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Preface

The aim with this thesis is to investigate how we can create unified interfaces to some key
software components that are needed when solving partial differential equations. Two particular
components are addressed here: sparse matrices and visualization. We want the interfaces to be
simple to use, preferably with a Matlab-like syntax. We also want the interfaces to be “thin”
in the sense that the interface code is small and provides access to core functionality only,
not all nice-to-have options that one can think of. The interfaces are written in Python [29],
a scripting language with a simple, clean and easy-to-use syntax, great software development
flexibility, rapidly growing popularity, and rich libraries for both numerical and administrative
tasks. The idea is to use Python to write the main algorithm for solving PDEs and thereby
steer underlying numerical software.

Chapter 1 presents a matrix library for storage, factorization, and “solve” operations. The
goal is to have a unified interface to many different types of matrix formats, mainly sparse
matrix formats, where the various formats typically have the core numerics in widely different
packages (BLAS, LAPACK, PySparse, for instance). PDE solvers written in Python can then
work with one API for creating matrices and solving linear systems. This idea is not new
and has been explored in many C++ libraries, e.g., Diffpack [3], DOLFIN [5] and GLAS [10].
The new contribution in this thesis is to have such an interface in Python and explore some of
Python’s flexibility. We also have a more heterogeneous collection of underlying matrix libraries
than what the cited C++ packages aim at. Python is slow for number crunching so it is crucial
to perform the factorization and solve operations in compiled Fortran, C or C++ libraries. The
PyACTS project [26] has a goal quite similar to ours, but is aimed at the tools in the ACTS
collection only (ScaLAPACK, SuperLU, Hyper, to mention some). A natural future extension
of our matrix library will be to incorporate PyACTS. This will also provide support for parallel
computing. The present thesis is limited to serial computing only.

At the end of Chapter 1 we explore the matrix library for solving diffusion equations. In
particular, we compare the the efficiency of the traditional ADI methods with sparse matrix
factorization-based solution techniques.

Chapter 2 deals with a unified interface, called Easyviz, to visualization packages, both
for curve plotting and for 2D /3D visualization of scalar and vector fields. The interface calls
up various plotting packages, some simple and easy-to-install like Gnuplot and some more
comprehensive like VI'K and Matplotlib. The Easyviz syntax almost coincides with that of
Matlab, thus making it easy for students and researchers trained in Matlab to start plotting
with a Python-based platform. Or in other words, one can use Matlab-like syntax for accessing
a wide range of visualization tools. In this way, PDE solvers can visualize the solutions with a
code independent of the underlying plotting package that actually produces the plots. Chapter 2
acts as a tutorial for Easyviz and has been written together with my supervisor Hans Petter
Langtangen.

The focus of this thesis has been on developing reusable and stable software and to document
this software such that it can readily be applied by students and scientists.
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Chapter 1

A Matrix Library

1.1 Introduction

When solving partial differential equations (PDEs) numerically one normally needs to solve a
system of linear equations. Solving this linear system is often the computationally most de-
manding operation in a simulation program. Therefore we need to carefully select the algorithm
to be used for solving linear systems. However, the choice of algorithm depends on the PDE
problem being solved and the size of the problem (i.e., the number of grid points). The purpose
of the present chapter is to create a library of various algorithms and data structures which give
the programmer (or the user) of PDE applications great flexibility in choosing an appropriate
solution method for linear systems, given the PDEs and the problem size.

Some of the most standard methods for solving PDEs is the Finite Difference, Finite Ele-
ment and Finite Volume methods. These methods lead to large sparse linear systems, or more
precisely, the coefficient matrix is large and sparse. Taking advantage of the sparsity structure
of the coefficient matrix is of great importance for constructing fast solution methods. This
complicates the algorithms and their implementations significantly, compared to straight Gaus-
sian elimination on a dense matrix. The different methods need different implementations, but
we would like to hide these differences and how the coefficient matrices are stored in memory.
We would also like to hide many of the details of the algorithms and be able to work with
the primary conceptual mathematical quantities and operations. That is, given a matrix and a
right-hand side, we want to perform a “solve” operation to solve the associated linear system.

To enable the application code to be written at such a high level, we need to design a layered
library where different layers have different levels of abstraction. The bottom layer operates
directly on the numbers and must face, e.g., the storage structure of a matrix, while the top
layer provides a convenient programming interface to a PDE application programmer.

The following text describes a matrix library in Python particularly suited for the needs
met when solving PDEs. The matrix library provides many different matrix formats, such as
dense, banded, diagonal, tridiagonal, sparse, and structured sparse. We will also look at some
of the difficulties with respect to storage structure and operations on these matrix formats.

1.2 Key Design Issues

Arrays constitute a fundamental data structure in numerical applications. One applies arrays
for representing diverse mathematical structures such as vectors, matrices, sets, grids, and fields.
From the machine’s point of view, an array is actually a consecutive set of bytes storing numbers



in a fixed sequence. In a scientific computing code we would like to use higher-level abstractions
inspired by the mathematics instead of just manipulating the low-level arrays directly, since a
close relationship between computer code and the mathematical formulation of the problem is
desirable. We would also like to hide unnecessary details such as the length of the arrays and
how abstractions are stored in memory. We will now study an object-oriented implementation
of the matrix abstraction.

Linear Systems Solution by Classical Software. Let us say we want to solve the linear
system Ax = b, where A € R™" is the coefficient matrix, x € R” is the unknown vector, i.e.
the numerical solution, and b € R™ is a given right-hand side vector. Such linear systems, can
be solved by direct or iterative methods. Here we use direct methods, which normally means
some type of Gaussian elimination. In Gaussian elimination, the solution procedure consists
first of an LU factorization of the coefficient matrix and then solve using the factorized matrix.
If, e.g., the coefficient matrix is a dense matrix, we could express this (conceptually) in Fortran
77 as

call fact_densem(A,n)
call solve_densem(A,n,b,x)

This is easy and straightforward, but we are required to supply details on the array lengths.
We want to hide these details since they are not needed in the mathematical expression.

If the coefficient matrix, A, is a banded matrix with k; sub-diagonals and k,, super-diagonals,
we could use Banded Gaussian elimination which operates on the matrix elements inside the
band only and saves considerably work. The Fortran 77 call would in this case be something
like:

call fact_bandm(A,n,kl,ku)
call solve_bandm(A,n,kl,ku,b,x)

For a sparse matrix representation of A, several arrays and integers constitute the matrix data
structure, and all of these variables are explicitly visible in the calls to the solve operations.

We want the application programmer to code without bother whether the matrix is dense or
sparse. Anyway it should be easy to switch from a dense matrix representation (for debugging)
to a computationally efficient sparse matrix representation in the application program. Such
a switch is non-trivial, and may easily introduce new bugs, when programming in F77 with
long and complicated parameter lists. What we need is a “solve call” with the same syntax
regardless of the matrix format the user of the program has chosen in this particular run. The
mechanism for reaching this goal is to pack data structures in objects and hide the details of
arrays, reals, and integers making up the data structure. In the application program we have
some matrix A and perform the operations

A.factorize()
x = A.solve(b)

to carry out the solution process. In case A is a banded matrix, the object A holds all necessary
information about how the data are stored and what type of underlying software (e.g., LA-
PACK) that is used in A.factorize() and A.solve(). Switching to a sparse matrix just makes
the inner details of A more complicated, but the factorize and solve statements above look the
same.



Object-Oriented Programming. During the 1990s it became apparent that object-oriented
programming could provide the technical means to realize the coding example in the previous
paragraph. KEspecially C++ has received much attention for its support for object-oriented
programming combined with its speed for numerical computations. In the present work we
adopt the Python language, which has full support for object-oriented programming, but which
is often very slow for intensive number crunching. The CPU-intensive parts must therefore
be migrated to compiled code, typically Fortran, C, or C++. The easiest way of doing this
is to use the Numerical Python (NumPy) library and break up an algorithm into basic array
operations each of which are implemented efficiently by NumPy functions in C. If the speed-up
by vectorization is not sufficient, one can easily migrate slow Python loops or compound NumPy
operations to hand-written, special-purpose functions in Fortran, C, or C++. The idea is that
only a fraction of a large simulation program needs to be implemented in low-level compiled
languages, i.e., most of the code can be written in a convenient high-level language like Python
without sacrificing the overall computational efficiency.

The principal idea of the software design for matrices and associated solve operations is
to implement the matrix as a class. The class may contain data and functions operating
on the data. For a dense matrix class, the required data are the entries of the matrix and
the size (number of rows and columns). The entries could be represented as an array object
(in Numerical Python) which might be of real or complex kind, either with single or double
precision. The number of rows and columns is represented as integer objects.

Each matrix format is represented by a class, and all matrix classes are collected in a class
hierarchy. On top of the hierarchy we have a base class MatrixBase. This class offers a generic
interface to all matrix formats. Subclasses of MatrixBase implement specific matrix formats, e.g.,
class DenseMatrix for dense matrices, class BandMatrix for banded matrices, class TriDiagMatrix
for tridiagonal matrices, and so forth. Each class holds suitable array structures for storing the
matrix data, plus methods for common matrix operations related to solving linear systems.
In particular we may make use of Python’s special methods __getitem__ and __setitem__ to
enable subscripting the matrix. If A is an m x n matrix with entries a; ; for i = 0,1,...,m —1
and j = 0,1,...,n — 1, we can access entry (i,7) in the matrix with the (familiar) syntax
A[i,j]. Similarly we can assign a scalar to entry (4,j) in matrix A by A[i,j]l=1.57. We note
that assignment to A[i,j] might not always be possible. This is because in a sparse matrix
only some of the index pairs (i, j) exist. The important point to be made here, however, is that
the programmer is in charge of defining what is meant by A[i,j], not a language constructor.

One of the most fundamental operations when solving PDEs is matrix factorization, matrix
solve (using the factorization), and matrix-vector products. Every subclass of MatrixBase needs
their own implementation of these operations. For example, computing a matrix-vector product
using a dense matrix, is implemented in a straightforward loop. A sparse matrix has a much
more efficient matrix-vector product function which utilizes the sparsity structure of the matrix.
These operations are the time consuming parts when solving PDEs and must be implemented
as efficiently as possible.

New Python Classes and Old Fortran Software. As mentioned, computationally in-
tensive parts of a Python code must often be carried out in compiled code. Fortunately, the
standardized LAPACK (Linear Algebra Package) and BLAS (Basic Linear Algebra Subpro-
grams) libraries [18, 2|, written in Fortran 77, contains very efficient compiled code for many
of the most common linear algebra operations. These libraries provide, for example, a family
of factorization and solve routines for dense, banded, and tridiagonal matrices, with or with-



out symmetry, with real or complex entries, in single or double precision format. Calling the
routines from Python is quite straightforward, but SciPy [31], a major package for scientific
computing with Python, already provides a unified framework for calling up LAPACK and
BLAS. Unfortunately, not all the LAPACK routines we need in a PDE context are yet inte-
grated into the SciPy framework so we need to extend SciPy in this respect. Our Python class
will then be able to get their functionality through SciPy rather than partly through SciPy and
partly through some home-made wrapping of parts of LAPACK.

Now, let us take a closer look at the DenseMatrix and TriDiagMatrix classes. As mentioned
above, one of the most fundamental functions needed for solving linear systems using Gaussian
elimination is to factorize a matrix and then solve using the factorization. There is also a
need for a matrix-vector product, which is used in iterative methods. For a dense matrix, the
proper routines in LAPACK for factorizing and solving is xGETRF and xGETRS respectively. For
multiplying a dense matrix with a vector, the proper BLAS routine is xGEMV. For a tridiagonal
matrix the LAPACK routines for factorizing and solving are xGTTRF, xGTTRS and for matrix-
vector product xLAGTM. Note that the prefix x in the notation xNAME specifies the data type of
that particular LAPACK or BLAS routine. For instance, DGETRF works for arrays with double
precision floating point numbers, while CGETRF works for arrays with single precision complex
numbers. We refer to the LAPACK Users’ Guide [1] for a complete explanation of the naming
conventions in LAPACK.

As an example, we take a closer look at the factorize and solve methods in the DenseMatrix
class. First we look at the factorize method:

def factorize(self):
if self._check_if_already_factorized():
return

fact, = get_lapack_funcs((’getrf’,), (self.m,))

self.m[:,:], self.ipiv[:], self.info = fact(self.m)
if self.info < O:
raise ValueError, \
"illegal value in %d-th argument of LAPACK’s xGETRF" \
% (-self.info)
if self.info > O:
warn("diagonal number %d is exactly zero. Singular matrix." \
% self.info, RuntimeWarning)
self.factorized = True

To save CPU-time, we first check if the matrix is already factorized. If it is, we do not need to
factorize it again, so we can just return from the method. If we do want to factorize the matrix
again, we can simply set the class variable factorize to False. Next, we fetch the proper inter-
faced LAPACK routine with a call to get_lapack_funcs from the module scipy.linalg.lapack
and then compute the factorization. Before factorizing, the matrix is stored in the class variable
m, which is a 2D NumPy array. After the call to fact, m is updated with the factorized matrix.
From the calls to the different LAPACK routines, we also receives some info on whether the
operation was successful or not. If the operation was unsuccessful, the user is notified by either
a warning or an exception. At the end, we set the global class variable factorized to True. This
way we can later find out if the matrix is factorized or not. Finally, we should note that the
array ipiv is used as an help array for pivoting in the LAPACK routines xGETRF and xGETRS.

Now that the matrix is factorized, we are ready to solve the linear system. To this end, we
use the solve method in class DenseMatrix, which takes the following form:

def solve(self, b, solution=None, transpose=0):
self._check_if_not_factorized()



_check_size(b, ’rhs’, self.n, self.skip, self.raise_exception)

if solution is Nomne:
solution = zeros(len(b), self.elm_tp)
else:
_check_size(solution, ’solution’, self.n,
self.skip, self.raise_exception)

solve, = get_lapack_funcs((’getrs’,), (self.m,))

solution[:], self.info = solve(self.m, self.ipiv, b,
trans=transpose)
if self.info < O:
raise ValueError, \
"illegal value in %d-th argument of LAPACK’s xGETRS" \
% (-self.info)
return solution

First, we check if the matrix is factorized. If it is not, we raise an exception. Otherwise, we
check the size of the right-hand side vector and allocate storage for the solution if not already
given. Then we solve the system with the proper LAPACK routine and return the solution if
the operation was successful.

Let us look at an interactive Python session for demonstrating the usage of the DenseMatrix
class:

>>> A = DenseMatrix(5, 5) # create a 5x5 dense matrix

>>> # insert some data:

>>> for i in range(A.nrows):
for j in range(A.ncolumns):

. Afi, 3] = ... # assign value to entry
>>> A.factorize() # factorize matrix
>>> x = A.solve(b) # solve linear system

Here we have assumed that the right-hand side vector b is a given NumPy array with length 5.
The default data type in a matrix instance is £1loat (double precision real numbers); however,
switching to another data type is straightforward:

>>> A = DenseMatrix(5, 5, element_type=complex)

This will initialize a 5 X 5 DenseMatrix instance with double precision complex entries.

For the TriDiagMatrix class, there is not much changes needed compared with the factorize
and solve methods in DenseMatrix, however, the storage structure is somewhat different. In
this class we only store the main diagonal and the sub- and super-diagonals. They are stored in
three different 1D NumPy array-objects; here called d, d1, and du, respectively. The factorize
and solve methods for class TriDiagMatrix are listed next.

def factorize(self):
if self._check_if_already_factorized():
return

fact, = get_lapack_funcs((’gttrf’,), (self.d,))

self.dl[:], self.d[:], self.dul:], \
self.du2[:], self.ipiv[:], self.info = \
fact(self.dl, self.d, self.du)
if self.info < O:
raise ValueError, \
"illegal value in %d-th argument of LAPACK’s xGTTRF" \
% (-self.info)
if self.info > O:
warn("diagonal number %d is exactly zero. Singular matrix." \



% self.info, RuntimeWarning)
self.factorized = True

def solve(self, b, solution=None, transpose=0):
self._check_if_not_factorized()
_check_size(b, ’rhs’, self.n, self.skip, self.raise_exception)

if solution is None: # allocate 7
solution = zeros(self.n, self.elm_tp)
else:
_check_size(solution, ’solution’, self.n,
self.skip, self.raise_exception)

solve, = get_lapack_funcs((’gttrs’,), (self.d,))

solution[:], self.info = \

solve(self.dl, self.d, self.du, self.du2, self.ipiv, D,
trans=transpose)
if self.info < O:
raise ValueError, \

"illegal value in %d-th argument of LAPACK’s xGTTRS" \
% (-self.info)

return solution

As we can see, the only difference from class DenseMatrix, is the parameters to the function
get_lapack_funcs and the usage of the returned functions.

The solution of the linear system Ax = b is x = A~ !b, where A~! is the inverse of the
matrix A. So instead of using the notation

A.factorize()
x = A.solve(b)

for solving the linear system, it might be more user-friendly if it was more similar to the
mathematical notation, like

x = Axx(-1)*b

This can easily be achieved by using operator overloading in Python. To this end, we need

to implement the special methods __pow__ (operator *x) and __mul__ (operator *) in the base

class MatrixBase. The __pow__ method takes the following form:

def __pow__(self, other):
if other == -1:
if not self.factorized:
self.factorize()
self.inverse = True
return self
raise NotImplementedError

If the other argument is —1, we factorize the matrix (if needed) and set a flag inverse to
True before returning the matrix object itself. This invokes a product of the matrix object
and the right-hand side vector (NumPy array), which again requires the __mul__ method to be
implemented:

def __mul__(self, other):
if self.inverse:
self.inverse = False
return self.solve(other)

return self.prod(other)



If the flag inverse is True, we set it back to False and return the solution of the linear system
with the solve method in the matrix class. Otherwise, we return the standard matrix-vector
product by calling the prod method. Note that the expression x = A%*x(-1)*b is equivalent to

x = MatrixBase.__mul__(MatrixBase.__pow__(A, -1), b)

1.3 Matrix Formats

From the discretization of partial differential equations we get different sparsity structures for
the coefficient matrix. Some of the most common matrix formats are dense matrices, banded
matrices, tridiagonal matrices, general sparse matrices, and structured sparse matrices. The
efficiency of numerical algorithms depends strongly on the matrix storage scheme. The goal is
to offer all these matrix formats and hide the details of the storage schemes. To this end, we
have constructed a matrix class hierarchy as described in the previous section.

In this section we will give a description of the different matrix formats that are implemented
in this library. Let A be an m X n matrix with entries a;; for ¢ = 0,1,...,m — 1 and j =
0,1,...,n—1 and we will look at the different matrix formats like dense, band, tridiagonal, etc.
Most of the matrix formats uses a class variable m (a NumPy array) in the subclass to store the
matrix unless explicitly noted.

Class DenseMatrix: The most general matrix format is the dense matrix format. It is imple-
mented in a subclass of MatrixBase called DenseMatrix. In the case of a dense matrix, all
a; ; entries might be nonzero, so all entries of the matrix must be stored. Here is a typical
dense matrix with dimension 5 x 5:

app ao,1 G2 ao3 Qo4
aip ai a2 a3 a4
A= laxo a1 as2 az3 asy

aszo @31 G32 G33 0a34
a40 Q41 Q42 Q43 Q44

The indexing of a dense matrix behaves as normal. That is, the entries are addressed
as A[i,j] wherei =0,...,m —1and j =0,...,n — 1. As already mentioned, to allow
subscripting of a matrix object, we need to implement the special methods __getitem__
and __setitem__ in the matrix class. For the DenseMatrix class, these methods can be
straightforwardly implemented as follows:

def __getitem__(self, (i, j)):
if 1 >= 0 and i < self.n and j >= 0 and j < self.ncolumns:
return self.m[i, j]
else:
raise IndexError, \
> (%d,%d) outside matrix dimemsions [%d,%d]’ % \
(i,j,self.n,self.ncolumns)

def __setitem__(self, (i, j), value):
if i >= 0 and i < self.n and j >= 0 and j < self.ncolumns:
self.m[i, j] = value
else:
raise IndexError, \
> (%d,%d) outside matrix dimensions [%d,%d]’ % \
(i,j,self.n,self.ncolumns)



Class BandMatrix: In banded m X n matrices we have in addition to the main diagonal, k,
sub-diagonals and k, super-diagonals. The total bandwidth is then k;, + k, + 1. An
example of a band matrix with dimensions 5 x 5 and with k; =2 and k, = 1 is

aog aoJ 0 0 0

aro ain a2 0O 0

A= |axy a1 az2 az3 0
0 a3z azp asz3 asg
0 0 as2 a43 agy

The LAPACK routines xGBTRF (factorize) and xGBTRS (solve) for banded matrices requires
a matrix with dimensions of at least (2ky + k,, + 1) x n. The super-diagonals are stored in
rows kg to ky + k, — 1, the main diagonal is stored in row k; + k., and the sub-diagonals
are stored in rows ky + k, + 1 to 2ky + k. Then, the band storage scheme in LAPACK
for the matrix above becomes the following 6 x 5 matrix:

* * * + +

* * + + +

* ap,1 a2 a3 das4
ap,0 ai1 G2 Aa33 Q44
a0 azi1 G322 a43 *
a0 a31 a4.2 * *

A.m=

The array elements marked with a * are not used by LAPACK and the elements marked
with a + do not need to be set, but are required by the xGBTRF and xGBTRS routines.

For indexing the matrix, we need to map the logical index to the physical index where
the entry is stored. In the case of banded matrices, the mapping will be

aij = A.mlke +ky +1i—7,7], for max(0,j —k,) < i <min(m,j + k)

This mapping can be inserted into the __getitem__ and __setitem__ methods to give us
a nice syntax for accessing the entries of the matrix. The __setitem__ method takes the
following form:

def __setitem__(self, (i, j), value):
if i >= max(0,j-self.ku) and i <= min(self.n,j+self.kl) \
and j >= 0 and j < self.ncolumns:
self .m[self .kl+self.ku+i-j, j] = value
else:
raise IndexError, ’(%d,%d) not inside band [%d,%d]’ % \
(i,j,max(i-self.kl+self.ku,0),\
min(i+self.kl+self.ku,self.n))

The __getitem__ method is similar and therefore not listed here. Trying to assign a value
to an entry outside the band, e.g.

>>> A[1,3] = 1.57

will result in an exception, while it is possible to access the entry:

>>> print A[1,3]
0.0
>>>



This natural behavior when indexing the matrix outside its sparsity pattern is common
to all matrix classes.

Class SymmBandMatrix: This class provides support for the symmetric case of the BandMatrix
class. By utilizing the symmetry of a banded matrix, we only need roughly half the
storage space compared with BandMatrix. For example, an 5 X 5 symmetric band matrix
with & = 2 (total bandwidth is 2k + 1), will look like

ap,0 aop,1 ap2 0 0

aio a1 arz arz 0
A=laxo a2y a2 as3 asy
0 a3y aszz az3 asy
0 0 a4 as43 ag4

Here, a; 41 = aj41,; for i = 0,1,2,3 and a; 42 = a2, for t =0,1,2.

