
Frog: Functions for ontologies

An extension for the OTTR-framework

Marlen Jarholt

Thesis submitted for the degree of
Master in Informatics: Programming and System Architecture

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2022

Frog: Functions for ontologies

An extension for the OTTR-framework

Marlen Jarholt

2

© 2022 Marlen Jarholt

Frog: Functions for ontologies

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Reasonable Ontology Templates (OTTR) is a language making it possible to compose
parameterised modelling patterns, known as templates, that we can instantiate to produce
an RDF graph and OWL ontologies. Hence, removing the repetitive and time-consuming
processes of producing RDF graphs over a domain. Using OTTR o�ers several bene�ts
compared to pure RDF: the Don't repeat yourself (DRY) principle, better abstraction,
uniform modelling, and separation of design and content. To instantiate templates, we
often use bOTTR and tabOTTR, which extract data from a tabular �le or data sources.
OTTR templates can not perform calculations on argument terms. Consequently, we
need to perform calculations over terms before instantiating them. Therefore, the sources
that bOTTR and tabOTTR extract data from need to perform necessary calculations.
Each source type has di�erent means to create calculations, thus, resulting in several
ways of manipulations for the same calculation. We believe that making it possible to
have one uniform means of performing calculations in templates will strengthen OTTR's
aforementioned bene�ts. Therefore, in this thesis, we design and implement a programing
language, Frog, that can perform manipulations inside templates, which aims to integrate
with OTTR seamlessly. Moreover, we evaluate if including a language like Frog into
OTTR enhances the acclaimed bene�ts.

i

ii

Acknowledgements

I want to thank my supervisor, Leif Harald Karlsen, for his excellent advice and guidance
throughout my thesis. I would like to thank my friends and co-students for helpful
discussions and for letting me ramble about Frog. Especially, I would like to thank
Simen Fonnes for providing me with feedback and proofreading my thesis. Finally, I
want to thank my parents, Trygve and Irene Jarholt, and my brother, André Jarholt, for
their continuous support.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem statment and scope . 3
1.3 Outline . 4

2 Functional Programming 7
2.1 Lambda Calculus . 7

2.1.1 De�nitions and notations . 7
2.1.2 Bound and Free variables . 8
2.1.3 Conversion and Reduction . 8
2.1.4 Combinatory logic . 9

2.2 Simply Typed Lambda Calculus . 11
2.2.1 Typing rules . 12

2.3 Evaluation strategies . 12
2.4 Functional programming and functional programming principles 14

3 Semantic Web & OTTR 15
3.1 RDF . 15

3.1.1 Lists in RDF . 18
3.2 SPARQL . 19
3.3 SHACL . 23
3.4 OTTR . 25

3.4.1 Terms . 27
3.4.2 Types in OTTR . 27
3.4.3 Template library and template dataset 28
3.4.4 Expansion of OTTR instances . 29

4 Design 31
4.1 Overview . 32

4.1.1 Concepts . 32
4.1.2 Abstract Model . 34

4.2 Syntax . 35
4.2.1 Similarities in the two syntaxes 37
4.2.2 RDF Syntax . 37
4.2.3 Human Readable Syntax . 40

v

vi CONTENTS

4.3 Extending the OTTR type system . 41
4.3.1 Syntax of the function type . 43

4.4 Generic type . 44
4.5 Validation . 47

4.5.1 Validation on function call and Function term 47
4.5.2 Validation on Frog functions . 48
4.5.3 The three phases of validating Frog functions 50
4.5.4 Validation warnings . 50

4.6 Evaluation . 51
4.6.1 Arguments for lazy evaluation . 51
4.6.2 Evaluation in OTTR . 53

4.7 Discussion and conclusions . 56

5 Implementation 57
5.1 Overview of Lutra's OTTR implementation 58

5.1.1 Result and MessageHandle . 60
5.2 FunctionStore . 60
5.3 Parser . 61

5.3.1 RDF Syntax . 62
5.3.2 Human Readable Syntax . 64

5.4 Validation . 66
5.4.1 Technology . 68
5.4.2 SPARQL . 68
5.4.3 Java . 74
5.4.4 Execution of the validation . 77

5.5 Evaluation . 78
5.5.1 Memoisation . 78
5.5.2 Execution . 80

5.6 Integrating Frog Functions with OTTR Templates in Lutra 85
5.6.1 Validating function terms utilised in templates 85
5.6.2 Validating function call terms utilised in templates 86
5.6.3 Expanding an instance/template containing function calls 89

6 Discussion 91
6.1 Design & implementation . 91

6.1.1 SPARQL and validation . 91
6.1.2 RDF query syntax . 93
6.1.3 Termination . 96

6.2 Improving OTTR by including Frog . 96
6.2.1 Case Study: Planets . 97
6.2.2 Case Study: Weather stations . 100
6.2.3 Discussion . 106
6.2.4 Summary of discussion and conclusions 111

7 Related Work 113
7.1 Semantic Technologies . 114
7.2 SHACL functions . 114
7.3 Ripple . 116
7.4 Adenine . 116

CONTENTS vii

7.5 Summary . 117

8 Conclusion 119
8.1 Future Work . 120

A Formal Descriptions of Frog's Syntaxes 125
A.1 RDF syntax . 125

A.1.1 OWL vocabulary . 125
A.1.2 SHACL shapes . 127

A.2 Human Readable Syntax . 134

B Validation queries 141
B.1 Function de�ned . 141
B.2 Unde�ned parameter variable . 141
B.3 Unde�ned generic parameter variable . 142
B.4 Correct arity arguments . 143
B.5 Correct arity generic arguments . 144
B.6 Unused parameter . 145
B.7 Unused generic parameter variable . 145

C Timing of OTTR execution with and without Frog 147

viii CONTENTS

List of Figures

1.1 Work�ow with OTTR. 3

2.2 Visualization of the di�erent concepts in a λ-function. 8
2.1 λ-calculus' syntax in BNF. 8
2.3 An example of β-reduction. 9
2.4 How to build up combinatoric terms in BNF-syntax. 10
2.5 Building up types in simply typed lambda calculs in BNF. 11
2.6 Simply Typed Lambda Calculus syntax in BNF. 12
2.7 Strict evaluation VS. Lazy evaluation. 13

3.1 The W3C stack. 16
3.2 The visual graph over Example 3.1.2. 18
3.3 Shows the structural di�erences between a container and a collection. . . 19
3.4 A genralisation showing the syntax of stOTTR. 26

4.1 Frog terms. 32
4.2 Frog types. 32
4.3 The strucure of functions and function calls. 33
4.4 A Frog substitution example. 36
4.5 Frog function (RDF): convert F to C. 37
4.6 Genralisation RDF syntax. 39
4.7 Frog function (HRS): convert F to C. 40
4.8 Generalisation HRS. 41
4.9 Higher-order Frog function. 42
4.10 Template with function parameter. 42
4.11 OTTR numeric types. 44
4.12 Generating function template example. 45
4.13 A generic function. 46
4.14 Frog function with wrong return type. 49
4.15 The dependencies between the di�erent validations. 50
4.16 The phases and �ow of validating a function. 51
4.17 Function that �nds the biggest number in a list. 52
4.18 Comparison of eager and lazy evaluation in Frog. 53
4.19 Template with unused parameter. 54
4.20 An unnecessary evaluation of a function call. 54
4.21 A function multiplying every number in the list with 5. 55
4.22 Wrong evalution with the non-strict approach. 55

5.1 The basic �ow of Lutra's Frog implementation in isolation. 57

ix

x LIST OF FIGURES

5.2 A UML diagram of a function. Note that this diagram has removed un-
necessary connections and is a simpli�cation of the actual code. 61

5.3 A sequent diagram showing the general interaction between a parser, builder
and class. 62

5.4 RDF syntax, function type SHACL shape and parsing code. 64
5.5 RDF syntax, generic parameters SHACL shapes and parsing code 65
5.6 Parser-tree of the function in Figure 4.13 66
5.7 HRS, function type ANTLR4 grammar and parsing code 66
5.8 HRS, generic parameter ANTLR4 grammar and parsing code. 67
5.9 Illustrates how a parameter looks in the RDF query syntax 69
5.10 Illustrates how a function call, arguments and generic arguments looks in

the RDF query syntax. 69
5.11 An example of a function that utilises unde�ned parameters in the function

body. 74
5.12 A sequent diagram representing the validation of arguments in a Frog

function body. 76
5.13 A sequent diagram representing the validation of the use of generic argu-

ments. 77
5.14 A sequent diagram representing the validation of the use of return type. . 77
5.15 A generalisation of the lookup table when only considering the function

call signature. 79
5.16 A generlaisation of the lookup table consdiering the function call signature

and de�nition. 79
5.17 Example lookup table only considering the function call signature. 79
5.18 Example lookup table considering the function call signature and de�ntion. 79
5.19 An illustaration of the lookuptable with Java types. 80
5.20 A scenario where the function call's name is a function call after substitu-

tion due to lazy evaluation. 81
5.21 An example of where the second lookup will be used in Code 5.5.1. . . . 83
5.22 A �ow diagram over the implementation in the BasicFunction class in

Lutra. Does not include the producing of possible Messages. 84
5.23 An example template with containg a function call that utlises a parameter

variable de�ned in the template head as the function call name. 88

6.1 An alternative basic �ow of a Frog implemntation. 94
6.2 Comparing queries over the two RDF serialisations. 95
6.3 A generalisation of the structure of a planet in a RDF graph. 98
6.4 Our mapping creating instances of ex:Planet from a CSV �le with the

format shown in table 6.1. 99
6.5 Frog function's used in the template to generate IRIs in the template. . . 100
6.6 Our mapping creating instances of ex:PlanetFrog from a CSV �le with the

format shown in table 6.1. 101
6.7 A generalisation of the structure of a weather station in the RDF graph. 102
6.8 The map creating instances of ex:WeatherStationCelcius from a CSV

�le with the format shown in table 6.5 103
6.9 The functions needed for Template 6.2.4. Figure 4.7 de�ned the function

ex:FtoC which function ex:convertToCIfF utilises. 105

LIST OF FIGURES xi

6.10 The map creating instances of ex:WeatherStationCelcius from a CSV
�le with the format shown in table 6.5. 106

6.11 Timing of OTTR with and without Frog. 110

7.1 Shows an function in Ripple that recursively adds together the factorial
number. This example is taken from Shinaver's article [43, p. 6]. 116

xii LIST OF FIGURES

List of Tables

5.1 The new queries introduced, working on Frog functions. 86
5.2 The new queries introduced, working on the function term and the function

type. 87

6.1 An example extracted CSV �le from Extrasolar Planets Encyclopaedia. . 97
6.2 An example extracted Excel �le from NASA. 97
6.3 Table 6.2 with tabOTTR preamble and the calculated IRIs. 99
6.4 Table 6.2 with tabOTTR preamble. 101
6.5 The table illustrates the format of the CSV data from Natural Centers for

Environmental Information, after cleaning. 102
6.6 The table illustrates the format of the excel data from Meteorlogisk insti-

tute, after cleaning. 102
6.7 Tables for the weather case. Without Frog on the left and with Frog on

the right. 104

7.1 Related work criteria ful�lments . 114

A.1 Frog's RDF syntax classes vocabulary . 125
A.2 Frog's RDF syntax properties vocabulary 125

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

1.1 Background and Motivation

In 2001 Tim Bernes-Lee published his vision of the semantic web, an extension of the
World Wide Web [4]. The motivation behind the semantic web was to give data on the
web a formal description and a well-de�ned meaning. Thus, the data in the semantic
web is easily machine-readable, enabling better cooperation between computers and hu-
mans [4]. To create these formal descriptions and well-de�ned meanings, the World Wide
Web Consortium (W3C) has created a set of standards, which we refer to as semantic
technologies. These technologies provide a formal description of terms, relationships and
concepts within knowledge domains. Moreover, semantic technologies creates or works
on data structured as linked data. Mauro and Tiziana summarised link data as a means
to connect, expose and share web data utilising identi�ers [12].

In the case of the semantic web, a connection is an identi�er connecting one resource
to another resource, describing the relationship the �rst identi�er has to the second.
Therefore, a connection consists of three elements: subject, predicate, and object. Where
the predicate is a connection from the subject to the object, describing the subject's
relationship to the object. A subject that connects to an object through a predicate
is called a triple. The technology used to describe and structure these triples are the
Resource Description Framework (RDF) [9]. We often refer to a set of triples in an RDF
document as an RDF graph.

Building an RDF graph often involves creating a large number of triples. Regularly an
RDF graph consists of triples that have the same structure. For instance, an RDF graph
with data about persons would possibly contain triples stating a person's age, name,
social security number, parents, family members, and primary residence. Writing out
these triples for one person does not take a signi�cant amount of time. However, creating
a graph that contains 100 persons, where every person has at least one parent and one
family member, would at least require 600 triples. Writing these triples manually in RDF
would be a tedious job and containing a large amount of repetition.

Reasonable Ontology Templates (OTTR) [37] addresses these issues by making it pos-
sible to compose templates which contain parametrised modelling patterns. These tem-
plates can therefore encapsulate domains' structures. OTTR uses templates to create

1

2 CHAPTER 1. INTRODUCTION

RDF graphs; hence we can consider OTTR a macro language for RDF. To create the
RDF graph, OTTR expands instances. An instance refers to a template and has argu-
ments; when expanded, OTTR replaces the parameter variables in the a�liated tem-
plate's parametrised modelling pattern with these arguments. Thus, we can construct a
template for a domain and create an RDF graph by instantiating instances that OTTR
expands. Additionally, OTTR provides two means for instantiating instances from tab-
ular �les and di�erent data sources: tabOTTR and bOTTR. tabOTTR [23] transforms
tabular �les into instances, while bOTTR [22] allows us to create mappings that extracts
data from numerous types of sources, for instance, through SQL and SPARQL1 queries.

Constructing the aforementioned RDF graph containing data about 100 persons would
now only require us to create one template that encapsulates our model of a person and
one instance per person. It can still be time-consuming to produce these 100 instances.
However, if the data already exists in a tabular �le or data source, e.g. in a CSV �le,
building an RDF graph would now only require one template and one bOTTR mapping
creating instances from the CSV �le. As a result, utilising OTTR, compared to writing
triples manually, o�ers several bene�ts, such as the Don't repeat yourself (DRY) principle,
better abstraction, uniform modelling and separation of design and content [38].

Nevertheless, the previously mentioned template used to create an RDF graph of persons
from the CSV �le may require additional information that the �le naturally would not
contain, such as the URI, to identify each person uniquely. The social security number
could, for instance, be a natural part of a URI to identify a person uniquely. However,
we can not create URIs inside the templates since OTTR templates only encapsulate
patterns and not perform calculations. Consequently, the creator of the CSV mapping
needs to produce the URIs in the mapping. We argue that being able to create URIs
inside templates improves abstraction; since templates also can abstract the logic over
their values. The templates producing URIs would be especially bene�cial if we use
multiple �les to create the instances. If we have 50 CSV �les, we must create 50 bOTTR
mappings containing URI calculations, which is repetitious. However, if we could create
the calculation in the person template, we only need one calculation, thus, enforcing the
DRY principle.

Moreover, creating an RDF graph with OTTR may require extracting data from di�er-
ent sources and tabular �les. OTTR allows users to extract data from tabular formats
with tabOTTR and by querying over sources by creating JDBC2 or SPARQL queries.
Each of these formats has di�erent approaches for manipulating data. Consequently, we
need to create one type of calculation for each source type. Placing the calculation in
the templates will only require one uniform means of calculation. Thus, strengthening
OTTR's bene�t of uniform modelling.

Additionally, by making it possible to manipulate terms in the templates, we can move
some RDF speci�c tasks, such as creating URIs in tabular �les or mappings, into tem-

1SPARQL is a query language over RDF graphs.
2Java Database Connectivity (JDBC) is an API data used to query over sources through dif-

ferent query languages, such as SQL and PostgreSQL. https://docs.oracle.com/javase/8/docs/
technotes/guides/jdbc/

https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

1.2. PROBLEM STATMENT AND SCOPE 3

Figure 1.1: The �rst graph shows a natural work�ow utilises OTTR, where the compu-
tations are preformed in tabular �les or by mappings. The second graph shows a natural
work�ow using OTTR with Frog, where the computations are preformed in templates.

plates. Hence, templates can become an abstraction for RDF speci�c elements, which we
argue imporves the better abstraction bene�t.

There are several other use-cases where manipulating terms inside templates will be
bene�cial, such as storing information about one domain that may have numerous rep-
resentations for the same thing. An example of such a domain weather and temperature
data. Imagine that we want to store information about weather temperatures. In this
case, we may want to use several sources of data, both American and European. As
a result, some sources would contain degrees in Celcius and others in Fahrenheit. We,
however, want our RDF graph to only contain the degrees in Celcius. Now, without a
means of performing calculations in the templates, we must perform the calculations in
every tabular �le and mapping that uses the Fahrenheit scale. Having the opportunity to
perform this calculation in the templates will be bene�cial as we only need to do it once
instead of in all the tabular �les and mappings with Farhenheit degrees. Additionally, this
template encapsulates our model, which includes that the degrees should be in Celcius.
Without a means of performing calculations in the templates, OTTR must assume that
the degrees are on the correct scale.

1.2 Problem statment and scope

From the discussions above, we argue that the possibility to modify and perform cal-
culations on values in templates, also called terms, will strengthen OTTR's bene�ts.
Therefore, in this thesis, we present and create a way to modify terms within templates.
Thus, making it possible to move calculations from tabular �les and mappings into the
templates themselves, as Figure 1.1 depicts. Our proposed solution is to make a small
programming language, which seamlessly integrates with OTTR, named Functions for
ontologies abbreviated to Frog.

4 CHAPTER 1. INTRODUCTION

In this thesis, we investigate how we can design Frog to be a functional programming
language that seamlessly integrates with OTTR. For Frog to seamlessly integrate with
OTTR, Frog must not con�ict with OTTR's semantics while being easy and natural to
place inside a template's parametrised modelling pattern. Moreover, we examine and
discuss whether our claims that the inclusion of Frog into OTTR enhances OTTR's
following bene�ts:

� Don't repeat yourself (DRY) principle,

� better abstraction,

� uniform modelling, and

� separation of design and content.

In this thesis, we alos create an implementation of Frog into the existing reference im-
plementation of OTTR, Lutra3. We create this implementation to be able to evaluate if
Frog improves the acclaimed bene�ts and to test that Frog's design performs su�ciently
in practice. Hence, the aim ofthe implementation provided in this thesis is to be a proof
of concept and not an e�cient implementation.

1.3 Outline

This thesis is structured with the following chapters:

� Chapter 2: Functional Programming
Frog will be a functional programming language. Therefore, Chapter 2 introduces
functional programming and some of its principles. We introduce lambda calculus
which is considered the �rst functional programming language, and a typed version
of lambda calculus: simply typed lambda calculus. Additionally, we discuss di�erent
evaluation strategies for functional programs.

� Chapter 3: Semantic Web & OTTR
In this chapter, we introduce OTTR's concepts and semantics to be able to deter-
mine how we should design Frog. Additionally, we introduce RDF, the semantic
technology OTTR is a macro language for, and SHACL, a semantic technology
OTTR applies. This section also introduces the semantic technology SPARQL, a
query language over RDF grafs that we will use in our implementation Frog.

� Chapter 4: Design
This chapter discusses the design of Frog and investigates how we must design Frog
to integrate seamlessly with OTTR. This chapter contains the formal description
of Frog.

� Chapter 5: Implemntation
In this chapter, we discuss our Frog implementation into OTTR's reference imple-
mentation, Lutra.

3https://gitlab.com/ottr/lutra/lutra

https://gitlab.com/ottr/lutra/lutra

1.3. OUTLINE 5

� Chapter 6: Discussion
This chapter discusses whether Frog has improved our claimed bene�ts in OTTR:
the DRY principle, better abstraction, uniform modelling, and separation of design
and content. In other words, this chapter discusses whether Frog improves the
OTTR framework by making it possible to manipulate terms inside the templates.
Additionally, we discuss and argue for some of the choices in the implementation
and design of Frog.

� Chapter 7: Related Work
In this chapter, we discuss related work to Frog. We introduce several technologies
that we can utilise to manipulate RDF terms. Moreover, we discuss why these tech-
nologies do not ful�l our criteria for a term manipulation that seamlessly integrates
with the OTTR framework.

