
Gamified Application Development Resource Site

Yonatan H. Fessehaye

Thesis submitted for the degree of
Master in Informatics: Programming and System Architecture

60 credits

Department of Informatics
The Faculty of Mathematics and Natural Sciences long

UNIVERSITY OF OSLO

Spring 2022

Gamified Application Development Resource
Site

Yonatan H. Fessehaye

© 2022 Yonatan H. Fessehaye

Gamified Application Development Resource Site

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Open-source testing platforms promote innovations and collaborations and solve real-world problems,
yet it is common to encounter incomplete and complex understanding documentation. This thesis paper
explores one of the many ways to minimise such confusions and incompletions, i.e. by exploring a
documentation guideline with a step-by-step approach in a gamified manner with an engaging and
collaborative process to perform a task.

DHIS2 has one of the many scalable open-source platforms; it is leveraged commonly to manage health
information related uses-cases in many resource-constrained environments worldwide. Moreover, it provides
a collaborative environment for building web applications. Nevertheless, as with all open-source platforms,
there is a need for documentation which is easy to use for promoting a feasible development environment of
the web- applications.

Design Science Research approach is used to design, analyse and research the implications of the
artifact on how: (1) the artifact is built, (2) the artifact is reviewed by users and experts, and (3) data analysis
to improve the artifact iteratively.

Keywords — Open-source platform; web-applications; guidelines; gamification; DHIS2

ACKNOWLEDGMENTS

This thesis work, the artifact, and the research could not have been possible without the exceptional support
of my supervisor, Dr. Johan Ivar Sæbø. In addition to his comments, recommendations, and knowledge of
the DHIS2 platform, his honesty and detailed feedback were motivating to keep me working on my thesis
project. In the process, he has become my inspiration to complete the thesis work. I will always be grateful
for his consistency, honesty, and availability, starting from the early meetings while discussing the project
ideations and possible scenarios until the last minute of delivery.

Much gratitude to the members of the DHIS2 Design Lab and Magnus Li for the informative meetings,
workshops, and peer review sessions. The resources from Magnus Li and the team were detailed and effective
in researching the artifact. I cannot thank the DHIS2 Design Lab team enough; everything in this thesis work
has contributions from the entire team, starting from the initial discussions when we (students) were picking
thesis projects and to the peer reviews.

It was also an honor to inquire questions regarding the artifact and receive such excellent feedback
from the DHIS2 core team; their feedbacks were clear and detailed enough to tackle the challenges with
the artifact. Furthermore, the feedbacks were an inspiration to push the artifact’s depth and breadth by
considering a multitude of directions and set-of users both on usability and efficiency for use.

Lastly, I am grateful for the comments from the DHIS2 community, the beautiful discussions with sev-
eral individuals, the critics who gave critical comments, the inputs from all the individuals who contributed
to the artifact, and family, friends, and team Stingray.

Yonatan H. Fessehaye
University of Oslo
June 2022

1

https://www.mn.uio.no/ifi/english/people/aca/johansa/index.html
https://www.mn.uio.no/ifi/english/people/aca/magl/

ACRONYMS

OS Open Source
DX Developer Experience
PWA Progressive Web-Application
API Application Programming Interface
DHIS District Health Information Software
DHIS2 District Health Information Software 2
DEx Developer Experience

2

LIST OF FIGURES

2.1 App developers, platform owners and end-users. (Figure 2.8, Tiwana 2014) 7
2.2 Ecosystem architecture. 8
2.3 Developer Experience Framework, (Figure 1, Fagerholm and Münch 2012) 9
2.4 Open-source Game building framework (cocos2d-x) . 13
2.5 Game and entertainment industry by market capitalisation . 14

3.1 DHIS2 Homepage . 15
3.2 DHIS2 Developer Portal . 16

4.1 Design Science Research checklist of evaluation. (A. Hevner and Chatterjee 2010) 19
4.2 Focus groups in DSR, (fig 10.2, A. Hevner and Chatterjee 2010) 21

5.1 Orginal repository and configuration steps . 23
5.2 Task: html-js-css level 1 . 25
5.3 Task: React Js level 1 . 26
5.4 DHIS2 Application level 1 . 27
5.5 DHIS2 Application level 2 . 28
5.6 Gamification by design: Implementing game mechanics in web and mobile apps. (Zichermann

and Cunningham 2011) . 29
5.7 Commit history of completed tasks . 30
5.8 Types of awards (badges) given . 30
5.9 Artifact architecture diagram . 31
5.10 Activity Diagram . 31

6.1 Artifact iteration 1 . 37
6.2 Six components of an information system design theory (A. Hevner and Chatterjee 2010) . . . 38
6.3 Artifact forks . 40

1

CONTENTS

1 Introduction 4
1.1 Motivation . 5
1.2 Research Question . 5

2 Related Literature 6
2.1 Information Systems . 6
2.2 Digital Platforms . 6

2.2.1 Open-source . 7
2.2.2 Architectures of Platforms . 8

2.3 Web-Applications (Webapps) . 10
2.3.1 Web-Application Development Guidelines . 10
2.3.2 Architectures of web applications . 11

2.4 Gamification . 12
2.4.1 Theoretical Underpinnings of gamification . 12
2.4.2 Gamification: pros & cons . 12
2.4.3 Gamification Design approaches . 13

3 Background 15
3.1 DHIS2 . 15

3.1.1 DHIS2 and Application Development . 17

4 Methodology 18
4.0.1 Research process . 18
4.0.2 Design Science Research . 19
4.0.3 Data collection . 21

5 Artifact description and Evaluation 22
5.0.1 How the artifact works . 22
5.0.2 Artifact design . 29
5.0.3 Evaluation of artifact architecture . 30
5.0.4 Technologies used . 34

6 Results and Analysis 36
6.1 Artifact iterations . 36

6.1.1 Iteration I: . 36
6.1.2 Iteration II . 37
6.1.3 Iteration III . 38

6.2 Technical challenges . 38
6.2.1 Artefact design: . 38

2

Chapter 0 – CONTENTS Section - 0.0.0

6.2.2 Challenges and shortages of the research process . 40

7 Discussions 42
7.1 Findings . 43

7.1.1 Step-by-step guidelines . 43
7.1.2 Gamification for motivation to follow guidelines . 44
7.1.3 Limitations of the study . 45

8 Conclusion 46
8.1 Future works . 47

8.1.1 Gamification frameworks (platforms) . 47
8.1.2 Exploring design patterns inside step-by-step guidelines 47
8.1.3 Gamifying bottom-up . 47
8.1.4 Glimpse into the Metaverse . 47

3

CHAPTER

INTRODUCTION 1
A web-application (web-app) is a software application that can be accessed over the internet (or computer
networks) and executed on web browsers (Chrome, Opera, and others) to provide functionalities. Web-based
applications have been getting tremendous interest among software designers and engineers to develop
responsive and mobile-friendly applications (Shahzad 2017); moreover, with the advancement in hardware
and software services, the interest from every industry continues to increase.

Modern Webapps are generally built with many programming languages, frameworks, design tools,
and engineering approaches. Moreover, software product owners, stakeholders, developers, end-users
(customers), and related conventional architectures and standards play essential roles in producing usable
Webapps.

Similarly, the challenges of building Webapps increase with the increase in size and complexity of the
Webapps, significantly if the web-app consumes resources from software platforms, cloud infrastructures, or
server-less computing resources.

DHIS2 as a software platform provides an environment to build Webapps that are customizable, re-
usable, modular web components and open APIs that are designed for resource-challenged environments.
The platform’s use-cases are mainly in the health sector and are used by more than 70 low-middle income
countries. In addition, many complementary products are continuously built by consuming resources from
the platform.

Having a software platform with clear documentation guidelines about the building process and the
Webapps’ architecture (integral parts of Webapps) to follow promotes optimal use of resources for building
those Webapps. This is even more visible in open-source software platforms, where the complexity of
building can be reduced by having well-organized documentation. Furthermore, documentation that is
illustrated through several example applications and practical exercises may prevent developers from going
side-ways beyond the functionality that is presented therein (Kirk, Roper and Wood 2007), which shows
having well-organized documentation can be attained without all exemplary definitions of every function
definitions, but by addressing the critical and challenging areas.

Thus, by considering the software platform (DHIS2), developers’ and web-app development practices,
this thesis work explores an application-building resource-site, which is gamified with a step-by-step
guideline documentation approach (Procida 2020). Users of the resource-site use the steps to achieve certain
milestones and earn badges upon completion of the milestones. The evaluation of the artifact explores the
validity of gamification principles and step-by-step guidelines for a resource site.

4

Chapter 1 – Introduction Section - 1.2.0

1.1 MOTIVATION

Programming can be viewed as a scientific discovery for designing programming environments and training
methods, which can be difficult for new programmers (Kim and Lerch 1997). It can be safely stated that
programming and creating a web application are still tricky, requiring a broad range of skills and experience
(Rode 2004); therefore, many individuals, companies, and online-educational platforms are continuously
exploring to improve the learning challenges with different approaches.

DHIS2 is the most effective health management information system in the world, providing various
services to several technological solutions. When combined with non-routine data such as household
surveys, support population-level decision-making, and data from all sources, health service data enhance
a country’s ability to monitor, detect and respond appropriately to public health emergencies (Adu-Gyamfi,
Nielsen and Sæbø 2019). In this context, such technological solutions differ in their stabilities and usabilities
based on how well they consume the functionalities provided by the services providers, DHIS2. So, this begs
the question of having a standardized way of building those technological solutions.

DHIS2 community of developers, along with the developer resources, training, and documentation
provided by DHIS2, helps standardize the building processes of several technological solutions like the web-
applications. However, Webapps in different use-cases and implementations by the local developers do not
usually follow the same building processes (e.g., programming languages and frameworks) which is laid out
by DHIS2, and this thesis work looks to explore and find a solution to this common problem with innovative
and flexible open-source platforms.

After the initial investigation of online services that teach programming focusing on the web-
applications include Codeacadamy, Codeschool, and Treehouse, by which rewards and badges play essential
roles to the developers of the web-applications.

Moreover, games like WarriorJS, Checkio, Codecombat, CodinGame, JS Robot, Screeps, JS Dares, and
the book Learn To Code by Playing Games (by Harsh Makadia) are some of the fastly growing environments
to learn web-application programming while playing games. They all have several types of incentive
mechanisms for learners, and such incentive principles of rewards and badges come from the principles of
gamification principles, which are backed by research that finds that gamification does improve the learning
experiences of users by abstracting complex concepts while increasing motivation among users and keeping
their goal-oriented to achieve a milestone.

1.2 RESEARCH QUESTION

The consideration for starting the research question is to try to explore an approach for incorporating
guidelines approach of documentation with gamification principles within the context of application
development resource site:

• How do aspects of gamification and documentation guidelines pertain to the building of web-applications in a
software development platform?