In LAPACK we only need to store the main diagonal and the k super-diagonals (or sub-
diagonals). The matrix storage scheme therefore becomes a (k + 1) x n matrix where the
super-diagonals are stored in rows 0 to k& — 1 and the main diagonal is stored in row k.
The storage structure of the matrix in the example above is listed next.

* * o ap2 a3 a4
Am=1| % ap1 a2 a23 ass
ap,o0 ai1 a2 a33 a44

For indexing the symmetric band matrix, we use the following mapping in the __getitem__
and __setitem__ methods:

a;j =A.mk +i—jj] for max(0,j —k) <i <.
If we try to access an entry on one of the sub-diagonals of the matrix, we only map this
to the corresponding super-diagonal entry.

Class TriDiagMatrix: A tridiagonal matrix is a n X n matrix with nonzero elements only on
the diagonal and entries adjacent to the diagonal, i.e., along the sub- and super-diagonal.
Here is an example of a 5 x 5 tridiagonal matrix:

ap,0 ao,1 0 0 0

aio a1 arz 0 0

A=1 0 a1 asp a3 0
0 0 az2 asz3 azs
0 0 0 G4,3 A4.4

Storing the matrix in terms of the LAPACK storage scheme, we use three 1D NumPy
arrays, one of length n for the main diagonal and two of length n — 1 for the sub- and
super-diagonals. For the matrix above, we have

A-d1=(a1,o az1 G392 a4,3),
A.d:(a070 al,l a2,2 CL373 CL474), and

A.du:(a()’l ai2 23 CL374).



In addition to these three arrays, we need a fourth array of length n — 2, A.du2. The
entries in this array do not need to be set, but the array is required by the LAPACK
routines xGTTRF and xGTTRS.

Indexing the tridiagonal matrix is easy. Trying to access entry (i,j) in the matrix, we
only need to check for three different possibilities: j =i —1, j =i, and j =i+ 1 (sub-,
main- and super-diagonals, respectively). For example, if we try to assign a value to the
entry A[i,i-1] for a given ¢, the value is assigned to A.d1[i-1]. Assigning a value to entry
Ali,i], the value is assigned to A.d[i]. And last, assigning a value to entry A[i,i+1],
the value is assigned to A.du[i]. This is implemented in the __setitem__ method in the
TriDiagMatrix class and with a similar definition for the __getitem__ method.

Class SymmTriDiagMatrix: A symmetric tridiagonal matrix is a special case of tridiagonal
matrices. Here, entry (i,7 — 1) is equal to entry (i,i+1) fori =1,...,n—2. A5x5
symmetric tridiagonal matrix will look like

CL070 ao,l 0 0 0

aro ain a0 0
A= 0 a1 a2 a3 0 |,
0 0 azp az3 asa

0 0 0 (1473 a4,4

where a; ;41 = a1, for i =0,1,2,3.

In the case of a symmetric tridiagonal matrix, LAPACK requires us to store only the
main diagonal and the sub-diagonal. Thus, we end up with two arrays, both of length
n (the sub-diagonal array actually needs only to be of length n — 1, but the LAPACK
eigenvalue routine (xSTEV), requires a vector of length n also for the sub-diagonal)!. For
the matrix above, this results in the following storage scheme

A.dl= (a0 a21 as2 ass  + )
A.d=(ago a1 az2 az3 asa)

The indexing of symmetric tridiagonal matrices follows basically the same scheme as for
general tridiagonal matrices. The only difference is that when we try to access or assign
a value in an entry from the super-diagonal, we simply map it to the corresponding entry
in the sub-diagonal.

Class StructSparseMatrix: A structured sparse matrix is (as the name indicates) a matrix
that follows some special regular sparsity pattern. For instance, a structured sparse 5 x 5
matrix might look like the following matrix:

0,0 0 0 ap,3 0
0 a1 a2 0 aig

A= 0 a1 G232 0 0
azp 0 0 ass asa
0 asn 0 ag3 agy

When storing a structured sparse matrix, we only need to store the diagonals that has
nonzero entries. These diagonals are stored as columns in a rectangular array structure

!Support for eigenvalues and eigenvectors are also implemented in the matrix library for some of the matrix
formats. However, these are neither explained nor used in the present thesis.
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with n X ndiags entries. There are five nonzero diagonals in the matrix above and the
storage structure then becomes:

0 0 0,0 0 0,3

0 0 a1 a2 aig
A.m= 0 a1 @22 0 0
030 0 a33 agA 0
ag1 asg3 agyq O 0

As we can see, the row index matches the row index of the logical matrix index. To be
able to carry out operations on this data structure, we need an index vector offset (with
length ndiags) that holds information on how each stored diagonal is placed relative to
the main diagonal. In the current example, the offset vector would be:

A.offset= (-3 -1 0 1 3)

Indexing this particular storage structure requires some special treatment. Let us look at
the __setitem__ method (__getitem__ is similar):

def __setitem__(self, (i,j), value):
idx = self._offset2index(j-i)
if idx >= O:
self.m[i,idx] = value
else:
raise IndexError, "(%d,%d) outside diags" % (i,j)

Here we use the method _offset2index in the StructSparseMatrix class to locate the col-
umn number of the internal storage array. The _offset2index method takes the following
form:

def _offset2index(self, d):
for k in range(self.ndiags):
if self.offset[k] ==
return k
return -1

Given a offset value d, this method returns the corresponding column number of the
internal storage array. If the requested diagonal is stored, the returned value is a number
in the range 0, ...,ndiags — 1, otherwise it returns —1.

Structured sparse matrices arises frequently when PDEs are solved by finite difference
methods on regular grids.

Class SparseMatrix: In a general sparse matrix, there may be only a few nonzero entries in
each row, but there is no regular structure with respect to where in a row the nonzeros
appear. One possible structure of a 5 x 5 general sparse matrix might be

ap,o 0 0 ap,3 0
0 an aip 0 aig

A = 0 a1 G232 0 0
azg 0 0 ass asa
0 asn 0 as3 asq

This type of general sparse matrices arises when PDEs are solved by finite element meth-
ods, especially when the grid is irregular.
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The implementation of the SparseMatrix class is based on a Python package called PyS-
parse [8]. This package provides a set of matrix types holding real double precision
numbers. Unfortunately, there is no support for real single precision or complex numbers.

In PySparse, there is a module called spmatrix containing three types named 11_mat,
csr_mat, and sss_mat. These types represent sparse matrices in the LL, CSR and SSS
formats, respectively. The common way to use the spmatrix module is to first build a
matrix in the LL format, manipulate it until it has its final shape and content, and then
convert it to either CSR or SSS format. The two latter formats are faster and requires
less memory. For a thoroughly explanation of the three formats, see Appendix A in [9].

The indexing of a general sparse m x n matrix is implemented in PySparse. The entries
are addressed as A[i,j] wheret=0,1,...,m—1and j =0,1,...,n—1. This is the same
behavior as for the dense matrix format and the __getitem__ and __setitem__ methods
in the SparseMatrix class is therefore the same as the ones on page 7.

1.4 How to Interface LAPACK and BLAS Routines via SciPy
Tools

In SciPy there are already some LAPACK routines interfaced for use in Python. Some of them
includes LU factorization (xGETRF) and solve using the factorization (xGETRS) for dense matrices.
For other matrix formats, there were no support in SciPy for these routines when the software
for this thesis was developed?. To extend SciPy with more LAPACK routines, we need to edit
the file called generic_flapack.pyf in the subdirectory Lib/linalg of the SciPy source code.
This file is a F2PY signature file, which is based mostly on Fortran 90 syntax. In addition there
is some F2PY specific commands. The structure of the generic_flapack.pyf file is listed next.

python module generic_flapack
interface
subroutine name_of_subroutine(paraml, param2, ...)
. body (initializations and call to LAPACK routine)
end name_of_subroutine
. more subroutines
end interface
end python module generic_flapack

So, we have to create one subroutine for each routine in LAPACK we wish to interface.

Let us take a closer look at one specific example. In this example, we create an interface
to the LAPACK routine for factorizing a dense matrix. This is, as mentioned above, already
interfaced in SciPy, but it will be useful for illustration purposes. The LAPACK routine for
factorizing a dense matrix is called xGETRF. In Fortran, a call to the LAPACK routine DGETRF
(double precision real numbers) would be

call DGETRF(m, n, a, lda, ipiv, info)

Here, a (the matrix we want to factorize), is an array with dimension (1da,n). The integers
m and n, are the number of rows and columns, respectively, and l1da=max(1,m) is the leading
dimension of the array a. On output, the factorized matrix is stored in the array a. ipiv is
an output parameter, which is filled with the pivot indices used during factorization. info is
another output parameter, which is equal to zero if the factorization was successful.

2Recently, SciPy has been extended with several more LAPACK routines, including xGBTRF (factorize band
matrix) and xGBTRS (solve band matrix).
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In Python we will like to hide the parameters for the dimensions of the matrix. These data
is already included in the data structure of a NumPy array, so it can easily be extracted. We
also want the ipiv and info parameters to be return values only and not input parameters to
the function. The a array should be both an input parameter and a return value. Now, let us
see how we interface this LAPACK routine in generic_flapack.pyf:

subroutine <tchar=s,d,c,z>getrf(m,n,a,piv,info)

! lu,piv,info = getrf(a,overwrite_a=0)
! Compute an LU factorization of a general M-by-N matrix A.
' A=P xL *xTU
threadsafe
callstatement {
int i;
(xf2py_func) (&m,&n,a,&m,piv,&info) ;
for(i=0,n=MIN(m,n);i<n;--piv[i++]);
}

callprotoargument intx*,int*,<type_in_c>*,int*,int*,int*

integer depend(a),intent(hide):: m = shape(a,0)
integer depend(a),intent(hide):: n = shape(a,1)

<type_in> dimension(m,n),intent(in,out,copy,out=1lu) :: a
integer dimension(MIN(m,n)),depend(m,n),intent(out) :: piv
integer intent(out):: info

end subroutine <tchar=s,d,c,z>getrf

Here, the first line specifies the name of the function as we will see it from Python. The
<tchar=s,d,c,z> tag means that this function needs to be built for the specified four types
(s=float, d=double, c=complex and z=double complex). We will then end up with four versions
of the same function (except that the type differs), namely sgetrf, dgetrf, cgetrf, and zgetrf.
The next three lines are comments explaining how we want to call the function in Python and
what it does. The threadsafe statement is used to indicate that the wrapped function is thread-
safe, i.e., it will insert Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS around the function
call. We refer to Chapter 8.1 in the Python/C API Reference Manual [34] for more information
on this topic. In the callstatement statement we do the actual call to the LAPACK routine.
The wrapped function is available as (*f2py_func) and the proper arguments are entered. We
also decrease the piv array since in Fortran arrays has base index 1, while in Python it is
0. We should note that the callstatement block is supposed to be on a single line and the
line is only broken because of page width limitations. In the callprotoargument statement, we
specify the prototype of the arguments to the LAPACK routine. The rest of the statements
are declarations of the variables used as parameters to the LAPACK routine. As an example,
the two lines

integer depend(a),intent(hide):: m
integer depend(a),intent(hide):: n

shape (a,0)
shape(a, 1)

means that we are declaring integers m and n, which depends on the shape of the input array a.
Here, shape(a,0) gives the number of rows in the matrix, while shape(a,1) gives the number of
columns. We also use the attribute intent (hide), such that the argument is removed from the
required or optional arguments to the Python function. As a result, we do not have to supply
the number of rows and columns when calling the function in Python. Another example:

<type_in> dimension(m,n),intent(in,out,copy,out=lu) :: a

Here we declare an m x n array a of type <type_in>, i.e., the same type as the input array. The
attribute intent (in,out,copy,out=1u) might need some explanation. The in keyword, specifies
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that the array a should be given as an input argument to the Python function, while the out
keyword specifies that it also should be returned from the function. The copy keyword ensures
that the original contents of the input array is not altered. When the copy keyword is specified,
F2PY creates an optional argument overwrite_a with default value 0. If this argument is set
to 1, the array entries will be overwritten. The F2PY application actually creates doc strings
for the functions automatically and the out=1u keyword replaces the default return name with
1u in the functions __doc__ string.

Now, let us see how we can use this function in Python. First we need to import it into
Python. The function lies in a module named flapack in the scipy.linalg module. From
another module in scipy.linalg, called only lapack, there is a function get_lapack_funcs,
which can be used to extract the interfaced LAPACK functions:

>>> from scipy.linalg.lapack import get_lapack_funcs
>>> # let m be a NumPy array with dtype=float
>>> factorize, = get_lapack_funcs((’getrf’,), (m,))

The first argument to get_lapack_funcs (given as a sequence of strings), are the names (without
the type prefix) of the LAPACK routines we want to use. The second argument is used to
determine the type of the function, i.e., if m is of type float, the returned function is dgetrf,
if m is of type complex64 (complex number composed of to single precision floats), the returned
function is cgetrf, and so on. To see the usage of the factorize function, we can simply print
out the functions doc string:

>>> print factorize.__doc__
dgetrf - Function signature:
lu,piv,info = dgetrf(a, [overwrite_a])
Required arguments:
a : input rank-2 array(’d’) with bounds (m,n)
Optional arguments:
overwrite_a := O input int
Return objects:
lu : rank-2 array(’d’) with bounds (m,n) and a storage
piv : rank-1 array(’i’) with bounds (MIN(m,n))
info : int

>>>

As noted earlier, the doc string is automatically generated by the F2PY tool. The matrix m
can now be factorized by the following command:

>>> lu, ipiv, info = factorize(m)

Now, 1u contains the LU factorization of the matrix m and piv contains the pivot indices used
during factorization. If info is equal to zero, the matrix was successfully factorized.
Interfacing the solve routine xGETRS for dense matrices (and LAPACK routines for other
matrix formats) can be done in a similar manner as described above. The BLAS routines for
computing a matrix-vector product are also interfaced similarly; however, these interfaces are
placed in the file generic_fblas2.pyf in the subdirectory Lib/linalg of the Scipy source code.

1.5 Building a Python Module for Structured Sparse Matrices

In LAPACK there is unfortunately no support for structured sparse matrices and there is
currently no Python modules that have support for this particular matrix format. We must
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therefore create a Python module from scratch for structured sparse matrices. The CPU-
intensive parts should be taken care of by a compiled language like Fortran, C, or C++. Here
we will use Fortran 77 as the number crunching language and use F2PY for the connection
with Python. The Python module should have functionality both for solving a linear system
and for computing a matrix-vector product. The solve functionality will be separated into two
steps: Relaxed Incomplete LU (RILU) factorizing of the coefficient matrix and then solve using
forward and backward substitution in connection with the RILU factorization. The Fortran
code must then contain the following three subroutines:

e xfactRILU - Performs the RILU factorization of a structured sparse matrix.

e xforwBackRILU - Solves the linear system Ax = b by forward and backward substitution
given that the matrix is factorized by xfactRILU.

e xprod - Performs the matrix-vector product y = Ax.

The prefix x is to be replaced by the type of the subroutine and indicates that the subroutine
should be implemented for both single and double precision floating point numbers and single
and double precision complex numbers. For consistency with LAPACK, we will use the same
syntax for the type prefix. That is, s for single precision floating point numbers, d for double
precision floating point numbers, ¢ for single precision complex numbers, and z for double
precision complex numbers. We will in the following look at the three subroutines mentioned
above, but restricts us to the ones with double precision floating point numbers. We start by
looking at the dfactRILU subroutine:

subroutine dfactRILU(omega, A, n, ndiags, offset)
integer n, ndiags

double precision  omega

double precision  A(0:n-1, O:ndiags-1)

integer offset(0:ndiags-1)

integer di, dj, i, j, k, r, s, maindiag
double precision mm

integer offset2index

external offset2index

intrinsic abs

maindiag = offset2index(ndiags, offset, 0)

do 50 r=0, n-2
do 40 di=maindiag-1, 0, -1
if (r.le.(n-1)-abs(offset(di))) then
i = abs(offset(di)) + r
A(i,di) = A(i,di) / A(r,maindiag)
mm = A(i,di)
do 30 dj=maindiag+1l, ndiags-1
if (A(r,dj).ne.0) then
k=1
if (r.le.(n-1)-offset(dj)) then

j = offset(dj) + r
s =0
do 20 k=k, ndiags-1
if (offset(k).eq.j-i) then
s =k
goto 10
end if
20 continue
10 if (s.ne.0) then
A(i,s) = A(i,s) - mm * A(r,dj)

else
A(i,maindiag) = A(i,maindiag) -

15



The dfactRILU subroutine takes five arguments as input, where omega is the relaxation parameter
(floating point number between 0 and 1), A is an n X ndiags matrix, and offset is an index
vector with length ndiags, holding information on how each stored diagonal is placed relatively
to the main diagonal. We should note that the algorithms used in the Fortran code presented
here are taken from the file MatStructSparse_Type.cpp in the Diffpack library, which again is
based on a C code by Are Magnus Bruaset. The algorithm is rather complex, however, we will

30

40
50

end if
end if
end if
continue
end if
continue
continue
return

not go into detail about the code here.

After a call to dfactRILU, the array A contains the factorized matrix and we are ready to
solve the linear system. To this end, we use the subroutine dforwBackRILU, which takes the

following form:

*

*

*

*

10

20

30

40

omega * mm * A(r,dj)

subroutine dforwBackRILU(A, n, ndiags, offset, b, x)

integer n, ndiags

double precision A(0:n-1, O:ndiags-
integer offset(0:ndiags-1)
integer i, k, 1, maindiag
double precision sum

integer offset2index
external offset2index

maindiag = offset2index(ndiags, offset, 0)

forward :

do 20 i=0, n-1
sum = b(i)
do 10 k=0, maindiag-1

offset(k) always negativ for k < maindiag

1 =i + offset(k)
if (1.ge.0) then
sum = sum - A(i,k) * x(1)
end if
continue
x(i) = sum
continue

backward:
do 40 i=n-1,

sum = x(i)
do 30 k=ndiags-1, maindiag+1l, -1

0, -1

offset(k) always be positive for k >

1 =i + offset(k)
if (1.le.n-1) then

sum = sum - A(i,k) * x(1)
end if
continue
x(i) = sum / A(i,maindiag)
continue
return

maindiag

16

1), b(0:n-1), x(0:n-1)



The subroutine dforwBackRILU has six input parameters, where A is a matrix (factorized by
dfactRILU) with n X ndiags entries, offset is the index vector, b is the right-hand side vector
with length n, and x is a vector with length n for the solution. The solution is obtained by
first doing forward substitution and then a backward substitution. The backward substitution
is essentially the same as forward substitution, but we are solving from the opposite end of the
matrix. The solution of the linear system is stored in the vector x when the subroutine returns.

Now we move over to the subroutine for performing a matrix-vector product, that is, dprod.
The subroutine takes the following form:

subroutine dprod(A, n, ndiags, offset, x, y, trans)

integer n, ndiags, trans

double precision  A(0:n-1, O:ndiags-1), x(0:n-1), y(0:n-1)
integer offset(0:ndiags-1)

integer i, j, k, maindiag

integer offset2index

external offset2index

maindiag = offset2index(ndiags, offset, 0)

if (trans.eq.0) then

*

i and j refer to row and col of original matrix

do 20 i=0, n-1
do 10 k=0, ndiags-1
j =i + offset(k)
if ((j.ge.0) .and. (j.le.n-1)) then
y(i) = y(i) + A, k) *x(j)

end if
10 continue
20 continue
else
*
* transposed matrix, loops organized to traverse storage row by row
*
* i and j refer to row and col of transposed matrix
*
do 40 j=0, n-1
do 30 k=0, ndiags-1
i = j + offset(k)
if ((i.ge.0) .and. (i.le.n-1)) then
y(i) = y(@) + A, K)*x(j)
end if
30 continue
40 continue
end if
return

The dprod subroutine takes seven parameters as input, where A is the n x ndiags matrix, offset
is the index vector, x is the vector in the matrix-vector product, y is the vector where the solution
will be stored, and trans is an integer (0 or 1) determining whether we should compute the
matrix-vector product y = Ax or the transposed matrix-vector product y = ATx. The code
is pretty much straightforward.

The subroutines for the other types is more or less identical to the ones presented here, except
for the type of course. They are all located in the file pypdelib/Lib/matrix/src/sspmatrix.f.

The next step is to make Python interfaces for all of these subroutines. This is easy with
aid from F2PY, however, it is unnecessary to interface every subroutine manually. This would
also be hard to maintain. Instead we can follow the same ideas as in SciPy for interfacing
LAPACK and BLAS subroutines. What SciPy does, is to create a generic F2PY signature
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file with only one interface for all types of a specific subroutine. In SciPy, these files are
called generic_flapack.pyf and generic_fblas.pyf. Then, when setting up SciPy, a script
named interface_gen.py ensures that each function in the signature file are interfaced with
the requested type. By using the same method on the subroutines located in sspmatrix.f,
we only need to interface manually the three generic functions xfactRILU, xforwBackRILU, and
xprod. These three interfaces are placed together in a file called generic_sspmatrix.pyf in the
directory pypdelib/Lib/matrix. As an example, we list here the interface for xfactRILU:

subroutine <tchar=s,d,c,z>factrilu(omega,a,n,ndiags,offset)

threadsafe
callstatement {(*f2py_func) (&omega,a,&n,&ndiags,offset);}
callprotoargument <type_in_c>*,<type_in_c>*,int*,int*,intx*

<type_in> optional,intent(in) :: omega = <type_convert=1.0>
<type_in> dimension(n,ndiags),intent(in,out,copy) :: a
integer intent(hide),depend(a) :: n = shape(a,0)

integer intent(hide),depend(a) :: ndiags = shape(a,1)

integer dimension(ndiags),intent(in),depend(ndiags) :: offset

end subroutine <tchar=s,d,c,z>factrilu

The syntax is the same as in generic_flapack.pyf, which was thoroughly explained in the
previous section. The other subroutines, xforwBackRILU and xprod, are interfaced in a sim-
ilar manner. We can now run the script interface_gen.py from the SciPy package on the
generic_sspmatrix.pyf-file to created Python interfaces for all the different types of the three
functions. The Python module for structured sparse matrices, called sspmatrix, is then com-
plete and ready to be used in the matrix library.

1.6 The Build Process

The matrix library described in the previous sections, is implemented in a Python module
called matrix. This module is part of a bigger package, which we have called PyPDELib; that
is, a Python library for solving PDEs. So, before we can use the functionality provided by the
matrix library, we first need to install the PyPDELib package.

Since the PyPDELib package depends heavily on the SciPy package, we will need to install
that package prior to installing PyPDELib. For a guide on how to install SciPy and required
libraries, see Chapter A.1.5 in [17]. The SciPy source code needs to be updated with several files,
including the files generic_flapack.pyf and generic_fblas2.py, which we edited in Section 1.4.
These files must be placed in the Lib/linalg subdirectory of the SciPy source code. The easiest
way of doing this, is by copying the contents of the directory pypdelib/scipy_ext (including
subdirectories) to the root of the SciPy source code tree. In some Unix shell, the following
command preforms the necessary copying:

cp -rf scipy_ext/* /path/to/scipy_source

The SciPy package should then be built again.