� Chapter 8: Conclusion
In the �nal chapter, we summarise our �ndings and provide possible future work
regarding OTTR and Frog.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Functional Programming

Frog will be a functional programming language. Hence, we shortly introduce functional
programming in this chapter. We start, in Section 2.1, by introducing Lambda calculus,
a formal system with the aim of encapturing intuitions on functions and is considered
the �rst functional programming language [16]. Moreover, in Section 2.1.4, we introduce
combinatory logic. In Section 2.2 we introduce simply typed lambda calculus, which is a
typed version of lambda calculus. Lastly, Section 2.3 discusses evaluation strategies, and
Section 2.4 introduces functional programming in the more general case and its principles.

2.1 Lambda Calculus

Lambda calculus is a collection of formal systems for expressing computation and is the
foundation for functional programming. Alonzo Church introduced lambda calculus in
the 1930s and published his �rst book on this topic in 1941 [7]. Lambda calculus is a
universal model of computation that can express any computable function, thus, being
Turing complete. We base the following section on Rojas's paper on lambda calculus [40].

2.1.1 De�nitions and notations

Lambda calculus consists of three primitives symbols: λ, (, and), in addition to a set of
variables. The fundamental concept in lambda calculus is a lambda term, also called an
expression. A lambda term is either a:

� Variable: A name which is a placeholder for a parameter. A variable x is in itself
a lambda term.

� Abstraction: If we have a term M and an variable x, then we also have the term
λx.M where we say that x is bound in M. The abstraction λxy.M is an abbreviation
of λx.λy.M .

� Application: If E1 and E2 are lambda terms, then (E1E2) is also a lambda term,
where we say that E2 is applied to E1. λ-calculus' application terms are left-
associative, which means that E1E2E3 ≡ (E1E2)E3. We omit parenthesis when the
meaning is clear.

Lambda calculus builds up its λ-terms using these three expressions, which Figure 2.1
de�nes in BNF-syntax.

7

8 CHAPTER 2. FUNCTIONAL PROGRAMMING

Figure 2.2: Visualization of the di�erent concepts in a λ-function.

λ-term := x (variable)
| λx.M (abstraction)
| E1E2 (application)

Figure 2.1: λ-calculus' syntax in BNF.

All functions in λ-calculus are �rst-class values, which means that a lambda function can
take a λ-function as an argumnent and return λ-functions. Figure 2.2 illustrates simple
visualization of the di�erent concepts in a λ-function.

2.1.2 Bound and Free variables

As previously mentioned, the abstraction contains bound variables. The λ binds the
variables stated before the function body to the variables with the same symbol in the
function body. We consider the variables that both occur in the function body and the λ
section before the function body as the bound variables. An example of a bound variable
is the variable x, in λx.xy since x occurs both in the λ section of the function and the
function body.

Free variables are the the variables in a term that is not bound by the abstraction.
Formally, if a term E1 containing a set of variables, V1, and a set of bound variables, B1,
then the free variables in E1 are F1 ≡ V1 \ B1. We can extend this general rule further,
by adding another term E2 containing a set of variables, V2, and a set of bound variables,
B2; then the free variables in the term E1E2, F1F2 ≡ (V1 \ B1) ∪ (V2 \ B2). In other
words, the set of free variables in the term E1E2 is the union of the free variables in E1

and E2. In our previous λ function, λx.xy, we consider the variable y as a free variable
as it occurs in the function body but is not present in the λ binding.

2.1.3 Conversion and Reduction

We introduce two forms for conversion and reduction in λ-calculus, namely α-conversion
and β-reduction. Firstly, α-conversion (→α) is the procedure of transforming a λ-term
into another term that is α-equivalent and that yields the same result for a set of ar-
guments. Two λ-terms are α-equivalent i� the only dissimilarity in the two terms are
the variables. For instance, λab.ab is α-equivalent to the term λxy.xy. α-conversion

2.1. LAMBDA CALCULUS 9

Figure 2.3: An example of β-reduction.

changes a variable in the λ binding and the function body with another variable. Im-
portantly, we can not change a variable into variable that allready exists in the term,
as this may yield di�erent results for a set of arguments. Therefore, λx.xy →α λz.zy
is a valid α-conversion, while λx.xy →α λy.yy is not. Notably, we can only change the
variables in the same abstraction. Hence, λx.λx.x →α λx.λy.y is a valid α-conversion
while λx.λx.x→α λy.λx.y is not.

Moreover, β-reduction (→β) is a procedure to reduce terms by substituting its arguments
into the function body. In other words, removing the second term, E2 from the de�nition
of application, by substituting it into the �rst term's body, E1. For instance, if E2 is a and
E1 is λx.x then E1E2 ≡ (λx.x)a which we can performe a β-reduction on (λx.x)a→β a.
Figure 2.3 illustrates a set of β-reductions on the term λx.λy.xy(λz.z) a b. When there
are no more possible β-reductions to perform on a term, we say that the term is on
β-normal form. A term on β-normal form is either a set of variables or an abstraction.
However, a term may never reach β-normal form, meaning that attempting to perform
β-reductions on a term until it reaches β-normal form may not terminate. An example
of a term that does not terminate when performing β-reductions is the self-applicate
function applied on itself, (λf.ff)λf.ff ; since one β-reductions this term results in the
same term. Futhermore, we say that a term, M , is β-equal to another term, N , if �nite
β-reductions on the term M results in the term N . This is often denoted with M =β N .
In Figure 2.3 the term λx.λy.xy (λz.z) a b is β-equal to all the terms beneath.

2.1.4 Combinatory logic

Combinatory logic in computer science is a theoretical theory of computation introduced
by Schön�nkel [41] and Curry [8]. The main idea of combinatory logic is to introduce
some base combinators or constants that we combine to create expressions. Examples of
such combinators in combinatory logic are S, K, I, B, and C; we can express the combi-
nators I, B, and C from S andK. Combining combinators with an in�nite set of variables
can express any other high-order functions. Combinatory logic is closely associated with
λ-calculus, and we can create translators from a λ-terms to a set of combinators, often
named transformation, bracket-abstraction algorithm or abstract elimination. Schön-
�nkel, for instance, introduced a bracket-abstraction algorithm on the S, K, I, B, and C

10 CHAPTER 2. FUNCTIONAL PROGRAMMING

E := x (variable)
| P (a combinator)
| E1E1 (application, where E1 and E2 are combinatoric terms)

Figure 2.4: How to build up combinatoric terms in BNF-syntax.

combinators [5]. In this section, we present the SK combinators and Lachowski bracket
abstraction [28] for the SK combinators.

The K combinator that takes in two arguments and always returns the �rst argument,
de�ned by:

((Kx)y) = x or (Kxy) = x

Written in λ-calculus, the K function would look like this:

λxy.x

Furthermore, we have the combinator S, which takes in three arguments and applies the
last argument on the two �rst arguments:

(Sxyz) = (xz(yz))

Written in λ-calculus, the S function would look like this:

λxyz.xz(yz)

From these combinators and a variables, we can build up combinatoric terms as shown
in Figure 2.4.

Lachowski bracket-abstraction algorithm [28]:

1. [x] = x, for every variable x

2. [MN] = [M][N]

3. [λx.M] = λ∗x.M

4. λ∗x.x = SKK

5. λ∗P = KP if x is a free variable in P.

6. λ∗MN = S(λ∗M)(λ∗N) if x is a bound variable in MN.

The following example shows how to transform the expression λx.λy.yyx into SK com-
binatory logic:

2.2. SIMPLY TYPED LAMBDA CALCULUS 11

[λ.xy.yyx] =3 λ
∗x.[λy.yyx]

=3 λ
∗x.λ∗y.yyx

=6 λ
∗x.S(λ∗y.yy)(λ∗y.x)

=5 λ
∗x.S(λ∗y.yy)(Kx)

=6 λ
∗x.S(S(λ∗y.y)(λ∗y.y))(Kx)

=4 λ
∗x.S(S(SKK)(λ∗y.y))(Kx)

=4 λ
∗x.S(S(SKK)(SKK)(Kx)

=6 S(λ
∗x.S(S(SKK)(SKK))(λ∗x.(Kx))

=5 S(KS(S(SKK)(SKK))(λ∗x.(Kx))
=6 S(KS(S(SKK)(SKK))(S(λ∗x.K)(λ∗x.x)))
=5 S(KS(S(SKK)(SKK))(S(KK)(λ∗x.x)))
=4 S(KS(S(SKK)(SKK))(S(KK)(SKK)))

2.2 Simply Typed Lambda Calculus

Simply Typed Lambda Calculus (λ→), made by Alonzo Church in 1940 [7], is a type
theory for lambda-calculus. In short, type theory is the academic study of type systems,
which gives every term a type. Jackobs [19] states that the use of types is to classify
values.

In λ→-calculus, we provide the λ-terms with types. There are two di�erent approaches
for providing variables with a type. Firstly, typing à la Church also named explicitly
typing, where we state the type of the variable when introducing it. Secondly, typing à
la Curry, which does not give types to variables when introduced but leaves them open.
Often the typing in typing à la Curry is found through a search process, including some
quali�ed guessing [31]. Going forward, we discuss the à la Church approach.

In general, we have an in�nite set of type variables V = {τ, σ, ...}, which provide a type
to a λ-term that is a variable. We can create types for the abstractions by combining
the type variables in V with the → connector. The type τ → σ is the type of the λ-
abstractions that takes in an τ and with reduction would result in a λ-term of type σ.
An example of a λ-abstraction with this type is λx : τ.y τ → σ. Figure 2.5 illustrates
how we inductively builds up λ→-calculus' type.

The syntax of λ→-calculus is almost identical to λ-calculus' syntax. However, in the ab-
straction, we state the type of the bound variables in the λ binding. Figure 2.6 illustrates
λ→-calculus' syntax in BNF, similar to how Figure 2.1 depicts λ-calculus' syntax.

T := σ where σ ∈ V (V is the set of variable types)
| M → N where M and N are valid λ→-calculus types

Figure 2.5: Building up types in simply typed lambda calculs in BNF.

12 CHAPTER 2. FUNCTIONAL PROGRAMMING

e := x
| λx : τ.M
| MN

Figure 2.6: Simply Typed Lambda Calculus syntax in BNF.

2.2.1 Typing rules

In this section, we present the derivation typing rules as presented by Nederpelt and Her-
man [31]. However, we �rst de�ne what a statement, declaration, context and judgment
are, as described by Nederpelt and Herman [31]:

� A statement is on the form M : τ , where τ is a valid λ→-calculus type and M is a
valid λ-calculus term. Here τ is the type and M the subject.

� A declaration is a statement where the subject is a variable.

� A context is a set of declarartions with di�erent subjects.

� Γ `M : τ is a judgement, with Γ as a context and M : τ as a statment.

The following three derivation typing rules can be used for λ→-calculus:

(variable) Γ ` x : σ if x : σ ∈ Γ

(application)
Γ `M : σ → τ Γ ,` N : σ

Γ `MN : τ

(abstraction)
Γ , x : τ `M : σ

Γ ` λx : τ.M : τ → σ

2.3 Evaluation strategies

Evaluation strategies are a collection of strategies that decides when a programming
language should evaluate an expression. An evaluation strategy chooses, among other
things, if the language should evaluate expressions sent into a function before executing
the function or send in these expressions and evaluate them at a later stage.

Evaluation strategy has two main strategies eager evaluation, also called strict evalua-
tion or applicative-order, and non-strict evaluation, also called normal-order. To explain
shortly, eager evaluation evaluates the expression as soon as it is bound, while the non-
strict evaluation can evaluate an expression when desired. One form of non-strict evalua-
tion is call by name, which evaluates an expression when the value is needed. Hence, eager
evaluation evaluates the arguments, if they are functions, before substituting them in the
function body. On the other hand, non-strict evaluation with a call by name approach
substitutes the function body with the expressions, thus, replacing a variable with an
expression, not the evaluated value of the expression [1]. Therefore, non-strict evaluation
can handle streams, as streams may be in�nite and non-strict evaluation only evaluates
the parts of the stream it needs. As a consequence of eager evaluation evaluating the
arguments before the substitution, we know that an expression is only evaluated once, as
it substitutes the evaluated value. Non-strict evaluation with a call by name approach,
however, can evaluate the same expression several times, as an expression may replace a
variable in more than one place in the substitution.

2.3. EVALUATION STRATEGIES 13

Figure 2.7: Shows the di�erence between strict evaluation and lazy evaluation. Here we
assume that print is a term which prints the argument to the terminal, and that +, -, and
* are operators that work on integers.

Lazy evaluation is another non-strict evaluation strategy that evaluates the expressions
when needed, similar to calling by name. However, lazy evaluation solves the afore-
mentioned problem with the same expression being evaluated several times by including
memorisation. Memorisation is implemented by using a look-up table where the eval-
uated value of a function for some given arguments is stored. When lazy evaluation
evaluates an expression, it �rst checks if the expression already exists in the look-up ta-
ble. If the value exists, lazy evaluation retrieves the value from the table. However, if
the value is not present in the look-up table, lazy evaluation evaluates the function to a
value and appends this value to the table. Consequently, lazy evaluation only evaluates
an expression when needed and only once. Lazy evaluation is only possible to apply as
an evaluation strategy on a purely functional language. In short, a purely functional
language is a language that does not allow state changes. Section 2.4 further elaborates
on pure functions and purely functional programming languages.

Figure 2.7 is an example of strict evaluation and lazy evaluation with β-reduction. Note
the following signi�cant di�erences between these two approaches in this example:

� Strict evaluation evaluates an expression (terms) as soon as it is bound. In contrast,
lazy evaluation waits until the expression is used.

� Strict evaluation evaluates the expressions (terms) before sending them into the
term, while lazy evaluation takes in the whole expression.

� On the last two lines in Figure 2.7, lazy evaluation uses memorisation to retrieve
the return value rather than evaluating it.

14 CHAPTER 2. FUNCTIONAL PROGRAMMING

2.4 Functional programming and functional program-

ming principles

Functional programming is a declarative programming paradigm, similar to how object-
oriented programming is an imperative programming paradigm. The name of functional
programming stems from that a functional program only consists of function calls and ar-
guments [17]. One of the fundamental inspirations for functional programming is Lambda
calculus, and many consider λ-calculus as the �rst functional programming language [16].
Examples of functional programming languages are Lisp1, Haskel, and Elm. Additionally,
several imperative languages have elements that support a functional programming style,
such as Java's streams and Supplier interface2. In this section, we introduce some of
the essential functional programming principles.

In Section 2.1, we introduced that λ-calculus regards its functions or applications as �rst-
class values. When a value is a �rst-class value, we can use the value as an argument, and
it can be a return value. Functions that take in functions as arguments or return them are
considered higher-order functions [16]. Map and �lter are two well-known higher-order
functions. Map takes in a list and a function that takes in one argument and returns a
list where this function is applied on every element in the argument list. Moreover, �lter
takes in a list and a function that takes in an element and returns a boolean. The �lter
function returns a subset of the argument list, which only contains the elements of the
argument list that, when applied to the function returns true.

Moreover, several functional programming languages are pure programming languages,
such as Haskell and Elm. A functional programming language that is pure is a purely
functional programming language. For a programing language to be pure, all of the
functions produced in the language must be pure. A pure function is a function without
any side e�ects, meaning that a pure function always produces the same output for the
same set of inputs. Thus, we can utilise memoisation on pure programming language. On
the contrary, using memoisation on a impure language is unreliable because a function
retrieving the same set of inputs may yield di�erent outputs.

Several functional programming languages are typed, such as Haskell and Elm. Hence,
resembling λ→-calculus. Both Haskell and Elm are strong and statically typed. A strongly
typed programming language is a programming language where every value has a type.
Notably, a strongly typed programming language does not explicitly need to state a
value's type. However, a statically typed language requires that we explicitly state the
type of every variable and parameter. Java is an example of a statically typed language.
Regarding functional programming languages, we can think of statically typed languages
to follow typing à la Church since we need to state the parameters' types explicitly.

1In truth, Lisp is a family of functional programming languages. Common Lisp and Schema are
examples of lisp languages.

2https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/

Supplier.html

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Supplier.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Supplier.html

Chapter 3

Semantic Web & OTTR

The introduction, Chapter 1, introduced Tim Bernese-Lee's vision of the Semantic Web.
The vision is to give the data on the Web a formal description and well-de�ned meaning
to enable better cooperation between computers and humans [4]. A set of standards set
by the World Wide Web Consortium (W3C) was made to achieve this vision, namely the
semantic technologies. Figure 3.1 depicts some of the essential semantic technologies in
a stack, which we later refer to as the W3C stack. In this chapter, we introduce RDF [9]
and SPARQL [42]. In addition to the W3C recommendation SHACL [26]1. Moreover,
Chapter 1 shortly introduced OTTR and how OTTR can be bene�cial for encapsulating
a model or ontology. Hence, removing possible repetition of producing RDF graphs.
Additionally, Chapter 1 introduced the OTTR's acclaimed bene�ts. In this chapter, we
discuss OTTR's concepts and semantics.

3.1 RDF

RDF [9] stands for Resource Description Framework and is a framework for formally
describing structured information [13, p. 19]. RDF is the general technolog used in the
semantic web to represent information in a web resource, which describes a collection of
triples. As the name triple insinuates, a triple consists of three elements, or more formally,
three resources: subject, predicate, and object, respectively [9]. The predicate describes
the relationship that the subject has to the object. Usually, one can de�ne a collection
of triples as a graph where the subjects and objects are nodes, and the predicates are a
directed edge from a subject to an object [9]. However, RDF can represent a structure
that we ordinarily would not describe as a graph because there are no restrictions in
RDF for a resource only being a subject/object or a predicate. Since it is possible to
have a resource in the graph representing a node and an edge. An example of a triple
is Sebastian hasFather Thommas, where Sebastian is the object, hasFather is the
predicate, and Thommas is the object. RDF have numerous seralisation formats; we use
Turtle [6] in this thesis.

To distinguish between the di�erent resources in an RDF graph, we need to identify the
di�erent resources uniquely. Therefore, RDF uses Uniform Resource Identi�er (URI),
where every URI represent a unique resource [13, pp. 21-22]. Therefor our previous triple,

1This chapter introduces an overview of these technologies needed to comprehend this thesis. For
complete descriptions and formal de�nitions, see the respective speci�cations.

15

16 CHAPTER 3. SEMANTIC WEB & OTTR

Figure 3.1: What we refer to as the W3C stack or the semantic web stack, containg some
of the essential semantic technologies [46].

Sebastian hasFather Thommas, needs URIs to uniquely identify the resources; resulting
in the following triple with valid URIs <http://example.org/person/Sebastian><http
://example.org/relation/hasFather><http://example.org/person/Thommas>.. Writ-
ing out these absolute URIs may be a time-consuming process. Turtle serialisation solves
this issue by making it possible to create pre�xes stated at the start of an RDF docu-
ment. We state these pre�xes with a pre�x label and a vocabulary URI2. We can replace
the absolute URIs with their pre�x name, a combination of the pre�x label and local
name separated with a colon (:). For instance, with the pre�x @PREFIX ex-p: <http

://example.org/person/>., ex-p:Sebastian is the pre�x name for the absolute URI
<http://example.org/person/Sebastian>, where ex-p is the pre�x label referring to
the URI http://example.org/person/ and Sebastian is the local name. The examples
in the rest of this chapter use the following pre�xes:

@prefix ex-p: <http://example.org/person/> .

@prefix ex-r: <http://example.org/relation/> .

@prefix ex-t: <http://example.org/template/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema/#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ottr: <http://ns.ottr.xyz/0.4/> .

@prefix o-rdf: <http://tpl.ottr.xyz/rdf/0.1/> .

@prefix sh: <http://www.w3.org/ns/shacl#> .

Moreover, we may know something about something without knowing what that some-
thing is. For example, we may know that Sebastian has a father without knowing who the
father is. RDF uses blank nodes to model that we know something about a resource with-
out knowing the URI of the resource. We represent Sebastian's father with a blank node

2The part of URI that is reused for several resources in our document.

3.1. RDF 17

in the case above. Note that a blank node only can occur in a subject or object position,
not in a predicate position. To model that Sebastian has a father we can either write
ex-p:Sebastian ex-r:hasFather _:b . or ex-p:Sebastian ex-r:hasFather [] .