Here, a detailed review of guidelines, gamification, and feasibility is seen along with a web-application
building. Finally, a repository is created on Github to explore both the social and technical implications
of guidelines and gamification. Results of the artifacts’ evaluations and surveys (data collected) from
participants give insights into the aspects of guidelines, gamification for a web-application building
resource, and further exploration into the app-building resource-site.

5

CHAPTER

RELATED LITERATURE 2
This chapter presents an overview of the literature. It explores the research that is relevant to my research
which has relevance (implications) to the design of the artifact and the findings of the research in general. It
has four main sections where the literature around information systems, digital platforms, gamification, and
web-applications.

2.1 INFORMATION SYSTEMS

According to Lee (Lee 2004), an information system is not the information technology alone but the system
that emerges from the mutually transformational interactions between the information technology and the
organization. An organization in this context can be assumed as human (variables politics and socio-technical
aspects) and the dynamics of its complexities within the information systems, and Lee also tries to see this
from social theory. The information technology aspects, in turn, play roles in the complexity of information
systems by providing technical services to the organizations.

2.2 DIGITAL PLATFORMS

A software platform is a software-based product or service that serves as a foundation on which outside
parties can build complementary products or services (Tiwana 2014). Based on their purposes, research
foundations, material properties, and value creation, there are two categories of platforms: transactional and
innovation platforms (Bonina et al., 2021).

Thus, by focusing on the properties of innovation platforms, the following are discussed: architectures,
complementary products, or use-cases used by users (end-users) are considered. Innovation platforms thus
have the different digital platforms share three standard sides, viz. App Developers, Platform Owner and the
End-Users.

6

Chapter 2 – Related Literature Section - 2.2.1

Figure 2.1: App developers, platform owners and end-users. (Figure 2.8, Tiwana 2014)

The application developers build the applications by consuming the resources of the platform- owner.
Such applications then provide services intended for the end-users. The platform owner manages the
direction, and general goals of the platform, moreover platform owner, can enforce related standards,
guidelines, and protocols. In the general digital platform, owners play vital roles in directing the entire
ecosystem of the platform since governance of the platform is directly related to platform owners. Moreover,
platforms could have sustainable growth and network effect by democratizing the digital platforms’
governance mechanism, i.e., sharing the governance between the application developers and end-users.

2.2.1 Open-source

One approach to democratizing the platform’s ownership is to open or serve them with licenses as open-
source software, where the software package’s source code can be inspected and modified with new features.
In contrast, when a platform is closed, similar to proprietary (closed) software, the governance mechanism
becomes vulnerable to centralization of architecture and limitations from using other open-source software.

The official definition of open-source from OSI-Docs 2007 shows that open-source is not just about the
source code, but also it defines the following criteria:

1. Free Redistribution: The license allows selling, royalty, or other fees for such sale as a component of
aggregate software distribution.

2. Source Code: The license regards the source code and should allow distribution of the source code.

3. Derived Works: The license allows modifications, but the derived software packages must still be
distributed at least with the same license.

4. The integrity of The Author’s Source Code: The license must explicitly permit the distribution of
software built from modified source code. The license may require derived works to carry a different
name or version number from the original software.

5. No Discrimination Against Persons or Groups: The license prevents discrimination against persons,
groups, or demographies.

6. No Discrimination Against Fields of Endeavour: The license prevents discrimination against fields of
use, use-cases, or line of business.

7. Distribution of License: The rights of the license apply to the other software packages. It is
redistributed without an additional license by distributers.

8. License Must Not Be Specific to a Product: The license goes similar to other software package
derivatives of the original software package.

9. License Must Not Restrict Other Software: The license has no right to limit the distribution of other
derived software packages with the same license.

7

Chapter 2 – Related Literature Section - 2.2.2

10. License Must Be Technology-Neutral: The license does not limit technological preferences or the usage
(mixing) of non-open-source software packages.

For this project context, open-source undertaken as from [OSI-Docs 2007]; however, the ideation of
open-source is still debatable on how far the openness should go and to what extent should IPR (intellectual
property right) and chain of creation in open-source projects. For instance, the research policy (West 2003)
explores different debatable areas such as free software vs. open source, Linux vs. other UNIX-like platforms,
and the understanding through times and companies involved in contributing to the open-source packages.

2.2.2 Architectures of Platforms

The platform ecosystem comprises three significant sides: the platform, apps, and interfaces (Tiwana 2014).
A platform’s governance and architecture go hand in hand; therefore architecture of platforms plays a
significant role in the overall ecosystem of platforms.

Figure 2.2: Ecosystem architecture.

Platforms deliver their services to applications via boundary resources (APIs, SDKs, ABIs, regulations,
and relevant government policies). Similarly, the boundary resources help the applications (and application
developers) communicate with the platform and other applications. Depending on how open a digital
platform is, boundary resources can have many permissions and services provided for internal or external
(third-party applications development).

An open digital platform (ODP) can thus be defined as an extensible digital core open for third parties
to contribute improvements or add complements (De Reuver, Sørensen and Basole 2018).

The platform’s architecture plays a huge role in keeping existing applications built on the platform,
the developers, and the end-users of the applications. Platform architecture imposes constraints on all apps
in a platform’s ecosystem; therefore, many properties of app architectures are correlated with the platform’s
architecture (Tiwana 2014); thus, such constraints can be the primary areas of innovation for developers to
focus on.

However, if constraints are fundamental, the only option that remains could be to change or move
to other platforms. The innovation dynamics of a digital platform often depend on its dependencies with
platforms on different levels of the technical architecture(De Reuver, Sørensen and Basole 2018).

8

Chapter 2 – Related Literature Section - 2.2.2

Platform Innovations

Innovation platforms are exemplified by mobile operating systems such as Android, and iOS, whose
functionality is drawn upon through APIs by a platform ecosystem of third-party developers to build and
innovate apps as services(Bonina et al. 2021). Thus, platforms provide ample opportunities for innovations
by leveraging their resources via boundary resources.

In addition to that, the boundary resources App developers face two broad types of costs in their
ongoing work: (1) app innovation costs and (2) systems integration costs (Tiwana 2014). Such costs can be
seen as incentive mechanisms from developers’ point of view and as competitive advantage between the
different platforms to keep the developers in their platforms.

Developer experiences in platforms play a significant role in innovating and exploring new use-cases,
especially in platforms like DHIS2, which engages developers across several geographical and cultural
spaces. DEx (Developer Experience) consists of experiences relating to all kinds of artifacts and activities
that a developer may encounter as part of their involvement in software development (Fagerholm and Münch
2012).

Involving developers and relevant stakeholders from the ideation to the production stages of a software
product enhances the product’s success as it can help focus the need of the application’s goals with the
resources used to build it. To develop software product features that are both desirable and feasible, a great
deal of knowledge is needed, both about situated contexts of use and the software architecture (Roland et al.
2017). Several types of participatory design have been explored for involving developers. Several types of
research show that PD (participatory design) plays a massive role in involving developers, thus enabling DEx
of developers.

Figure 2.3: Developer Experience Framework, (Figure 1, Fagerholm and Münch 2012)

Moreover, platforms’ governance that are put on app architectures do limit or promote innovation of
applications and range of use-cases; thus, better platform governance can promote innovations and positive
network effects to the platform they own.

By looking into the finance world, specifically the Defi or Decentralised Finance, decentralized
governance of platforms is preferred to centralized governance (Chainlink-docs 2022). For instance,
many Defi projects propose that innovations on platforms (use-cases) can be increased if the governance
of the platforms is decentralized. In many Defi protocols (Chainlink-docs 2022), platform governance
and architectural decisions, and incentive mechanisms are community-driven; thus, governance is shared

9

Chapter 2 – Related Literature Section - 2.3.1

between the community. Architectural differences can also explain not just the frequency of innovations
feasible by app developers but also the types of innovations that do and do not occur in an ecosystem (Tiwana
2014).

Unlike centralized platforms, which are owned and governed by platform owners, decentralized
platforms can be owned and governed in more decentralized ways. Some have no platform owners and are
governed through community efforts(Chen, Pereira and Patel 2021). Ethereum is one of the few substantial
projects (software platforms) in the Blockchain industry. Ethereum’s software boundary resources come only
as ABIs, reducing the boundary resources developers need to consider to interact with the platform or other
projects on Ethereum (Chainlink-docs 2022). The strength of the Ethereum platform is that the decentralized
organization and the escrow contract do not need to care about what kind of account each party to the contract
is (Buterin et al. 2014).

Keeping the application in a platform also depends on the incentive mechanism the architecture
provides to the applications; thus, some developers prefer platforms that promote decentralized application
architectures to centralized (traditional client-server) micro-architectures of applications. The level of
centralized is many, to mention a few are: governance, storage providers, services provided, and their
accessibility.

2.3 WEB-APPLICATIONS (WEBAPPS)

An application initiated by triggering a request from a web server and rendering the result in the browsers
(headless or real browsers) is generally called a web application. The modern-day web- applications keep
increasing complexity across all industries by providing functionalities in an interactive and accessible
manner to the web-application users.

The complexities in web applications keep increasing their building requirements from the primary
web programming languages like HTML, CSS, JavaScript, and related libraries to additional requirements
of frameworks, SDKs (Software Development Kit), and architectural modifications. Similarly, these constant
changes in the web-application building processes require the software builders to adapt to the changes and
steadily increase their skills of development.

Teams and projects suffer from delays in delivery or technical debts due to the continuous learning
curves of web-application building processes. The research by Cordle 2017, describes how the challenge is
continuous, and to have quality Webapps, requires the consideration of many factors. In the research, they
describe that the issues with web applications may take time to appear at the start, e.g., initially, AngularJS
(a framework) was being used to build an application, yet as developers started to build professional, rich,
full-grade applications on the framework with large teams over long periods, its limitations began to show.

2.3.1 Web-Application Development Guidelines

Web applications can be simple interactive, or well-designed, tested applications built with PWA features,
and guidelines apply equally to all web applications. Guidelines have massive potential in reducing the
overhead of building web applications by saving time and reducing possible technical debts while providing
timely practices. Later, following the guidelines remains a vital step to maintaining the quality of the web
application, but still, the motivation of application builders can also play a role in the quality of the produced
web-application (Graziotin et al. 2018, França, Da Silva and Sharp 2018).

10

Chapter 2 – Related Literature Section - 2.3.2

In addition, according to the W3C, guidelines are not testable but provide the framework and overall
objectives to help authors understand the success criteria and better implement the techniques (W3C 2018).
By exploring a guideline based on a gamified framework, and success criteria for better implementation, the
thesis work aspires to contribute to both the industry and academia. Therefore, considering the potential of
guidelines, DX (developer experiences), gamification motivates developers to have a notion of constant skill
upgrade (a highly required trait among software developers).

2.3.2 Architectures of web applications

App microarchitecture is the same architecture as realized in the implementation of an individual app
by its developer (Tiwana 2014). Fig. 2.2 shows an application’s microarchitecture, which constitutes an
application’s internal architecture and the interface it uses to communicate with the platform.