Next, to enable the use of the SparseMatrix class, one should also install the PySparse
package. This package is available in the directory Lib/sandbox in the SciPy source.

After installing SciPy and PySparse, we are ready to install the PyPDELib package. The
standard way for installing a Python package, is to use Python’s Distutils (Distribution Utilities)
tool, which comes with the standard Python distribution. Here we have used NumPy’s Distutils
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instead which works similarly, but has additional features. See the NumPy Distutils Users
Guide [32] for more information. Using this tool, we need to create a script setup.py, which
calls various Distutils functionality. Then, to install the package, we only need to run the
command

python setup.py install

This will install the package into a subdirectory in the “official” Python installation directory,
which usually is

sys.prefix + ’/lib/pythonX/site-packages’

where X reflects the version of Python. This requires the user to have write permissions in sub-
directories of sys.prefix. If not, the user might use the --home option when running setup.py:

python setup.py install --home=$HOME/some/path

This will install the package into $HOME/some/path/1lib/python and the user then needs to make
sure that this path is specified in the PYTHONPATH environment variable.

Now that we have installed the PyPDELib package, we should run some tests to make sure
that everything works as intended. First we try to import the module into Python:

python -c ’import pypdelib’

If this command results in no output, the installation of PyPDELib was successful. The next
step is then to test all the different features provided by the PyPDELib package. To this end,
we have created a series of tests based on a verification strategy referred to as unit testing. For
an explanation of unit testing in Python one can consult Chapter 23.3 in the Python Library
Reference [33]. The following commands invokes the tests for the PyPDELib package:

>>> import pypdelib
>>> pypdelib.test()
Found 208 tests for pypdelib.matrix
Found O tests for __main_

Ran 366 tests in 0.669s

0K
<unittest.TextTestRunner object at Oxb4cOfb4c>
>>>

If a similar output appears on your screen, then the PyPDELib package should be ready for
use.

We will in the following three sections look at several examples on how to use the different
functionality that the matrix library in the PyPDELib package provides. We start by looking
at matrix-vector products, then we solve a simple 1D stationary problem, and finally we test
the matrix library extensively in both 1D and 2D time-dependent diffusion problems. Most of
the code used in these examples are available in the directory pypdelib/examples.
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1.7 Example: Matrix-Vector Products

Suppose we want to compute the product of a given matrix and a vector. A matrix-vector
product would in the mathematical language be expressed as: Given A € R"™™ and x € R"”,
compute y = Ax, y € R™.

Let us first see how a matrix-vector product would be expressed in a computing language
like Fortran 77. First, we define some relevant data structures, which in this case would be

integer m, n

double precision A(m,n)
double precision x(n), y(m)

Given these data items, we may simply call a routine prodv_densem for the matrix-vector prod-
uct:

call prodv_densem(A, m, n, x, y)

This is simple and straightforward, however, the call to prodv_densem involves details on the
array sizes that are not explicitly needed in the mathematical formulation y = Ax. In addition,
if the matrix is some sort of a sparse matrix, we would need to call a different matrix-vector
product routine than prodv_densem, which is specialized for the sparse matrix in question.
For example, if the matrix is a n-by-n tridiagonal matrix, we would probably call a routine
prodv_tridiagm for the matrix-vector product:

call prodv_tridiagm(dl, d, du, n, x, y)

Here, d1, d, and du are respectively the lower-, main-, and upper-diagonals of the tridiagonal
matrix, represented as vectors.

Now let us see how we can compute a matrix-vector product using our matrix library. We
start by defining the necessary data structures:

A
X

DenseMatrix(m, n)
zeros(n)

This will setup a m x n DenseMatrix instance A and a NumPy array x with length n (both
initially filled with zeros). After filling in the matrix and vector entries, we can compute the
matrix-vector product by calling

y = A*x

which is the exact same syntax as in the mathematical formulation. In case of a tridiagonal
matrix, we would instead of a DenseMatrix instance use a TriDiagMatrix instance:

A = TriDiagMatrix(n)

This initializes a TriDiagMatrix instance with n x n entries. Again, after filling in the matrix
entries, we can compute the matrix-vector product by the same syntax as for a matrix-vector
product with a dense matrix, i.e., y = A*x. This is also the case for all the other matrix formats
available in the matrix library.

Note that the reason we can use the expression y = Axx to compute the matrix-vector
product, is that we have implemented the special method __mul__ in the base class MatrixBase.

This allows the use of the x operator between a matrix object (subclass of MatrixBase) and a
NumPy array to represent a matrix-vector product. What the __mul__ method actually does,
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is to call the prod method in the matrix class. This means that the expression y = Axx is
equivalent to the expression y = A.prod(x).

To get more control over the matrix-vector product, we can use the prod method in the
matrix class directly. For example, if we need to compute a transposed matrix-vector product,
we must call the prod method directly. A transposed matrix-vector product is defined as: Given
A € R™" and x € R™, compute y = ATx, y € R”. Here is how we compute a transposed
matrix-vector product:

y = A.prod(x, transpose=1)

So, by setting the keyword argument transpose to 1, we get the transposed matrix-vector
product. The default value for transpose is 0, i.e., no transpose. If instead the matrix is an
Hermitian matrix and we want to compute the matrix-vector product y = Afx, we do this by
calling the prod method in the matrix instance with transpose=2.

In many iterative methods for solving linear systems, like the Conjugate Gradient Method,
one or more matrix-vector products are performed in each iteration. The expression y = Axx
will in such cases not be optimal since the result array y needs to be allocated each time. Instead
we can use the following expression:

y = A.prod(x, result=y)

This ensures that no extra storage needs to be allocated for the result. The overhead can be
reduced by as much as a factor of 1.4 depending on the size of the problem and the number of
iterations.

1.8 Example: Solving a System of Linear Algebraic Equations

In this example, which is based heavily on the text in Chapter 1.3 in [16], we will create a
simulation script for solving the simple one-dimensional boundary value problem

—u"(z) = f(z), x€(0,1),
u(0) =0,
(1) = 1.

Discretization. By using a standard finite difference method on these equations, we will end
up with the following algebraic equations:

ug = 0, (1.4)
Uipr — 2u; +umy = —h2f(x;), i=1,...,n—1,
iy 1 — 22Uy = —2h — h2 f(xy,). (1.6)

Here, we have partitioned the domain (0, 1) into n cells [z;, x11], ¢ = 0,..n — 1, with g = 0
and x, = 1. The cell length h = z;41 — x; is assumed to be constant and w; represents the
numerical approximation to the exact solution u(z;) for i =0,...,n.

The equations in (1.4)-(1.6) can be written on matrix form Au = b, where A is an (n +
1) x (n+ 1) matrix, u is the unknown vector, and b is the right-hand side vector. The matrix
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entries A; ; are easily identified from the scheme (1.4)-(1.6):

Ao =1, (1.7)

Ai,ifl = 1, 1= 1,...,n—1, (18)

14i¢ == ——2, 1= 1,...,71, (1.9)

A/L'7fi+1 = 1, 1= 1,...,n—1, (110)

App—1 =2 (1.11)

The rest of the entries in the matrix A are filled with zeros. The unknown vector is u =
(ug, ..., uy)T, while the entries in the right-hand side vector b = (b, ...,b,)" are given by

bo=0, bi=—h2f(x;), i=1,...,n—1, by=—2h—h>f(z,). (1.12)

Implementation. We now want to use the functionality provided by the matrix library to
solve the linear system Au = b. To this end, we will create a simulator script in Python that
generates and solves the discrete equations in (1.7)-(1.12). To verify that our implementation
is correct, we need a test problem where an exact solution is known. One can show that if we
let the right hand side in (1.1) be given as f(z) = yexp(—pfx), we end up with the following
solution:

u(z) = % (1 - e*ﬁf> + (1 - %eﬁ> z, B#0, (1.13)

u(m)zx(l—i—’y(l—%x)), g=o. (1.14)

A very attractive feature of the problem (1.1)-(1.3) with f(x) = v exp(—fx) is that the numer-
ical solution is exact for § = 0, regardless of the values of n and ~. So, running the code with
[ = 0 should result in a zero error (within machine precision). This result is useful for partially
verifying the implementation.

The Code. We are now ready to make a simple Python script that solves (1.1)-(1.3) numer-
ically. The script should first build the linear system Au = b according to the formulas in
(1.7)-(1.12), then solve the linear system, and at the end write the computed solution and the
error to the screen in addition to some CPU time measurements.

#!/usr/bin/env python

from pypdelib import *

from scitools.numpytools import =*
from math import *

import time

int(raw_input ("Give number of solution points: "))
1/float (n)

DenseMatrix(n+1, n+1)

zeros(n+1l, float)

zeros(n+1l, float)

beta = float(raw_input("Give beta: "))

gamma = float(raw_input("Give gamma: "))

co®=pB
L I I |

t0 = time.clock() # measure CPU time
# upper boundary:

A[0,0] = 1.0

b[0] = 0.0
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# inner grid points:
for i in iseq(l, n-1):
x = ixh
A[i,i] = -2.0
Ali,i-1] = A[i,i+1] = 1.0
b[i] = -h**2xgamma*exp(-betaxx)

# lower boundary:

x = n*h
Aln,n-1] = 2.0; A[n,n] = -2.0
b[n] = -2*%h - h**2*gamma*exp(-beta*x)

t_init = time.clock() - tO

if n <= 8:
print "A matrix\n", A
print "right-hand side\n", b
# factorize matrix:
t0 = time.clock()
A.factorize()
t_fact = time.clock() - tO
# solve linear system:
t0 = time.clock()
u = A.solve(b)
t_solve = time.clock() - tO

# write out the solution and the error
if n <= 100:
print "\n\n x numerical error:\n"
for i in iseq(0, n):
x = ixh
if float_eq(beta, 0): # is beta zero?
u_exact = x*(1 + gammax(1 - 0.5%x))
else:
u_exact = gamma/(beta**2)*(1 - exp(-beta*x)) + \
(1 - gamma/betaxexp(-beta))*x
print "%4.3f %8.5f %12.5e" % \
(x, ulil, u_exact-ulil)
print "\nn: %d, cpu init: %s, cpu factorize: %s, cpu solve: %s" \
% (n, t_init, t_fact, t_solve)

Let us look closer at our simulator script. The first thing we need to do, is to import necessary
data structures and functions. This is done in the first four lines below the Python heading.
In the next code block, we do all initializations of data structures that we are going to need
later on. The most important part here, however, is the initialization of the matrix and the
storage allocations for the unknown and the right-hand side vector. The matrix is represented
by a DenseMatrix instance:

A = DenseMatrix(n+1, n+1)

This will initialize a DenseMatrix instance with (n+1) x (n+ 1) entries where all the entries are
automatically filled with zeros. The unknown and the right-hand side vectors are represented
by two NumPy arrays with length n + 1, also filled with zeros:

b
u

zeros(n+1l, float)
zeros(n+1, float)

After the initialization phase, we can build the linear system by filling in the entries in the
matrix A and the right-hand side vector b with values according to the formulas in (1.7)-(1.12).
When this has completed, we are ready to solve the linear system. This is done in two steps:
(i) factorizing the coefficient matrix and (ii) solve using the factorized matrix:
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A.factorize()
u = A.solve(b)

As we saw on page 6, these two steps can also be carried out by the more compound statement
u = Asxx(-1)*b.

Now that we have the solution of the linear system stored in the array u, the next step is to
verify that the implementation is correct. To this end, we compute the exact solution from the
formulas in (1.13)-(1.14). The numerical solution and the error are then written to the screen
and at the end we also write out some CPU times for the different parts of the script.

Running the Script. The Python script described above is located in the file poissonid.py
in the directory pypdelib/examples/poissonid and it can be started by giving the command

python poissonld.py

that is, if the current working directory is pypdelib/examples/poissonid. Running this com-
mand, will start the script, which in turn will ask questions and prompt the user for answers.
For example, we can give values like n = 3, § = 0, and an arbitrary + as input, to verify that
the numerical solution is exact also for small grids. Doing so, results in the following output:

X numerical error:
0.000 0.00000 0.00000e+00
0.333 278.11111 0.00000e+00
0.667 445.11111 5.68434e-14
1.000 501.00000 5.68434e-14

We can try different values of n, 3, and v and observe the behavior of the numerical error.

Optimization. Our simulator script has two serious drawbacks. First of all, explicit loops
over array entries in Python are known to be slow. We should therefore try to avoid loops and
instead express our mathematical algorithm in terms of (NumPy) array operations, a technique
known as vectorization. The loop that we want to vectorize, takes the following form:
for i in iseq(l, n-1):
x = ixh
Ali,i] = -2.0

Ali,i-1] = A[i,i+1] = 1.0
b[i] = - h**2*gamma*exp(-beta*x)

The right-hand side vector b is easy to vectorize. First we need to create an array of z-values:

x = seq(0, 1, h)

The vectorized expression can then be written as

b[1:-1] = -h**2*gamma*exp(-beta*x[1:-1])

To be able to vectorize the loop over the matrix entries, we need to have knowledge of how
the data are stored in the DenseMatrix class. By looking at the DenseMatrix class, we can see
that the matrix entries are stored in a NumPy array m with shape (nrows, ncolumns) or in the
current problem (n+1, n+1). By working on the class variable A.m directly, we can then replace
the code in the for loop with the following vectorized expression:
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ind0 = iseq(1l,n-1)
indl = iseq(0,n-2)
ind2 = iseq(2,n)

A.m[ind0,ind0]

A.m[ind0,ind1]

-2.0
A.m[ind0,ind2] = 1.0

This should speed up the code significantly as we will see later.

The second drawback in our script, is that we are not taking advantage of the fact that
the matrix A is tridiagonal, as can be seen from (1.7)-(1.11). This means that each row in A
has at most three nonzero entries and by utilizing this fact, we can increase the computational
efficiency considerably in addition to reducing the memory requirements from O(n?) to O(3n).

To change the script to use the tridiagonal matrix structure instead of the current dense
structure, we only need to do some minor modifications. The first is in the line where the
matrix is initialized, that is:

A = DenseMatrix(n+1, n+1)

This allocates memory for a full (n + 1) x (n + 1) matrix. To specify a tridiagonal matrix
instead, we simply replace the line with the following statement:

A = TriDiagMatrix(n+1)

This is actually all that is needed to use the tridiagonal matrix structure instead of the dense
structure, but only if we use the for loop to set the inner grid points as we did in the original
script. However, as noted above, we should avoid explicit loops over array entries if possible and
instead use vectorized expressions. To this end, we need to know the underlying data structure
of the TriDiagMatrix class. By looking at the TriDiagMatrix class, we can see that it uses three
1D NumPy arrays, one for each of the three diagonals in the matrix. They are named d1, d, and
du for the lower-, main-, and upper-diagonal respectively. The array d has length n while d1
and du has length n — 1. This means that the for loop over the matrix entries can be vectorized
using the following expression:

A.4af1:-1] = -2.0
A.d1[:-1] = A.du[1:] = 1.0
b[1:-1] = - h*x2*gamma*exp(-beta*x[1:-1])

The complete optimized script now takes the following form:

#!/usr/bin/env python

from pypdelib import *
from scitools.numpytools import *
import time

zeros(n+1l, float)

zeros(n+1l, float)

beta = float(raw_input("Give beta: "))
gamma = float(raw_input("Give gamma: "))

n = int(raw_input("Give number of solution points: "))
h = 1/float(n)

x = seq(0, 1, h)

A = TriDiagMatrix(n+1)

b =

u =

t0 = time.clock() # measure CPU time
# upper boundary:

A[0,0] = 1.0
b[0] = 0.0
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# inner grid points:

A.d[1:-1] = -2.0
A.d1[:-1] = A.du[1:] = 1.0
b[1:-1] = - h**2xgamma*exp(-beta*x[1:-1])

# lower boundary:

Aln,n-1] = 2.0; A[n,n] = -2.0

b[n] = -2%¥h - h**2*gamma*math.exp(-beta*x[n])
t_init = time.clock() - tO

if n <= 8:
print "A matrix\n", A
print "right-hand side\n", b
# factorize matrix:
t0 = time.clock()
A.factorize()
t_fact = time.clock() - tO
# solve linear system:
t0 = time.clock()
u = A.solve(b)
t_solve = time.clock() - tO

# write out the solution and the error
if n <= 100:
print "\n\n x numerical error:\n"
for i in iseq(0, n):
x = ix*h
if float_eq(beta, 0): # is beta zero?
u_exact = x*(1 + gammax(1 - 0.5%x))
else:
u_exact = gamma/(beta**2)*(1 - exp(-beta*x)) + \
(1 - gamma/betaxexp(-beta))*x
print "%4.3f %8.5f %12.5e" % \
(x, ulil, u_exact-ulil)
print "\nn: %d, cpu init: %s, cpu factorize: %s, cpu solve: %s" \
% (n, t_init, t_fact, t_solve)

To measure the efficiency gain we get by using TriDiagMatrix instead of DenseMatrix and by
vectorized expressions instead of scalar Python loops, we have compared the four versions of
the script described above:

1. DenseMatrix and plain loops,

2. DenseMatrix and vectorized implementations of loops,
3. TriDiagMatrix and plain loops, and

4. TriDiagMatrix and vectorized implementations of loops.

Running the script with a grid with n = 7000 grid points, results in the following table:

matrix format loops set-up factorize solve
DenseMatrix scalar 0.09 185.92 0.55
DenseMatrix vectorized 0.01 186.14 0.52
TriDiagMatrix scalar 0.07 0.0008 0.0006

TriDiagMatrix vectorized 0.0013 0.0008  0.0005

We can see that the first version required a total of 186.6 s while the second version ran at
186.7 s, implying a negligible difference in speed. This is because over 99% of the CPU time
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is used for factorizing the matrix as can be seen in the table. The third version ran at 0.07 s
and the fourth version at 0.003 s, but for such small numbers, the results are not reliable and
hard to compare. Therefore, we increase the grid to n = 5000000 grid points, resulting in the
following table:

matrix format loops set-up factorize solve
TriDiagMatrix scalar 50.64 1.1  0.56
TriDiagMatrix vectorized 1.05 1.1 0.56

For such a large grid we have no result for the first and second version of the script as this
would have taken to long time (if we had enough memory). However, the third version required
a total of 52.3 s, while the fourth version ran at only 2.7 s. This is a factor of 19 in favor of
the fourth version and in this case it definitely pays off to vectorize the loops. What we also
should note about the results from the fourth version of the script, is the fact that about 63%
of the time is used to factorize and solve the linear system. This means that most of the work
is being done in the underlying Fortran routines in the LAPACK library.

While the speed-up by vectorization was very good, we should note that migrating the loops
to a compiled language like C or Fortran 77 may speed things up even more. This will be one
of the topics in the next section.

1.9 Example: 1D and 2D Diffusion Equations

In this example, we will test the efficiency of our matrix solve library with implicit finite dif-
ference methods for a given linear problem. We will use the following time-dependent diffusion
problem as our test problem:

% = kViu+ f(x,t), xeQcRY t>0, (1.15)
u(x,t) = g(x,t), x€ g, t>0, (1.16)
u(x,0) =1I(x), xeQ,t=0. (1.17)

Here, u(x,t) is the primary unknown, k is a constant diffusion coefficient, f(x,t) is a diffusion
source term, I(x) is a given initial condition, g(x,t) is the Dirichlet boundary values for w,
and 0€g is the boundary of the domain . The subscript F indicates that dQ0g has essential
boundary conditions.

We start by looking at the one-dimensional case and then we will look at the two-dimensional
case later.

1.9.1 1D Diffusion Equation

In one dimension, the mathematical problem in (1.15)-(1.17) translates to the following problem:

ou 0?u
u=g(x,t), x==0,L, (1.19)
u(z,t) =I(x), x€]0,L]. (1.20)
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Here, we have selected the domain to be €2 = [0, L]. A second order centered finite difference
method in space, combined with a f-rule in time, is suitable for solving (1.18) numerically.
By using the compact notation explained in Appendix A3 in [16], the scheme for the current
problem can be written as

73 OR[S.S.u) + (1 — 0)k[SsSeull ™t + [+ (1 — O)[F1E (1.21)

(2

[6rul;

Writing out this in detail, we get

o gt T B (1- e)kuf:l1 L uig
At Ax? AwQ
0ff +(1—0)f" (1.22)

where ff = f(wi,tg). The parameter At is the time step: At =ty —ty—1 and ty = ¢At. The
grid increment is assumed to be constant, Az = L/n.

By collecting the unknown new values at time level £ on the left-hand side and the previously
computed values on the right-hand side, we can see that we are dealing with a linear tridiagonal
system:

At ALY g AL e

(1 H)k% <u§’j —2uft 4 ,+1) +OALfE+ (1 —0)AtfI7E (1.23)
When 6 = 0, we get an explicit scheme where the new values uf are computed by an explicit
formula involving only known values ue !, The explicit scheme is stable only when the time
step At is small, or more precisely, it is only stable for At < Az?/2. However, when 6 > 0, we
get an implicit scheme; that is, the new uf values are coupled in a system of linear algebraic
equations Au = b, where A is a tridiagonal (n + 1) X (n + 1) matrix, u is the vector of new
values u , and b is the right-hand side vector. We can easily identify the matrix entries as

At At
Aji1 = —Qk‘A—xQ, Aii=1+ 29k‘A 50 Aiir1 = Aiioa,

and the right-hand side values as

At

_ -1

(wizh = 207" 4wl ) + AL 4+ (1= ) ALf

The scheme (1.23) is unconditionally stable when 6 > 1/2 and the accuracy is of second order
in both time and space when # = 1/2. When 6 # 1/2 the order in time is reduced to At for
the accuracy. The choice § = 1/2, known as the Crank-Nicolson scheme, is therefore popular,
since it appears to be the optimal combination of stability and accuracy.

Handling the initial condition and the boundary condition is straightforward. The initial
condition, u(z,0) = I(x), is set by u) = I;, and then we use (1.23) for all time levels £ > 0.
The boundary values are implemented by setting A;; = 1 and b; = gf at the end points, i.e.
i = 0,n, and using (1.23) for the inner points. The complete numerical method is summarized
in the following algorithm:

define u; and wu; to represent u and uz !

