean an engine stored on the
disk but not ready for running inference. The runtime object is created
using the ILogger object created by the Engine class. Then one sets the
main device for running inference, which will be the GPU. This is done
using the cudaSetDevice method. In most cases, this will be device index
0. However, one can add another device if one wants to run on multiple
GPUs.

After all this, we can finally create the CUDA engine for running
inference. We do this by calling the deserializeCudaEngine method on
the network object using the buffer that has stored the serialized model

33

as parameters. This engine has stored all the data from the building phase.
Here we can get some information from the engine needed for running
inference. We have stored these as private members in the Engine class.
These members are the input name, output name, batch size, input channel,
input height and width, also known as input dimensions. Similar to how it
was done in the build phase.

We meat a small inconvenience here. When creating the engine to store
on disk these members can be initiated during the build phase. However,
how we designed the program makes it so that it does not always build the
engine directly from the ONNX model. This means that the build phase
gets skipped every time an engine is already stored on the disk. Because
of this, we have to initiate these members here as well. This means that if
we build the engine from the ONNX model, the members will be initiated
again, and since they are made using the same model, they will be re-
initiated to the same values. It does not affect the program that much but is
a little annoying. However, we need these values both for the building and
inference phases. So we do not see another option.

After the CUDA engine has been created and the dimensions have been
initiated, we can go on to create the execution context. The execution
context is responsible for running inference on the given input, and the
execution context is created by calling the createExecutionContext method
on the CUDA engine. After that, we can create a CUDA stream should we
wish to run the program asynchronously.

5.7 Inference

The building and loading phases are problems that are easily generalized
to all ONNX models and require minor tweaking to build other networks.
However, things get a little more tricky when one wants to run inference,
and it is here that we have met the majority of our difficulties.

When running inference, one needs more knowledge of the task at
hand. The Resnet50 model is used for classifying images, making knowing
some image processing valuable. We want to run inference of a group of
images we know have been trained on the Imagenet data set. For this, we
chose the three pictures of different spotted cats. See 5.3. We chose these
three because we knew the model should be able to classify them, and we
wanted some different pictures for running inference. Since the three cats
in question are quite similar, we also thought this would tell us something
about the model’s accuracy.

The first part of the inference procedure is to load the images, modify
them to fit the model, and then transfer them to the GPU to run inference.
First, we need to get the input dimensions of Resnet50. This is the metadata
we stored earlier, height, width, channel, and other data such as the
number of bindings. The bindings are the dimensions of the model. Such
as input and output bindings. The Resnet50 model has two, one for input
and one for output. Other models could have more. Then we create a
buffer, which is a void vector, with the size of the number of bindings. This

34

buffer is where we store the input to inference and the output of the results.
Then we get the total size of the bindings, which is the size of dimensions
multiplied by the batch size we are running inference on. The binding
buffers are transferred to the GPU using cudaMalloc or cudaMallocAsync.
Soon we are ready to run inference on the model, but first, we need to do
some preprocessing to make the images work on Resnet50. This procedure
is called resize and normalize and is quickly done in OpenCV.

5.7.1 OpenCV with CUDA

For preprocessing the images, we chose to do it in OpenCV because of their
vast library of common image processing procedures. OpenCV has also
released a library to run image-processing on GPU called OpenCV with
CUDA. Here one can easily upload the images, which in OpenCV is a class
called cv::Mat. An object created by OpenCV to present images.

One can upload the frame to the GPU by creating a GpuMat object using
the OpenCV with the CUDA library. This is done in one simple line;

cv : : cuda : : GpuMat gpu_frame = gpu_frame . upload (frame) ;

where a frame is an image loaded from a disk. Then the image will be
loaded to the GPU. Then similarily to running OpenCV on the CPU, we
can use the cv::cuda namespace to run functions such as resize, subtract
and divide, but instead of running them on the CPU, we run them on the
GPU.

Our reasoning for choosing this way of preprocessing the image was
mainly for simplicity, considering we will not have to create our own
CUDA kernels for the processing step. We wanted to do the preprocessing
steps on the GPU because image processing is a typical parallel task, and
running on the GPU should yield some performance bonuses.

5.7.2 Resize and normalize

The pre-processing procedure starts with resizing the images to a size
that fits with Resnet50. The Resnet50 model needs to process images of
size 216x216 pixels. However, the images we are running inference on
come in different sizes, so we need to resize them to fit the model. This
is quickly done with OpenCV with CUDA; call the resize method on a
GPU frame and pass the frame we uploaded to the GPU along with the
model required dimensions. OpenCV has its size object called cv::Size. The
constructor takes to parameters for the height and width and then creates
a size object for OpenCV to work with. This is solved by getting the sizes
from the TensorRT engine, done by passing the input dimensions on the
CHW format. This means that we can find the height and width of the
input dimensions on indexes 2 and 3. The code below shows us the resize
procedure done with OpenCV.

35

auto input_width = dims . d [3] ;
auto input_height = dims . d [2] ;
auto channels = dims . d [1] ;
auto i n p u t _ s i z e = cv : : S ize (input_width , input_height) ;
/ / r e s i z e
cv : : cuda : : GpuMat r e s i z e d ;
cv : : cuda : : r e s i z e (gpu_frame , res ized , input_s ize , 0 , 0 ,

cv : : INTER_NEAREST) ;

After resizing the image, we have to normalize it. Image normalization
is changing the range of pixels’ intensity value. In the case of Resnet50,
it means the mean R, G and B values aggregated over all the pixels of the
image. Here we normalize using the mean, standard values proposed by
He et al. [16], shown in the code snippet below.

/ / Normal i z e
cv : : cuda : : GpuMat f l t_ image ;

r e s i z e d . convertTo (f l t_ image , CV_32FC3 , 1 . f / 2 5 5 . f) ;
cv : : cuda : : s u b t r a c t (f l t_ image , cv : : S c a l a r (0 . 4 8 5 f , 0 . 456 f , 0 . 406 f) ,

f l t_ image , cv : : noArray () , −1) ;
cv : : cuda : : divide (f l t_ image , cv : : S c a l a r (0 . 2 2 9 f , 0 . 224 f , 0 . 225 f) ,

f l t_ image , 1 , −1) ;

As one can see, this is also done using the cv::cuda namespace, which
allows us to offload this to the GPU.

Lastly, we need to copy the data to an output float pointer. Which we
do channel by channel. Now the images are ready for inference.

5.7.3 Running inference

After having preprocessed the images, we can run inference. This is
done either asynchronously or synchronously. Suppose one wants to do
it asynchronously using a CUDA stream created earlier for the engine,
which allows for stream-ordered CUDA memory allocators. Now we can
allocate and deallocate memory with other work launched into a CUDA
stream, which makes it possible to launch kernels and copy memory
asynchronously. This should improve the application performance by
taking advantage of the stream-ordered semantics to reuse memory
allocations [21]. However, this is only available on applications using
CUDA version 11.2 or later. After testing this on the TensorRT Resnet50
model using a Geforce 3060ti graphics card. It did not seem to yield any
particular benefits for this problem. On the computer using the Geforce
3060ti card that already had CUDA 11.6 installed, we decided it was worth
trying here because we only had CUDA 10.2 installed on the Jetson Xavier.
So, instead of reinstalling CUDA, which would also have us reinstall
OpenCV and TensorRT, we decided to test for it on another graphics
processing unit first. Since it did not give the performance optimization
we hoped for; we decided to let it be for now. Should there be more time,
we might pursue this in later projects.

36

However, suppose one wants to run inference asynchronously with
TensorRT. In that case, one needs to initiate the CUDA stream and allocate
the buffers for GPU using the cudaMallocAsync instead of the standard
cudaMalloc method. When one wants to copy and free up the memory, one
uses cudaMemcpyAsync and cudaFreeAsync. For running inference, one
then calls the enqeueV2 method on the execution context. As mentioned
earlier, the engine creates the execution context and is the object for running
inference. Running inference is done using this method by passing the
buffers containing the input images and output one wants to pass the data
obtained by running inference as well as the cuda stream. Then passing the
output buffer to do the post-processing. The code below shows how to run
inference asynchronously.

Running inference synchronously is done almost identically. The dif-
ference is simply by using standard cudaMalloc, cudaMemcpy and cuda-
Free functions. Inference itself is then run using executeV2 instead of en-
queueV2. The code for running inference synchronously or asynchron-
ously can be seen in appendix A.

After running inference, one needs to post-process the data to see
whether the inference was made correctly.

5.7.4 Processing the output

After running inference we have an array of a 1000 floating point numbers.
We need to do the post processing step by copying the data stored on the
GPU back to the CPU. This is a simple step done by using cudaMemcpy
with the cudaMemcpyDeviceToHost parameter, from the gpu output array
to the cpu output array. However before that we need to load the classes
that Resnet50 are trained on. These are stored on a text file containing
names of all these classes. So by parsing this file into a vector conatining a
thousand class names of different image classifications. After parsing these
classes we can have each class corresponding to a certain index on the array.
Then one can map these indices to a class name to get the classification. For
example whether it is a jaguar, cheetah or leopard.