, as Turtle o�ers two di�erent syntaxes for blank nodes: _:<some variable name> and
square brackets ([]). Furthermore, we can express information we know about blank
nodes in RDF due to blank nodes being valid subjects. Hence, we can express that Sebas-
tian's father has a father who is ex-p:Roger. One way to model the previous statement
in RDF is the following set of triples:

Example 3.1.1.
ex-p:Sebastian ex-r:hasFather [ex-r:hasFather ex-p:Roger] .

RDF additionally o�ers literals, such as strings and integers [9] which we can use in the
object position of a triple. If we want to express that Sebastian has age 22 we can write
ex-p:Sebastian ex-r:hasAge "22"^^xsd:int.. In addition, we can add that Sebas-
tian has the name Sebastian in Norweigan and Bastian in English by using language tags.
Expressing the di�erent names in RDF, results in the triples ex-p:Sebastian ex-r:

hasName Sebastian@no. and ex-p:Sebastian ex-r:hasName Bastian@en.. The sub-
sequent graph contains the triples we have mentioned as far in this section:

Example 3.1.2. RDF triples describing Sebastian.

ex-p:Sebastian ex-r:hasFather ex-p:Thommas .

ex-p:Sebastian ex-r:hasFather [ex-r:hasFather ex-p:Roger] .

ex-p:Sebastian ex-r:hasAge "22"^^xsd:int .

ex-p:Sebastian ex-r:hasName "Sebastian"@no .

ex-p:Sebastian ex-r:hasName "Bastian"@en .

Furthermore, Turtle o�ers abbreviations to make an RDF document more compact.
Firstly, we abbreviate triples with the same subject and predicate but di�erent objects
by writing the subject and predicate once and separating the objects with commas (,).
Secondly, Turtle also allows us to abbreviate triples with the same subject by writing a
semicolon (;) after the object and then continuing with the next predicate3. The following
graph is equivalent to Example 3.1.2; however, it contains the mentioned abbreviations.

Example 3.1.3. Same rdf triples as in Example 3.1.2, but with abbreviations.

ex-p:Sebastian ex-r:hasFather ex-p:Thommas, [ex-r:hasFather ex-p:Roger] ;

ex-r:hasAge "22"^^xsd:int ;

ex-r:hasName "Sebastian"@no, "Bastian"@en .

Figure 3.2 is a visualisation of Example 3.1.2 and Example 3.1.3.

3The last object still needs to end with a dot (.).

18 CHAPTER 3. SEMANTIC WEB & OTTR

Figure 3.2: The visual graph over Example 3.1.2.

3.1.1 Lists in RDF

In RDF, we have two main ways to represent lists, containers and collections [13, pp. 58-
63]. These two approaches link data together by using blank nodes.

A container has three di�erent types: rdf:Seq, represents an order list, rdf:Bag, repre-
senting an unordered set, and rdf:Alt,representing a set of alternatives. We consider a
blank node with one of these URIs as its type as a container. These di�erent types of
containers do not di�er in how we structure the elements in RDF, only how di�erent ap-
plications display containers. The container blank node connects to its elements though
the predicates rdf:_1 to rdf:_n. Where the �rst element is in the triple with predicate
rdf:_1, and the last element, in a list with n elements, is in rdf:_n. The following RDF
graph shows Sebastians ancestors in an unordered set:4:

Example 3.1.4. An RDF grpah containing Sebastian's ancestorsin a container.

ex-p:Sebastian ex-r:ancestor [a rdf:Bag;

rdf:_1 ex-p:Thommas;

rdf:_2 ex-p:Roger].

Moreover, we can construct lists in RDF using collections. The structure of collections
closely resembles a linked list's structure because collections connect blank nodes to each
other where each blank node also refers to an element in a collection. Collections use the
subsequent predicates and resource to build up a list:

� rdf:first: the predicate used between a blank node and its element.

� rdf:rest: the predicate used to link a blank node to the next blank node in the
sequence of blank nodes.

� rdf:nil: the resource in the end of a list.

4Note that we have used the abbreviation a for rdf:type.

3.2. SPARQL 19

Figure 3.3: Shows the structural di�erences between a container and a collection.

The main di�erence between a container and a collection is that a collection is closed,
meaning that it is impossible to add new elements after creating a collection. Collections
being closed are due to the rdf:nil at the end of the collection. On the contrary, it is pos-
sible to add new elements to a container, as long as we have the reference the container's
blank node. Figure 3.3 visualises the di�erences between containers and collections.

In Turtle, we can use brackets (()) as an abbreviation for writing collections, where we
place the elements inside the brackets . Generally, the syntax of a collection looks like
this (element_1 element_2 ... element_n). Note that in this thesis, RDF lists refer
to collections. An RDF graph containing Sebastian's ancestors using a collection ends up
looking like this:

Example 3.1.5. An RDF grpah containing Sebastian's ancestorsin a collection.

ex-p:Sebastian ex-r:ancestor (ex-p:Thommas ex-p:Roger).

3.2 SPARQL

SPARQL [36] enables querying over RDF graphs. SPARQL has several similarities to
SQL for Relation Databases, such as the SELECT and WHERE clause. The WHERE-
clause is a graph pattern i.e. a set of RDF-tripels that SPARQL searches for in an RDF
graph. A graph pattern can contain variables denoted as ?variableName. SELECT lets
us select which variables we want to obtain when executing a query and returns their
bindings�applying SELECT * returns all the variables used in the WHERE clause.

As an example, we use the same ontology about families introduced in Section 3.1. Ad-
ditionally, the graph now also contain the relation ex-r:lifeStage, a relation from a
person to the person's life stage, e.g. child. All the examples in this section query over
the subsequent graph:

20 CHAPTER 3. SEMANTIC WEB & OTTR

_:person1 ex-r:hasAge 17;

ex-r:hasName "Sofie";

ex-r:hasLifeStage ex-p:Teenager.

_:person2 ex-r:hasAge 16;

ex-r:hasName "Harry";

ex-r:hasFather ex-p:Noah;

ex-r:hasLifeStage ex-p:Teenager.

ex-p:Noah ex-r:hasAge 47;

ex-r:hasName "Noah";

ex-r:hasFather ex-p:Fred;

ex-r:hasLifeStage ex-p:Adult.

ex-p:Fred ex-r:hasName "Fred";

ex-r:hasLifeStage ex-p:Retired.

The following SPARQL query retrieves every person with an age and a name.

Query 3.2.1. A query retriving every the name and age of every person with a name
and age.

1 SELECT *

2 WHERE{

3 _:person ex-r:hasName ?name;

4 ex-r:hasAge ?age.

5 }

The SPARQL query above results in the following table. This table does not contain
Fred due to ex-p:Fred not having an age, thus not matching the graph pattern in the
WHERE clause.

name age

So�e 17
Harry 16
Noah 47

In addition, SPARQL o�ers the UNION pattern, which we can use to combine results
from two or more graph patterns. An example of using UNION is to extract the name
of every person that is in the retired or teenager life stage.

Query 3.2.2. A query retriving the name of every person who is teenager or retired.

1 SELECT ?name

2 WHERE{

3 {

4 ?person ex-r:hasName ?name;

5 ex-r:hasLifeStage ex-p:Teenager.

3.2. SPARQL 21

6

7 } UNION {

8 ?person ex-r:hasName ?name;

9 ex-r:hasLifeStage ex-p:Retired.

10

11 }

12 }

name

So�e
Harry
Fred

Additionally, SPARQL introduces FILTER. FILTER is a clause we can use to �lter a
result. Furthermore, the OPTIONAL clause allows us to construct an optional graph
pattern that may be there, although the pattern is not required.

The subsequent query extracts every person's name and age if the person is under 18
and extracts the father of the person, if the person has a father relationship in the graph;
which results in the table bellow.

Query 3.2.3. A query extracts every person with a name and an age where the age is
under 18. The father of this person is also extracted if present.

1 SELECT ?name ?age ?father

2 WHERE{

3 ?person ex-r:hasName ?name;

4 ex-r:hasAge ?age.

5

6 FILTER (?age < 18)

7 OPTIONAL{

8 ?person ex-r:hasFather ?father.

9 }

10 }

name age father

So�e 17
Harry 16 http://example.org/person/Noah

SPARQL 1.1 [42] is an more recent version of SPARQL, introducing, among other things,
aggregation, negation, BIND, and property paths. Firstly, aggregation makes it possible
to group the result using the clause GROUP BY. Furthermore, the HAVING clause
operates over grouped sets, resulting in the possibility to �lter on these sets. Both the
GROUP BY and HAVING clauses work similar in SPARQL and SQL. Secondly, negation
or the NOT EXISTS clause contains a graph pattern of RDF-tripels that should not be
present in the graph pattern. Thirdly, SPARQL 1.1 o�ers BIND, which is a way to

22 CHAPTER 3. SEMANTIC WEB & OTTR

bind a variable to a value. Lastly, property paths open up the opportunity to route
speci�c paths of properties between two resources. There are numerous di�erent types
of property paths, such as SequentPath denoted with a slash (/) and AlternativePath
denoted with a vertical bar (|). Using the SequentPath, one can de�ne several properties
after each other with /. Using the SequentPath to �nd all the names of all fathers can be
written as ?person ex-r:hasFather/ex-r:hasName ?fatherName in the WHERE clause.
The SPARQL 1.1 Query Language document [42] presents a complete table of all the
varieties of property paths.

As an example of aggregation, the subsequent SPARQL query results in the number of
persons in each life stage if there is more than one person in it.

Query 3.2.4. A query extracts how many persons there is in each life stage.

1 SELECT ?stage (COUNT(? person) AS ?persons)

2 WHERE{

3 ?person ex-r:lifeStage ?stage.

4 }

5 GROUP BY ?stage

6 HAVING COUNT(? person) > 1

stage persons

http://example.org/person/Teenager 2

Additionally, the following query uses BIND to calculate the age of a person's father when
the person was born.

Query 3.2.5. A query retriving a person's name, father's name, and father's age when
the person was born.

1 SELECT ?name ?fatherName ?fathersAgeAtBirth

2 WHERE{

3 _:person ex-r:hasName ?name;

4 ex-r:hasAge ?age;

5 ex-r:hasFather [ex-r:hasName ?fatherName;

6 ex-r:hasAge ?fatherAge].

7 BIND(? fatherAge - ?age AS ?fathersAgeAtBirth)

8 }

name fatherName fathersAgeAtBirth

Harry Noah 31

In addition to SELECT, SPARQL o�ers several other types of queries:

� CONSTRUCT: Returns a new RDF graph. The Construct clause contains a
graph pattern that applies the variables from the WHERE clause to create the new
RDF graph.

3.3. SHACL 23

� ASK: Returns either yes or no. Yes, if the query pattern has a solution, no other-
wise.

� DESCRIBE: Returns an RDF graph containing data about the resource.

� DELETE: Deletes everything that matches the given graph pattern.

� INSERT: Works as CONSTRUCT but instead of making a new graph it inserts
the pattern inside the INSERT clause into an existing graph.

Additionally, there are various other type of queries as discussed in the document SPARQL
1.1 update language for RDF [34].

3.3 SHACL

The RDF Data Shape Working group had a goal

...to produce a language for de�ning structural constraints on RDF graphs.
In the same way that SPARQL made it possible to query RDF data, the prod-
uct of the RDF Data Shapes WG will enable the de�nition of graph topologies
for interface speci�cation, code development, and data veri�cation [15].

which resulted in, among other things, the Shape Constraint Language (SHACL) [26] .
SHACL consists of two main parts: SHACL core and SHACL SPARQL. In this section,
we solely focus on SHACL core. SHACL takes in two inputs, an RDF data graph and a
shape graph also written in RDF. Shapes are "Conjunctions of constraints that a node
must satisfy." [11]. SHACL goes through the data graph and checks if the constraints
provided in the shape graph are satis�ed, returning a validation report in RDF. The
RDF report primarily contains the property sh:conforms linking the report to a boolean
value. This boolean value is true if the graph does conform to the shapes, otherwise false.

SHACL partitions the shapes into two main types: node shapes and property shapes.
Firstly, a node shape consists of constraints directed at a focus node. A focus node or
target can be speci�ed in several di�erent ways: targeting all instances of a particular
class5, all resources that are the subject6 or object7 of a predicate, or, lastly, directly
pointing to a node8. Furthermore, a node shape usually contains one or more property
shapes. A property shape is a constraint directed towards the values that a focus node can
reach through a speci�ed property or property path9. SHACL has the property sh:path

to target the property or property path we are after.

Moreover, SHACL makes it possible to restrict the maximum and minimum numbers of
distinct nodes often used to constrain how many relations of the path a focus node can
have.

5Denoted with the property sh:targetClass
6Denoted with the property sh:targetSubjectOf.
7Denoted with in a triple with a property sh:targetObjectOf.
8Denoted with the property sh:targetNode.
9Property paths in SHACL are a subset of the property path in SPARQL. The complete list of

property graphs are available in the SHACL W3C recommendation document [26].

24 CHAPTER 3. SEMANTIC WEB & OTTR

In the following two examples, SHACL performs validations on the following graph:

ex-p:Noah a ex-p:Person;

ex-r:hasAge 47;

ex-r:hasName "Noah".

ex-p:Fred a ex-p:Person;

ex-r:hasAge 233352;

ex-r:hasName "Fred".

Example 3.3.1. A SHACL shape that validates that every person, a resources with the
type ex-p:Person, has minimum one name and exactly one age.

ex-p:PersonShape a sh:NodeShape;

sh:targetClass ex-p:Person;

sh:property [sh:path ex-r:hasAge;

sh:maxCount 1;

sh:minCount 1;

sh:name "Age";

sh:message "Every person needs a age"],

[sh:path ex-r:hasName;

sh:minCount 1].

Resulting in the following validation report:

[] a sh:ValidationReport;

sh:conforms true .

Furthermore, SHACL contains constraint components that de�ne a set of values a node
can have. These components can, among other things, specify that the node needs to
be a blank node, an IRI, have a particular value, be an instance of a class, or be a
literal. We can also specify what kind of data type the literal must be. Additionally,
SHACL provides us with several built-in constraint components for the di�erent data
types, such as sh:minInclusive and sh:maxInclusive for numbers and sh:pattern

and sh:maxLength for strings.

Example 3.3.2. A SHACL shape validates that every person has exactly one age with a
positive integer no bigger than 130. Additionally, SHACL validates that there is at least
a name that is a string.

ex-p:PersonShape a sh:NodeShape;

sh:targetClass ex-p:Person;

sh:property [sh:path ex-r:hasAge;

sh:maxCount 1;

sh:minCount 1;

sh:name "Age";

sh:maxInclusive 130;

sh:minInclusive 0;

sh:dataType xsd:integer;

sh:message """Every person needs a age that

3.4. OTTR 25

is between 0 and 130"""],

[sh:path ex-r:hasName;

sh:dataType xsd:string;

sh:minCount 1].

Resulting in the following validation report:10

[] a sh:ValidationReport;

sh:conforms false;

sh:result [

a sh:ValidationResult ;

sh:resultSeverity sh:Violation ;

sh:sourceConstraintComponent sh:MaxInclusiveConstraintComponent ;

sh:focusNode ex-p:Fred ;

sh:value 233352 ;

sh:resultPath ex-r:hasAge ;

sh:resultMessage """Every person needs a age that

is between 0 and 130""".

] .

This validation report yields validation error in Fred's age with the value 233352. The
error stems from 233352 not being smaller or equal to 130.

3.4 OTTR

Reasonable Ontology Templates (OTTR) is a language representing ontology modelling
patterns as parameterised ontologies, making it possible to produce user-de�ned abstrac-
tions to recurring modelling patterns [44]. OTTR has two central constructors, templates
and instances [45]. Instances are the use of a template, similar to how a function call is
the use of a function. Instances contain the name of the template it uses and a set of
arguments corresponding to the set of parameters in the a�liated template [45]. More-
over, OTTR templates consist of a head and a body, where the head speci�es a template's
name and parameters, whereas the body contains the parameterised ontology pattern [44].
The parameters in a template head can be typed with one of the types described in the
rOTTR speci�cation [25] of OTTR. If we do not explicitly state the type of a parameter,
OTTR interprets the parameter type as Top11. Hence, OTTR is statically typed, which
we further elaborate on in Section 3.4.2.

Additionally to stating the parameter type, we can state that a parameter is optional
and non-blank. An optional parameter, denoted with a question mark (?), allows a cor-
responding argument to be none12. By default, a parameter is mandatory, meaning that
the corresponding value cannot be none. If a parameter is mandatory and a corresponding
argument is none, OTTR can discard the instance containing this argument. We discuss
when OTTR discards instances more in depth in Section 3.4.4 [44]. On the other hand,

10Note that we can make a personalised sh:resultMessage with the use of sh:message.
11Top is a supertype for all other types in OTTR, denoted with the IRI rdfs:Resource.
12None, denoted with ottr:none, is a value in the OTTR framework to represent a missing or no

value [45], similar to, for example, null in Java.

26 CHAPTER 3. SEMANTIC WEB & OTTR

Figure 3.4: A genralisation showing the syntax of stOTTR.

a non-blank parameter, denoted with an exclamation mark (!), requires that the corre-
sponding argument not is a blank node [45]. Furthermore, a parameter can also specify
a default value, a constant. OTTR uses the default value if a corresponding argument is
none.

The template body contains instances that refer to templates and base templates. A
base templates is a particular type of template that does not contain a body and often
represents an abstraction in an underlying language. Since OTTR's underlying language
is RDF, one critical base template is ottr:Triple, representing a single RDF triple [45].
ottr:Triple takes in three arguments: a subject, predicate and object, respectively.
OTTR expands the instances by substituting its a�liated template's body with its ar-
gument. OTTR performs this substitution until it only contains a set of instances on
base templates [44], resulting in a RDF graph. Thus, a template body contains the
parameterised ontology pattern.

OTTR has two serialisations describing the templates and instances: stOTTR [20] and
wOTTR [24]. stOTTER is custom serialisation of OTTR, made to be compact and
easy to ready for humans [45]. wOTTR, on the other hand, is a serialisation written in
RDF, speci�ed by an OWL ontology and a grammar set by SHACL [45]. In addition
to these two serialisations, OTTR also provides two solutions for making instances from
structured data sources; bOTTR and tabOTTR. tabOTTR [23] is a markup language
that create instances from tabular data �les, and bOTTR [22] makes mappings over
several queryable sources [45]. Figure 3.4 shows a generalisation of OTTR written in the
seralisation stOTTR.

Moreover, OTTR provides a list term; for instance, (1,2,3) is the list term containing
the integers 1,2 and 3. OTTR o�ers list expansion to create new instances based on the
value in a list. OTTR creates the new instances based on the arguments marked with
a list expansion, ++ in front of the argument in stOTTR, and a mode. OTTR treats
arguments without a list expansion as a list with one element. Note that the di�erent list
expansions behave the same if we only mark one argument with the list expansion [44].

3.4. OTTR 27

Example 3.4.1. A OTTR template modelling a person with the same properties as in
Section 3.1. The result of expanding the instances on the bottom would be the same as
shown in Example 3.1.5.

ex-t:Person [

ottr:IRI ?person,

xsd:integer ?age,

? List<ottr:IRI> ?fathers,

? List<ottr:IRI> ?mothers,

? List<ottr:IRI> ?ancestors,

List<xsd:String> ?names

] :: {

cross | ottr:Triple(?person, ex-r:hasFather, ++?fathers),

cross | ottr:Triple(?person, ex-r:hasMother, ++?mothers),

ottr:Triple(?person, ex-r:hasAge, ?age),

cross | ottr:Triple(?person, ex-r:hasName, ++?names),

ottr:Triple(?person, ex-r:ancestor, ?ancestors)

}.

ottr:Triple(_:b, ex-r:hasFather, ex-p:Roger) .

ex-t:Person(ex-p:Sebastian, 22 , (ex-p:Thommas, _:b), none,

(ex-p:Thommas, ex-p:Roger), ("Sebastian"@no, "Bastian"@en)).

The three di�erent expansion modes work as following [45]:

� cross: gives one instance per element in the cross-product.

� zipMin: makes one instance per element in the smallest list, making n instances,
where n is the length of the smallest list, and combines elements on the same index
in the marked lists.

� zipMax: almost the same as zipMin, but instead of choosing the smallest list,
zipMax makes one instance for every element in the largest list. OTTR appends
none at the end of the smaller marked lists until they are the same size as the largest
list.

3.4.1 Terms

Terms in OTTR are the set of constants and variables. A list term is an order collection
of terms. We can use the constant nil to denote an empty list. In addition to the list
term and the constant nil, every RDF term, such as IRIs, blank nodes, and literals, are
valid OTTR terms. The variable refers to a template's parameters' variables [21] .

