UNIVERSITY OF OSLO

Department of Informatics

Towards an ontology for
System Administration
Case Study: Backup
Operation

Karim Sani Ntieche
Oslo University College

May 23, 2007

Towards an ontology for System Administration
Case Study: Backup Operation

Karim Sani Ntieche
Oslo University College

May 23, 2007

Abstract

With the multiplicity of operating systems it is becoming common practice
for organizations to deploy heterogeneous systems environments in order to
benefit from their different advantages. The tradeoff of building heteroge-
neous environment is that it often leads to parallel support structures, non-
interoperable management tools and system administrators with diverse skills
to keep such complex infrastructures running. One basic requirement of in-
teroperability or integration is the mapping between different models. This
mapping can be carried out through syntactical and semantic translation us-
ing ontologies. This project focuses on the interoperability issues in heteroge-
neous environment, mainly mixed Unix/Linux and Windows infrastructures.
The aim of this text is to investigate, with the help of a specific case study, how
integration can be achieved in the management of Unix/Linux and Windows
mixed environment through the knowledge sharing and interoperability ca-
pabilities provided by ontology engineering.

Acknowledgment

This thesis report is the conclusion of a challenging two years master’s degree
in network and system administration at Oslo University College in collabora-
tion with Oslo University. There are several people i would like to thanks for
their support and suggestions throughout this thesis work as well as the two
years spent at Oslo University College.

First i would like to express my gratefulness to Oslo University College and
Oslo University for giving me the opportunity to write this master thesis.

Iwould like to thank my thesis advisor Thor Hasle, whose advises have helped
me keeping the right track in my work.

Special Thanks to Professor Mark Burgess for his dedication and enthusiasm
throughout the degree and for his critics and suggestions during these last four
months of thesis work.

Thanks to Joan Serrat and Martin Serrano of Polytechnic University of Cat-
alonia for their hospitality and dedication during the four days training in
Barcelona.

I'm grateful to all the other faculties at Oslo university College for their assis-
tance during these two years. My appreciation to my fellow students for the
supportive and friendly environment that has existed throughout this master
program.

Last but not the least, many thanks to my family and friends whose encourag-

ing words have helped when anxiety was ruling.

Special thought for my son Selim...

This work is supported by the EC IST-EMANICS Network of Excellence

Contents

1 Introduction
1.1 Motivation
1.2 Problem Description
121 Knowledge representation with Ontology
122 OntologyMapping
1.3 Researchgoals
1.4 Outline of the remaining Chapters
2 Background
2.1 Current interoperability strategies in systems administration . .
2.1.1 Distributed Management Task Force(DMTF) Standards .
212 CORBA
2.1.3 Vendor and Open source solutions
2.2 Knowledge representation L.
22.1 Some basic definitions 0oL
2.2.2 Some Modeling languages for knowledge representation
2.3 Ontology for knowledge modeling
23.1 Whatisontology
232 UseofOntology.
23.3 Typologyof Ontology
234 Ontology representation languages
235 Ontology and Reasoning
2.4 Ontology and interoperability: Related work
3 Windows and Unix/Linux management: A short Comparison
3.1 Comparing Windows and Unix/Linux systems
3.1.1 Flavorsandversions
3.1.2 FileManagement
313 Security
3.14 GUI and command line interpreter
3.1.5 ManagementCost
3.2 Backup Operation Comparison
321 WindowsBackup:
322 LinuxBackup:.
4 Ontology design. Case Study: Backup operation in Windows and

Linux

\O G0 0 OO0 N O &

11

11
16
16
18
19
20
23
23
24
27
28
31
32

35
35
36
36
38
39
39
40
41
42

43

CONTENTS

41 Tools
411 Protégé
41.2 The Ontology mapping and merging tool: PROMPT
413 Reasoning tool: RACER
4.2 Building the ontologies: The methodology
421 Step One: Purposeand Scope
422 Step Two: Considering re-using an existing Ontology . .
423 Step Three: Enumeration of important terms or concepts
424 Step Four: Defining Class and Class hierarchy
425 Step Five: Defining properties of Classes
42,6 Step Six: Defining and describing classes with properties
restrictions o
427 Mapping the Ontologies

5 Result Evaluations and Discussion

51 Ontologies evaluation
51.1 Hiddenassumptions:
5.1.2 Quality of the knowledge capture and Usability
5.1.3 Querying the ontologies
514 Suggested framework for ontology evaluation
52 Mappingevaluation
52.1 Level of automation and accuracy
522 Validationand Problems
53 Discussion o

Conclusion and further work

Appendices

Al Inferred taxonomy for the Windows ntbackup utility ontology
generatedin Protégé

A.2 Inferred taxonomy for Linux tar program ontology generated in
Protége

A.3 RDF/XML code generated with Protégé for the Windows nt-
backup utility Ontology

A.4 RDF/XML code generated with Protégé for the tar Linux backup
ontology

List of Figures

1.1

2.1
2.2
23
24
25
2.6
2.7
2.8

29

2.10
211

3.1

4.1
4.2
43

44
4.5
4.6
4.7
4.8
49

4.10

proposed architecture for mapping command line syntax be-

tween Windowsand Linux 9
DMTF Technology Diagram[32] 12
WBEM Architecture [35] L 15
CORBA Overall Architecture[39] 17
UMLClassdiagram 21
UML Use-case diagram 22
Usage of Ontology[1] 24
ontology as inter-lingua[l] 25

[lustration of the interoperability problem within and between
the Fault, Configuration, Accounting, Performance, Security (FCAPS)

functions based onthe TMN model[2] 26
Categorization of Ontology as proposed by Mc Guinness et al

n[22] ... 29
OWL level of expressiveness 31

Architecture of the management system approach using the Merge
and Map method(M&M) to integrate diverse Network Manage-

mentmodels[4] 34
Linux vs Windows Administrator productivity [38] 40
Property window in Protg-OWL editor 44

The PROMPT infrastructure and interactions between the tools. 45
Traversing the paths between anchors. The rectangles represent
classes and labeled edges represent slots that relate classes to
one another. The left part of the figure represents classes and
slots from one ontology; the right part represents classes and
slots from the other. Solid arrows connect pairs of anchors;

dashed arrows connect pairs of related terms[15]. 46
Windows backup top level classes 50
Windows backup command line taxonomy for parameters . . . 51
Windows backup command line taxonomy for backup storage 51
Linux(tar) backup top-level classes hierarchy 52
Linux(tar) function and dataTobackup classes taxonomy 53
notCompatibleWith is a symmetric property between the two in-

stances 54
isSwitchOf and hasSwitch are inverse properties 54

LIST OF FIGURES

411
4.12
4.13

4.14

51

52

53
54

creating restriction with Protégé: here the universal restriction is
applied to the class “dataStorage” 55
Diagram describing the Universal restriction (V) 56
Meaning of the hasValue restriction(3): Instances(specific files,
tapes) from the "fileStorage” class are used with specific option

switches(/F, /T, /N)in the “switch” class 58
mapping suggested automatically by PROMPT 59
Query result of parameters switches non compatible with the

parameter switch /FinWindows 62
mapping suggested by PROMPT including some wrong sug-

gestions such as mapping properties hasName and hasSetTime . . 64
psm mapping ontology class browser 65

Querying psm mapping ontology: Verification option(/V to -W) 66

Chapter 1

Introduction

1.1 Motivation

Organizations rely on their information system infrastructure to achieve their
goals in an efficient manner. It can be recalled that 25 year ago this infrastruc-
ture was limited to huge computing machines kept in data centers and used
only by specialized personnel. Now a days with the progress of the technol-
ogy, computer usage has spread to all segments in most organizations hence
becoming a working tool for most employees. This growth is continuously
maintaining a challenge for system administrators who have the critical task
of deploying and maintaining complex, heterogeneous systems. It has been
argued in a recent research [30] that labor cost account for seventy percent
of an enterprise’s Information Technology(IT) cost. The heterogeneousness
of computing infrastructure leads to the creation of separate support services
which often use diverse terminologies while referring to the same administra-
tive tasks. There are indeed several implementation differences between Win-
dows and Unix/Linux systems, but also terminology difference for the same
concepts. Because of this, specialized administrators often deal with each sys-
tem within parallel support infrastructures. The poor communication between
the two support structures might represent lost in productivity for the organi-
zation as they often appear to be antagonist entities with competing goals.
Because of this fact it is legitimate that enterprises are interested in any tech-
nologies that can help reducing the cost of labor. One way to attack the cost
of labor is to find ways to automate routine tasks through the development
of sophisticated automated tools to manage systems while allowing system
administrators to focus on other critical issues. Another way to reduce labor
costs is to reduce management complexity by standardization which reduces
management cost, but to be able to benefit from added power, performance
and flexibility most organizations are opting for a mix of operating systems in
their infrastructure mainly Windows and Unix/Linux.

Despite a higher cost in management, heterogeneous infrastructures appear
to be a necessary choice for most organizations for a better productivity. There
is therefore a need to reduce or eliminate conceptual and terminological dif-

1.2. PROBLEM DESCRIPTION

ferences existing in different operating systems implementations in order to
achieve a shared understanding through the definition of an unifying frame-
work for describing different view points that will serve as a basis for:

¢ Communication between operators.
¢ Interoperability between systems.
¢ Re-usability, Reliability of knowledge

“Ontology” is the term used to refer to the shared understanding of some
domain of interest which may be used as a unifying framework[1]. The term
finds its origins in philosophy where it is defined as “the study of being or
existence”. In computer science or information management it is defined as
a class model that represents a set of concepts within a domain and the re-
lationships between those concepts. It has been used mainly in Artificial In-
telligence, semantic web, software engineering and information architecture
as a form of knowledge representation. Applied to System Administration of
mixed environment the concept of ontology could contribute in defining an
unifying framework for representing system management tasks of Windows
and Unix/Linux systems.

Beyond the knowledge classification or representation issue, Ontology is also
about describing a knowledge domain with reasoning and logic. Ontologies
provide a semantic for describing relationship between concepts in the domain
of interest. This semantic enable the Ontology representation to provide both
a taxonomy and meaning of the domain that allow for a better identification
of similarities and differences between different ontologies, through the on-
tology mapping process. Ontology mapping is about linking concepts across
different ontologies to achieve semantic integration. Consequently ontology
mapping is central to the process of integration in cross platform administra-
tion using the ontology concept.

1.2 Problem Description

This project is not considering the monitoring issues in heterogeneous environ-
ment. There exist several information models such as WBEM!, SNMP-MIB?2
which have been developed with good capabilities for monitoring resources in
devices but with often limited configuration capabilities. This work targeted
describing a semantically rich shared knowledge representation which can be
used in performing administrative tasks across multiple platforms(Windows
and Unix/Linux in this case) through ontology mapping. The case study in
this report was the "backup operation” for both Windows and Linux systems.
The tasks were to capture the knowledge for that operation in both systems by
looking at the commands syntax, restriction between the options and the dif-
ferent computers resources involved. After this representation was achieved

lweb-based Enterprise Management
2Simple Network Management protocol- Management Information Base

1.3. RESEARCH GOALS

the semantic and syntactic mapping of the two representation was be per-
formed. Ontology knowledge modeling was used to perform to describe the
different concepts.

1.2.1 Knowledge representation with Ontology

There are different types of knowledge representation techniques mainly com-
ing from the field of Artificial Intelligence. A thorough understanding of dif-
ferent knowledge representations is a vital part of Artificial Intelligence, since
the ease of solving a problem is almost completely determined by the way
the problem is conceptualized and represented. The same is true for the task
of communicating knowledge.[12]. Ontology as a knowledge representation
technique presents different uses or roles and topologies. The challenges were
to map the scenario of this work to the appropriate ontology type and to fol-
low a suitable ontology creation process methodology to efficiently capture
the knowledge to be represented. Protégé developed at Stanford University
is the tools that was used to create the different ontologies. The Ontologies
were represented in computer readable code using a RDF/XML? generated by
Protége.

1.2.2 Ontology Mapping

The ontology mapping is a critical part of the integration process. There are
several algorithm and tools for performing ontology mapping that have been
developed including PROMPT the build-in mapping tools included with Protégé.
The mapping can be done automatically (through inference), semi-automatically
or manually. The challenge to have an effective automatic mapping is to de-
scribe semantically enough the concepts in the ontology to be mapped. The
mapping process evaluation was aimed to provide answers to the following
question:

* How does this mapping contribute to achieve cross platform administra-
tion?

¢ Was PROMPT a suitable mapping tool to be used, is it suitable for system
administration task?

¢ Were the ontologies semantically rich enough to facilitate the mapping
process?

1.3 Research goals

The overall goal of the thesis was to be able to create semantically rich on-
tologies for the “backup operation” for Windows and Linux which would de-
scribe as accurate as possible corresponding command line syntax in order to

3Resource Description Framework/Extensible Markup Language

1.4. OUTLINE OF THE REMAINING CHAPTERS

facilitate the creation of Mapping definition between the two ontologies as il-
lustrated in figure 1.1. The objectives of this thesis work were summarized as
follow:

¢ To highlight some of the important differences and similarities between
Windows and Unix/Linux systems such as Linux with respect to system
administration related tasks. The focus will be aspects such as file per-
missions, services configuration, command lines and graphical interface
and finally the “backup operation” which is the study case in this report.

¢ To create for the backup case study, Linux and Windows ontologies rep-
resenting the command line syntax for each system using Protégé and
ultimately perform mapping using PROMPT mapping tool automati-
cally(preferred) or manually.

¢ The work aimed to suggest if ontology approach presents a valuable
platform to achieve interoperability in system administration of hetero-

geneous systems.
Management
Tool

ommo|
ontology

6‘3@6@)’

hackup
ontology

Figure 1.1: proposed architecture for mapping command line syntax between
Windows and Linux

1.4 Outline of the remaining Chapters

Chapter 2 provides the reader with background information about current
approaches in solving the interoperability problems in system administration
such as standard information models and some proprietary solutions. The sec-
tion also includes overview of the concept of Knowledge representation and

1.4. OUTLINE OF THE REMAINING CHAPTERS

other knowledge representation techniques such as Promise theory and UML?.
Finally it also provides an exhaustive summary on Ontology engineering.

Chapter 3 contains a short comparison between Windows and Unix/Linux
system with an emphasis on the backcup task case study.

Chapter 4 describe the methodology used to create the different ontologies
for the backup task in Windows and Linux as well the mapping process using

the tool Protégé.

Chapter 5 presents the results evaluation and an overall discussion of the en-
tire process.

Chapter 6 concludes the work with suggestions for further work.

4Unified Modeling Language

10

Chapter 2

Background

2.1 Current interoperability strategies in systems admin-
istration

When we look at the structure of organization now a days there are often a
diversity of network devices, management tools, operating systems and ap-
plications that run concurrently to achieve the same goal of increasing the pro-
ductivity of the organization. Cost of administration of systems as led to the
development of automated tools. But as a complete automation of system ad-
ministration tasks is yet to be achieved, specialized administrator are still re-
quire to perform critical system tasks. The Challenge for the system adminis-
trator is to master these different systems with their diverse configuration files
and commands. An information model is an abstract but formal representa-
tion of entities including their properties, relationships and the operations that
can be performed on them. There are several information models standards
that have been created to allow different systems to share a common terminol-
ogy in representing computer resources. This section presents some industry
standards that are used to manage heterogeneous system with their limitations
with respect to system administration tasks. Other vendors and open sources
solutions to the interoperability problems between Windows and Unix/Linux
systems are also discussed.

2.1.1 Distributed Management Task Force(DMTF) Standards

In heterogeneous environment in which multiple vendor solutions are the
norm, interoperable standards enable the integration and flexibility that are
key to controlling cost. The DMTF work group has developed various docu-
ments, guidelines and standards specifications for DMTF technologies. These
technologies are designed to work together to address the industry’s needs
and requirements for interoperable distributed management. They also pro-
vide well-defined interfaces that build upon each other with the aim of deliv-
ering end-to-end management capabilities and interoperability. The interrela-
tionships between the DMTF technologies shown in figure 2.1 delivers incre-
mental value throughout the stack, building added value with each additional

11

2.1. CURRENT INTEROPERABILITY STRATEGIES IN SYSTEMS
ADMINISTRATION

"DMTF & Industry Management Inititatives”
(SMASH, SMI, CDM, __)

WBEM Protocols

[CIMXML, WS-Mangement, WSDM, CLP, __)
WBEM Infrastructure

(Operations, Events, Query Language, Mappings, -..)
CIM Schema

(Models, Classes, Properties, Methods, ...)

CIM Infrastructure
(Meta Schema, Rules, MOF, ..}

Profiles
(Systems, Devices, Software)

CIM

Figure 2.1: DMTF Technology Diagram[32]

layer that is implemented.

As the diagram?2.1 shows, the foundation of the DMTFs technologies is the
Common Information Model (CIM). The CIM Infrastructure specification de-
fines CIMs "“rules” and provides the details for integration with other manage-
ment models. The next layer is the CIM Schema, which delivers semantically
rich, object-oriented model descriptions for all managed elements. The CIM
Schema facilitates streamlined integration and reduced costs by enabling the
exchange of management information in a platform-independent and technology-
neutral way[32].

Building upon CIM is the DMTFs Web-Based Enterprise Management (WBEM),
a set of management and Internet standard technologies developed to unify

the management of distributed computing environments. WBEM provides

the ability for the industry to deliver a well-integrated set of standard-based

management tools, facilitating the exchange of data across otherwise disparate

technologies and platforms[32].

Also included in this diagram are Profiles, which provide a template to ad-
dress specific management domains. By delivering a unified way to describe
a given management domain in CIM, Profiles help with ease of use and offer
a simplified means to achieve interoperable distributed management.

On top are the management initiatives from the DMTE, as well as other indus-
try organizations that are built upon DMTF technologies. These initiatives,
which deliver functionality to specific vertical applications and industries, in-
clude important implementations such as the DMTFs Systems Management
Architecture for Server Hardware (SMASH) and Common Diagnostic Model
(CDM), as well as the Storage Networking Industry Associations (SNIAs) Stor-

12

2.1. CURRENT INTEROPERABILITY STRATEGIES IN SYSTEMS
ADMINISTRATION

age Management Initiative Specification (SMI-S). These technologies from the
DMTF deliver potent solutions, helping alleviate the challenges associated
with managing todays complex, heterogeneous technology environments[32].

2.1.1.1 Common Information Model

A prerequisite of understanding and working with CIM is understanding object-
oriented modeling. CIM is based on an object-oriented model. It is important
to mention that object-oriented modeling is different from object-oriented pro-
gramming. Object-oriented modeling is a formal way of representing some-
thing in the real world. It draws from traditional set theory and classification
theory. Some basics to keep in mind in object-oriented modeling are that [33]:

¢ Instances are things.

¢ Properties are attributes.

Relationships are pairs of attributes

Classes are types of things.

Subclasses are subtypes of things.

The Common Information Model (CIM) is an approach to the management
of systems and networks that applies the basic structuring and conceptual-
ization techniques of the object oriented paradigm. The approach uses a uni-
form modeling formalism that supports the cooperative development of an
object-oriented schema. The Common Information Model (CIM) specifica-
tion describes an object-oriented meta model based on the Unified Modeling
Language (UML). This model includes expressions for common elements that
must be clearly presented to management applications (for example, object
classes, properties, methods and associations). The specification defines the
syntax and rules. The specification defines the CIM meta schema, each of
the meta schema elements, and the rules for each element. The specification
also defines a CIM syntax language based on Interface Definition Language
(IDL) called Managed Object Format (MOF). The specification also defines the
CIM Naming mechanism. The CIM Specification does not describe specific
CIM implementations, APIs, or communication protocols . The CIM Specifi-
cation also does not include the core and common models. These models are
separate from the CIM Specification and are produced independently of the
specification. CIM provides a common definition of management informa-
tion for systems, networks, applications and services, and allows for vendor
extensions. CIMs common definitions enable vendors to exchange semanti-
cally rich management information between systems throughout the network.
CIM is composed of a Specification and a Schema. The Schema provides the
actual model descriptions, while the Specification defines the details for in-
tegration with other management models. Since CIM is based on an object
oriented paradigm, these entities are described as objects. CIM is part of the

13

2.1. CURRENT INTEROPERABILITY STRATEGIES IN SYSTEMS
ADMINISTRATION

WBEM (Web-based Enterprise Management) initiative, which is being defined
by major network vendors and managed by the DMTE. The CIM is composed
of two parts: The Specification, which describes the language, naming, and
the mapping to other management models; and the Schema, which is a formal
definition of the model[33].

2.1.1.2 Web-Based Enterprise Management (WBEM)

WBEM is a set of systems management technologies developed to unify the
management of distributed computing environments. The DMTF has devel-
oped a core set of standards that make up WBEM, which includes the Com-
mon Information Model (CIM), CIM-XML, CIM Query Language, WBEM Dis-
covery using Service Location Protocol (SLP) and WBEM Universal Resource
Identifier (URI) mapping. In addition, the DMTF has developed a WBEM
Management Profile template, allowing for simplified profile development to
deliver a complete, standalone definition for the management of a particu-
lar system, subsystem, service or other entity[34]. Figure 2.2 presents WBEM
architecture. To understand this architecture, it's important to consider the
components which lie between the operator trying to manage a device and the
actual hardware and software of the device:

* A Management Interface: An operator would probably be presented
with some form of graphical user interface (GUI), browser user interface
(BUI), or command-line interface (CLI). The WBEM standard do provide
specification for this interface. This makes one of the strengths of WBEM
as the human interfaces can be changed transparently with respect to the
rest of the system.

¢ Application program Interface(API): The GUI, BUI or CLI will interface
with a WBEM client through a small set of Application Program Inter-
faces. This client will find the WBEM Server for the device being man-
aged (typically on the device itself) and construct an XML message with
the request.

¢ Client Protocol: The client will use the HTTP (or HTTPS) protocol to pass
the request, encoding in CIM-XML, to the WBEM server

¢ WBEM Server: The WBEM server will decode the incoming request, per-
form the necessary authentication and authorization checks and then
consult the previously-created model of the device being managed to
see how the request should be handled. This model is what makes the
architecture so powerful: it represents the pivot point of the transaction
with the client simply interacting with the model and the model inter-
acting with the real hardware or software. The model is written using
the Common Information Model standard and the DMTF has published
many models for commonly-managed devices and services: IP routers,
Storage Servers, Desktop Computers, etc.

14

2.1. CURRENT INTEROPERABILITY STRATEGIES IN SYSTEMS
ADMINISTRATION

* A Provider: for most operations, the WBEM server determines from the
model that it needs to communicate with the actual hardware or soft-
ware. This is handled by ”"providers”. Providers are small pieces of code
that interface between the WBEM server and the real hardware or soft-
ware.

| CiMm API]
O Wl 0

Resources

Figure 2.2: WBEM Architecture [35]

There exists several vendors implementations of WBEM

¢ Novell has adopted the OpenWBEM open source implementation of WBEM
and includes it in SUSE Linux Enterprise Server

* Sun Microsystems includes its own Java WBEM Services in Solaris

* Microsoft has developed the WMI technology and has included it in Mi-
crosoft Windows

» RedHat has developed CimBiote!