In nerual network this is often done by calculating the softmax formula.
By calculating the softmax you can get a vector of different values
transformed to values between 0 and 1, so that they can be interpreted as
probabilites. Such as what’s the chance that the big spotted cat is a jaguar,
leopard or cheetah. Then after calculating the softmax we can sort the array
so that the highest probability goes first. By doing this we can get an idea
whether the images contains a jaguar, cheetah, leopard or maybe even a
wardrobe. Depending on which network it has been trained on. In our
case we can then see that a picture of a leopard will end up being the most
probable whenever we pass the picture of the leopard, the next probable
will then be a cheetah, jaguar, tiger etc. And probably having the wardrobe
at the very end of the array. This is also one of the reasons I chose the
three spotted cats. Because they are so similar and I wanted to see whether
the next likely candidate when passing a jaguar would be a leopard or a
cheetah and not some other random class.

37

5.7.5 Inference in a nutshell

That is, in a nutshell, how inference is made in TensorRT. After building
and loading the engine, one needs to process the input to fit the model
before calling the inference function; execeuteV2 or enqueueV2 depending
on whether one is running it synchronously or asynchronously. Then
ending by sorting the most likely candidates into an array mapped to the
classes that the model is trained with. The tricky part is managing the pre-
and post-processing steps. Further on, we will look into how inference runs
on the Tegra Xavier and how to get an overview and manage the SoC’s
power consumption.

38

Chapter 6

Tegra Xavier power overview
and management

This chapter deals with the power management of the Jetson Xavier
development kit. We will look into how we read the power data from
sensors integrated into the Jetson Xavier before we look into how we can set
different modes to control the power. Finally, we will look into the Jetson
Clocks script.

6.1 Overview

An important aspect to look into when running AI workloads on the Tegra
Xavier is managing the power. A lot of electrical instruments have to run on
batteries with limited lifetimes. Imagine a drone flying over a field, taking
pictures of the crops to look for plant diseases, as in the example earlier.
The optimal would be for the drone to be able to do at least a whole day’s
work on one battery lifetime.

We also talk a lot about battery life on electric cars, so power
management is critical when running an AI model to detect objects on
the road or road lines. So creating models that reduce as much power
consumption as possible will be optimal. However, in some instances, for
example, when it comes to safety, there might be an emphasis on inference
speed instead of power consumption. This is dependent on the system’s
goal; a drone that makes inferences on plant disease will likely emphasise
power more than speed. It all depends on the goals of the system.

6.1.1 Monitoring on Jetson Xavier

The Jetson Xavier has many features that help improve power management
and is integrated with a three-channel INA3221 power monitor[30], which
is a monitor developed by Texas instruments and is a three-channel high-
side current and bus voltage monitor. It senses Bus voltages from 0V to
26V and is used for computers, telecom equipment, battery charges and
more[12]. The Jetson Xavier developer kits have integrated this INA3221
monitor and allow us to monitor and manage the power usage of the

39

Table 6.1: Jetson Xavier naming convention for sysfs nodes[30]
rail_name_<N> Sets/get the rail name.

in_current<N>_input Gets rail current in milliamperes.
in_voltage<N>_input Gets rail voltage in millivolts
In_power<N>_input Gets rail power in milliwatts

crit_current_limit_<N> Sets/gets rail instantaneous current limit in milliamperes.
warn_current_limit_<N> Sets/gets rail average current limit in milliamperes.

Where <N> is a channel number 0-2.

Xavier. In this thesis, we will use this monitor to access the power
information of the Tegra Xavier when running inference. We will see how
the GPU and CPU behave with TensorRT optimization and look into the
power usage of the GPU especially, when offloading some layers on the
GPU over to the NVDLA cores. We will now give further details on the
INA3221 power monitor and how to take advantage of it on the Jetson
Xavier.

This monitor provides us with information that can be read using sysfs
nodes[30], a pseudo-file system on Linux that provides an interface to
kernel data structures. On the Jetson Xavier, this can provide information
that allows us to track the power consumption while running inference on
the system. The following table is borrowed from the Nvidia documents
page for the Jetson Xavier. It describes the information that will help us
track the power, voltage and current[30]. See table 6.1.

The power monitor can be accessed at I2C addresses 0x40 and ox41[30].
At these addresses, we can read the voltage, current and power. We can
read the sensors at the addresses
/sys/bus/i2c/drivers/ina3221x/1-0040/iio:device0,
/sys/bus/i2c/drivers/ina3221x/1-0041/iio:device1
Where we see the sensor for device 0 are given to us at address 0x40 and
device 1 at address 0x41. The information we can read from these two
devices is a little different. At device 0 we find the GPU, CPU and SoC
power rails, and device 1 gives us the CV, VDDRQ and SYS5V power rails.
Looking at table 6.2 we can see the address and the channels of the different
sensors. For this thesis, we will mainly look at the power rails at the address
0x40, the CPU, GPU and SOC.

Accessing these rails can be done simply by using the cat command on
the strings
/sys/bus/i2c/drivers/ina3221x/1-0040/iio:device0/in_current1_input,
/sys/bus/i2c/drivers/ina3221x/1-0040/iio:device0/in_voltage1_input,
/sys/bus/i2c/drivers/ina3221x/1-0040/iio:device0/in_power1_input.
These commands will give us the information in milliampere, millivolt and
milliwatts. To be able to read these we will need sudo access.

By checking these rails while running Resnet50 with TensorRT, we can
monitor the power consumption while building the engine and running
inference. It will also be quite interesting to see how the inference is affected
while running on DLA instead of on the GPU.

40

Table 6.2: Address and Channel for INA3221 on the Jetson Xavier[30]
Power Rail Address Channel Power Rail Address Channel
VDD_GPU 0x40 0 VDD_CV 0x41 0
VDD_CPU 0x40 1 VDD_VDDRQ 0x41 1
VDD_SOC 0x40 2 VDD_SYS5V 0x41 2

6.2 Command line tools for performance and energy

On the Jetson Xavier, a couple of command-line tools exist to set the
performance and energy characteristics of the SOC. Two of these tools
are the jetson_clocks- and nvpmodel-tool. With these two tools, we can
configure the SoC’s energy usage to optimise performance. By configuring
the frequency of the CPU, GPU or the DLA we can effectively define the
power usage of the Xavier [30].

6.2.1 NVPModel

The command-line tool nvpmodel allows us to define the limitations of the
power on the SOC. We have eight CPU cores on the chip, but not all of these
need to be active at a given moment. When running at default mode, which
is when the system runs on 15W, we have four CPU cores online, two DLA
cores, and four GPU texture processing clusters(TPC)[30]. Of course, there
are ways of setting different modes on the Jetson Xavier. This can either be
done in the terminal using the command
$sudo nvpmodel -m [mode index].[30]
As an example, $ sudo nvpmodel -m 2 will set the power mode to the 15W
default.

Nvidia also provides the user with a nvpmodel GUI, which can be
accessed in the upper right corner of our screen if using a Linux-based
operating system. Here one can easily change the mode with just a click
of a button. See figure 6.1 borrowed from Nvidia [30].

Figure 6.1: NVPMode gui[30]

Depending on the mode we set on the Jetson Xavier, the power output
and frequency of the CPU, GPU and DLA will change. This should mean

41

Table 6.3: Nvidia power mode table.
Index Power mode CPU cores GPU(TPC) DLA cores

0 MAX 8 4 2
1 10W 2 2 2
2 15W 4 4 2
3 30W 8 4 2
4 30W 6 4 2
5 30W 4 4 2
6 30W 2 2 2

Where default mode 15W is highlighted in green

Table 6.4: Nvidia frequency table in Mega Hertz.
Index Power mode CPU max frequency GPU max frequency DLA max frequency

0 MAX 2265.5 1377 1395.2
1 10W 1200 520 550
2 15W 1200 670 750
3 30W 1200 900 1050
4 30W 1450 900 1050
5 30W 1780 900 1050
6 30W 2100 900 1050

Where default mode 15W is highlighted in green

if we run it to the fullest on the maximum power mode. We should get
the highest speed optimization. That is, of course, useful if speed is the
top priority; however, that is seldom the case on real-time software. So
we will look further into how the different modes will run our Resnet50
model on the Xavier. Have a look at table 6.3 and table 6.4 for a more
detailed description of the different modules. These tables are derived from
an Nvidia webinar Dustin Franklin gave in 2019[15].

6.2.2 Jetson Clocks

The Jetson Xavier also provides a script for maximizing the device’s
performance by setting the maximum frequency for all the processors,
CPU, GPU and EMC clocks. This script is called Jetson_clocks.sh and can
be found in the /usr/bin/jetson_clocks address. This script allows us to
maximize the power output and set the maximum PWM fan speed[30].

PWM stands for pulse width modulation, and PWM fans are fans found
on some CPUs and GPUs. They are integrated circuits to control the speed
of a fan and can provide cooling to the system based on the temperature.
PWM works like a switch and turns on and off while controlling the power
delivered to the fan[30].

So by using the jetson_clocks script, we can get some real power
delivered to the system. Thus we believe it will help increase the time of
inference. The script has four options: display the current clock settings;
store the current settings to a file; restore that restores the saved settings;

42

finally, fan, which sets the maximum PWM fan speed[30]. It is a good idea
to run the script with the store flag before planning to maximize the power
output. If the user has not already done this, the restore flag will have no
effect as there is no configuration file to get the data. Should this be the
case, a system reboot will be required.