Applications can be web-based or native applications (or applications that are required to be installed
to be used). Technically, the micro-architectures of the application could be distributed between the client
and server-side, e.g., several client-side libraries (as redux for React-based web-applications) or server-side
performance-enhancing libraries like GraphQL to increase API usability and performance for the client-side.

In general, the web application architectures in this project are considered for an MVC (Model View
Controller) based web applications. MVC is a typical architectural pattern of applications. Model stands
for the logical handling of data within the application, e.g., to use the data and generate information or
knowledge. In this section, programming languages like java and frameworks like .NET Core and Java Spring
Boot are commonly used tools.

View stands for the user interface or the part of the application that the user interacts with. In this part,
libraries like ReactJS and Vuejs are used tools. This includes user application design, user interface (UI), and
user experiences (UX).

Lastly, the controller is the section that manages the flow of data, including data security and updating
of the view with updated data. Controllers communicate as middlemen with both the other parts: View and
Model.

Types of applications

In the typical standard approaches of modern-day web applications, the major architectural classifications
can be divided into two types: monolithic or microservices. Similarly, the general trend in this time is the
migration of existing or legacy monolith applications into the cloud-based microservices-based application
to leverage scaling from the cloud services.

Benchmark Monolithic Microservice

Scalability Challenging because the whole applica-
tion has to scale

Easier because a single microservice
can scale independently of other mi-
croservices

Speed of de-
livery

Faster because it is easier to manage,
troubleshoot, and develop a single ap-
plication

Slower delivery because of the different
independent components of the applica-
tion.

Security Easier because it is concerned with test-
ing and securing a single application

Challenging because of higher attack sur-
faces on the independently deployed
components

Complexity Less complex because technical require-
ments are fewer

More complex because it could be dis-
tributed across different cloud platforms

Price (cost) Cheaper because it requires few team
members, and simple applications

Pricer because it requires sufficient en-
gineering levels and domain expertise

11

Chapter 2 – Related Literature Section - 2.4.2

2.4 GAMIFICATION

Gamification can be defined through many but related definitions: "the process of game-thinking and
game mechanics to engage users and solve a problem" (Zichermann and Cunningham 2011), "the use of
game concepts in a non-gaming environment which is used in many fields such as businesses, health, and
education"(Elshiekh and Butgerit 2017), it is an informal umbrella term for the use of video game elements in
non-gaming systems to improve user experience (UX) and user engagement (Deterding et al. 2011). Thus,
those definitions show that gamification plays a role in engaging participants in different environments
for good. Moreover, its ability to express a complex environment in simple terms helps transfer valuable
attributes of a use-case to different use-cases (environments).

Gamification’s usability to educate software development can be seen in different forms as seen in
web-programming teaching platforms: Codeacademy (with short programming instructions and instant
feedback), CodeSchool (by using different badges and image rewards to show a status of progress),
CodeCombat (by showing a map of a place with interactive messages with progressing in programming),
Treehouse, and many others. Gamification has become an effective technique in education in general and is
useful in programming courses (Elshiekh and Butgerit 2017; Khaleel et al. 2015).

2.4.1 Theoretical Underpinnings of gamification

The importance of gamification is also constantly rising across many industries. Especially during the
pandemic; during the covid-19 days, gamification is seen to improve students’ performances (Whiddington
2020), GameFi (gaming use-case and merging of gaming with finances for blockchain), which is a disrupting
or challenging scene in the gaming industry.

A practical gamification concept captures and retains learners’ attention, engages, entertains,
challenges them, and teaches them (Furdu, Tomozei and Kose 2017); therefore, a careful design and
architectural implementation of a gamified system are recommended to fit a specific use case.

Gamification architecture must be designed by constituting aesthetics, dynamics, and mechanics
(Zichermann and Cunningham 2011). Mechanics make up the functional components of the game, which
can be points, badges, levels, challenges, and rewards. Aesthetics of the game is about how the game makes
the player feel during an interaction, and dynamics are about the player’s interactions with the game’s
mechanics. This architecture of gamification is preferable when considering the application development
resource site for reasons:

2.4.2 Gamification: pros & cons

Pros

• Gamification is a practical approach to positive change in students’ behaviour and attitude toward
learning to improve their motivation and engagement (Kiryakova, Angelova and Yordanova 2014).
Moreover, as a new opportunity to convey and receive information, it promotes an alternative avenue
to knowledge which can further enhance the general goal of learning the software development by
following the guidelines to complete the tasks.

• When learning is joyful for learners of a new way of software development, it is the preferred option for
it reduces the possible negative repercussions that could come from failing to learn it. A better learning
experience is obtained by combining fun with instant feedback (Furdu, Tomozei and Kose 2017), which
shows that gamification can enforce a positive feel for web-application building.

• The use of gamification not only facilitates work but also assists in learning, provides feedback on work
done, and helps compare work productivity over time (Platonova and Bērziša 2017). Feedback cycles in
learning web-development are essential to organize tasks and sub-tasks, improve code quality, improve
collaboration in teams and enforce agile software development methodology.

12

Chapter 2 – Related Literature Section - 2.4.3

Cons

• Too much gaming can have addictive side effects, which can hurt the performance of individuals.
Further researches show that it can have adverse effects such as indifference, loss of performance,
undesired behavior, and declining effects(Toda, Valle and Isotani 2017).

• The possible short time side-effects of gamification could prompt long-term serious side-effects side-
effect of gamification. We found that though students from each course started at the same levels of
intrinsic motivation, satisfaction, effort, social comparison, and empowerment, over time, students in
the gamified course tended to decrease in motivation, satisfaction, and empowerment relative to the
non-gamified course (Hanus and Fox 2015).

Albeit all the shortages of gamification, when designed correctly, it has the potential to maximize the
positive effects and improve learning in software development applications. It does this by abstracting the
different parts of software tasks into manageable pieces and concentrating on opening developers’ minds by
teaching how to abstract problems and providing solutions by structuring a set of different web-application
building.

2.4.3 Gamification Design approaches

Frameworks

The need for engaging learning games has led to the development of design frameworks and processes rooted
in traditional instructional design models (Dimitriadou et al. 2021). However, the frameworks in the paper do
not follow the same designs, making it challenging to have a common or standard design of games. Similarly,
platforms like Unity, AppGameKit, CryEngine, Unreal Engine, Cocos2d-x (see fig 2.4, next page), Amazon
Lumberyard, and Titanium platforms are used to build games.

Figure 2.4: Open-source Game building framework (cocos2d-x)

Gamification frameworks have many advantages:

• Designing effective game models to test or prototype,

• Designing software architecture for scalability, game resolution, or better UX (user experiences)

• Designing effective accessible incentive mechanism,

• Designing interoperable software, e.g.:
(a) for smooth migration from centralised to decentralised game models or vice-versa,
(b) for integration with other technologies as Extended Reality (XR), Augmented Reality (AR), Mixed
Reality (MR), or Virtual Reality (VR),

13

Chapter 2 – Related Literature Section - 2.4.3

Incentive mechanism

Moreover, from an industry and market valuation point of view, the gaming industry is still by far the biggest
in the entertainment industry by market capital (see fig 2.5), and the valuations are related to the games’
business models. Those business models do, in turn, include the players, which can be models like play-to-
earn, game purchases, game feature purchases, and many other business models.

Implementing game models in use-cases unrelated to finances (e.g., open-source or non-profit projects)
is challenging to design because the incentive mechanisms in both environments are different. Well-designed
incentive mechanisms are fit enough to keep players engaged and motivated to come again to use a gamified
environment.

Figure 2.5: Game and entertainment industry by market capitalisation

To avoid any possible negative side-effects, game elements need to be studied as the reward mechanism
could have negative impacts as well, it is possible to observe that Leaderboard had a strong influence on
almost all of the negative effects, followed by Point and Badge, both with the same influence (Toda, Valle and
Isotani 2017).

14

CHAPTER

BACKGROUND 3
This chapter covers the background of DHIS2 by focusing on software or technical side.

3.1 DHIS2

DHIS2 (District Health Information System 2.0), as a software platform, is a flexible information system
for data capture, management, validation, analytics, and visualization (see www.Github.com/dhis2/dhis2-
core). Moreover, it provides tools and services to build a multitude of use-cases, mainly within health
information-related systems. It is currently the most extensive Health Information System available in the
world, and it is managed by the HISP Center at the University of Oslo (UiO).

Figure 3.1: DHIS2 Homepage

15

Chapter 3 – Background Section - 3.1.1

Historically, it started to solve the necessary solutions to respond to public health emergencies and
information management challenges in South Africa. The strategy adopted to achieve this aim was through
tools and data standardization, developing essential datasets, and a software application to support its
implementation (Adu-Gyamfi, Nielsen and Sæbø 2019).

DHIS2 interfaces with third-party web portals and technologies, including SMS, E-mail, and
Geographical Information Systems (GIS), to enhance its functionality.DHIS2 provides a multitude of
features and integrations (Adu-Gyamfi, Nielsen and Sæbø 2019). Such integrations enable further
innovations and innovative use-cases in education, agriculture, e-government, and logistics management
(see www.dhis2.org/user-stories).

The development of DHIS2 software is led by core developers based in Oslo (University of Oslo) in
collaboration with research teams, viz. HISP, student (academic) researchers, and other external contributors
from all over the world. Moreover, since it is open-source, it is open for software developers to contribute,
and it provides contributors guidelines and access to tasks listed in Jira (issue tracking product).

Some of the many projects managed by core developers:

• DHIS2 Developer Portal: Home page of the necessary developers’ documentations.

• DHIS2 Core: To provide the data models and services which are exposed through a boundary resource
(RESTful Web API),

• DHIS2 Application Platform: Gives ample opportunity to standardise the application development
tooling for the web-applications built on DHIS2.

• DHIS2 UI and Design approach: Shows a means to design the application and maintain consistency of
applications in the platform.

Figure 3.2: DHIS2 Developer Portal

16

https://developers.dhis2.org/community/contribute/
https://Github.com/dhis2/developer-portal
https://Github.com/dhis2/dhis2-core
https://platform.dhis2.nu/
https://ui.dhis2.nu/

Chapter 3 – Background Section - 3.1.1

3.1.1 DHIS2 and Application Development

The software has evolved from a custom-made desktop application to a modular web-based platform used
globally (Roland et al. 2017). Thus, DHIS2, as a digital web-based platform, leverages several digital resources
for complementary web-applications that are built on the DHIS2 platform. These resources, among many,
include programming resources such as documentation about developer guidelines, technical documentation
about UI components, build systems, development tools, runtime support, and standards for software-code
linting and testing.

Documentation

Several types of documentation exist for the DHIS2 community, starting from setting up DHIS2 web-
application projects, using existing boundary resources, training, hosting services, and getting related
support services.

• DHIS2 Developer Community: Here web-application builders (DHIS2 practitioners) ask or discuss
questions in multitude digital communication options, viz. DHIS2 Community, by joining the Slack
channels or get community updates in Twitter.