These DMTF standards represent a good platform for describing resources (de-
vice, application, file, etc.) in a computing device. However they are mainly
used for monitoring and can only provide limited modification capabilities.
Monitoring represents only a portion of system administration. To achieve in-
teroperability of system administration tasks which require modification of re-
sources such as file permission, user management or operation such as backup,
these standards are not appropriate as they are meant mainly for monitoring
purpose.

Thttp:/ /cimbiote.et.redhat.com/

15

2.1. CURRENT INTEROPERABILITY STRATEGIES IN SYSTEMS
ADMINISTRATION

2.1.2 CORBA

The Common Object Request Broker Architecture (CORBA)(figure 2.3) is struc-
tured to allow integration of a wide variety of object systems. The key to un-
derstanding the structure of the CORBA architecture is the reference model,
which consists of the following components[37]:

* Object Request Broker(ORB): enables objects to transparently make and
receive requests and responses in a distributed environment. It is the
foundation for building applications from distributed objects and for in-
teroperability between applications in heterogeneous and homogeneous
environments.

* Object Services: a collection of services (interfaces and objects) that sup-
port basic functions for using and implementing objects. Services are
necessary to construct any distributed application and are always inde-
pendent of application domains. For example, the Life Cycle Service
defines conventions for creating, deleting, copying, and moving objects;
it does not dictate how the objects are implemented in an application.
Specifications for Object Services are contained in CORBAservices: Com-
mon Object Services Specification.

¢ Common Facilities: a collection of services that many applications may
share, but which are not as fundamental as the Object Services. For in-
stance, a system management or electronic mail facility could be classi-
fied as a common facility. Information about Common Facilities will be
contained in CORBAfacilities: Common Facilities Architecture.

¢ Application Objects: These are products of a single vendor on in-house
development group that controls their interfaces. Application Objects
correspond to the traditional notion of applications, so they are not stan-
dardized. Instead, Application Objects constitute the uppermost layer of
the reference model. The Object Request Broker is the core of the refer-
ence model, combined with the Object Services, it ensures meaningful
communication between CORBA-compliant applications.

There is a definition of an ”"object model”, which defines what is the CORBA
space. The object implementation provides the semantic of the objects. In
this sense this object model can be consider as a step towards an ontology. The
CORBA project also included notions of ontologies through a glossary of terms
to be used in the object model. However the glossary is not itself an ontology
but rather represent an informal framework for shared understanding[1].

2.1.3 Vendor and Open source solutions

Building a cross-platform management and automation environment can be
quite complex because system calls and commands between operating envi-
ronments differ as each operating environment uses different application pro-
gram interfaces and libraries etc. There have been some effort from both the

16

2.1. CURRENT INTEROPERABILITY STRATEGIES IN SYSTEMS

ADMINISTRATION
Client Server

bazic
Dbject programming
architecture

f

; Ohiject skeleton i

client stub CORE& OREB() forkixd) arrsmt':::t‘fm
likar ary i 5 i
{prosg) & |mplementat:10n repository obiect adaptor (CORBA IR
i wire
ORE E ORE protocol
E architecture
TCF sicn:ket
Clierit machine i Server machine

Figure 2.3: CORBA Overall Architecture[39]

vendor and open source communities to built set of tools, utilities, programs
and libraries to achieve Unix/Linux and Windows integration.

2.1.3.1 An open source solution: Cygwin

cygwin is a collection of open source tools to allow various versions of Mi-
crosoft Windows to act similar to a Unix system. It aims mainly at porting
software that runs on POSIX?2 systems (such as Linux, BSD, and Unix systems)
to run on Windows with little more than a recompilations. It has of a library
that implements the POSIX system call API in terms of Win32 system calls, a
GNU development tool chain (such as GCC and GDB) to allow basic software
development tasks, and a large number of application programs equivalent to
common programs on the Unix system. Several Unix/Linux based applica-
tions such as Apache, X-Window, TeX, Gnome etc. have been ported to cyg-
win.

2.1.3.2 Some vendor solutions:Microsoft SFU/SUA and MKS Toolkit

Microsoft offers two UNIX/Windows integration products: Services for UNIX
(SFU) and Subsystem for UNIX-based Applications (SUA). SUA being the new
approach to the discontinued SFU. According to Microsoft, SUA is a ”source-
compatibility subsystem for compiling and running custom Unix-based appli-
cations on a computer running Windows server-class operating system”. This
subsystem is installed separately from Windows and operates as a guest UNIX
operating environment on Windows systems operating as a POSIX UNIX environment[30].

MKS Toolkit for developers? includes a comprehensive UNIX/Linux and Win-
dows integration management scheme designed to manage Windows environ-

ZPortable Operating System Interface
Shttp:/ /www.mkssoftware.com/

17

2.2. KNOWLEDGE REPRESENTATION

ments using UNIX commands and scripts. From a management perspective,
the MKS Toolkit for Developers contains hundreds of authentic UNIX utilities
such as grep, df, du and Is, as well as ksh, csh and bash shells enabling UNIX de-
velopers to immediately start using familiar scripts to manage UNIX as well
as Windows environments. Password synchronization, remote utilities, and
daemons are also supported. And UNIX commands can be used to perform
automated back-ups across UNIX and Windows systems.

Microsoft with is SFU/SUA suite of products aims to control Unix environ-
ment from Windows while MKS Toolkits for developer emphasizes on the
power of using the scripting expertise from UNIX developers to manage Win-
dows and Unix in order to reduce the need of cross-platform training. Their
goals are clearly antagonist as each one aim to have one vision (Unix or Win-
dows) dominating the other.

2.1.3.3 Limitations

There is a certain bias either pro Windows or Unix in the way these tools are
developed. Windows is trying to dominate the Unix world while the MKS
toolkit is clearly more in the Unix side. Another issue about the scalability
of these solutions arises if we think of more than just two different operating
systems types that need to be integrated as most of these solutions require a lot
of programming changes to the existing commands or programs to be able to
execute in multiple platforms. This work investigates how knowledge sharing
between system can help in translating commands between different system
to achieve cross platform administration.

2.2 Knowledge representation

A thorough understanding of knowledge representation is important to com-
puter science fields such as artificial intelligence, programming or system man-
agement. The ease of solving a problem or the task of communicating knowl-
edge could be directly determined by the way the problem is conceptualized
and represented. Several knowledge representation models have been devel-
oped to represent knowledge acquired from domain experts. However the
concepts of model should not be confused with the one of an architecture. An
architecture is a functional design while a model is an approximate represen-
tation of a system that makes a prediction. This infers the following require-
ments for a modeling language:

¢ The ability to organize information
¢ The ability to reason about information

¢ The ability to make predictions about behavior

18

2.2. KNOWLEDGE REPRESENTATION

2.2.1 Some basic definitions

It is necessary to define some basic concepts in order to make a clear distinction
between concepts that seems similar while they actually have fairly different

meanings®.

¢ Definition 1: Information
Information is defined by Shannon as a stream of symbols composed of
some known alphabet. It can be quantified according to the basic re-
sults of information theory. Information is a very primitive or elemental
concept. Although we sometimes use it in a high level sense, its precise
meaning is at this low level. Information is essentially a form of coding.

¢ Definition 2: Knowledge
Knowledge is the awareness and understanding of facts, concepts or in-
formation obtained by observing and reasoning about the world. It in-
cludes interpretations of facts that have been learned and reasoned about
by an individual or entity.

* Definition 3: Understanding
Can be defined as the construction of a model that incorporates the ele-
ments of knowledge within a subjectively consistent framework.

¢ Definition 4: Model
A model is a collection of concepts, things (entities) and descriptions of
their behaviors. It is any suitably idealized approximation to some phe-
nomenon or system. A model is built on assumptions and leads to con-
sequences or predictions.

* Definition 5: Representation

A representation is an association or mapping between the actual ele-
ments of a model and some kind of descriptive medium that preserves
(to some degree of approximation) the properties and relationships of the
elements. Defining what is representation helps to identify the distinc-
tion between an ontology which is a shared understanding of a knowl-
edge domain, and a representation of an ontology, which is an expression
of the ontology in some kind of language. Languages like OWL®, RDF®
etc. are representations of ontologies, and in turn they can be expressed
using representation such as XML’.

4notes from a brainstorm session between Mark burgess, Thor Hasle, Demissie Aredo, Mar-
gareth Adaa and the author

5Web Ontology LanguageS

6Resource Description Framework

"The Extensible Markup Language

19

2.2. KNOWLEDGE REPRESENTATION

¢ Definition 6: Architecture
An architecture is an explanation of structure, that is entities and their
relationships. An architecture could be part of a model.

¢ Definition 7: Specification
A general description of something that is made sufficiently specific; suf-
ficiently usually implies the description will satisfy some constraints or
requirements, or make some basic promises about its behavior

2.2.2 Some Modeling languages for knowledge representation

Two modeling techniques are discussed in this section; UML and Promise the-
ory®. UML is a popular modeling language especially in the field of software
engineering and there are currently several research works trying to use it as
an ontology representation language. Promise theory on the other hand is a
new modeling approach which aims at helping in the design of system man-
agement tools. This section also discusses the limitations of these modeling
languages with respect to ontology representation.

Although these techniques have not been used in this work to represent
the ontologies, it is important to mention that

2.2.2.1 UML

The Unified Modeling Language (UML) was created to be a specification lan-
guage for programming, that is a way of representing requirements and tests
in an abstract form. The meaning of modeling is somewhat restricted, though
each revision adds new patches to extend its vision. The modeling facilities
of UML include, among others, classes that can be used to represent the prod-
uct’s components (of any kind), attributes that describe properties of a class,
specialization relations for modeling a taxonomic hierarchy of classes and com-
positional relations for modeling a partonomy?(classification based on part-of
relation) of classes. With these modeling facilities the product architecture
can be specified[6]. UML models are represented diagrammatically. There
are many categories of diagrams:

¢ Use-case diagrams: A use case is a set of scenarios that describing an
interaction between a user and a system. A use case diagram displays
the relationship among actors and use cases. The two main components
of a use case diagram are use cases and actors. Figure 2.5 shows Use-case
diagram.

¢ (Class diagrams: Used to describe the types of objects in a system and
their relationships. Figure 2.4 shows a class diagram.

8h’c’cp: / /eternity.iu.hio.no/promises.php
9A classification based on similarities

20

2.2. KNOWLEDGE REPRESENTATION

Netw. Manager
+Maker Class diagram
The servers may be acted upon by the
Iaadzl.lp:[} Natwork Manager, manually or autiomatic.
+Run{|-|uv [1'1 The operation "Backup” will lead 1o
ead valuesi) different requests according to server type.

Server
-Make

+Backupl)

Unix Server Windows server
-Server type -Server ype
-Buffer size -Buffer size
HCPU frequency -CPU frequency
+hackup{) HNtbackup()

Figure 2.4: UML Class diagram

¢ Behavior diagrams(state chart, activity diagrams):These diagrams depict
behavioral features of a system or business process. This includes activ-
ity, state machine, and use case diagrams as well as the four interaction
diagrams.

¢ Interaction diagrams(sequence, collaboration): Interaction diagrams model
the behavior of use cases by describing the way groups of objects interact
to complete the task. The two kinds of interaction diagrams are sequence
and collaboration diagrams.

¢ Implementation diagrams (component diagrams, deployment diagrams):
The implementation diagrams are used in defining the requirements to
deploy the system.

UML has a large community of experts users, but it is claimed in [13] that its
lack of semantics to describe formally concepts in a domain and its limitation
in reasoning capabilities do not allow it to be a prefer language for represent-
ing ontologies. As example, UML doesn’t have the ability to represent the
relationship ”is similar to” , which is a critical relationship for heterogeneous
end-to-end management, because it doesn’t define logic mechanism to enable
this comparison[26]. However several suggestions have been made to extend
UML to allow it to represent ontologies. [23] investigated the use of UML and
object constraint language(OCL) for the representation of information system
ontologies. UML has not been used in this work to represent the ontologies.

2.2.2.2 Promise theory modeling

Promise theory was invented to discuss the issues surrounding autonomous
operation, and voluntary cooperation. Unlike other modeling techniques, like
Petri Nets or UML, promise theory is not about the stepwise development of
a device. It is not about protocol modeling, rather it is about equilibria, that is

21

2.2. KNOWLEDGE REPRESENTATION

Use Case diagram

The principal requirement is that the manual

or automatic cperator shall be able to give one
request and the systems, be it UMIX or Windows,
will promise to deliver the same function

Both synitax and semantic differences solved,

Asking for backup

MM Operator’system

Backup of Windows Backup of Unix
syslem system

Figure 2.5: UML Use-case diagram

how to describe steady state behavior that has some underlying dynamics[9].
Promise theory is a model of advertised behavior. It deals explicitly with the
advertisement of decisions that have been made.

Considering a number of agents, each with private knowledge. The agent’s
knowledge is “flat”, it does not necessarily have a classification according to
any particular model, but assuming that there exists a taxonomy of promise
types that agents are assumed to agree on. Each agent has its own world view
and only has access to information that it promised.

A promise model is a set of promises that will lead to interactions between
the agents. The behavior of all agents might or might not be predictable from
the promises made. An important question in promise theory is: can we pre-
dict how a collection of agents will behave?

Unlike algorithmic approaches to modeling, such as the many that are sub-
sumed into UML, there are no sequential mechanisms in promise theory. It is,
however, possible to promise ordered activities by introducing dependencies
and conditionals. If one promise is conditional on another being fulfilled, then
the actions which fulfill the promises must be ordered.

Facts are not explicitly represented in an ontology, but facts can be promised
since they are simply a kind of knowledge or proposition. We cannot represent
“book X has been published” in the same way that one would in an ontology.
We would have to introduce an agent, such as the publisher, who promised
this knowledge, or even introduce the book as a “dumb agent” who could
promise this. This could seem artificial, but the great advantage is that there is
no need to extend the theory to plural diagrams, as one would in UML. In this
sense facts can be both promised to others and used in promise theory.

Promises focus on instances rather than generic classes. Thus there is never
any doubt about where information is located: it always lies in the instance
promising it. The typing of knowledge or information through promise types
is sufficient to classify data in the sense of UML classes or ontological cate-
gories. This is simply a one-to-one mapping. One can, in principle, impose any

22

2.3. ONTOLOGY FOR KNOWLEDGE MODELING

desired structure on promise types to reproduce programming data structures.
Promise graphs can be used to reason in the sense that by following the chains
of dependencies, one sees the functional processes that relate agents. One can-
not take a specific fact that is not explicitly modeled however. Promises are
often high-level things with the details of their implementation kept hidden.

Promise theory is a quite new initiative and because of the lack of existing
tools to represent knowledge with this approach combined with the fact that
it focuses more on instances rather than classes, it was not used in this work.

2.3 Ontology for knowledge modeling

2.3.1 What is ontology

Ontology has its origin in the field of philosophy where it refers to the study of
existence. In computer science ontologies define theories of what exist. There
are several ambiguous and similar definitions that have been given to the word
ontology in different field of study such as Artificial Intelligence, software en-
gineering, information system, knowledge engineering etc. In [11] Gruber de-
fines Ontology as:

”An ontology is an explicit specification of a conceptualization”

This definition of ontology is said to create ambiguity mainly because of its
brevity. The confusion of such definition might also be the fact that it uses
terms that are already ambiguous and difficult to understand for someone new
to the Ontology community. According to Gruber in [11] a conceptualization
is an abstract, simplified view of the world that we wish to represent for some
purpose. Every knowledge base, knowledge-based system, or knowledge-
level agent is committed to some conceptualization, explicitly or implicitly.
Specification refers to definitions of classes, relations, functions, and other ob-
jects which make the Ontology.

John Strassner in [10] defines ontologies for network and system administra-
tion as:

An ontology is a formal, explicit specification of a shared, machine-readable vocab-
ulary and meanings, in the form of various entities and relationships between them, to
describe knowledge about the contents of one or more related subject domains through-
out the life cycle of its existence. These entities and relationships are used to represent
knowledge in the set of related subject domains. Formal refers to the fact that the ontol-
ogy should be representable in a formal grammar. Explicit means that the entities and
relationships used, and the constraints on their use, are precisely and unambiguously
defined in a declarative language suitable for knowledge representation. Shared means
that all users of an ontology will represent a concept using the same or equivalent set
of entities and relationships. Subject domain refers to the content of the universe of
discourse being represented by the ontology

23

2.3. ONTOLOGY FOR KNOWLEDGE MODELING

INTER-OPERABILITY
Between Systems

COMMUNICATION
Between people and
argarizations

)

Specification reliability rewsability
SYSTEMS ENGINEERING

Figure 2.6: Usage of Ontology[1]

This is the definition that is assumed on this report as it suits the domain of
system administration.

2.3.2 Use of Ontology

As it has been mentioned on the previous section, there are several descrip-
tions and intended roles or usages for ontologies in different domains of ap-
plication. This infers that the intended use of ontology might vary based on
the problem. although, at a high level, most description seem to converge to-
wards the role of re-usability of concepts. Some view their ontologies mainly
as a mean to structure a knowledge base, others perceive it to be used as part of
a knowledge base or just as an application-specific inter-lingua. Another im-
portant motivation for ontologies is to integrate models of different domains
into a coherent framework; This is the case in business process engineering
(where there is a need for integrated model of the entreprise’s processes, or-
ganisations, goals and customers) or in distributed multi-agent architectures
(where different agent needs to communicate and solve problems)[1]. The use
of Ontologies can be classified into the following categories

e Communication:

As stated earlier ontologies aim to reduce conceptual and terminologi-
cal confusion by providing a unifying framework, thus enabling share
understanding and communication between people. The shared under-
standing of a domain is important to communication between depart-
ments in an organization as well as for integration of multiple communi-
cating agents with different perspectives. Ontologies aim also to provide
consistency by reducing ambiguous definitions of terms in a domain.

e Interoperability:
With respect to the interoperability issue, ontology is not about defin-
ing a single “uber-language!?” that has no underlying business reason

10A common language to which all other languages can be translated to

24

2.3. ONTOLOGY FOR KNOWLEDGE MODELING

@——w) @ (@
\p n/

Interlingua

/TE;’. T4\

(H—®

Figure 2.7: ontology as inter-lingua[1]

but instead achieve knowledge interoperability by using a set of ontolo-
gies to precisely and unambiguously identify syntactic and semantic area
of interoperability between each vendor-specific language and program-
ming model[13]. Several application of ontologies aim to address the
issue of interoperability of software system, information model (CIM,
CORBA)etc. For this role ontologies are referred as ”Inter-Lingua” which
assist to interoperability by supporting translation between different lan-
guages and representations as shown in figure2.7. This approach reduces
the number of translator required for n languages(or representation) to n
from n? where a unique translator is provided for a every two party.

The dimension of the interoperability needs to be specified. The dimen-
sion refers to the party involved in sharing the knowledge. in [1] the
following categories are specified:

- Internal interoperability: Where the systems requiring sharing of
knowledge are under the direct control of the same organization
unit.

- External interoperability: This for the case of an organization that
needs to insulate itself from changes made by a partner organiza-
tion. It could also be the case for different departments within the
same organization

— Integrated Ontologies among Domains: This is about integrating
ontologies from different domains to support overall management
in an organization. An organization might want to integrate knowl-
edge from different layers(business, services, network etc.. within
the same organization for a better work flow. Figure2.8 shows a

25

2.3. ONTOLOGY FOR KNOWLEDGE MODELING

standard model with a number of management layers that help in
managing the complexity of telecommunication network.

- Integrating Ontologies among tools: This will be to facilitate inte-
gration of legacy applications within the same domain.

Busi This layer describes the management of business operations.)
USINGSS microperabiiity exists between organization-specific concepis, policies and
50 on (e.g., inter- and infro- business domain terminology differencel.

Business Business
Organization A _— Organization B

This laver describes the management of services [e. £ video conferencing).
sel’ﬂ“ wality of service is bounded by " Service Level Agreement !Slj}.
teroperability evamples at this laver include: 1) different SLA standards
2) wansiation between different FCAPS fumctions (e.g., from perforinance
or fault management 1o accounting concepis).,

o > R
Service Monitoring MIBs —Y onitering

This laver describes e management of networks interconnected by
".““'k network devices. Interoperability exists between heterogeneous lypes of
network elements (e, SONET ring, Ethernet) and management
technologies fe.g., SNMP. CMIP. DMI).

pomain o pomailn 5
Management of the Management of
Intemet Wireless Network

This laver describes the management of individual neiwork devices,

Elll‘l‘ll Example interoperability scenarvias include: 1) between the same bpe of
device manufactured by different vendors, 2) berween FCAPS functions fir
devices in a path, 3) between FCAPS funciions beiween different parts of
the network fe.g., is the access netwark as secure as the core network).

Firmllum;‘w

W g ygts

0¢

e (S et v
Intrustion Detection [FOC]]
Syatem (ID5)

Fault Configuration Accounting Parformance Securlty

Meanagement information standards ave defined to communicate
g:anagemfm ‘?'aia bem'eefé mﬁm'mrmg e;m‘;'n'es‘ ;’meroperabfﬁry
etween the different standards is regarded as the pre-requsife
Information Model < o

io and part of the semantic interoperability framework.

B = = = |

Figure 2.8: Illustration of the interoperability problem within and between the
Fault, Configuration, Accounting, Performance, Security (FCAPS) functions
based on the TMN model[2]

e Systems Engineering:
This application of Ontologies support the design and development of
software system by providing[1]:

- Specification: A share understanding of the problem and the task
at hand can assist in the specification of a software system. In an
informal approach ontologies facilitates the process of identifying
the requirements of the system and understanding the relationships
among the components of the system. In an formal approach, an
ontology provides a declarative specification of a software system
which allows the users to reason about what the system is designed
for, rather than how the system supports this functionality

26

2.3. ONTOLOGY FOR KNOWLEDGE MODELING

- Reliability: Informally ontologies can improve the reliability of soft-
ware systems by serving as a basis for manual checking of the de-
sign against the specification. Formally ontologies enables the use
of semi automated consistency checking of the software system with
respect to the declarative specification.

- Reusability: To be effective, ontologies must also support reusabil-
ity, so that modules between different software systems can be im-
ported and exported efficiently. When applying a software to a dif-
ferent domain from its original there is a risk of unexpected behav-
ior. Ontologies provide a framework for determining which aspects
of an ontology are reusable between different domains and task by
characterizing classes of domains and tasks within these domains.
Ontologies provide libraries of class objects for modeling problems
that can be easily reused. The ultimate goal of this approach is
the construction of libraries of ontologies that can be reused and
adapted to different general classes of problems and environments.

2.3.3 Typology of Ontology

Ontology concept is an abstract concept. That might explain why there exist
different proposed typology or categorization of ontologies. The type of the
ontology to be created is related to the domain and intended usage.