So to maximize the Jetson Xaviers performance, while in the unres-
tricted power mode, we can run the command: $ sudo /usr/bin/jet-
son_clocks.
However, should we want to maximize performance and fan speed we run
the command: $ sudo /usr/bin/jetson_clocks - -fan.

6.3 Power tuning

With all that taken care of, we can test the Jetson Xavier’s capabilities. We
believe that by maximizing the power of the SOC, we will get a significant
speed up on running inference and building the engine. However, we are
just as interested in running the Xavier on a lower power mode, which will
likely reduce the inference speed.

When talking about training deep learning models and running
inference on these, we often talk about time, time of training and time
of inference. This is because we want an algorithm that runs as fast as
possible. These models are often run on GPUs connected to the power
outlet, and because of this, speed becomes the main priority. However, as
we have mentioned before, this might not be the essential aspect to look for
in many real-time cases. Power consumption is as, if not in some instances,
more important than the speed it takes to run inference.

Further on, we will use the tools described to benchmark inference on
the Resnet50 model on the Jetson Xavier, using TensorRT. We will mainly
look into the trade-offs between speed and power.

Opening the files that store the power rail information requires sudo
level permission. So for running the program we have created, we will
have to run the engine with sudo permission. Some more details of the
C++ code for reading and monitoring the power consumption can be seen
in appendix B.

43

Chapter 7

Results discussion

In this chapter, we will look into the results of the tests we have run on the
system. We will see how the different precision has affected the speed and
power usage of GPU, CPU and the rest of the SOC, as well as what benefits
we might get from offloading to the DLA. We will start this chapter by
introducing the tests before going into the results themselves. Finally, we
will discuss and analyze the results that we have gotten.

7.1 Introduction to the tests

We have decided to compare four of the six power modes to analyze the
Jetson Xaviers’ inference speed and power usage. We will, of course, start
looking into the 15W power mode, as it is the default. This will also be a
good baseline to compare the other power modes.

We decided that analyzing all four 30W modes is unnecessary, and
instead, we focus on the 30W with four CPU cores active. This is so that we
get a better picture of the performance of each of the processing units. Since
it has the same number of active cores as the default 15W mode with four
CPUs, four TPCs and two DLAs, the only difference is the performance
of the active processing units. So by running on 30W with four CPUs,
we can compare the performance of the processors, and the difference will
not be based on how many running processors there are but rather on the
performance of the units themselves.

We will also look at the 10W mode, which only has two CPUs, two TPCs
and two DLAs active. This is what could be called the power save mode
and is expected to perform the slowest. However, if the speeds are still
decent and the power saved sufficient, it might be a good alternative for
specific problems. It runs on the same CPU frequency as the 15W mode but
on half the CPUs and has a somewhat lower GPU and DLA max frequency.

To see the maximum performance of the Jetson Xavier, we will run tests
on the unrestricted power mode for maximum power. This mode allows
us to see what the Jetson Xavier is capable of. Here we expect to see some
speed-ups in inference time, but of course, at the cost of increased power.

Lastly, we will run the Jetson Clocks script for the full effect. This script
locks the clocks to their maximum as defined by their nvpmodel. We will

44

only run this script on unrestricted power mode, and this should give us
the absolute performance of the Jetson Xavier. There are not many reasons
to clock the other power modes to the top as the main reason for using them
are their limitations.

7.1.1 How the tests are run

All the tests are run using the Resnet50 model, as explained in detail in
chapter five. We can quickly change the different configurations by editing
the script based on precision and active DLA. We have run the tests on all
these configurations on the Jetson Xavier, one mode at a time.

The script runs inference on a collection of 1000 images of the three
different cats, see figure 5.3. Depending on which cat is being classified, we
have tested for correctness. So if it is a leopard, it will write out leopard,
and if it is a cheetah, it will classify it as a cheetah. We have tested with all
different configurations to see that changing to FP16 and DLA would create
errors or mistakes in inference. However, it shouldn’t because precision is
not as crucial for inference as it is for training. We have also tested images
of other objects, such as wardrobes, coffee cups and more. To make sure
the code runs correctly. However, we use the spotted cats on the inference
tests to have consistency.

By running inference on 1000 images, we can get a good average on
the inference time and the power consumption. Then we ran the tests
20 times on each of the configurations at different times to ensure they
stayed consistent and were not affected by other processes on the operating
system.

Nevertheless, before we get into how TensorRT optimizes Resnet50
and runs inference on the GPU, we will first look at running an un-
optimized version using TensorFlow. With TensorRT, running on the CPU
is impossible because TensorRT optimizes the code for the GPU it will be
running on. TensorRT uses CUDA to build the engine and run inference;
thus, it only allows for GPU and DLA for the inference part. The final
results will be for inference on the Volta GPU on FP32, FP16 and FP16
with DLA offloading. However, before that, we want to get a baseline for
inference time by running the model on TensorFlow. First and foremost,
we will look at how TensorFlow compares to TensorRT when it comes
to inference time and the power running on the GPU on different power
modes. However, we will also benchmark how the ARM CPUs compare
to Volta GPU using TensorFlow and thus see why it might be preferable to
run inference on a GPU compared to a CPU.

7.2 TensorFlow on the Xavier architecture

As mentioned when we introduced TensorFlow in earlier chapters, it is a
Python framework developed by Google to train deep learning models.
However, it allows us to load many popular deep learning models using
Keras. This way, we can quickly get our Resnet50 model down and ready

45

to go. After loading the model, we can run inference on the same set of
images as we would using TensorRT. We will try to keep the test as similar
for TensorFlow as we would for TensorRT; this means running inference on
1000 images of spotted cats. We will try to do this about 20 times to get a
variety of executions to get a more wholesome picture and ensure it is not
affected too much by other processes on the operating system. However,
we might have to adjust to the expected time increase while computing on
the CPU.

7.2.1 Inference time

The first thing to notice while looking at the graphs 7.17.2 is the fact that we
did not run inference on 10W mode on the CPU. This happened because it
took too long to wait for the tests to finish. We only did the test once on
15W, which took us 12 minutes to run on the CPU, and two times on 30W.
It was slow even on unrestricted mode, so we decided not to run it more
than five times here. With that in mind, we can have a look at the graph.

First and foremost, on unrestricted performance, the inference time is
about 223ms, leading to a little more than 3.5 minutes of total runtime.
This is not that bad, considering we are on the CPU, but relatively slow. On
30W, we see that the average inference time is more than doubled, being
460ms which accumulates to 8 minutes on 1000 images. For 15W, we get an
average time of 747ms, which is drastically bigger and spends 12 minutes
to run on the entire data set.

When running on the GPU, we also saw that the time to run the tests got
increasingly heavy. When we ran it on 10W, we saw that the inference took
360ms per image, which on 1000 images ends up being 6 minutes. 15W had
an inference time of 245ms per image, which leads to a total running time of
about 4 minutes, 30W had 185ms, and unrestricted had 145ms, which leads
to a total running time of approximately 3 and 2.5 minutes, respectively.

Comparing the unrestricted power mode on the CPU and GPU, we see
that the inference time only varies by about 80ms. However, this increases
by about 80 seconds when working on 1000 images. So there is a good gain
on running on GPU on more considerable data sets. When we go down
in power mode to 30W, we start seeing a more substantial difference in
inference time. On the GPU, we have 275ms gain compared to the CPU,
which is an increase of about 4.5 minutes, and on 15W, the difference is
502ms. This accumulates to 8 minutes on the full data set. Finally, on 10W,
we only have the GPU time, which is still 387 ms faster than the CPU on
the power mode above.

7.2.2 Power usage

If we look to figure 7.3 we can see how much power we use running
inference with TensorFlow. The GPU represents most of the power
consumption in the highest power mode. However, when we go down
in power modes, we see that the SOC starts taking over the majority, with
the GPU following closely behind. The CPU keeps a stable reduction on

46

Inference time in milliseconds GPU

0

100

200

300

400

Unrestricted 30W 4 CPUs 15W 10W

Inference time on the GPU with TensorFlow

Figure 7.1: Inference time in milliseconds on the different power modes
using TensorFlow on the GPU

Inference time in milliseconds CPU

0

200

400

600

800

Unrestricted 30W 4 CPUs 15W 10W

Inference time on the CPU with TensorFlow

Figure 7.2: Inference time in milliseconds on the different power modes
using TensorFlow on the CPU

47

all the power modes. This is likely because the CPU always have some
background processes running. No matter how much we try not to affect
the tests and is not affected by running inference.

If we compare these results to figure 7.4 we see that the CPU has
had a massive increase in power usage. If we stick to the unrestricted
power mode, the average power consumption is about 6500mW. This is
a considerable increase compared to running on the GPU, where we only
had about 2800mW on the CPU. Seemingly, the power consumed on the
GPU is zero; this is not the case. However, it is almost irrelevant compared
to the CPU and SOC power consumption. The GPU averaged 30mW on
the highest power mode, 15mW on 30W and 18mW on 15W. The reason for
it being about the same on 30W and 15W is that it was not doable to run
many tests on these modes. Since the power is so low, it is likely due to only
running background processes and not being affected by the inference.