SET THE INITIAL CONDITION:

respectively
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u=1;, fori=0,...,n

t=0
while time t < tg0p
t— At
DEFINE TRIDIAGONAL SYSTEM:
Au = b, where
u = (ug,...,uy)7,
Ai,i—l = —GkAA—xZ, Am‘ =1+ 2(9/{%;2, Am‘+1 = —Qk%,
by =u; + (1 —0)kEL (u_q —2u; +upyq) +0f + (1 —0)f !
fori=1,...,n—1, and

Ago =1, Ann =1, bo = g§.bn = g,
(All other A;; values are zero)
SOLVE THE SYSTEM Au = b
INITIALIZE FOR NEXT STEP:

u;, =u;, fori=0,...,n

A First Implementation in Python. We are now ready to create a implementation in
Python for solving the model problem (1.18)-(1.20). The algorithm above can be straightfor-
wardly implemented in Python using the functionality provided by the matrix library. It is
implemented in a function called solver0 that can be found in the module diffusionid in the
directory pypdelib/examples/diffusionid. The solver0 function takes the following form:

def solverO(I, f, k, bc, L, n, dt, tstop, theta,
user_action=None) :
# f and bc are functions of x and t, I is a function of x
dx = L/float(n)

x = sequence(0, L, dx) # grid points in x dir
Cl = theta*xdt*k/dx**2 # help variable
C2 = (1-theta)*dt*k/dx**2 # help variable

u zeros(n+1, float) # solution array
# set initial condition:
t =0.0
for i in iseq(O,n):
uli] = I(x[iD)

up = u.copy() # solution at previous time step

if user_action is not None:
user_action(u, x, t) # allow user to plot etc.

while t <= tstop:
t_old = t; t += dt

TriDiagMatrix(n+1)  # coefficient matrix
zeros(n+1, float) # right-hand side vector

# lower boundary:
i=0; A[i,i] =1; bl[i]l = be(x[i], t);
# update all inner points:
for i in iseq(l, n-1):
Ali,i-1] = -C1
Ali,i] = 1 + 2xC1
Afi,i+1] = -C1
bl[i] = upl[i] + C2*(upl[i-1] - 2*up[i] + upl[i+1]) + \
theta*dt*f (x[1i], t) + \
(1-theta)*dt*f (x[i], t_old)
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# upper boundary:
i =mn; A[i,i] = 1; bl[i] = be(x[i], t)

u = Ax*(-1)*b # solve linear system

if user_action is not None:
user_action(u, x, t)

# update data structures for next step:
up, u = u, up

One should note the following points about the solver0 function:

1. The loop over the inner points are implemented using a straight Python for loop. This
is fine for small problems, but as the grid gets larger it will pay off to vectorize the loop
or migrate the loop to a compiled language like Fortran or C/C++.

2. The coeflicient matrix A is equal for all time steps ¢ > 0. This means that it is only
necessary to build it once; before the start of the time loop. It also means that the
matrix only need to be factorized once. This will reduce the CPU time considerably since
factorizing the matrix is one of the most demanding operations wrt. CPU time.

3. The callback function user_action(u, x, t) can be used to process the solution during a
simulation. The user_action function can for instance be used for visualizing the solution
or computing errors from an analytical solution.

We can illustrate the usage of the user_action function through a couple of examples. First we
will use the user_action function to verify that the computed solution is correct. We will then
look at how we can use the user_action function to visualize the solution by a curve plot.

Computing Errors. To verify that the implementation is correct, we need to construct a test
problem where an analytical solution is known. To this end, the particular choice of I(z) = 0,
f(x,t) = %sintz, and g(x,t) = 0 corresponds to the analytical solution

u(z,t) = <1 — e*”%) sin . (1.24)

The following function computes the error at every time steps and constitutes a verification of
the solver0 function:

def test_error0():
L=1; k=1

def exact(x, t):
return (1-exp(-pow(pi,2)*t))*sin(pi*x)

def I(x): return 0.0
def f(x, t): return pi**2*sin(pi*x)
def bc(x, t): return 0.0

error = []

def action(u, x, t):
e = exact(x, t) - u
error.append((t, sqrt(dot(e,e))))

n = 100; dt = 0.1; tstop = 2; theta = 0.5
solver0(I, f, k, bc, L, n, dt, tstop, theta,
user_action=action)
for t, e in error:
print ’t=10.2E error=%10.2E’ % (t, e)
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Here we use n = 100 grid points, At = 0.1, and # = 1/2. Running the test_error0 function
will run the test problem and write out an error measure at each time level. When ¢ = 1, the
error is about 8-10~%. By halving Az and At, the error should be reduced by a factor of 4 since
the scheme is of order Az? and At? for §# = 1/2. Changing the parameters in the test_error0
function to n=200 and dt=0.05 results in an error of about 3-10~% when ¢ = 1.

Visualization. The user_action function can also easily be used to visualize the solution
at each time level, for instance as a curve plot. In the following function we start with an
initial Gaussian bell in the middle of the domain and we let the source term function and the
boundary values be zero for all time levels t > 0:

def test_plot0():
L=1; k=1

def I(x): return sin(pi*x/L)
def f(x, t): return 0.0
def bc(x, t): return 0.0

def action(u, x, t):
easyviz.plot(x, u, title="t=Jg" % t,
ymin=-0.05, ymax=1.15)
time.sleep(0.2) # pause between frames

n = 100; dt = 0.1; tstop = 2; theta = 0.5
solverO(I, f, k, bc, L, n, dt, tstop, theta,
user_action=action)

Here we have used the plot command from the Easyviz (from SciTools) package to plot the
solution at each time level . One should notice how we use the ymin and ymax keyword arguments
to keep the y-axis fixed at every time step.

The test_plot0 function can easily be extended to create a movie file from each of the plots
in the simulation. At each time level we use the hardcopy command in Easyviz to store a copy
of the plot to a file. We can then create a movie by using the movie command, also available in
Easyviz, by providing a list of file names:

def test_movieO():
L=1; k=1

def I(x): return sin(pi*x/L)
def f(x, t): return 0.0
def bc(x, t): return 0.0

files = []
def action(u, x, t):
easyviz.plot(x, u, title="t=Jg" % t,
ymin=-0.05, ymax=1.15)
filename = ’tmp_J%020f.png’ % t
easyviz.hardcopy(filename=filename, color=True,
fontname=’Times-Roman’, fontsize=14)
files.append(filename)
time.sleep(0.2) # pause between frames

n = 100; dt = 0.1; tstop = 2; theta = 0.5
solverO(I, f, k, bc, L, n, dt, tstop, theta,

user_action=action)
easyviz.movie(files)

The name of the resulting movie will be movie.avi, which is the default output name given by
the movie command in Easyviz. Figure 1.1 provides some snapshots of the movie.
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Figure 1.1: Plots of an initial bell in the middle of the domain at (a) ¢t =0, (b) ¢ = 0.1, and (c)
t=0.9.

Vectorizing Loops. A major point regarding optimization in the solver0 function, is the
loop over the finite difference scheme which is implemented using a plain Python loop. Even
for one-dimensional problems, plain Python loops can be too slow for large grids over long time
spans; however, the speed can easily be increased by vectorizing the loops. The vectorized
version of the inner loop over the matrix entries takes the following form:

A.d1[0:n-1] = -C1

A.d[1:n] =1 + 2x%C1
A.du[1:n] = -C1

while the loop over the inner entries in the right-hand side vector can be computed by the
following vectorized expression:

bl1:n] = up[l:n] + C2*(up[0:n-1] - 2%up[1l:n] + up[2:n+1]) + \
thetaxdt*f(x[1:n], t) + (1-theta)*dt*xf(x[1:n], t_old)

For large grids over shorter time spans, we will also benefit from vectorizing the loop over the
initial condition:
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ul:] = I(x)

The vectorized expression of the loops speeds up the code considerably. For a grid with n =
40000 grid points with 100 time steps the solver with scalar implementation of loops required
68.2 s while the solver with the vectorized expressions ran at 1.05 s, implying a factor of 65
in favor of the latter. The speed-up by vectorization is great, however, migrating the loops to
compiled code will speed things up even further as we will see later.

Supporting All Matrix Formats. One of our focuses in the current example will be on
measuring the efficiency of all the different matrix formats that are available in the matrix
library. We should therefore add the option to let the user select the matrix format for the
coefficient matrix when calling the solver function. Since the vectorized expression over the
matrix entries is dependent on the storage structure of the matrix, we need to make specialized
versions for each of the matrix formats. For clarity, we will take the code for the different
formats out into separate functions. The vectorized expressions for the different matrix formats
are listed below.

def scheme_dense_vec(A, C1):

n = A.n-1

ind0 = iseq(1,n-1)
indl = iseq(0,n-2)
ind2 = iseq(2,n)

i=0; Am[i,i] =1
A.m[ind0,ind1] = -C1
A.m[ind0,ind0] 1 + 2xC1
A.m[ind0,ind2] -C1
i=mn; A.m[i,i] =1
return A

def scheme_band_vec(A, C1):
= A.n-1

=0; A.m[2,i] =1
.m[1,2:n+1] = -C1
.m[2,1:n] =1 + 2%C1
.m[3,0:n-1] = -C1

=n; A.m[2,i] =1
return A

T -

def scheme_symmband_vec(A, C1):

n = A.n-1

i=0; A.m[1,i] =1
A.m[0,2:n] = -C1
A.m[1,1:n] = 1 + 2%C1
i=mn; A.m[1,i] =1
return A

def scheme_tridiag_vec(A, C1):

n = A.n-1

i=0; A.d[i] =1
A.d1[0:n-1] = -C1
A.d[1:n] = 1 + 2%C1
A.du[1:n] = -C1

i =mn; A.d[i] =1
return A

def scheme_symmtridiag vec(A, C1):

n = A.n-1

i=0; A.d[i] =1
A.d1[1:n-1] = -C1
A.d[1:n] =1 + 2xC1
i=mn; A.4d[Qi] =1
return A
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def scheme_structsparse_vec(A, C1):
n = A.n-1
i=0; A.m[i,1] =1
A.m[1:n,0] = -C1

A.m[1:n,1] = 1 + 2%C1
A.m[1:n,2] = -C1
i=mn; A.m[i,1] =1
return A

def scheme_sparse_vec(A, C1):
return scheme_sparse_scalar(A, C1)

Note that the sparse matrix format is not vectorized. This is because it is based on the PySparse
package, which does not support vectorized insertion of matrix entries. The coefficient matrix
can now be built by the following expression:

func = ’scheme_’+matrix_format+’_’+implementation[’scheme’]
A = eval(func) (A, C1)

The string matrix_format can be either >dense’, *band’, ’>symmband’, *tridiag’, ’symmtridiag’,
’structsparse’, or ’sparse’. The dictionary implementation specifies the particular implemen-
tations to be used for the loop over the initial conditions (*ic’) and the loop over the finite
difference scheme (’scheme’). The values can be either ’scalar’ or ’vec’ for plain Python
loops (scalar implementation) or vectorized expressions respectively.

Following the same idea, we also take out the initial condition and the updating of the
right-hand side into separate functions. These two functions takes the following form:

def ic_vec(u, I, x):
ul:] = I(x) # works for scalar I too...
return u

def scheme_rhs_vec(b, up, f, bc, x, t, C2, dt, t_old, theta):
n = len(x)-1
i =0; bl[i] = be(x[i], t)
bl1:n] = up[il:n] + C2*(up[0:n-1] - 2*up[i:n] + up[2:n+1]) + \
thetaxdt*f(x[1:n], t) + (1-theta)*dt*f(x[1:n], t_old)
i =0; bli] = be(x[i], t©)
return b

Next, we will add support for Fortran 77 and C/C++ implementation of loops.

Migrating Loops To Compiled Code. Another approach for optimizing the slow Python
loops is by migrating the loops to compiled code. To this end, there are several tools available;
however, we will here concentrate on Weave (a subpackage of Scipy) and F2PY. We will first
look at Weave, which allows us to embed C or C++ code directly into the Python code. Below
follows the code for filling in the matrix entries for a TriDiagMatrix object using weave.inline:

def scheme_tridiag_weave(A, C1):
n=A.n-1; dl =A.dl; d=A.d; du=A.du
COde = nnn
int i;
i=0; d@i) =1;
for (i=1; i<=n-1; i++) {
d1(i-1) = -C1;
d(i) = 1 + 2x%C1;
du(i) = -Ci;
}
i=mn; d(i) = 1;
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args = [’dl1’, ’d’, ’du’, ’n’, ’C1’]

weave.inline(code, args,
type_converters=weave.converters.blitz,
compiler=’gcc’)

return A

The C++ code is more or less a wrapping of the corresponding Python implementation with
scalar loops except that we must work directly on the underlying data structure of the matrix
instance. The first time this function is called, it will take a long while doing some magic
behind the scene, but the next time it is called, it will run immediately. We refer to the Weave
documentation [14] for more information on this.

We also need to define similar functions for the other matrix formats. These functions
follows closely the code in the scheme_tridiag_weave function except for the sparse matrix
format. Since the underlying data structure in class SparseMatrix is based on PySparse, there
is no easy way to fill in the matrix entries using Weave. Remember that in PySparse one
normally first creates an 11_mat object, manipulates it, and then convert it to either csr_mat or
sss_mat before doing operations on it. The 11_mat object can not be manipulated in Weave so
we have extended the PySparse package with functionality for creating csr_mat objects directly
by providing the three arrays needed in the CSR-format. That is, an array holding the nonzero
values (nonzeros), an array holding the column index for each stored entry (jcol), and an array
holding references to the first stored value for each row (irow). By using this extension, the
Weave function for a sparse matrix takes the following form

def scheme_sparse_weave(nonzeros, irow, jcol, C1):
n = len(irow)-2; nnz = 3*%n-2

COde = nnn
int i, entry;
entry = -1;
i= 0;

irow(i) = entry+1l;
nonzeros (++entry) = 1; jcol(entry) = i;
for (i=1; i<=n-1; i++) {

irow(i) = entry+i;

nonzeros (++entry) = -Ci; jcol(entry) = i-1;
nonzeros (++entry) = 1 + 2*Cl; jcol(entry) = i;
nonzeros (++entry) = -C1; jcol(entry) = i+l;

}

i = n;

irow(i) = entry+1;

nonzeros (++entry) = 1; jcol(entry) = ij;

irow(n+1) = nnz+1;

nnn

args = [’nonzeros’, ’irow’, ’jcol’, ’n’, ’nnz’, ’C1’]

err = weave.inline(code, args,
type_converters=weave.converters.blitz,
compiler=’gcc’)

return nonzeros, irow, jcol

Calling scheme_sparse_weave also needs special treatment:

func = ’scheme_’+matrix_format+’_’+implementation[’scheme’]
if func == ’scheme_sparse_weave’:

nnz = 3*n-2

irow = zeros(n+2, int)

jcol = zeros(nnz+1l, int)

nonzeros = zeros(nnz+1, float)

nonzeros, irow, jcol = \

eval (func) (nonzeros, irow, jcol, C1)

A.m = spmatrix.csr_mat(n+l, n+l, nonzeros, jcol, irow)

elif
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When factorizing the matrix we must call superlu.factorize (from PySparse) explicitly and
set the variable factorized in the matrix instance to True:

A.1lu = superlu.factorize(A.m)
A.factorized = True

Before we move over to Fortran and the F2PY tool, we also list here the Weave based function
for updating the right-hand side vector:

def scheme_rhs_weave(b, up, f, bc, x, t, C2, dt, t_old, theta):
n = len(x)-1
extra_code = f.C_code(’_f’, inline=True) + \
bc.C_code(’_bc’, inline=True)

code = "mn
int i;
i=0; b(i) = _bcx(i), t);
for (i=1; i<=n-1; i++) {
b(i) = up(i) + C2x(up(i-1) - 2*up(i) + up(i+1)) + \
thetaxdt*_f(x(i), t) + (1-theta)*dt*_f(x(i), t_old);
}

i=mn; b)) = _belx), t);
nnn
args = [’b’, ’up’, ’n’, ’x’, ’t’, ’C2’, ’dt’, ’t_old’, ’theta’]
weave.inline(code, args,
type_converters=weave.converters.blitz,
support_code=extra_code, compiler=’gcc’)
return b

Note that the functions £ and bc for the diffusion source term and the boundary conditions,
respectively, are assumed to be specified as a StringFunction objects (see Chapter 8.6.10 and
Chapter 12.2.1 in [17] for more information on StringFunction). We can then extract the C
code as strings from the StringFunction objects by using the methods f.C_code and bc.C_code
and add them to the support_code argument in weave.inline.

Now, we turn our focus over to the F2PY tool. With aid from F2PY we can easily call
Fortran routines from Python. First we present the F77 subroutine for inserting the matrix
entries into a tridiagonal matrix:

subroutine scheme_tridiag £f77(dl, d, du, n, Cl1)
integer n
real*8 d1(0:n-1), d(0:n), du(0:n-1)
real*8 C1
Cf2py intent(in, out) dl, d, du
Cf2py intent(in) C1
Cf2py intent(hide) n

i=0; d(i) =1

doi=1, n-1
dl(i-1) = -C1
d(i) = 1 + 2xC1
du(i) = -C1

end do

i=mn; d@i) =1

return

end

Because F2PY and Fortran does not have any knowledge of a TriDiagMatrix object, we must
work directly on the underlying data structure, in this case the three arrays for the sub-, main-,
and super-diagonals in the matrix. The typical call of scheme_tridiag_£77 goes like

A.d1, A.d, A.du = £77.scheme_tridiag f77(A.dl, A.d, A.du, C1)
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if £77 is the name of the extension module. For the other matrix formats we define similar
subroutines. The sparse matrix format follows the same ideas as in the Weave code above.

Before these Fortran routines can be used in a script we need to build an extension module
with the F77 code. This is taken care of by the following function:

def make_f77(f, bc, I):
COde = nnn

<definitions of subroutines for matrices>

subroutine scheme_rhs_£77(b, up, x, t, n, C2,
& dt, t_old, theta)
integer n
real*8 up(0:n)
real*8 x(0:n)
real*8 b(0:n)
real*8 C2, dt, t, t_old, theta
Cf2py intent(in, out) b
real*8 f
external f
real*8 bc
external bc

i =0; b@) =bcx@lE), t)

do i 1, n-1
b(i) = up(i) + C2*(up(i-1) - 2*up(i) + up(i+l)) +

& theta*xdt*f (x(i), t) +
& (1-theta)*dt*f (x(i), t_old)

end do

i =mn; b@) = bcx@), t)

return

end

subroutine ic_f£f77(u, x, n)
integer n
real*8 u(0:n)
real*8 x(0:n)
Cf2py intent(in, out) u
real*8 ic
external ic

doi=0,n

u(i) = ic(x(i))

end do
return
end

%s

%s

%s

%s

mn % (£.F77_code(’£’), bc.F77_code(’bec’), I.F77_code(’ic’), I.F77_pow())

f = open(’_tmp.£f’, ’w’)
f.write(code)
f.close()

cmd = "f2py -m £77 -c --fcompiler=’Gnu’ --build-dir tmp2"\
" -DF2PY_REPORT_ON_ARRAY_COPY=1 _tmp.f"
print cmd
os.system(’rm -rf tmp2’)
failure, output = commands.getstatusoutput (cmd)
if failure:
print ’unsuccessful F77 extension module compilation’
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print output
sys.exit (1)

Note that we have assumed that the functions £, bc, and I are given as StringFunction objects.
This allows us to extract the F77 subroutines as string expressions via the F77_code method in
the StringFunction object. In this way we will avoid expensive callbacks to Python.

For a grid with n = 40000 points and 100 time steps, the code with Weave implementation
of loops required 0.67 s, that is, about 102 times faster than the scalar Python loops, but only
1.6 times faster than the vectorized loops. The solver with F77 implementation of loops ran at
0.77 s, slightly slower than the Weave code.

Putting It All Together. An extension of the solver0 function with the improvements
described above is listed below.

def solver(I, f, k, bc, L, n, dt, tstop, theta,
user_action=None,
implementation={’ic’: ’vec’, # or ’scalar’, ’f77’, ’weave’
’scheme’: ’vec’},
matrix_format=’symmtridiag’):
dx = L/float(n)
x = sequence(0, L, dx) # grid points in x dir

gamma = dt*k/dx**2
Cl = thetaxgamma; C2 = (1-theta)*gamma # help variables

u = zeros(nt+l, float) # solution array

# use scalar implementation mode if no info from user:
if ’ic’ not in implementation:
implementation[’ic’] = ’scalar’
if ’scheme’ not in implementation:
implementation[’scheme’] = ’scalar’

if ’weave’ in implementation.itervalues() or \
’£77’ in implementation.itervalues():
# we avoid callback to Python and require f, bc, and I to be
# string formulas:
print £, bc, I
if not isinstance(f, StringFunction) or \
not isinstance(bc, StringFunction) or \
not isinstance(I, StringFunction):
raise TypeError, \
’with Weave or F77, f, bc, and I must be StringFunction’

if ’f77° in implementation.itervalues():
make_f77(f, bc, I) # build F77 module
import £f77
# unified names with py versionms:
ic_£f77 = £77.ic_£77
scheme_dense_£f77 = f77.scheme_dense_£f77
scheme_band_£f77 = £77.scheme_band_£f77
scheme_symmband_£77 = £77.scheme_symmband_£77
scheme_tridiag £77 = £77.scheme_tridiag_ £77
scheme_symmtridiag £f77 = £77.scheme_symmtridiag_ £77
scheme_structsparse_£f77 = £f77.scheme_structsparse_f77
scheme_sparse_£f77 = £77.scheme_sparse_£77
scheme_rhs_£77 = £77.scheme_rhs_£77

# set initial condition:
t0 = time.clock()

t =0.0

print ’#*x’, implementation[’ic’]
func = ’ic_’+implementation[’ic’]
if func == ’ic_£f77’:

38



u = eval (func) (u, x)
else:
u = eval(func) (u, I, x)
t_ic = time.clock() - tO
up = u.copy() # solution at previous time step

if user_action is not None:
user_action(u, x, t) # allow user to plot etc.

# allocate storage for coefficient matrix and rhs:
if matrix_format == ’dense’:
A = DenseMatrix(n+1,n+1)
elif matrix_format == ’band’:
A = BandMatrix(n+1, n+1, 1, 1)
elif matrix_format == ’symmband’:
A = SymmBandMatrix(n+1, 1)
elif matrix_format == ’tridiag’:
A = TriDiagMatrix(n+1)
elif matrix_format == ’symmtridiag’:
A = SymmTriDiagMatrix(n+1)
elif matrix_format == ’structsparse’:
offset = array([-1,0,1], int)
A = StructSparseMatrix(n+1l, 3, offset)
elif matrix_format == ’sparse’:
A = SparseMatrix(nt+l, n+1)
else:
print "unknown matrix format", matrix_format
b = zeros(n+1l, float)

t_scheme = 0 # CPU time scheme
t_solve = 0 # CPU time solve linear system

# compute coefficient matrix:
t0 = time.clock()
func = ’scheme_’+matrix_format+’_’+implementation[’scheme’]
if func == ’scheme_sparse_weave’ or func == ’scheme_sparse_f77’:

nnz = 3*n-2

irow = zeros(n+2, int)

jcol = zeros(mnz+1l, int)

nonzeros = zeros(nnz+1, float)

nonzeros, irow, jcol = \

eval (func) (nonzeros, irow, jcol, C1)

A.m = spmatrix.csr_mat(n+l, n+l, nonzeros, jcol, irow)

elif ’£77’ in func:

if matrix_format == ’tridiag’:

A.dl, A.d, A.du = eval(func)(A.dl, A.d, A.du, C1)
elif matrix_format == ’symmtridiag’:

A.d, A.dl = eval(func)(A.d, A.dl, C1)
else:

A.m = eval(func) (A.m, C1)
else:
A = eval(func) (A, C1)
t_scheme += time.clock() - tO

while t <= tstop:
t_old = t; t += dt

# update right-hand side:
t0 = time.clock()

func = ’scheme_rhs_’+implementation[’scheme’]
if func == ’scheme_rhs_f77’:

b = eval(func) (b, up, x, t, C2, dt, t_old, theta)
else:

b = eval(func) (b, up, f, bc, x, t, C2, dt, t_old, theta)
t_scheme += time.clock() - tO

# solve linear system:

t0 = time.clock()
if isinstance(A, SparseMatrix) and not A.factorized and \

39



implementation[’scheme’] in (’weave’, ’*£f77’):
A.1u = superlu.factorize(A.m)
A.factorized = True
u = A*x*x(-1)*b
t_solve += time.clock() - tO

if user_action is not None:
user_action(u, x, t)

# update data structures for next step:
up, u = u, up

return t_ic, t_scheme, t_solve

This solver function is located in the file pypdelib/examples/diffusionid/diffusionid.py.