In [16] four basic types of ontologies were proposed:
1. Content Ontologies: which also include

¢ Domain ontologies: focuses on a particular set of related objects,
activities or fields[13]. They are divided furthermore into:

— Task dependent ontology: such an ontology do not require all
the domain knowledge but some specific domain knowledge in
a certain specific organization for a specific task.

- Task-independent ontology: It's an ontology not related to a
task but rather to an object or an activity . This type include:

Activity-related ontology: This ontology is related to activi-
ties taking place in the domain and is designed having simu-
lation of the domain activity in mind such as enterprise ontol-
ogy. There are two major activities exist in a domain. One is
behavior of an object and the other is organizational or human
activities. Verbs play an important role in this ontology, how-
ever, they are different from those in task ontology. The subjects
of the former verbs are objects, components, or agents involved
in the activities of interest, while those of the latter are domain
experts[19]. This type is again subdivided into Object Ontology
which is about structure and behavior of an object and activity
ontology.

27

2.3. ONTOLOGY FOR KNOWLEDGE MODELING

Activity-independent ontology: such as field ontology which is
related to the theories and principles ruling a domain. It in-
clude basic concepts of the theories, formulas, relations , and
units involved in these theories.

¢ Task Ontology: Task ontology is a system of vocabulary for de-
scribing problem solving structure of all the existing tasks domain-
independently. It does not cover the control structure but do cover
components or primitives of unit inferences taking place during
performing tasks. Task knowledge in turn specifies domain knowl-
edge by giving roles to each objects and relations between them[13].

* General ontology: This type includes concepts not covered by the
other domain ontology types

2. Tell and Ask Ontologies: This type focuses on sharing knowledge

3. Indexing Ontologies: These ontologies are specifically designed for query-
ing.

4. Meta-Ontology: is defined in [16] as an ontology designed for represen-
tation knowledge. Dublin Core!! is a metadata ontology that provides a
vocabulary for describing the content of online information source

McGuinness et al. in [22] proposed instead a typology based on the richness of
the ontology structure and the knowledge convey by the ontology. The figure
2.9 shows the suggested categorization that spans from, controlled vocabularies
which is a finite list of terms (with no guarantee of uniqueness or unambi-
guity), to advanced logical constraints which include formal representation with
object properties and restriction based on the specification of first order logic
constraints between terms.

However as mentioned in [13], there are some other notable ontologies that
are best classified as belonging to multiple groups of these schemes such as
the representational ontologies than span multiple domains and provide repre-
sentational entities without stating what should be represented. An example
of this type of representational ontologies is the Frame Ontology which defines
concepts such as frames, slots, and slot constraints, which enables other on-
tologies to be built using frame-based conventions. The choice of the type of
ontology is a direct function of the requirements of the management informa-
tion that needs to be represented[13].

2.3.4 Ontology representation languages

The potential of an ontology representation is closely related to the language
used to represented it and the level of reasoning required. Reasoning requires

http:/ /www.dublincore.org/

28

2.3. ONTOLOGY FOR KNOWLEDGE MODELING

Conrolled Thesaari Formsl iz-a Framas ﬁf:]l
L . slariss i . =l
Vacabularies | l | i
- }F - > ?ri = IT{ - - }F ¢ ¢
Tenus (Aaossary Infommal is-a Formal Instance Walue Aﬂﬁ'z!r.ced
Fesmictons Logzical
Consrraints

Figure 2.9: Categorization of Ontology as proposed by Mc Guinness et al in[22]

precision of meaning that is the reason why a preferred ontology representa-
tion language should include a formal mechanism for expressing semantics
such description logics which can represent terms in a structured and formal
way. The ontology representation language can be grouped as follow:

2.3.4.1 Logic-based Languages
These include:

1. Predicate Logic Approaches: Predicate logic approaches are based on
first-order logic. This is a type of logic that extends propositional logic,
whose formulae are propositional variable. The knowledge interchange
format (KIF) is an important example of this approach. KIF provides a
List processing-like syntax for expressing sentences of first order predi-
cate logic and also provides extensions for representing definitions and
meta knowledge. KIF is a highly expressive but low-level language for
representing ontologies[23]. It is argued in [13] that this type of approach
is suitable for experienced developer knowledgeable in logic program-
ming, but more complex for general user.

2. Description Logic Approaches: Description logics (DL) model an appli-
cation domain in terms of concepts (classes), roles (relations) and indi-
viduals (instances). The domain is a set of individuals; a concept is a
description of a group of individuals that share common characteristics;
roles model relationships between, or attributes of, individuals. Individ-
uals can be asserted to be instances of particular concepts and pairs of
individuals can be asserted to be instances of particular roles. LOOM[27]
is a well known description logic language. It’s a descendent of the KL-
ONE family of DL languages. KL-ONE is a knowledge representation
system in the tradition of semantic networks and frames language. KL-
ONE implemented ”structural inheritance networks”: networks contain-
ing descriptions of named concepts with generalization/specialization
links between them[23].

3. Frame and First-Order Logic: the frame based approach uses classes (or
frames), some of which have properties called slots (or attributes). This
approach has the following key elements concepts; instances, relations
(which represent associations between different concepts), attributes (re-
lation between a concept and a property of that concept), functions (a

29

2.3. ONTOLOGY FOR KNOWLEDGE MODELING

special type of relation in which the last element of the relation is unique),
and axioms (facts that are always assumed true, whether or not they can
be formally defined by other components). Ontolingua and FLogic'? are
two examples of this type of representation language. FLogics is a for-
malism that accounts in declarative fashion for most of the structural
aspects of object-oriented and frame-based languages. These features
include object identity, complex objects, inheritance, polymorphic types,
query methods, encapsulation and others[28]. Ontolingua although based
on KIF aslo includes the frame ontology.

2.3.4.2 Markup ontology Languages:

These languages are most commonly XML based. Although XML has emerged
in the Internet world as a standard representation format, which can he use-
ful to describe and transmit management information, its formats alone do
not give formal semantics to it[24]. Currently the biggest ontology driver
is the Semantic Web and ontology languages increasingly rely on the World
Wide Web Consortium (W3C) technologies [26]. Some of those technologies
includes: The Resource Description Framework/Schema (RDF and RDEFS),
DAML+OIL!® and the Web Ontology Language (OWL).

* RDF / RDF-Schema: RDF is a framework for metadata description. It

employs the triplet model <object, attribute, value>, well-known in Ar-
tificial Intelligence community, in which object is called resource repre-
senting a web page. A triplet itself can be an object and a value. Value
can take a string or resource. Object and value are considered as a node
and attribute as a link between nodes. Thus, an RDF model forms a
semantic network. RDF has an XML-based syntax(called serialization)
which makes it resembles a common XML-based mark up language. In
contrast with XML, RDF creates a new representation in which it con-
tains meta information which usually do not appear in the original re-
source. Although RDF has been designed for metadata representation
model, it can be used as a general-purpose knowledge representation,
which might be apparent from the fact that it is a kind of semantic net-
work model[29].
The RDF-Schema (RDFS) as a semantic extension of RDF provides basic
ontological modeling primitives, like classes, properties range and do-
mains [26]. RDF Schema does not provide a vocabulary of application-
specific classes and properties, but rather provides the facilities needed
to describe such classes and properties. RDF schema has its built-in
classes and meta-classes by which users can define any class and rela-
tion. Rdfs:Resource and its two subclasses: rdfs:Class and rdfs:Property are
the key meta-classes. Every ordinary class defined in RDF Schema is
an instance of rdfs:Class. In the same way, every property and relation
defined in RDF Schema is an instance of rdfs:Property[29].

12Frame-logic
I3DARPA Agent Markup Language + ontology integration language

30

2.3. ONTOLOGY FOR KNOWLEDGE MODELING

* Web Ontology Language(OWL): is also a language developed by W3C.
OWL is designed to make it a common language for ontology represen-
tation and is based on DAML+OIL. OWL is an extension of RDF Schema
and also employs the triple model. Its design principle includes de-
veloping a standard language for ontology representation to enable se-
mantic web, and hence extensibility, modifiability and interoperability
are given the highest priority[29]. OWL has a layered structure which
represent the different level of expressiveness as shown in figure 2.10:
OWL Full (OWL DL syntax plus RDF), OWL DL (first-order logic only,
roughly equivalent to DAML+OIL), and OWL Lite (a subset of OWLDL).
OWL contains three types of objects: concepts, individuals, and prop-
erties. Since OWL is similar to DAM+OIL, inference engines used for
DAML+OIL can also be used with OWL such as RACER[31].

Complexity
_ -
Rules | | Trust ? =
. ORI OWL FULL —
_— 2 OWL S H
Logic o
Data &
B & OWL Lite HCI
desc. Ontology vocabulary | g M+OIL |
: REF tdischong & | RDF-S
: N RDF
|
: \v/

Simplicity
Figure 2.10: OWL level of expressiveness

2.3.5 Ontology and Reasoning

Reasoning means “to be able to deduce what must be true, given what is
known”[13]. When choosing an ontology representation language, it is not
sufficient only to consider the ease with which the language can be used to
describe the domain. It is also necessary to consider the types of automated
reasoning about ontologies that may be required. There is a well-known trade-
off between the representational power of a formalism and the flexibility or
cooperativeness of reasoning with it. As example, KIF provides all the ex-
pressive power of first order predicate logic, but reasoning about ontologies
in plain KIF requires general theorem-proving capabilities. In contrast, de-
scription logic provides a much more structured and less general language for
describing ontologies, and therefore specialised inferences can be performed
on ontologies described using description logic. Much research has been un-
dertaken to investigate the computational properties of various types of infer-

31

2.4. ONTOLOGY AND INTEROPERABILITY: RELATED WORK

ences on different variants of description logic[23].

RACER(also called RacerPro) was the first OWL Reasoner. It has been con-
tinuously improved and currently still one of the fastest OWL reasoning sys-
tems available. With the exception of nominals, which are very hard to op-
timize, RACER supports the full OWL standard (indeed, nominals are sup-
ported with an approximation). Protégé supports an extended version of OWL
(namely OWL with qualified cardinality restrictions) that is already supported
by RACER with novel algorithms and optimization techniques. As most users
use OWL for representing ontologies, in order to provide more flexibility than
databases provide, with RACER, users can also describe their data and ben-
efit from powerful ontology-based query answering systems. When RACER
is used as a description logic reasoner, even more expressiveness than cov-
ered by OWL might be provided (e.g. constraint satisfaction, reasoning about
topological relations, etc.)[31].

2.4 Ontology and interoperability: Related work

Different techniques have been used to resolve interoperability issues in di-
verse fields of study. Generally interoperability issues arise when different sys-
tems or knowledge representation want to exchange information. The terms
mapping and merging are common while using ontology to solve interoper-
ability problems. These techniques have been used together or separately to
achieve integration of diverse systems. To avoid ambiguity there is a need to
define those terms to distinguish their different roles:

* What is Ontology mapping?:
It is the process of finding correspondences between the concepts of two
ontologies. If two concepts correspond, they mean the same thing, or
closely related things. The mappings should be expressed by some map-
ping rules which explain how those concepts correspond. The mappings
are generated either by ontology experts or by some automatic tools.[5]

¢ What is ontology merging?:
Ontology merging process is about identifying the similarities and dif-
ferences between different ontologies with the goal of creating a single
coherent ontology including terms from all merged ontologies.

¢ What is ontology translation?:

Ontology translation is different from ontology mapping. The mapping
is instead part of the translation process. Ontology translation is required
to generate new ontology such as in cases where given O1 and O2, two
related ontologies and an extension Ols of O1, the translation process
constructs the corresponding extension O2s of O2. This infers that ontol-
ogy translation needs to know the mappings of two ontologies first, to
accomplish its task[5].

32

2.4. ONTOLOGY AND INTEROPERABILITY: RELATED WORK

There have been a lot of researches done mainly in the field of semantic web
about ontology mapping. The interest in ontology mapping has spread to
other domains such as biological and network management. In [3] Jorge et
al. applied the ontology concept and principle to the definition and repre-
sentation of management information. They suggested that when integrat-
ing management information models, the mapping and merging can be done
with the help of ontology tools by creating a global management ontology
with the associated mapping ontology. In [4] Jorge et a. proposed an ontology
based method to merge and map network management models such as SNMP,
DMI, CMIP' and CORBA. In that paper they proposed a technique for in-
tegrating information management model using a “merge and map”(M&M)
method which includes a set of steps to help in th procurement of both the
common model (through merging) and mapping rules. This M&M method is
claimed to be more suitable for network management information than other
proposed techniques which only deals with classes(properties not taken in ac-
count) or instances values(which are not known when merging information
models)[4]. Figure 2.11 shows the management architecture proposed which
basically consists of a common share ontology mapped to individual informa-
tion model ontologies(gateways in the figure).

In [2] John Strassner et al. applied a similarity-based ontology mapping to
solve the interoperability problem in router configuration management be-
tween Cisco and Nortel network devices. In their proposed method ontology
mapping is done using the first order logic(FOL) calculus as the language for
describing the semantics of the domain concepts and objects. Concept simi-
larities was expressed through a function of logical weighted similarities. The
weight of each aspect of a concept was assigned based on the application do-
main. This is important because similarity perception is related to the context
or application domain. As example OSPF'® and RIP' routing tables are simi-
lar regarding their structural aspect but dissimilar regarding their class refer-
ence(let say a classification based on routing algorithm).

14Desktop management Interface
15common information model protocol
16open shortest path first

7Routing information protocol

33

2.4. ONTOLOGY AND INTEROPERABILITY: RELATED WORK

Figure 2.11: Architecture of the management system approach using the Merge
and Map method(M&M) to integrate diverse Network Management models[4]

34

Chapter 3

Windows and Unix/Linux
management: A short
Comparison

This Chapter provides a short comparison between Windows and Unix-like
system. Although there are references to earlier Windows version to NT the
focus is the Windows NT family. Unix/Linux and Unix-like are used inter-
changeably to refer any Unix or Linux system. However the focus is on Linux
operating system.

3.1 Comparing Windows and Unix/Linux systems

From normal users perspective Windows is referred as a user friendly oper-
ating system with higher cost than the unfriendly but “free” Unix/Linux sys-
tems. To get beyond such superficial comparison it is important to look at the
fundamental function of an operating system. An operating system (OS) is
a computer program that manages the hardware and software resources of a
computer. An operating system rationally processes electronic devices in re-
sponse to approved commands. At the foundation of all system software, an
operating system offers services such as:

* Memory management: controlling and allocating memory

® Process Management: prioritizing system requests

¢ /0 system Management: controlling input and output devices
¢ Communication: facilitating networking

¢ File Management: managing files

¢ Security

¢ Graphical User Interface / Command line interpreter.

35

3.1. COMPARING WINDOWS AND UNIX/LINUX SYSTEMS

There are difference in the implementation philosophy of these basics func-
tions. Without discussing the details of the difference in the implementation
of both operating systems. This section emphasizes on specific consequences
of these implementation differences that are more relevant to this research and
to system administrator in general:

3.1.1 Flavors and versions

Both Windows and Unix/Linux systems come in many flavors or versions. All

the flavors of Windows come from Microsoft, the various flavors of Unix/Linux
systems come from different sources; BSD!, Linux (Linspire, Red Hat, SuSE,

Ubuntu, Mandriva, Knoppix, Slackware, Lycoris), Sun Solarix, HPUX, AIX.

Windows has two main lines: “"Win9x”, which consists of Windows 95, 98,

Millennium, and "NT class” which consists of Windows NT, 2000,XP and now

Vista. Currently Microsoft does not longer supports Windows NT and all the

9x versions.

In Linux, flavors are referred to as “distributions” . All the Linux distributions
released around the same time frame will usually share the same kernel. They
differ in the additional software provided, Graphical interface, install process,
price, documentation and technical support which are the specificities of each
distribution. Both Linux and Windows come in desktop and server editions.
Linux appear to be more customizable than Windows. There are many special
purpose versions of Linux above and beyond the full blown distributions de-
scribed above. An example of special purpose version is NastLite?. NASLite
is a version of Linux that runs off a single floppy disk and converts an old
computer into a file server. This ultra small edition of Linux is capable of net-
working, file sharing and being a web server.

3.1.2 File Management
3.1.2.1 Disk file system structure

A file system is a method for storing and organizing computer files and the
data they contain to make it easy to find and access them. File systems may
use a storage device (disk file system) such as a hard disk or CD-ROM and in-
volve maintaining the physical location of the files, they might provide access
to data on a file server by acting as clients for a network protocol. Windows
systems have moved from the less secure FAT(file allocation table) and FAT32
file systems to the NTFS(NT File system). Unix-like system have various file
system such as ,XFS(X font server) UFS(Unix File System), ext2/3(Extended
File System). File names are associated to an index in the a file allocation table
in Windows or to an inode in Unix-like system.

IBerkeley Software Distribution
Zhttp:/ /www.serverelements.com/

36

3.1. COMPARING WINDOWS AND UNIX/LINUX SYSTEMS

A user shifting from Windows system can find confusing the directory struc-
ture under Unix/Linux system. Unix/Linux operating systems assign a device
name to each device, but this is not how the files on that device are accessed.
Instead, Unix creates a virtual file system, which makes all the files on all the
devices appear to exist under one hierarchy. This means, in Unix, there is one
root directory, and every file existing on the system is located under it some-
where. Furthermore, the Unix root directory represented by ”/”does not have
to be in any physical place. The root directory does not have to be on the local
hard drive, Unix/Linux System can use a network shared resource as its root
directory. Windows has various partitions and then directories under those
partitions. These various partitions are detected at boot and assigned a drive
letter. Under Unix/Linux systems, unless a partition or a device is specifically
mounted, the system does not know of the existence of that partition or device.
This might not seem to be the easiest way to provide access to a partitions or
devices but it offers great flexibility. As an example one could move a the
system executable available in the directory /usr to another disk or network
location without it affecting the system while on Windows it will be impos-
sible to do the same operation with the directory C:\windows\system32 (or
C:\winnt\system32) without getting errors messages.

3.1.2.2 Configuration files

One of the basic differences between Windows and Unix/Linux systems is the
fact that UNIX/Linux configuration is defined in plain text files while Win-
dows stores most of this information in binary format in the registry. The Win-
dows registry provides centralized storage for information and settings about
the hardware, operating system, applications, users, and user preferences on a
Windows systems. The registry provides a hierarchical structure for settings,
allowing keys to have subkeys and named values, similar to the directory and
tile structure of a file system[8]. It can be accessed and updated under software
control and also directly by users. The registry first appeared in Windows 3.1.
In that system it was a single file, called REG.DAT, and was mainly used to
store information about OLE objects. Most other configuration data was held
in various INI files, of which WIN.INI and SYSTEM.INI were the most im-
portant. The modern registry, as found in Windows 9x and NT family, brings
together all the information that was previously held in REG.DAT and the
separate INI files[7]. Although the registry is usually considered to be a single
entity, its contents are in fact stored in more than one physical file. In Win-
dows, the registry is spread over a series of files, sometimes called hives. SYS-
TEM.DAT and USER.DAT are usually held in the Windows directory. How-
ever, it is also possible to place USER.DAT in the users login directory on a
network, thus allowing the user to log in at other workstations. In Windows,
the hive files are located in the SYSTEM32\CONFIG directory.

37

3.1. COMPARING WINDOWS AND UNIX/LINUX SYSTEMS

3.1.3 Security

¢ Authentication:

Windows NT relied on NTLM (NT lan manager) user authentication to
store password in the security account manager(SAM). Two hashed ver-
sions of the password are stored, LM-hash® and NT-native, unless the
system is told to just use one. The NT-native variant is stored using MD4
and the LM-hash using a variant of DES. From Windows 2000 Kerberos
was included as the default authentication protocol. The Kerberos pro-
tocol is composed of three subprotocols. The subprotocol in which the
KDC (Key Distribution Center) gives the client a logon session key and
a TGT (Ticket Granting Ticket) is called the Authentication Service (AS)
Exchange. The subprotocol in which the KDC distributes a service ses-
sion key and a ticket for the service is called the Ticket-Granting Service
(TGS) Exchange. The subprotocol in which the client pre-sends the ticket
for admission to a service is called the Client/server (CS) Exchange[36].
UNIX/Linux systems request a password to authenticate users iden-
tity. When a user has entered the password, it is encrypted and com-
pared against the encrypted password stored in /etc/passwd (or the NIS*
database). If the two match, the user has proven to be a legitimate user
in the system.

¢ File security: Access Control

In Windows, object in the system has an Access Control List (ACL) as-
sociated with it. This list consists of a number of Access Control Entries
(ACE). Every ACE is associated with a user (or a group) security iden-
tifier (SID) and holds the actions that this user is allowed or disallowed
to perform on this object. ACEs that disallow are put before ACEs that
allow in the ACL. A user that does not have an ACE in the ACL has no
access at all to that object. When a user is authenticated to the system a
token is created for this user. This token is called the primary token. It
contains, among other things, the SID for the user and the SIDs of the
groups that this user is a member of. This token is compared with an
objects ACL to grant (or deny) the user access to this object[25].

In Unix/Linux systems, access control is implemented through the file
system. Each file (or directory) has a number of attributes, including a
tilename, permission bits, a user ID(UID) and a group ID(GID). The UID
of a file specifies its owner. The permission bits are used to specify per-
missions to read (r), write (w) and execute(x) the file for the user, for the
members of the user’s group, and for all other users in the system. The
permissions: rwxr-x—x specify that the owner may read, write and exe-
cute the file, while the group members are allowed to read and execute
it, while all others only may execute the file. A dash (”-”) in the permis-
sion set indicates that the access rights are disallowed. Currently many
Unix/Linux systems also support some form of ACL schemes[25].

3LAN Manager-hash
4Network Information Service

38

3.1. COMPARING WINDOWS AND UNIX/LINUX SYSTEMS

¢ Viruses:

There are continuously several viruses and spywares created for Micor-
soft Windows and many of these viruses have been successfully spread
around the Internet with costly damage to organizations. It is some-
times argued that Unix/Linux system enjoy less viruses attacks because
hackers are targeting only the system that dominate market share which
is Windows. However the fact that the Apache webserver which ac-
counts for more market share than the Microsoft Internet Information
Service(IIS), has been less vulunarable to virus than the later is discredit-
ing that claim. This exposure to viruses and spywares can only increase
the cost of management.

3.1.4 GUI and command line interpreter

One of the most interesting feature that made Windows popular from its early
days is the graphical user interface. This GUI has was the important contribu-
tion which made computers accessible to non-experts users. Windows GUI is
continuously improving and there is definitely a huge difference from the ini-
tial GUI in version 3.1 compare to the current GUI in vista. Most of the configu-
ration tasks are still performed through the GUI. Critics suggest that because of
this constraint Windows administration is less flexible than Unix/Linux which
relies much more on the command line interface and scripting power for sys-
tem administration. However Windows has lately improved its command line
facility with a new scripting engine called Powershell(realeased in novemver
2006). PowerShell requires version 2.0 of the Microsoft .NET Framework and
runs only under Windows XD, Vista and Server 2003. Microsoft claims that
that Powershell command line and scripting language offers as much flexibil-
ity and efficiency enjoyed in Unix/Linux systems.