• Developer Guidelines: Here, there are set of all the necessary documentations for developers.

• Level 2 Academies: Here one can pick from the list of all the possible use-cases that one can build using
DHIS2, for instance: about Web App Development.

DHIS2 Design principles

A set of design principles exist for building web-application provided by DHIS2, which helps produce high-
performing web applications that are easy to maintain, upgrade, and high performance.

Standards of Software Code

Using d2 (a tool provided by DHIS2 to bootstrap web-application projects), the web-applications built
can have relatively similar tooling. This, for instance, can be with linting (a process that improves
code readability), testing (a process to unit test functions), and building (to prepare web-application for
deployment or hosting).

UI-Components

DHIS2 has custom-made reusable UI components built with React (the most commonly used JavaScript
library for front-end projects). Those UI components are built with DHIS2 design principles and with the
ability to integrate with other web-application building support libraries, e.g., Redux, custom data providers,
and other libraries.

Development tools

To build web-applications, the bare minimum requirement for tooling includes the following:

• OS (Operating System): MacOs, LinuxOs, or Windows,

• IDE (Integrated Development Environments): VsCode, Atom or Sublime,

• Softwares for development: Git (for version control), nodejs, d2

• Useful libraries for the web-applications: ReactJs (for UI), Redux (for state management), CypressJs (for
integrated tests)

17

https://developers.dhis2.org/community
https://community.dhis2.org/
https://docs.google.com/forms/d/e/1FAIpQLScuPQsMfEcLkCTiR87RhCG8v4eZZTf4CNPCFuAtRndEI211xA/viewform
https://docs.google.com/forms/d/e/1FAIpQLScuPQsMfEcLkCTiR87RhCG8v4eZZTf4CNPCFuAtRndEI211xA/viewform
https://twitter.com/dhis_2
https://dhis2.org/development
https://dhis2.org/academy/level-2/

CHAPTER

METHODOLOGY 4
This chapter explores the methodology that is the cornerstone of the research: the design process of the
artifact and the relevant analysis processes starting from early start of the project.

Initial ideation of the thesis work was conceived from the Design lab thesis work projects, (UiO 2020),
then following several discussions with Dr. Johan Ivar Sæbø (the thesis work project supervisor), getting
involved in several meetings (discussions and workshops) with the Design lab (UiO 2020) team and email
communications with DHIS2 core developers, then finally the project was started.

The project’s work plan contains several parts: literature reviews, an artifact design, development,
and evaluation, following a research paradigm (design-science research) approach. The critical differentiator
between professional design and design research is the clear identification of a contribution to the archival
knowledge base of foundations and methodologies and the communication of the contribution to the
stakeholder communities (A. Hevner and Chatterjee 2010). Therefore, designing the artifact by following
DSR gives ample opportunity to explore means for developers to use the application resource site.

4.0.1 Research process

An IT artifact, implemented in an organizational context, is often the object of study in IS behavioral-science
research (A. R. Hevner et al. 2004). The artifact can be assumed as a gateway to exploring a problem for
intelligent solutions by following research fit to reach a goal solution. Thus, several iterations of the artifact
exist to understand how gamification pertains to learning software development.

A DSR approach can be s a complex process with many aspects that need be considered. DSR is
an iterative process, starting with identifying a problem in the problem space and evaluating alternative
solutions in the solution space (Brocke and Maedche 2019). Thus, after the last iteration and thorough research
follow documenting the takeaways from the project; moreover, the challenges and shortages of the project
are documented after practical evaluation of the artifact.

The figure (fig 4.1.) below shows a DSR framework from (Fig. 2.2, A. Hevner and Chatterjee 2010); the
framework has three cycles: relevance cycle, design cycle and rigor cycle. The design cycle is where the artifact is
built and evaluated, and the gamified artifact is the main focus. The research process consists of those three
cyclic processes by collecting data from participants, evaluators, and learnings along the overall process of
the thesis work. Finally, scientific theories and relevant research results are extracted after the evaluation
process (stage 5 in the framework).

18

https://www.mn.uio.no/ifi/english/people/aca/johansa/index.html

Chapter 4 – Methodology Section - 4.0.3

4.0.2 Design Science Research

Design science research effectively fits the process of designing and developing a gamified artifact (for
application development resource) and then evaluating it (with the goal of an application development
resource site) through iterative processes. In order to thoroughly test an artifact, it is recommended for
multiple iterations of the design cycle in design science research before contributions are output into the
relevance cycle and the rigor cycle (A. Hevner and Chatterjee 2010).

Evaluation of an artifact in DSR can have several ways, and according to (Venable, Pries-Heje and
Baskerville 2016), the evaluation processes are done before and after the artifact is built (namely ex ante
and ex post evaluations). During the evaluation, the artifact is questioned if it answers the desired solution.
According to (A. Hevner and Chatterjee 2010), one can ask if the design artifact improves the environment
and how this improvement can be measured.

The answers to the questions give input for further study of the problem, measurements, and
evaluation processes. In addition to that, they mention that to distinguish between formative and summative
evaluation. This distinction does not arise in the innate qualities of the evaluation process but instead inhabits
the functional purpose of the evaluation(A. Hevner and Chatterjee 2010).

Considering the research paradigm (fig 4.1), the checklist is in the table (table 4.1) on the next page.
The answers in the table are taken as evaluations of the respective DSR process, which can be seen in fig 4.1.
Since the research question1.2 is to explore how how gamification pertains to learning software development, three
iterations can be seen in the design cycle.

Figure 4.1: Design Science Research checklist of evaluation. (A. Hevner and Chatterjee 2010)

The table below maps the relevant questions (checklists) in each paradigm cycle. The major iterations in
the project come in three, and the DSR follow the same structure for the three cycles as seen in the table below:

19

Chapter 4 – Methodology Section - 4.0.3

Table 4.1. Design Science Research Checklist (Table 2.2, A. Hevner and Chatterjee 2010)
Question Iteration 1 Iteration 2 Iteration 3

1. What is the re-
search question (design
requirements)?

How aspects of gamification and documentation guidelines pertain
to the building of web-applications in a software development platform?

2. What is the artefact?
How is the artefact rep-
resented?

Web-page
(https://app-resource-
dev.vercel.app/)

Github repository
(yonatanhf/Application-
Development-
Resource)

Github repository
(dhis2designlab/Application-
Development-
Resource)

3. What design pro-
cesses (search heurist-
ics) will be used to
build the artifact?

To use tested and stable
libraries thus uses
DHIS2 documenta-
tion library (docsify),
relevant content

To automate badge re-
ward and maintain pri-
vacy, thus uses Github-
actions

To improve accessibil-
ity and testing of arti-
fact

4. How are the ar-
tifact and the design
processes grounded by
the knowledge base?
What, if any, theor-
ies support the artifact
design and the design
process?

Accessibility (i.e. to
be similar to existing
products as DHIS2:
platform, runtime, cli)

Privacy, automation
and gamification re-
wards

Usability (accessibility)

5. What evaluations are
performed during the
internal design cycles?
What design improve-
ments are identified
during each design
cycle?

Requests for reviews
from peer MSc students
and evaluating reviews

Requests for reviews
from Supervisor, peer
MSc students and eval-
uating responses

Requests for reviews
from Supervisor,
DHIS2 core-developers
and evaluating re-
sponses

6. How is the artifact
introduced into the ap-
plication environment,
and how is it field
tested? What metrics
are used to demon-
strate artifact utility
and improvement over
previous artifacts?

As a website, but
misses metrics and SSL
security

As a Github page, over
the previous version, it
improves SSL security,
privacy, and automa-
tion. The metrics used
are a number of forks.

As a Github page, it
improves the readabil-
ity and usability of the
page.

7. What new know-
ledge is added to the
knowledge base and in
what form (e.g., peer-
reviewed literature,
meta-artifacts, new
theory, new method)?

Importance of website
security, metrics, and
gamification design

Github actions for auto-
mation of tasks, game
reward mechanisms

Importance of usability,
documentation readab-
ility

8. Has the research
question 1.2 been satis-
factorily addressed?

No, because gamifica-
tion was not added to
the website

Relatively yes: applic-
ation resource site and
gamification

Relatively yes

20

https://app-resource-dev.vercel.app/
https://app-resource-dev.vercel.app/
https://app-resource-dev.vercel.app/
https://Github.com/yonatanhf/Application-Development-Resource
https://Github.com/yonatanhf/Application-Development-Resource
https://Github.com/yonatanhf/Application-Development-Resource
https://Github.com/yonatanhf/Application-Development-Resource
https://Github.com/dhis2designlab/Application-Development-Resource
https://Github.com/dhis2designlab/Application-Development-Resource
https://Github.com/dhis2designlab/Application-Development-Resource
https://Github.com/dhis2designlab/Application-Development-Resource
https://docsify.js.org/
https://platform.dhis2.nu/
https://runtime.dhis2.nu/
https://cli.dhis2.nu/

Chapter 4 – Methodology Section - 4.0.3

4.0.3 Data collection

Data collection is the process of getting responses from research participants and the artifact’s analysis,
including the type of metrics and the type of tools used to collect the data for the artifact.

Data collection in DSR (Design Science Research) using CFGs (Confiramtory Focus Groups) is useful
for participants exploring the artifact, which is designed in the application field. When using focus groups for
rigorous research, the unit of analysis will be the focus group and not the individual participants. (A. Hevner
and Chatterjee 2010))

Figure 4.2: Focus groups in DSR, (fig 10.2, A. Hevner and Chatterjee 2010)

21

CHAPTER

ARTIFACT DESCRIPTION AND
EVALUATION 5
This chapter describes the artifact (gamified application development resource site) built to serve as a resource
for building web-application by following a step-by-step guideline in a software platform (DHIS2 platform).
Moreover, this chapter considers the process model of the artifact, the measures and assessments taken during
the design, and the technology choices used in the artifact.

In the DHIS2 software platform, application builders use Github to store and manage software codes.
Moreover, DHIS2 core developers use Github to manage projects (can see them at https://github.com/dhis2).

5.0.1 How the artifact works

The artifact provides an environment to explore the ideation and organization of the proposed (gamified
application resource site) into an application development resource site form. Focusing on the gamification
aspects and step-by-step documentation guidelines, it serves as an environment to review the results of the
artifact in the end. Then it rewards users with badges for completing the milestones described in the artifact
while following the process in an interactive gamified manner.

The artifact is a Github repository and an artifact to be used by itself. Most Github repositories are
hosted or deployed in a hosting environment; however, this artifact is already ready to be used by forking it
from the original repository (upstream).

Automation

Github actions perform the automation; the activity diagram below explains the flow of control between the
parts of the artifact or the transition in states and controls between the different parts of the artifact and the
human participant.

22

https://github.com/dhis2

Chapter 5 – Artifact description and Evaluation Section - 5.0.1

Figure 5.1: Orginal repository and configuration steps

23

Chapter 5 – Artifact description and Evaluation Section - 5.0.1

The artifact works by leveraging Github features (see Fig. 5.1), i.e., Git pushes as inputs from a user,
then processes the input (trigger Github actions) and awards badges as incentives to keep the user engaged
with the artifact. The artifact’s process model refers to the input/output of tasks and the conditions required
for each task.