Efficiency Comparison of Matrix Formats. We have seen that the Weave based solver
results in the fastest CPU time with a slight advantage over the F77 based solver. We will
therefore let Weave handle the loops when testing and comparing the efficiency of the different
matrix formats. To this end, we have created a function benchmark_matrices in diffusionid.py.
Running the test with n = 400000 grid points over 100 time steps on a IBM Thinkpad X41
running Ubuntu Linux with 1.5 GB of memory and the CPU frequency fixed at 1.5 GHz, results
in the following table:

matrix format time

SymmTriDiagMatrix 1.0
StructSparseMatrix 1.11

TriDiagMatrix 1.27
SymmBandMatrix 1.63
SparseMatrix 3.31
BandMatrix 4.19
DenseMatrix n/a

It comes as no surprise that the fastest implementation of the current problem is by using
SymmTriDiagMatrix, slightly ahead of StructSparseMatrix. The slowest is of course DenseMatrix,
which is nearly 2000 times slower than SymmTriDiagMatrix for a grid with n = 5000 points. For
n = 400000, the implementation with a dense matrix would have used over two hours. We
should note that the times in the table above have been scaled by the CPU time of the fastest
implementation.

Looking closer at the results from the test reveals that about 70% of the CPU time is used
for solving the linear system for the optimal choice SymmTriDiagMatrix. This result is rather
important, because it means that most of the work is done in the underlying Fortran routines
from the LAPACK library.

One might think that the efficiency gain from migrating to compiled code was a little
disappointing compared with the vectorized expressions. However, when we now move over to
two-dimensional grids we may benefit significantly from migrating to compiled code.
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1.9.2 2D Diffusion Equation

In two dimensions, the mathematical problem in (1.15)-(1.17) translates to the following prob-
lem:

ou *u  O%u
Eﬁgﬁﬁ@+m%mumauwmm»a (1.25)
u:g(x,y,t), r=0,L,y=0,L (126)
w(e,yt) = I(z,y), @ €[0,L] x [0, L], (1.27)

We start by introducing a uniform grid on the square 2 = [0, L] x [0, L], with grid points (z;,y;),
i,7 = 0,...,m. The grid increment h = Az = Ay then becomes L/m. The problem can be
discretized by a centered difference in space, combined with a #-rule in time. The discrete
problem can then be compactly written as

1
[Geul; ;2 = Ok[8,80u + 6,0,u)f; + (1 — O)k[Sa6,u + 8,8,ull5" + O[] + (1 - O)[f)5 . (1.28)
As in the one-dimensional case, we end up with an explicit scheme when 8 = 0 and an implicit
scheme when 6 > 0. The choice § = 1/2 appears to be the optimal combination of stability and
accuracy, both of second order. However, this means that we for each time step ¢ > 0, need to
solve a n x n linear system Au = b where n = (m + 1)2. The matrix A is sparse with only five
nonzero diagonals as shown in Figure 1.2. For the inner grid points, the matrix entries can be

Figure 1.2: Sparsity pattern for the matrix in the linear system arising from (1.28) when 6 > 0
and using a 5 x 5 uniform grid. Each nonzero entry in the matrix are here represented by a
dot.

identified as

Arow,row—(m+1) = —07,
Arow,rowfl = _9'73
Arow,row = 1+ 407,
Arow,row+1 = Arow,row—1,
Arow,roer(erl) = Arow,rowf(m+1)7

where v = kAt/h? and row = i(m + 1) + j. Here we assume that the grid points are numbered
according to a double loop over i and j, with the fastest variation over j. The right-hand side
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vector is given by b = (by0,b0.1,- -, bom, 01,0, - ,bm,m)T, where the entries for the inner points
are

1]

OALf];+ (1 —0)Atf .

01 -1 -1 -1, 01 -1
brow = u; ; + (1 —0)y <uz‘,j—1 Fuiyy — Ay gyt ui,j-i—l) +

The initial condition is handled normally, i.e. ug ; = 1ij, while the setting of boundary condi-
tions at each side of the domain requires four index sets: ¢ =0 and j =0,...,m; j =0 and
1=0,....m;i=mand j=0,...,m;and j =mand i =0,...,m. At these four index sets we
have Arowrow = 1 and byow = gﬁ i

The extension of the 1D algorithm in the previous subsection to the 2D case is straightfor-
ward. The biggest difference is the range of the indices. The following algorithm summarizes
the complete numerical method:

¢ and uf!

define u; ; and u;, ; to represent u; ; i respectively

SET THE INITIAL CONDITION:
wij = I(xi,y;), fori,j=0,...,m
t=20
while time ¢ < tg0p
t— At
DEFINE SPARSE SYSTEM:
Au = b, where
u= (uo,o, U1y« -+ U0,m> U1,05 - - - s Um,m
— _QLAt
row,row—(m+1) — h2
— _QLAt
row,row—1 — RZ
TOW,row — 1+ 49A_2t’

t
row,row—+1 — _akﬁ )

)T

)

N

A
A
A
Arow,row-‘,—(m-l—l) = _Hk%a
brow = wj + (1= O)y (w5 g + iy j — 4w+ + “Zj+1) +
OALfL + OALf
fori,j=1,...,m—1, and
Arowrow = 1, brow = gﬁ ; at each side of the domain
(All other A; ; values are zero)
SOLVE THE SYSTEM Au = b

INITIALIZE FOR NEXT STEP:

U, = Ui, fori,j =0,...,m

A First Implementation in Python. A simple Python implementation following closely
the 2D algorithm above can be found in pypdelib/examples/diffusion2d/diffusion2d.py. The
function is called solver0 and takes the following form:

def solverO(I, f, k, bc, L, m, dt, tstop, theta,
user_action=None) :

h = L/float(m)

x = sequence(0, L, h) # grid points in x dir

y = x.copy() # grid points in y dir

xv = x[:,NewAxis] # for vectorized function evaluations
yv = y[NewAxis,:]
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gamma = kxdt/hx*2
Cl = theta*gamma; C2 = (l1-theta)*gamma # help variables

u = zeros((m+1,m+1), float) # solution array
# set initial condition:
t =0.0
for i in iseq(0, m):
for j in iseq(0, m):
uli,jl = 1(x[il, y[j1)
up = u.copy() #

if user_action is not None:

user_action(u, xv, yv, t) # allow user to plot etc.

while t <= tstop:

t_old = t; t += dt

n = (m+1)*(m+1)

A = DenseMatrix(n, n) # coefficient matrix

b = zeros(n, float) # right-hand side vector
i =0 # lower boundary

solution at previous time step

for j in iseq(0, m):

row = ix(m+1)+j; Alrow,row] = 1; blrow] = bc(x[i], y[jl, t)
j = 0 # left boundary
for i in iseq(0, m):

row = i*(m+1)+j; Alrow,row] = 1; blrow] =

# inner points:
for i in iseq(1l, m-1):
for j in iseq(1l, m-1):

row = i*(m+1)+j # treat next row

Alrow,row-(m+1)] = -C1
Alrow,row-1] = -C1
Alrow,row] = 1 + 4xC1
Alrow,row+1] = -C1
Alrow,row+(m+1)] = -C1

blrow] = upli,jl + \
C2*(upli,j-11 + upli-1,j] - 4*upli,jl + \
upli+1,j] + upli,j+11) + \
thetaxdtx*f (x[i], y[jl, t) + \
(1-theta)*dt*f (x[1], y[jl, t_old)
i =m # upper boundary
for j in iseq(0, m):

row = i*x(m+1)+j; Alrow,row] = 1; blrow] =
j = m # right boundary
for i in iseq(0, m):

row = ix(m+1)+j; Alrow,row] = 1; blrow] =

= reshape(u, n) # u must be 1D vector
solve linear system:
= Axx(-1)%*Db

reshape(u, (m+1,m+1))

[SEE=E ]

if user_action is not None:
user_action(u, xv, yv, t)

# update data structures for next step:
up, u = u, up

Some points are worth noticing about the solver0 function:

the current problem would be a StructSparseMatrix instance.

# switch back to two indices in u

be(x[i], y[jl, ®©)

be(x[i], y[jl, ®©)

be(x[i], y[j1, )

1. The coefficient matrix is stored as a DenseMatrix instance while the optimal choice for

To allow the use of a

StructSparseMatrix instance instead, we only need to take out this part

A = DenseMatrix(n, n)

43



and replace it with the following code segment:

ndiags = 5

offset = zeros(ndiags, int)
offset[0] = -(m+1)
offset[1] = -1

offset[2] = 0

offset[3] = 1

offset[4] = m+1

A = StructSparseMatrix(n, ndiags, offset)

The rest of the solver0 function remains the same. This modification should reduce the
CPU time significantly and the memory requirements for storing the matrix is reduced
from O(n?) to O(5n). Note that the array offset tells the StructSparseMatrix instance
where the five nonzero diagonals are located relative to the main diagonal.

2. As in the implementation of the 1D solver, the nonzero entries in the coefficient matrix
are independent of time and we should therefore set-up the matrix before the start of the
time loop to save CPU time.

3. The double loop over the inner points in the scheme are implemented using a plain Python
for loop. While this is fine for small grids, we should benefit greatly from vectorizing the
loops or by migrating the loops to a compiled language for larger grids. This will be even
more significant in 2D than in 1D.

4. The expression u = Axx(-1)*b may lead to some overhead for large grids, because the
result array needs to be allocated in each call. Instead we can use the storage that is
already allocated in the array u by switching to the following more complex statement:

if not A.factorized:
A.factorize()
u = A.solve(b, solution=u)

5. The numerical solution u is stored in a NumPy array uw with m + 1 rows and m + 1
columns. Since the expression A.solve(b, solution=u) requires that u is a 1D vector of
length n = (m + 1), we need to flatten the array before solving the linear system:

u = reshape(u, n)
u = A.solve(b, solution=u)
u = reshape(u, (m+1,m+1))

At the end, we switch back to two indices in u, making it ready for the next time step.

Computing Errors. We should now verify that the code in the solver0 function is imple-
mented correctly. To this end, the following analytical solution can be used:

—272t

u(x,y,t) =e sin 7z sin Ty

We let I(x,y) = u(z,y,0), g(z,y,t) = u(z,y,t), and f(x,y,t) =0 in the following function:

def test_error0():
L=1.0; k=1.0

def exact(x, y, t):
return exp(-2*pow(pi/L,2)*k*t)*sin(pi*x)*sin(pi*y)
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def I(x, y): return exact(x, y, 0)
def bc(x, y, t): return exact(x, y, t)
def f(x, y, t): return 0.0

error = []
def action(u, xv, yv, t):
e = exact(xv, yv, t) - u
error.append((t, sqrt(dot(e.flat,e.flat))))

m = 30; dt = 0.01; tstop = 0.5; theta = 0.5
solverO(I, f, k, bc, L, m, dt, tstop, theta, user_action=action)
for t, e in error:

print ’t=%10.2E error=%10.2E’ % (t, e)

As already mentioned, the accuracy should be of second order in both time and space when
0 =0.5. We let At = 0.01 and use a grid with 30 x 30 grid points. The computed error is then
around 5.5-10~% when ¢ = 0.3. Increasing the number of grid points to 60 x 60 and halving At
should reduce the error by a factor of 4. For ¢t = 0.3 the error is then about 2.8 - 1074, while it
should have been about 1.4 - 107%. The difference is probably due to some roundoff errors.

Visualization. Let us visualize the following plug:

(2, ) 1 if04d<2,y<0.6
T,y) =
Y 0 otherwise

We let the boundary conditions and the source term function be given as g(x,y,t) = 0 and
f(x,y,t) = 0, respectively. We can then plot the plug using the following function:

def test_plot0():
L=1.0; k=1.0

def I(x, y):
if x > 0.4 and x < 0.6 and y > 0.4 and y < 0.6:
return 1.0
else:
return 0.0
def bc(x, y, t): return 0.0
def f(x, y, t): return 0.0

def action(u, xv, yv, t):

easyviz.surf (xv, yv, u, zmin=-0.05, zmax=1.15,
title="t=lg" % t,
caxis=(0,1),
memoryorder=’xyz’)

time.sleep(0.1) # pause between frames

if t == 0:

time.sleep(2)

m = 16; dt = 0.001; tstop = 0.1; theta = 0.5
solverO(I, f, k, bc, L, m, dt, tstop, theta, user_action=action)

Here we use the surf command in Easyviz to draw an elevated surface of the solution. See
Figure 1.3 for some snapshots of the plug at different time steps.

Vectorizing Loops. For small problems, the pure Python loops are fine, even in two dimen-
sions. However, as the grid gets larger, the Python loops will be too slow. By vectorizing the
loops, the CPU time should be reduced considerably. In 2D, where we have a double loop over
the inner points in the finite difference scheme, vectorization is even more important than in
1D. Let us first recapitulate the double loop over the inner points in the scheme:
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=0 1=0.001

1=0.01 t=0.1

Figure 1.3: Plots of an initial plug in the middle of the domain.

for i in iseq(l, m-1):
for j in iseq(1, m-1):
row = ix(m+1)+j # treat next row
Alrow,row-(m+1)] = -C1
Alrow,row-1] = -C1
Alrow,row] = 1 + 4*C1
Alrow,row+1] = -Ci1
Alrow,row+(m+1)] = -C1
blrow] = upli,jl + \
C2*(upli,j-11 + uwpli-1,j] - 4xupli,jl + \
up[i+1,j] + upli,j+11) + \
thetaxdt*f (x[1], y[jl, t) + \
(1-theta)*dt*f (x[1], y[jl, t_old)

As already mentioned, the matrix should be set-up before the start of the time loop. To this
end, we can split the above code segment into two parts, i.e., a double loop over the matrix
entries
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for i in iseq(l, m-1):

for j in iseq(l, m-1):
row = i*(m+1)+j # treat next row
Alrow,row-(m+1)] = -C1
Alrow,row-1] = -Ci
Alrow,row] = 1 + 4xC1
Alrow,row+1] = -Ci
Alrow,row+(m+1)] = -C1

and a double loop over the right-hand side entries

for i in iseq(l, m-1):
for j in iseq(l, m-1):

row = ix(m+1)+j # treat next row

blrow] = upli,jl + \
C2x(upli,j-1]1 + upli-1,j] - 4xupli,jl + \

upli+1,j] + upli,j+11) + \

thetaxdt*f (x[i], y[j], t) + \
(1-theta)*dt*f (x[1], y[jl, t_old)

Vectorizing the latter code segment is straightforward:

b = reshape(b, (m+1, m+1))
bli:m,1:m] = up[l:m,1:m] + \
C2*%(up[1:m,0:m-1] + up[0:m-1,1:m] - 4*up[l:m,1:m] + \
up[2:m+1,1:m] + up[l:m,2:m+1]) + \
theta*dt*f (xv[1:m,0], yv[0,1:m], t) + \
(1-theta)*dt*f (xv[1:m,0], yv[0,1:m], t_old)
b = reshape(b, n)

Note that we for convenience modify the shape of the array b before and after the vectorized
expression. Also note that in the call to the source term function f, we use the arrays xv and
yv rather than the arrays x and y. These are defined as

x[:,NewAxis]
y [NewAxis, :]

Xv
yv

and should be used since we are working on a 2D grid.

Vectorizing the double loop over the matrix entries is a bit more complex since it depends
on the underlying storage structure of the matrix. The optimal matrix format for the current
problem is the structured sparse matrix format and the StructSparseMatrix class stores the five
diagonals as columns in an n x 5 NumPy array m with the main diagonal in the third column.
First we create an index set over the inner grid points:

ind = seq(n-1, type=int)

ind = reshape(ind, (m+1,m+1))
i_ind = ravel(ind[1:m,1:m])

The vectorized expression over the inner points in the matrix then takes the following form:

A.m[i_ind,0] = -C1
A.m[i_ind,1] = -C1
A.m[i_ind,2] = 1 + 4x%C1
A.m[i_ind,3] = -C1
A.m[i_ind,4] = -Ci1

Following the same ideas as in the 1D case, we want to support all matrix formats that are
suitable for the current problem. To this end, we have created vectorized expressions for
DenseMatrix, BandMatrix, StructSparseMatrix, and SparseMatrix. Only the code for a struc-
tured sparse matrix is presented here; however, the others are located in the file diffusion2d.py
in the directory pypdelib/examples/diffusion2d.

Also the loops over the boundary conditions should be vectorized. The pure Python loops
goes like this:
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i=0
for j in iseq(0, m):

row = ix(m+1)+j; Al[row,row] = 1; blrow] = bc(x[i], y[jl, t)
j=0
for i in iseq(0, m):

row = ix(m+1)+j; Al[row,row] = 1; blrow] = bc(x[i], y[jl, t)
i=m
for j in iseq(0, m):

row = ix(m+1)+j; Alrow,row] = 1; Dblrow] = bc(x[i]l, y[jl, t)
j=m
for i in iseq(0, m):

row = ix(m+1)+j; Al[row,row] = 1; blrow] = bc(x[i], y[jl, t)

Splitting this into two parts, i.e., one for the matrix and one for the right-hand side vector, the
vectorized expression for a StructSparseMatrix instance A then becomes

ind = seq(n-1, type=int)

ind = reshape(ind, (m+1,m+1))

i =0; ind0 = ind[i,:]; A.m[ind0,2] = 1
j =0; indl = ind[1:m,jl; A.m[ind1,2] =1
i =m; ind2 = ind[m,:]; A.m[ind2,2] = 1
j =m; ind3 = ind[1:m,j]; A.m[ind3,2] =1

while for the right-hand side vector b we get

b = reshape(b, (m+1l, m+1))

i=0; bli,:]1 = be(x[i], y[:1, t)
j =0; bl:,j] = bex[:1, y[j1, t)
i=m; bli,:] = bex[i], y[:1, t)
j =m; bl:,j] = bex[:1, y[jl, t)
b = reshape(b, n)

For completeness we also list here the vectorized expression for the initial condition:

ul:,:] = I(xv, yv)

Also here we use the 2D arrays xv and yv.

For a 600 x 600 grid with 20 time steps, the solver using only scalar Python loops required
144 s while the solver based on vectorized loops ran at 2.6 s. This gives us a speed up by a
factor of 55, which is a very nice performance boost.

Migrating Loops to Compiled Code. While the speed up by vectorization was very good,
we should be able to reduce the CPU time even further by migrate the loops to compiled code.
Following the same ideas as in the solver for the 1D diffusion equation, we have implemented
all the loops in both C++ and F77 versions using the tools Weave and F2PY, respectively. The
Weave based code is very similar to the one presented in the previous section and the code is
therefore not listed here. Also the F77 based code is very similar, however, one should note
that multi-dimensional arrays are stored differently in C and Fortran. A two-dimensional array
in C is stored row by row, while in Fortran it is stored column by column. This means that
the first index runs faster than the second index in Fortran, while in C the second index is the
fastest. This affects the double loop over the entries in the right-hand side vector. In Python,
the double loop over 7 and j, has the fastest variation over 7, i.e., the innermost loop runs over
VE
for i in iseq(l, m-1):
for j in iseq(l, m-1):

row = ix(m+1)+j
blrow] = upli,j] +
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Cc2*(upli,j-11 + upli-1,3j] - 4*upli,jl + \
upli+1,j] + upli,j+11) + \

thetaxdt*f (x[i], y[j], t) + \

(1-theta)*dt*f (x[1], y[jl, t_old)

In Fortran, however, the fastest variation is over i, i.e., the innermost loop runs over i:

doj =1, m1
doi=1, m-1
row = j*(m+1)+i
b(row) = up(i,j) +

& C2*(up(i,j-1) + up(i-1,j) - 4*up(i,j) +
& up(i+1,j) + up(i,j+1)) +
& thetaxdt*f (x(1), y(j), t) +
& (1-theta)*dt*f(x(i), y(j), t_old)
end do
end do

Note that the single index row for the right-hand side vector in the F77 code is j(m + 1) + ¢
rather than i(m + 1) + j) as in the Python code.

Another important aspect regarding the different storage structure for multi-dimensional
arrays in C and Fortran, is array copying. When a 2D NumPy array is created in Python, the
default is to use row major storage (as in C). When this array is sent to Fortran with the aid of
F2PY, the array will be copied to a new array with column major storage. For large arrays, this
copying results in some overhead. If the array already has column major storage, no copying
will be made. Therefore, to avoid overhead, we should ensure that the storage structure of the
arrays up and u are compatible with Fortran storage:

u = numpy.asarray(u, order=’FORTRAN’)
up = numpy.asarray(up, order=’FORTRAN’)

This is actually not necessary since we switch references (u,up=up,u) in the time loop and after
a few time steps, both arrays will be brought to column major storage.

Compiling the module with the flag ~-DF2PY_REPORT_ON_ARRAY_COPY=1, shows that an array
is copied at every time step. After some testing, we see that the array u is turned back to row
major storage by the reshape function, which is used before and after solving the linear system
in the time loop:

u = reshape(u, n)
u = A.solve(b, u)
u = reshape(u, (m+1,m+1))

To avoid this overhead, we should explicitly set the storage to column major storage in the
reshape function:

u = reshape(u, n, order=’FORTRAN’)
u = A.solve(b, u)
u = reshape(u, (m+1,m+1), order=’FORTRAN’)

Now there are no longer reports of arrays being copied.

For the 600 x 600 grid over 20 time steps, the solver with loops implemented in Weave
required 1.2 s, that is, about 120 times faster than the solver with pure Python loops and 2.2
times faster than the vectorized version of the solver. The solver based on F77 implementation
of loops is again slightly solver, requiring 1.3 s for the same grid over the same time span. These
results shows that it really pays off to migrate the loops to compiled code.
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Efficiency Comparison of Matrix Formats. An extension of the function solvero0, called
solver, is available in the file pypdelib/examples/diffusion2d/diffusion2d.py. The solver
function supports all the different implementations of loops described in the past two para-
graphs, which can be specified by the implementation keyword argument. In addition, it sup-
ports several different matrix formats, including dense, band, structured sparse, and general
sparse. The matrix format can be set with the matrix_format keyword argument in the solver
function using one of the following strings: ’dense’, ’band’, ’structsparse’, or ’sparse’.