On the other hand Linux systems have improved their GUIs and as a result
there is an increase in the number of Linux desktop users. The most common
Linux GUIs include: K Desktop environment(KDE) and GNOME.

3.1.5 Management Cost

The study of the total cost of ownership (TCO) of Unix/Linux and Windows
has often being contradictory as some of these studies appeared to be bias on
either side. Microsoft has released TCO studies which concluded that Linux
had a higher TCO, predominantly due to higher management costs. This con-
tradict claims made open source distributors such as RedHat or Suse. A recent
survey [38] investigated whether Linux server management was a significant
barrier to cost-effective Linux operation by analyzing the current state of Linux
management and its associated cost. This study included important aspect
such as provisioning, reliability, management(patch, security etc.), support, re-
source costs(Administrator salaries, training etc..). This study claimed to have
found at worst a marginal difference in base resource costs between Linux
and Windows. However, Linux resourcing becomes significantly less expen-
sive when taking into account the ability of Linux to support larger numbers

39

3.2. BACKUP OPERATION COMPARISON

Average Servers per Administrator

&0 (B Windows

&l —] = | O Linux

40 :|7 B

20 —|7 : w
— W AT

1-50 &0-100 100-200 200-500 501- over
1000 1000

Average Servers per
Admn sttmtor

Total Servers on Site

Figure 3.1: Linux vs Windows Administrator productivity [38]

of users, and the additional productivity of Linux administrators. Linux re-
sources are easy to find, and tend to be highly experienced. Overall, resource
costs for Linux environments are therefore likely to be lower than for Win-
dows. In addition, administrators who can manage both Windows and Linux
command around the same salary as Linux-only administrators, bring added
efficiency to mixed environments. As shown in figure 3.1 one of the more in-
teresting findings in that research is that Linux administrators tend to manage
more servers than Windows administrators. From their results, in sites with
up to 100 servers, each Linux administrator managed on average 15 servers,
and each Windows administrator only 12 servers. This is in the opinion of
this survey a balance to the salaries differences between Linux and Windows
administrators. The survey suggested that the difference in acquisition costs
for a typical Linux-based web application stack, including both hardware and
software costs, is over ten times less than for an equivalent Windows-based
environment to illustrate that the acquisition costs of Linux are lower. Admit-
ting that the study was not exhaustive, it suggested that the choice of platform
must account for many more variables than just resource costs, management
effort, or even TCO. Windows in particular has many available and proven
applications and has made good inroads on UNIX/Linux on the server side
while the average resource costs for Linux are no longer significantly higher
than for Windows[38].

3.2 Backup Operation Comparison

For the case study was started with a small requirement of backup in an orga-
nization. The scenario assumed an heterogeneous environment running Win-
dows and Linux operating systems. One of the primary responsibility of a
system administrator to plan and implement an efficient strategy to periodi-
cally copy files on the system to a remote location. Windows backup and Unix
(linux) backup present divergence both in their implementation and syntax.

40

3.2. BACKUP OPERATION COMPARISON

3.2.1 Windows Backup:

Windows Operating system uses ntbackup program to perform backup at the
command line. It's important to specify that this command as evolved with
the different version of Windows operating system. In a Windows system, the
registry is very system specific and configurations and software installations
are not simply a matter of dropping files on a system. Therefore to be able to
restore such data there is a need of a specific tool such as the ntbackup utility.
Windows NTEFS file system has an archive bit for each file that can determine if
the file was recently changed. This feature make it possible to perform several
types of backup under Windows:

¢ Copy backup: A copy backup copies all selected files but does not mark
each file as having been backed up (in other words, the archive attribute
is not cleared). Copying is useful when it is needed to back up files be-
tween normal and incremental backups because copying does not affect
these other backup operations.

¢ Daily backup: A daily backup copies all selected files that have been
modified the day the daily backup is performed. The backed-up files
are not marked as having been backed up (in other words, the archive
attribute is not cleared).

¢ Differential backup: A differential backup copies files created or changed
since the last normal or incremental backup. It does not mark files as hav-
ing been backed up (in other words, the archive attribute is not cleared).
When performing a combination of normal and differential backups,
restoring files and folders requires that the last normal as well as the
last differential backup.

¢ Incremental backup An incremental backup backs up only those files cre-
ated or changed since the last normal or incremental backup. It marks
files as having been backed up (in other words, the archive attribute is
cleared). When combining normal and incremental backups, it is re-
quired to have the last normal backup set as well as all incremental
backup sets in order to restore your data.

¢ Normal backup A normal backup copies all selected files and marks each
file as having been backed up (in other words, the archive attribute is
cleared). With normal backups, only the most recent copy of the backup
file or tape is required to restore all of the files.

Windows also backup the non-file data such as; System description of the
backup to procure exact replacement in case of disaster, file metadata(permission,
ownner, group or ACL) that are required to recreated the original environment
while restoring, partition layout. Compression is provided through the stor-
age feature when tape drive hardware is used. Normally in Windows when
copied, a file inherit the permission of the destination directory or storage, it

41

3.2. BACKUP OPERATION COMPARISON

is possible to restricts access to the tape to the owner or members of the Ad-
ministrators group. File exclusion are when performing backup of en entire
directory or partition is possible to configure but only with the backup GUI
interface.

3.2.2 Linux Backup:

In Linux, the story is different. Configuration files are text based and(except
for when they deal directly with hardware) are largely system independent. In
contrast with the Windows backup tool that deals with the details of how the
operating system is installed on the system and hardware, Linux backups are
about packaging and unpackaging files. In Unix/Linux systems any program
that can copy files can be used to perform some sort of backup, there is there-
fore a bigger variety of commands that can be used in Unix for backup such as
dump, tar, cpio, dd, etc..

Linux file systems ext2/ext3 do not have the archive bit available in NTFS
but provide three different time stamps (creation, modification, and access)
that can be used to work around this. With this time stamps it possible to per-
form similar backup type such as incremental, daily or weekly performed in
Windows with the tar command for example. Compression can be done di-
rectly with the help of compressing package such as (gzip) as well on the tape
drive when supported. File exclusion option is available directly from the tar
command line.

42

Chapter 4

Ontology design. Case Study:
Backup operation in Windows
and Linux

4.1 Tools

4.1.1 Protégé

Protégé is a free, open-source platform that provides a suite of tools to con-
struct domain models and knowledge-based applications with ontologies. At
its core, Protégé implements a set of knowledge-modeling structures and ac-
tions that support the creation, visualization, and manipulation of ontologies
in various representation formats. It can be customized to provide domain-
friendly support for creating knowledge models and entering data. Further,
Protégé can be extended by way of a plug-in architecture and a java-based
application programming Interface (API) for building knowledge-based tools
and applications[14].

The Protégé platform supports two main ways of modeling ontologies[14]:

¢ The Protégé-Frames editor: enables users to build and populate ontolo-
gies that are frame-based, in accordance with the Open Knowledge Base
Connectivity protocol (OKBC).

* The Protégé-OWL editor: enables users to build ontologies for the Se-
mantic Web, in particular in the Web Ontology Language (OWL). An
OWL ontology may include descriptions of classes, properties and their
instances. Given such an ontology, the OWL formal semantics specifies
how to derive its logical consequences, that is facts not literally present
in the ontology, but deduced by the semantics. These deductions may
be based on a single document or multiple distributed documents that
have been combined using defined OWL mechanisms. This is the plat-
form that has been use during this work to build ontologies.

43

4.1. TOOLS

I hasSwitch ([instance of owl:DbjectProperty] B _|EI|1|

PROPERTY EDITOR

For Property: [l |hasSw'rtch (instance of owl:ObjectProperty, owl:FunctionalProperty)
ij Iﬁ ﬁ = (8 [J Annotations
AL | Value [Lang |

rdfs:comment -
-]

& @ e e

‘ir &= Range U o & 6

0 switch [l Functional

» dataToBekp

- [] InverseFunctional
¢ jobName

Il Symmetric
[] Transttive

Inverse Y e,

[isSwitchOf

& B

Figure 4.1: Property window in Protg-OWL editor

Protégé-OWL editor was used on this work to build the ontologies. It pro-
vides a friendly interface for creating classes, creating properties, associating
properties to classes, creating restrictions etc. Figure 4.1 shows a snapshot
of the properties creation windows. This interface allow to describe proper-
ties characteristics such as inverse, functional, symmetric, transitive. Properties
link individuals from a domain to individuals from the range, this figure also
show that the property “hasSwitch” links individuals in classes “dataStorage”
“dataToBckp” and “jobName” to individuals in class “switch”. Protégé-OWL
editor include a facility to generate RDF/XML code for the ontology created
with the GUI interface.

4.1.2 The Ontology mapping and merging tool: PROMPT

PROMPT is a suite of tools for multiple-ontology management implemented
as an extension to Protégé trough a set of plug-ins. It includes the following
tools as illustrated also in figure 4.2

¢ iPROMPT: is an interactive ontology-merging tool. iPrompt leads users
through the ontology merging process, suggesting what should be merged,
identifying inconsistencies and potential problems and suggesting strate-
gies to resolve them.

¢ AnchorPROMPT: provides pairs of related terms to help users in ontol-
ogy mapping and alignment. It provide suggestion to iPROMPT to per-
form merging.

¢ PROMPTFactor: This tool allow the user to export part on an ontology
to another one.

44

4.1. TOOLS

¢ PROMPTDiIff: is a tool for comparing ontology versions

=3 s
'/\ Protéege-2000 Project Browser ,/\;I
T
Infrastructure
AnchorPROMPT
= graph-based onfology
Ul structurs, — mapping
. anchors ——
— suggestions
iPROMPT L
interactive onfology 0y
merging Ul structure,)
reference analysis —_

i
heuristics

Ul structure,
heuristics

PROMPTFactor
sub-ontology factonng

s ~

PROMPTDIff
onfology versioning

Figure 4.2: The PROMPT infrastructure and interactions between the tools.

AnchorPROMPT was the feature of interest in this work and it’s referred
as PROMPT in the rest of the this text. Anchor-PROMPT produces a set of
new pairs of semantically close terms. To do that, Anchor-PROMPT traverses
the paths between the anchors in the corresponding ontologies as shown in
tigure 4.3. A path follows the links between classes defined by the hierarchical
relations or by slots and their domains and ranges. Anchor-PROMPT then
compares the terms along these paths to find similar terms [15].

4.1.3 Reasoning tool: RACER

RACER (Renamed ABox and Concept Expression Reasoner) commercially known
as RacerPro has its origins within the area of description logics. Since descrip-
tion logics provide the foundation of international approaches to standardize
ontology languages in the context of the semantic web, RacerPro can also be
used as a system for managing semantic web ontologies based on OWL, that

is it can be used as a reasoning engine for ontology editors such as Protégé.
However, RacerPro can also be seen as a semantic web information repository
with optimized retrieval engine because it can handle large sets of data de-
scriptions. RacerPro provides the following services for OWL ontologies and
RDF data descriptions[31]:

¢ Check the consistency of an OWL ontology and a set of data descriptions.

¢ Find implicit subclass relationships induced by the declaration in the on-
tology.

45

4.2. BUILDING THE ONTOLOGIES: THE METHODOLOGY

Ontology 1 Ontology 2

A | | B

g3 5B

Figure 4.3: Traversing the paths between anchors. The rectangles represent
classes and labeled edges represent slots that relate classes to one another. The
left part of the figure represents classes and slots from one ontology; the right
part represents classes and slots from the other. Solid arrows connect pairs of
anchors; dashed arrows connect pairs of related terms[15].

¢ Find synonyms for resources (either classes or instance names).

¢ Since extensional information from OWL documents (OWL instances
and their interrelationships) needs to be queried for client applications,
an OWL-QL(query language) query processing system is available as an
open-source project for RacerPro.

e HTTP client for retrieving imported resources from the web. Multiple
resources can be imported into one ontology.

¢ Incremental query answering for information retrieval tasks. In addition,
RacerPro supports the adaptive use of computational resource: Answers
which require few computational resources are delivered first, and user
applications can decide whether computing all answers is worth the ef-
fort.

RacerPro has been used in this work mainly for consistency checking of the
ontologies, to generate inferred taxonomies and to attempt to induce relation-
ships or restriction between the ontology components. RacerPro is also simply
referred as RACER in the remaining of this text.

4.2 Building the ontologies: The methodology
It appears not to be a correct method or an agreed standard for developing on-

tologies, but rather there are general issues to be considered while developing
an ontology. However in [1] and [10] comprehensive methodologies for devel-

46

4.2. BUILDING THE ONTOLOGIES: THE METHODOLOGY

oping ontologies have been proposed. In this work we used a combinations of
these two proposed methods which are eventually quite similar.

4.2.1 Step One: Purpose and Scope
4.2.1.1 Purpose

What is the backup ontology going to be used for? Section 2.3.2 presented
the different usage or role of ontologies. The purpose the ontologies created
is to describe the backup syntax of Windows (using the ntbackup utility) and
Linux(using tar program) in order to be able to create mapping between both
representations. The ultimate goal is to be able to perform backup through
high level requirements using a general purpose backup Ontology without
the details of underlying syntaxes. The Mapping between the two ontologies
contribute to the translation process of requirements between the two system
to perform the backup operation. These representation could be used to ex-
change information between different system management tools.

One of the ways to determine the scope of the ontology is to write down a
list of questions that a knowledge base based on the ontology should be able
to answer[10]. This is referred as competency questions.What are the question
the backup ontology should answer? Or what type of high level requirement
should the ontology find answer for?

* We need this operation, find the appropriate syntax and do it.
¢ what is the meaning of this information received by this SM tool.

¢ [want to do a backup every day at mid day and exclude the file x from
it.

¢ I want to do incremental backup of data x every one hour

¢ [want to perform a backup of file x every more additional 2mb to the
file.

¢ I want to make a backup of this file exactly at time x every 2 days but not
in the weekend.

® etc....

There is also a lot of discussion about types of ontologies as it has been dis-
cussed in section 2.3.3. According to the classification of ontology types de-
scribed by Mizoguchi in [16], the ontologies build on this work can be referred
as task dependent domain ontologies as the representation is only related to
the backup task.

4.2.1.2 Scope

The scope is about characterizing the range of the intended users of the on-
tology. It provides the answer to the question: who/what is going to Use the

47

4.2. BUILDING THE ONTOLOGIES: THE METHODOLOGY

ontology? The intended users of the ontologies created are machines, but rep-
resenting these ontologies with visualizing tools it can be equally useful to
system administrators to understand syntax requirements for backup opera-
tion in both operating systems.

4.2.2 Step Two: Considering re-using an existing Ontology

There exist already many libraries of reusable! ontologies available in elec-
tronic format that can be imported to en ontology development application.
This can be a requirement if some of the a system requires to interact with
another application that has committed to different ontology. For the case
study of this work, no similar ontology was found. However to include the
“time” concept in the created ontology the already existing “Time Ontology in
OWL"2,

Ontology Capture:
After the two above steps, the ontology capture was done. Ontology capture
involves the following steps:

¢ Enumeration of terms or concepts in the domain(Backup operation and
syntax)

¢ Class definition and class hierarchy definition
¢ Classe’s properties definition

¢ Instances creation

4.2.3 Step Three: Enumeration of important terms or concepts

This steps is about writing down all the terms in relation to performing back-
ups for both Windows and Linux (using the tar command) operating systems.
Command help page for Windows and man pages(for tar) have been used to
collect the information. The name of term are given as close as possible to
their meaning to avoid confusion or unnecessary explanation of terms. The
aim of this step is to provide a comprehensive list of terms without taking care
of overlap between concepts they describe, relations among the terms or the
properties that the concepts could have. The terms represented were later cat-
egorized as classes, properties or instances.

The following terms can be enumerated for a general purpose backup oper-
ation:

IDARPA agent markup language (DAML) ontology library is available at
http:/ /www.daml.org/ontologies/
2Ontology of temporal concept at http:/ /www.w3.org/TR/owl-time/

48

4.2. BUILDING THE ONTOLOGIES: THE METHODOLOGY

backup command file to backup tape storage file incremental
compression files to backup storage file update differential
system backup directory storage path normal backup permission
backup time hard disk file file path backup description
SAN storage tape name tape size of data backup frequency

Below is a list of terms for backup under Windows system.
ntbackup file to backup tape file to backup incremental
backup file backup list ~ storage file update differential
systemstate backup directory to backup storage path copy permission
time and date directory file network path normal
compression media description ~ pool name media name daily

A list of terms for Linux backup with command “tar” is shown on the table

below
tar archive name archive path file to backup file to backup list
file to backup path append backup create archive update file exclusion
compression data verification =~ incremental tile age permission
time and date directory file size access-time

4.2.4 Step Four: Defining Class and Class hierarchy

Building the class hierarchy is about organizing concepts following the ”is-a”
relation: a class A is a subclass of B if every instance of A is also an instance
of B. From the list of terms enumerated in the previous section we selected the
terms that have independent existence and could represent objects rather than
terms that describe objects. These terms are classes in the ontology and are
making up the class hierarchy. There are three main approaches in developing
a class hierarchy[1]:

¢ The top-down approach: Which starts by first defining the most general
concepts in the domain of interest and subsequently the the most specific
concepts.

¢ The bottom-up approach: in this approach the development process starts
with the definition of the most specific classes, and leaves of the hierar-
chy, with the subsequent grouping of these classes into a more general
concepts

¢ A combination of both top-down and bottom-up approaches.

Applied to the case study, the top-down approach was used. The command
line syntax information were categorized using the simple categorization found
in help files that is: “commands”, “data to backup”, “option(or parameters)”
and “data storage”. The same approach was used for both Windows and

Linux.

49

4.2. BUILDING THE ONTOLOGIES: THE METHODOLOGY

dataToBackup

win_bckp_operation

f switch]

— dataStorage

Figure 4.4: Windows backup top level classes

4.2.4.1 Windows backup class hierarchy
In Windows we can group the backup operation into four high level classes:
¢ command class: that includes two instances ntbackup, backup

¢ dataToBackup class: Which includes include fileName, fileListName and
directoryPath sub-classes

¢ dataStorage class: It includes diskStorage and TapeStorage sub-classes.

* switch? class: consists of instances representing the different command
line switches (/p, /s etc.)

Two optional concepts (time and frequency) were added to the hierarchy as
shown in figure 4.4. In Windows this concept are not specifically connected
to the command line syntax but can be added with the scheduling command
at. The time class represent the moment at which a backup operation can be
started or stop for example. The frequency represents how often an operation
is repeated, that is every x minute(s), x hour(s), x week(s) etc. The time class
appear to be actually more relevant to the backup under Linux due to the pres-
ence of more options using the time and date information attached to files. It
most be specified that the “winBackupOperation” class shown in figure win-
class does not represent the superclass of the others classes. It is used to rep-
resent the domain of interest. More hierarchies of this top level classes can be
seen on the figures ?? ?2. .

3switch refers here to command line option swicth such as /A /F etc.

50

4.2. BUILDING THE ONTOLOGIES: THE METHODOLOGY

jobname

Figure 4.5: Windows backup command line taxonomy for parameters

BackupStorage

backupSetD ipti
fileStorage

fileName

directoryPath
localPath

Figure 4.6: Windows backup command line taxonomy for backup storage

51

4.2. BUILDING THE ONTOLOGIES: THE METHODOLOGY

linBackupOperationitar)

Figure 4.7: Linux(tar) backup top-level classes hierarchy

4.2.4.2 Linux backup class hierarchy

The classes in for the backup with tar program were described as follow(figure

4.7:

Command: This class will include a single instance that is the command
tar

storage: which consist of the “archiveName class” (the tar file name un-
der which data are backed up), and ”archivePath class”(directory in side
which data is backed up) and the “tapeFileName” (tape device name for
backup)

dataToBackup: consists of “fileName”, “fileNameList” and ”directory-
Path” classes.

function: represent the class of the necessary options. At least one in-
stance of this class should be included in the command line.

option: This class consists of instances representing optional options to
the command line.

This hierarchy is similar to the Windows hierarchy described earlier with slight
terminological divergences which do not however present the implementation
differences. Classification of some of the other classes are shown in the figure

4.8

4.2.5 Step Five: Defining properties of Classes

Now that the classes have been created, the internal structure of these con-
cepts are to be specified through properties. Properties are also known as slots
in Protégé and are equivalent to the UML's relations. Properties describe classes
and provide relationship between instances of a class with others. These prop-
erties provide information that are needed to fully represent the knowledge

52

4.2. BUILDING THE ONTOLOGIES: THE METHODOLOGY

tapeFileName

createArchiveParam
appendParam

appendToEnd

updateParam

Figure 4.8: Linux(tar) function and dataTobackup classes taxonomy

in a domain. Some of the terms listed in section 4.2.3 could represent prop-
erties of some classes. As example the term ”size” could represent a prop-
erty of a “fileName” class. On another scenario “fileName” itself could have
represented a property of a class “file”. On the scenario of this work the file
name through the ”fileName” class represent the object of interest itself for the
backup operation and therefore it was considered as a class. While defining
properties with Protégé several information needed to be to specified such as:

¢ Type of the property:
Protégé provides object, datatype and annotation properties. Object prop-
erties are used to link an instance to another instance while datatype
properties link an instance to an XML Schema Datatype value. Anno-
tation properties were not used during this work. The property shown
in Figure 4.9 is an example of object type property that were defined for
this work.

¢ Characteristics of the property:
Characteristics augment the meaning of the properties. There are, func-
tional, inverse, symmetric and transitive characteristics. A functional prop-
erty relate on instance from a particular class with only one instance in
another class. This means that in case a functional property relates an
instance with two different instances then the later will be consider as
equal by the inference mechanism of Protégé. Two properties are inverse
if there are reciprocal that is they are applied between the same instances
but with opposite meaning and direction as shown in figure 4.10. A
property is said to be symmetric if it can be applicable to the two in-
stances in both direction with the same meaning as shown in figure 4.9.

53

4.2. BUILDING THE ONTOLOGIES: THE METHODOLOGY

Transitive properties have not been used in this work.

¢ Domain and Range classes of the property.
Properties link instances in a domain to instances in a range. That is if we
consider a relationship such as:

(boot.ini) “hasPath” (C:)

The class “dataToBackup” to which belongs the file boot.ini represents
the domain class while the class ”directoryPath” to which belongs the in-
stance path ”"C:” is the range class for this property

notCompatibleWith

.