3.4.2 Types in OTTR

OTTRs type system has three di�erent types of types: basic types, LUB-type and list
types. OTTR arranges its types in a subtype relationship that is transitive and re�exive.
The opposite of a subtype is a supertype. As previously mentioned, Top is the supertype of

28 CHAPTER 3. SEMANTIC WEB & OTTR

all types. On the other hand, we have the type Bot, a subtype of all other types. Moreover,
most basic types are common types taken from RDF, RDFS and XSD standards, such
as xsd:integer and owl:Class. However, the OTTR type system also contains basic
types that are OTTR speci�c, for instance, the type ottr:IRI.

Furthermore, OTTR o�ers three complex and OTTR speci�c types: LUB-type, none
empty list type, and list type. Firstly, the LUB-type, denoted with ottr:Lub, stands for
least upper bound. There exists a LUB type for every basic type P, LUB<P>, such that
LUB<P> is a subtype of P and that LUB<P> is compatible with all supertypes and subtypes
of P. Moreover, the none empty list type, NEList<> denoted with ottr:NEList, and
the list type, List<> denoted with rdf:List, are the types of the list terms. A NEList

must contain at least one element, while a List may be empty. The OTTR type system
assumes that for each type P, in the set of types, there exists a type NEList<P> and
List<P> [45].

OTTR performs validations on the templates and instances. Among these validations,
OTTR validates compatible typing and consistent typing. In short, every type P that is
a subtype of Q is also compatible with Q. However, as the previous paragraph states,
LUB<P> is not only compatible with all of P supertypes but also with the subtypes of
P [21]. OTTR validates that the types of the arguments in an instance are compatible
with its corresponding argument. Moreover, consistent typing consists of two parts: type
compatibility and inferred typing. Inferred typing refers to that a term v has inferred type
P if the term is used in argument a and a's corresponding parameter's type is P13. OTTR
considers the term v to be consistently typed if there exists a type P14, such that P is a
subtype of all inferred types of v and that v's type is compatible with P [21]. consistent
typing is especially important for blank nodes, which have the type Bot, thus, being
compatible with all other types; since consistent typing ensures that a blank node is not
placed in several arguments referring to parameters that are not compatible with each
other. For instance, a blank node b cannot be used as an argument with a corresponding
parameter type xsd:integer and another argument with corresponding parameter type
xsd:string, as there does not exist a type P that is a subtype of both xsd:integer and
xsd:string.

3.4.3 Template library and template dataset

A template library in OTTR is a set of template signatures. A template signature contains
the name of the template and its list of parameters. Thus, we consider both templates
and base templates as a template signatures. Furthermore, a template dataset consists
of template ground instances, i.e. instances where all the arguments are constants, and
a template library. The following de�nitions regard template libraries:

De�nition 3.4.1. A template T directly depends on a template signature S, i� the
template body of T contains an instance of S. Thus, directly depends is a relation
between templates and templates signatures [21].

13The rule for inferred types are slightly di�erent if a has a list expander, see the mOTTR speci�ca-
tion [21].

14Unequal to Bot.

3.4. OTTR 29

De�nition 3.4.2. For a template library to be acyclic the directly depends relation on
the library needs to be acyclic [21].

3.4.4 Expansion of OTTR instances

OTTR expands instances resulting in an RDF graph; hence the templates can encapsu-
late a model over a domain. As previously mentioned, OTTR recursively expands the
instances by substituting templates until we reach a set of only base templates without
list expanders. However, di�erent concepts in OTTR a�ect the semantics of expansion
in OTTR. Firstly, OTTR discards an instance that contains none as an argument in an
instance where the corresponding parameter is mandatory and does not contain a default
value. Discarding an instance in OTTR means to not expand this instance. Secondly,
OTTR creates new instances if an instance contains a list expander. How OTTR creates
new instances depends on the mode, which we previously discussed in this section.

30 CHAPTER 3. SEMANTIC WEB & OTTR

Chapter 4

Design

As mentioned in Chapter 1, OTTR claims to give various bene�ts over using plain RDF
and OWL, such as better abstraction and Separation of design and content. However, we
propose that it is possible to strengthen the bene�ts of OTTR by including a statically
and strongly typed purely functional programming language, namely Frog. Frog makes it
possible to construct functions, which we can use by creating function calls in the OTTR
templates and instances to manipulate terms. This chapter discusses our design of Frog,
a programming language that seamlessly integrates with OTTR.

In Section 4.1, we give an overview of Frog, including a description of functions and
functionals. Section 4.2 elaborates on Frog's syntax by presenting Frog's two serialisa-
tions: the RDF syntax and the Human Readable Syntax (HRS). Moreover, Section 4.3
discusses the necessary additional type to OTTR's type system, the function type, while
Section 4.4 examines why Frog bene�ts from being a generic language and introduces how
generic works in Frog. Furthermore, OTTR performs several types of validations on tem-
plates and instances. One of these validates that the arguments used in the instances are
compatible with their corresponding template parameter. Expanding OTTR with Frog
allows functions and function calls as arguments in instances. Therefore, OTTR must
validate that the function calls and functions used arguments are compatible with their
corresponding parameter. For the validation of function calls to be correct in OTTR,
Frog must validate Frog functions, which we discuss in Section 4.5. Finally, in Section
4.6, we discuss Frog's evaluation strategy and when OTTR should evaluate a function
call in instances.

The following pre�xes will be used in the examples of this chapter:

@prefix ex: <http://example.xyz/ns/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix fn: <http://ns.frog.ottr.xyz/0.1/function/> .

@prefix : <http://ns.frog.ottr.xyz/0.1#> .

@prefix ottr: <http://ns.ottr.xyz/0.4/> .

@prefix o-rdf: <http://tpl.ottr.xyz/rdf/0.1/>.

31

32 CHAPTER 4. DESIGN

Figure 4.1: Frog terms.
Figure 4.2: Frog types.

4.1 Overview

This section introduces Frog's main constructs, namely functions and function calls.
Both the functions and function calls are terms in both OTTR and Frog, represented
with function call terms and function terms. Moreover, we de�ne correctness de�ntions
on the newly introduced terms and dependencies relation between functions and functions
and templates and functions.

4.1.1 Concepts

As previously introduced, Frog consists of functions and function calls; these are the
primary constructs in Frog. By creating functions, we can de�ne calculations on a set of
terms and perform these calculations by creating function calls on the functions. Placing
function calls inside templates' bodies, as arguments in instances, makes it possible to
conduct calculations on templates' terms. OTTR replaces the function calls with their
evaluated values during the expansion1. A function call is a valid term since we use
function calls as arguments, and arguments, by de�nition, are terms. Function calls
being terms means that they must have a type, as OTTR needs to validate that the
function call terms are compatible typed. A function call's type is the type of the value
it evaluates to; since Frog is a statically, a function call's type is the return type of the
function it evaluates. Moreover, to be able to use functions as arguments in both OTTR
and Frog, we introduce a function term, which is a reference to a function. Similar to the
function calls, OTTR requires the function terms to have a type for OTTR to con�rm
that the terms are compatible typed. As functions are a new construct, similar to how a
list is a construct, we introduce a new type for function terms to the OTTR type system,
the Function type. Section 4.3 goes in-depth on this new Function type.

Frog and OTTR use the same term system, as we argue that using the same term system
creates a seamless integration of Frog since no translation of terms between Frog and
OTTR is needed. Hence, the newly introduced terms, function term and function call,
are similar and valid terms in both OTTR and Frog. As Frog and OTTR have the same
term system, Frog uses OTTR's type system to type its terms2. However, a valid type in
Frog can be OTTR type or a generic variable, as Frog is a generic language. A generic
variable in Frog is a placeholder for an OTTR type. Hence, we consider OTTR and Frog
to have the same type system even though Frog also considers generic variables as valid
types.

1Section 4.6.2 discusses the semantics of function call evaluation in OTTR.
2We argue that using the same type system is bene�cial for the same reason regarding equal term

systems.

4.1. OVERVIEW 33

A Frog function is constructed in two parts, the function head and the function body. The
function body de�nes what the function does under evaluations and consist of only one
element, a function call. On the other hand, the function head speci�es the function IRI,
parameters, return type and the generic arguments. The function IRI is an IRI to identify
the function uniquely; in other words, the function name. Furthermore, the function head
consists of an arbitrary number of parameters. As a consequence of Frog being a typed
language, Frog needs to know the parameter type: therefore, the parameter consists of a
parameter type and a parameter variable. The parameter variable represents a constant,
and this variable can be used as arguments in the function body. Additionally, if the
parameter type is a Function type, Frog can use the parameter variable as a function in
function calls in the function body3. Moreover, the parameter type is also needed when
conducting validation, as discussed in Section 4.5.

Figure 4.3: The strucure of functions and function calls.

Additionally, the function head speci�es a possibly empty list of generic parameters, each
consisting of a variable and a type, much like an ordinary parameter. However, in this
case, a generic variable represents a type that is a subtype of its belonging type. A generic
variable can occur in three places within a function de�nition:

1. As a parameter type in the function head.

2. As the return type in the function head.

3. As a generic argument in the function calls found in the function body.

Finally, the function head speci�es the return type, representing the type of the value
that the function returns. The type of the value returned by the function body needs to
be a subtype of the return type de�ned in the function head.

3Similarly, if a template's parameter's type is of the function type, then a function call in this tem-
plate's body can use this parameter variable as its function.

34 CHAPTER 4. DESIGN

Furthermore, a function call consists of a function name, arguments and generic argu-
ments. Firstly, the function name de�nes which functions to execute. The function name
can either be an IRI referring to a function's name or a parameter variable of the func-
tion type, as previously explained. Secondly, the function call arguments can either be
constants or parameter variables, i.e. a term, as illustrated by Figure 4.1. Lastly, a
function call contains an arbitrary number of generic arguments. A generic argument can
either be a generic variable or a type. The generic argument needs to be a subtype of
the a�liated function's corresponding generic parameter. Note that both the arguments
and the generic arguments may be empty. Figure 4.3 is a visual representation of the
function and function call structure.

A function term consists of the function it refers to's IRI and a possibly empty list of
generic arguments. The function terms are equivalent to IRI terms when the list of generic
arguments is empty. Therefore, the type of the arguments corresponding parameter
determines whether OTTR and Frog should interpret such a term as an IRI term or a
function term. Note that if the corresponding parameter is Top, then OTTR and Frog
interpret always interpret the term to ba an IRI.

Moreover, there are two types of functions in Frog: base and Frog functions. The dif-
ference between base functions and Frog functions is that base functions do not contain
a function body. Instead, base functions contain an IRI, which refers to the task they
perform. The base functions are a combination of XPath functions and built-in java
functions. On the one hand, the XPath functions work on the terms of the base type,
o�ering functions such as addition of numbers and concatenation of strings. On the other
hand, the built-in java functions work on the terms with a complex type, such as remov-
ing the �rst element of a list. A base function is built into the Frog and OTTR system,
and we can execute them in the same manner as with Frog functions. Note that a Frog
programmer cannot create base functions, only Frog functions. A Frog function de�nes
a way to combine base and Frog functions to perform a speci�c task. For instance, a
function multiplying every number in a list with the number �ve4.

4.1.2 Abstract Model

In this section, we introduce the de�nition of the correspondence between function calls
and functions, a function library, and the correctness of the two new terms: the function
call term and the function term. Furthermore, OTTR presents several concepts on de-
pendencies between templates. For example, a template directly depends on a template
signature if an instance of the template signature exists in the template body of the tem-
plate [44]. Frog expands these concepts with four new dependencies between functions
and functions and template and functions, as de�ned in the following de�nition in this
section.

De�nition 4.1.1. A function call's a�liated function is the function the function call
executes. A function terms a�liated function is the function it refers to.

4We have not de�ned the syntax of Frog yet. However, the function that multiplies every number in
a list with �ve can be found in Figure 4.21. The function is in the human-readable syntax, which we
outline in Section 4.2.3.

4.2. SYNTAX 35

De�nition 4.1.2. Let F be a function with n parameters, (P1, ..., Pn) and FC be a
function call with n arguments, (A1, ..., An) with F as its a�liated function. Then for
an arbitrary 1 ≤ i ≤ n F Ai's corresponding parameter is Pi.

5

De�nition 4.1.3. A function library is a set of Frog functions.

De�nition 4.1.4. A correct function call is a function call that:

� has a name a�liated with a function in the function library or a variable de�ned in
either the template head or the function head that is explicitly typed as a function.

� has an arity of arguments equal to the arity of parameters in the a�liated function.

� has an arity of generic arguments equal to the arity of generic parameters in the
a�liated function.

� for every argument the type of the argument is a subtype of the corresponding
paramters type.

� for every generic argument the generic argument is a subtype of the corresponding
generic paramters de�ned subtype.

De�nition 4.1.5. A correct function term is a function term that:

� has a name a�liated with a function in the function library.

� has an arity of arguments equal to the arity of parameters in the a�liated function.

� for every generic argument the generic argument is a subtype of the corresponding
generic paramters de�ned subtype.

Moreover, Frog substitutes the arguments into the a�liated function's body when execut-
ing a function call. Thus, the arguments in the function call replace their corresponding
parameter in the a�liated function's function body. Similar as with arguments, generic
arguments replace their corresponding generic parameter in the function body. Frog per-
forms the substitution recursively until Frog reaches a state only containing constants
and base functions. Figure 4.4 illustrates the recursive manner in which Frog substitutes
the parameters and generic parameters with the function calls arguments and generic ar-
guments. As mentioned in Section 2.1.3, some λ-terms never reach β-normal form when
performing β-reductions, hence being non-terminating. Similarly, a Frog function call
may be non-terminating, primarily due to Frog recursive manner.

4.2 Syntax

As introduced in Section 3.4, there are two serialisations of Frog: wOTTR and sTOTTR.
Skjæveland et al. describe sTOTTR as the serialisation of OTTR made for easy reading
and writing by humans, in addition to being compact [45]. On the other hand, the
wOTTR serialisation o�ers the bene�t of leveraging the existing W3C stack, in addition

5The same holds for generic arguments and generic parameters, and with function terms.

36 CHAPTER 4. DESIGN

Figure 4.4: An example of how Frog performs the substitution when executing a function
call.

to tools for developing, publishing and maintaining templates [44]. This section begins
by arguing for the necessity of Frog o�ering two serialisations.

As mentioned, wOTTR is OTTR's RDF serialisation and the preferred choice for pub-
lishing templates. With the addition of Frog, we make it possible to create user-de�ned
functions and apply these functions by creating function calls inside the templates. Thus,
it is natural to assume that a template programmer publishes the Frog functions made
for a template library together with the templates in a similar format. Consequently, we
consider it necessary for Frog to provide a serialisation in RDF. Moreover, OTTR bene�ts
from wOTTR leveraging the existing W3C stack. We argue that to preserve the bene�t
of leveraging the existing W3C stack, everything integrated with OTTR must also be
able to leverage. As a result of the arguments above, we have included an RDF syntax
of Frog.

However, only o�ering an RDF serialisation of Frog proposes a challenge: constructing
several functions requires repetitions. This repetition stems from from how RDF struc-
tures data in triples, resulting in unnecessary metadata that a human does not need to
comprehend. The problem concerning repetition and RDF when creating similar RDF
structures is not new and is, in fact, partially removed when utilising OTTR to produce
an RDF graph. Hence, a template modelling a Frog function could be a solution to
remove tedious repetitions when creating di�erent Frog functions. A template may be
bene�cial when creating the function head. However, providing a template that models
the function body may not be attainable due to the di�culties of creating a template
that can model a general function call. However, we did not �nd an optimal manner of
constructing a template encapsulating the function body in the RDF syntax due to the
special list structure used to represent function calls. Therefore, we propose a second
compact serialisation, similar to sTOTTR, that is compact and easy for a human to read
and write.

We present other bene�ts of a readable serialisation. Firstly, having the human-readable

4.2. SYNTAX 37

serialisation does not require the programmer to understand RDF to produce functions
that the template can use. Hence, we argue that this serialisation allows more people
to create Frog functions. However, this claim is only valid if the syntax is easy to learn
for an experienced programmer. Consequently, we have taken inspiration from other
well-known programming languages' syntaxes when creating Frog's human-readable se-
rialisation. Secondly, having a human-readable serialisation makes it possible to shorten
the function calls, hence shorting the function body, as shown in Figure 4.7 compared to
Figure 4.5.

In summary, Frog provides two serialisations, similar to OTTR: one in RDF and one
compact and easy to read and write for humans. Thus, each OTTR serialisation has a
counterpart in Frog, with similar bene�ts. The rest of this section introduces Frog's two
serialisations.

4.2.1 Similarities in the two syntaxes

Section 4.1.1 mentioned that Frog and OTTR use the same type and term systems,
including the newly introduced function call terms, function terms, and the function
type. Consequently, we have chosen that syntaxes for terms and types in Frog's two
serialisations to be equal to their counterparts in OTTR. Hence, supporting a seamless
integration between OTTR and Frog.

A function call has a similar syntax in both serialisations. LISP languages, such as
Scheme, have inspired the syntax of the function calls in Frog, implying that the function
IRI and the arguments are in the same list. The advantage of using a list structure for
function calls is that lists are an established data structure in RDF. However, utilising
list has its challenges as Section 4.2.2 addresses.

4.2.2 RDF Syntax

In this section, we informally introduce Frog's RDF syntax. Formally, the RDF serialisa-
tion is, as with wOTTR, de�ned by a set of SHACL shapes and OWL vocabulary. Due
to Frog and OTTR having the same terms and types, the SHACL shapes for validating

ex:FtoC a :Function;

:type [:returnType xsd:decimal; :parameterTypes (xsd:decimal)]

:def (:lambda (_:fahrenheit)

(:functionCall fn:times (:typeArgs xsd:decimal)

(:functionCall fn:minus (:typeArgs xsd:decimal) _:fahrenheit 31)

(:functionCall fn:divide (:typeArgs xsd:decimal) 5 9)

)

).

Figure 4.5: An example of a Frog function that converts Fahrenheit to Celcius using the
RDF turtle syntax.

38 CHAPTER 4. DESIGN

terms and types in Frog are equal to those found in wOTTR's speci�cation. Appendix
A.1 contains the RDF syntax's SHACL shape and OWL vocabulary.

Figure 4.6 shows a generalisation of the RDF syntax and how the di�erent components
of a function and function call relate to each other; see Figure 4.5 for an actual Frog
function in the RDF syntax. The following list describes the vocabulary used by Frog's
RDF syntax:

� :Function : For Frog to interpret an IRI as a function, we need to explicitly state
that the type of the IRI is a Function.

� :type de�nes the type of the function, and is a relation between a function IRI and
a blank node representing the type.

� :returnType de�nes a function's return type and relates the blank node represent-
ing the type to a type.

� :parameterTypes de�nes the types of the parameters and relates the blank node
representing a potentially empty list containing the types to the parameters.

� :typeVars de�nes the generic parameters of the function and is a relation between
a function IRI and a list containing blank nodes representing the generic parameter.

� :var de�nes the generic variable of a generic parameter and is a relation between
a blank node representing the generic parameter and a blank node.

� :subtypeOf de�nes the subtype relationship between the generic argument and is
a relation between the blank node representing a generic parameter and a type.

� :def is a relation between the function and a list containing :lambda, a list of the
parameter variables, and the function call, in that speci�c order.

� :lambda is the �rst element in the list containing a second element that is a pa-
rameter list, in addition to a third element that is the function call.

� :functionCall de�nes that Frog should interpret the list as a function call. The
:functionCall needs to be the �rst element of the list.

� :typeArgs de�nes that Frog should interpret the list as a list of generic arguments.
:typeArgs need to be placed at the start of the list. If the list of generic arguments
is present, Frog demands the list to be the second element in the function call list.

� :functionTerm de�nes that Frog should interpret the list as a function term. The
list must consist of three elements, where the �rst element is :functionTerm, the
second element is an IRI referring to a base function or a function in the function
library, and a generic argument list.

4.2. SYNTAX 39

Figure 4.6: A genralisation showing Frog's RDF syntax.

The list problem

As previously presented, the RDF serialisation and the Human Readable syntax use
lists as their syntax for function calls. In addition, the RDF syntax expresses generic
arguments, as seen in Figure 4.5, and function terms with lists. The bene�ts of using
lists are that lists are established structures in RDF. Additionally, as introduced in Section
3.1.1 and by Figure 3.1.5, the Turtle syntax of RDF o�ers a compact form for writing
lists. Moreover, using lists in both syntaxes make them more similar. We argue that
the similarities in the serialisations makes it easier to understand one of the serialisations
based on the other.