On this graph, however, we only did five runs with the highest power
mode, two on 30W with 4 CPUs and one on 15W. This is because the time
of inference was way too high. 10W is zero because we saw that it was not
feasible to run it here as the time it takes to do one test is too high. So the
graph only gives us a simple illustration of how the power is consumed
when we run on the CPU.

GPU

0

1000

2000

3000

4000

5000

Unrestricted 30W 4 CPUS 15W 10W

SOC GPU CPU

Power usage on GPU with TensorFlow

Figure 7.3: Power consumption in milliwatt on the different power modes
using TensorFlow on the GPU

7.2.3 Takeaways from running on GPU and CPU

As expected, we saw a substantial increase in inference time as we ran the
workload on the GPU compared to the CPU. The lower power mode we
are working with also changes the inference time. However, on the GPU,
the increase was not as drastic depending on the power modes as on the
CPU. This was also as expected since we have fewer CPUs to work with.

48

CPU

0

2000

4000

6000

8000

Unrestricted 30W 4 CPUS 15W 10W

SOC GPU CPU

Power usage on CPU with TensorFlow

Figure 7.4: Power consumption in milliwatt on the different power modes
using TensorFlow on the CPU

Having two CPUs instead of four will decrease the speed as we have fewer
processors to run in parallel. They are working on lower frequencies, which
also helps decrease the time. On the GPU, we have fewer clusters to help
us, but we still have many more cores to run the code in parallel compared
to the CPU. Which shows us that running inference is a parallel task best
suited for GPUs

Inference on the unrestricted power mode is still possible on the CPUs.
At least when working with a medium-sized workload, 1000 images.
However, switching over to the GPU will give an increase in inference time.
As we go into the lower modes, we see that running on the CPU is no longer
a good option. A run time of 8 - 12 minutes on 1000 images is too slow, thus
making the CPU a lousy option.

Even though running on the GPU is a lot faster, it is still relatively slow
if we think of this in a real-time perspective. In the following sections, it
will be interesting to see how TensorRT compares to TensorFlow.

We will also have a deeper look at the power usage compared to
TensorRT. On TensorRT, we will also look into different precision levels
and see how these different levels compared to that of TensorFlow.

7.3 15W mode

The default power mode on the Jetson Xavier is the 15w power mode and
is an excellent place to start. On This mode, there are 4 CPUs active with
a max frequency of 1200MHz, and it also has four GPU TP clusters active
and two DLAs. The GPU has a maximum frequency of 670MHz and a DLA
of 750MHz.

49

7.3.1 Inference time

The standard precision in TensorRT is the 32FP precision, and by looking at
figure 7.5, we can see that it is the slowest of the three configurations. It has
an average time of 24.5 milliseconds. We then see that running inference on
FP16 reduces the inference time to 16.32 milliseconds, which can be pretty
substantial in some instances. Especially in real-time systems where time is
of the essence. On average, that is a time increase of about 33%. However,
looking at the DLA, we can see that the time has increased a little. The
DLA runs a little slower than when running with just the FP16 precision.
The DLA averages 19.47 milliseconds, an improvement from the FP32 but
still slightly slower than FP16.

7.3.2 Power consumption

Looking at figure 7.6 we can see how the different configurations perform
considering the power consumption. We can also see which of the
processing units consume the highest amounts of power. If we start on
the FP32, we see that the power consumption on the GPU is very high. On
average, it reaches the amount of 4033 milliwatts, which is almost twice the
amount of the SOC and the CPU combined. Them having 1821.93mW and
629.95mW, respectively. It shows us that running inference is a GPU-heavy
task, as expected.

In contrast to FP16 precision, we can observe that the GPU power
consumption has decreased by over 50%, now down to 1672.75mW. Now
more even with the other power rails. We see the CPU perform with
an average of 633mW, about the same as on FP32. The SOC power rails
have been reduced to 1506mW. Neither that much of a reduction in power
consumption. This shows us how much of a GPU-heavy task running
inference is and that by reducing the precision to 16 floating-points, we
get some improvements to the power.

Lastly, we have inference when offloading to the DLA. Here we see
even more reduction in the power on the GPU. Now it is down to 428mW,
which is 9.4 times, almost ten times lower, than running with FP32. This
is a considerable improvement. We also see that the power consumption
on the CPU and the SOC rails have relatively small reductions, now being
1482mW and 540mW, respectively. However, still decreasing a little.

Now we will look into the other nvpmodes to see how the power and
speed are affected. We imagine we will see the same trend of reduction.
However, depending on the mode, we might have some more drastic
improvements.

7.4 10W Mode

The 10W power mode has half the amounts of active CPUs and TPCs
running and a lower frequency on the TPC and the DLAs than the 15W
mode. We expect a slight increase in inference time on this mode but then
working with lower effects.

50

0

5

10

15

20

25

FP32 FP16 DLA

Inference time on 15W power mode

Figure 7.5: Inference time in milliseconds on 15W power mode

15W

0

1000

2000

3000

4000

5000

FP32 FP16 DLA

SOC GPU CPU

15WMode

Figure 7.6: Power consumption in milliwatt on 15W power mode

51

7.4.1 Inference time

We see the same trends here in the 10W mode as in the 15W mode. The
slowest configuration is expected while running on FP32, with FP16 being
faster and DLA being a bit slower than FP16 but faster than FP32. FP32
averages out on 46.1ms, which is quite high. Almost double the amount
of running on 15W mode. However, when changing to FP16, we are down
to 18.05 ms, which is ca. 2ms slower than FP16 running on 15W. We see
the same situation when running on the DLA. On 10W, it has an average of
23.78ms, again very close to the same situation on 15W. So by changing to a
smaller precision and DLAoffloading, we get almost the same performance
as the 15W mode. This makes sense when we consider that the DLA runs
on both cores on both modes, and even though their frequency is slightly
different, they are still able to offload quite a lot. The GPU also has fewer
TPCs to run on. Because of this, reducing the precision should have a more
substantial gain than on higher power modes. See figure 7.7

0

10

20

30

40

50

FP32 FP16 DLA

Inference time on 10W power mode

Figure 7.7: Inference time in milliseconds on 10W power mode

7.4.2 Power consumption

Looking at figure 7.8 we see that the power reduction on the GPU from
FP32 to FP16 does not have the same considerable power reduction as in
nvpmode 15W, which decreased by over 50%. Here the decrease in power
is no more than 30%, going down from 2127.9mW to 1502mW. Offloading
to the DLA gives us a GPU power of 405mW, which is a significant
improvement of about five times the amount of running on FP32. However,
compared to 428.35mW from 15W, the gain is not all that much. The same
goes with FP16, which is 1672.75mW on 15W and 1502mW on 10W. So the
real power gain while running on 10W compared to 15W mode is if we run
inference on FP32.

52

10W

0

500

1000

1500

2000

2500

FP32 FP16 DLA

SOC GPU CPU

10W Mode

Figure 7.8: Power consumption in milliwatt on 10W power mode

7.5 30W Mode

As mentioned earlier, we decided to run the test on 30W mode with 4 CPUs.
The reason is that we have the same amount of CPUs, TPCs and DLA cores
as on 15W mode but running on a higher frequency. Here we have four
CPUs, four TPCs and 2 DLA cores active, all running on higher frequencies,
see tables 6.3 and 6.4.

7.5.1 Inference time

30W mode is a high power mode and should produce some faster inference
times as we expect. We can see in figure 7.9 that we have faster inference
times on both precision modes and DLAoffloading. FP32 performs quite
fast with 20.2ms, which is slightly faster than 15W. Approximately 4ms on
average. This is quite a small decrease in time but may be important in
certain scenarios where time is of the essence. We see that the FP16 and
DLA are 15.8ms and 15.95ms, which compared to 16.34ms and 19.47ms is
not that huge of an increase. However, what is quite interesting here is that
the inference speed on the DLA evens out with that of FP16. This is a good
sign for the DLA should the power decrease follow the same trend as we
have seen on 15W and 10W. We will have a look at that in the next section.

7.5.2 Power consumption

The first thing we see looking at figure 7.10 is that it indeed follows the
trend we have seen earlier. Here we see that DLA decrease the GPU
time from FP32 by about 90%. FP32 has a GPU power consumption of
6013.75mW down to 527.3mW, which is significant. FP16 has a GPU power
consumption of about 1821.65mW, which is a decrease of approximately

53

0

5

10

15

20

25

FP32 FP16 DLA

Inference time on 30W power mode with 4 CPUs

Figure 7.9: Inference time in milliseconds on 30W power mode with 4 CPUs

70% from FP32 and is around 70% higher than that on the DLA. We also
see that the SOC power rail gives us powers from 2540.15mW on FP32,
1548.9mW on FP16 and 1887.8 on the DLA. Keeping relatively stable. The
same goes for the CPU, which gives 718.1mw on FP32, 750.2mW on FP16
and 579.6mw on DLA, which is relatively stable, having somewhat lower
power consumption when running layers on DLA. So the main power
benefits are on the GPU, which is what one would want running inference.

30W

0

2000

4000

6000

8000

FP32 FP16 DLA

SOC GPU CPU

30W Mode with 4 CPUs

Figure 7.10: Power consumption in milliwatt on 30W power mode with 4
CPUs

54

7.6 Unrestricted power mode

The final power mode is for maximum performance, which we call
unrestricted. As shown in table 6.3 and 6.4, all the CPUs are online, and
the GPU works at full capability. This should increase inference time as we
have more active processors able to work on higher frequencies. However,
we do expect an increased power usage.