(Switch) /A

(switch) /N

Figure 4.9: notCompatibleWith is a symmetric property between the two in-

stances

isSwitchOf

(Switch) /F

\//

hasSwitch

(File to backup)
boot.ini

Figure 4.10: isSwitchOf and hasSwitch are inverse properties

Table 4.1 shows some of the properties that have been created to describe
the relationship in the Windows backup ontology

property Name Domain Range

hasPath fileName directoryPath

isPathOf directoryPath fileName

isSwitchOf Switch dataStorage, dataToBackup
hasSwitch dataStorage,dataToBackup | Switch

compatibleWith switch switch

notCompatibleWith | switch switch

precede switch dataStorage

follow datastorage switch

Table 4.1: Properties list for the windows Backup Ontology

54

4.2. BUILDING THE ONTOLOGIES: THE METHODOLOGY

4.2.6 Step Six: Defining and describing classes with properties re-
strictions

In OWL properties are used to create restrictions. Restrictions are used to re-
strict the individuals that belong to a class. Protégé provides an good facility for
creating restrictions through its interface. There are 3 categories of restriction
that can be defined with Protégé [17]:

¢ Quantifier restriction: Which includes the existential quantifier(d) and
the universal quantifier(V)

¢ Cardinality restriction: Cardinality restrictions are used to talk about the
number of relationships that an individual may participate in for a given

property.

¢ hasValue restriction: Describes an anonymous class of individuals that
are related to another specific individual along a specified property.

4.2.6.1 Quantifier restrictions:

m_vpruiech Protégé 3.2 (file:\D:\Program%20Files\Protege_3.2\myproject2.pprj. OWL 2 RDI =] 3]
Eile Edt Project OWL Code Tools \Mndow Prompt Help
P 5 I /
NeE «BE ma % BEDR <» ﬁpmrégé
+ Knowledoe Tree rOmowz r‘ COWL-DL Indivicuals r o OLVizZ rPrompt rl Queries |
@ Metadata (Ontology11 73080721 vl oWl Classes r M Properties r ‘ Indlividuals r = Forms |
o . 5erT
For Project: @ myproject2 For Class: @ ‘daiastorage ‘ (instance of owkClass) [] Inferred View
k -
o 1 @ | [T [o =] 'H =
Asserted Hierarchy w B O B * R =
owtThing = Property [Value
— |
¥ @ winBackupCperation
4 -
) BackupSetDescription LLLEN LR L] A:
¥ @ command NECE
@ commandt
@ commanci2 b winBackupOperation
v @ cstsstorage * hasLabel only BackupSetDescription
v @& fieStorage
p O directoryPath
) fileMame 1
p 0 tapeStorageName
1 dataToBckp
) fileListhame L
0 widirectoryPath
@ wiileName
jobMame
B i & @
deqae 5
| =]
< B I [»]
% 3 ® & @ (@ Logic \iew () Properties View

Figure 4.11: creating restriction with Protégé: here the universal restriction is
applied to the class “dataStorage”

These types of restrictions are composed of a quantifier, a property, and a
filler. There are two types of quantifier:

¢ (J) the existential quantifier:
Which can be read as at least one . It describe the set of individuals

55

4.2. BUILDING THE ONTOLOGIES: THE METHODOLOGY

that have at least one specific kind of relationship to individuals that
are members of a specific class. Below is an example of restrictions:

3 isSwitchValue ”accessRestrictionSwitch”

Applied to the class “switchValue”, means that instances in the class
”switchValue” class have at least one relation with an instance in the
"accessRestrictionSwitch” class or with any other class. This is to reflect
the fact that in the Windows backup command line the command line
switches /V, /R, /RS require a "yes” or "no” to enable or disable the op-
tion. The idea behind this relation is to represent the following:

"yes —no” isSwitchValue /V = /V:yes or /V:no.

* (V) the universal quantifier:

Which is read as only. Universal restrictions portray the set of individu-
als that, for a given property, only have relationships to other individuals
that are members of a specific class. Figure 4.11 depicts the asserted con-
dition window in Protégé from where restrictions are applied to classes.
As shown in figure 4.12, 0 or more instance(s) of the class “dataStorage”
have the relationship hasLabel only with instances of the class “Back-
upSetDescription”.

hasLabel

hasLabel

dataStorage Class BackupSetDescription
Class

Figure 4.12: Diagram describing the Universal restriction (V)

4.2.6.2 Cardinality Restriction.

Cardinality restrictions are used to talk about the number of relationships that
an individual may participate in for a given property. Cardinality restrictions
are conceptually easier to understand than quantifier restrictions, and come in
three types:

¢ Minimum cardinality restrictions(<):
which specify the minimum number of relationships an instance must
participate in for a specific property. As an example a we can have the

56

4.2. BUILDING THE ONTOLOGIES: THE METHODOLOGY

same file name in different directory, which means a file name should
have a least one directory path. As a ”fileName” class was defined with
a relationship hasPath with ”directoryPath” class, a minimum cardinality
restriction was defined for instances in the “fileName” class with respect
to the hasPath property. The code below shows how this restriction is
expressed in RDF/XML format generated from Protégé

Example 1 — XML/RDF generated code showing expressing
information define from Protégé GUI

<owl:Class rdf:ID="fileName">
<rdfs:subClass0f rdf:resource="#fileStorage"/>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasPath"/>
<owl:minCardinality rdf:datatype="&xsd;int">1
</owl:minCardinality>
</owl:Restriction>
</rdfs:subClass0f>
<owl:disjointWith rdf:resource="#directoryPath"/>
</owl:Class>

Maximum cardinality restrictions (>):
which specify the maximum number of relationships an instance can
participate in for a specific property.

Cardinality restrictions(=):
specify the exact number of relationships and instance can participate in
for a given property

4.2.6.3 hasValue Restriction (3)

This restriction describe a class of instances that are in relation with a spe-
cific instance which might belong to any class. As an example to specified the
command option switch to be used with a storage type (file or tape) the fol-
lowing restriction were applied respectively to the classes “fileStorage” and
“tapeName” and “mediaName” (under Windowns command line the option
switch /], /T and /N are respectively used before specifying a file name, tape
name or media* name as backup storage). A schematic representation of the
meaning of these restrictions is shown in figure 4.13

5 hasSwitch |
5 hasSwitch T
3> hasSwitch N

4In Windows terminology it refers to an empty tape disk

57

4.2. BUILDING THE ONTOLOGIES: THE METHODOLOGY

hasSwitch

hasSwitch

hasSwitch

IN

dataStorage Class

Figure 4.13: Meaning of the hasValue restriction(3): Instances(specific files,
tapes) from the “fileStorage” class are used with specific option switches(/F,
/T, /N) in the "switch” class

4.2.7 Mapping the Ontologies

As the different ontologies have been created. The next stage was to performed
a mapping using the PROMPT plugin of Protégé. There were two main objec-
tives at this stage. First to appreciate how efficiently the PROMPT performed
the automatic mapping between the two ontologies and second and not less
important to understand what kind of mapping is done. That is investigating
the reasoning used for this mapping. As mentioned earlier ontology mapping
for interoperability is often performed through a common ontology which is
mapped with the different ontologies individually rather than mapping each
ontology to the other directly. On this work the creation of the common on-
tology was overlooked and only the mapping between the backups ontologies
for Windows and Linux was performed.

PROMPT mapping tool offered different algorithms to perform the mapping:
* Lexical mapping: Which suggests mapping based on lexical similarities.

» Framework for Ontology Alignment and Mapping® (FOAM):
This algorithm is based on heuristics (similarity) of the individual en-
tities (concepts, relations, and instances). As result it provides pairs of
aligned entities. The FOAM plugin for PROMPT could not be used in
this work as it was failing with unexpected errors when started due to a
bug specified on Protégé website®. However the fix proposed could not
be fix successfully during this work.

* Using UMLS:” This algorithm could not be used.

Therefore the lexical mapping algorithm was the only algorithm that has been
used to perform the mapping with PROMPT. Figure 4.14 shows the automat-
ically “suggested” mapping between the two ontologies. As it can be seen
in the figure the list of suggested mapping is relatively small: The remaining

5http: / /www.aifb.uni-karlsruhe.de/WBS/meh/foam/
6h’c’cp: / / protege.cim3.net/ cgi-bin/wiki.pl?Prompt
7Unified Medical Language System concept identifier for matching

58

4.2. BUILDING THE ONTOLOGIES: THE METHODOLOGY

mypmiech Protége 3.2

(file:A\D:\Program%20Files\Protege_3.2\myproject2. ppri. 0%L / RDF Files] = Ellll
File Ecit Project OWL Code Tools Window Prompt Help
= f BE wyd ¢ [Qb

| # Hnowtedge Tree | Cntoviz | % OWLDL Individuais | ovviz [Prompt | & queries |
& hetadata EQmomw11I3@80?21-wD- . OWWLClasses W Properties r 0 Individusls r = Faorms ‘
Source instances: | : r Suggestions r User-defined mappings r Simple mapping | :F Target slots r'Tu_rg'et_ instances |
Source classes r Source slots | A A ;ﬂ; X .j,l Target classes ‘

myproject2 A Nam4 Argl Arg2 ‘ Params myproject3 AN
Thing map @ command! myprof & command myproje :Thing

winBackupOperation map @ command2 myprof @ command myproje exclusionFilePatern

@ BackupSetDescription map @ command myproje @ commaned myproje linuxBekp_Operation

® command map @ dataToBckp myprs @ dataToBackup my & command

@ commandi map @ fleListiiame mypre @ fileListMame mypre © dataToBackup
@ command2 map @ wilehame myproji @ tapeFiskame myp @ tunctions

. dataStorage ‘ options

@ dstaToBechp 0 storage

@ jobName time:

. switch

@ switchvalug

Reason for selected suggestion
frame names are similar: @ command! myproject? and @ col
T EE IC 4 P | IC
| EL s | — .
| B

Figure 4.14: mapping suggested automatically by PROMPT

mapping were assessed and mapped manually. Classes , properties and in-

stances were mapped in a one-to-one fashion as well as one-to-many. Below
are a list of mapping.

59

Chapter 5

Result Evaluations and
Discussion

This chapter evaluates the ontologies created as well as the mapping results
obtained with PROMPT. It also includes discussion about the worthiness of
using the ontology approach to solve the interoperability problem presented
in the backup study case in particular and in system administration in general.

5.1 Ontologies evaluation

It seems there is no standard yet defined for evaluating and validating ontolo-
gies although several methodologies have been proposed. [18] suggests an in-
teresting and complex methodology for performing this task. The evaluation
was done mainly by a combinations of these suggestions and investigating the
correctness of the knowledge represented by the ontologies by trying to find
answer questions such as:

¢ Are there hidden assumptions?
¢ Could a non-expert capture the knowledge represented?

* How efficiently could the representation being used by automated agent
(such configuration tools) ?

* Are there easily modifiable or re-usable?

5.1.1 Hidden assumptions:

An ontology is an “explicit” specification. Although most ontology develop-
ment tools include reasoning functionality to deduce knowledge it important
to provide as much as possible relevant information to describe the specific
domain. In both the Windows and Linux(tar) command line backup syntax,
the different parts of the entire syntax were represented and their relationship.
The task appeared to be an ontology capture of tar manpage for Linux or the

60

5.1. ONTOLOGIES EVALUATION

ntbackup help file. While it seemed straight-forward to describe parts of the
command line sections (command itself, data to backup, storage location of
backed up data, command line options), the order of usage of these sections
had to be specified as well. Details of representing parameter switches format
or their incompatibilities had to specified. In the example of Windows backup
parameters present different formats:

/switch <file name with path>
/switch <name>
/switch:{yes | no | on | off|[f]|s|n}

The ordering was made using properties such as precede or follow to say for ex-
ample that the switch /F precede the name of the destination file of the backup
operation. The tradeoff of an exhaustive insertion of properties and relation-
ships is the risk of building an heavy ontology which makes little use of rea-
soning capabilities, increasing as well the risk of inconsistency. Fortunately
Protégé provides a consistency checker that was executed upon the ontolo-
gies. Optimizing the amount of information included was not done during
this work. The idea behind this optimization is about an efficient usage of
the reasoner RACER in order to remove relationship that could have been de-
duce through properties characteristics such as symmetry, functional, inverse
or transitivity.

5.1.2 Quality of the knowledge capture and Usability

Ontology is a shared understanding and at the same time ontology design is a
subjective activity which means that the same ontologies created in this work
would be done differently by different people. However ontology engineering
as already mentioned includes mechanism to map or merge different ontology
even from the same domain.

Can these ontologies being understood by non-experts of the domain through
a graphical representation? We aimed at reducing terminology differences be-
tween Windows and Linux but the ontologies includes already these differ-
ences: “switch” class for Windows as compared to “option” class for Linux
which both represent command line parameters classes. It seems therefore that
the ontologies interpretation from a human perspective might be ambiguous
which is in contrast with the goal of using ontologies. Maybe the question is
instead not appropriate for the scenario of this work, as ontology concept has
mostly evolved from the field of Artificial Intelligence with the aim of achiev-
ing share knowledge and enabling reasoning between computer agents. As
suggested in [19] ontololgy could be used for standardization of terminology
by creating a common vocabulary for communication. This could have been
achieved better by finalizing a common ontology resulting of the merging of
the two ontologies as initially planned. Therefore a more important question is
to know how could these ontologies being used by automated agents (system
management tools).

61

5.1. ONTOLOGIES EVALUATION

The implementation of usage of these ontologies by a software was not done
in this work. Nevertheless a software tool could extract the information from
the XML/RDF code generated by Protégé. Additionally Protégé includes plug-
ins for several querying language such as SPARQL!. The ontologies could be
exported to a relational database in which each class would represent a table
hence making the use of standard SQL queries although this type of approach
might results in lost of semantic in data representation as suggested in [20].

5.1.3 Querying the ontologies

Protégé provides plugin for SPARQL as well as a graphical user mode query
tab. The latter appeared simpler to use although it could only query instances
from the ontology. Some relationships were tested such as the NotCompatible-
With property between options switches as shown in figure 5.1. Unfortunately
this the query tab was not flexible enough to build interesting queries while
SPARQL on the other hand was rather difficult to use. With SPARQL however
queries were performed over classes and properties. below a simple query to
enumerate the list of subclasses of the “switch”class in the windows ontology.

SELECT 7x
WHERE { ?x rdfs:subClassOf:switch }

mypmiech Protégé 3.2 [file:\D:\Program®20Files\Protege_3 2\myproject?. ppri. OWL / _é = |EI|£|
File Edit Project OWL Code Tools ‘Window Help Prompt
NEH BB maba % RBEE 4 féprotégé
= Formz r * Knowledge Tree romoviz r # OWL-DL Individuals | _.""‘_._ ALYz rl Queties rPr'ompt |
@ Metadsta (protege) r | OWWLClasses M Properties r ‘ Incividusls |
4
fiery) Search Results (2) AN E
Class AW W gt Aw N @ F (et ch)
@ switch B NotCompatibleWith contains v| &7 &P (o

<] G | [»

hoare | Clear

Guery Name
|query’tes{2 " .=‘ Add to Guery Library |

S 4

tfﬂ Query E'E EE Results

-:_-. Execute Guery | |

| ¥E] spareL |

Figure 5.1: Query result of parameters switches non compatible with the pa-
rameter switch /F in Windows

ISPARQL is an RDF query language; its name is a recursive acronym that stands for SPARQL
Protocol and RDF Query Language.

62

5.2. MAPPING EVALUATION

The evaluation provided above is rather intuitive than systematic. In [18]
Aldo Gangemi et al proposed a framework for evaluating and validating on-
tology.

5.1.4 Suggested framework for ontology evaluation

[18] proposed measurement method for ontology. It evaluates ontology by
introducing specific measurement types and metrics.

¢ Structural evaluation:
This about measuring the topological and logical properties of an ontol-
ogy when represented as a graph. They defined metrics such as depth,
breadth, leaf and sibling distribution, density, modularity, consistency, com-
plexity, logical elements distribution etc.

¢ functional evaluation:
Related to the intended use of a given ontology and of its components
through accuracy investigation from domain experts.

¢ Usability evaluation : depends on the level of annotation of a given on-
tology. How easy it is for users to recognize its properties?

The mathematical model of the different metrics used in this proposed frame-
work have not been used in our work due to time constraints.

5.2 Mapping evaluation

5.2.1 Level of automation and accuracy

The PROMPT algorithm used during the mapping was the Lexical based al-
gorithm. The mapping process provided by Protégé is semi-automatic as it
provides suggestion and requires user intervention to complete the mapping
as well as defining the remaining possible mapping manually.As shown in fig-
ure 5.2 the mapping suggested by PROMPT was not always accurate.

Two metrics proposed in [21] which are standard information retrieval metrics
have been used to evaluate the accuracy of mapping of the two ontologies:

1. Recall: describes the number of correct mappings found in comparison
to the total number of existing mappings. The total number of possi-
ble mapping include only specifically defined classes and properties (ex-
cluding inferred datatypes or built-in properties)

recall = r = Correc‘t,map‘pzr‘zgjugges%‘ed s =T = o _ 0.35 = 35%
all_possible_existing_mappings 17
(5.1)

63

5.2. MAPPING EVALUATION

2. Precision: measures the number of correct mappings found with respect
to the total number of suggested mappings (both correct or wrong).
correct,appingsuggested

- 6 0
precision = p = allsuggested,appings = P=1= 0.54 = 54%
(5.2)

mypmiech Protégé 3.2 (file:\D:\Program%20Files\Protege_3 2vmyproject? ppri. O%L / RDF Files)

=101
File Edit Project OWL Code Tools Window Prompt Help
NEE +BH s ¢ BEE 9 <gprotége
= Forms r +* Knowledge Tree rOrrh:lviz r # CinL-DL Individuals r :E':: CLYiz r A Queries rPrDmpt ‘
& Metadata (protege) r ' OWLClasses B Properties r & individuals |
F Source slots r Source instances | :FU:er-deﬂned mappings r Simple mapping ‘ :r Target classes r Target slots r Target instances ‘
Source classes | Suggestions | peojREL ;). v
myproject2 AN Candidate Mappings Fa m X L | [iThing
L Thing Na | srgl ‘ Arg2 ‘ Porame exclugionFilePatern
rf:Property ap B hasPalh myproEm hasPath mypre linuxBekp_Cperation
winBackupOperation ap B hasSize myprcBl hasSetTime m @ command
@ BackupSetDescription ap B hashlame myp Bl hasSetTime m @ dataToBackup
@ command ap W follow myprojemm follow myprofe ¥ directoryToBekpPath
@ datastorage ap W preceds mypk R precede mypn fileListiiame ™
@ dataToBckp ap @ dataToBckp m @ dataToBackup singlefileName
@ fileListiame ™ ap @ wilehame m peFilehlame 1 unctions
@ wdirectoryPath ap @ command my; ammanc g pions
@ wilehame ap @ command! my @ command myp @ storage
W jobhame ap @ command2 my @ command g time
@ switch
@ switchv/alus
Reason for selected suggestion
rames have similar names
oth frames are slots for @ fileListMName myprofect|
] i [v]| [« 7 [Dl e
A7 w2 [»
| "| . o Creste Mapping | ‘v|

Figure 5.2: mapping suggested by PROMPT including some wrong sugges-
tions such as mapping properties hasName and hasSetTime

5.2.2 Validation and Problems

The mapping was done on classes, properties and instances. The instances
mapping was mainly about matching Windows parameters switches to Linux(tar)
options. The list in table 5.1 shows a list of instances mapping that was done.
Although the mapping was mainly done manually, Protégé allows the map-
ping to be saved for future retrieval. This is important as retrieval of mapping
information could help in the process of translating commands from both sys-
tems. Protégé offers two types of mapping storage ontology; Simple mapping
ontology and Domain_PSM? ontology. The latter ontology mapping was used
as it defines the type of instance-level and slot-level mapping relations that

3Problem-SolVing Methods

64

5.2. MAPPING EVALUATION

you can create between the classes and slots of the domain ontology and the
classes and slots as shown in figure 5.3. Figure 5.4 shows the result of query-
ing the Domain_PSM mapping ontology for a similar instance to the Windows
verification option /V (represented by in the “dataVerificationSwitch” single
instance class) in the Linux(tar) ontology resulting to the tar verification option
-W (represented by "verificationParam” single instance class).

Table 5.1: Some mappings

ntbackup(Windows)

tar(Linux)

Remarks

/V

verification option

/F

file name option

/A

appends to storage option

ntbackup

tar

backup command

/R

P

restriction on storage file

no equivalent

-X

file exclusion option

/N

no equivalent

Tape media name

/M{incremental} no straight equivalent | implementation difference
mypmiech-mappings-dpsm Protégé 3.2 [file:\D:\Program%20Files\Protege_3.2\mypr @é_ _IEI 1‘
fle Edt Project Window Tools |Ir:15:pluiecl2-mappings-dpsm Protége 3.2 [IiIa.\D.\F'mgram°/e2DFi|es\PrDtEgE_3.Z\mypru\ech-mappings|

OB H «+ BB X md ¢ 9 Céprotégé
r ¥ Classes r- Slots r = Faormg r # Instances ,VA QLeries |

| R N

b
For Project: @ myproject2-mappings-dpsm For ¥ instance-mapping (instance of :STANDARD-CLASS)
Class Hierarchy e - Hame Documentation Constr

(THING
(SYSTEM-CLASS

2 mapping

> O
& instance-mapping

>

slot-mapping

@ globakmapping
& global-slot-mapping

¥ © executable-code
@ instance-scope-code
& global-scope-cocls
b O frame-description

| instance-mapping

MC: factored slot-maps at this level.
Why do we need source-class-desc,
just for the “inherit" flag?

Superclasses

O mapping

Role

| Concrete ¢ v|

Template Slots

Mame Cardinality | Type ot

B apply-to-subclass-inst... single Boolean defauli=false

B aux-source-classes-c... multiple Instance of source-class-.

B condition single String default=t

B mapping-name single String

B on-demand single Boolean defautt=false

B per-instance-post-exe... multiple Instance of executablz-ci.

B per-instance-pre-exec... multiple Instance of executable-cr..

(1) post-execute-code multiple Instance of global-scope-..

(141} pre-execute-code multiple Instance of global-scope-..

B reverse-mapping single Boolean default=false
|'| f B slot-maps multiple Instance of slot-mapping
= B B source-class-desc single Instance of source-class..
ot e B target-class single Instance of target-class-c..

4

Figure 5.3: psm mapping ontology class browser

There have been however several problems regarding this mapping;:

1. Missing concepts:

65

5.2. MAPPING EVALUATION

mypmiectz-mappings-dpsm Protégé 3.2 [file:\D:\Program%20Files\Protege_3.2\myproject?-map

File Edt Project Window Tools Help

=81

|myproiect2-mappings-dpsm Protégé 3.2

O & of BB X w4 ¢ 9 féprotégé
(' Clazses r-.Sluts r = Forms r # Instances rl Queries
A :SemthRe:‘.llit-:\rlr ANE

BT +
Class o BB g Ann

/a 1

0 instance-mapping M target-class ‘contains

v| # verificationParam

q | i

| 1

More Clear

Guery Name

dataVerificationSwitch--verificationParam

(i

| »

H “=* Adelto Query Library ‘

Figure 5.4: Querying psm mapping ontology: Verification option(/V to -W)

There are several concepts that are specific of one system and do not have
similar objects in the other system. It was not possible to map options
such as; tar(Linux) option for file exclusion (-X') or media name parame-
ter switch (/N) for Windows. This problem could have been minimized
by creating a common ontology resulting from merging the two ontolo-
gies and then performing mapping to both ontologies from this common
ontology as originally planned(figure 1.1). As mention earlier this steps
has not being undertaken in this work due to time constraints.