However, using lists as function calls proposes a problem in the RDF syntax, namely that
Frog and OTTR can interpret an RDF list where the �rst element is an IRI as either a
function call or a list. For instance, the list (fn:plus 2 3) can have two interpretations.
Firstly, (fn:plus 2 3) can refer to the list containing the elements fn:plus, 2 and 3.
Secondly, (fn:plus 2 3) can refer to the function fn:plus, which adds together 2 and
3.

Additionally, as Figure 4.5 illustrates, we have chosen to express the generic arguments
and function terms with lists for the same reasons as mentioned regarding function calls:
lists being an established ordered compact structure in Turtle. As a result, Frog and
OTTR may interpret a list as a literal list, a function call, a function term, or a list of
generic arguments.

To solve the issues above, we propose that function calls, function terms, and generic
arguments contain a key IRI as the �rst element such that Frog and OTTR decode the
list correctly in their RDF syntaxes. The �rst element in a function call list is the IRI
:functionCall, the �rst element in a function term list is :functionTerm, while the
�rst element in a generic argument list is :typeArgs. As a result, Frog and OTTR
decode (fn:plus 2 3) as a list and (:functionCall fn:plus 2 3) as a function call.
We argue that this explicit solution is less error-prone than an implicit interpretation of
the lists. Additionally, we consider that using key IRIs makes it easier to produce more

40 CHAPTER 4. DESIGN

concrete and correct validation messages.

4.2.3 Human Readable Syntax

We have based Frog's Human Readable syntax (HRS) on well-known programming lan-
guages, such as python, java and LISP. Additionally, since Frog is an integrated part of
OTTR, we have taken inspiration from the stOTTR's syntax of templates when design-
ing the HRS's syntax of functions. In short, a combination of python, java and OTTR
inspires the syntax for the function head and generic arguments. While LISP, on the
other hand, inspires the function body.

def ex:FtoC(xsd:decimal ?fahrenheit) -> xsd:decimal :: (

fn:times<<xsd:decimal>>

(fn:minus<<xsd:decimal>> ?fahrenheit 31)

(fn:divide<<xsd:decimal>> 5 9)

).

Figure 4.7: An example of a Frog function that converts Fahrenheit to Celcius using the
Human Readable syntax.

As previously discussed, the HRS inherits the syntax of terms and types from stOTTR. An
example of this inheritance is the parameter variables that HRS depicts with an question
mark (?) followed by the parameter name precisely like stOTTR. However, there are
consequences of Frog inheriting the syntax terms and types from stOTTR. Namely, some
frequent patterns used to express certain elements in programming languages already
exist, such as arrow brackets (<>) for de�ning generic parameters and arguments. In this
case, the arrow brackets (<>) are already a means to express absolute IRIs, for instance,
<http://ns.frog.ottr.xyz/0.1#functionCall> which is the same as the abbreviated
form of :functionCall. OTTR and Frog using arrow brackets (<>) to express IRIs are
due to them having a subset of Turtle's syntax [45]. As a result, we chose to use double
arrow brackets (<<>>) to express the list of generic parameters and arguments to make
it similar to how Java expresses generics.

Figure 4.8 illustrates a general Frog function in the HRS, while Figure 4.7 shows a real
example of a Frog function written in HRS. The following points summarise some of the
HRS's vocabulary regarding functions; Appendix A.2 contains a complete and formal
de�nition of the HRS.

� The function's name is an IRI uniquely identifying the function. Similarly to the
function name in the RDF syntax and the template name in stOTTR. Before the
function name, def is used to de�ne the start of the function, as in python.

� The list of the generic variables are de�ned inside double arrow brackets (<<>>) and
separated with comma (,). To de�ne what type the generic variable is a subtype
of, we write the keyword subtypeOf between the generic variable and type.

4.3. EXTENDING THE OTTR TYPE SYSTEM 41

Figure 4.8: A �gure illustrating Frog's human readable syntax.

� The list of parameters are de�ned inside parentheses (()) and separated with comma
(,). The HRS de�nes the parameter type before the parameter name, similar to
Java and OTTR.

� The HRS de�nes the return type after the list of parameters with an rigth arrow
(->) followed by the type of the return value.

� Frogs HRS uses a double colon (::) as a distinction between the function head and
body, similar to how sTOTTR seperates the template head and body.

� The function body is de�ned as a function call.

� Every function ends with a period (.) similar to how templates end with an period
(.) in stOTTR.

A function call consists of four parts in a speci�c order: the :functionCall IRI6, the
name of the function it is applying, a possibly empty list of generic arguments, and lastly,
a possibly empty list of arguments. Note that a function call in the HRS is not utilising
stOTTR's means of describing a list by separating the elements with comma (,), but
rather the turtle syntax, separating the elements with spaces. Consequently, making it
easier to separate lists and function calls, compared to the RDF syntax. However, Frog
and OTTR interpret a function call with no arguments as both a list and a function
call. Therefore, we have designed function calls such that it is mandatory to use the
IRI :functionCall on a function call with an empty list of arguments. In all other
cases, using the :functionCall IRI is optional. Moreover, the HRS expresses the list
of generic arguments similar to how it expresses generic parameters, with double arrow
brackets (<<>>) and comma (,) for separation.

4.3 Extending the OTTR type system

This section discusses the necessity for a new type, the Function type, in the OTTR type
system. Furthermore, we discuss the criteria for the function type and formally de�ne

6The :functionCall is optional if there are one or more arguments.

42 CHAPTER 4. DESIGN

def ex:higherOrder(Function<xsd:integer, xsd:integer, xsd:integer> ?fn)

-> xsd:integer :: (

?fn 5 6

).

Figure 4.9: An example of an higher-order function in Frog, which in this case takes in
a function.

ex:TWFP[Function<xsd:integer, xsd:integer> ?fn, xsd:integer ?nb] :: {

ottr:Triple(ex:Test, ex:functionResult (?fn ?nb))

} .

Figure 4.10: An example of a OTTR template where one of the parameters are a function.

the type and the subtype relationship between function types. Finally, we address the
syntax of the function type and the various serialisations of OTTR and Frog.

The primary reason for needing a function type is for OTTR and Frog to be able to
perform correct validations. OTTR and Frog validate that an argument in an instance
or a function call is compatible with the type of the corresponding parameter. The
mOTTR speci�cation de�nes every term as a valid argument [21]. Consequently, the
newly introduced terms must have a type. As Section 4.1.2 mentioned, a function call
evaluates to a term that is not a function call; thus, the type of a function call is the
return type of its a�liated function. Therefore, the function call term does not require a
new type.

However, the OTTR type system does not contain a natural type for a function term. As
illustrated by Figures 4.9 and 4.10, both templates and functions can contain function
calls where the function is a parameter variable. OTTR and Frog have to validate that
the function call is correct, which we elaborate on in Section 4.5. A criteria for a function
call to be correct is that the name either is a parameter variable of the function type,
an IRI refering to function in the function library or an IRI refering to a base function.
Consequently, OTTR and Frog need to know explicitly that the parameter variable is in
fact a function. Moreover, a function call is only valid if every argument is a subtype
of the corresponding parameter's type; as a result, OTTR and Frog need to know the
type of the parameter variable's parameter types. Finally, as OTTR and Frog validate
the correctness of the arguments, they need to know the type of the function call. As
previously stated, the type of the function call depends on the return type of its a�liated
function. Thus, OTTR and Frog need to know the return type of a variable used as a
function in a function call.

Another argument for introducing a function type is that an IRI can both represent an
IRI and a function without any generic arguments. Having a function type makes it clear

4.3. EXTENDING THE OTTR TYPE SYSTEM 43

for OTTR and Frog whether they should interpret a term as an IRI or a function7.

The previous paragraphs express the need for a new type representing the function terms,
where we can retrieve information regarding the types of the parameters and return value.
Consequently, we have constructed a function type that contains n type arguments, where
the type arguments 0 to n− 1 represent the parameter types and argument n represents
the return type. A valid function term contains at least one type argument since every
function has a return type. De�nition 4.3.1 formally de�nes a Function term, while
De�nition 4.3.2 de�nes the function type's subtype relationship.

De�nition 4.3.1. The Function type takes in n other types as type arguments,
Function<T1,...,Tn>, where T1,...,Tn−1 is the type of the function parameters, and Tn
is the functions return type. n > 0, as every function has a return type. We assume that
there is one type Function< P1, ..., Pn > per combination of P0, ..., Pn, where P0, ..., Pn
can be any other type.

De�nition 4.3.2. The function type Function< P1, ..., Pn > is a subtype of the type T
if T is TOP or if T is the function type Function< T1, ..., Tm > where n = m and for
any 1 ≤ i ≤ n− 1 Ti is supertype of Pi and Pn is a subtype of Tm

4.3.1 Syntax of the function type

The syntax for the LUB and lists from OTTR types has inspired the syntax for the
function type8. wOTTR expresses the list and LUB types through RDF lists of IRIs.
Where rdf:List and ottr:NEList denotes the List and NEList9 type, respectively,
and ottr:LUB denotes the LUB type [25]. For instance, (rdf:List ottr:NEList xsd:

string) is the type of a List containing NEList, which further contains strings. More-
over, (ottr:LUB xsd:integer) denotes the LUB-type over the integer type. Similar to
the list and LUB types, the RDF serialisation of OTTR and Frog also construct the func-
tion type from RDF lists and IRI, where the IRI :Function denotes a function. However,
one function type may contain several type arguments; thus, we need to be able to sep-
arate the type arguments. The syntax of Frog function type in the RDF serialisation
permits nested lists, in contrast to the LUB and lists types. (:Function (rdf:List

xsd:integer)(:Function xsd:integer xsd:string)xsd:string) is an example of a
function type in the RDF serialisations. This function type is the type of every function
taking in a list of integers and a function that takes in an integer and returns a string,
and returns a string.

Moreover, stOTTR depicts the LUB and list type with a keyword, LUB for the LUB-type
and List and NEList for the two list types, and with the type argument inside arrow
brackets (<>). stOTTR expresses the examples given in the previous paragraph as List
<NEList<xsd:string>> for the list containing lists of strings and LUB<xsd:integer>

7Note that if a term that can be interpreted as a function term and an IRI term with a corresponding
parameter that has the type TOP, then the argument is interpreted as an IRI term.

8As mentioned in Section 4.2, Appendix A stores the formal de�nitions of the syntax, including the
Function type, for both serialisations.

9Non empty list.

44 CHAPTER 4. DESIGN

for the LUB-type of xsd:integer. Similarly, the function type has a keyword, namely
Function, and stores the type arguments in <>. However, as previously mentioned, the
function type can contain numerous type arguments. We separate type arguments with
comma (,). The stOTTR syntax and the HRS express the function in the previous section
as Function<Function<List<xsd:integer>, Function<xsd:integer, xsd:string>,

xsd:string>.

4.4 Generic type

In Section 4.1, we presented that Frog functions have generic parameters and that function
calls have generic arguments. In other words, Frog is a generically typed language. In
this section, we show a problem that occurs if Frog were not a generically typed language.
Furthermore, we introduce and discuss two solutions to solve this problem, where one of
these is now part of the design of Frog. Note that, to illustrate the problem and possible
solutions, the discussions in this section assume that Frog is not a generically typed
language. Finally, we elaborate on Frog's generic type and de�ne its subtype relations.

Frog is a statically typed language and uses the OTTR type system. However, Frog
and OTTR being statically typed introduce a problem. As mentioned in Section 4.1.1,
a function call's type equals its a�liated function's return type. OTTR and Frog need
to know the type of a function call to perform validation over arguments in instances
and function calls separately. Imagine that we have the base function fn:plus with type
Function<owl:real, owl:real, owl:real>, as owl:real is the supertype of several
numeric types, see Figure 4.11. Furthermore, we want to create a function call on function
fn:plus, (fn:plus 1 2) and use it as an argument in an instance that expects the
argument's type to be a subtype of xsd:integer. We may assume that this would be
valid since the evaluated value of the function call is 3, which has the type xsd:integer.
However, the instance considers the function call to have type owl:real, which is not a
subtype of xsd:integer, thus, producing an error message. Consequently, we need to
produce a new base function fn:plusInteger with type Function<xsd:integer, xsd:

integer, xsd:integer>, with the same semantics as fn:plus.

To further generalise, since the OTTR type system has 18 di�erent numeric types, we
would need to produce 18 functions with the semantics of fn:plus but with di�erent types
to get the desired return type. Appending the numeric functions times and minus, would
require Frog to provide 54 functions. Creating these 54 functions is time-consuming and

Figure 4.11: Shows the numeric types in the OTTR type system. The �gure is an excerpt
of the �gure of the OTTR type system found in the rOTTR spec[25].

4.4. GENERIC TYPE 45

fn:plus[ottr:IRI ?name, ottr:IRI ?type]

:: {

o-rdf:Type(?name, :BaseFunction),

ottr:Triple(?name, :type, _:type),

ottr:Triple(_:type, :returnType, ?type),

ottr:Triple(_:type, :parameterType,

(?type, ?type)),

ottr:Triple(?name, :rule, op:numeric-add),

ottr:Triple(_:typeVar, :var, ?type),

ottr:Triple(_:typeVar, :subtypeOf,

owl:real),

ottr:Triple(?name, :typeVars,

(_:typeVar))

} .

result of expandinc the instance:

fn:plus(fn:plusInteger, xsd:integer).

fn:plusInteger a :BaseFunction ;

:rule op:numeric-add ;

:type [:parameterType (xsd:integer

xsd:integer);

:returnType xsd:integer];

:typeVars ([:subtypeOf owl:real;

:var xsd:integer]).

Figure 4.12: On the left: an example of how a template generating an fn:plus

base function could have looked. One the right: the result of expanding the instance
fn:plus(fn:plusInteger, xsd:integer), resulting in a Frog base function in the RDF
serilaisation.

contains many repetitions. Hence, not compatible with OTTR's bene�t of Don't repeat
yourself.

A solution to this problem could be to use the already existing OTTR type, the LUB
type. A LUB<P> is a subtype of P, thus a subtype of every supertypes of P. In addi-
tion, LUB<P> is compatible with every subtype of P [21]. We could de�ne the type of
the fn:plus function to have the type Function<owl:real,owl:real,LUB<owl:real>>
. Then a function call on fn:plus would be compatible with every subtype of owl:real
and every supertypes of owl:real, including xsd:integer. However, the function call
(fn:plus 2.3 2.3) evaluates to the term 4.6 with the type xsd:decimal, which is not
compatible with xsd:integer. Consequently, the LUB type is not a suitable solution to
solve the aformentioned problem as it is too general and does not provide any form of
restrictions10.

The previous paragraphs illustrate the need for a restrictive and straightforward approach
to create base and Frog functions with the same semantics but di�erent typing. The fol-
lowing paragraphs introduce two di�erent solutions: generating functions through OTTR
templates and Frog being a generically typed language.

The �rst proposed solution is to generate functions through templates that, when ex-
panded, create functions in Frog's RDF serialisation. We suggest a form for import in
the Frog and OTTR documents to expand the instances, such as @importFunction fn:

plus(fn:plusInteger, xsd:integer) in the HRS. Figure 4.12 illustrates the fn:plus
template and shows the result of expanding the instance above. When importing a func-

10Using the LUB type would also not have worked when validating function calls in functions because
Frog uses a subtype of validation and not compatible validation. Section 4.5 discusses Frog's validations.

46 CHAPTER 4. DESIGN

def ex:plus2<<?T subtypeOf owl:real>>(?T ?number) -> ?T :: (

fn:plus<<?T>> ?number (fn:plus<<?T>> ?number ?number)

).

Figure 4.13: An example of a generic function, which takes in a number and adds it with
itself three times. As the �gure shows, we can utilise the generic arguments as parameter
types, return type and generic arguments in the function body.

tion in an OTTR or Frog document, we could create function calls on the imported
function in the template or function body. The following discussion refers to this solution
as generated functions.

Another approach is to make Frog a generically typed language, such as Java. As Fig-
ure 4.13 illustrates, a function can specify its generic parameters with a variable and
be restricted by a subtype-relation on a type. The function call speci�es generic argu-
ments that need to be a subtype of the established subtype de�ned in the correspond-
ing generic parameter. OTTR and Frog would then consider the type of the function
(fn:plus2<<xsd:integer>> 1) to be xsd:integer; beacause substituting the generic
variables with these generic arguments into the function fn:plus2 results to the type
Function<xsd:integer,xsd:integer>. We formally de�ne this point in De�nition 4.4.1.

De�nition 4.4.1. Let G be a function with generic parameters ?K1,...,?Kn and type
Function<?K1, ... ,?Kn>. Let FC be a function call of function G with generic
arguments T1,...,Tn in the function or template body of function or template F. Then F
regards the type of function G to be Function<T1, ... ,Tn> in the context of FC.

We have chosen to make Frog a generically typed language instead of using generated
functions. The reason behind this choice is that using the templates would have required
the Frog function programmers to create templates based on the RDF syntaxes. However,
we assume the Frog function programmer's preferred choice of syntax to be HRS. Another
bene�t of o�ering generic functions is that Frog is not dependent on OTTR. On the other
hand, the generated functions are dependent on OTTR, as Frog and OTTR produce the
generated functions from templates. These templates can contain function calls, creating
an unwanted cyclic dependency relationship between OTTR and Frog; because Frog
depends on OTTR templates, and OTTR templates depend on Frog function calls.

Moreover, a generic variable P with a subtype relation to the type T is a subtype of
T hence also a subtype of T's supertypes. If we introduce another generic variable K,
also with a subtype relation to the type T, then we know that P and K have a common
supertype. However, that does not mean that these types have a subtype relationship.
For instance, if T is rdfs:Literal, then it is valid that P is xsd:string while K is
xsd:integer, neither of these types is a subtype of the other type. Consequently, a
generic parameter is never a subtype of another generic parameter.

In summary, we have created Frog to be a generically typed language to remove tedious
repetitions when creating functions. Using generated functions was also discussed, but we

4.5. VALIDATION 47

considered it suboptimal compared to the generic solution. The last paragraph introduced
the subtype relation on a generic parameter and the following de�nitions de�ne the valid
use of generic arguments.

De�nition 4.4.2. Let F be a function with the generic parameters ?K1,...,?Kn with
subtypes P1,...,Pn.
Let FC be a function call on function F with generic arguments T1,...,Tn.

Then, if FC is in the function body of function G, FC is a correct generic typed

function call if the following properties holds for every Ti 1 ≤ i ≤ n:

� Ti is a subtype of Pi, if Ti ∈ OTTR types, or

� Ti is a generic parameter de�ned in the function head of G that is de�ned to be a
subtype of Q such that Q is a subtype of Pi.

Then, if FC is in a template body, FC is a correct generic typed function call if for
every 1 ≤ i ≤ n Ti need to be a subtype of Pi and Ti ∈ OTTR types.

4.5 Validation

In this section, we discuss the validation, both regarding OTTR and Frog. We discuss how
the two terms introduced by Frog require validation when used both in OTTR templates
and Frog functions. Moreover, we argue why OTTR require that Frog validates its
functions and presents the required validations.

4.5.1 Validation on function call and Function term

Frog has, as mentioned, introduced two new terms to the OTTR type system, namely,
the function call and function term. The newly introduced terms di�er from the other
terms because they have a de�nition of correctness; see De�nitions 4.1.4 and 4.1.5. We
have made these de�nitions to ensure that expansion with function calls and function
terms does not produce unwanted errors. For instance, an error would occur if we have
a function term referring to a non-de�ned function. Consequently, OTTR and Frog need
to validate the correctness of terms used as arguments in instances and function calls
according to the following de�nitions.

De�nition 4.5.1. An instance or function call has term correctness if every term,
with a de�nition of correctness, used as an argument value in the instance or function
call is correct.

De�nition 4.5.2. A template has term correctness if every instance in the template
body and every default value in the template head has term correctness.

De�nition 4.5.3. A function has term correctness if every function call in the func-
tion body has term correctness.

Checking if an object satisfy any of the de�nitions mentioned above require OTTR and
Frog to perform the following validation on function terms:

48 CHAPTER 4. DESIGN

� The IRI refers to either a base function or a function in the function library.

� The arity of generic arguments is equivalent to the arity of generic parameters in
the a�liated function.