The artifact process models can be classified into two parts: Artefact’s process model and User tasks’ process
model:

• Artifact’s process model: The artifact’s building process model or SDLC (Software Development Life
Cycle Model) follows an agile software development. Such a model is primarily used type of software
development process model, by which features are added through the continuous process by taking
inputs from contributors (mainly the project supervisor and core developers).

• User tasks’ process model: These tasks are each set the user needs to complete to earn the badges;
similar to the todo section, user tasks in an agile board can be assumed to be user stories from agile
methodologies. User stories are traditionally written on note cards, where cards may be annotated with
estimates, notes, Etc. (Cohn 2004). A good user story contains metrics on how long a task takes, what
conditions need to be met, and the acceptance metrics for defined user stories.

24

Chapter 5 – Artifact description and Evaluation Section - 5.0.1

Browsing the game tasks:

a. html-js-css stories:

1. level-1:

Requirement: Goal to build - A registration form using HTML, CSS and JS,

Details:

Figure 5.2: Task: html-js-css level 1

25

Chapter 5 – Artifact description and Evaluation Section - 5.0.1

b. react stories:

1. level-1:

Requirement: Goal to build - Calculator WebApp with ReactJS (and JSX)

Details:

Figure 5.3: Task: React Js level 1

26

Chapter 5 – Artifact description and Evaluation Section - 5.0.1

c. dhis2 stories:

1. level-1:

Requirement: Goal to build - Initiate, log-in and display the DHIS2 homepage

Details:

Figure 5.4: DHIS2 Application level 1

27

Chapter 5 – Artifact description and Evaluation Section - 5.0.1

2. level-2:

Requirement: Goal to build - A DHIS2 application that lists and displays lists’ details

Details:

Figure 5.5: DHIS2 Application level 2

28

Chapter 5 – Artifact description and Evaluation Section - 5.0.2

5.0.2 Artifact design

In IS, ISDT (Information Systems Design theory) has several theses on picking a preferable design theory.
The book (A. Hevner and Chatterjee 2010) suggests that when building artifacts, design theory in ISDT could
provide ways to design the artifact.

The design process had several iterations, which can be assumed to be imagined as several versions
(evolutions) of the artifact and can be seen in the section 4.0.2. Since the artifact explores the implementation
of gamification, step-by-step guideline, and software development, it is not feasible to use one design theory
for all. Therefore, the design theories in the artifact contain theories from those areas, viz., step-by-step
guidelines, gamification design, platforms, security, and privacy.

After the design process follows the development of the artifact and the feedback from the project
supervisor, the DHIS2 core developers and individuals who test the artifact have given productive inputs to
design it better. In such a manner, the final version of the artifact is the result of several iterations.

Gamification design

The gamification design is a continuous work in progress. Nevertheless, the artifact is currently based on
three major parts: the Aesthetics, Dynamics, and Mechanics parts of a game from the book (Zichermann and
Cunningham 2011). The game design by Zickermann and Cunningham is well represented in many research
works and can fit all types of game environments.

Figure 5.6: Gamification by design: Implementing game mechanics in web and mobile apps. (Zichermann
and Cunningham 2011)

Completing the user stories and earning rewards:

When the user stories or the tasks that the user need to complete are done by a user, the user commits those
changes and sends those changes via git push operation. The figure below (fig 5.7) shows the git commit
history of the series of completed tasks.

29

Chapter 5 – Artifact description and Evaluation Section - 5.0.3

Figure 5.7: Commit history of completed tasks

Interpreting rewards:

Fig 5.1 (in its lower section) (Web Application’s completion status) is the area where the badges awarded are
displayed. Fig 5.8 shows how the awards look when the tasks are completed, and badges are awarded.

Figure 5.8: Types of awards (badges) given

5.0.3 Evaluation of artifact architecture

The figure above (fig 5.9) shows the arrangement of the major parts of the current artifact architecture:

Github Actions:

Github Actions allow the automation of tasks based on various triggers (e.g., commits, pull requests, issues,
comments, etc.) and can be easily shared from one repository to another, making it easier to automate how
developers build, test, and deploy software projects (Kinsman et al. 2021). In this project, Github Actions
check if the steps defined in the tasks are correctly put and to finally provide Badges for correctly put projects.

30

Chapter 5 – Artifact description and Evaluation Section - 5.0.3

Figure 5.9: Artifact architecture diagram

A workflow can contain one or more Actions. Developers can create their own Actions by writing
custom code that interacts with their repository, and use them in their workflows or publish them on the
Github Marketplace(Kinsman et al. 2021). The current workflow of Github actions can be seen in fig.s 5.1 &
5.9, by which the Github actions are triggered when a developer (user of the artifacts) pushes code to his/her
repository.

Figure 5.10: Activity Diagram

• Root Repository (the artefact):
Github, being one of the most secure software development management platforms, it is being used to
secure millions of software applications and projects. For instance: DHIS2 core applications and DHIS2
Design Lab repositories can be seen in Github. This is location of the artifact, which is deployed (found)
as one of the DHIS2 Design Lab Github repositories.

• Forked Repository (the personal artifact of the application builder):
This is the copy of the root repository (artefact), but owned as personal artifact of the artifact user
(participant or application developer). The user can have copy of the root repository by forking the root
repository.

31

Chapter 5 – Artifact description and Evaluation Section - 5.0.3

• Documentation (step-by-step guideline, web-based tasks):
This section describes the activities to be performed by the user in-order to complete the tasks and earn
the rewards.

• Gamification (badges, response mechanism):
This part includes the game parts of the artifact, viz. rewards, task completion incentive mechanisms,
response automation and gamification related specifications.

• Security & privacy:
Since the artifact is open-source project, security (specifically privacy) is important part of the artifact’s
evaluation. Github’s security measures are used to secure millions of software projects and leveraging
the same security measures from Github the participants do have the same level of security. For more,
see at the Github about forks.

OWASP (Open Web Application Security Project) is one of the most used developer guidelines to audit
or analyse security risks of web applications. It is equally used with-in the open-source and commercial
security risks and respective mitigation. Considering the artifact, the table below describes the top
10 security risk from OWASP (Stock 2021) as measurement of evaluating the security of the artifact.

32

https://docs.Github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/about-forks

Chapter 5 – Artifact description and Evaluation Section - 5.0.3

OWASP Top 10 checklist: 1-7 (Stock 2021)
Attribute Description &

areas of use
Artifact iteration
1

Artifact iteration
2

Artifact iteration
3

A01:2021-
Broken Access
Control

Access control
management of
the user to the
artifact, e.g., to
manage access
privilege, the
permission of
other users, and
access to APIs.

Irrelevant, since
users do not
need to save or
share informa-
tion in/from an
artifact.

Protected by
Github security
measures

Protected by
Github security
measures

A02:2021-
Cryptographic
Failures

About protecting
sensitive data,
e.g., encrypting
transmitted data
between software
parts

Not required Not required Not required

A03:2021-
Injection

To mitigate SQL,
NoSQL, OS, and
LDAP injections
that come via
query (untrusted
data is sent to an
interpreter).

Not required,
since there is no
database

Same as previous
iteration

Same as the pre-
vious iteration

A04:2021-
Insecure
Design

About security
design concerns

No sensitive data
is collected or
saved.

Same as iteration
1 and leverages
Github security
designs

same as the pre-
vious iteration

A05:2021-
Security
Misconfigura-
tion

About security
misconfigura-
tion within the
architecture of
the artifact, e.g.,
setting default
user/password
for the artifact.

Not required Github actions do
not require secur-
ity configuration

Same as the pre-
vious iteration

A06:2021-
Vulnerable
and Outdated
Components

About detect-
ing, fixing, and
mitigating se-
curity issues
from outdated
components.

Requires con-
stant security
auditing of lib-
raries like docsify

requires constant
security auditing
of libraries

Similar to the
previous require-
ment

A07:2021-
Identification
and Au-
thentication
failures

About authen-
tication via
passwords, 2FA
(two-factor au-
thentication)
and session
management

Not required Handled by
Github identity
management

Same as the pre-
vious iteration

33

Chapter 5 – Artifact description and Evaluation Section - 5.0.4

OWASP Top 10 checklist: 8-10 (Stock 2021)
Attribute Where to imple-

ment
Artifact Iteration
1

Artifact Iteration
2

Artifact Iteration
3

A08:2021-
Software and
Data Integrity
Failures

About the artifact
updates or crit-
ical data. CI/CD
(and Github ac-
tions) can be an
example

Not required Uses non-custom
& audited Github
actions

Similar to previ-
ous iteration

A09:2021-
Security
Logging and
Monitoring
Failures

About user activ-
ity logging

Not required Not required Not required

A10:2021-
Server-Side
Request For-
gery

Relevant when
data is fetched
from servers &
data integrity

Not required Not required Not required

Table 5.1: OWASP Top 10 for artifact’s security evaluation

5.0.4 Technologies used

The technologies or technical tools used in the artifact are based on Github, commonly known as a
software version controlling system.

Github

Github is a platform that enables software development teams to collaborate, share code and operate
general software development of an artifact. Github enables collaboration and awareness and, as social
computing technology, shifts the focus of interaction to individual contributors and their activities with
electronic artifacts (Dabbish et al. 2012).

Pros and Cons of Github

Github comes with several pros:

– Enables ease of communicating with other participants and contributors in a transparent manner,

– Enables to provide badges, stars, and related reward mechanisms,

– Enables automation of badge rewards via Github Actions,

– Enables a layer of security for the repositories and integrity of badges,

Github cons:

– Complexity of process to setup and configure participant’s environments,

– Poor user interface, when compared to web-based interactive,

– Limited features to add, compared to websites, e.g., challenging to have alerts, reminders or
interactive pages in Github readme docs.

34

Chapter 5 – Artifact description and Evaluation Section - 5.0.4

Programming Languages:

The major two types of programming language used to build the artefact:

– Configuration programming languages: Markdown and YAML.

Markdown is commonly used to write documentation, sometimes build web applications (in
server-side rendered pages), and several other documentation-related use-cases.

YAML (YAML Ain’t Markup Language) is used used to write the script for automation with-in
the artifact. Workflows are defined in the .Github/workflows/ directory and use YAML syntax,
having either a .yml or .yaml file extensionYAML (Dabbish et al. 2012).

– Artifact building programming languages: This can be seen as in fig 5.1, where 96.3% of the artifact
is JavaScript, 1.9% is CSS and 1.8% is HTML

The design implementation is done on Github and consumes features provided from Github to deploy
the artifact. Moreover, as part of the web application development tasks to be built, the artifact has
parts defined with HTML, React, and DHIS2-specific tools.

35

CHAPTER

RESULTS AND ANALYSIS 6
This chapter covers the results & analysis of the artifact through several iterations, the significant challenges
when building the artifact, and lastly, the takeaways from the project after the three iterations of the gamified
application resource site.