. Difficulties in representing one to many or many to one mappings:

these type of mappings raised some concerns:

(Windows File name option switch) /F = -f (tar)
(Windows tape name option switch) /T = -f (tar)
(tar) -f =7

This is caused by the fact that Linux mounts(represent) devices such as
tape disk to file and therefore the tar option -f is also applicable to tape
disk as well as files on the physical hard drive while in Windows backup
uses different option switch for files and tapes.

. Multi-function commands: Commands in Linux usually have different

functions and are used for different purposes. tar command by itself can
be used for performing backup, compressing and decompressing files.
Therefore mapping the tar command to the ntbackup command makes
only sense in the current scenario. This infer than a mapping is related to
a context, hence making a “general” ontology for system administration

66

5.3. DISCUSSION

a complex task, but instead task oriented ontologies more appropriate.

5.3 Discussion

Earlier in this text we have presented the possible benefits of the ontology-
based approach in representing and integrating different knowledge repre-
sentation. With respect to the study case presented, the following advantages
have been considered:

* Clear representation of concept:

Despite a minimum knowledge of the ontology development tool Protégé,
the features used to build the ontologies were solid enough to clearly
represent the backup command line requirement for both systems. Facil-
ities such as the consistency checker have helped to ensure of a consistent
representation and the inference facility with the help of the inference en-
gine RACER provided the reasoning for deducing properties or restric-
tions. Inferred taxonomies by RACER for both ontologies are shown in
the appendix.

¢ Mapping and Merging;:
These processes are central to integration or interoperability. The PROMPT
plugin in Protégé presented a good potential in performing mapping al-
though most of the different algorithm could not be tested in this work.

¢ Code generators: RDF/XML code of the ontology were easily generated
from the GUI interface of Protégé (see Appendix). This code can be fed
as input to an program to extract the information or generate classes for
application in other programming language such as Java. Several other
code generators available in Protégé have not been used as they were not
relevant to the work (java Schema Classes, Protégé-OWL java code etc.).

However there have been several difficulties in using this approach to solve
the problem investigated in the study case:

¢ Complex querying language:

The query tab provided in Protégé lacks flexibility for defining user queries
and the other query languages such as SPARQL appeared complex to
use. The ontologies could have been exported to a relational database
to perform queries with standard SQL but this option has not been un-
dertaken due to time constraints. A thorough querying of the ontologies
would have been good to better validate and evaluate the quality of the
ontologies, rather than the few queries that have been made.

¢ Limited Mapping:
The complexity understanding the tool Protégé and getting the best out of
it features have taken a considerable time. There are several features that

67

5.3. DISCUSSION

should have been overlooked to focus on the mapping issue which rep-
resent already by itself a reasonable amount of work. Because of this the
use of several mapping algorithms with the aim of getting the best map-
ping suggestion could not be done. The work relied on lexical mapping
algorithm in PROMPT which means that the recall and precision metrics
computed in the mapping evaluation section could have led to worse re-
sults if the ontologies were created by two different persons instead of
the author.

¢ Limited solution:

This work is not providing a solution but could be inserted has a com-
ponents of a complete solution. Beyond merely mapping different com-
mands and options they must exist a back-end application that will im-
plement functions in order to interact with the ontology to retrieved
information for the required task on the different systems. This work
focuses in only a single command in Linux for performing backup, in
a more generalized scenario it would have been required to map the
Windows backup concept to several additional Linux based backup pro-
grams such as dump,dd,cpio etc.. In this type of scenario where a high
level requirement(say backup requirement for example) is mapped to
different set of commands there would be a need for a “policy based
management system” to evaluate the impact of each set of commands in
the corresponding system before implementing it as suggested in [13]

68

Chapter 6

Conclusion and further work

This work investigated the possibility of an ontology based approach to achieve
cross platform system administration in heterogeneous environment. The work
has been confined to the backup case study in Linux and Windows environ-
ment. The aim was to study how ontology concept would provide both syn-
tactic and semantic mapping between the command lines requirements of both
systems. The ontology representations of the command line requirements for
the backup task in both Windows and Linux systems, are merely an illustration
of the command syntax components and their relationships. These representa-
tions can be considered as machine readable manual pages (man page) for the
corresponding commands. The mapping performed between the two ontolo-
gies created, highlighted the difficulties of accurate and automatic mapping of
different ontology representations. This mapping suggested correspondences
between both representation regardless of the implementation differences be-
tween both systems. This was the case of the difference of implementation
of incremental backup in both systems. Certainly the ability to identify im-
plementation similarities or differences is important for automatic mapping
which could be a requirement for automated agents relying on ontologies
representations to achieve interoperability. A condition for this to happen is
to provide the ontology with the semantic describing these implementations.
However this work has emphasized on providing semantic of the command
line syntax of the backup programs in both Windows and Unix rather than the
implementation details. Nevertheless the objective of cross platform adminis-
tration is to be able to manage simultaneously different systems from a single
management interface and translating commands details between diverse sys-
tems is consequently a step towards this integration goal.

Although the use of ontology to perform commands mapping might appear
to be an excess task as one could suggest alternative such as manual mapping
using relational database, ontology representation is clearly a better frame-
work for coherent knowledge representation and sharing with reasoning ca-
pabilities which are not available in relational database. There have not been
many work related to using ontology concepts in system administration field
as it has been done in other field such as semantic web, telecommunication or

69

autonomic networking. Because of this little interest in ontology for system
administration this work could inspire more substantive work such as imple-
menting a complete system including a management interface which interact
with the ontology to allow commands to be translated and executed in the
target hosts. Similar studies could also be extended to other common system
administrator tasks such as files permissions or users management.

70

Bibliography

[1] Mike Uschold, Michael Gruninger. Ontologies: Principles, Methods and Ap-
plications. February 1996

[2] Alfred Ka Yiu WOng, Pradeep Ray, N. Parameswaran and John Strassner
Ontology Mapping for the Interoperability Problem in Network Management.
IEEE Journal on selected areas in Communications, Vol 23, NO. 10. Octo-
ber 2005

[3] Jorge E. Lopez, Victor A. Villagra, Juan I. Asenio and Julio Berrocal. On-
tologies: Giving Semantics to Network Management Models. IEEE network,
special issue on Network Management, vol. 17 no. 3. May/June 2005

[4] Jorge E. Lopez, Victor and Julio Berrocal. An ontology-based method to merge
and map management information models. Proceedings of the HP Openview
University Association Ninth Plenary Workshop, Geneva, Switzerland..
July 2003

[5] Dejing Dou, Drew McDermott and Peishen Qi. Ontology Translation on the
Semantic Web. Yale Computer Science department.

[6] Katharina Wolter, Thorsten Krebs and Lothar Hotz. Ontology-based Model
Comparison. HITeC e.V. c/o University of Hamburg. http://pi.informatik.uni-
siegen.de/gi/fg211/VVUMO7/pp/Wolter_Krebs_Hotz_2007 ppVVUMO?7.pdf
Last Retrieved May 4, 2007

[7] Mike lewis. Understanding the Registry. May 1999.

[8] Emre Kycyman and Yi-MinWang. Discovering Correctness Constraints for
Self-Management of System Configuration. Proceedings of the International
Conference on Autonomic Computing (ICAC04). 2004

[9] Mark Burgess and leen Frisch. Promise and Cfengine: A working specification
for cfengine 3. November 29, 2005.

[10] Natalya FE. Noy and Deborah L. McGuinness. Ontology Development 101:
A Guide to Creating Your First Ontology.

[11] Thomas R. Gruber. A Translation Approach to Portable Ontology Specifica-
tions. September 1992, Revised April 1993

[12] http://www.epistemics.co.uk/Notes/90-0-0.htm. Last retrieved April 25th 2007

71

BIBLIOGRAPHY

[13] John Strassner. Knowledge Engineering using ontologies.

[14] Protégé home Website. http://protege.stanford.edu/overview/. Last retrieved
May 4th 2007

[15] Natalya F. Noy and Mark A. Musen. Anchor-PROMPT: Using Non-Local
Context for Semantic Matching. Stanford Medical Informatics, Stanford
University, Stanford, CA 94305-5479

[16] R.Mizoguchi, J. Vanweelkenhuysen, M. Ikeda. Task Ontology for reuse of
Problem Solving Knowledge. Procedings of 2nd International Conference
on Very Large-Scale Knowledge Bases, Tnschede, The Netherland (1995)

[17] Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens,
Chris Wroe. A Pratical Guide To Building OWL Ontologies Using The Protege-
OWL Plugin and CO-ODE Tools Edition 1.0. The University of Manchester,
August 27, 2004

[18] Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita and Jos
Lehmann. A theoretical framework for ontology evaluation and validation.
Laboratory for Applied Ontology, ISTC-CNR, Roma (Italy), 2005

[19] Riichiro Mizoguchi and Mitsuru IKEDA. Towards Ontology Engineering.
The Institute of Scientific and industrial Research, Osaka University, 567
Japan. Technical Report AI-TR-96-1, 1996

[20] Salim K. Semy, Kevin N. Hetherington-Young, Steven E. Frey. Ontology
Engieenring: An Application perspective. The MITRE Corporation

[21] Marc Ehrig and York Sure. Ontology Mapping - An Integrated Approach.
Institut fr Angewandte Informatik und Formale Beschreibungsverfahren,
Universitt Karlsruhe (TH), April 2004

[22] O. Lassila, D. McGuinness. The Role of Frame-Based Representation on the
Semantic Web. Technical Report KSL-01-02, Knowledge Systems Labora-
tory, Stanford University

[23] Stephen Cranefield and Martin Purvis. UML as an Ontology Modeling Lan-
guage. In the proceedings of the IJJCAI-99 Workshop on Intelligent Infor-
mation Integration

[24] Stephen Cranefield and Martin Purvis. Applying The web Ontology Lan-
guage to the Management Information Definitions. IEEE Communication Mag-
azine, pages 68-74. July 2004.

[25] Hans Hedbom, Stefan Lindskog, Stefan Axelsson and Erland Jonsson. A
Comparison of the Security of Windows NT and UNIX. Presented at the Third
Nordic Workshop on Secure IT Systems, NORDSEC98, 5-6 November,
1998, Trondheim, Norway. March 2, 1999

72

BIBLIOGRAPHY

[26]]J. Martin Serrano, Joan Serrat and John Strassner Ontology for the Inte-
gration of Context in Network Management Operations and Business Support
Systems. IEEE Communication Magazine, Network and Service Manage-
ment series

[27] Loom Project Home Page http://www.isi.edu/isd/LOOM/. Last retrieved
May 16th 2007

[28] Michael Kifer, Georg Lausen and James Wu. Journal of the Association for
Computing Machinery (ACM), May 1995

[29] Riichiro Mizoguchi. Part 2: Ontology development, tools and languages.
http:/fwww.ei.sanken.osaka-u.ac.jp/pub/miz/Part2V3.pdf. Last retrieved May
16th, 2007

[30] Clabby Analytics. http://www.mkssoftware.com/docs/wp/wp_developersreport.pdf.
Last retrieved May 20, 2007

[31] Racer system Home Website. http://www.racer-
systems.com/products/racerpro/index.phtml/ Last retrieved May 16, 2007

[32] http://www.dmtf.org/standards/stackmap/ Last retrieved May 16, 2007

[33] http://www.wbemsolutions.com/tutorials/CIM/cimtutorial.pdf/ Last retrieved
May 16, 2007

[34] http://www.dmtf.org/about/faq/wbem/ Last retrieved May 16, 2007

[35] Konrad Rzeszutek System Management using ~ WBEM.
http://sblim.sourceforge.net/doc/LWE-2005-02-WBEMSystemMgmt.pdf.
Last retrieved May 20, 2007.

[36] Microsoft Support Website. http://support.microsoft.com/kb/q217098/. Last
retrieved May 18, 2007

[37] the Object Management Group, Inc.(OMG) Common Object Request Broker
Architecture for embedded CORBA. Draft Adopted Specification ptc/06-05-01,
May 2006

[38] Entreprise Management Associate (EMA). Get the truth on Linux Manage-
ment, February 2006

[39] P. Emerald Chung, Yennun Huang, Shalini Yajnik,Deron Liang, Joanne
C. Shih, Chung-Yih Wang and Yi-Min Wang. DCOM and CORBA Side by
Side, Step by Step, and Layer by Layer. September 3, 1997

73

74

A.1. INFERRED TAXONOMY FOR THE WINDOWS NTBACKUP UTILITY
ONTOLOGY GENERATED IN PROTEGE

Appendix A
Appendices

A.1 Inferred taxonomy for the Windows ntbackup utility

ontology generated in Protégé

(" snitchValued)

- —
'
{ switchWalue2)
: ,"‘II///-- — _ —
/ I (_backupTypeSwitch\alue)
/’ (switchvalue - T
/ Ve T U switehvalue1)
“tapeStarageName <———— mediaName)

./f
.r"
{_fileStarage F————— fileName)
S B N S —
- ([UNCNetParh)

f
/
."I —
/ (datast J
f / —
/ / 7 —
/ / — o -
/ _poolNameSwitch) _directoryFath |
—— s —.
| localPath)
_ ~—

dataVerificationSwite

/ !
i
/ / -
/ |/ s i
/ ..r'/ rdware CompressionSwitch
S ——— _
T
'__tapeNameSwltch__l,'

': owl:Thing .;m:Il—\':_..lO\linBackupOperatio

\’syste mstate Switch)

- L
'__f.lleNameSwtcr!.__/-

FileTypeSwiteh

backu pTypeSwite h-:j

P \
- __',._fudlrectolyPatr{._/'

fileListName)
—— T

| wfileName |
__f\- commandi)

chupSetDescription P \"‘--._______ o
) - . eommand2)

A.2. INFERRED TAXONOMY FOR LINUX TAR PROGRAM ONTOLOGY

GENERATED IN PROTEGE
A.2 Inferred taxonomy for Linux tar program ontology

generated in Protégé
o -
— fnc-E‘:ameF'ermlmonF'a;a-_m P

/ T . T
;.r !‘_J'.. complessmnF'alam J
[noSameC}ll.-\llns_-rF'aram_’;I

(exclusionFiIeF‘aterni;' (::o-nIyStoreFiIeNewerThanTlme_._) || ..-"'r -{ permlsslon ﬁ___
o B T ____.-—-"'ﬂ_-_- T T ‘l: [4 keepSameDwnerF‘alam D]
R — — —_—
g time h“fllechangeLates{Tlme_‘,' [4 fllechangeLatele'alam 2 -
S — — I \ e e o —
T — 1 “ -~ _— '\]
— \ (_preserveFPermissionParam
—— ' T — —
g pl_eser\feAccessTlme pl /-{_I)H\.frmcatlonF'ala[nf/.
"“{ command :,'I { archweNameF‘aram%:'
- — e I
/ l'\fptions] ,/\Ij-i_l?l__istF'afT;ﬁu
'rtypebeackup ;-:::]—-fincremF'aram/.'

—~ -
~—
—]
5
-

[preservefccessParam

/
/
il
I
! #
Jllf \‘“---_
! r Rt T
{ keepOldFileParam :'
(onIyStoreFlIeNewerthanF'ararn]
singlefileName

i
/
)
I
I
)
1]
)
)
|
|
|
|
v
{IlnuxElckp Dperatlon *::]—' dataToElacku

ﬁ\ CH .)
'\/updateF'aramq\.
e - -

e el T T

<funct|ons Aﬁ_]—' appendToEnd OfStarage

6\\\ ?appendF'ararn..;'

--H-L""\-\._
—~—
= . ~
(_ereatefrchiveParam)

. T
archiveMame

i — .
{ storage Ié[__ :
1 archivePath)
. o

—
T —
(tapeFileMame ;'

76

A.3. RDF/XML CODE GENERATED WITH PROTEGE FOR THE
WINDOWS NTBACKUP UTILITY ONTOLOGY

A.3 RDF/XML code generated with Protégé for the Win-
dows ntbackup utility Ontology

<?xml version="1.0"7>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY pl "http://www.owl-ontologies.com/assert.owl#" >
<!ENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#" >
1>

<rdf:RDF xmlns="http://protege.stanford.edu/plugins/owl/protege#"
xml:base="http://protege.stanford.edu/plugins/owl/protege"
xmlns:pl="http://www.owl-ontologies.com/assert.owl#"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#">

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://protege.stanford.edu/plugins/owl/
protege"/>

</owl:0Ontology>

<owl:AllDifferent>

<owl:distinctMembers rdf:parseType="Collection"/>
</owl:Al1Different>

<appendSwitch rdf:ID="A"/>

<owl:Class rdf:ID="accessRestrictionSwitch">
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasSwitchValue"/>
<owl:allValuesFrom rdf:resource="#switchValuel"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f rdf:resource="#switch"/>
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#precede"/>
<owl:allValuesFrom rdf:resource="#switchValuel"/>
</owl:Restriction>

</rdfs:subClass0f>

<owl:disjointWith rdf:resource="#logFileTypeSwitch"/>
<owl:disjointWith rdf:resource="#dataVerificationSwitch"/>
<owl:disjointWith rdf:resource="#appendSwitch"/>
<owl:disjointWith rdf:resource="#hardwareCompressionSwitch"/>

77

A.3. RDF/XML CODE GENERATED WITH PROTEGE FOR THE
WINDOWS NTBACKUP UTILITY ONTOLOGY

<owl:disjointWith rdf:resource="#systemstateSwitch"/>
<owl:disjointWith rdf:resource="#backupTypeSwitch"/>
<owl:disjointWith rdf:resource="#tapeNameSwitch"/>
<owl:disjointWith rdf:resource="#mediaNameSwitch"/>
<owl:disjointWith rdf:resource="#fileNameSwitch"/>
<owl:disjointWith rdf:resource="#poolNameSwitch"/>
<owl:disjointWith rdf:resource="#jobNameSwitch"/>
<rdfs:comment rdf:datatype="&xsd;string"

>Restricts access to this tape to the owner or members of the
Administrators group</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="appendSwitch">

<rdfs:subClass0f rdf:resource="#switch"/>
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#NotCompatibleWith"/>
<owl:hasValue rdf:resource="#P"/>

</owl:Restriction>

</rdfs:subClass0f>

<owl:disjointWith rdf:resource="#fileNameSwitch"/>
<owl:disjointWith rdf:resource="#backupTypeSwitch"/>
<owl:disjointWith rdf:resource="#logFileTypeSwitch"/>
<owl:disjointWith rdf:resource="#systemstateSwitch"/>
<owl:disjointWith rdf:resource="#jobNameSwitch"/>
<owl:disjointWith rdf:resource="#poolNameSwitch"/>
<owl:disjointWith rdf:resource="#accessRestrictionSwitch"/>
<owl:disjointWith rdf:resource="#dataVerificationSwitch"/>
<owl:disjointWith rdf:resource="#hardwareCompressionSwitch"/>
<owl:disjointWith rdf:resource="#tapeNameSwitch"/>
<owl:disjointWith rdf:resource="#mediaNameSwitch"/>
</owl:Class>

<command?2 rdf:ID="backup"/>

<owl:Class rdf:ID="BackupSetDescription">
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#isLabelOf"/>
<owl:allValuesFrom rdf:resource="#dataStorage"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f rdf:resource="#winBackupOperation"/>
<owl:disjointWith rdf:resource="#fileStorage"/>
<owl:disjointWith rdf:resource="#command"/>
<owl:disjointWith rdf:resource="#dataToBckp"/>
<owl:disjointWith rdf:resource="#switchValue"/>
<owl:disjointWith rdf:resource="#jobName"/>
<owl:disjointWith rdf:resource="#tapeStorageName"/>
<owl:disjointWith rdf:resource="#switch"/>

78

A.3. RDF/XML CODE GENERATED WITH PROTEGE FOR THE
WINDOWS NTBACKUP UTILITY ONTOLOGY

<owl:disjointWith rdf:resource="#dataStorage"/>
</owl:Class>

<owl:Class rdf:ID="backupTypeSwitch">

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasSwitchValue"/>
<owl:allValuesFrom rdf:resource="#backupTypeSwitchValue"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#precede"/>
<owl:allValuesFrom rdf:resource="#backupTypeSwitchValue"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f rdf:resource="#switch"/>
<owl:disjointWith rdf:resource="#accessRestrictionSwitch"/>
<owl:disjointWith rdf:resource="#dataVerificationSwitch"/>
<owl:disjointWith rdf:resource="#poolNameSwitch"/>
<owl:disjointWith rdf:resource="#jobNameSwitch"/>
<owl:disjointWith rdf:resource="#appendSwitch"/>
<owl:disjointWith rdf:resource="#fileNameSwitch"/>
<owl:disjointWith rdf:resource="#tapeNameSwitch"/>
<owl:disjointWith rdf:resource="#systemstateSwitch"/>
<owl:disjointWith rdf:resource="#logFileTypeSwitch"/>
<owl:disjointWith rdf:resource="#hardwareCompressionSwitch"/>
<owl:disjointWith rdf:resource="#mediaNameSwitch"/>
<rdfs:comment rdf:datatype="&xsd;string"

>Specifies the backup type. It must be one of the following:
normal, copy, differential, incremental, or daily</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="backupTypeSwitchValue">
<rdfs:subClass0f rdf:resource="#switchValue"/>
<owl:disjointWith rdf:resource="#switchValue3"/>
<owl:disjointWith rdf:resource="#switchValue2"/>
<owl:disjointWith rdf:resource="#switchValuel"/>
</owl:Class>

<owl:Class rdf:ID="command">

<rdfs:subClass0f rdf:resource="#winBackupOperation"/>
<owl:disjointWith rdf:resource="#BackupSetDescription"/>
<owl:disjointWith rdf:resource="#dataStorage"/>
<owl:disjointWith rdf:resource="#dataToBckp"/>
<owl:disjointWith rdf:resource="#jobName"/>
<owl:disjointWith rdf:resource="#switch"/>
<owl:disjointWith rdf:resource="#switchValue"/>
</owl:Class>

<owl:Class rdf:ID="commandl">

79

A.3. RDF/XML CODE GENERATED WITH PROTEGE FOR THE
WINDOWS NTBACKUP UTILITY ONTOLOGY

<rdfs:subClass0f rdf:resource="#command"/>
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#precede"/>
<owl:hasValue rdf:resource="#backup"/>
</owl:Restriction>

</rdfs:subClass0f>

<owl:disjointWith rdf:resource="#command2"/>
</owl:Class>

<owl:Class rdf:ID="command2">

<rdfs:subClass0f rdf:resource="#command"/>
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#follow"/>
<owl:hasValue rdf:resource="#ntbackup"/>
</owl:Restriction>