7.6.1 Inference time

The inference time in the unrestricted mode can be seen in figure 7.11 and
shows an increase from 30W. The increase on FP32 has, on average, gone
down from 20.2 ms to 17.78, giving an 11.1% faster inference time per
image. We now see that the inference time increase is starting to flatten
out. Also, when we look at FP16 compared to FP32, we can see that the
time gain is not as dramatic as we have seen earlier FP16 runs on average
15.90ms, which is about the same as the 15.8 on 30W. We are seeing an
increase in DLA performance now running faster than that of FP16 only
on the GPU. The DLA runtime is now down to 13.89ms. This is quite
interesting, considering that the DLA has been slower than the FP16 on
GPU up until this point. However, we still see that the gain we are getting
is starting to be less significant from power mode to power mode.

0

5

10

15

20

FP32 FP16 DLA

Inference time on unrestricted power mode

Figure 7.11: Inference time in milliseconds on the unrestricted power mode

7.6.2 Power consumption

Figure 7.12 shows some extreme variations in GPU power usage looking
at FP32 compared to that of FP16 and DLA. FP32 has an average power
usage of 9894mW on the GPU, an increase of about 40% compared to 30W.
This is not a good trade-off compared to the inference time we gain from

55

30W to unrestricted. Using FP32 on the unrestricted mode is not optimal
for running Resnet50. However, running FP16 on mode 0 seems to have
similar results to 30W. On this mode, FP16 averaged out on 1953mW and
compared to the 1821.65mW on 30W, the trade-off might be worth it in
some instances. The real power gain, however, comes while running on
the DLA. Here we have reduced the GPU power consumption to 538mW,
approximately the same as that of 30W, which was 527mW. Since running
on the DLA was even faster than FP16, it seemingly has some excellent
gains in this mode. However, the power of the SOC itself increases by
about 1100mW from only running FP16 on the GPU. This is as expected
since the SOC power contains all the power used by the system that is not
on the CPU or GPU—depending on how important it is to offload as much
as possible from the GPU. Running inference on the DLA with unrestricted
power might perform best.

Unrestricted

0

2500

5000

7500

10000

FP32 FP16 DLA

SOC GPU CPU

Power on unrestricted power mode

Figure 7.12: Power consumption in milliwatt on the unrestricted power
mode

7.7 Jetson Clocks

Jetson Clocks is a script that sets the frequency and power output to the
maximum of the power mode we are on. So by running Jetson Clocks
with the unrestricted power mode. We get the absolute performance of the
Jetson Xavier considering speed. This will set the frequency to 2265.5MHz,
the GPU 1377MHz and DLA to 1395.2MHz. It would set the maximum
frequency on default mode to 1200MHz on the CPU, 670MHZ on GPU and
750 on DLA. We have decided only to test this script on the highest power
mode. With this script, we want to push the performance to the limit, so
using this script with power modes that limit the maximum performance
does not make sense.

56

Running the Jetson Clock script on this mode will allow us to see the
absolute performance of the Xavier architecture while running Resnet50.

7.7.1 Inference time

If we start by looking at the inference time on figure 7.13 we can see that
FP16 is working faster than DLA again. This makes sense, considering the
GPU is now working at total frequency. If we now compare DLA time
to FP16 time, we can see that the DLA has only increased by about 1ms,
now 12.52ms. This is not much of a gain from running without Jetson
Clocks. Nevertheless, FP16 now has increased by about 7ms, from 15.96ms
to 8.8ms, which is a decent speed gain. The time of FP32 has increased by
about 3ms now down to 14.45ms. So again, we are not gaining that much
of a speed up anymore on this precision.

The precision and DLA performance are also not too different com-
pared to each other. The gain comes when we look at FP16, which is 6ms
faster than FP32 and 4ms faster than offloading to DLA.

0

5

10

15

FP32 FP16 DLA

Inference time with Jetson Clocks

Figure 7.13: Inference time in milliseconds using Jetson Clocks on
unrestricted power mode

7.7.2 Power consumption

When we ran the workload on FP32, we utilized a considerable amount
of the GPU power. As one can see in figure 7.14 we use on average
14082.95mW on the GPU. Considering the trend we have been seeing from
10W up until now, it fits well. It has gotten very high, and by using a lower
precision, we again see a drastic decrease in the GPU’s power. On FP16, we
use on average 6623.1mW and, as expected, even lower on the DLA, now
as low as 1506mW.

57

Regarding the CPU and the SOC, we see that it keeps rather stable
between 4000mW and 3000mW on the SOC and 1700mW and 1000mW on
the CPU.

Jetson Clocks

0

5000

10000

15000

FP32 FP16 DLA

SOC GPU CPU

Jetson Clocks on unrestricted power mode

Figure 7.14: Power consumption in milliwatt with Jetson Clocks on
unrestricted power mode

7.8 Standard deviation while running inference

When we are testing the inference speed and power consumption on the
Tegra Xavier we also need to think about what other processes are being
used on the operating system. These processes can give fluctuation in the
power consumption done on the different processing units. We have found
the average time and power usage while running inference on 1000 images.
We have done these tests twenty times do get a good sample for our tests.
To see if there is any major variations we have looked at the standard
deviation of these tests, which can give us an indication of how stable the
data collected is. With a low standard deviation we can assume, that the
time and power usage are not too affected by other processes running on
the operating system. Since the operating system has to deal with a lot of
background processes, and we think that these might affect the data to a
certain degree. We will first and foremost check the standard deviation on
the unrestricted power mode.

Overall the standard deviation was quite small. The highest we found
was at the GPU when running inference with FP32, this had a standard
deviation of 1263.55mW and a mean of 9894.45mW a coefficient variation
of 0.12. Seeing that the highest of the standard deviation was quite far away
from the average, shows us that on general running inference on the system
is quite stable. The background processes of the operating system does not
affect the performance of the inference by much.

58

This shows us quite a low level of variation in our data, and is really
positive to see. We made the decision to not put the standard deviation on
the graphs considering how small they were.

7.9 Discussion

For this section we are going to discuss the results we have seen so far in
more detail.

7.9.1 TensorRT compared to TensorFlow

Comparing the results from TensorFlow and TensorRT, we see that the
inference time has increased substantially. First, comparing TensorFlow
to TensorRT on 15W mode, we see that the speed has increased from 747ms
when running on the CPU down to 245ms when running TensorFlow
on the GPU, which is about half a second per image. However, when
running with FP32, which is the slowest precision in TensorRT, we are
down to 24ms. FP16 being 16.34ms and DLA being 19.47ms, we see that
TensorRT can speed up inference. This is expected because TensorRT takes
the neural network and combines the different layers into fewer, reducing
the total size of the neural network. This will, of course, reduce the overall
computation that is needed to be done. On FP32, we get a speed up of
31 times that of running on the CPU and about ten times the speed up of
the GPU. Since TensorRT works on the GPU, this is the most interesting
to compare. There is no need to compare TensorFlow to TensorRT on all
the different power modes, as we saw the same tendency. However, we
can conclude that TensorRT speeds up the model substantially. We also
saw that the GPU is the best processing unit for running inference on the
Resnet50 model. However, on unrestricted power mode with TensorFlow,
the CPU managed to do a decent job by only being half as slow as the GPU.
However, it is preferable to use the GPU for inference.

When we compare the power consumption of TensorRT to TensorFlow,
we see that TensorFlow consumes less power than FP32 on TensorRT if we
consider the GPU. With the CPU and the SOC power rail, we see that the
power usage was quite similar. If we take 15W mode as an example, we see
that TensorRT spends 4033mW of GPU power while running the workload.
TensorFlow, on the other hand, only uses 1368mW. However, the difference
is much lower when we reduce the precision to FP16. Now the power
consumed was 1672.75, which is quite comparable, and by offloading some
of the layers to DLA, we see that we can reduce the power down to 428mW,
which is almost a whole Watt reduction from TensorFlow. That being
without much higher power consumption on the SOC as a whole. This
reduction can be generalized to all the power modes on the Xavier. The
highest mode has an almost 0.5W increase on TensorRT as opposed to
TensorFlow.

Another interesting thing is that while running the workload on the
unrestricted power mode with TensorFlow, we have a power consumption

59

that competes with TensorRT running on 15W. However, the speed loss
we get in this scenario, 223ms down to 24ms, still makes TensorRT the
preferable choice. When default mode TensorRT is ten times as fast as
TensorFlow in the unrestricted mode.

So as a conclusion to this section, we can see that TensorRT is such a
substantial improvement to TensorFlow that it is better in most scenarios.
Since TensorRT easily allows us to change precision, we gain many benefits
considering speed and power.

As a side note, this thesis has not looked into ways of improving
inference speed with TensorFlow. So there might be ways to get the
speed of inference and power usage down by configuring the model in
TensorFlow. However, since this thesis focuses on the Xavier architecture
and TensorRT being an Nvidia framework to improve deep learning
models, we saw it as sufficient to compare TensorRT to a default version
of Resnet50 running with TensorFlow.