6.1 ARTIFACT ITERATIONS

6.1.1 Iteration I:

The artifact (https://app-resource-dev.vercel.app/) was built based on inspiration from existing DHIS2 applica-
tions. Therefore, the initial considerations were:

• Artifact should be built with a step-by-step guidelines approach,

• Artifact should be motivating for participants to get engaged. The reason for using the docsify library
is to have a familiar feel (with DHIS2 apps) to the artifact.

Challenges

The library used to build the artifact was docsify (https://docsify.js.org/), the same library used for
some DHIS2 core applications. To build over the default page layout provided by the library (docsify) is not
possible, especially to build interactive web applications that track individual participants’ progress on the
artifact, e.g., tracking progress on gamification.

Feedbacks

The feedback given on the artifact was from peer students and project supervisor, and the main
concerns were security:

• The artifact did not have SSL certificate,

• The artifact did not have progress tracking for the participant; while working on the artifact

Requirements for iteration II

After the reviews on the artifact, the following points were taken to be done for the second iteration:

36

Chapter 6 – Results and Analysis Section - 6.1.2

Figure 6.1: Artifact iteration 1

• The artifact should include gamification aspects

• The artifact should not save participants’ credentials (username, password, or any information)

• The award of badges or rewards should be automated by the artefact

6.1.2 Iteration II

Challenges

The challenges of this iteration were probably the hardest, considering the requirements and the different
parts to explore at the same artifact. Finally, Github was chosen to implement the requirements and to provide
easier access for participants.

Feedbacks

For this last iteration of the artifact, there were new inputs from the DHIS2 core team regarding the readability
of the tasks in the configurations of the artifact. After those changes were made, there were few willing
participants to explore the artefact.

Requirements for Iteration III

• The artifact to have improved or readable content

• To explore the gamification aspect

37

Chapter 6 – Results and Analysis Section - 6.2.1

6.1.3 Iteration III

Challenges

The challenges of this iteration were fixing the wording and improving the readability of the previous
iteration.

Users explored the artefact in iteration III

After this iteration III, it can be seen in fig 6.2 the forks of the artifact, which means the accounts that attempted
to demonstrate the gamified artifact, two people attempted it (jorgenpa and saifnoman). However, they did
not manage to complete the tasks.

I waited for the accounts to work on some progress before sending them the survey and getting
feedback from their end. However, until week 23/2022, there was no progress on their end; one of the users
started configuring and working with the artifact (the initial steps), but the other user only forked it and did
nothing. At last, however, I sent them the survey, but still no response.

6.2 TECHNICAL CHALLENGES

6.2.1 Artefact design:

In this thesis work, the artifact is built-in Github, which has dwarfed the artifact’s gamification aspect by
comparing Github to the game development frameworks. These shortages are:

Artifact Design:

The design of an artifact in IS is still elusive. It is a work in progress on approaching an artifact’s design
theory (A. Hevner and Chatterjee 2010). Therefore, building artifacts have design methods that open doors
to many options or ways of building artifacts. This could make it harder to integrate the features with existing
architectures within platforms.

Thus, design theories of both building artfacts and game design are necessary requirements for a
gamified application-development resource site. Fig 6.2 shows the six traits of an artifact from the design
theory of an artifact in DSR (A. Hevner and Chatterjee 2010), and having such components from the early
stages of the artifact can structure the artifact itself, especially in the early stages of the artifact iterations.

Figure 6.2: Six components of an information system design theory (A. Hevner and Chatterjee 2010)

38

Chapter 6 – Results and Analysis Section - 6.2.2

Software architectures of artefact:

In addition to the artifact design, the software architecture of the artifact needs careful consideration so that
it does not have limitations for possible future requirements. The common use-cases of Github are hosting
source codes of software, and the building process of those software follows recommended architectural
patterns and practices.

Nevertheless, using the Github repository as an artifact becomes challenging in the case when newer
requirements come on a given artifact. For instance: a challenge can happen in the artifact if there come new
requirements for gamification integration into application development resource sites to include integration
with other reward mechanisms like images or characters. Here, the software architecture challenges can be
considered with tooling challenges,

Tooling challenges

• Github: Github is commonly used for hosting, sharing and management of software code, thus to
use Github repository as an artifact might be challenging for users considering the importance of
accessibility of web based applications.

• Hosting environment: To Hosting environment of the artifact from UiO, this could for instance be an
access to Google Cloud web hosting included with the UiO student’s Google package. Another option
could be to leverage the services used by any of the Cloud computing services.

On the practical or technical preferences, the following design specifications come as helpful areas for
having artifacts with PWA behaviours:

• Having requirements ready before starting designing,

• Considerations on architectures to have artifacts with rooms for newer features,

• Considerations to deploy artifacts, and which metrics of artifact performance to use,

• Consideration on testing of an artifact and access to testing environments,

Gamification challenges:

There are many challenges in gamifying a process, as seen at 2.4.3. Similarly, when looking at specially with-
in OSS platforms, many incentive mechanisms can experiment:

• Incentive mechanisms:
Gamifying a process requires identifying the incentive mechanisms for the participants of a given
process, by which the mechanisms can be industry or use-case-dependent. Moreover, the challenge
increases for crowdsourced projects such as open-source projects are associated with incentive
mechanisms for the public (participants). For instance, mention some examples of incentive
mechanisms in OSS, and the incentive mechanism seen in Roberts, Hann and Slaughter 2006 shows
that.

Social:

Even though the responses from DHIS2 core or those in closer proximity was faster, the social challenges
with DHIS2 has been on asking questions in the DHIS2 community, for instance: slow responses on a post I
put to request for possible participants to help with the thesis project. Slow responses are common in Open-
source projects, therefore, optimal communication channels or access can be preferable approach instead of
commenting in forums or community pages.

39

Chapter 6 – Results and Analysis Section - 6.2.2

6.2.2 Challenges and shortages of the research process

Github for data collection

Software projects and development teams in software development platforms like Github and Gitlab usually
understand Stars as a sign of the popularity of a project or as an approval rate of the project from the
development community. There could be different reasons why Github stars and forks are essential. However,
for new projects in Github (Gitlab or any similar source-code management platforms) Stars can be taken as
incentive mechanisms for new members to join the popular project (for existing developers to work on the
project).

During the second iteration of the artifact, Stars were considered as rewards (part of the incentive
mechanism) for the individual users’ accomplishments, but after discussing with the project supervisor, such
an approach had two possible shortages:

• the users can be many, and it could be too much work for someone to check the completed milestones
and awarded a stars on successful completed participants’ repositories,

• after discussing the use of stars, the usage of badges became a better option as they convey the message
better

The number of stars for the artifact (iteration three) or any completed participants’ repositories were
zero, which meets one of the hypothesis expectations of the artifact (iteration two). Nevertheless, it still
begs questions about whether participants even considered the use of stars and whether the few numbers of
participants had an effect on identifying stars as effective incentives.

• The Github repository (in iteration three) had 0 stars and 2 particiapant forks, 1 demonstration fork and
another 1 demnostration fork.

Figure 6.3: Artifact forks

As it can be seen in fig 5.1, there is zero amount of stars for the artifact could be an indication of a
low rating of the artifact, different understanding of stars or low interest of stars as incentive mechanisms for
participants. The natural and practical meaning of “starring a project” was never the subject of an in-depth
and well-founded empirical investigation (Borges and Valente 2018).

Therefore, in this project, one of the challenges when using Github to collect data has been identifying
effective rewards and whether stars or badges were motivating enough to be used as rewards.

40

Chapter 6 – Results and Analysis Section - 6.2.2

Identifying (finding) specific focus group

A Focus group is one of the ways data can be collected and used to investigate new ideas that are widely
used in many research fields. Using focus groups in design science research poses exciting opportunities
and challenges (A. Hevner and Chatterjee 2010). In a focus group, participants are asked their opinions on a
product, idea, or concept, and an interactive group setting allows for free discussion between the participants
(Tremblay, A. R. Hevner and Berndt 2010).

One of the shortages of this study is, therefore, not having a focus group. Every interpretation of
results is from communications with individuals and responses from either other peer students, the project
supervisor, or the DHIS2 core team. They all have checked the artifact at a particular time and provided
valuable inputs, and the inputs can be taken as unstructured interviews.

Burner Github accounts

After iteration III, the users’ attempts and the challenge of follow-up due to Github’s inability to verify users,
it is problematic to take Github responses as legit data unless the user’s reputation is also thighed with
Github.

41

CHAPTER

DISCUSSIONS 7
This chapter builds on the previous chapter on the research & analysis of the artifact. It discusses the project
(thesis work) by addressing the research question, literature reviews of a digital platform, gamification, and
web application developments. Moreover, the essential findings, how those findings were extracted, and the
shortages of the study are discussed. Lastly, a few short recommendations were made by considering this
study.

Research Question: How do aspects of gamification and documentation guidelines pertain to building web
applications in a software development platform?

The research question at its core attempts to explore ways to motivate (indirectly re-enforce) Webapps
builders via gamification. These ways are possible step-by-step guidelines, standard practices, or set-of
essential parts, which are enough to enable builders to work with each other, debug problems or even
build over previous builders’ works. Having documenting every function is not feasible (Kirk, Roper and
Wood 2007); moreover, documenting every component (functions) is impractical to adapt to the constantly
changing patterns of programming languages, the increase in complexity of Webapps and the release of
newer development frameworks.

The research question comprises three major parts: applications & platforms (2.2), documentation
guidelines & web-application development (2.3) and gamification(2.4). Thus, to explore the three parts, initially,
a hypothesis was setup to explore them, viz. taking DHIS2 as a digital platform (2.2), different types of
web-applications (2.3), and then finally the research question takes the following hypotheses:

• Step-by-step guidelines (Procida 2020) are preferred ways of conveying the guidelines’ content

• Gamification (2.4) can motivate web-application developers to follow guidelines

The approach taken was to explore the hypotheses by building an artifact, and the artifact that is built
in this project has three iterations. The first iteration (6.1.1) explores the first hypothesis that step-by-step
guidelines are practical for conveying message guidelines. The other two iterations consider the feedback
from the first iteration and the hypothesis that gamification motivates developers. In parallel, in this process
literature study on gamification and the possibility of designing gamified environment via Github was done.

Before building the web-page to explore an effective means to convey a message in guidelines, I had
to look into the existing DHIS2 platform’s web-pages that have documentation, for instance: the DHIS2
developer portal, DHIS2 UI and Design approach, and DHIS2 Application platform (3.1).

42

Chapter 7 – Discussions Section - 7.1.1

Those DHIS2 core applications use the same library (tool) called docsify (4.0.2) for displaying content
for developers or users, and I decided to use the same library as it was fit enough to display the guidelines.
Later after talking with the core team, step-by-step guidelines were taken as a preferred means to have the
messages in the guidelines.