</rdfs:subClass0f>

<owl:disjointWith rdf:resource="#commandl"/>
</owl:Class>

<owl:0bjectProperty rdf:ID="compatibleWith">
<rdfs:domain rdf:resource="#switch"/>

<rdfs:range rdf:resource="#switch"/>
</owl:0bjectProperty>

<backupTypeSwitchValue rdf:ID="copy"/>
<backupTypeSwitchValue rdf:ID="daily"/>

<owl:Class rdf:ID="dataStorage">

<rdfs:subClass0f rdf:resource="#winBackupOperation"/>
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasLabel"/>
<owl:allValuesFrom rdf:resource="#BackupSetDescription"/>
</owl:Restriction>

</rdfs:subClass0f>

<owl:disjointWith rdf:resource="#dataToBckp"/>
<owl:disjointWith rdf:resource="#BackupSetDescription"/>
<owl:disjointWith rdf:resource="#command"/>
<owl:disjointWith rdf:resource="#jobName"/>
<owl:disjointWith rdf:resource="#switch"/>
<owl:disjointWith rdf:resource="#switchValue"/>
</owl:Class>

<owl:Class rdf:ID="dataToBckp">

<rdfs:subClass0f rdf:resource="#winBackupOperation"/>
<owl:disjointWith rdf:resource="#dataStorage"/>
<owl:disjointWith rdf:resource="#BackupSetDescription"/>
<owl:disjointWith rdf:resource="#command"/>
<owl:disjointWith rdf:resource="#jobName"/>
<owl:disjointWith rdf:resource="#switch"/>

80

A.3. RDF/XML CODE GENERATED WITH PROTEGE FOR THE
WINDOWS NTBACKUP UTILITY ONTOLOGY

<owl:disjointWith rdf:resource="#switchValue"/>
</owl:Class>

<owl:Class rdf:ID="dataVerificationSwitch">
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasSwitchValue"/>
<owl:allValuesFrom rdf:resource="#switchValuel"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#precede"/>
<owl:allValuesFrom rdf:resource="#switchValuel"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f rdf:resource="#switch"/>
<owl:disjointWith rdf:resource="#poolNameSwitch"/>
<owl:disjointWith rdf:resource="#systemstateSwitch"/>
<owl:disjointWith rdf:resource="#mediaNameSwitch"/>
<owl:disjointWith rdf:resource="#appendSwitch"/>
<owl:disjointWith rdf:resource="#backupTypeSwitch"/>
<owl:disjointWith rdf:resource="#jobNameSwitch"/>
<owl:disjointWith rdf:resource="#accessRestrictionSwitch"/>
<owl:disjointWith rdf:resource="#hardwareCompressionSwitch"/>
<owl:disjointWith rdf:resource="#fileNameSwitch"/>
<owl:disjointWith rdf:resource="#logFileTypeSwitch"/>
<owl:disjointWith rdf:resource="#tapeNameSwitch"/>
<rdfs:comment rdf:datatype="&xsd;string"

>Verifies the data after the backup is complete.</rdfs:comment>
</owl:Class>

<backupTypeSwitchValue rdf:ID="differential"/>
<owl:Class rdf:ID="directoryPath">

<rdfs:subClass0f rdf:resource="#fileStorage"/>
<owl:disjointWith rdf:resource="#fileName"/>
</owl:Class>

<fileNameSwitch rdf:ID="F"/>

<switchValue3 rdf:ID="f"/>

<owl:Class rdf:ID="fileListName">

<rdfs:subClass0f rdf:resource="#dataToBckp"/>
<owl:disjointWith rdf:resource="#wdirectoryPath"/>
<owl:disjointWith rdf:resource="#wfileName"/>
</owl:Class>

<owl:Class rdf:ID="fileName">

<rdfs:subClass0f rdf:resource="#fileStorage"/>
<owl:disjointWith rdf:resource="#directoryPath"/>
</owl:Class>

<owl:Class rdf:ID="fileNameSwitch">

81

A.3. RDF/XML CODE GENERATED WITH PROTEGE FOR THE
WINDOWS NTBACKUP UTILITY ONTOLOGY

<rdfs:subClass0f rdf:resource="#switch"/>
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#NotCompatibleWith"/>
<owl:hasValue rdf:resource="#T"/>

</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#isSwitch0f"/>
<owl:allValuesFrom rdf:resource="#fileName"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#NotCompatibleWith"/>
<owl:hasValue rdf:resource="#J"/>

</owl:Restriction>

</rdfs:subClass0f>

<owl:disjointWith rdf:resource="#mediaNameSwitch"/>
<owl:disjointWith rdf:resource="#tapeNameSwitch"/>
<owl:disjointWith rdf:resource="#appendSwitch"/>
<owl:disjointWith rdf:resource="#poolNameSwitch"/>
<owl:disjointWith rdf:resource="#accessRestrictionSwitch"/>
<owl:disjointWith rdf:resource="#backupTypeSwitch"/>
<owl:disjointWith rdf:resource="#logFileTypeSwitch"/>
<owl:disjointWith rdf:resource="#jobNameSwitch"/>
<owl:disjointWith rdf:resource="#systemstateSwitch"/>
<owl:disjointWith rdf:resource="#hardwareCompressionSwitch"/>
<owl:disjointWith rdf:resource="#dataVerificationSwitch"/>
</owl:Class>

<owl:Class rdf:ID="fileStorage">

<rdfs:subClass0f rdf:resource="#dataStorage"/>
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasSwitch"/>
<owl:hasValue rdf:resource="#F"/>

</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#follow"/>
<owl:hasValue rdf:resource="#F"/>

</owl:Restriction>

</rdfs:subClass0f>

<owl:disjointWith rdf:resource="#BackupSetDescription"/>
<owl:disjointWith rdf:resource="#tapeStorageName"/>

82

A.3. RDF/XML CODE GENERATED WITH PROTEGE FOR THE
WINDOWS NTBACKUP UTILITY ONTOLOGY

</owl:Class>

<owl:0bjectProperty rdf:ID="follow">

<owl:inverseOf rdf:resource="#precede"/>
</owl:0bjectProperty>

<owl:Class rdf:ID="hardwareCompressionSwitch">
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasSwitchValue"/>
<owl:allValuesFrom rdf:resource="#switchValue2"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f rdf:resource="#switch"/>
<owl:disjointWith rdf:resource="#appendSwitch"/>
<owl:disjointWith rdf:resource="#accessRestrictionSwitch"/>
<owl:disjointWith rdf:resource="#backupTypeSwitch"/>
<owl:disjointWith rdf:resource="#tapeNameSwitch"/>
<owl:disjointWith rdf:resource="#poolNameSwitch"/>
<owl:disjointWith rdf:resource="#mediaNameSwitch"/>
<owl:disjointWith rdf:resource="#jobNameSwitch"/>
<owl:disjointWith rdf:resource="#dataVerificationSwitch"/>
<owl:disjointWith rdf:resource="#logFileTypeSwitch"/>
<owl:disjointWith rdf:resource="#systemstateSwitch"/>
<owl:disjointWith rdf:resource="#fileNameSwitch"/>
<rdfs:comment rdf:datatype="&xsd;string"

>Uses hardware compression, if available, on the tape drive.
</rdfs:comment>

</owl:Class>

<owl:0ObjectProperty rdf:ID="hasEndTime"/>
<owl:0bjectProperty rdf:ID="hasFrequency"/>
<owl:0bjectProperty rdf:ID="hasLabel">

<owl:inverseOf rdf:resource="#isLabelOf"/>
</owl:0bjectProperty>

<owl:0ObjectProperty rdf:ID="hasName"/>
<owl:0bjectProperty rdf:ID="hasPath">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>
</owl:0bjectProperty>

<owl:0ObjectProperty rdf:ID="hasSize"/>
<owl:0ObjectProperty rdf:ID="hasStartingTime"/>
<owl:0bjectProperty rdf:ID="hasSwitch">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#dataStorage"/>

<owl:Class rdf:about="#dataToBckp"/>

<owl:Class rdf:about="#jobName"/>

</owl:union0f>

83

A.3. RDF/XML CODE GENERATED WITH PROTEGE FOR THE
WINDOWS NTBACKUP UTILITY ONTOLOGY

</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource="#switch"/>
<owl:inverseOf rdf:resource="#isSwitchOf"/>
</owl:0bjectProperty>

<owl:0bjectProperty rdf:ID="hasSwitchValue">
<owl:inverseOf rdf:resource="#isSwitchValue"/>
</owl:0bjectProperty>
<hardwareCompressionSwitch rdf:ID="HC"/>
<backupTypeSwitchValue rdf:ID="incremental"/>
<owl:0bjectProperty rdf:ID="isLabelOf">
<owl:inverseOf rdf:resource="#hasLabel"/>
</owl:0bjectProperty>

<owl:0bjectProperty rdf:ID="isSwitchOf">
<rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>
<rdfs:domain rdf:resource="#switch"/>
<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#dataStorage"/>
<owl:Class rdf:about="#dataToBckp"/>
<owl:Class rdf:about="#jobName"/>
</owl:union0f>

</owl:Class>

</rdfs:range>

<owl:inverseOf rdf:resource="#hasSwitch"/>
<rdfs:comment rdf:datatype="&xsd;string"></rdfs:comment>
</owl:0bjectProperty>

<owl:0ObjectProperty rdf:ID="isSwitchValue">
<owl:inverse0f rdf:resource="#hasSwitchValue"/>
</owl:0bjectProperty>

<jobNameSwitch rdf:ID="J"/>

<owl:Class rdf:ID="jobName">

<rdfs:subClass0f rdf:resource="#winBackupOperation"/>
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasSwitch"/>
<owl:hasValue rdf:resource="#J"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#follow"/>
<owl:hasValue rdf:resource="#J"/>
</owl:Restriction>

</rdfs:subClass0f>

<owl:disjointWith rdf:resource="#dataToBckp"/>

84

A.3. RDF/XML CODE GENERATED WITH PROTEGE FOR THE
WINDOWS NTBACKUP UTILITY ONTOLOGY

<owl:disjointWith rdf:resource="#BackupSetDescription"/>
<owl:disjointWith rdf:resource="#switch"/>
<owl:disjointWith rdf:resource="#command"/>
<owl:disjointWith rdf:resource="#dataStorage"/>
<owl:disjointWith rdf:resource="#switchValue"/>
<rdfs:comment rdf:datatype="&xsd;string"

>name of the job as written in the log file</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="jobNameSwitch">

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#isSwitchOf"/>
<owl:allValuesFrom rdf:resource="#jobName"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f rdf:resource="#switch"/>

<owl:disjointWith rdf:resource="#backupTypeSwitch"/>
<owl:disjointWith rdf:resource="#mediaNameSwitch"/>
<owl:disjointWith rdf:resource="#accessRestrictionSwitch"/>
<owl:disjointWith rdf:resource="#tapeNameSwitch"/>
<owl:disjointWith rdf:resource="#poolNameSwitch"/>
<owl:disjointWith rdf:resource="#appendSwitch"/>
<owl:disjointWith rdf:resource="#logFileTypeSwitch"/>
<owl:disjointWith rdf:resource="#systemstateSwitch"/>
<owl:disjointWith rdf:resource="#dataVerificationSwitch"/>
<owl:disjointWith rdf:resource="#fileNameSwitch"/>
<owl:disjointWith rdf:resource="#hardwareCompressionSwitch"/>
<rdfs:comment rdf:datatype="&xsd;string"

>Specifies the job name to be used in the log file The job name
usually describes the files and folders you are backing up in
the current backup job as well as the date and time you backed up
the files.</rdfs:comment>

</owl:Class>

<logFileTypeSwitch rdf:ID="L"/>

<switchValue3 rdf:ID="1"/>

<owl:Class rdf:ID="localPath">

<rdfs:subClass0f rdf:resource="#directoryPath"/>
<owl:disjointWith rdf:resource="#UNCNetParh"/>

</owl:Class>

<owl:Class rdf:ID="logFileTypeSwitch">

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasSwitchValue"/>
<owl:allValuesFrom rdf:resource="#switchValue3"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f rdf:resource="#switch"/>

85

A.3. RDF/XML CODE GENERATED WITH PROTEGE FOR THE
WINDOWS NTBACKUP UTILITY ONTOLOGY

<owl:disjointWith rdf:resource="#jobNameSwitch"/>
<owl:disjointWith rdf:resource="#appendSwitch"/>
<owl:disjointWith rdf:resource="#hardwareCompressionSwitch"/>
<owl:disjointWith rdf:resource="#fileNameSwitch"/>
<owl:disjointWith rdf:resource="#poolNameSwitch"/>
<owl:disjointWith rdf:resource="#systemstateSwitch"/>
<owl:disjointWith rdf:resource="#dataVerificationSwitch"/>
<owl:disjointWith rdf:resource="#accessRestrictionSwitch"/>
<owl:disjointWith rdf:resource="#tapeNameSwitch"/>
<owl:disjointWith rdf:resource="#backupTypeSwitch"/>
<owl:disjointWith rdf:resource="#mediaNameSwitch"/>
<rdfs:comment rdf:datatype="&xsd;string"

>Specifies the type of log file: f=full, s=summary, n=none
(no log file is created).</rdfs:comment>

</owl:Class>

<backupTypeSwitch rdf:ID="M"/>

<owl:Class rdf:ID="mediaName">

<rdfs:subClass0f rdf:resource="#tapeStorageName"/>
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasSwitch"/>

<owl:hasValue rdf:resource="#N"/>

</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#follow"/>

<owl:hasValue rdf:resource="#N"/>

</owl:Restriction>

</rdfs:subClass0f>

<owl:disjointWith rdf:resource="#tapeName"/>

</owl:Class>

<owl:Class rdf:ID="mediaNameSwitch">

<rdfs:subClass0f rdf:resource="#switch"/>
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#isSwitchOf"/>
<owl:allValuesFrom rdf:resource="#mediaName"/>
</owl:Restriction>

</rdfs:subClass0f>

<owl:disjointWith rdf:resource="#dataVerificationSwitch"/>
<owl:disjointWith rdf:resource="#appendSwitch"/>
<owl:disjointWith rdf:resource="#tapeNameSwitch"/>
<owl:disjointWith rdf:resource="#jobNameSwitch"/>
<owl:disjointWith rdf:resource="#poolNameSwitch"/>
<owl:disjointWith rdf:resource="#logFileTypeSwitch"/>
<owl:disjointWith rdf:resource="#accessRestrictionSwitch"/>

86

A.3. RDF/XML CODE GENERATED WITH PROTEGE FOR THE
WINDOWS NTBACKUP UTILITY ONTOLOGY

<owl:disjointWith rdf:resource="#fileNameSwitch"/>
<owl:disjointWith rdf:resource="#hardwareCompressionSwitch"/>
<owl:disjointWith rdf:resource="#backupTypeSwitch"/>
<owl:disjointWith rdf:resource="#systemstateSwitch"/>
</owl:Class>

<owl:0ObjectProperty rdf:ID="MustBeUsedWith"/>
<mediaNameSwitch rdf:ID="N"/>

<switchValue3 rdf:ID="n"/>

<switchValuel rdf:ID="no"/>

<backupTypeSwitchValue rdf:ID="normal"/>
<owl:0bjectProperty rdf:ID="NotCompatibleWith">
<rdf:type rdf:resource="&owl;SymmetricProperty"/>
<rdf:type rdf:resource="&owl;TransitiveProperty"/>
<rdfs:domain rdf:resource="#switch"/>

<rdfs:range rdf:resource="#switch"/>

<owl:inverseOf rdf:resource="#NotCompatibleWith"/>
</owl:0bjectProperty>

<commandl rdf:ID="ntbackup"/>

<switchValue2 rdf:ID="off"/>

<switchValue2 rdf:ID="on"/>

<poolNameSwitch rdf:ID="P"/>

<owl:Class rdf:ID="poolNameSwitch">

<rdfs:subClass0f rdf:resource="#switch"/>
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#NotCompatibleWith"/>
<owl:hasValue rdf:resource="#F"/>

</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#NotCompatibleWith"/>
<owl:hasValue rdf:resource="#A"/>

</owl:Restriction>

</rdfs:subClass0f>

<owl:disjointWith rdf:resource="#mediaNameSwitch"/>
<owl:disjointWith rdf:resource="#logFileTypeSwitch"/>
<owl:disjointWith rdf:resource="#tapeNameSwitch"/>
<owl:disjointWith rdf:resource="#jobNameSwitch"/>
<owl:disjointWith rdf:resource="#systemstateSwitch"/>
<owl:disjointWith rdf:resource="#backupTypeSwitch"/>
<owl:disjointWith rdf:resource="#fileNameSwitch"/>
<owl:disjointWith rdf:resource="#dataVerificationSwitch"/>
<owl:disjointWith rdf:resource="#appendSwitch"/>
<owl:disjointWith rdf:resource="#accessRestrictionSwitch"/>
<owl:disjointWith rdf:resource="#hardwareCompressionSwitch"/>
</owl:Class>

87

A.3. RDF/XML CODE GENERATED WITH PROTEGE FOR THE
WINDOWS NTBACKUP UTILITY ONTOLOGY

<owl:0bjectProperty rdf:ID="precede">

<owl:inverseOf rdf:resource="#follow"/>
</owl:0bjectProperty>

<accessRestrictionSwitch rdf:ID="R"/>

<owl:Class rdf:ID="switch">

<rdfs:subClass0f rdf:resource="#winBackupOperation"/>
<owl:disjointWith rdf:resource="#BackupSetDescription"/>
<owl:disjointWith rdf:resource="#command"/>
<owl:disjointWith rdf:resource="#dataStorage"/>
<owl:disjointWith rdf:resource="#dataToBckp"/>
<owl:disjointWith rdf:resource="#jobName"/>
<owl:disjointWith rdf:resource="#switchValue"/>
</owl:Class>

<owl:Class rdf:ID="switchValue">

<rdfs:subClass0f rdf:resource="#winBackupOperation"/>
<owl:disjointWith rdf:resource="#BackupSetDescription"/>
<owl:disjointWith rdf:resource="#command"/>
<owl:disjointWith rdf:resource="#dataStorage"/>
<owl:disjointWith rdf:resource="#dataToBckp"/>
<owl:disjointWith rdf:resource="#jobName"/>
<owl:disjointWith rdf:resource="#switch"/>

<rdfs:comment rdf:datatype="&xsd;string"

>some values from specific switches : /RS:{yes|no}

and HC:{onl|off}</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="switchValuel">

<rdfs:subClass0f rdf:resource="#switchValue"/>
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#isSwitchValue"/>
<owl:someValuesFrom rdf:resource="#accessRestrictionSwitch"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#isSwitchValue"/>
<owl:someValuesFrom rdf:resource="#dataVerificationSwitch"/>
</owl:Restriction>

</rdfs:subClass0f>

<owl:disjointWith rdf:resource="#switchValue3"/>
<owl:disjointWith rdf:resource="#switchValue2"/>
<owl:disjointWith rdf:resource="#backupTypeSwitchValue"/>
</owl:Class>

<owl:Class rdf:ID="switchValue2">

<rdfs:subClass0f rdf:resource="#switchValue"/>
<owl:disjointWith rdf:resource="#switchValue3"/>
<owl:disjointWith rdf:resource="#switchValuel"/>

88

A.3. RDF/XML CODE GENERATED WITH PROTEGE FOR THE
WINDOWS NTBACKUP UTILITY ONTOLOGY

<owl:disjointWith rdf:resource="#backupTypeSwitchValue"/>
</owl:Class>

<owl:Class rdf:ID="switchValue3">

<rdfs:subClass0f rdf:resource="#switchValue"/>
<owl:disjointWith rdf:resource="#switchValue2"/>
<owl:disjointWith rdf:resource="#switchValuel"/>
<owl:disjointWith rdf:resource="#backupTypeSwitchValue"/>
</owl:Class>

<owl:Class rdf:ID="systemstateSwitch">

<rdfs:subClass0f rdf:resource="#switch"/>
<owl:disjointWith rdf:resource="#dataVerificationSwitch"/>
<owl:disjointWith rdf:resource="#fileNameSwitch"/>
<owl:disjointWith rdf:resource="#hardwareCompressionSwitch"/>
<owl:disjointWith rdf:resource="#appendSwitch"/>
<owl:disjointWith rdf:resource="#poolNameSwitch"/>
<owl:disjointWith rdf:resource="#jobNameSwitch"/>
<owl:disjointWith rdf:resource="#accessRestrictionSwitch"/>
<owl:disjointWith rdf:resource="#logFileTypeSwitch"/>
<owl:disjointWith rdf:resource="#backupTypeSwitch"/>
<owl:disjointWith rdf:resource="#mediaNameSwitch"/>
<owl:disjointWith rdf:resource="#tapeNameSwitch"/>
</owl:Class>

<tapeNameSwitch rdf:ID="T"/>

<owl:Class rdf:ID="tapeName">

<rdfs:subClass0f rdf:resource="#tapeStorageName"/>
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasSwitch"/>

<owl:hasValue rdf:resource="#T"/>

</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#follow"/>

<owl:hasValue rdf:resource="#T"/>

</owl:Restriction>

</rdfs:subClass0f>

<owl:disjointWith rdf:resource="#mediaName"/>
</owl:Class>

<owl:Class rdf:ID="tapeNameSwitch'">

<rdfs:subClass0f rdf:resource="#switch"/>
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasSwitch"/>
<owl:allValuesFrom rdf:resource="#tapeName"/>
</owl:Restriction>

</rdfs:subClass0f>

89

A.3. RDF/XML CODE GENERATED WITH PROTEGE FOR THE
WINDOWS NTBACKUP UTILITY ONTOLOGY

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#NotCompatibleWith"/>
<owl:hasValue rdf:resource="#P"/>

</owl:Restriction>

</rdfs:subClass0f>

<owl:disjointWith rdf:resource="#dataVerificationSwitch"/>
<owl:disjointWith rdf:resource="#fileNameSwitch"/>
<owl:disjointWith rdf:resource="#mediaNameSwitch"/>
<owl:disjointWith rdf:resource="#jobNameSwitch"/>
<owl:disjointWith rdf:resource="#logFileTypeSwitch"/>
<owl:disjointWith rdf:resource="#hardwareCompressionSwitch"/>
<owl:disjointWith rdf:resource="#poolNameSwitch"/>
<owl:disjointWith rdf:resource="#backupTypeSwitch"/>
<owl:disjointWith rdf:resource="#accessRestrictionSwitch"/>
<owl:disjointWith rdf:resource="#appendSwitch"/>
<owl:disjointWith rdf:resource="#systemstateSwitch"/>
</owl:Class>

<owl:Class rdf:ID="tapeStorageName">

<rdfs:subClass0f rdf:resource="#dataStorage"/>
<owl:disjointWith rdf:resource="#BackupSetDescription"/>
<owl:disjointWith rdf:resource="#fileStorage"/>
</owl:Class>

<owl:Class rdf:ID="UNCNetParh">

<rdfs:subClass0f rdf:resource="#directoryPath"/>
<owl:disjointWith rdf:resource="#localPath"/>
</owl:Class>