7.9.2 The benefits of FP16 precision and DLA offloading

As we have seen, reducing the precision down from FP32 to FP16 reduces
the time of inference and power consumed on the GPU. The reduction
is somewhat expected as FP16 being at a lower precision also takes less
space in memory. This leads to the GPU being able to process the images
faster, and taking up less space reduces the power needed to compute. The
precision level is also not very important while running inference, unlike
in training. This reduces the precision without losing correctness and gives
us the benefits of higher speeds and lower power usage.

Regarding speed optimization, we saw that the FP32 was quite fast in
itself. Using 15W mode as an example, the speed was only reduced by
about 8ms when we optimized for FP16. We also saw this tendency on all
of the different power modes. We got a speed up but not as much as we
might have wished for. When we ran on FP16 but offloaded some of the
layers to the deep learning accelerator, we saw a speed decrease compared
to FP16 on the GPU. However, compared to FP32, it was still faster.

The real benefits of reducing the precision came from power optimiz-
ation. On 15W mode, we reduced the power consumption by almost 2.5
times on the GPU. As we looked into in the previous chapter, we saw that
it was mainly the GPU that significantly reduced power consumed. The
CPU and SOC often got a reduction as well, but seemingly it was not af-
fected much by the level of precision we chose. This makes sense because
TensorRT utilizes CUDA for running inference.

7.9.3 The trade-off between power and speed

The different power modes give us various power options for the Xavier. It
allows us to set a cap on the amount of power the SOC is allowed to use. If
we want to limit the power usage to a minimum, we can set it to 10W mode.
This gave us some excellent ways of dealing with different scenarios.

60

As we saw from the results in the previous section, this gave us a
power reduction of about 12000mW on the GPU with FP32 precision while
running without any power restriction with Jetson Clocks. It did increase
the inference time by about 3.5 times. Nevertheless, in many cases, this
might be a beneficial trade-off.

For example, using a robotic lawnmower would not need to run at
maximum speed all the time; it is much more beneficial to have it spend
longer doing inference and save up on power. This would increase the
battery lifetime, and we would argue is preferable for a lawnmower.
Another example of times when power consumption would be the priority
is if we imagine logistic robots sorting boxes and crates in big storage
facilities. These robots would have to move relatively slowly, so it does not
need to have an inference time that allows them to process 30 frames per
second, 7 to 10 frames per second is probably sufficient. Having a longer
life on these robots is, of course beneficial.

On the other side, if we have an object detection system in a car,
detecting hindering objects. Then the inference speed would probably be
the priority, especially in cases where personal safety is at stake. In this
system, we argue that inference time that allows for higher frames per
second is preferable. A system like this might want to run without power
restrictions and capped with Jetson Clocks. Nevertheless, there are other
AI systems in vehicles than detecting objects on the road.

An example could be sign classification, a similar problem that the
Resnet50 model is designed to solve. Here we do not need high-speed
inference all the time. If the model aims to alert the driver of speed limits,
construction work or other information that might be useful to the driver,
we could argue that saving power trumps inference speed. Nevertheless,
having too low inference speed would not be optimal. If the speed is too
slow, the signs might not get enough time to process. Because one moves 22
meters per second while driving at 80KM/H, and much information needs
to be processed, the trade between speed and power usage is something
that always needs to be addressed.

The Xavier architecture gives us many ways of dealing with the battle
between power and speed. By setting the maximum allowed power
consumption by using the different power modes, we can find ways to
optimize the models to the fullest. This means we can optimize the neural
network without being afraid of exceeding the power limit.

We imagine that in most cases, one would want to limit the power
consumption to a certain degree, except in those cases where speed is of
absolute value. However, this varies from situation to situation.

7.10 Limitations of the tests

These tests have given much insight into optimizing deep learning models
with TensorRT on the Jetson Xavier development kit. This allows us
to develop software that works optimally with the architecture of Tegra
Xavier. We have worked with the Resnet50 model to optimize with

61

TensorRT to test the capabilities of the Xavier, and Resnet50 is a medium-
sized model. When we have worked with a workload of classifying 1000
images, we used quite a lot of power at times, especially while running
Jetson Clocks. However, we never managed to cap the maximum wattage
on the system. It would have been interesting to see how the system reacted
to that.

However, this did not affect how the SOC behaves on the different
modes, and we were able to get good data on the system’s behaviour.
Nevertheless, it would have been interesting to see the behaviour when
pushed to the absolute maximum.

62

Chapter 8

Summary & Conclusions

In this chapter, we summarise the work done for this thesis and make
some conclusions on how this can benefit the development of deep learning
software on heterogeneous systems-on-chip.

8.1 Summary

The Nvidia Corporation is known as one of the leading companies when it
comes to the production of graphic cards. However, they have also become
a leading voice in artificial intelligence research in the last decade. Since
deep learning training and processing benefit so much from the parallelism
capabilities of the graphics card, it was only natural for Nvidia to take part
in this trend.

With the NVIDIA’s development of their heterogeneous system on chip,
which has been integrated into everything from medical instruments to
robotics used in manufacturing, we see the need to understand the different
components of the architecture and their usage.

The Xavier architecture is an integrated heterogeneous system-on-chip.
It has eight ARM Carmel CPU cores, and a 512-core Volta GPU with 64
tensor cores specialized in AI computing. It also has two Nvidia Deep
learning accelerators, which have been created to offload the GPU while
running inference on deep learning models. In this thesis, we have looked
into how to utilize mainly these components because they are specialized
for deep learning.

To fully utilize the architecture, we looked into Nvidia’s frameworks,
such as CUDA and TensorRT. TensorRT is the primary tool for running
inference and is developed to optimize deep learning inference by creating
a TensorRT engine. This engine is created through a build phase which
parses an ONNX or Caffe file. These files are used to serialize already
trained networks, to be easily portable. They are also generalized so
different frameworks can utilize them, whether it is Pytorch, TensorFlow,
OpenCV or TensorRT. For this thesis, we used pre-trained models stored in
the ONNX format.

To begin with, we parsed the pretrained Resnet50 ONNX file. This
phase is called the build phase, where we build the TensorRT engine. This

63

is done by specifying the workspace and the precision level. Here we can
also tell the engine to run specific layers on the deep learning accelerators.
After that, we save the engine on the disk for later use.

We then load the engine so that we can run inference. Here we
pre-process the data we want to run inference on. Since we utilized
the Resnet50 model, the data being processed was images for image
classification. For this OpenCV was a great framework to use. Since it
allowed us to easily parse the images and make them ready for TensorRT.
OpenCV has an additional library called OpenCV with CUDA, which
allowed us to transfer the data over to the GPU and let us do the pre-
processing steps here. We preferred to run this on the GPU since processing
images is a task that can be parallelized. The images needed to be resized
to fit the standard for Resnet50, 216x216 pixels. After this, we ran the
inference synchronously on the GPU using TensorRT. This produced some
massive speed gains compared to running the un-optimized file.

When running inference, we tested with different precisions. We saw
that we got a bit of speed up running on FP16 compared to FP32, which
was the standard. Also, by transferring layers over to the DLA with
FP16, we saw a speed up compared to FP32. However, compared to just
running on FP16, we saw that the speed, in general, was reduced by a little
bit. However, the true gain of running on the DLA came in the face of
power consumption. We expected a certain improvement in the power,
but we were surprised that the DLA would give such a significant power
reduction.

We also tested the different power modes on the Jetson Xavier. Out of
the six different modes, we decided only to test four of them—these where
the 10W, 15W, 30W with four CPUs, and the unrestricted power mode. We
wanted to compare the different power modes to compare the speed gains
to the power gains, as well as how the different modes were improved by
running with different precisions and the DLA. By this, we mean whether
the power gain was consistent with the power modes or if we got some
really good performance optimization on different modes.

8.2 Conclusion

The problem statement defined for this thesis was to understand the Nvidia
Tegra Xavier architecture and utilize it along with TensorRT to optimize
deep learning models with an emphasis on speed and power. As we have
seen based on the results from the previous chapter, TensorRT can be used
to speed up the original model to a significant degree.

We conclude that using TensorRT on the Nvidia Tegra Xavier can
optimize deep learning models with better power management and faster
inference time than on frameworks such as TensorFlow. TensorRT is a
framework developed by Nvidia for optimizing deep learning models, and
we saw that it is a great tool to use with the Xavier architecture. It allowed
us to take advantage of Xavier’s architecture, emphasizing the GPU and the
deep learning accelerator. The Volta GPU was created with deep learning in

64

mind, and by changing the precision level to FP16 for the computations, we
saw an increase in both speed and power usage, as opposed to the standard
FP32.

The deep learning accelerator has been of significant interest in this
thesis. It was developed as a way to optimize deep learning inference
on the Xavier. We saw that it significantly reduced power consumption
on the GPU, without increasing the overall SOC power consumption as
a whole. The tests done in this work have shown that the NVDLA has
lived up to its expectation and can improve the overall workload of deep
learning inference.

Nvidia Tegra Xavier also comes with different power modes that let us
cap the maximum power that the system allows. We have seen that this
can significantly reduce the power consumption on the Xavier. By testing
out the different power modes, we have seen that they can be used to set
limitations to the neural networks we want to run and allow us to specify
the amount of power the system is allowed to use. We conclude that they
can be a great tool if we want to limit our system in cases where power
reduction is of significant interest. This includes cases where battery life is
essential.