The hypothesis of gamification was initially brought into discussion with the project supervisor. The
idea is that there could be many ways for builders to get motivated to follow step-by-step guidelines, e.g.,
many gamified online resources for programming or Webapps building exist. Therefore, among many other
options, gamification possibly motivates developers to follow the first hypothesis of step-by-step guidelines.

7.1 FINDINGS

7.1.1 Step-by-step guidelines

Developer guidelines that are only with the important steps follow (Kirk, Roper and Wood 2007), and are
motivating enough for builders (Graziotin et al. 2018, França, Da Silva and Sharp 2018) to follow comes as the
optimal. These steps can be different according to the content; for instance, steps to configure specific settings
need to be detailed more than the details needed for building a web-application because configuration steps
are usually sensitive to jumps or mistakes in steps.

The project uses only a step-by-step procedure from the first iteration 6.1.1. They are effective because
it is the commonly used approach in most developer guidelines of libraries or frameworks. Similarly, the
feedback on the artifact did not have issues with those steps or the content. The negative feedback on the
first iteration was mainly security concerns for missing SSL certificates and participants’ privacy 5.0.3. In
addition, the artifacts did not have any approach to gamification.

The feedback on the second iteration of the artifact 6.1.2 from the core-team was considering the
readability of the artifact’s configuration page of the step-by-step guidelines, still not about the step-by-step
procedures of building the demo tasks. The takeaway is step-by-step guidelines approach is the optimal
approach. However, when it comes to configuration or setup guides, the steps to put in the developer
guidelines need additional supportive information.

Github repositories are reactive to several features, e.g.: forking, staring, git operations, automating
process and many other features. In the iterations II & III, the readme part of the repository is used to display
the step-by-step tasks, and the participant reads those steps and interacts with the Github features. However,
Github has also limitations when it comes to accessibility. Therefore, interactive site generators like readme
(readme.com) could be better options for gamified application-development-resource sites. With interactive
resource-sties, developers can:

• Have their rewards (badges, stars or game ranks) in their profiles,

• Save the status of completed tasks, add their notes on the task or recommend possibly better options
for doing the tasks,

• Can be handy to add new features, game characters and stories to the application-development site,

• Can have customisable UI to increase accessibility of the site

43

Chapter 7 – Discussions Section - 7.1.2

7.1.2 Gamification for motivation to follow guidelines

Gamified scenarios are many in our daily lives, plus many people these days have grown up with playing
games, and a lot of people feel a sense of accomplishment wining games and it brings back fun memories for
game players. Games are not limited to video games and they come in different formats which still adults
can use them to feel the sense of accomplishment and get rewarded for excelling at doing tasks or reaching
goals. 2.4

The gamification aspect of the artifact is visible in iterations 2 & 3 of the artifact, and practically there
was mere reference on using Github features to demonstrate the gamification parts: aesthetics, dynamics
and mechanics (Zichermann and Cunningham 2011). However, looking into those parts of gamification in
contrast to how they are explored in the artefact:

• Aesthetics to handle to how a participant feels, when badges are awarded and would he/she continue
for more badges,

• Dynamics to handle to the process of forking, and configuring the artifact (GitHub repository)

• Mechanics to handle the game features of levels, challenges in the form of step-by-step manner

Looking into the gamification, the design used (Zichermann and Cunningham 2011), and the use of the
Github features could be debatable, and looks further exploration if Github doesn’t fit into the game design
explored in the artifact. Moreover, the following points can be incorporated to explore the design further
with Github:

• Adding stories to the Mechanics part

Stories play vital roles in video games and generally how games are modelled, because stories convey
messages and keep game participants engaged and motivated to purse goals. Therefore, building a
storyline by following gamification designs, the artifact is built. In the artifact the storyline can be
equivalent to the step-by-step guidelines of building web-applications and the rewards (badges) of the
tasks from the gamified environment.

At this moment the aesthetics part of the gamification (step-by-step guidelines) do not have stories,
except step-by-step guidelines. Creative stories are vital for gamified environments to convey clear
messages for participants so that the journey of learning the software development becomes more
memorable. Therefore, exploring more into stories and aesthetics part of the game can increase the
engagement of participants. Stories in gamification can include certain characters or fictitious story so-
that to emotionally engage the participant. Participants do not have characters to pick in the current
form, but exploring stories further can add value into the aesthetics part of the game

• Open-source incentive mechanism The digital platform which is considered for this project is an open-
source, therefore, the artifact considers open-source projects developers as participants. In general,
majority of the game industry has finances as incentives, and it is commonly known opinion that open-
source project developers are not interested in financial gains from the projects they build in public
software management platform like Github. Therefore, one of the challenges is what can incentivise
best for those various open-source project builders to get engaged and play around with the artifact.

Knowing the incentive mechanism could require extra research into the given demography of
developers, then the gamification aspect of the artifact, especially the mechanics and aesthetics parts
can be tuned to meet the selected incentives.

44

Chapter 7 – Discussions Section - 7.1.3

7.1.3 Limitations of the study

To combine the three parts: step-by-step guideline, gamification and building the artefact into a single artifact
and have the research via DSR was challenging, specially the gamification design and artefact building aspect.
The book on DSR by A. Hevner and Chatterjee 2010, provides ample resources and several historical scenarios
into DSR, which at times was confusing me during the first times, starting to understand how the iterative
behaviour gets feedback from participants.

In addition to that having to use the book on Game Design by Zichermann and Cunningham 2011 and
meeting the requirement for the three parts of game design (aesthetics, mechanics and dynamics) into an
artefact was hard. At last, I chose Github as an environment to enable those three design requirements of a
game.

But Github has its own challenging aspects (5.0.4, 6.2.2):

• Burner accounts can participate and flood the data feedback

• Hard to add features in Github, for instance: if participants want different rewards outside than stars
or badges, then it doesnt work

• Developers who have not experience with Github before can be excluded from using the artefact

45

CHAPTER

CONCLUSION 8
This thesis work explored a gamified application development resource site, where applications are Webapps.
With modifications, the gamified application development resource site can be a valuable part of DHIS2 to
guide developers with clear and essential steps. With the addition of supportive information to configuration
or setup guides, having a gamified application development resource site works when it comes to the step-
by-step approaches. The additional information can be by adding videos to describe (or show) the step,
hosting live workshops to explore the steps, and probably adding language preferences on the artifact can
enhance the use of the step-by-step guidelines.

In addition, in most of the documentation libraries in DHIS2 is docsify, one of the top two
trending libraries (per npm-trends list, https://www.npmtrends.com/docsify-vs-docusaurus-vs-gitbook-vs-
vuepress). The advantage of static-site generators over interactive-site generator is speed of delivery and
fewer features to implement, however, this makes them hard to have interactive environment for instance:
to add gamification or user to save his/her status. Moreover, docsify have limitations to customisation and
plug-in extensions, that is also the main reason why the decision was made to use Github for gamification
environment. However, for a gamified application development resource site in DHIS2, interactive sites are
feasibile and more effective for gamification.

From the literature, it can be concluded that gamified guidelines pertain to web-application building
do give a sense of accomplishment and a sense of achievement for the participants in a playful, challenging
learning experience and at last getting rewarded for reaching certain milestones in the learning curve of the
provided step-by-step guidelines.

In addition to that, adding video or animations to describe the complicated parts of the gamification
can increase accessibility, for some developers have preferences to watch videos rather than follow only the
documentations (different means of learning new ways). For instance, this can be attained by hosting videos
tutorials or adding the videos parallel to the to-do task.

46

Chapter 8 – Conclusion Section - 8.1.4

8.1 FUTURE WORKS

In the current gamified application development site, there is only one character for all the participants:
the character of an application developer (builder), which can be assumed as the hero of the gamified
environment. In the future, more character additions can be made by using the exact roles of the
single character in building web applications (2.3) while maintaining or following step-by-step guidelines.
Therefore having multiple characters and storylines for the different communities can be a research venue
for more engaging outcomes. Furthermore, stories can be added to the gamification aspect, and each user is
a character in the story.

Digital platforms, they have their own ecosystems and integrating two or more platforms requires
common stories, standards, values and incentive mechanisms (in the context of gamification). Open-source
platforms are challenging as participants of such platforms are willingly present in the platforms with a will
to contribute to the common good of the community, therefore the merger between such platforms can be
easier than otherwise.

8.1.1 Gamification frameworks (platforms)

Using Github as a gamification environment could have dwarfed the participation or use of the artifact, there-
fore it could be better to use gamification platforms like cocos2d-x (https://github.com/cocos2d/cocos2d-x),
and others, because they are dedicated platforms and come with many gamification principles to implement,
test and deploy faster. In addition to that, by using those platforms, artifacts can be built with several scen-
arios, to mentions some, it could be: characters, game modes, maximum (minimum) number of participants
to have, scalability and hardware requirements.

8.1.2 Exploring design patterns inside step-by-step guidelines

Step-by-step guidelines is one time process to achieve a given goal, but if the focus is on the design patterns
users can return to do the tasks multiple times, thus increasing

8.1.3 Gamifying bottom-up

When gamifying an environment, the need for an organic network-effect mainly depends on the values
and value creation processes relevant to the game environment participants. Based on existing models of
digital platforms, the value created is similar and researches have shown many digital platforms are ditching
the vanity metrics of value in search of new ways to look into value creation. Bottom-up approach to
gamify is indeed perceived as valuable because people have higher autonomy compared to “top-down”
gamification often used today’s games (Lessel et al. 2016). Therefore, an approach to gamify a web-
application development resource site is to look into gamifying an environment by initially researching or
analysing the users’ (or open-source communities) incentive mechanics, values and value creation processes,
then build stories around their responces, characters, and include game mechanics.

8.1.4 Glimpse into the Metaverse

Looking into the technological trends of digital platforms in 2020-22, the concepts of Metaverse and migration
of such traditional digital platforms like Meta (previously Facebook), Apple, Microsoft, Amazon, Snapchat,
NVIDIA calls indicates the evolution of the commonly used client-server architectures to decentralised digital
platforms. By definition, metaverse is a combination of the prefix “meta” (implying transcending) with the
word “universe”, describes a hypothetical synthetic environment linked to the physical world, it serves as
layer that provides singularity and integrations between several modern day terms: virtual economy, avatars,
NFTs, VR, XR, AR, MR, AI and Automation (Mystakidis 2022).

Looking into gamification, players and users are constantly reminded that the current version of the
metaverse is not theirs to grow and build upon, but owned by those creating the experiences for them

47

Chapter 8 – Conclusion Section - 8.1.4

(Chainlink-docs 2022). Therefore, the metaverse is not still better environment than the traditional client-
server digital platforms, but there could be take aways from the gamified environments in the metaverse.
Moreover, there exist several initiatives for future works on integrating, inter-operating or migrating current
traditional client-server based digital platforms into the metaverse and vice-versa seems an inevitable journey
to maximize the value created from both architectures (Chainlink-docs 2022).