� A generic argument is a subtype of the corresponding generic parameter in the
a�liated function.

Additionally, OTTR and Frog are by de�nition, required to execute the subsequent vali-
dations on function call terms:

� The function call name either refers to a de�ned parameter11 of the function type
or an IRI referring to a base function or a function in the function library.

� The arity of generic arguments is equivalent to the arity of generic parameters in
the a�liated function.

� A generic argument is a subtype of the corresponding generic parameter in the
a�liated function.

� The arity of arguments is equivalent to the arity of parameters in the a�liated
function.

� An argument must be a subtype of the corresponding parameter's type in the
a�liated function.

Moreover, the mOTTR speci�cation de�nes what a semi-valid template library is by
listing a set of criteria [21]. We need to add the criteria that every template in a semi-
valid template library must have term correctness. Additionally, we need to rede�ne a
valid template dataset, also de�ned by the mOTTR speci�cation [21], as the following:

De�nition 4.5.4. A valid template dataset is a template dataset where:

� its template library is valid, and

� its set of instances is consistently typed, has term correctness, and has referential
integrity with respect to the template library.

4.5.2 Validation on Frog functions

OTTR requires an argument value's inferred type to be compatible with the corresponding
parameter's type [21]. As previously mentioned, a function call's type is the type of the
a�liated function's return type. Hence, when validating, OTTR uses the return type of
a function call's a�liated function. However, a function head's de�ned return type may
not correspond with the actual return value. Function ex:wrongReturnType in Figure
4.14 is an example of a function where the return type is incorrect. The function body
returns a term with type xsd:string while the function head states that the return type

11If the function call is in a template, the parameter needs to be de�ned in the template head. However,
suppose the function call is de�ned in a function body. In that case, the function head need to de�ne
the parameter.

4.5. VALIDATION 49

def ex:wrongReturnType(xsd:String ?str) -> xsd:integer :: (

(fn:concat ?str ?str)

).

Figure 4.14: An example of a function where the type of the value returned by the function
and the return type stated in the function head is not compatible (fn:concat is a base
funtion taking in two strings and returns a concatinated string).

is of type xsd:integer. Consequently, Frog must validate that the type of the function
body12 is a subtype of the function's return type. Additionally, Frog needs to ensure that
a function has term correctness.

De�nition 4.4.2 states that if a function call occurs in a function body and contains a
generic argument that is a variable, then the generic parameter must be de�ned by the
function. Therefore, Frog is required to validate that every generic argument that is a
variable is de�ned as a generic parameter in the function head. Lastly, Frog must validate
that a function head de�nes every parameter used in the function body. De�nition 4.5.5
formally de�nes a valid function based on the discussions above.

De�nition 4.5.5. A valid function is a function that:

� has term correctness, from De�nition 4.5.3.

� has de�ned every generic parameter variable used as a generic argument in the
function body, from De�nition 4.4.2.

� has de�ned every parameter variable used as an argument in the function body.

� the type of the function body is a subtype of the function head's return type

A function call does not only require the a�liated function to be valid but also that
every function this function depends on is valid; hence De�nition 4.5.6. However, it
is not enough to validate that every function that a template library depends on is a
dependency-valid function, since functions may be taken in as parameters from ground
instances. Consequently, it is impossible to determine which functions to validate from
the templates in a template library. Therefore, we suggest that Frog validates that every
function in the function library is valid, see De�nition 4.5.7.

De�nition 4.5.6. A dependency-valid function is a function where:

� it is a valid function, and

� every function it depends on is a valid function.

De�nition 4.5.7. A valid function library is a function library where every function
is valid.

12The type of the function body is the type of the function body's function call.

50 CHAPTER 4. DESIGN

Figure 4.15: The dependencies between the di�erent validations.

4.5.3 The three phases of validating Frog functions

The previous section has discussed what to validate in a Frog function. However, the
section does not discuss in which order Frog should perform the validations. The purpose
is for Frog to �nd as many validation errors as possible. However, some validations
depends on one or more of the other validations. For instance, to validate that the arity
of arguments is correct, Frog needs to know that the a�liated function exists; since Frog
compares the arity of arguments to the arity of parameters in the associated function.
The same validation must be performed before validating the arity of generic arguments.
Figure 4.15 de�nes the dependency relationship between the validations13.

Consequently, we have divided the validation into three phases. Phase one validates
that the function calls and function terms refer to an existing function. Additionally,
phase one validates that there are non-unde�ned parameters or generic parameters in the
function body. The second phase validates that the function calls in the function body
have the correct arity of arguments and generic arguments. The third phase validates
that the arguments and generic arguments are subtypes of their corresponding parameter
or generic parameter and that the return type is valid. The �owchart in Figure 4.16
illustrates the three phases.

4.5.4 Validation warnings

Messages in OTTR have four di�erent severity degrees: info, warning, error, and fatal. By
default, OTTR does not expand the instances if a message with the severity degree error
or higher is present14. The validation previously introduced in this section is necessary
for the expansion to proceed, consequently having the severity degree error. However, we
wish to provide messages on unused parameters and generic parameters. Having unused
parameters and generic parameters requires the function call to provide arguments that
the function never uses. Unused parameters and generic parameters do not hinder Frog
from being able to evaluate the function calls, hence not hindering the expansion of the

13Note that the dependency relationship between validations points is transitive.
14In Lutra, we can specify this degree in the execution

4.6. EVALUATION 51

Figure 4.16: The phases and �ow of validating a function.

instances. Therefore, Frog provides two validations, one for unused parameters and one
for unused generic parameters, that produce messages with the severity degree warning.

4.6 Evaluation

This section discusses which evaluation strategy or approach we believe is most suitable
for Frog and OTTR. Firstly, we argue why lazy evaluation is appropriate for Frog, and
lastly, we argue that an eager approach is most suitable when OTTR determines when
to evaluate a function call.

4.6.1 Arguments for lazy evaluation

In Section 2.3, we introduced eager and lazy evaluations and compared them. When it
comes to Frog, the primary purpose of an evaluation strategy is to avoid unnecessary
evaluations. Especially regarding base functions, as we assume that computing the base
functions is the most time-consuming process when evaluating a function call. Therefore
we propose that lazy evaluation is the most suitable evaluation strategy, as opposed to
an eager evaluation strategy.

A bene�t of using lazy evaluation is that Frog only needs to evaluate a function call
when Frog, by de�nition, needs the evaluated value. Hence, we need to de�ne when we
require Frog the evaluate a function call. In Section 4.1.1, we introduced the two types of
functions: base functions and Frog functions. As mentioned, base functions performs a
single task, such as adding two numbers together. On the other hand, Frog functions are
a means of combining base and Frog functions. Since a Frog function only combines other
functions, they do not need Frog to evaluate their arguments. However, the base functions

52 CHAPTER 4. DESIGN

def ex:biggestNumberList

(xsd:integer ?n1, xsd:integer ?n2, List<xsd:integers> ?lst)

-> List<xsd:integers> :: (

fn:if << List<xsd:integers> >> (fn:greaterThan ?n1 ?n2)

?lst

()

).

Figure 4.17: A function taking in two number and a list, returning the list if the �rst
number is bigger than the second, if not the function returns an empty list.

always require Frog to evaluate at least one of their arguments. The fn:plus function, for
instance, requires Frog to evaluate both of the arguments to be able to summarise them.
On the other hand, the if-function only requires Frog to evaluate the �rst argument, the
boolean, and then evaluate either the second or third argument based on the result of
the �rst argument. Consequently, the base function has a di�erent de�nition of when to
evaluate an argument. Therefore, for Frog to implement lazy evaluation, we chose that
Frog only evaluates a function call when a base function requires it.

Moreover, we believe that an eager evaluation approach would have resulted in unneces-
sary evaluations and calculations on base functions when evaluating function calls. We
mostly believe that evaluations over the base functions are time-consuming, particularly
the base functions based on XPath; since an implementation of Frog most likely rely
on an already existing library to execute the XPath function. Figure 4.18 illustrates
the contrast in the number of evaluations performed by Frog to evaluate the function call
(ex:biggestNumberList 5 6 (ex:multiplyNumbers (1)))15 in the two evaluation ap-
proaches. The reason for the signi�cant contrasts in eager and lazy evaluation, in this
case, is that eager evaluation evaluates the arguments before substituting them into the
function. The result of eager evaluation evaluating every argument is that the function
call (ex:multiplyNumbers (1)) is evaluated even though it is never used. In contrast,
lazy evaluation postpones evaluating the arguments until they are needed, resulting in
function call (ex:multiplyNumbers (1)) never being evaluated. Note that in this case,
the amount of evaluation needed when using eager evaluation increases linearly16 when
appending elements to the list argument. In contrast, lazy evaluation has a constant
amount of evaluations17.

An additional bene�t of Lazy evaluation is memoisation, which is achievable due to Frog
being a purely functional programming language. Memoisation ensures that Frog only
evaluates an expression once, retrieving the result from a look-up table if Frog previously
has evaluated the function call. The function call (fn:plus<<xsd:integer>> (fn:plus

<<xsd:integer>> 2 2)(fn:plus<<xsd:integer>> 2 2)) is a simple example of why
memoisation in Frog is bene�cial. Without memoisation, Frog would have needed to

15ex:biggestNumberList is found in Figure 4.17 while ex:multiplyNumbers is found in Figure 4.21.
16To be precise 4n + 3, where n is the number of elements in the list.
17To be precise 1.

4.6. EVALUATION 53

Figure 4.18: Illustrates how the evaluation looks when using ea-
ger evaluation compared to lazy evaluation on the function call
(ex:biggestNumberList 5 6 (ex:multiplyNumbers (1))), utilising the functions from
Figure 4.17 and Figure 4.21. The generic syntax is removed to save place.

evaluate (fn:plus<<xsd:integer>> 2 2) twice.

To summarise, we propose that lazy evaluation is the most appropriate evaluation strategy
for Frog since lazy evaluation only evaluates the function calls when required and only
once due to memoisation.

4.6.2 Evaluation in OTTR

Evaluation in OTTR refers to when OTTR should evaluate the function calls in the
instances. We suggest two approaches, �rstly, an more eager approach, which evaluates
the function calls as soon as OTTR reaches the instance containing the function call and
before expanding the instance. In other words, substituting the function call with the
evaluated result as soon as possible. Secondly, to evaluate the function calls when they
reach a base template, a non-strict evaluation strategy.

When producing OTTR templates, OTTR does not require us to utilise every parameter
in the template body, even though OTTR throws a warning message when OTTR �nds an
unused parameter. Therefore, we can not guarantee that every argument is required for
expansion when creating an instance. Figure 4.19 is an example of a template that does

54 CHAPTER 4. DESIGN

ex:person [ottr:IRI ?person, xsd:string ?name,

xsd:integer ?age, xsd:string ?address] :: {

ottr:Triple(?person, ex:hasAge, ?age),

ottr:Triple(?person, ex:hasAge2, ?age),

ottr:Triple(?person, ex:lives, ?address)

} .

Figure 4.19: An example of a OTTR template that contains an unused parameter, namely
?name.

ex:person(ex:Per, (ex:concatName "Peter" "Jensen"), 25, "Oslo street 12").

Figure 4.20: An example instance of the template found in Figure 4.19, where
ex:concatName is the function the �rst and last name together with space between the
names.

not use every parameter. If we were to utilise the eager approach, OTTR might evaluate
unnecessary functions calls, as the template does not require the corresponding parameter
to be utilised in the template body. When using an eager strategy, expanding the instance
from Figure 4.20 would result in OTTR evaluating the ex:concatName function call even
though this evaluation is not necessary for the expansion of an instance. On the other
hand, using a non-strict evaluation strategy would result in OTTR solely evaluating the
function calls when it reaches a base template, hence only evaluating the function call
when OTTR needs the evaluated value for an expansion. Expanding the instance from
Figure 4.20 would result in OTTR never evaluating the ex:concatName function call
when utilising a non-strict evaluation strategy.

Nonetheless, using a non-strick approach to evaluate the function call may lead to OTTR
executing the same function several times. For example, the instance ex:person(ex:

Peter "Peter Jensen"(fn:minus 25 1)) from the template found in Figure 4.19 would
result in OTTR evaluating the fn:minus function call twice since the template uses the
parameter in two base templates. The number of base templates a function call reaches
may be numerous in other cases. On the other hand, the eager strategy would only
evaluate the function call once because OTTR would substitute the function call with
the evaluate value. However, utilising a non-strick approach would, in practice, result in
OTTR only evaluating the function call once since Frog uses memoisation.

Using a non-strict approach in the manner described above destroys OTTR's semantics
for the expansion of instances. As described in Section 3.4.4, OTTR does not expand
an instance if an argument is none and the corresponding parameter is not optional
and has no default value. Frog evaluates a function call to none if one of the values
needed to perform the calculations is none. For example, Frog evaluates the function call
(fn:plus 5 none) evaluates to none. Additionally, there are also other function calls
that evaluates to none, such as (fn:head (none 1 2 3)). However, OTTR does not
consider a function call a none value. Therefore OTTR needs to evaluate the function

4.6. EVALUATION 55

ex:multiplyNumbers(List<xsd:integer> ?lst) -> List<xsd:integer> :: (

(fn:if<< List<xsd:integer> >> (fn:isEmpty ?lst)

()

(fn:cons<<xsd:integer>>

(fn:times<<xsd:integer>> (fn:head<<xsd:integer>> ?lst) 5)

(ex:multiplyNumbers (fn:tail<<xsd:integer>> ?lst))

)

)

).

Figure 4.21: A function multiplying every number in the list with 5. The result of evalu-
ating the function call (ex:multiplyNumbers (1 2 3)) whould be (5 10 15).

#instance

ex:Person(ex:Per, (ex:concatName "Peter" "Jensen"),

25, (fn:concat "Oslo street" none))

Result of expanding without hanlding possible none values

ex:Per ex:hasAge 25;

ex:hasAge2 25.

Figure 4.22: Shows the exapnsion with the incorrect non-strict approach. The expansion
should have evaluated to an empty set of triples not a set with two tripels.

call to check if the value is none. Figure 4.22 illustrates that OTTR expands too much
when using a non-strict approach that does not consider that a function call can evaluate
to none. In the case of Figure 4.22 , OTTR, by de�nition, should not expand the instance
at all because (fn:concat "Oslo street"none) evaluates to none.

There are two additional reasons why a non-strict approach in OTTR is not suitable. The
�rst reason is strongly associated with the reason described in the previous paragraph.
However, this reason focuses more on the default value. OTTR uses the default value if
the provided argument value is none. As mentioned, OTTR does not consider a function
call as none. Hence, OTTR does not replace a function call that evaluates to none with
the default value if the corresponding has de�ned a default value. Moreover, as described
in Section 3.4.4, OTTR generates new instances based on the type of list expander and
the list arguments marked with a list expander. Consequently, OTTR needs to know the
value the function cmall evaluates to if it is marked with a list expander; since OTTR
needs the evaluated value to be able to generate the new instances.

Due to the aforementioned reasons, we argue that a non-strict approach is not suitable
for OTTR to determine when to evaluate a function call. Using an eager approach is

56 CHAPTER 4. DESIGN

inconvenient because OTTR may evaluate unnecessary function calls, as illustrated by
Figure 4.19 and Figure 4.20. However, an eager approach does not ruin OTTR's expansion
semantics in contrast to a non-strict approach. Therefore, OTTR uses an eager approach
to determine when to evaluate function calls.

4.7 Discussion and conclusions

In this chapter, we discussed the design of Frog. We have designed Frog to integrate with
OTTR seamlessly. In summary, we made the following choices to ensure this seamless
integration:

� OTTR and Frog have the same term and type system

� The syntax of the terms and types are equal in Frog and OTTR.

� A Frog function call is a valid and integrated term in OTTR.

� Frog is a typed language for OTTR to be able to validate that a function call
argument is compatible with its corresponding parameter type.

� Frog performs necessary validation on functions to ensure that OTTR's validations
still are valid.

� The evaluation of a Frog function call does not con�ict with the OTTR expansion
semantics due to OTTR using an eager evaluation strategy to evaluate function
calls.

� Introducing generics to minimise the number of functions with the same semantics.

Chapter 5

Implementation

In this chapter, we discuss the implementation of Frog in OTTR's reference implemen-
tation OTTR, Lutra1. Our implementation of Lutra with Frog is publicly available on
GitLab2.The �rst section shortly introduces the relevant parts of Lutra required for com-
prehending the subsequent sections. Most sections discuss Frog's implementation in iso-
lation and regard parsing, validation, and evaluation. However, the last section, Section
5.6, describes the changes performed in Lutra's OTTR implementation to integrate Frog.
Lutra is a Java implementation of OTTR; hence, we wrote this Frog implementation in
Java.

Figure 5.1 illustrates the main steps of Lutra's Frog implementation and how these steps
connect. In short, the implementation of Frog starts by parsing Frog functions, either in
the RDF syntax or the HRS, into Java objects. We discuss this parsing in Section 5.3.
Secondly, the implementation validates that the Function library is valid, as de�ned by
De�nition 4.5.7. As illustrated by Figure 5.1, validating the Frog functions is a three-step
process:

1. Transforming the function into a RDF query syntax made for querying over, referred
to as the RDF query syntax.

1Lutra is open source and can be found on the following link https://gitlab.com/ottr/lutra/

lutra.
2This is a fork of Lutra, and known issues regarding the Frog implementation can be found on the

issues page. https://gitlab.com/marlenjarholt/lutra-

Figure 5.1: The basic �ow of Lutra's Frog implementation in isolation.

57

https://gitlab.com/ottr/lutra/lutra
https://gitlab.com/ottr/lutra/lutra
https://gitlab.com/marlenjarholt/lutra

58 CHAPTER 5. IMPLEMENTATION

2. Validating the �rst and second validation phases with SPARQL.

3. Validating the third validation phase with a pure Java implementation.

Section 5.4 describes the implementation of the validation step. Lastly, section 5.5 intro-
duces the evaluation of function calls.

These three steps depend on their previous step to be able to proceed. Hence, this implies
that the validation step requires Lutra to complete the parsing step without causing error
messages to proceed. Additionally, Lutra only evaluates function calls if it �nishes the
validation step without producing any error messages.

The following pre�xes will be utilised in this section:

@prefix ex: <http://example.xyz/ns/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix fn: <http://ns.frog.ottr.xyz/0.1/function/> .

@prefix : <http://ns.frog.ottr.xyz/0.1#> .

@prefix frog: <http://ns.frog.ottr.xyz/0.1#> .

@prefix ottr: <http://ns.ottr.xyz/0.4/> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix shsh: <http://www.w3.org/ns/shacl-shacl#> .

@prefix sh: <http://www.w3.org/ns/shacl#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

5.1 Overview of Lutra's OTTR implementation

As mentioned, we implement our Frog implementation into Lutra, which is the reference
implementation of OTTR. This section discusses Lutra's implementation of OTTR tem-
plates and instances relevant to the Frog implementation. Lutra o�ers a command line
interface3 that, among other things, reads templates and instances and expand instances.
Similarly to the Frog implementation, the implementation of this command line interface
can be considered to consist of three parts: parsing templates and instances into objects,
validating the templates, and expanding the ground instances.

Lutra parsers templates and instances in the wOTTR and stOTTR serialisations into
objects4. This parsing includes parsing terms and types. Since Frog and OTTR have
the same term and type system, we can reuse the already established parsing and object
implementation on terms and types in the implementation of Frog. Expanding the Lutra
implementation with Frog requires parsing and objects on the two new terms, the function
term and the function call, the new type, the function type, and lastly, parsers for Frog
functions.

Furthermore, the two serialisations of OTTR, wOTTR and stOTTR, apply two di�erent
technologies for parsing. On the one hand, wOTTR uses Jena. Jena or Apache Jena is a

3The command line interface for Lutra can be found her https://ottr.xyz/#Lutra.
4Additionally, bOTTR and tabOTTR data from mappings and tabular �les into instance objects.

https://ottr.xyz/#Lutra

5.1. OVERVIEW OF LUTRA'S OTTR IMPLEMENTATION 59

framework built for integrating semantic web and linked data technologies and applica-
tions in Java. The Jena framework can parse RDF data in di�erent RDF serialisations
and executing SPARQL queries [35]. One of Jena's interfaces allows us to extract speci�c
information from a graph, for instance, extracting every resource of a speci�c class or ev-
ery object in a triple with a distinct predicate. wOTTR utilises this interface to extract
data on the templates and instances in an RDF �le and programmatically veri�es that
the templates and instances contain the required information in the correct structure5.
On the other hand, stOTTR uses ANTLR v46. ANTLR v4 is a library made to describe
grammar formally and translate grammar into parsing code that is both executable and
human-readable [32]. stOTTR, therefore, has its grammar formally described by an
ANTLR grammar. The stOTTR speci�cation [20] contains stOTTR's ANTLR gram-
mar. When parsing stOTTR, ANTLR produces error messages when the given �le does
not match the grammar.