With the Jetson Clocks script and running without any power restric-
tion, we can get the most out of the system. By doing this, we got the
system to optimize the inference speed all while allowing us to manage
the power consumed. By allowing the system to use more power, we also
improved the time it took to run the entire workload.

With all this in mind, the Tegra Xaiver is a heterogeneous system-on-
chips which allows optimizing deep learning models to a high degree. By
utilizing frameworks developed by Nvidia, such as CUDA and TensorRT,
in line with the knowledge of the SOC architecture, we can get the best
performance out of the different deep learning scenarios that face us.

8.3 Contribution

With this thesis, we have made several contributions to understanding the
Nvidia Tegra Xavier architecture, emphasizing issues we face with deep
learning neural networks. Deep learning has become a tool to solve issues
related to artificial intelligence. These problems range from autonomous
driving and object detection to more straightforward gadgets such as
autonomous lawnmowers and logistic robots. Deep learning is likely
to expand even further in the future. By utilizing system architectures
specifically designed for these purposes, we can make systems that are
safer, faster and low power usage.

By understanding the components of the Xavier explicitly designed
for deep learning, we have been able to explore where we can gain
improvements in inference speed and power consumption. We have
explored how the deep learning accelerator drastically can reduce the time
of inference and power consumed by the system. Using TensorRT to
define and configure how the deep learning models should run, we have

65

seen how we can use these tools to make good designs depending on the
problem. This contributes in allowing programmers to create software that
are optimized for deep learning on heterogenous systems-on-chip.

We have performed several tests to see how the power is used on the
Tegra Xavier; by trying out different precision and utilizing the DLA, we
have seen that we can implement TensorRT engines that are optimized
for the Xavier. This has given insight into how to develop deep learning
software that takes full advantage of the Tegra Xavie architecture.

8.4 Future work

Throughout this thesis, we have examined how the Nvidia Tegra Xavier
architecture has been optimized for machine learning, especially how the
different components work when using TensorRT on deep learning models.
We have seen how TensorRT speeds up the Resnet50 model compared to
running it on TensorFlow. Also, we have seen how the power can be
offloaded between the GPU, CPU and the DLA. This has shown that by
offloading layers from the Resnet50 engine, built with TensorRT, can give
significant power benefits. Also, by reducing the precision level, we have
seen a reduction in inference time, which has given us an indication of the
Nvidia Tegra Xavier’s capabilities.

However, further work on the subject should be considered, and in this
section, we will look into topics of interest.

8.4.1 Nvidia Orin

However, as of July 2022, the Jetson AGX Orin series will be available [13].
Future work would be to benchmark this new architecture, which Nvidia
claims to be eight times faster than the Jetson AGX Xavier[13]. The new
Orin will have an AI performance of 200-275 TOPS compared to Xavier’s
30-32. Depending on whether one looks at the 32GB or the 64GB Orin, it
will utilize 8-12 Core ARM Cortex CPUs, a 1792 - 2048 core GPU, with 56-64
tensor cores. This new GPU is based on the Ampere architecture[22]. It has
2 DLA cores of NVDLA version 2. According to Nvidia, Orin hits 275 TOPS
at INT8[13] as we could not run any TensorRT engines on the Jetson Xavier
with INT8 precision as the architecture did not support it. This would be
interesting to test on the Orin module.

8.4.2 PCIe express

The Jetson AGX Xavier developers kit is equipped with PCIe generation 4.
PCIe 4.0 provides a 16GT/s bit rate and is a full-duplex, which means it can
send and receive data simultaneously and has a bandwidth of 64GB/s.

So by this standard, the Jetson Xavier should be able to send and receive
quite a high level of data. It would be interesting to see what the platform
is capable of when connecting multiple Xaviers over PCIe. If we utilize
some bigger workloads, we might be able to get some speed up and power
reductions by connecting multiple Xaviers.

66

8.4.3 Bigger workloads

There are many AI models out there. We utilized the Resnet50 model
because it is widely used as a base for many other neural networks. It was
also big enough for us to test out the capabilities of TensorRT and the Xavier
architecture. However, a wide variety of other models would be interesting
to try out. Resnet50 is an image classification model, which means it takes
information from an image to classify what it consists of. As mentioned,
this could be to classify cancer cells in patients, plant diseases and certain
objects like Cats, dogs and Leopards. However, it is not an object detection
model. An object detection model finds different objects in the image; this
is very useful in, for example, autonomous driving or just for safety in cars
to see hindrances on the road.

An example of such a model would be the Yolo algorithm. Yolo is an
acronym which stands for "you only look once". This is considered to be the
state-of-the-art algorithm for object detection[1]. With the release of Yolo
version 4 in 2020, this could be a great contender for bigger deep learning
models to test with TensorRT and the Jetson Xavier.

67

Appendix A

Asynchronous and
synchronous inference

A.1 Asynchronous inference

The code belowr shows how to run inference asynchronously. As explained
earlier we decided not to use asynchronous inference.

vector <nvinfer1 : : Dims> input_dims ;
vector <nvinfer1 : : Dims> output_dims ;
/ / Input and ou tp ut b u f f e r s
vector <void *> b u f f e r s (m_engine−>getNbBindings ()) ;

for (s i z e _ t i = 0 ; i < m_engine−>getNbBindings () ; ++ i)
{

auto bindingSize = getSizeByDim (m_engine−>getBindingDimensions (i))
* batchSize * s i ze of (f l o a t) ;

cudaMallocAsync(& b u f f e r s [i] , bindingSize , m_cudaStream) ;

}

resizeAndNormalize (image , (f l o a t *) b u f f e r s [0] , m_inputDims) ;
m_context −>enqueueV2 (b u f f e r s . data () , m_cudaStream , n u l l p t r) ;
c a l c u l a t e P r o b a b i l i t y ((f l o a t *) b u f f e r s [1] , m_outputDims , batchSize) ;
for (s i z e _ t i = 0 ; i < m_engine−>getNbBindings () ; i ++)
{

cudaFreeAsync (b u f f e r s [i] , m_cudaStream) ;
}
auto s t a t u s = cudaStreamSynchronize (m_cudaStream) ;
i f (s t a t u s != 0)
{

s td : : cout << " Unable to synchronize cuda stream " << std : : endl ;
return f a l s e ;

}
return t rue ;

68

The code belowr shows how to run inference synchronously. This is the
code used in this thesis and can be found at https://github.com/Joa2506/Resnet50.

A.2 Synchronous inference

vector <nvinfer1 : : Dims> input_dims ;
vector <nvinfer1 : : Dims> output_dims ;
/ / Input and ou tp ut b u f f e r s
vector <void *> b u f f e r s (m_engine−>getNbBindings ()) ;

for (s i z e _ t i = 0 ; i < m_engine−>getNbBindings () ; ++ i)
{

auto bindingSize = getSizeByDim (m_engine−>getBindingDimensions (i))
* batchSize * s i ze of (f l o a t) ;

cudaMalloc(& b u f f e r s [i] , b indingSize) ;

}

resizeAndNormalize (image , (f l o a t *) b u f f e r s [0] , m_inputDims) ;
m_context −>executeV2 (b u f f e r s . data () , n u l l p t r) ;
c a l c u l a t e P r o b a b i l i t y ((f l o a t *) b u f f e r s [1] , m_outputDims , batchSize) ;
for (s i z e _ t i = 0 ; i < m_engine−>getNbBindings () ; i ++)
{

cudaFree (b u f f e r s [i]) ;
}

return t rue ;

69

Appendix B

Monitoring power on the Tegra
Xavier

All the code in this appendix are snippets from the code used in this thesis.
It can be found at https://github.com/Joa2506/Resnet50

/ / F u n c t i o n s and v a r i a b l e s f o r power m o n i t o r i n g
s t r i n g powerRailCPU =
"/sys/bus/ i 2 c / d r i v e r s /ina3221x /1−0040/ i i o : device0/in_power1_input " ;

/ / L i s t s t o r e a d power
std : : vector < int > powerListCPU ;

s t r i n g powerRailGPU =
"/sys/bus/ i 2 c / d r i v e r s /ina3221x /1−0040/ i i o : device0/in_power0_input " ;

s td : : vector < int > powerListGPU ;

s t r i n g powerRailSOC =
"/sys/bus/ i 2 c / d r i v e r s /ina3221x /1−0040/ i i o : device0/in_power2_input " ;

/ / L i s t s t o r e a d power , c u r r e n t and v o l t a g e
std : : vector < int > powerListSOC ;

/ / o u t p u t f i l e s t o s t o r e t h e power r e a d from t h e s e n s o r s
s t r i n g powerFileSOCFP32 = " o u t p u t f i l e s /powerSOCFP32 . t x t " ;
s t r i n g powerFileSOCDLA = " o u t p u t f i l e s /powerSOCDLA . t x t " ;
s t r i n g powerFileSOCFP16 = " o u t p u t f i l e s /powerSOCFP16 . t x t " ;

s t r i n g powerFileCPUFP32 = " o u t p u t f i l e s /powerCPUFP32 . t x t " ;
s t r i n g powerFileCPUDLA = " o u t p u t f i l e s /powerCPUDLA . t x t " ;
s t r i n g powerFileCPUFP16 = " o u t p u t f i l e s /powerCPUFP16 . t x t " ;

s t r i n g powerFileGPUFP32 = " o u t p u t f i l e s /powerGPUFP32 . t x t " ;
s t r i n g powerFileGPUDLA = " o u t p u t f i l e s /powerGPUDLA . t x t " ;
s t r i n g powerFileGPUFP16 = " o u t p u t f i l e s /powerGPUFP16 . t x t " ;