Comparing the matrix formats is a bit hard since they have totally different memory re-
quirements. For instance, the use of a DenseMatrix instance makes the computer (with 1.5 GB
memory) start swapping to the hard drive for grids larger than 80 x 80. For such small grids,
the CPU time using a StructSparseMatrix is only 0.02 s, which is too small to be reliable as a
measurement. Increasing the grid to 250 x 250 results in the following table3:

matrix format time

StructSparseMatrix 1.0

SparseMatrix 11.0
BandMatrix 96.0
DenseMatrix n/a

No results are available for a DenseMatrix instance, however, we can estimate the CPU time to
be more than two hours, i.e., if we had enough memory. More important is the fact that about
60% of the CPU time is used for solving the linear system Au = b in the optimal solver, i.e.,
using a structured sparse matrix combined with loops running in C++ with aid from Weave.
This means that most of the CPU time is spent in the Fortran subroutines dfactRILU and
dforwBackRILU from the sspmatrix module.

1.9.3 ADI Method for 2D Diffusion Equation

The finite difference scheme presented in the previous section is quite flexible, but not an
optimal solution procedure for the two-dimensional diffusion problem. In this subsection we
will use the alternating direction implicit (ADI) method [13, 7] as an alternative for solving the
problem given in (1.25). The ADI method was first introduced by Peaceman and Rachford in
1955 and the fundamental idea is to replace a two-dimensional problem with a series of one-
dimensional problems to generate a computationally efficient algorithm. For linear problems,
the ADI method is unconditionally stable and the accuracy is of second order in both space
and time.

First, we introduce a rectangular grid on Q = [0, L,]| x [0, L,], with grid points (z;,y;),
where

r; =iAzr and y; =jAy, fori=0,...,n4 j=0,...,n4.

The grid increments are assumed to be constant, Ax = L,/n, in the z-direction and Ay =
L, /ny in the y-direction. We then divide each time step into two steps of size At/2 and in each
substep the solution is computed in one dimension:
o+2 ¢ o+1 e+1 +3 ¢ ¢ ¢
i Uiy Mty T M iy a1 T 20 Y
At/2 Az? Ay?

o+ 1
+ 10, (1.29)

3The solver with a BandMatrix instance starts to swap for larger grids.
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respectively

1 1 1 1
+1 3 gy 5 3 43 041 0+1 041
Uig Uiyl ity T2 T Yo T 2 U e (1.30)
At/2 Ax? Ay? I

where first diffusion along the 7 dimension is solved implicitly and then over the j dimension.
Note that the intermediate value wu; J]r /? has no physical significance. By rewriting (1.29) and
(1.30) we see that we deal with two linear tridiagonal systems, which we can solve very efficiently:

AT Z+ AT 042
Vi 12j+2(1+'7$) ? — Yz Z+12_]_2 2j+'7y( z] 1 2u +uz]+1>+Atf ? (1'31)

and

s as! oS! 43 3 +1 +1 o441
—YyU ZJ; 12 (1 +y) @J]r —Yyu z}L+1 2u; i * +7e (uif,j_2uz,j2 +u gty | FALf 2, (1.32)

where v, = kAt/Ax? and v, = kAt/Ay?. By writing (1.31) on matrix form, one obtains, for
the j-th column in the grid, the tridiagonal system

_ u”% .
- - O7 y - -
1 gﬁ% bo,j
Yz 2+ 27 Yz uéil bl,j
- 2+2 - 2 ;
Yo + % vy’ | _ b2.7j 7 (1.33)
—Vx 2+ 2'73[: Yz uf'i‘% bnx—l,j
- - Z“Fﬁ )
L Ng,] J
where
01
bO,] g(]] )
+3
bij = 2uf; + (u —2uf; + uz]—f—l) + Aif; %,
fori=1,...,n, —1, and
+3

bnw,j - gn;“j

This can be abbreviated as Au‘™2 = b and constitutes the z-direction sweep. We can also
express (1.32) on matrix form. For the i-th row, we get

_ - T Z+1 1 - -
: we, | [ a0
—Yy 2+ 2y —Vy u%’—fl—l Ci1
Yy 2+2y v U Ci,2
! Y o= (1.34)
—y 242y —v fﬁifl Cimy—1
L 1 4L uf;i 1 L ci,”y m
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where

VAR
Ci,0 = Y;0 >
+3 +3 +3 o+ l+3
Cij =2u;;* +Va (uz‘—l,j —2u; ;% oyt |+ Atf ,

or Bu‘*! = ¢. This is the y-direction sweep. The procedure then becomes to first solve n, — 2
(+1/2

ig
Then one solves n, — 2 systems of equations on the form (1.34) to compute the values u;

systems of equations on the form (1.33) to obtain the values for the intermediate solution u;

41
i,
given the values u; J]r /2 from the intermediate time step.

In the computational algorithm, we need to have full control of the 1n1t1a1 condition and
boundary conditions. The initial condition u(z,y,0) = I(z,y) is set by ui7 = I; j, and then
(1.33) and (1.34) can be used for all time levels £ > 0. At the intermediate time step, the
upper and lower boundary values, i.e. at * = 0,n,, are incorporated directly into the matrix
and the right-hand side in (1.33), while the left and right boundary values, i.e. y = 0,n, must
be set explicitly: uejl/ 2 = f+1/ % for i = 0,...,n, and j = 0,n,. However, at the complete
time step, the left and right boundary Values are incorporated into (1.34) and the lower and
upper boundary values must be set explicitly: u“l = gf}rl fori=0,n, and j =0,...,n,. The
complete numerical algorithm follows next.

1
define wu; j, u; o and u ; to represent uZ 0T uf—; and ufjl, respectively
SET THE INITIAL CONDITION
uj=1;j, fori=0,...,nz 7=0,...,ny
t=20
while time ¢ < tg0p
t e At

PERFORM X-DIRECTION SWEEP:
Equation (1.33) for j =1,...,n, — 1
UPDATE LEFT AND RIGHT BOUNDARY VALUES:

0+1/2 0+1/2 .
=i andu;n = Yin, fori=0,...,n
At
t — 5
2

PERFORM Y-DIRECTION SWEEP:
Equation (1.34) fori =1,...,n, —1

UPDATE LOWER AND UPPER BOUNDARY VALUES:

+ 041 041
Ug i = 9o andun =90

INITIALIZE FOR NEXT STEP:

. T - L
Ui = u; fori=0,...,n5, j=0,...,ny

for j =0,...,n,

A First Implementation In Python. The algorithm presented above can straightforwardly
be implemented in a Python function:

def solver0O(I, f, k, bc, Lx, Ly, nx, ny, dt, tstop,
user_action=None) :
dx = Lx/float (nx)

52



dy = Ly/float(ny)
x = sequence(0, Lx, dx) # grid points in x dir
y = sequence(0, Ly, dy) # grid points in y dir

u = zeros((nx+1,ny+1), float) # solution array

ui = u.copy() # intermediate solution at t+dt/2
up = u.copy() # solution at t+dt
Cx = kxdt/dx**2; Cy = kxdt/dy**2 # help variables

# set initial condition:
t =0.0
for i in iseq(O,nx):
for j in iseq(O,ny):
uli,jl = 1(x[i], y[j1)

if user_action is not None:
user_action(u, x, y, t) # allow user to plot etc.

while t <= tstop:
t_old = t; t += 0.5%dt

# x-direction sweep:
j = 0 # left boundary
for i in iseq(0,nx):
uili,jl = be(x[il, y[jl1, t)

# solve linear tridiagonal system for all internal columns j:
for j in iseq(l,ny-1):
A = TriDiagMatrix(nx+1); b = zeros(nx+1l, float)

# first treat lower boundary for column j:
i=0; A[i,i]l = 1; blil = be(x[il, y[j1, t)

# run through all inner points for column j:
for i in iseq(l,nx-1):
Ali,i-1] = —Cx
A[i,i] = 2 + 2xCx
A[i,i+1] = -Cx
bl[i]l = 2*uli,jl + \
Cyx(uli,j-1]1 - 2*xuli,jl + uli,j+1]) + \
dexf (x[i]1, y[j1, t)

# treat upper boundary:
i =nx; A[i,i] = 1; bli] = be(x[i]l, y[j], ©)

# solve linear system:
tmp = Ax*x(-1)*b
# insert solution into column j:
for i in iseq(O,nx):
uili,j]l = tmp[i]

j = ny # right boundary
for i in iseq(0,nx):
uili,jl = be(x[il, y[jl, t)

t_old = t; t += 0.5%dt
# y-direction sweep:
i =0 # lower boundary
for j in iseq(O,ny):
upli,jl = be(x[il, y[jl, ©)

# solve linear tridiagonal system for all internal rows i:
for i in iseq(1l,nx-1):
B = TriDiagMatrix(ny+1); c¢ = zeros(ny+l, float)

st treat left boundary for row i:

# fir
j =0; B[j,jl =1; cljl = be(xl[il, y[jl, t)
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# then run through all inner points for row i:
for j in iseq(l,ny-1):
B[j,j-11 = -Cy
B[j,jl = 2 + 2«Cy
B[j,j+1] = -Cy
cljl = 2%uili,jl + \
Cx*(uili-1,j] - 2%uili,j] + wili+1,j]) + \
dt*f (x[1i], y[jl, t_old)

# treat right boundary
j =ny; BI[j,j1 =1; cljl = bexlil, y[jl, ®)

# solve linear system:
tmp = Bk*(-1)*c
# insert solution into row i:
for j in iseq(O,ny):
up[i,jl = tmplj]

i = nx # upper boundary
for j in iseq(O,ny):
upli,jl = be(x[il, y[jl, t)

if user_action is not None:
user_action(up, x, y, t)

# update data structures for next step:
u, up = up, u

We should note that this code is written for clarity and is not optimal wrt. CPU time. The
solver0 function may be found in the file pypdelib/examples/diffusion2d_adi.py.

Computing Errors. For verification of the solver0 function, we can use the test_solver0
function from the previous subsection (with some slight modifications). As already mentioned,
the ADI method is second order accurate in space and time. We use a grid with 30 x 30 grid
points and let At = 0.01. When ¢ = 0.3, the computed error is about 2.5-1072. By doubling the
number of grid points and halving At, the error should be reduced by a factor of 4. However,
the error is instead increased to 4.8-1072 when t = 0.3. The implementation of ADI methods is
known to be difficult to get as accurate as in theory. We refer to [6] for more on ADI methods
and accuracy.

Vectorizing Loops. Vectorizing the loops in the ADI implementation is quite easy. The
vectorized set-up of the coefficient matrix in the x-direction sweep is straightforward:

=0; A[i,i]l =1
.d1[0:nx-1] = -Cx
.d[1:nx] = 2 + 2%Cx
.dul[l1:nx] = -Cx
=nx; A[i,i] =1

He

The matrix is independent of time and this code segment should therefore be executed before
the start of the time loop.
In the time loop we have the following loops for the x-direction sweep:

for j in iseq(l,ny-1):
i=0; blil = be(x[il, y[3l, ©)
for i in iseq(l,nx-1):
b[i] = 2*u[i,j] + \
Cyx(uli,j-1]1 - 2*xuli,jl + uli,j+1]) + \
dtxf (x[1i], y[j1, +)
i =nx; bli] = be(x[il, y[jl, ®)
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# solve linear system:
tmp = Ax*x(-1)*b
# insert solution into column j:
for i in iseq(0,nx):
uili,jl = tmpli]

This can be replaced by the following vectorized expression:

for j in iseq(l,ny-1):

i =0; bli] = be(xv[i,0], yv[0,j], t)

bll:nx] = 2xul[l:nx,j] + \
Cy*(ull:nx,j-1] - 2*ull:nx,j] + ull:nx,j+1]1) + \
dt*f (xv[1:nx,0], yv[0,jl, t)

i = nx; bli] = be(xv[i,0], yv[0,jl, t)

# solve linear system:

uil:,j] = Ax*x(-1)*b

Note how we insert the solution into column j in the last line.
Finally, we need to update the intermediate solution array ui with the boundary conditions
for the left and right boundary. The scalar Python loops looks as follows

0; for i in iseq(O,nx): uili,j]
ny; for i in iseq(O,nx): uili,j]

be(x[il, y[jl, t)
be(x[il, y[jl, ©)

J
j

and the vectorized expression is then:

be(x, y[jl, t)
be(x, y[il, ©)

0; wil:,j]
ny; uil:,j]

]
]

This concludes the x-direction sweep and the intermediate solution is now stored in ui. For the
y-direction sweep, the vectorized expressions is very similar to the ones described above and
they are therefore not listed here.

The efficiency gain from vectorizing the loops are quite good. For a 600 x 600 grid with
20 time steps, the ADI method with scalar Python loops required 181 s while the version with
vectorized loops ran at 6.7 s. This is a factor of 27 in favor of the vectorized version.

Migrating Loops to Compiled Code. Migrating the loops in the ADI implementation to
C and Fortran is straightforward, following the same ideas as in the previous two subsections.
The only code segment we will look at here is the one for the inner j-columns in the x-direction
sweep, that is

for j in iseq(l,ny-1):
i=0; blil = bo(x[il, y[3l, ©)
for i in iseq(1l,nx-1):
b[i] = 2*u[i,j] + \

Cy*(uli,j-11 - 2+uli,jl + uli,j+11) + \
de*f (x[i], y[3], ©)

i = nx; bli] = be(x[il, y[jl, t)

# solve linear system:

uil:,j] = Ax*x(-1)*Db

Here we will let the compiled language handle the innermost loop for updating the right-hand
side vector (including the lower and upper boundary conditions):

for j in iseq(l,ny-1):

func = ’scheme_rhs_xsweep_’+implementation[’scheme’]
if func == ’scheme_rhs_xsweep_vec’:

b = eval(func) (b, u, f, bc, xv, yv, j, t, Cy, dt, t_old)
elif func == ’scheme_rhs_xsweep_£f77’:
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b
else:
b = eval(func) (b, u, f, bc, x, y, j, t, Cy, dt, t_old)
# solve linear system:
uil:,j] = Ax*x(-1)*Db

eval (func) (b, u, x, y, j, t, Cy, dt, t_old)

Notice that we pass the integer for the j-th column as a parameter to the scheme_rhs_xsweep_x
function. The code for the inner i-rows in y-direction sweep follows the same ideas.

For the same 600 x 600 grid over 20 time steps, the results are 5.2 s for the ADI solver
with loops migrated to C and 4.1 s for the one with the loops migrated to Fortran. When
comparing to the solver with scalar Python loops, this yields a factor of about 35 in favor of the
first version and a factor of about 44 in favor of the latter. The results are quite disappointing
compared with the results obtained for the direct (sparse) Gaussian elimination solver in the
previous subsection. As one might remember, the optimal implementation there required only
1.2 s for the same grid over the same time span, that is a factor of 3.4 compared with the fastest
ADI implementation. However, by increasing the grid to 2600 x 2600, the factor is reduced to
2. Increasing the grid even further results in the direct solver starting to use swap space on my
computer. While the memory requirement for storing the coefficient matrix in a m x m grid is
O(5m?) for the direct solver, it is only O(6m) for the ADI method. This is a big advantage for
the ADI method.

The ADI implementation with the different implementation of loops is available in the
function solver in the file pypdelib/examples/diffusion2d/diffusion2d_adi.py.

Optimizing the ADI Implementation. As we have seen above, the results for the ADI
implementation was a little disappointing. However, there are a couple of drawbacks in the
code, so we might be able optimize further:

1. We can use SymmTriDiagMatrix rather than TriDiagMatrix to store the matrices in (1.33)
and (1.34) by zero out the entries in the second row in the first column and the second
to last row in the last column. So, we set

A[1,0] = A[lnx-1,nx] =0

in the x-direction sweep and

B[1,0] = Blny-1,ny] = 0

in the y-direction sweep. This should reduce the CPU time in addition to reducing the
memory requirements for the matrices from O(6m) to O(4m) for a m x m grid.

2. We can migrate the complete x-direction sweep to Fortran 77. That is, we take the code
segment (focusing only on F77)

for j in iseq(l,ny-1):
b = scheme_rhs_xsweep_£f77(b, u, x, y, j, t, Cy, dt, t_old)
# solve linear system:
uil:,j] = A*x(-1)*b

# insert left and right boundary values:

ui = bc_xsweep_f77(ui, x, y, t)

and replace it with the call

ui = xsweep_f77(A.dl, A.d, b, u, ui, x, y, t, Cy, dt, t_old)
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where the xsweep_£77 subroutine takes the following form:

subroutine xsweep_£f77(dl, d, b, u, ui, x, y, t,
& nx, ny, Cy, dt, t_old)
integer nx, ny, i, j, info

real*8 d1(0:nx), d(0:nx)

real*8 b(0:nx)

real*8 u(0:nx, O:ny), ui(O:nx, O:ny)

real*8 x(0:nx), y(0:ny)

real*8 Cy, dt, t, t_old

Cf2py intent(in, out) ui
real*8 f, bc
external f, bc

j=0
do i = 0, nx
ui(i,j) = be(x(), y(3i),t)

end do
do j =1, ny-1

i=0; b@) = bex@), y(G), t)

do i=1, nx-1

b(i) = 2*%u(i,j) +

& Cy*(u(i,j-1) - 2*u(i,j) + u(i,j+1)) +
& dtxf(x(1), y(3), t)

end do

i =nx; b)) = bcx(i), y(i), t)

call dpttrs(nx, 1, 4, d1, b, nx, info)
do i = 0, nx
ui(i,j) = b(d)

end do
end do
j =mny

do i = 0, nx
ui(i,j) = be(x@), y(j),t)
end do
return
end

Note that we call the LAPACK function dpttrs for solving a symmetric tridiagonal linear
system. This function becomes available by using the flag --1ink-lapack-opt when com-
piling the extension module with F2PY. Also note that the matrix should be factorized
before we call xsweep_£77. The y-direction sweep is treated similarly.

The switch from TriDiagMatrix to SymmTriDiagMatrix reduced the CPU time with a factor of
1.3 (from 44.6 s to 34.8 s) for the 2600 x 2600 grid. The factor in favor of the direct solver
(22.1 8) is then reduced to 1.6. Implementing the loops as suggested in the second point has
an even bigger impact on the CPU time. The clock stops at 23.4 s, that is, a reduction of the
CPU time by another factor of 1.5. The total factor is nearly 1.9 compared with the original
ADI implementation. Even more important, the factor in favor of the direct solver is now only
1.05 compared to the fastest ADI implementation. Adding the memory advantage of the ADI
method and the fact that it is easier to implement, the ADI method can surely be recommended.
Finally, we note that the optimized ADI implementation is available in the function solverX in
the file pypdelib/examples/diffusion2d/diffusion2d_adi.py.
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Chapter 2

Easyviz: A Matlab-like Plotting
Interface

2.1 Introduction

Easyviz is a light-weight interface to various packages for scientific visualization and plotting.
The Easyviz interface is written in Python with the purpose of making it very easy to visualize
data in Python scripts. Both curve plots and more advanced 2D /3D visualization of scalar and
vector fields are supported. The Easyviz interface was designed with three ideas in mind: 1) a
simple, Matlab-like syntax; 2) a unified interface to lots of visualization engines (called backends
later): Gnuplot, VTK, Matlab, Matplotlib, PyX, etc.; and 3) a minimalistic interface which
offers only basic control of plots (fine-tuning is left to programming in the specific backend
directly).

2.1.1 Guiding Principles

First principle. Array data can be plotted with a minimal set of keystrokes using a Matlab-
like syntax. A simple

t = linspace(0, 3, 51) # 51 points between O and 3
y = tx*2%exp(-t**2)
plot(t, y)

plots the data in (the NumPy array) t versus the data in (the NumPy array) y. If you need
legends, control of the axis, as well as additional curves, all this is obtained by the standard
Matlab-style commands

y2 = tx*kdkexp(-t**2)

# pick out each 4 points and add random noise:

t3 = t[::4]

random.seed(11)

y3 = y2[::4] + random.normal(loc=0, scale=0.02, size=len(t3))

plot(t, y1, ’r-’)

hold(’on’)

plot(t, y2, ’b-?)

plot(t3, y3, ’bo’)

legend (Pt~ 2%exp(-t~2)’, ’t"4xexp(-t~2)’, ’data’)
title(’Simple Plot Demo’)

axis([0, 3, -0.05, 0.6])

xlabel(’t?)

ylabel(’y’)
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show ()

hardcopy (’tmpO.ps’) # this one can be included in latex
hardcopy (’tmp0O.png’) # this one can be included in HTML

Easyviz also allows these additional function calls to be executed as a part of the plot call:

plot(t, y1, ’r-’, t, y2, ’b-’, t3, y3, ’bo’,
legend=(’t"2%exp(-t~2)’, ’t 4*exp(-t~2)’, ’data’),
title=’Simple Plot Demo’,
axis=(0, 3, -0.05, 0.6),
xlabel="t’, ylabel=’y’,
hardcopy=’tmpl.ps’,
show=True)

hardcopy (’tmpO.png’) # this one can be included in HTML

A scalar function f(z,y) may be visualized as an elevated surface with colors using these
commands:

x = seq(-2, 2, 0.1) # -2 to 2 with steps of 0.1
xv, yv = meshgrid(x, x) # define a 2D grid with points (xv,yv)
values = f(xv, yv) # function values

surfc(xv, yv, values,
shading=’interp’,
clevels=15,
clabels=’on’,
hidden=’on’,
show=True)

Second principle. Easyviz is just a unified interface to other plotting packages that can be
called from Python. Such plotting packages are referred to as backends. Several backends are
supported: Gnuplot, Matplotlib, Pmw.Blt.Graph, PyX, Matlab, VTK. In other words, scripts
that use Easyviz commands only, can work with a variety of backends, depending on what
you have installed on the machine in question and what quality of the plots you demand. For
example, switching from Gnuplot to Matplotlib is trivial.

Scripts with Easyviz commands will most probably run anywhere since at least the Gnuplot
package can always be installed right away on any platform. In practice this means that when
you write a script to automate investigation of a scientific problem, you can always quickly
plot your data with Easyviz (i.e., Matlab-like) commands and postpone to marry any specific
plotting tool. Most likely, the choice of plotting backend can remain flexible. This will also
allow old scripts to work with new fancy plotting packages in the future if Easyviz backends
are written for those packages.

Third principle. The Easyviz interface is minimalistic, aimed at rapid prototyping of plots.
This makes the Easyviz code easy to read and extend (e.g., with new backends). If you need
more sophisticated plotting, like controlling tickmarks, inserting annotations, etc., you must
grab the backend object and use the backend-specific syntax to fine-tune the plot. The idea is
that you can get away with Easyviz and a plotting package-independent script “95%” of the
time — only now and then there will be demand for package-dependent code for fine-tuning and
customization of figures.

These three principles and the Easyviz implementation make simple things simple and
unified, and complicated things are not more complicated than they would otherwise be. You
can always start out with the simple commands — and jump to complicated fine-tuning only
when strictly needed.
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2.1.2 Controlling the Backend

The Easyviz backend can either be set in a config file (see Config File below) or by a command-
line option

--SCITOOLS_easyviz_backend name

where name is the name of the backend: gnuplot, vtk, matplotlib, blt. Which backend you
choose depends on what you have available on your computer system and what kind of plotting
functionality you want.