<dataVerificationSwitch rdf:ID="V"/>

<owl:Class rdf:ID="wdirectoryPath">

<rdfs:subClass0f rdf:resource="#dataToBckp"/>
<owl:disjointWith rdf:resource="#fileListName"/>
<owl:disjointWith rdf:resource="#wfileName"/>
</owl:Class>

<owl:Class rdf:ID="wfileName">

<rdfs:subClass0f rdf:resource="#dataToBckp"/>
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasPath"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>

</rdfs:subClass0f>

<owl:disjointWith rdf:resource="#fileListName"/>
<owl:disjointWith rdf:resource="#wdirectoryPath"/>
</owl:Class>

<owl:Class rdf:ID="winBackupOperation"/>

<switchValuel rdf:ID="yes"/>

</rdf :RDF>

90

A.4. RDF/XML CODE GENERATED WITH PROTEGE FOR THE TAR
LINUX BACKUP ONTOLOGY

A4 RDF/XML code generated with Protégé for the tar
Linux backup ontology

<?xml version="1.0"7>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.o0rg/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<VENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY pl "http://www.owl-ontologies.com/assert.owl#" >
<IENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
1>

<rdf :RDF xmlns="http://www.owl-ontologies.com/Ontology1177518345.owl#"
xml :base="http://www.owl-ontologies.com/Ontology1177518345.0owl"
xmlns:pl="http://www.owl-ontologies.com/assert.owl#"
xmlns:xsd="http://wuw.w3.0rg/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#">
<owl:Ontology rdf:about=""/>

<appendParam rdf:ID="A"/>

<owl:Class rdf:ID="appendParam">

<rdfs:subClass0f rdf:resource="#functions"/>
<owl:disjointWith rdf:resource="#appendToEndOfStorage"/>
<owl:disjointWith rdf:resource="#createArchiveParam"/>
<owl:disjointWith rdf:resource="#updateParam"/>
<rdfs:comment rdf:datatype="&xsd;string"

>append tar files to an archive</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="appendToEndOfStorage">
<rdfs:subClass0f rdf:resource="#functions"/>
<owl:disjointWith rdf:resource="#appendParam"/>
<owl:disjointWith rdf:resource="#createArchiveParam"/>
<owl:disjointWith rdf:resource="#updateParam"/>
<rdfs:comment rdf:datatype="&xsd;string"

>append files to the end of an archive</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="archiveName">

<rdfs:subClass0f rdf:resource="#storage"/>
<owl:disjointWith rdf:resource="#tapeFileName"/>
<owl:disjointWith rdf:resource="#archivePath"/>
</owl:Class>

<owl:Class rdf:ID="archiveNameParam">

<rdfs:subClass0f>

91

A.4. RDF/XML CODE GENERATED WITH PROTEGE FOR THE TAR
LINUX BACKUP ONTOLOGY

<owl:Restriction>

<owl:onProperty rdf:resource="#isParam0f"/>
<owl:allValuesFrom rdf:resource="#storage"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f rdf:resource="#options"/>
<owl:disjointWith rdf:resource="#preserveAccessParam"/>
<owl:disjointWith rdf:resource="#typeOfbackup"/>
<owl:disjointWith rdf:resource="#permission"/>
<owl:disjointWith rdf:resource="#compressionParam"/>
<owl:disjointWith rdf:resource="#fileListParam"/>
<owl:disjointWith rdf:resource="#verificationParam"/>
<owl:disjointWith rdf:resource="#fileChangeLatestParam"/>
<owl:disjointWith rdf:resource="#keepOldFileParam"/>
<owl:disjointWith rdf:resource="#onlyStoreFileNewerthanParam"/>
<owl:disjointWith rdf:resource="#exclusionParam"/>
</owl:Class>

<owl:Class rdf:ID="archivePath">

<rdfs:subClass0f rdf:resource="#storage"/>
<owl:disjointWith rdf:resource="#tapeFileName"/>
<owl:disjointWith rdf:resource="#archiveName"/>
</owl:Class>

<preserveAccessParam rdf:ID="atime-preserve"/>
<createArchiveParam rdf:ID="c"/>

<owl:Class rdf:ID="command">

<rdfs:subClass0f rdf:resource="#linuxBckp_Operation"/>
<owl:disjointWith rdf:resource="#dataToBackup"/>
<owl:disjointWith rdf:resource="#functions"/>
<owl:disjointWith rdf:resource="#options"/>
<owl:disjointWith rdf:resource="#storage"/>

</owl:Class>

<owl:0bjectProperty rdf:ID="compatibleWith">
<owl:inverseOf rdf:resource="#incompatibeWith"/>
</owl:0bjectProperty>

<owl:Class rdf:ID="compressionParam">

<rdfs:subClass0f rdf:resource="#options"/>
<owl:disjointWith rdf:resource="#preserveAccessParam"/>
<owl:disjointWith rdf:resource="#exclusionParam"/>
<owl:disjointWith rdf:resource="#archiveNameParam"/>
<owl:disjointWith rdf:resource="#typeOfbackup"/>
<owl:disjointWith rdf:resource="#fileChangeLatestParam"/>
<owl:disjointWith rdf:resource="#fileListParam"/>
<owl:disjointWith rdf:resource="#verificationParam"/>
<owl:disjointWith rdf:resource="#keepOldFileParam"/>
<owl:disjointWith rdf:resource="#onlyStoreFileNewerthanParam"/>
<owl:disjointWith rdf:resource="#permission"/>
<rdfs:comment rdf:datatype="&xsd;string"></rdfs:comment>

92

A.4. RDF/XML CODE GENERATED WITH PROTEGE FOR THE TAR
LINUX BACKUP ONTOLOGY

</owl:Class>

<owl:Class rdf:ID="createArchiveParam">

<rdfs:subClass0f rdf:resource="#functions"/>
<owl:disjointWith rdf:resource="#appendParam"/>
<owl:disjointWith rdf:resource="#appendToEndOfStorage"/>
<owl:disjointWith rdf:resource="#updateParam"/>
<rdfs:comment rdf:datatype="&xsd;string"

>create a new Archive</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="dataToBackup">

<rdfs:subClass0f rdf:resource="#linuxBckp_Operation"/>
<owl:disjointWith rdf:resource="#command"/>
<owl:disjointWith rdf:resource="#functions"/>
<owl:disjointWith rdf:resource="#options"/>
<owl:disjointWith rdf:resource="#storage"/>

</owl:Class>

<owl:Class rdf:ID="directoryToBckpPath">
<rdfs:subClass0f rdf:resource="#dataToBackup"/>
<owl:disjointWith rdf:resource="#singlefileName"/>
<owl:disjointWith rdf:resource="#fileListName"/>
</owl:Class>

<owl:Class rdf:ID="exclusionFilePatern">
<owl:disjointWith rdf:resource="#time"/>
<owl:disjointWith rdf:resource="#linuxBckp_Operation"/>
</owl:Class>

<owl:Class rdf:ID="exclusionParam">

<rdfs:subClass0f rdf:resource="#options"/>
<owl:disjointWith rdf:resource="#preserveAccessParam"/>
<owl:disjointWith rdf:resource="#fileChangeLatestParam"/>
<owl:disjointWith rdf:resource="#verificationParam"/>
<owl:disjointWith rdf:resource="#keepOldFileParam"/>
<owl:disjointWith rdf:resource="#permission"/>
<owl:disjointWith rdf:resource="#typeOfbackup"/>
<owl:disjointWith rdf:resource="#compressionParam"/>
<owl:disjointWith rdf:resource="#archiveNameParam"/>
<owl:disjointWith rdf:resource="#fileListParam"/>
<owl:disjointWith rdf:resource="#onlyStoreFileNewerthanParam"/>
<rdfs:comment rdf:datatype="&xsd;string"

>exclude files matching patterns listed in FILE</rdfs:comment>
</owl:Class>

<archiveNameParam rdf:ID="f"/>

<owl:Class rdf:ID="fileChangelatestParam">
<rdfs:subClass0f rdf:resource="#options"/>
<owl:disjointWith rdf:resource="#fileListParam"/>
<owl:disjointWith rdf:resource="#typeOfbackup"/>
<owl:disjointWith rdf:resource="#onlyStoreFileNewerthanParam"/>
<owl:disjointWith rdf:resource="#archiveNameParam"/>

93

A.4. RDF/XML CODE GENERATED WITH PROTEGE FOR THE TAR
LINUX BACKUP ONTOLOGY

<owl:disjointWith rdf:resource="#exclusionParam"/>
<owl:disjointWith rdf:resource="#preserveAccessParam"/>
<owl:disjointWith rdf:resource="#verificationParam"/>
<owl:disjointWith rdf:resource="#keepOldFileParam"/>
<owl:disjointWith rdf:resource="#permission"/>
<owl:disjointWith rdf:resource="#compressionParam"/>
<rdfs:comment rdf:datatype="&xsd;string"

>only store files whose contents have changed after DATE</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="fileChangelLatestTime">
<rdfs:subClass0f rdf:resource="#time"/>
<owl:disjointWith rdf:resource="#preserveAccessTime"/>
<owl:disjointWith rdf:resource="#onlyStoreFileNewerThanTime"/>
</owl:Class>

<owl:Class rdf:ID="fileListName">

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasParam"/>
<owl:hasValue rdf:resource="#T"/>

</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f rdf:resource="#dataToBackup"/>
<owl:disjointWith rdf:resource="#singlefileName"/>
<owl:disjointWith rdf:resource="#directoryToBckpPath"/>
</owl:Class>

<owl:Class rdf:ID="fileListParam">

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#isParam0f"/>
<owl:allValuesFrom rdf:resource="#fileListName"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f rdf:resource="#options"/>
<owl:disjointWith rdf:resource="#typeOfbackup"/>
<owl:disjointWith rdf:resource="#fileChangeLatestParam"/>
<owl:disjointWith rdf:resource="#onlyStoreFileNewerthanParam"/>
<owl:disjointWith rdf:resource="#verificationParam"/>
<owl:disjointWith rdf:resource="#permission"/>
<owl:disjointWith rdf:resource="#compressionParam"/>
<owl:disjointWith rdf:resource="#archiveNameParam"/>
<owl:disjointWith rdf:resource="#preserveAccessParam"/>
<owl:disjointWith rdf:resource="#keepOldFileParam"/>
<owl:disjointWith rdf:resource="#exclusionParam"/>
</owl:Class>

<owl:0bjectProperty rdf:ID="follow">

<owl:inverseQOf rdf:resource="#precede"/>
</owl:0bjectProperty>

94

A.4. RDF/XML CODE GENERATED WITH PROTEGE FOR THE TAR
LINUX BACKUP ONTOLOGY

<owl:Class rdf:ID="functions">

<rdfs:subClass0f rdf:resource="#linuxBckp_Operation"/>
<owl:disjointWith rdf:resource="#command"/>
<owl:disjointWith rdf:resource="#dataToBackup"/>
<owl:disjointWith rdf:resource="#options"/>
<owl:disjointWith rdf:resource="#storage"/>
</owl:Class>

<incremParam rdf:ID="g"/>

<owl:0bjectProperty rdf:ID="hasParam">

<owl:inverse0f rdf:resource="#isParam0f"/>
</owl:0bjectProperty>

<owl:0bjectProperty rdf:ID="hasPath">

<owl:inverseQOf rdf:resource="#isPathOf"/>
</owl:0bjectProperty>

<owl:ObjectProperty rdf:ID="hasSetTime"/>
<owl:0ObjectProperty rdf:ID="incompatibeWith">
<owl:inverseOf rdf:resource="#compatibleWith"/>
</owl:0bjectProperty>

<owl:Class rdf:ID="incremParam">

<rdfs:subClass0f rdf:resource="#typeOfbackup"/>
</owl:Class>

<owl:0bjectProperty rdf:ID="isParamQf">

<owl:inverse0f rdf:resource="#hasParam"/>
</owl:0bjectProperty>

<owl:0bjectProperty rdf:ID="isPathOf">

<owl:inverseQOf rdf:resource="#hasPath"/>
</owl:0bjectProperty>

<owl:Class rdf:ID="keepOldFileParam">

<rdfs:subClass0f rdf:resource="#options"/>
<owl:disjointWith rdf:resource="#onlyStoreFileNewerthanParam"/>
<owl:disjointWith rdf:resource="#exclusionParam"/>
<owl:disjointWith rdf:resource="#preserveAccessParam"/>
<owl:disjointWith rdf:resource="#fileChangeLatestParam"/>
<owl:disjointWith rdf:resource="#archiveNameParam"/>
<owl:disjointWith rdf:resource="#compressionParam"/>
<owl:disjointWith rdf:resource="#permission"/>
<owl:disjointWith rdf:resource="#typeOfbackup"/>
<owl:disjointWith rdf:resource="#fileListParam"/>
<owl:disjointWith rdf:resource="#verificationParam"/>
<rdfs:comment rdf:datatype="&xsd;string"

>keep existing files; don't overwrite them from archive
</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="keepSameOwnerParam">
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#incompatibeWith"/>

95

A.4. RDF/XML CODE GENERATED WITH PROTEGE FOR THE TAR
LINUX BACKUP ONTOLOGY

<owl:someValuesFrom rdf:resource="#noSameOwnerParam"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f rdf:resource="#permission"/>
<owl:disjointWith rdf:resource="#preservePermissionParam"/>
<owl:disjointWith rdf:resource="#noSamePermissionParam"/>
<owl:disjointWith rdf:resource="#noSameOwnerParam"/>
</owl:Class>

<owl:Class rdf:ID="linuxBckp_0Operation">
<owl:disjointWith rdf:resource="#time"/>
<owl:disjointWith rdf:resource="#exclusionFilePatern"/>
</owl:Class>

<fileChangelLatestParam rdf:ID="newer-mtime"/>
<noSameOwnerParam rdf:ID="no-same-owner"/>
<noSamePermissionParam rdf:ID="no-same-permission"/>
<owl:Class rdf:ID="noSameOwnerParam">

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#incompatibeWith"/>
<owl:someValuesFrom rdf:resource="#keepSameOwnerParam"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f rdf:resource="#permission"/>
<owl:disjointWith rdf:resource="#preservePermissionParam"/>
<owl:disjointWith rdf:resource="#noSamePermissionParam"/>
<owl:disjointWith rdf:resource="#keepSameOwnerParam"/>
</owl:Class>

<owl:Class rdf:ID="noSamePermissionParam">
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#incompatibeWith"/>
<owl:someValuesFrom rdf:resource="#preservePermissionParam"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f rdf:resource="#permission"/>
<owl:disjointWith rdf:resource="#noSameOwnerParam"/>
<owl:disjointWith rdf:resource="#keepSameOwnerParam"/>
<owl:disjointWith rdf:resource="#preservePermissionParam"/>
</owl:Class>

<owl:Class rdf:ID="onlyStoreFileNewerthanParam">
<rdfs:subClass0f rdf:resource="#options"/>
<owl:disjointWith rdf:resource="#verificationParam"/>
<owl:disjointWith rdf:resource="#typeOfbackup"/>
<owl:disjointWith rdf:resource="#archiveNameParam"/>
<owl:disjointWith rdf:resource="#keepOldFileParam"/>
<owl:disjointWith rdf:resource="#exclusionParam"/>
<owl:disjointWith rdf:resource="#fileChangelLatestParam"/>

96

A.4. RDF/XML CODE GENERATED WITH PROTEGE FOR THE TAR
LINUX BACKUP ONTOLOGY

<owl:disjointWith rdf:resource="#preserveAccessParam"/>
<owl:disjointWith rdf:resource="#compressionParam"/>
<owl:disjointWith rdf:resource="#fileListParam"/>
<owl:disjointWith rdf:resource="#permission"/>
<rdfs:comment rdf:datatype="&xsd;string"

>only store files newer than DATE</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="onlyStoreFileNewerThanTime">
<rdfs:subClass0f rdf:resource="#time"/>
<owl:disjointWith rdf:resource="#preserveAccessTime"/>
<owl:disjointWith rdf:resource="#fileChangeLatestTime"/>
</owl:Class>

<owl:Class rdf:ID="options">

<rdfs:subClass0f rdf:resource="#linuxBckp_Operation"/>
<owl:disjointWith rdf:resource="#command"/>
<owl:disjointWith rdf:resource="#dataToBackup"/>
<owl:disjointWith rdf:resource="#functions"/>
<owl:disjointWith rdf:resource="#storage"/>

</owl:Class>

<preservePermissionParam rdf:ID="p"/>

<owl:Class rdf:ID="permission">

<rdfs:subClass0f rdf:resource="#options"/>
<owl:disjointWith rdf:resource="#typeOfbackup"/>
<owl:disjointWith rdf:resource="#onlyStoreFileNewerthanParam"/>
<owl:disjointWith rdf:resource="#keepOldFileParam"/>
<owl:disjointWith rdf:resource="#archiveNameParam"/>
<owl:disjointWith rdf:resource="#fileChangelLatestParam"/>
<owl:disjointWith rdf:resource="#verificationParam"/>
<owl:disjointWith rdf:resource="#compressionParam"/>
<owl:disjointWith rdf:resource="#preserveAccessParam"/>
<owl:disjointWith rdf:resource="#fileListParam"/>
<owl:disjointWith rdf:resource="#exclusionParam"/>
</owl:Class>

<owl:0bjectProperty rdf:ID="precede">

<owl:inverseQOf rdf:resource="#follow"/>
</owl:0bjectProperty>

<owl:Class rdf:ID="preserveAccessParam">
<rdfs:subClass0f rdf:resource="#options"/>
<owl:disjointWith rdf:resource="#exclusionParam"/>
<owl:disjointWith rdf:resource="#fileChangeLatestParam"/>
<owl:disjointWith rdf:resource="#keepOldFileParam"/>
<owl:disjointWith rdf:resource="#fileListParam"/>
<owl:disjointWith rdf:resource="#compressionParam"/>
<owl:disjointWith rdf:resource="#onlyStoreFileNewerthanParam"/>
<owl:disjointWith rdf:resource="#permission"/>
<owl:disjointWith rdf:resource="#typeOfbackup"/>
<owl:disjointWith rdf:resource="#verificationParam"/>

97

A.4. RDF/XML CODE GENERATED WITH PROTEGE FOR THE TAR
LINUX BACKUP ONTOLOGY

<owl:disjointWith rdf:resource="#archiveNameParam"/>
<rdfs:comment rdf:datatype="&xsd;string"

>don't change access times on dumped files</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="preserveAccessTime">

<rdfs:subClass0f rdf:resource="#time"/>
<owl:disjointWith rdf:resource="#onlyStoreFileNewerThanTime"/>
<owl:disjointWith rdf:resource="#fileChangeLatestTime"/>
</owl:Class>

<owl:Class rdf:ID="preservePermissionParam">
<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#incompatibeWith"/>
<owl:someValuesFrom rdf:resource="#noSamePermissionParam"/>
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f rdf:resource="#permission"/>
<owl:disjointWith rdf:resource="#noSameOwnerParam"/>
<owl:disjointWith rdf:resource="#keepSameOwnerParam"/>
<owl:disjointWith rdf:resource="#noSamePermissionParam"/>
</owl:Class>

<appendToEndOfStorage rdf:ID="r"/>

<keepSameOwnerParam rdf:ID="same-owner"/>

<owl:Class rdf:ID="singlefileName">

<rdfs:subClass0f rdf:resource="#dataToBackup"/>
<owl:disjointWith rdf:resource="#fileListName"/>
<owl:disjointWith rdf:resource="#directoryToBckpPath"/>
</owl:Class>

<owl:Class rdf:ID="storage">

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasParam"/>

<owl:hasValue rdf:resource="#f"/>

</owl:Restriction>

</rdfs:subClass0f>

<rdfs:subClass0f rdf:resource="#linuxBckp_Operation"/>
<owl:disjointWith rdf:resource="#command"/>
<owl:disjointWith rdf:resource="#dataToBackup"/>
<owl:disjointWith rdf:resource="#functions"/>
<owl:disjointWith rdf:resource="#options"/>

</owl:Class>

<fileListParam rdf:ID="T"/>

<owl:Class rdf:ID="tapeFileName">

<rdfs:subClass0f rdf:resource="#storage"/>
<owl:disjointWith rdf:resource="#archivePath"/>
<owl:disjointWith rdf:resource="#archiveName"/>
</owl:Class>

98

A.4. RDF/XML CODE GENERATED WITH PROTEGE FOR THE TAR
LINUX BACKUP ONTOLOGY

<command rdf:ID="tar"/>

<owl:Class rdf:ID="time">

<owl:disjointWith rdf:resource="#linuxBckp_Operation"/>
<owl:disjointWith rdf:resource="#exclusionFilePatern"/>
</owl:Class>

<owl:Class rdf:ID="typeOfbackup">

<rdfs:subClass0f rdf:resource="#options"/>
<owl:disjointWith rdf:resource="#preserveAccessParam"/>
<owl:disjointWith rdf:resource="#archiveNameParam"/>
<owl:disjointWith rdf:resource="#fileChangeLatestParam"/>
<owl:disjointWith rdf:resource="#exclusionParam"/>
<owl:disjointWith rdf:resource="#keepOldFileParam"/>
<owl:disjointWith rdf:resource="#fileListParam"/>
<owl:disjointWith rdf:resource="#onlyStoreFileNewerthanParam"/>
<owl:disjointWith rdf:resource="#compressionParam"/>
<owl:disjointWith rdf:resource="#permission"/>
<owl:disjointWith rdf:resource="#verificationParam"/>
</owl:Class>

<updateParam rdf:ID="u"/>

<owl:Class rdf:ID="updateParam">

<rdfs:subClass0f rdf:resource="#functions"/>
<owl:disjointWith rdf:resource="#appendParam"/>
<owl:disjointWith rdf:resource="#appendToEndOfStorage"/>
<owl:disjointWith rdf:resource="#createArchiveParam"/>
<rdfs:comment rdf:datatype="&xsd;string"

>only append files that are newer than copy in archive
</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="verificationParam">

<rdfs:subClass0f rdf:resource="#options"/>
<owl:disjointWith rdf:resource="#keepOldFileParam"/>
<owl:disjointWith rdf:resource="#preserveAccessParam"/>
<owl:disjointWith rdf:resource="#permission"/>
<owl:disjointWith rdf:resource="#compressionParam"/>
<owl:disjointWith rdf:resource="#archiveNameParam"/>
<owl:disjointWith rdf:resource="#fileChangelLatestParam"/>
<owl:disjointWith rdf:resource="#typeOfbackup"/>
<owl:disjointWith rdf:resource="#exclusionParam"/>
<owl:disjointWith rdf:resource="#onlyStoreFileNewerthanParam"/>
<owl:disjointWith rdf:resource="#fileListParam"/>
<rdfs:comment rdf:datatype="&xsd;string"

>attempt to verify the archive after writing it</rdfs:comment>
</owl:Class>

<verificationParam rdf:ID="W"/>

<exclusionParam rdf:ID="X"/>

</rdf :RDF>

99