70

The code above is a method to read the power from the power files stored
on the SOC Information gotten from the Engine.hpp header file can be seen
below

bool Engine : : powerMonitor ()
{

s t r i n g lineSOC , lineCPU , lineGPU ;

i f s t r e a m fileSOC (powerRailSOC) ;
g e t l i n e (fileSOC , lineSOC) ;
powerListSOC . emplace_back (s t o i (lineSOC)) ;
/ / p r i n t f ("%d\n " , powerListSOC [0]) ;
f i leSOC . c l o s e () ;

i f s t r e a m fileCPU (powerRailCPU) ;
g e t l i n e (fileCPU , lineCPU) ;
powerListCPU . emplace_back (s t o i (lineCPU)) ;
/ / p r i n t f ("%d\n " , powerListSOC [0]) ;
fileCPU . c l o s e () ;

i f s t r e a m fileGPU (powerRailGPU) ;
g e t l i n e (fileGPU , lineGPU) ;
powerListGPU . emplace_back (s t o i (lineGPU)) ;
/ / p r i n t f ("%d\n " , powerListSOC [0]) ;
fileGPU . c l o s e () ;
return t rue ;

}

This code opens the sensor files and adds their content them to a vector.
We later calculate the average of them over 1000 iterations.

71

Appendix C

Loading from disk and getting
meta data for inference

The code in this appendix are snippets from the code used in this thesis.
This code shows how to get the meta data such as channel, height, width
and batch size, used for running inference on the Resnet50 model. The full
code can be found at: https://github.com/Joa2506/Resnet50.

C.1 Load phase

vector <char > b u f f e r (s i z e) ;
/ / Runtime o b j e c t
unique_ptr <IRuntime> runtime { createInferRunt ime (m_logger) } ;
/ / S e t d e v i c e
auto r e t = cudaSetDevice (m_config . deviceIndex) ;
/ / L e t ’ s c r e a t e t h e e n g i n e
m_engine = shared_ptr <nvinfer1 : : ICudaEngine >(

runtime −>deserial izeCudaEngine (b u f f e r . data () , b u f f e r . s i z e ())) ;

/ / G e t t i n g i n p u t and ou tp ut names p l u s d i m e n s i o n s
m_inputName = m_engine−>getBindingName (0) ;
m_outputName = m_engine−>getBindingName (1) ;

m_inputDims = m_engine−>getBindingDimensions (0) ;
m_outputDims = m_engine−>getBindingDimensions (1) ;
/ / G e t t i n g t h e meta d a t a ne e ded t o p r o c e s s t h e image
m_batchSize = m_inputDims . d [0] ;
m_inputChannel = m_inputDims . d [1] ;
m_inputHeight = m_inputDims . d [2] ;
m_inputWidth = m_inputDims . d [3] ;

m_context = shared_ptr <nvinfer1 : : IExecutionContext >
(m_engine−>createExecut ionContext ()) ;

72

Bibliography

[1] Bochkovskiy. A, Wang. C and Liao. H. H. ‘YOLOv4: Optimal Speed
and Accuracy of Object Detection’. In: (2020).

[2] About Nvidia. URL: https://www.nvidia.com/en-us/about-nvidia/.

[3] Bojarski. M et al. ‘The NVIDIA PilotNet Experiments’. In: (2020).

[4] Martín Abadi. et al. ‘TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems’. In: Google Research (2016).

[5] Apple announces Mac transition to Apple silicon. URL: https : / /www .
apple .com/newsroom/2020/06/apple - announces-mac- transition- to-
apple-silicon/.

[6] A. Çinar, M. Yildrim and Y Eroğlu. ‘Classification of Pneumonia Cell
Images Using Improved Resnet50 Model’. In: (2020).

[7] Deep Learning Performance Documentation. URL: https ://docs .nvidia .
com/deeplearning/performance/dl - performance - convolutional / index .
html.

[8] Diagram of Tegra Xavier architecture. URL: https://en.wikichip.org/wiki/
File:nvidia_xavier_die_shot_(annotated).png.

[9] Comer. D. E et al. ‘Computing as a Discipline’. In: (1989).

[10] Peter Goldsborough. ‘A Tour of TensorFlow’. In: (2016).

[11] HARDWARE FOR SELF-DRIVING CARS. URL: https://www.nvidia.
com/en-us/self-driving-cars/drive-platform/hardware/.

[12] INA3221 Triple-Channel, High-Side Measurement, Shunt and Bus Voltage
Monitor with I 2C- and SMBUS-Compatible Interface. Texas Instru-
ments. Mar. 2016.

[13] JETSON AGX ORIN. URL: https://www.nvidia.com/en-us/autonomous-
machines/embedded - systems/ jetson - orin/#:~ : text=NVIDIA%5C%
20Jetson%5C%20AGX%5C%20Orin%5C%20modules , other%5C%
20autonomous%5C%20machine%5C%20use%5C%20cases..

[14] Jetson AGX Xavier. URL: https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-agx-xavier/.

73

[15] JETSON AGX XAVIER AND THE NEW ERA OF AUTONOMOUS
MACHINES. URL: https://developer.download.nvidia.com/embedded/
webinars/webinar-jetson-agx-xavier-new-era-autonomous-machines.pdf?
AinKLpjfnqUWPD4GAPAmgjtQls9pTt3gtCXYc2Lctapvj7UbSDJCzuroZS9NEOyJtg8BQf1vuWWOaxOD3smG26W7Ea0-
8zBcxpJ4cjJS4BuX0UNRVo_3DcB8tis4a_nsjTLxyHJOJcDnd3qaIG63GAp71_
deLbVQZuzbohuuICfpoW8QkC9PZIvD.

[16] He. K, Zhang. X and Ren. S. ‘Deep Residual Learning for Image
Recognition’. In: (2015).

[17] Keras. URL: https://keras.io/.

[18] Ekman. M. Learning Deep Learning. Addison-Wesley, 2021.

[19] Mixed precision training. URL: https://docs.nvidia.com/deeplearning/
performance/mixed-precision-training/index.html.

[20] NVDLA. URL: http://nvdla.org/.

[21] NVIDIA CUDA C Programming Guide. NVIDIA, 2012.

[22] NVIDIA JETSON AGX ORIN DEVELOPER KIT. NVIDIA Corpora-
tion. 2022.

[23] NVIDIA Jetson AGX Xavier Delivers 32 TeraOps for New Era of AI in
Robotics. URL: https://developer.nvidia.com/blog/nvidia- jetson- agx-
xavier - 32- teraops- ai - robotics/#:~:text=The%5C%20Jetson%5C%
20AGX%5C%20Xavier%5C%20integrated , a%5C%20compute%5C%
20capability%5C%20of%5C%20sm_72..

[24] NVIDIA Jetson Xavier AGX System-on-Module. NVIDIA Corporation.

[25] Nvidia TensorRT. URL: https://developer.nvidia.com/tensorrt.

[26] Nvidia TensorRT developer guide. URL: https : / / docs . nvidia . com /
deeplearning/tensorrt/developer-guide/index.html.

[27] ONNX Webpage. URL: https://onnx.ai/.

[28] OpenCV. URL: https://opencv.org/about/.

[29] Nahar. P, Tanwani. S and Chaudhari. N. S. ‘FINGERPRINT CLAS-
SIFICATION USING DEEP NEURAL NETWORK MODEL RES-
NET50’. In: (2018).

[30] Power Management for Jetson Xavier NX and Jetson AGX Xavier Series
Devices. URL: https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-
3261/ index . html#page/Tegra%5C%20Linux%5C%20Driver%5C%
20Package%5C%20Development%5C%20Guide/power_management_
jetson_xavier.html#wwpID0E0GN0HA.

[31] Afifi. Shereen, Hosseini. H. G and Sinha. R. ‘A system on chip for
melanoma detection using FPGA-based SVM classifier’. In: (2019).

[32] SOFTWARE FOR SELF-DRIVING CARS. URL: https ://www.nvidia .
com/en-us/self-driving-cars/drive-platform/software/.

[33] TensorFlow. URL: https://www.tensorflow.org/.

[34] The MNIST database. URL: http://yann.lecun.com/exdb/mnist/.

74

[35] Transforming the Automotive Future: Innovations in Digitalization, Elec-
trification, and Sustainability. URL: https://resources.nvidia.com/ent-
gtcs21/gtcs21-e32520.

[36] Volta Tuning Guide. URL: https://docs.nvidia.com/cuda/volta-tuning-
guide/index.html.

[37] LeCun. Y, Bengio. Y and Hinton. G. ‘Deep Learning’. In: (2015).

[38] Mukti. I. Z and Biswas. Dipayan. ‘Transfer Learning Based Plant
Diseases Detection Using ResNet50’. In: (2019).

75