2.1.3 Config File

Fasyviz is a subpackage of SciTools, and the the SciTools configuration file, called scitools.cfg
has a section [easyviz] where the backend in FKasyviz can be set:

[easyviz]
backend = vtk

A scitools.cfg can be placed in the current working folder, thereby affecting plots made in
this folder, or it can be located in the user’s home folder, which will affect all plotting sessions
for the user in question.

2.2 Tutorial

This tutorial starts with plotting a single curve with a simple plot(x,y) command. Then we
add a legend, axis labels, a title, etc. Thereafter we show how multiple curves are plotted
together. We also explain how line styles and axis range can be controlled. The next section
deals with animations and making movie files. More advanced topics such as fine tuning of
plots (using plotting package-specific commands) and working with Axis and Figure objects
close the curve plotting part of the tutorial.

Various methods for visualization of scalar fields in 2D and 3D are treated next, before we
show how 2D and 3D vector fields can be handled.

2.2.1 Plotting a Single Curve

Let us plot the curve y = 2 exp(—t?) for ¢ values between 0 and 3. First we generate equally
spaced coordinates for ¢, say 51 values (50 intervals). Then we compute the corresponding y
values at these points, before we call the plot(t,y) command to make the curve plot. Here is
the complete program:

from scitools.all import *

def f£(t):
return t**2*exp(-t**2)

t = linspace(0, 3, 51) # 51 points between O and 3
y = zeros(len(t), ’d’) # 51 doubles (’d’)
for i in xrange(len(t)):

y[i]l = £(t[i])

plot(t, y)
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The first line imports all of SciTools and Easyviz that can be handy to have when doing scientific
computations. In this program we pre-allocate the y array and fill it with values, element by
element, in a (slow) Python loop. Alternatively, we may operate on the whole t at once, which
yields faster and shorter code:

from scitools.all import x*

def f(t):
return t**2xexp(-t**2)

t = linspace(0, 3, 51) # 51 points between O and 3
y = £(t) # compute all f values at once
plot(t, y)

The £ function can also be skipped, if desired, so that we can write directly

y = t**k2%exp(-t**2)

To include the plot in reports, we need a hardcopy of the figure in PostScript, PNG, or
another image format. The hardcopy command produces files with images in various formats:

hardcopy(’tmpl.ps’) # produce PostScript
hardcopy (’tmpl.png’) # produce PNG

The filename extension determines the format: .ps or .eps for PostScript, and .png for PNG.
Figure 2.1 displays the resulting plot.

0.4

0.35 i

03 i

0.25 - B

0.2 i

0.15 B

0.1 B

0.05 a

Figure 2.1: A simple plot in PostScript format.

2.2.2 Decorating the Plot

The z and y axis in curve plots should have labels, here ¢t and y, respectively. Also, the curve
should be identified with a label, or legend as it is often called. A title above the plot is also
common. All such things are easily added after the plot command:
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xlabel(’t’)

ylabel(’y’)

legend (’t~2*exp(-t~2)’)

axis([0, 3, -0.05, 0.6]) # t in [0,3], y in [-0.05,0.6]
title(’My First Easyviz Demo’)

This syntax is inspired by Matlab to make the switch between SciTools/Easyviz and Matlab
almost trivial. Easyviz has also introduced a more “Pythonic” plot command where all the
plot properties can be set at once:

plot(t, vy,
xlabel="t’,
ylabel="y’,
legend=’t"2*exp(-t~2)’,
axis=[0, 3, -0.05, 0.6],
title="My First Easyviz Demo’,
hardcopy=’tmpl.ps’,
show=True)

With show=False one can avoid the plot window on the screen and just make the hardcopy.
This feature is particularly useful if you generate a large number of plots in a loop.

Note that we in the curve legend write t square as t°2 (IATEX style) rather than t*x2
(program style). Whichever form you choose is up to you, but the ITEX form sometimes looks
better in some plotting programs (Gnuplot is one example). See Figure 2.2 for how the modified
plot looks like and how t~2 is typeset in Gnuplot.

My First Easyviz Demo

0.6

| tz*exp(—tz) —

Figure 2.2: A single curve with label, title, and axis adjusted.

2.2.3 Plotting Multiple Curves

A common plotting task is to compare two or more curves, which requires multiple curves to
be drawn in the same plot. Suppose we want to plot the two functions fi(t) = % exp(—t?) and
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fa(t) = t*exp(—t?). If we issue two plot commands after each other, two separate plots will
be made. To make the second plot command draw the curve in the first plot, we need to issue
a hold(’on’) command. Alternatively, we can provide all data in a single plot command. A
complete program illustrates the different approaches:

from scitools.all import * # for curve plotting

def f1(t):
return t**2*exp(-t**2)

def f2(t):
return tx*2*f1(t)

t = linspace(0, 3, 51)
y1 = £1(t)
y2 = £2(t)

# Matlab-style syntax:
plot(t, y1)

hold(’on’)

plot(t, y2)

xlabel(°t’)

ylabel(’y’)

legend (Pt~ 2xexp(-t~2)’, ’t"4*exp(-t~2)’)
title(’Plotting two curves in the same plot’)
hardcopy (’tmp2.ps’)

# alternative:

plot(t, y1, t, y2, xlabel=’t’, ylabel=’y’,
legend=("t"2%exp(-t~2)’, ’t 4*exp(-t~2)’),
title=’Plotting two curves in the same plot’,
hardcopy=’tmp2.ps’)

The sequence of the multiple legends is such that the first legend corresponds to the first curve,
the second legend to the second curve, and so on. The visual result appears in Figure 2.3.

2.2.4 Controlling Axis and Line Styles

A plotting program will normally compute sensible ranges of the axis. For example, the Gnuplot
program has in our examples so far used an y axis from 0 to 0.6 while the = axis goes from 0 to
3. Sometimes it is desired to adjust the range of the axis. Say we want the z axis to go from 0
to 4 (although the data stops at = 3), while y axis goes from -0.1 to 0.6. In the Matlab-like
syntax new axis specifications are done by the axis command:

axis([0, 4, -0.1, 0.6])

With a single plot command we must use the axis keyword:

plot(t, y1, t, y2, ...
axis=[0, 4, -0.1, 0.6],
L))

In both cases, the axis specification is a list of the Tmin, Tmax, Ymin, a0d Ymax values.

The two curves get distinct default line styles, depending on the program that is used to
produce the curve (and the settings for this program). It might well happen that you get a
green and a red curve (which is bad for a significant portion of the male population). We may
therefore often want to control the line style in detail. Say we want the first curve (¢ and y1)
to be drawn as a red solid line and the second curve (t and y2) as blue circles at the discrete
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Plotting two curves in the same plot
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Figure 2.3: Two curves in the same plot.

data points. The Matlab-inspired syntax for specifying line types applies a letter for the color
and a symbol from the keyboard for the line type. For example, r- represents a red (r) line (-),
while bo means blue (b) circles (o). The line style specification is added as an argument after
the x and y coordinate arrays of the curve:

plot(t, yi, ’r-’)
hold(’on’)
plot(t, y2, ’bo’)

# or
plot(t, y1, ’r-’, t, y2, ’bo’)

The effect of controlling the line styles can be seen in Figure 2.4.

Assume now that we want to plot the blue circles at only each 4 points. We can grab each
4 points out of the t array by using an appropriate slice: t2 = t[::4]. Note that the first colon
means the range from the first to the last data point, while the second colon separates this
range from the stride, i.e., how many points we should “jump over” when we pick out a set of
values of the array.

In this plot we also adjust the size of the line and the circles by adding an integer: r-6
means a red line with thickness 6 and bo5 means red circles with size 5. The effect of the given
line thickness and symbol size depends on the underlying plotting program. For the Gnuplot
backend one can view the effect in Figure 2.5.

from scitools.all import *

def f1(t):
return t**2*exp(-t**2)

def £2(t):
return tx*2*f1(t)
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Plotting two curves in the same plot
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Figure 2.4: Two curves in the same plot, with controlled line styles.

t = linspace(0, 3, 51)
y1 = £1(t)
t2 = t[::4]
y2 = £2(¢2)

plot(t, y1, ’r-6’, t2, y2, ’bo3’,

xlabel="t’, ylabel=’y’,

axis=[0, 4, -0.1, 0.6],
legend=(’t"2xexp(-t~2)’, ’t"4*exp(-t~2)’),
title=’Plotting two curves in the same plot’,
hardcopy=’tmp2.ps’)

The different available line colors include

yellow: ’y’
magenta: ’m’
cyan: ’c’
red: ’r’
green: ’g’
blue: ’b’
white: *w’

black: ’k’

The different available line types are

solid line: ’-?
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Figure 2.5: Circles at every 4 points and extended line thickness (6) and circle size (3).

We remark that in the Gnuplot backend all the different line types are drawn as solid lines on
the screen. The hardcopy chooses automatically different line types (solid, dashed, etc.) and
not in accordance with the line type specification.

Plotting two curves in the same plot
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Lots of markers at data points are available:

plus sign: >+’
circle: 2o’

asterisk: =’

point: .’
cross: ’x’
square: ’s’

diamond: ’d’
upward-pointing triangle: >’
downward-pointing triangle: ’v’

right-pointing triangle: >’
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e left-pointing triangle: ’<’

e five-point star (pentagram): ’p’
e six-point star (hexagram): ’h’
e 1o marker (default): None

Symbols and line styles may be combined, for instance as in *kx-’, which means a black solid
line with black crosses at the data points.

The line thickness can be added as a number in the line style specification string. For
example, >r-2’ means red solid line with thickness 2.

Another Example. Let us extend the previous example with a third curve where the data
points are slightly randomly distributed around the fy(¢) curve:

from scitools.all import *

def f1(t):
return t**2*exp(-t**2)

def f2(t):
return tx*2*xf1(t)

t = linspace(0, 3, 51)
yl = £1(t)
y2 = £2(t)

# pick out each 4 points and add random noise:

t3 = t[::4] # slice, stride 4

random.seed(11) # fix random sequence

noise = random.normal(loc=0, scale=0.02, size=len(t3))
y3 = y2[::4] + noise

plot(t, y1, ’r-’)

hold(’on’)

plot(t, y2, ’ks-’) # black solid line with squares at data points
plot(t3, y3, ’bo’)

legend (Pt~ 2*exp(-t~2)’, ’t~4*exp(-t~2)’, ’data’)
title(’Simple Plot Demo’)

axis([0, 3, -0.05, 0.6])

xlabel(°t’)

ylabel(’y’)

show ()

hardcopy (’tmp3.ps’)

hardcopy (’tmp3.png’)

The plot is shown in Figure 2.6.

Minimalistic Plotting. When exploring mathematics in the interactive Python shell, most
of us are interested in the quickest possible commands. Here is an example on minimalistic
syntax for comparing the two sample functions we have used in the previous examples:

t = linspace(0, 3, 51)
plot(t, t**2xexp(-t**2), t, t*xdxexp(-t**2))
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Simple Plot Demo

Figure 2.6: A plot with three curves.

2.2.5 Interactive Plotting Sessions

All the Easyviz commands can of course be issued in an interactive Python session. The only
thing to comment is that the plot command returns an argument:

>>> t = linspace(0, 3, 51)
>>> plot(t, t**2kxexp(-t**2))
[<scitools.easyviz.common.Line object at 0xb5727f6c>]

Most users will just ignore this output line.

All Easyviz commands that produce a plot return an object reflecting the particular type
of plot. The plot command returns a list of Line objects, one for each curve in the plot. These
Line objects can be invoked to see, for instance, the value of different parameters in the plot
(Line.getQ)):

>>> lines = plot(x, y, ’b’)

>>> pprint.pprint(lines[0].get())

{’description’: ’’,

’dims’: (4, 1, 1),
’legend’: 7,

’linecolor’: ’b’,
’pointsize’: 1.0,

Such output is mostly of interest to advanced users.

2.2.6 Making Animations

A sequence of plots can be combined into an animation and stored in a movie file. First we
need to generate a series of hardcopies, i.e., plots stored in files. Thereafter we must use a tool
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to combine the individual plot files into a movie file. We shall illustrate the process with an
example.
Consider the “Gaussian bell” function

Flasm,s) = (2m) V25 exp [—% (5 m)]

S

which is a “wide” function for large s and “peak-formed” for small s, see Figure 2.7, Our goal
is to make an animation where we see how this function evolves as s is decreased. In Python
we implement the formula above as a function f(x, m, s).

A Gaussian Bell Function
2 ,1,‘ T

18t S=1 -
16 | ]

14 ‘
12 | ]

©
N
T
|

Figure 2.7: Different shapes of a Gaussian bell function.

The animation is created by varying s in a loop and for each s issue a plot command. A
moving curve is then visible on the screen. One can also make a movie file that can be played
as any other computer movie using a standard movie player. To this end, each plot is saved to
a file, and all the files are combined together using some suitable tool, which is reached through
the movie function in Easyviz. All necessary steps will be apparent in the complete program
below, but before diving into the code we need to comment upon a couple of issues with setting
up the plot command for animations.

The underlying plotting program will normally adjust the axis to the maximum and mini-
mum values of the curve if we do not specify the axis ranges explicitly. For an animation such
automatic axis adjustment is misleading — the axis ranges must be fixed to avoid a jumping axis.
The relevant values for the axis range is the minimum and maximum value of f. The minimum
value is zero, while the maximum value appears for x = m and increases with decreasing s.
The range of the y axis must therefore be [0, f(m;m, min s)].

The function f is defined for all —co < z < oo, but the function value is very small already
3s away from x = m. We may therefore limit the z coordinates to [m — 3s,m + 3s].

Now we are ready to take a look at the complete code for animating how the Gaussian bell
curve evolves as the s parameter decreases from 2 to 0.2:
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from scitools.all import *
import time

def f(x, m, s):
return (1.0/(sqrt(2+pi)*s))*exp(-0.5*%((x-m)/s)**2)

m=0

s_start = 2

s_stop = 0.2

s_values = linspace(s_start, s_stop, 30)

x = linspace(m -3*s_start, m + 3*s_start, 1000)

# £ is max for x=m; smaller s gives larger max value
max_f = f(m, m, s_stop)

# show the movie, and make hardcopies of frames simultaneously:
counter = 0
for s in s_values:
y = f(x, m, s)
plot(x, y, axis=[x[0], x[-1], -0.1, max_f],
xlabel="x’, ylabel=’f’, legend=’s=}4.2f’ ¥, s,
hardcopy="tmp_%04d.ps’ J counter)
counter += 1
#time.sleep(0.2) # can insert a pause to control movie speed

# make movie file:
movie(’tmp_*.ps’)

First note that the s values are decreasing (linspace handles this automatically if the start
value is greater than the stop value). Also note that we, simply because we think it is visually
more attractive, let the y axis go from -0.1 although the f function is always greater than zero.

For each frame (plot) in the movie we store the plot in a file. The different files need different
names and an easy way of referring to the set of files in right order. We therefore suggest to
use filenames of the form stem0001.ext, stem0002.ext, stem0003.ext, etc., since the expression
stem*.ext then lists all files in the right order. In our example, stem is tmp_, and .ext is .ps
(PostScript format in the hardcopy).

Having a set of stem*.ext files, one can simply generate a movie by a movie(’stem*.ext’)
call. When a movie file is not wanted (it may take some time to generate it), one can simply
skip the hardcopy argument and the call to movie.

2.2.7 Advanced Easyviz Topics

The information in the previous subsections aims at being sufficient for the daily work with
plotting curves. Sometimes, however, one wants to fine-control the plot or how Easyviz behaves.
First, we explain how to speed up the from scitools.all import * statement. Second, we show
how to operate with the plotting program directly and using plotting program-specific advanced
features. Third, we explain how the user can grab Figure and Axis objects that Easyviz produces
“behind the curtain”.
Importing Just Easyviz
The from scitools.all import * statement imports many modules and packages:

e Easyviz

e SciPy (if it exists)

e NumPy (if SciPy is not installed)
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e the Python modules sys, os, math, operator

e the SciTools module StringFunction and the SciTools functions watch and trace for de-
bugging

The scipy import can take some time and lead to slow start-up of plot scripts. A more mini-
malistic import for curve plotting is

from scitools.easyviz import *
from numpy import *

Alternatively, one can edit the scitools.cfg configure file or add one’s own .scitools.cfg file
with redefinition of selected options, such as load in the scipy section. The user .scitools.cfg
must be placed in the folder where the plotting script in action resides, or in the user’s home
folder. Instead of editing a configuration file, one can just add the command-line argument
--SCITOOLS_scipy_load no to the curve plotting script (all sections/options in the configuration
file can also be set by such command-line arguments).

Working with the Plotting Program Directly

Easyviz supports just the most common plotting commands, typically the commands you use
“95%” of the time when exploring curves. Various plotting packages have lots of additional
commands for different advanced features. When Easyviz does not have a command that
supports a particular feature, one can grab the Python object that communicates with the
underlying plotting program and work with this object directly, using plotting program-specific
command syntax. Let us illustrate this principle with an example where we add a text and an
arrow in the plot, see Figure 2.8.

Plotting two curves in the same plot
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Figure 2.8: Hlustration of a text and an arrow using Gnuplot-specific commands.
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Easyviz does not support text and arrows at arbitrary places inside the plot, but Gnuplot
does. If we use Gnuplot as backend, we may grab the Gnuplot object (a Python module) and
issue Gnuplot commands to this object directly:

g = get_backend()

if g.__class__.__name__ == ’Gnuplot’:

# g is a Gnuplot object, work with Gnuplot commands directly:
g(’set label "global maximum" at 0.1,0.5 font "Times,18"’)
g(’set arrow from 0.5,0.48 to 0.98,0.37 linewidth 2’)

g.refresh()
g.hardcopy(’tmp2.ps’) # make new hardcopy

We refer to the Gnuplot manual for the features of this package and the syntax of the commands.
The idea is that you can quickly generate plots with Easyviz, using standard commands that are
independent of the underlying plotting package. However, when you need advanced features,
you must add plotting package-specific code as shown above. This principle makes Easyviz
a light-weight interface, but without limiting the available functionality of various plotting
programs.

Working with Axis and Figure Objects

Easyviz supports the concept of Axis objects, as in Matlab. The Axis object represent a set of
axis, with curves drawn in the associated coordinate system. A figure is the complete physical
plot. One may have several axis in one figure, each axis representing a subplot. One may also
have several figures, represented by different windows on the screen or separate hardcopies.

Axis Objects. Users with Matlab experience may prefer to set axis labels, ranges, and the
title using an Axis object instead of providing the information in separate commands or as part
of a plot command. The gca (get current axis) command returns an Axis object, whose set
method can be used to set axis properties:

plot(t, y1, ’r-’, t, y2, ’bo’,

legend=(’t"2%exp(-t~2)’, ’t 4*exp(-t~2)’),
hardcopy=’tmp2.ps’)

ax = gca() # get current Axis object
ax.set(xlabel=’t’, ylabel=’y’,

axis=[0, 4, -0.1, 0.6],

title=’Plotting two curves in the same plot’)
show() # show the plot again after ax.set actions

Figure Objects. The figure() call makes a new figure, i.e., a new window with curve plots.
Figures are numbered as 1, 2, and so on. The command figure(3) sets the current figure object
to figure number 3.

Suppose we want to plot our y1 and y2 data in two separate windows. We need in this case
to work with two Figure objects:

plot(t, y1, ’r-’, xlabel="t’, ylabel='y’,
axis=[0, 4, -0.1, 0.6])

figure() # new figure

plot(t, y2, ’bo’, xlabel=’t’, ylabel=’y’)

We may now go back to the first figure (with the y1 data) and set a title and legends in this
plot, show the plot, and make a PostScript version of the plot:

73



figure(1) # go back to first figure
title(’One curve’)

legend (’t~2*exp(-t~2)’)

show ()

hardcopy (’tmp2_1.ps’)

We can also adjust figure 2:

figure(2) # go to second figure
title(’Another curve’)

hardcopy (’tmp2_2.ps’)

show ()

The current Figure object is reached by gcf (get current figure), and the dump method dumps
the internal parameters in the Figure object:

fig = gcf(); print fig.dump()

These parameters may be of interest for troubleshooting when Easyviz does not produce what
you expect.

Let us then make a third figure with two plots, or more precisely, two axes: one with y1
data and one with y2 data. Easyviz has a command subplot(r,c,a) for creating r rows and
c columns and set the current axis to axis number a. In the present case subplot(2,1,1) sets
the current axis to the first set of axis in a “table” with two rows and one column. Here is the
code for this third figure:

figure() # new, third figure

# plot yl and y2 as two axis in the same figure:
subplot(2, 1, 1)

plot(t, y1, xlabel="t’, ylabel=’y’)

subplot(2, 1, 2)

plot(t, y2, xlabel=’t’, ylabel=’y’)

title(’A figure with two plots’)

show ()

hardcopy (’tmp2_3.ps’)

We remark that the hardcopy command does not work with the Gnuplot backend in this case
with multiple axes in a figure.
If we need to place an axis at an arbitrary position in the figure, we must use the command

ax = axes(viewport=[left, bottom, width, height])

The four parameters left, bottom, width, height are location values between 0 and 1 ((0,0) is
the lower-left corner and (1,1) is the upper-right corner).

2.2.8 Visualization of Scalar Fields

A scalar field is a function from space or space-time to a real value. This real value typically
reflects a scalar physical parameter at every point in space (or in space and time). One ex-
ample is temperature, which is a scalar quantity defined everywhere in space and time. In a
visualization context, we work with discrete scalar fields that are defined on a grid. Each point
in the grid is then associated with a scalar value.

There are several ways to visualize a scalar field in Easyviz. Both two- and three-dimensional
scalar fields are supported. In 2D we can create elevated surface plots, contour plots, and
pseudocolor plots, while in 3D we can create isosurface plots, volumetric slice plots, and contour
slice plots.
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Elevated Surface Plots

To create elevated surface plots we can use either the surf or the mesh command. Both com-
mands have the same syntax, but the mesh command creates a wireframe mesh while the surf
command creates a solid colored surface.

Our examples will make use of the scalar field f(z,y) = sinr, where r is the distance in the
plane from the origin, i.e., r = /22 + 2. The z and y values in our 2D domain lie between -5
and 5.

The example first creates the necessary data arrays for 2D scalar field plotting: the coordi-
nates in each direction, extensions of these arrays to form a meshgrid, and the function values.
The latter array is computed in a vectorized operation which requires the extended coordinate
arrays from the meshgrid function. The mesh command can then produce the plot with a syntax
that mirrors the simplicity of the plot command for curves:

x = y = linspace(-5, 5, 21)

xv, yv = meshgrid(x, y)

values = sin(sqrt(xv**2 + yv*x2))
h = mesh(xv, yv, values)

The mesh command returns a reference to a new Surface object, here stored in a variable h.
This reference can be used to set or get properties in the object at a later stage if needed. The
resulting plot can be seen in Figure 2.9(a).

Figure 2.9: Results of plotting a 2D scalar field using (a) the mesh command and (b) the surf
command (Gnuplot backend).