Lutra performs two types of validations: validation on templates and validation on in-
stances during the expansion. The latter is optional and implemented in pure Java. On
the other hand, template validation is mandatory, and Lutra implements these validations
through queries written for Lutra's self-de�ned query language. In short, a query is a
stream of tuples; where Tuple is a class that consists of a map, mapping a string, denoting
a variable, to an object. The queries use a Tuple object to bind and extract data during
querying. To build up a query, we combine di�erent queries through query connectors:
and, or, and not. Some frequently used queries are the query that �nd every template
and the query that �nds every instance in a template. Code 5.1.1 shows a query that
�nds every instance in every template by applying the previous queries. Lutra's queries
query for errors in the templates and produce error messages, hence validating them.

Code 5.1.1. An exaple of the query needed to �nd every instance in every template.

1 /*one stream for each template in the function body

2 binds the string Temp to the template in the tuple*/

3 Query.template("Temp")

4 /* findes every instance in the function body of Temp

5 and bind the instance to Inst (on stream per instance)*/

6 .and(Query.bodyInstance("Temp", "Inst"));

Finally, we describe Lutra's implementation for expanding instances, implemented after
the de�nition in mOTTR [21]. Lutra recursively expands the instances until it reaches
a base template without a list expander. If an instance contains a list expander, Lutra
generates new instances based on the operation and the marked arguments. Example
5.1.1 illustrates the instances generated when applying the zipMin operation, which we
introduced in Section 3.4. If an instance does not correspond to a base template or
contains a list expander, Lutra substitutes the corresponding template's body with this
instance arguments, resulting in a set of substituted instances. Code 5.1.2 is a pseudocode
for Lutra's expansion of instances.

Code 5.1.2. A pseudocode for expanding instances in Lutra.

1 FUNCTION expandInstances(instance)

2 template <-gets the template with the same iri as the instance

5This programmatic veri�cation is based on wOTTR's SHACL shapes and OWL vocabulary.
6https://www.antlr.org

https://www.antlr.org

60 CHAPTER 5. IMPLEMENTATION

3 IF template do not exist THEN

4 RETURN error

5 IF instance contain none at a non -optional posistion THEN

6 RETURN discard the instance

7 IF instance iri is a base template with no expander

8 OR the instace has ha expander but cannot expand THEN

9 RETURN instace

10 IF instance has list expandet THEN

11 generate instances , one instance per combination of the operator

12 RETURN expandInstaces on all the generated instances

13 ELSE

14 substitute the template 's body with the instance 's arguments

15 RETURN expandInstances all the substitute instances

Example 5.1.1. An example of the generation of instance produced by the list operation
zipMin.

zipMin | ottr:Triple(++(ex:name1, ex:name2, ex:name3), ex:relates, ++(1,2)).

#Generate the following two instances

ottr:Triple(ex:name1, ex:relates, 1).

ottr:Triple(ex:name2, ex:relates, 2).

5.1.1 Result and MessageHandle

This section brie�y introduces the classes MessageHandler and Result, two central
classes in the Lutra implementation for handling messages produced to the user. The
implementation of Frog utilises these classes, and they are present in several of the exam-
ples in this chapter. The MessageHandler and Result class rely on the Message class.
A Message object contains a severity, a message and a (possible empty) stack trace. The
severity of a message can either be info, warning, error or fatal, where info is the lowest
degree of severity, and fatal is the highest. The result of printing a Message object is a
combination of this message's severity degree and message. Lutra uses MessageHandler
as a means to collect messages and handle how to print them to the terminal. Moreover,
we use the Result class when a sequence of operations may result in an error that prod-
cues messages. The Result class works as a wrapper class for the Optional class7; as
the Result class consists of an Optional value and a trace, which is a possibly empty set
of messages produced when working on a Result object. The Result class implements
the Optional class's methods, such as map and filter. In addition to other methods
mostly regarding messages and results, such as mapOrElse, aggregate, and addMessage.
The aggregate method is a static method that takes in a list of Result objects and
returns a Result object of a list (List<Result<T>> -> Result<List<T>>); aggregating
the Result objects into one Result object.

5.2 FunctionStore

The FunctionStore is a central class in Lutra's Frog implementation. The main objective
of this class is to store the functions in the function library and base functions. The
FunctionStore is central in the parsing and validation step as it o�ers an interface for,
among other things, appending Frog functions and validating the function library. We

7docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Optional.html

docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Optional.html

5.3. PARSER 61

Figure 5.2: A UML diagram of a function. Note that this diagram has removed unneces-
sary connections and is a simpli�cation of the actual code.

further elaborate on some of the FunctionStore methods when describing the di�erent
parts of the Frog implementation. For instance, Section 5.4, which contains the method
the FunctionStore o�ers for validating a function library.

5.3 Parser

As formerly mentioned, the parsing step in Lutra's Frog implementation consists of trans-
forming functions found in an RDF syntax or HRS document into function objects. Lutra
has already created classes for classes for the original terms and types for OTTR8 before
the introduction of Frog. However, we include parsing for the newly introduced terms,
the function call and the function term, and the new type, the function type. Figure 5.2
illustrates the classes involved when creating a function object and how they relate to
each other.

Furthermore, constructing the objects introduced to Lutra when introducing Frog consists
of two phases:

1. Parsing the data from a Frog document, and

2. using a builder9 to create the objects.

Due to Frog having two serialisations, the �rst phase has two implementations: one
for the RDF syntax and one for the HRS. Section 5.3.1 and Section 5.3.2 discuss the

8Term and Type are interfaces in the implementation; however, we have drawn them as classes in the
UML diagram

9https://projectlombok.org/features/Builder

https://projectlombok.org/features/Builder

62 CHAPTER 5. IMPLEMENTATION

Figure 5.3: A sequent diagram showing the general interaction between a parser, builder
and class.

implementation of phase one for RDF syntax and HRS separately. Moreover, the second
phase consists of constructing the objects by utilising a builder. There is one builder
for each class, and the builders used by the two parsers are equal for both serialisations.
Additionally, the builder performs some basic validations, such as ensuring that none of
the values are Null and that a subtype in a generic parameter does not contain any generic
variables. In short, Lutra only performs validations that only require the context of the
speci�c object in the parsing step. We argue that performing validation in phase two of
the parsing is more bene�cial than phase one because phase two has one implementation
compared to phase one with two implementations, resulting in less repetitive code.

The validation performed in the parsing step must not be mistaken with the validation
discussed in Section 4.5. In contrast to the validation performed in the parsing step, the
validations discussed in Section 4.5 requires knowledge on the context of the function
library and not the context of a single object. Section 5.4 describes the implementation
of the required validations from the de�nitions in Section 4.5.

Figure 5.3 illustrates a general interaction between one of the parsers from phase one and
the builder from phase two. As we see from the �gure, the builder validates that every
mandatory argument needed to create the class is present before creating the object.
Thereafter, if required, the builder calls the validate method on the object; this step is,
however, optional.

5.3.1 RDF Syntax

Similar to wOTTR, Frog's RDF syntax has an OWL ontology describing the vocabulary,
and SHACL shapes that de�ne this syntax's grammar. When implementing the RDF
syntax's parser, we programmatically produce error messages if the graph does not follow

5.3. PARSER 63

the constraints set by the OWL ontology and SHACL shapes. Appendix A.1 contains
the RDF syntax's OWL ontology and SHACL shapes.

As mentioned, wOTTR utilises Jena to parse an RDF graph containing templates and
instances. The wOTTR implementation programmatically validates that the graph fol-
lows wOTTR's OWL vocabulary and SHACL shapes during the data extraction. Lutra's
wOTTR implementation contains parsers for OTTR's terms and types. Hence, we have
chosen to use Jena for parsing Frog functions because we can reuse these parsers. We
argue that wOTTR and Frog's RDF syntax using the same parser where it is possible is
bene�cial since a change in the de�nitions of terms or types only needs to be implemented
in one place instead of two. Thus, the Lutra implementation requires less maintenance.

Lutra's wOTTR implementation contains one parser class for terms named WTermParser,
and one for types named WTypeParser. These parser classes contain one method for each
type of term and type, respectively; we refer to these methods as speci�c parsing methods.
Additionally, the WTypeParser implements an apply method that determines which of
its speci�c parsing methods it should use10. The WTermParser, on the other hand, o�ers
several public static methods to parse a term. These public methods determine which of
the term parser's speci�c parsing method to apply.

The inclusion of Frog requires us to expand the wOTTR's term and type parsers by
including the parsing of function terms, function calls and the function type. Hence,
we extend the term and type parser with new speci�c parsing methods: two in the
WTermParser and one in the WTypeParser. Additionally, we modi�ed the apply method
in the WTypeParser and the di�erent public methods in the WTypeParser to handle the
cases where they should apply the newly introduced speci�c parsing methods. Figure
5.4 contains the special parsing method included in the WTypeParser to parse the func-
tion type and the SHACL shape that describes the RDF grammar of a valid function
type. The apply method in the WTypeParser has con�rmed that the �rst element is
frog:Function and removed it from the list. Consequently, the nodes list only con-
tains the type arguments. Moreover, from the frog:FunctionTypeShape, we see that
the Function type must have at least one valid type in the Function type list. The special
parsing method for the function type ensures this SHACL shape by producing an error
message if the nodes list is empty. Otherwise, this method parses each element in the
nodes list and creates a new FunctionType object.

Moreover, we implement RDF parsers for the Frog's constructs to parse the Frog function
documents in the RDF syntax. We implement these constructs with three new parsers:
Firstly, a parser for the generic parameters; secondly, a parser for the parameters; lastly,
a Frog function parser for Frog functions. These parsers extract parts of the graph and
send these parts to other parsers. For instance, the Frog function parser extracts the
return type and uses the type parser to parse the type.

Figure 5.5 shows Lutra's code for parsing the generic parameters and the a�liated SHACL

10This apply method stems from the WTypeParser implementing the Function interface:https://
docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Function.html.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Function.html

64 CHAPTER 5. IMPLEMENTATION

1 ottr:FunctionTypeShape a sh:NodeShape ;
2 sh:node shsh:ListShape ;
3 sh:property [
4 sh:path rdf:first;
5 sh:hasValue frog:Function;
6 sh:minCount 1
7],
8 [
9 sh:path ([sh:oneOrMorePath rdf:rest]
10 rdf:first);
11 sh:minCount 1;
12 #The shape for valid Frog types

13 sh:node frog:TypeListShape
14].

1 private Result <Type > parseFunctionType(List <RDFNode > nodes) {
2 if (nodes.isEmpty ()) {
3 return Result.error("Error parsing Function type:
4 must have at least one type argument");
5 }
6 var argTypes = nodes.stream ()
7 .map(this) // parses the type argument
8 .collect(Collectors.toList ());
9 return Result.aggregate(argTypes)
10 .map(FunctionType ::new);
11 }

Figure 5.4: On the left: the SHALC shape for the function type, formally de�ning its
RDF grammar. On the right: the special parsing method used to parse a function type.

shapes. The ModelSelector class seen in the �gure is a class that extracts data from
a set of criteria11. On lines 5 and 6, the ModelExtraction extracts the list object in
the triple with the function as the subject and frog:typeVars as the predicate. Then
this parser parses each of the generic parameters by extracting the generic parameter
variables and subtype of relation. A graph that does not contain these triples will result
in Lutra producing an error message through the ModelSelector, since the method
getRequiredResoucesObject requires the object and triple to be present. The SHACL
shape frog:GenericParameterShape de�nes that a valid generic parameter must contain
both values, see lines 12 to 29. Moreover, this SHACL shape also de�nes that the subtype
related node should be a type. Hence, the parser for the generic parameter uses the type
parser to parse the type. Additionally, the generic parameter variable should be a blank
node. As seen on lines 22 to 24 in the parser code, the parser validates that the object
is a blank node and uses the term parser to parse the blank node if the value is a blank
node.

5.3.2 Human Readable Syntax

As mentioned, Lutra's stOTTR implementation utilise ANTLR4 to parse a stOTTR doc-
ument and formally describe stOTTR's grammar12. Through this grammar and ANTLR4
generated code, Lutra parses the stOTTR documents. Lutra's stOTTR implementation
already supports the parsing of terms and types. Hence, for the same arguments given in
the discussion regarding technology for Frog's RDF syntax, we have also chosen to apply
the same technology for Frog's HRS as stOTTR, namely ANTLR4.

With ANTLR, we can import another grammar into our grammar. In the case of HRS,
it is natural to assume that the HRS grammar imports the stOTTR grammar to be
able to reuse the grammar on terms and types. However, when creating a new grammar,
ANTLR4 generates two di�erent parsers for the same concepts. In other words, ANTLR4
generates one term parser for Frog's HRS and a di�erent parser for stOTTR. Thus, mak-
ing it impossible for our Frog implementation to reuse stOTTR's parser. Consequently,
we chose to extend the stOTTR grammar with Frog's concepts to be able to reuse the
parsing code. Appendix A.2 contains stOTTR's and the HRS's ANTLR4 grammar �le,

11The ModelSelcector also produces error messages if an expected instance is not present- for instance,
that a generic parameter does not contain a relation with the frog:subtypeOf IRI.

12https://dev.spec.ottr.xyz/stOTTR/stOTTR.g4 stores the grammar. Note that this grammar is
without the addition of Frog's HRS.

https://dev.spec.ottr.xyz/stOTTR/stOTTR.g4

5.3. PARSER 65

1 frog:TypeVarsShape a sh:NodeShape;
2 sh:targetObjectsOf frog:typeVars;
3 sh:node shsh:ListShape;
4 sh:property [
5 sh:path ([sh:zeroOrMorePath rdf:rest]
6 rdf:first);
7 sh:node frog:GenericParameterShape;
8].
9
10 frog:GenericParameterShape a sh:NodeShape;
11 sh:targetSubjectsOf frog:var, frog:subtypeOf;
12 sh:property[
13 sh:path frog:var;
14 sh:minCount 1;
15 sh:maxCount 1;
16 #The shape for a generic variable

17 #This shape node needs to be a blank node

18 sh:node frog:GenericVariableShape;
19 sh:name "generic variable";
20 sh:message "a generic parameter must
21 be a blank node";
22],
23 [
24 sh:path frog:subtypeOf;
25 sh:minCount 1;
26 sh:maxCount 1;
27 #The shape for valid Frog types

28 sh:node frog:TypeListShape;
29];
30 sh:name "generic parameter";
31 sh:message "a generic parameter needs a
32 blank node and type.".

1 public class FGenericListParser {
2
3 public static Result <List <Generic >> parseGeneric(Model model ,
4 Resource function){
5 var listOfGenerics = ModelSelector.getOptionalListObject(model ,
6 function , Frog.RDFFrog.typeVars)
7 .map(RDFList :: asJavaList)
8 .mapToStream(ResultStream :: innerOf)
9 .mapFlatMap(rdfNode -> parseGeneric(model , rdfNode))
10 .collect(Collectors.toList ());
11 return Result.aggregate(listOfGenerics);
12 }
13
14 private static Result <Generic > parseGeneric(Model model ,
15 RDFNode generic){
16 if (! generic.isResource () && !generic.isAnon ()) {
17 return Result.error("A generic parameter is defined
18 by a blank node");
19 }
20 var varValue = ModelSelector.getRequiredResourceObject(model ,
21 generic.asResource (), Frog.RDFFrog.var)
22 .filterOrMessage(RDFNode ::isAnon ,
23 Message.error("A generic parameter must
24 be a blank node"))
25 .map(node -> node.asResource (). getId (). getBlankNodeId ())
26 .flatMap(WTermParser :: toBlankNodeTerm)
27 .map(blankNode -> (Term) blankNode);
28 var subtypeOf = ModelSelector.getRequiredResourceObject(model ,
29 generic.asResource (), Frog.RDFFrog.subtypeOf)
30 .flatMap(res -> new WTypeParser (). apply(res));
31 return GenericBuilder.createGeneric(varValue , subtypeOf);
32 }
33 }

Figure 5.5: On the left: the SHALC shape for the generic parameters, formally de�ning
its RDF grammar. On the right: the special parsing method used to parse the generic
parameters.

formally de�ning the grammar of both stOTTR and Frog's HRS.

When reading a Frog function document in the HRS syntax, Lutra, by applying ANLTR4,
generates objects in a parse-tree structure to traverse through. ANTLR4 o�ers two di�er-
ent techniques for traversing parse-trees: parse-tree listeners and parse-tree visitors [32].
Figure 5.6 is an example of a parse-tree produced by ANTLR4 with HRS's grammar.
Lutra's stOTTR implements the visitor technique. Consequently, we write Lutra's HRS
implementation in the visitor technique as well to be able to reuse code. ANTLR4's vis-
itor technique let us control traversing by explicitly calling methods to visit a context's
children [32]. In Figure 5.6, if the code were in the context of the functionHead, the
context's children would have been: definition, genericParameters, parameters, and
returnType.

Moreover, ANLTR4 generates a stOTTRBaseVisitor class that implements a visit method
for each rule in our grammar. An example of a rule in stOTTR's and HRS's grammar
is functionType. Figure 5.7 shows the function type rule on lines 10 to 12. To de-
cide what should happen when executing these visiting methods, we create classes that
extend the stOTTRBaseVisitor and override the visit methods. The stOTTR implemen-
tation contains parsers that override the visit methods on terms and types, namely the
STermParser and STypeParser. However, similar to the RDF syntax, we extend these
parsers by appending overriding visit methods for the function type, function call and
function term. Figure 5.7 illustrates the changes and additions in the grammar to include
the function type and the overridden visit method Lutra implements to parse function
types in the STypeParser. The code extracts every type of child of the function type's
context, resulting in a list of type contexts, on line 2. We parse each of these type contexts
through the visit method for types. When Lutra �nishes parsing the type contexts, we

66 CHAPTER 5. IMPLEMENTATION

Figure 5.6: The generated parser-tree made by ANTLR4s java implementation on the
function in Figure 4.13.

1 type
2 : basicType
3 | lubType
4 | listType
5 | neListType
6 | functionType
7 | genericType
8 ;
9
10 functionType
11 : 'Function<'((type ',')* type) '>'
12 ;

1 public Result <Type > visitFunctionType(FunctionTypeContext ctx) {
2 var types = ctx.type (). stream ()
3 .map(this:: visitType)
4 .collect(Collectors.toList ());
5 var aggrRes = Result.aggregate(types);
6 return aggrRes.flatMap(aggr -> Result.of(new FunctionType(aggr)));
7 }

Figure 5.7: On the left: the ANTLR4 grammar rule for the function type. On the right:
the overridden visit method used to parse a function type.

use them to create a FunctionType object.

Similar to the RDF syntax implementation, we implement three parser classes for the Frog
constructs to parse: a generic parameter, a parameter, and Frog functions. These parsers
extract speci�c contexts and utilise other parsers to parse the contexts. The Frog function
parser, for example, extracts the name of the function and validates that the value is
present in the parse-tree before utilising the term parser to parse the name into a Term

object. Furthermore, Figure 5.8 shows the ANTLR4 grammar for the generic parameter
and the parser class, FGenericParameterParser, that parses a generic argument. This
class implements a visit method to visit a generic parameter context and utilises the term
parser to parse the blank node and type parser to parse the subtype relation. Similar to
how the generic parameter parser for the RDF syntax appplies its related term and type
parsers.

5.4 Validation

Section 4.5 discusses the need for Frog to validate that a function library is a valid function
library. From the de�nition of a valid function library, De�nition 4.5.7, we assemble the
following list of required validations that Lutra's Frog implementation must validate on
every Frog function:

1. Every function call's name in the function body must refer to a de�ned parameter
variable of the function type, a base function, or a function in the function library.