48

GLOSSARY

Github: A cloud-based service which is used by developers to share, store, automate work-flows and in-
tegrate software resource-codes. Equally important, for teams, it helps to track changes that are made by
developers. Some common inter-changeable terms for Github are version control or Git.

Upstream: When talking about a branch or a fork, upstream is the primary branch on the original repos-
itory. (src: Github docs)

User/s: Users are people with personal GitHub accounts. Each user has a personal profile, and can own
multiple repositories, public or private. (src: Github docs)

Artefact/s: Artefacts can be of various types (requirements, use cases, design documents, use case diagrams),
which have customisable attributes and data types. (src: IBM docs)

PWA: Progressive Web Apps (PWAs) are web apps that use service workers, manifests, and other web-
platform features in combination with progressive enhancement to give users an experience on par with
native apps. (src: Mozilla mdn docs)

49

https://docs.github.com/en
https://docs.github.com/en
https://www.ibm.com/docs/en/elm/7.0.3?topic=artifacts
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps

BIBLIOGRAPHY

1. Farrukh Shahzad. ‘Modern and responsive mobile-enabled web applications’. In: Procedia Computer
Science 110 (2017), pp. 410–415.

2. Douglas Kirk, Marc Roper and Murray Wood. ‘Identifying and Addressing Problems in Object-Oriented
Framework Reuse’. In: Empirical Softw. Engg. 12.3 (June 2007), pp. 243–274. ISSN: 1382-3256. DOI: 10.
1007/s10664-006-9027-z.

3. Daniele Procida. Divio Documentation System: how-to-guides. https://documentation.divio.com/. 2020.

4. Jinwoo Kim and F Javier Lerch. ‘Why is programming (sometimes) so difficult? Programming as
scientific discovery in multiple problem spaces’. In: Information Systems Research 8.1 (1997), pp. 25–50.

5. Jochen Rode. ‘Nonprogrammer web application development’. In: CHI’04 extended abstracts on Human
Factors in computing systems. 2004, pp. 1055–1056.

6. Eric Adu-Gyamfi, Petter Nielsen and Johan Ivar Sæbø. ‘The dynamics of a global health information
systems research and implementation project’. In: SHI 2019. Proceedings of the 17th Scandinavian
Conference on Health Informatics, November 12-13, 2019, Oslo, Norway. 161. Linköping University
Electronic Press. 2019, pp. 73–79.

7. Allen S Lee. ‘Thinking about social theory and philosophy for information systems’. In: Social theory and
philosophy for information systems 1 (2004), p. 26.

8. Amrit Tiwana. ‘The Rise of Platform Ecosystems’. In: Platform Ecosystems (2014), pp. 3–21.

9. OSI-Docs. Open Source Initiative. https://opensource.org/. 2007.

10. Joel West. ‘How open is open enough?: Melding proprietary and open source platform strategies’. In:
Research policy 32.7 (2003), pp. 1259–1285.

11. Mark De Reuver, Carsten Sørensen and Rahul C Basole. ‘The digital platform: a research agenda’. In:
Journal of Information Technology 33.2 (2018), pp. 124–135.

12. Carla Bonina et al. ‘Digital platforms for development: Foundations and research agenda’. In:
Information Systems Journal 31.6 (2021), pp. 869–902.

13. Fabian Fagerholm and Jürgen Münch. ‘Developer experience: Concept and definition’. In: 2012
international conference on software and system process (ICSSP). IEEE. 2012, pp. 73–77.

50

https://doi.org/10.1007/s10664-006-9027-z
https://doi.org/10.1007/s10664-006-9027-z
https://documentation.divio.com/
https://opensource.org/

Chapter 8 – BIBLIOGRAPHY Section - 8.1.4

14. Lars Kristian Roland et al. ‘P for Platform. Architectures of large-scale participatory design’. In: (2017).

15. Chainlink-docs. Blockchain,Metaverse, DeFi. https://chain.link/education/. 2022.

16. Yan Chen, Igor Pereira and Pankaj C Patel. ‘Decentralized governance of digital platforms’. In: Journal
of Management 47.5 (2021), pp. 1305–1337.

17. Vitalik Buterin et al. Ethereum: A next-generation smart contract and decentralized application platform. 2014.

18. Chris Cordle. Why Angular 2/4 Is Too Little, Too Late. 2017.

19. Daniel Graziotin et al. ‘What happens when software developers are (un) happy’. In: Journal of Systems
and Software 140 (2018), pp. 32–47.

20. César França, Fabio QB Da Silva and Helen Sharp. ‘Motivation and satisfaction of software engineers’.
In: IEEE Transactions on Software Engineering 46.2 (2018), pp. 118–140.

21. W3C. Web Content Accessibility Guidelines. https://www.w3.org/TR/WCAG21/#background-on-wcag-2/.
2018.

22. Gabe Zichermann and Christopher Cunningham. Gamification by design: Implementing game mechanics in
web and mobile apps. " O’Reilly Media, Inc.", 2011.

23. Rania Elshiekh and Laurie Butgerit. ‘Using gamification to teach students programming concepts’. In:
Open Access Library Journal 4.8 (2017), pp. 1–7.

24. Sebastian Deterding et al. ‘Gamification. using game-design elements in non-gaming contexts’. In:
CHI’11 extended abstracts on human factors in computing systems. "Unknown", 2011, pp. 2425–2428.

25. Firas Layth Khaleel et al. ‘The study of gamification application architecture for programming language
course’. In: Proceedings of the 9th International Conference on Ubiquitous Information Management and
Communication. 2015, pp. 1–5.

26. Richard Whiddington. ‘Virtual Tours and Gamification, China’s Museums Pivot Content for
Coronavirus’. In: Jing Travel, February 14 (2020).

27. Iulian Furdu, Cosmin Tomozei and Utku Kose. ‘Pros and cons gamification and gaming in classroom’.
In: arXiv preprint arXiv:1708.09337 (2017).

28. Gabriela Kiryakova, Nadezhda Angelova and Lina Yordanova. ‘Gamification in education’. In:
Proceedings of 9th International Balkan Education and Science Conference. 2014.

29. Valērija Platonova and Solvita Bērziša. ‘Gamification in software development projects’. In: Information
technology and management science 20.1 (2017), pp. 58–63.

30. Armando M Toda, Pedro HD Valle and Seiji Isotani. ‘The dark side of gamification: An overview
of negative effects of gamification in education’. In: Researcher links workshop: higher education for all.
Springer. 2017, pp. 143–156.

31. Michael D Hanus and Jesse Fox. ‘Assessing the effects of gamification in the classroom: A longitudinal
study on intrinsic motivation, social comparison, satisfaction, effort, and academic performance’. In:
Computers & education 80 (2015), pp. 152–161.

32. Anastasia Dimitriadou et al. ‘Challenges in serious game design and development: Educators’
experiences’. In: Simulation & Gaming 52.2 (2021), pp. 132–152.

51

https://chain.link/education/
https://www.w3.org/TR/WCAG21/#background-on-wcag-2/

Chapter 8 – BIBLIOGRAPHY Section - 8.1.4

33. UiO. DHIS2 Design Lab. https://www.mn.uio.no/ifi/english/research/networks/hisp/dhis2-design- lab/.
2020.

34. Alan Hevner and Samir Chatterjee. ‘Design science research in information systems’. In: Design research
in information systems. Springer, 2010, pp. 9–22.

35. Alan R Hevner et al. ‘Design science in information systems research’. In: MIS quarterly (2004), pp. 75–
105.

36. Jan vom Brocke and Alexander Maedche. ‘The DSR grid: six core dimensions for effectively planning
and communicating design science research projects’. In: Electronic Markets 29.3 (2019), pp. 379–385.

37. John Venable, Jan Pries-Heje and Richard Baskerville. ‘FEDS: a framework for evaluation in design
science research’. In: European journal of information systems 25.1 (2016), pp. 77–89.

38. Mike Cohn. User stories applied: For agile software development. Addison-Wesley Professional, 2004.

39. Timothy Kinsman et al. ‘How do software developers use GitHub Actions to automate their
workflows?’ In: 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR).
IEEE. 2021, pp. 420–431.

40. Andrew van der Stock. OWASP Top Ten. https://owasp.org/www-project-top-ten/. 2021.

41. Laura Dabbish et al. ‘Social coding in GitHub: transparency and collaboration in an open software
repository’. In: Proceedings of the ACM 2012 conference on computer supported cooperative work. 2012,
pp. 1277–1286.

42. Jeffrey A Roberts, Il-Horn Hann and Sandra A Slaughter. ‘Understanding the motivations, participa-
tion, and performance of open source software developers: A longitudinal study of the Apache projects’.
In: Management science 52.7 (2006), pp. 984–999.

43. Hudson Borges and Marco Tulio Valente. ‘What’s in a GitHub star? understanding repository starring
practices in a social coding platform’. In: Journal of Systems and Software 146 (2018), pp. 112–129.

44. Monica Chiarini Tremblay, Alan R Hevner and Donald J Berndt. ‘The use of focus groups in design
science research’. In: Design research in information systems. Springer, 2010, pp. 121–143.

45. Pascal Lessel et al. ‘" Don’t Whip Me With Your Games" Investigating" Bottom-Up" Gamification’. In:
Proceedings of the 2016 chi conference on human factors in computing systems. 2016, pp. 2026–2037.

46. Stylianos Mystakidis. ‘Metaverse’. In: Encyclopedia 2.1 (2022), pp. 486–497.

52

https://www.mn.uio.no/ifi/english/research/networks/hisp/dhis2-design-lab/
https://owasp.org/www-project-top-ten/

APPENDIX-

This chapter hold the supplementary materials, viz. survey document.

53

Chapter 8 – BIBLIOGRAPHY Section - 8.1.4

54

Chapter 8 – BIBLIOGRAPHY Section - 8.1.4

55

Chapter 8 – BIBLIOGRAPHY Section - 8.1.4

56

Chapter 8 – BIBLIOGRAPHY Section - 8.1.4

57

	Introduction
	Motivation
	Research Question

	Related Literature
	Information Systems
	Digital Platforms
	Open-source
	Architectures of Platforms

	Web-Applications (Webapps)
	Web-Application Development Guidelines
	Architectures of web applications

	Gamification
	Theoretical Underpinnings of gamification
	Gamification: pros & cons
	Gamification Design approaches

	Background
	DHIS2
	DHIS2 and Application Development

	Methodology
	Research process
	Design Science Research
	Data collection

	Artifact description and Evaluation
	How the artifact works
	Artifact design
	Evaluation of artifact architecture
	Technologies used

	Results and Analysis
	Artifact iterations
	Iteration I:
	Iteration II
	Iteration III

	Technical challenges
	Artefact design:
	Challenges and shortages of the research process

	 Discussions
	Findings
	Step-by-step guidelines
	Gamification for motivation to follow guidelines
	Limitations of the study

	Conclusion
	Future works
	Gamification frameworks (platforms)
	Exploring design patterns inside step-by-step guidelines
	Gamifying bottom-up
	Glimpse into the Metaverse