The surf command employs the same syntax, but results in a different plot (see Fig-

ure 2.9(b)):

surf (xv, yv, values)

There are many possibilities to adjust the resulting plot after a call to a plotting command
(here surf):

set (interactive=False)
surf (xv, yv, values)
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shading(’flat’)

colorbar()

colormap (hot())
axis([-6,6,-6,6,-1.5,1.5])
view(35,45)

show ()

Here we have specified a flat shading model, added a color bar, changed the color map to hot, set
some suitable axis values, and changed the view point. The same plot can also be accomplished

with one single, compound statement (as Easyviz offers for the plot command):
surf (xv, yv, values,
shading=’interp’,
colorbar=’on’,
colormap=jet(),
axis=[-6,6,-6,6,-1.5,1.5],
view=[-35,35])

Figure 2.10 displays the result.

-+ 0.8
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-0.8

Figure 2.10: Result of an extended surf command (Gnuplot backend).

Contour Plots

A contour plot is another useful technique for visualizing scalar fields. The primary examples on
contour plots from everyday life is the level curves on geographical maps, reflecting the height
of the terrain. Mathematically, a contour line, also called isoline, is defined as the implicit
curve f(x,y) = c. The contour levels ¢ are normally uniformly distributed between the extreme
values of the function f (this is the case in a map: the height difference between two contour
lines is constant), but in scientific visualization it is sometimes useful to use a few carefully
selected ¢ values to illustrate particular features of a scalar field.
In Easyviz, there are several commands for creating different kinds of contour plots:
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e contour: Draw a standard contour plot, i.e., lines in the plane.

e contourf: Draw a filled 2D contour plot, where the space between the contour lines is
filled with colors.

e contour3: Same as contour, but the curves are drawn at their corresponding height levels
in 3D space.

e meshc: Works in the same way as mesh except that a contour plot is drawn in the plane
beneath the mesh.

e surfc: Same as meshc except that a solid surface is drawn instead of a wireframe mesh.

We start with illustrating the plain contour command, assuming that we already have computed
the xv, yv, and values arrays as shown in our first example on scalar field plotting. The basic
syntax follows mesh and surf:

contour (xv, yv, values)

By default, five uniformly spaced contour level curves are drawn, see Figure 2.11(a).
The number of levels in a contour plot can be specified with an additional argument:

n = 15 # number of desired contour levels
contour (xv, yv, values, n)

The result can be seen in Figure 2.11(b).

Sometimes one wants contour levels that are not equidistant or not distributed throughout
the range of the scalar field. Individual contour levels to be drawn can easily be specified as a
list:

levels = [-0.5, 0.1, 0.3, 0.9]
contour (xv, yv, values, levels, clabels=’on’)

Now, the levels list specify the values of the contour levels, and the clabel keyword allows
labeling of the level values in the plot. Figure 2.11(c) shows the result. We remark that the
Gnuplot backend colors the contour lines and places the contour values and corresponding
colors beside the plot. Figures that are reproduced in black and white only can then be hard
to analyze. Other backends may draw the contour lines in black and annotate each line with
the corresponding contour level value. Such plots are better suited for being displayed in black
and white.
The contourf command,

contourf (xv, yv, values)

gives a filled contour plot as shown in Figure 2.12. Only the Matplotlib and VTK backends
currently supports filled contour plots.

The contour lines can be “lifted up” in 3D space, as shown in Figure 2.13, using the contour3
command:

contour3(xv, yv, values, 15)

Finally, we show a simple example illustrating the meshc and surfc commands:
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Figure 2.11: (a) Result of the simplest possible contour command (Gnuplot backend). (b) A
contour plot with 15 contour levels (Gnuplot backend). (c¢) Four individually specified contour
levels (Gnuplot backend).

meshc(xv, yv, values,
clevels=10,
colormap=hot (),
grid=’off’)

figure()

surfc(xv, yv, values,
clevels=15,
colormap=hsv(),
grid=’off’,
view=(30,40))

Note that we set the number of contour levels with the clevels keyword. This keyword can
also take a list specifying individual contour levels. The resulting plots are displayed in Fig-
ures 2.14(a) and 2.14(b).
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Figure 2.12: Filled contour plot created by the contourf command (VTK backend).

Pseudocolor Plots

Another way of visualizing a 2D scalar field in Easyviz is the pcolor command. This command
creates a pseudocolor plot, which is a flat surface viewed from above. The simplest form of this
command follows the syntax of the other commands:

pcolor(xv, yv, values)

We can set the color shading in a pseudocolor plot either by giving the shading keyword argu-
ment to pcolor or by calling the shading command. The color shading is specified by a string
that can be either ’faceted’ (default), *flat’, or ’interp’ (interpolated). The Gnuplot and
Matplotlib backends support ’faceted’ and ’flat’ only, while the VTK backend supports all
of them.

Isosurface Plots

For 3D scalar fields, isosurfaces or contour surfaces constitute the counterpart to contour lines or
isolines for 2D scalar fields. An isosurface connects points in a scalar field with (approximately)
the same scalar value and is mathematically defined by the implicit equation f(x,y,z) = c.
In Easyviz, isosurfaces are created with the isosurface command. We will demonstrate this
command using 3D scalar field data from the flow function. This function, also found in Matlab,
generates fluid flow data. Our first isosurface visualization example (taken from the Matlab
documentation) then looks as follows:

X, ¥y, z, v = flow() # generate fluid-flow data

set (show=False)

h = isosurface(x,y,z,v,-3)
h.set (opacity=0.5)
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Figure 2.14: (a) Wireframe mesh with contours at the bottom (Gnuplot backend). (b) Surface
plot with contours (Gnuplot backend).

shading(’interp’)
daspect([1,1,1])
view(3)
axis(’tight’)

set (show=True)
show ()

After creating some scalar volume data with the flow function, we create an isosurface with the
isovalue —3. The isosurface is then set a bit transparent (opacity=0.5) before we specify the
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Figure 2.15: Pseudocolor plot (Gnuplot backend).

shading model and the view point. We also set the data aspect ratio to be equal in all directions
with the daspect command. The resulting plot is shown in Figure 2.16(a). We remark that the
Gnuplot backend does not support 3D scalar fields and hence not isosurfaces.

-0.753

Figure 2.16: (a) Isosurface plot (VTK backend). (b) Another isosurface plot (VITK backend).

Here is another, more compact example that demonstrates the isosurface command (again
using the flow function):

X, ¥, z, v = flow()
isosurface(x,y,z,v,0,
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shading=’interp’,
daspect=[1,4,4],
view=[-65,20],
axis=’tight’)

Figure 2.16(b) shows the resulting plot.

Volumetric Slice Plot

Another way of visualizing scalar volume data is by using the slice_ command (since the name
slice is already taken by a built-in function in Python for array slicing, we have followed the
standard Python convention and added a trailing underscore to the name in Easyviz — slice_
is thus the counterpart to the Matlab function slice.). This command draws orthogonal slice
planes through a given volumetric data set. Here is an example on how to use the slice_
command:

X, ¥y, z = meshgrid(seq(-2,2,.2), seq(-2,2,.25), seq(-2,2,.16),
sparse=True)

v = xxexp(—x**2 — y*kx2 — zx*2)

xslice [-1.2, .8, 2]

yslice 2

zslice = [-2, 0]

slice_(x, y, z, v, xslice, yslice, zslice,

colormap=hsv(), grid=’off’)

Note that we here use the SciTools function seq for specifying a uniform partitioning of an
interval — the linspace function from numpy could equally well be used. The first three arguments
in the slice_ call are the grid points in the x, y, and z directions. The fourth argument is the
scalar field defined on-top of the grid. The next three arguments defines either slice planes in
the three space directions or a surface plane (currently not working). In this example we have
created 6 slice planes: Three at the z axis (at z = —1.2, z = 0.8, and z = 2), one at the y
axis (at y = 2), and two at the z axis (at z = —2 and z = 0.0). The result is presented in
Figure 2.17.

Contours in Slice Planes. With the contourslice command we can create contour plots
in planes aligned with the coordinate axes. Here is an example using 3D scalar field data from
the flow function:

X, ¥, z, v = flow()

set (show=False)

h = contourslice(x, y, z, v, seq(1,9), [1, [0], linspace(-8,2,10))
axis([0, 10, -3, 3, -3, 3])

daspect([1, 1, 1])

ax = gca()

ax.set(fgcolor=(1,1,1), bgcolor=(0,0,0))
box(’on’)

view(3)

set (show=True)

show ()

The first four arguments given to contourslice in this example are the extended coordinates
of the grid (x, y, z) and the 3D scalar field values in the volume (v). The next three arguments
defines the slice planes in which we want to draw contour lines. In this particular example we
have specified two contour plots in the planes x = 1,2,...,9, none in y = const planes (empty
list) , and one contour plot in the plane z = 0. The last argument to contourslice is optional,
it can be either an integer specifying the number of contour lines (the default is five) or, as in
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Figure 2.17: Slice plot where the x axis are sliced at -1.2, 0.8, and 2, the y axis is sliced at 2,
and the z axis are sliced at -2 and 0.0 (VTK backend).

the current example, a list specifying the level curves. Running the set of commands results in
the plot shown in Figure 2.18.

Here is another example where we draw contour slices from a three-dimensional MRI data
set:

import scipy

mri = scipy.io.loadmat(’mri_matlab_v6.mat’)
D = mri[’D’]

image_num = 8

# Displaying a 2D Contour Slice:
contourslice(D, [], [], image_num, daspect=[1,1,1])

The MRI data set is loaded from the file mri_matlab_v6.mat with the aid from the loadmat
function available in the io module in the SciPy package. We then create a 2D contour slice
plot with one slice in the plane z = 8. Figure 2.19 displays the result.

2.2.9 Visualization of vector fields

A vector field is a function from space or space-time to a vector value, where the number of
components in the vector corresponds to the number of space dimensions. Primary examples on
vector fields are the gradient of a scalar field; or velocity, displacement, or force in continuum
physics.

In Easyviz, a vector field can be visualized either by a quiver (arrow) plot or by various
kinds of stream plots like stream lines, stream ribbons, and stream tubes. Below we will look
closer at each of these visualization techniques.

83



Figure 2.18: Contours in slice planes (VTK backend).
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Figure 2.19: Contour slice plot of a 3D MRI data set (VTK backend).

Quiver Plots

The quiver and quiver3 commands draw arrows to illustrate vector values (length and direction)
at discrete points. As the names indicate, quiver is for 2D vector fields in the plane and quiver3
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plots vectors in 3D space. The basic usage of the quiver command goes as follows:

x = y = linspace(-5, 5, 21)

xv, yv = meshgrid(x, y, sparse=False)
values = sin(sqrt(xv**2 + yv*2))

uv, vv = gradient(values)

quiver (xv, yv, uv, vv)

Our vector field in this example is simply the gradient of the scalar field used to illustrate the
commands for 2D scalar field plotting. The gradient function computes the gradient using
finite difference approximations. The result is a vector field with components uv and vv in
the = and y directions, respectively. The grid points and the vector components are passed as
arguments to quiver, which in turn produces the plot in Figure 2.20.
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Figure 2.20: Velocity vector plot (Gnuplot backend).

The arrows in a quiver plot are automatically scaled to fit within the grid. If we want

to control the length of the arrows, we can pass an additional argument to scale the default
lengths:

scale = 2
quiver(xv, yv, uv, vv, scale)

This value of scale will thus stretch the vectors to their double length. To turn off the automatic
scaling, we can set the scale value to zero.

Quiver plots are often used in combination with other plotting commands such as pseudo-
color plots or contour plots, since this may help to get a better perception of a given set of
data. Here is an example demonstrating this principle for a simple scalar field, where we plot
the field values as colors and add vectors to illustrate the associated gradient field:

xv, yv = meshgrid(seq(-5,5,0.1), seq(-5,5,0.1))

values = sin(sqrt(xv**2 + yv**2))
pcolor(xv, yv, values, shading=’interp’)
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# create a coarser grid for the gradient field:
xv, yv = meshgrid(seq(-5,5,0.5), seq(-5,5,0.5))
values = sin(sqrt(xv**2 + yv*2))

uv, vv = gradient(values)

hold(’on’)

quiver(xv, yv, uv, vv, ’filled’, ’k’, axis=[-6,6,-6,6])
figure(2)

contour(xv, yv, values, 15)

hold(’on’)

quiver(xv, yv, uv, vv, axis=[-6,6,-6,6])

The resulting plots can be seen in Figure 2.21(a) and 2.21(b).

Figure 2.21: (a) Combined quiver and pseudocolor plot (VTK backend). (b) Combined quiver
and pseudocolor plot (VTK backend).

Visualization of 3D vector fields by arrows at grid points can be done with the quiver3
command. At the time of this writing, only the VTK backend supports 3D quiver plots. A
simple example of plotting the “radius vector field” ¢ = (z,y, z) is given next:

x =y =1z = seq(-3,3,2)
xv, yv, zv = meshgrid(x, y, z, sparse=False)

uv = xv
vV = yv
WV = zZV
quiver3(xv, yv, zv, uv, vv, wv, ’filled’, ’r’,

axis=[-7,7,-7,7,-7,7])
The strings *filled’ and ’r’ are optional and makes the arrows become filled and red, respec-
tively. The resulting plot is presented in Figure 2.22.

Stream Plots

Stream plots constitute an alternative to arrow plots for visualizing vector fields. The stream
plot commands currently available in Easyviz are streamline, streamtube, and streamribbon.
Stream lines are lines aligned with the vector field, i.e., the vectors are tangents to the stream-
lines. Stream tubes are similar, but now the surfaces of thin tubes are aligned with the vectors.
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Figure 2.22: 3D quiver plot (VTK backend).

Stream ribbons are also similar: thin sheets are aligned with the vectors. The latter type of
visualization is also known as stream or flow sheets. In the near future, Matlab commands such
as streamslice and streamparticles might also be implemented.

We start with an example on how to use the streamline command. In this example (and
in the following examples) we will use the wind data set that is included with Matlab. This
data set represents air currents over a region of North America and is suitable for testing the
different stream plot commands. The following commands will load the wind data set and then
draw some stream lines from it:

import scipy # need scipy to load binary .mat-files

# load the wind data set and create variables:
wind = scipy.io.loadmat(’wind.mat’)

wind[’x’]

wind[’y’]

wind[’z’]

wind[’u’]

wind[’v’]

wind[’w’]

S < e N< M

# create starting points for the stream lines:
sx, sy, sz = meshgrid([80]*4, seq(20,50,10), seq(0,15,5),
sparse=False)

# draw stream lines:
streamline(x, y, z, u, v, w, SXx, sy, sz,
view=3, axis=[60,140,10,60,-5,20])

The wind data set is stored in a binary ‘.mat‘-file called wind.mat. To load the data in this file
into Python, we can use the loadmat function which is available through the io module in SciPy.
Using the loadmat function on the ‘wind.mat‘-file returns a Python dictionary (called wind in

87



the current example) containing the NumPy arrays x, y, z, u, v, and w. The arrays u, v, and w
are the 3D vector data, while the arrays x, y, and z defines the (3D extended) coordinates for
the associated grid. The data arrays in the dictionary wind are then stored in separate variables
for easier access later.

Before we call the streamline command we must set up some starting point coordinates for
the stream lines. In this example, we have used the meshgrid command to define the starting
points with the line:

sx, sy, sz = meshgrid([80]*4, seq(20,50,10), seq(0,15,5))

This command defines starting points which all lie on x = 80, y = 20,30,40,50, and z =
0,5,10,15. We now have all the data we need for calling the streamline command. The first
six arguments to the streamline command are the grid coordinates (x,y,z) and the 3D vector
data (u,v,w), while the next three arguments are the starting points which we defined with the
meshgrid command above. The resulting plot is presented in Figure 2.23(a).
The next example demonstrates the streamtube command applied to the same wind data
set:
streamtube(x, y, z, u, v, w, sx, sy, sz,
daspect=[1,1,1],
view=3,

axis=’tight’,
shading=’interp’)

The arrays sx, sy, and sz are the same as in the previous example and defines the starting
positions for the center lines of the tubes. The resulting plot is presented in Figure 2.23(b).
Finally, we illustrate the streamribbon command:
streamribbon(x, y, z, u, v, w, sx, sy, sz,
ribbonwidth=5,
daspect=[1,1,1],
view=3,
axis=’tight’,
shading=’interp’)

Figure 2.23(c) shows the resulting stream ribbons.

2.3 Design

2.3.1 Main Objects

All code that is common to all backends is gathered together in a file called common.py. For
each backend there is a separate file where the backend dependent code is stored. For example,
code that are specific for the Gnuplot backend, are stored in a file called gnuplot_.py and code
specific for the VTK backend are stored in vtk_.py (note the final underscore in the stem of
the filename — all backend files have this underscore).

Each backend is a subclass of class BaseClass. The BaseClass code is found in common.py
and contains all common code for the backends. Basically, a backend class extends BaseClass
with rendering capabilities and backend-specific functionality.

The most important method that needs to be implemented in the backend is the _replot
method, which updates the backend and the plot after a change in the data. Another important
method for the backend class is the hardcopy method, which stores an image of the data in the
current figure to a file.
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10 60

Figure 2.23: (a) Stream line plot (VTK backend). (b) Stream tubes (VTK backend). (c)
Stream ribbons (VTK backend).

Inspired by Matlab, the Easyviz interface is organized around figures and axes. A figure
contains an arbitrary number of axes, and the axes can be placed in arbitrary positions in the
figure window. Each figure appears in a separate window on the screen. The current figure is
accessed by the gcf () call. Similarly, the current axes are accessed by calling gca().

It is natural to have one class for figures and one for axes. Class Figure contains a dictionary
with one (default) or more Axis objects in addition to several properties such as figure width
and height. Class Axis has another dictionary with the plot data as well as lots of parameters
for colors, text fonts, labels on the axes, hidden surfaces, etc. For example, when adding an
elevated surface to the current figure, this surface will be appended to a list in the current
Axis object. Optionally one can add the surface to another Axis object by specifying the Axis
instance as an argument.

All the objects that are to be plotted in a figure such as curves, surfaces, vectors, and so on,
are stored in respectively classes. An elevated surface, for instance, is represented as an instance
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of class Surface. All such classes are subclasses of PlotProperties. Besides being the base class
of all objects that can be plotted in a figure (Line, Surface, Contours, VelocityVectors, Streanms,
Volume), class PlotProperties also stores various properties that are common to all objects in a
figure. Examples include line properties, material properties, storage arrays for x and y values
for Line objects, and x, y, and z values for 3D objects such as Volume.

The classes mentioned above, i.e., BaseClass with subclasses, class PlotProperties with
subclasses, as well as class Figure and class Axis constitute the most important classes in the
Easyviz interface. Less important classes are Camera, Light, Colorbar, and MaterialProperties.

All the classes in common.py follows a convention where class parameters are set by a set
method and read by a get method. For example, we can set axis limits using the set methods
in a Axis instance:

ax = gca() # get current axes
ax.set(xmin=-2, xmax=2)

To extract the values of these limits we can write

xmin
Xmax

ax.get(’xmin’)
ax.get(’xmax’)

Normal use will seldom involve set and get functions, since most most users will apply the
Matlab-inspired interface and set, e.g., axis limits by

axis([-2, 2, 0, 61)

90



Chapter 3

Concluding Remarks

The purpose with this thesis was to investigate how to create unified interfaces to important
software components needed when solving partial differential equations. The interfaces should
be clean and simple, using a familiar Matlab-style if possible, but implemented in Python.
Applications of the interfaces to solve some simpler PDEs was also a topic.

3.1 Significance of Results

The main result is that we have implemented and documented reusable, general libraries for
(sparse) matrices and for plotting that are ready for being used in PDE codes, as I have
demonstrated. With these libraries, one can write simple “Matlab-like” code to solve PDEs.
In particular, one can use standard Matlab syntax for plotting curves, scalar fields and vector
fields, with a flexible choice of the underlying visualization package (which can be Matlab itself,
Gnuplot, or other plotting software).

In Chapter 1 we successfully created a matrix library in Python with support for many dif-
ferent matrix formats that arise when solving PDEs with the Finite Difference, Finite Element,
and Finite Volume methods. The matrix library was designed as a class hierarchy with the aim
to be user-friendly and without loosing computational efficiency. This kind of software already
exist, however, it is the first of its kind written in Python. The use of Python has its draw-
backs when it comes to number crunching, but this can easily be avoided by letting the CPU
intensive parts of the code be handled by a compiled languages such as Fortran or C/C++. To
this end, we introduced the libraries LAPACK and BLAS via the SciPy package. We extended
SciPy with interfaces for more LAPACK and BLAS routines, including factorizing, solve using
factorization, and matrix-vector product for banded and tridiagonal matrices, both symmetric
and unsymmetric versions. Also interfaces for LAPACK routines for eigenvalue problems for
symmetric banded and symmetric tridiagonal matrices were added to SciPy; however, this did
not become part of this thesis.

We applied the matrix library on a few simple PDEs and we touched subjects such as
vectorization and migration of code to compiled languages — both very important techniques
when working with Python in scientific computing. The results showed that most of the work
are done in the underlying Fortran and C/C++ code, implying that the implementation should
be nearly as fast as a pure Fortran or C/C++ implementation.

We also wanted to test the ADI method which was a very popular solution method during
the 1960s, but was later “forgotten”; however, it is still mentioned in many books these days.
The results compared to direct (sparse) Gaussian elimination in the 2D diffusion problem was
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a little unclear. We expected the ADI implementation to be a faster solution method for that
problem, but the speed was more or less the same in both methods.

In Chapter 2 we introduced Easyviz, a user-friendly visualization tool written in Python.
Easyviz is designed as a unified interface to other plotting packages that can be called from
Python. Scripts with Easyviz commands only can therefore work with a variety of plotting
packages and as new fancy plotting packages become available and support for them are added
to Easyviz, these scripts will still work great. The syntax is similar to what we find in Matlab
and thus very easy to use for those already familiar with Matlab.

Easyviz is already a stable and useful package and has been taken in use by some of the
scientific researchers at Simula Research Laboratory at Fornebu. Later this year, it will also be
used in a beginners course in scientific computing at the University in Oslo.

PyPDELIb is open source software and can be download from the World Wide Web via
http://folk.uio.no/johannr/thesis. From this page you can also download a PDF version
of this thesis. Easyviz will be available for download later this year.

3.2 Future Work

The matrix library is ready for use, but needs more extensive testing and more features should
be added. As we saw, the accuracy was not quite what it should be according to theory and this
is naturally to investigate further. It is also natural to compare the implementations presented
in Section 1.9 to a pure C or Fortran implementation to make sure that the use of Python is
not resulting in any great speed loss. The results from the ADI implementation was a little
unclear and this is something that should be investigated further.

The Easyviz interface will be under heavy development for the next couple of months.
We are planning to add interfaces for more backends, like Vislt, Veusz, Grace, OpenDX, and
several others. We should therefore create a template file for backends, making it easier to
add support for new plotting packages. We will also do more volume visualization in VTK.
The code (especially in the backends) needs to be cleaned up and the documentation should be
improved and extended.
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