5.4. VALIDATION 67

1 ;
2
3 genericParameterList
4 : '<' '<'
5 ((genericParameter ',')* genericParameter?)
6 '>' '>'
7 ;
8
9 genericParameter
10 : Variable 'subtypeOf' type
11 ;

1 public class FGenericParameterParser extends SBaseParserVisitor <Generic > {
2
3 private final STypeParser typeParser;
4 private final STermParser termParser;
5
6 public FGenericParameterParser(STermParser termParser) {
7 this.termParser = termParser;
8 this.typeParser = new STypeParser(termParser , false);
9 }
10
11 public Result <Generic > visitGeneric(GenericParameterContext ctx) {
12 return GenericBuilder.builder ()
13 .term(parseTerm(ctx))
14 .type(parseType(ctx))
15 .build ();
16 }
17
18 private Result <Term > parseTerm(GenericParameterContext ctx) {
19 var label = termParser.getVariableLabel(ctx.Variable ());
20 return termParser.toBlankNodeTerm(label)
21 .map(t -> (Term) t);
22 }
23
24 private Result <Type > parseType(GenericParameterContext ctx) {
25 return ctx.type() != null
26 ? typeParser.visit(ctx)
27 : null;
28 }
29 }

Figure 5.8: On the left: the ANTLR4 grammar rule for the the generic parameters.
On the right: the overridden visit method used to parse a generic parameter. The
class SBaseParserVisitor extends stOTTRBaseVisitor, wrapping the generic argument
into the Result class (class SBaseparserVisitor<T> extends SBaseParserVisitor<

Result<T>>).

2. The function must de�ne every variable used as an argument in the function body
as a parameter in its function head.

3. The function must de�ne every variable used as a generic argument in the function
body as a generic parameter in its function head.

4. The IRI in a function term must refer to a function in the function library or a base
function.

5. The arity of parameters in a function call in the function body must equal its
a�liated function's arity of parameters.

6. The arity of generic arguments in a function call or function term used as an argu-
ment in the function body must be equal to its a�liated function's arity of generic
parameters.

7. For every argument in a function call in the function body, its type must be a
subtype of its corresponding parameter's type.

8. Every generic argument in a function call or a function term in the function body
must be a subtype of its corresponding generic parameter.

9. The return type of the function body is a subtype of the function head's speci�ed
return type.

Additionally, as presented in Section 4.5.3, we want to produce warning messages for
unused variables. Thus, the Lutra implementation needs to check that for every function
in the function library:

68 CHAPTER 5. IMPLEMENTATION

10. Every parameter de�ned in the function head is used in the function body.

11. Every generic parameter de�ned in the function head is used in the function body.

This section discusses the technologies used, the implementation of the validations, and
the execution of these ten validations.

5.4.1 Technology

Lutra has a self-made query language, as introduced in Section 5.1. However, we argue
that there are several bene�ts of applying established technologies rather than an Lutra's
query language. Hence, we chose to apply SPARQL queries to perform the validations.
Using SPARQL for validating the nested type structure, however, proved di�cult. Con-
sequently, we chose to utilise a pure java implementation for the validation regarding
types. Section 6.1.1 discusses in more detail why we argue that applying SPARQL is
more bene�cial than Lutra's query language and a SPARQL limitation resulting in the
need for a pure Java validation for validating types. The subsequent two sections describe
the validation implementation with SPARQL and Java separately.

5.4.2 SPARQL

This section discusses the part of the validation implementation that applies SPARQL as
its technology. Firstly, we introduce a special RDF syntax which makes it easier to query
compared to Frog's RDF syntax, namely the RDF query syntax. Secondly, we discuss the
two types of SPARQL validations and discuss one query per type. Lastly, we examine
our implementation for executing the SPARQL validation queries in Lutra.

RDF query syntax

Frog's RDF syntax utilises RDF lists as a means to represent several of Frog's constructs.
As Section 4.2 discuss, utilising a list structure is bene�cial since it is an established
structure that we can write compact in the Turtle serialisation of RDF. However, this
structure results in a loss of metadata, making it harder to construct SPARQL queries
that are compact and easy to read and write. Consequently, we chose to introduce a
new syntax, the RDF query syntax, made to be easy to construct queries over that are
readable. Section 6.1.2 discuss the bene�ts and disadvantages of using and introducing a
new syntax for the SPARQL queries compared to utilising the existing RDF syntax.

We tried to make the RDF query syntax resemble Frog's RDF syntax by reusing several
properties described in Frog's RDF syntax. However, there are two signi�cant di�erences
between the RDF query syntax and Frog's RDF syntax. Firstly, for the reasons mentioned
in the previous paragraph, we have replaced the RDF lists used to represent Frog and
OTTR concepts, such as function calls, parameters and generic arguments13. The RDF
query syntax represents these concepts with blank node structures that, most importantly,
explicitly state the indexes, resulting in a graph in the RDF query syntax containing
more metadata than a graph in Frog's RDF syntax. Secondly, the RDF query syntax

13The RDF query syntax still represents a list term with an RDF list.

5.4. VALIDATION 69

ex:FunctionName frog:parameter

[frog:index 1;

frog:parameterType xsd:integer;

frog:var _:number1],

[frog:index 0;

frog:parameterType xsd:integer;

frog:var _:number2].

Figure 5.9: Illustrates how a param-
eter looks in the RDF query syntax

[] frog:of ex:FunctionCallName;

frog:arg [frog:index 0

frog:val ex:value0];

frog:typeArg [frog:index 1

frog:type xsd:string],

[a frog:GenericType;

frog:index 0

frog:var _:genricVariable].

Figure 5.10: Illustrates how a function call,
arguments and generic arguments looks in
the RDF query syntax.

more closely resembles the structure of Frog functions shown in Figure 4.3, having a
more precise separation of the function head and body. An example of such a change is
that the RDF query syntax represents a parameter with a blank node containing both
the parameter type and the parameter variable; in contrast to containing them in two
separate lists. Figure 5.9 illustrates the syntax of parameters in the RDF query syntax14.

The RDF query syntax represents a function call in a particular blank node structure.
Figure 5.10 illustrates a function call in the RDF query syntax. As shown in this �gure,
a function call blank node relates to its name through the frog:of predicate and the
arguments and generic arguments through the predicates frog:arg and frog:typeArg.

Queries

The SPARQL validation queries aim to �nd cases in the functions that do not uphold the
de�nition of a valid function. In other words, the queries �nd violating functions; thus,
every result of a query is a violation of the de�nition of a valid function, De�nition 4.5.5.
For instance, �nding a function that utilises a variable used as a generic argument in
the function body that the function head does not de�ne. As mentioned, the validation
implementation with SPARQL validates every validation that does not depend on types;
hence, validating phases one and two from the validation phases described in Section 4.5.3.
Consequently, we have written seven SPARQL queries, including the warning validations.

In short, we categorise the validation queries into two types: object queries and arity
queries. The validation queries validating the correct arity of arguments and generic
arguments are arity queries, while the rest of the queries are object queries. The object
queries consist of two stages: Firstly, to �nd the object we are validating on, and secondly,
to remove the objects with a correct de�nition or use. The second step mainly consist
of NOT EXIST clauses. On the other hand, the arity validation queries consist of four
stages. Firstly, �nd all function calls and/or function terms in function bodies. Secondly,
�nd the arity of arguments or generic arguments in these function calls. Thirdly, �nd the

14Note that the parameters explicitly state their indexes. To extract the index of a parameter in Frog's
RDF syntax would have required a subquery.

70 CHAPTER 5. IMPLEMENTATION

arity of parameters or generic parameters in the functions, in other words, the number of
expected arguments or generic arguments. Lastly, utilising a FILTER clause to remove
the matches where the function call arity of arguments or generic arguments equals the
a�liated function's expected arity.

Moreover, there exist two pairs of reverse validation queries: parameter variable and
unused parameter variable, and unde�ned generic variable and unused generic variable.
We have named these pairs of queries reverse validation queries because the �rst query's
�rst step is logically equal to the second query's second step, and the second query's �rst
step is logically equal to the �rst query's second step; thus, the �rst and second step in
these pairs of queries are revers of each other. Consequently, understanding one query in
a pair of reverse validation queries makes it easier to understand the other because they
consist of the same logic.

De�nition 5.4.1. For a pair of queries to be reverse validation queries, they must
ful�l two criteria; we use X and Y to represent the queries in the pair of reverse object
queries:

1. The �rst stage in X must contain the same query patterns as Y's second stage.
Consequently, X's �rst stage pattern is equal to the pattern found in Y's NOT
EXIST clause. If X �rst stage pattern contains UNION clauses, then each UNION
pattern matches the pattern found in a NOT EXIST clause in the second stage of
Y.

2. The second stage in X must contain the same query patterns as Y's second stage.
The translation between stage one and stage two is equivalent to point one.

In this section, we present two queries: one object query and one arity query. Appendix B
stores all the SPARQL validation queries utilised by Lutra to validate the Frog functions.
Firstly, we present Query 5.4.1, the none existing function query. This query �nds every
function call in a Frog function where the function call's name does not de�ned in the
function library or is a parameter variable of the function type. Moreover, this query
is an object query, thus, consisting of two stages. Firstly, the query �nds the object it
should validate; in this case, every function call in every Frog function. We use property
paths to recursively �nd every function call in the function body, as seen on lines 5-6.
This recursive use of property paths ensures that the none existing function query not
only �nds the outer function call but also the function calls used as arguments inside
another function call. Secondly, we need to �nd the incorrect use of a function call name.
From De�nition 4.1.4, we have that a function call's name can be a base function, a
Frog function, or a parameter variable de�ned as the function type in the function body.
Consequently, we have created two NOT EXIST clauses, as seen on lines 10-22. The
�rst NOT EXIST clause removes any pattern where the function call's name is an IRI
and a de�ned function15. Furthermore, the second NOT EXIST clause removes every
pattern where the function call's name is a variable16, and the function head de�nes the
variable as a parameter of the function type. Consequently, this SPARQL query �nds
every pattern in the graph of a function containing one or more function calls where the
function call's name is not correctly de�ned.

15Base or Frog function.
16Which the RDF query syntax express with a blank node similar to Frog's RDF syntax.

5.4. VALIDATION 71

Query 5.4.1. The validation query used to extract the function calls that does not use
an exisiting function (either from the function library or a base function) or a parameter
of the function type.

1 SELECT DISTINCT ?functionName ?functionCallName

2 WHERE {

3 #finds everything used as a function call

4 #name in the function body

5 ?functionName a frog:Function;

6 frog:body/(frog:arg/frog:val)*/ frog:of ?functionCallName.

7

8 #removes all mathces where the function call

9 #name is an IRI and the IRI is of type function

10 FILTER NOT EXISTS {

11 ?functionCallName a frog:Function.

12 FILTER isIRI(? functionCallName)

13 }

14 #removes all mathces where a blank node is used as

15 #function is defined as a parameter of type function

16 FILTER NOT EXISTS {

17 ?functionName frog:parameter

18 [frog:var ?functionCallName;

19 frog:parameterType [a frog:Function]

20]

21 FILTER isBlank (? functionCallName)

22 }

23 }

Finally, we present Query 5.4.2, the incorrect arity of arguments query. As suggested by
the name, this query is an arity query that extracts every function call in every function
where the arity of arguments are unequal to the arity of parameters in its a�liated
function. Moreover, this query consists of four stages because it is an arity query. Firstly,
to �nd the object we are validating. In this case, every function call in every function
body. This step is the same as the �rst step in Query 5.4.1; hence these steps are almost
equivalent. However, in the incorrect arity of arguments query, we need the blank node
representing the function call in addition to its name. Therefore, as seen on lines 3-5,
this query �nds the function call and the function call's name in two steps. Secondly,
this query needs to �nd the arity of arguments in the function call. To �nd this arity, we
have created a subquery, as seen on lines 7-16. This subquery extracts every argument
of every function call in the graph and uses aggregation to count the argument number.
Furthermore, we have used an OPTIONAL clause to match the argument pattern since
some function calls may have an empty set of arguments.

Thirdly, in the third step, the query �nds the arity of parameters in every function and
parameter of the function type. As seen on lines 18-48, we have created two subqueries
to �nd the arity: one that counts the parameters in the function type parameters and
one that counts the parameters in functions. We constructed these queries similar to the
subquery in the second step. Note that the subquery for the function type parameter
uses the frog:index predicate since the function type only contains the index triple on

72 CHAPTER 5. IMPLEMENTATION

the parameters. Moreover, the result of these two subqueries is uni�ed with the UNION
clause. Lastly, in the fourth step on line 49, we use the FILTER clause such that only
the pattern matches where the arity of the received number of arguments di�ers from the
number of expected arguments. Note that SPARQL performs a inner-join between the
second and third step.

Query 5.4.2. The validation query to �nd every parameter variable used in the function
body that is not de�ned by the a�liated function's head.

1 SELECT DISTINCT *

2 WHERE{

3 ?functionName a frog:Function;

4 frog:body/(frog:arg/frog:val)* ?functionCall.

5 ?functionCall frog:of ?functionCallName.

6

7 { #finds how many arguments the function call has

8 SELECT ?functionCall (COUNT(?rec) AS ?received)

9 WHERE {

10 ?functionCall frog:of [].

11 OPTIONAL{

12 ?functionCall frog:arg ?rec.

13 }

14 }

15 GROUP BY ?functionCall

16 }

17 #finds how many parameters the function has

18 { #if the function is defined with a parameter variable

19 {

20 SELECT ?functionCallName (COUNT(?exp) AS ?expected)

21 WHERE {

22 [] a frog:Function;

23 frog:parameter [

24 frog:var ?functionCallName;

25 frog:parameterType ?parType

26].

27 ?parType a frog:Function.

28 OPTIONAL { #finds the parameters

29 #of a parameterfunction

30 ?parType frog:argType/frog:index ?exp

31 }

32 }

33 GROUP BY ?functionCallName

34 }

35 } UNION { #if the functon is defined with a IRI

36 {

37 SELECT ?functionCallName (COUNT(?exp) AS ?expected)

38 WHERE {

39 ?functionCallName a frog:Function.

40

41 OPTIONAL{

42 ?functionCallName frog:parameter ?exp.

5.4. VALIDATION 73

43 }

44 FILTER isIRI(? functionCallName)

45 }

46 GROUP BY ?functionCallName

47 }

48 }

49 FILTER (? received != ?expected)

50 }

51 ORDER BY ?functionName ?functionCallName

Lutra's execution

Our implementation for executing and creating error messages in Lutra consists of two
parts. Firstly, we create a Jena model17 storing the base and Frog functions in the RDF
query syntax. Secondly, we use Jena's query library to read the queries and execute them.
We have constructed one execution class for each query, referred to as a query class.
A query class implements the interface FunctionCheck. This interface extends Java's
interface Function18, taking in a Jena model and returning a MessageHandler containing
the messages produced by the query. Thus, the FunctionCheck interface consists of an
apply method taking in a Model and returning a MessageHandler.

Code 5.4.1. The check class that executes and produces error messages for the none
existing function query, query 5.4.1. The parameter resultSet contains the result from
executing the query, one row for each match.

1 public class CheckFunctionExists implements FrogCheck {

2 private static final String queryFile = "checkFunctionExists.rq";

3

4 @Override

5 public String getValidationFile () {

6 return queryFile;

7 }

8

9 public MessageHandler errorMessage(ResultSet resultSet) {

10 var msgs = new MessageHandler ();

11 var list = ResultSetFormatter.toList(resultSet);

12 list.forEach(querySolution -> {

13 var functionName = querySolution.get("functionName"). toString ();

14 var functionCallName = querySolution.get("functionCallName");

15

16 var errMessage = functionCallName.asResource (). isAnon ()

17 ? "The variable " + Frog.getVarNameFromUniqueId(functionCallName.asResource ())

18 + " is not a function it's however used as a function in " + functionName

19 : "The function " + functionCallName + " which is used in "

20 + functionName + " does not exist";

21 msgs.add(Message.error(errMessage));

22 });

23 return msgs;

24 }

25 }

Additionally, the interface consists of two other methods: getValidationFile, return-
ing the query �le, and errorMessage, producing a MessageHandler with the validation's

17A Jena model is an RDF graph.
18https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/

Function.html

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Function.html

74 CHAPTER 5. IMPLEMENTATION

error messages. The FunctionCheck interface's apply method is a default method writ-
ten in the interface, which reads in the query �le, executes the query, and creates the
MessageHandler by applying the errorMessage method on the result of executing the
query. In Code 5.4.1, we see an example of a query class, namely the query class for the
none existing function query. Thus, this query executes and creates error messages for
Query 5.4.1. The query class in Code 5.4.1 produces the following error messages on the
function in Figure 5.11:

[ERROR] The variable ?number is not a function

it's however used as a function in ex:minus2

[ERROR] The function fn:minklus which is used in

ex:minus2 does not exist

def ex:minus2(xsd:integer ?number) -> xsd:integer :: (

fn:minklus<xsd:integer> 5 (?number 1 2)

).

Figure 5.11: An example of a function that utilises unde�ned parameters in the function
body.

5.4.3 Java

As mentioned, a pure Java implementation validates typing:

� Arguments are subtypes of their corresponding parameter.

� Generic arguments are subtypes of their corresponding generic parameter.

� The function body's type is a subtype of the function head's return type.

These three evaluations equal the evaluation in the third validation phase as described
in Section 4.5.3. Moreover, the Java validations follow a similar pattern. More precisely,
applying a method in the Function interface that takes in the MessageHandler and
append error messages on this MessageHandler when a validation error occurs. Either
this Function class method creates and appends the messages, or this method calls a
method o�ered by the FunctionCall class that creates and appends the messages.

The similarity between the three validations is that they validate that something is a sub-
type of something else. Lutra's Type interface o�ers a method, isSubTypeOf, that takes
in another type and returns true if this type is a subtype of the other type, otherwise false.
The type classes contains an implementation of the isSubTypeOf method after the de�ni-
tions of the subtype relationship in OTTR, de�ned by the mOTTR [21] and rOTTR [25]
speci�cations. When including Frog into OTTR, we introduced the new function type.
In Lutra's implementation, this addition has resulted in the class FunctionType, which
implements the Type interface. Consequently, we need to implement the isSubTypeOf

method in this class. After De�nition 4.3.2, we implement this isSubTypeOf method, as
seen in Code 5.4.219.

19The functionType variable is the list of type arguments.

5.4. VALIDATION 75

Code 5.4.2. The method isSubTypeOf implemented in the FunctionType class. Imple-
mented from the formal de�nition of a subtype relatonship.

1 @Override

2 public boolean isSubTypeOf(Type other) {

3 if (other.equals(TypeRegistry.TOP)) return true;

4 if (!(other instanceof FunctionType)) return false;

5 var functionTypeOther = (FunctionType) other;

6 if (functionTypeOther.functionType.size() != functionType.size ()){

7 return false;

8 }

9

10 for (int i = 0; i < functionType.size() - 1; i++) {

11 var otherType = functionTypeOther.functionType.get(i);

12 if (! otherType.isSubTypeOf(functionType.get(i))) return false;

13 }

14 var last = functionType.size() - 1;

15 var otherLastType = functionTypeOther.functionType.get(last)

16 return functionType.get(last). isSubTypeOf(otherLastType);

17 }

Moreover, when validating the third validation phase, we assume that the validation in
the �rst and second phase is correct20. Thus, the Java validation implementation does not
check, for instance, that the number of arguments and the number of the parameters in
its a�liated function are equivalent; it assumes that they are. Consequently, making the
Java implementation shorter and easier to understand. The rest of this section shortly
describes each of the Java validations.

Arguments are subtypes

To validate that every argument in a Frog function's body is a subtype of its corre-
sponding parameter, the Function class o�ers the method validateArguments. As
depicted in Figure 5.12, the Function class uses the validateArguments method in the
FunctionCall class. This method validates that every argument is a subtype of its cor-
responding parameter by extracting the type of the term and using the isSubTypeOf

method on it with its corresponding parameter's type as the argument. A call on the
isSubTypeOf method resulting in the value false will produce an error message. Lastly,
the FunctionCall class's validateArguments method calls this method on all of its ar-
guments of type FunctionCall. Hence, Lutra validates the arguments in the function
body recursively.

Moreover, to perform the validation correctly in regards to function calls with generic ar-
guments, we substitute the generic parameters with their generic argument, similar to how
De�nition 4.4.1 de�nes how the templates and functions interpret the type of a function
term with generics. Consequently, when validating the function call (fn:plus<<xsd:
integer>> 5 5), where the function fn:plus has the type Function<?T, ?T, ?T>, we
substitues the ?T with xsd:integer; resulting in the following list containg the parame-
ter types (xsd:integer, xsd:integer). The validateArguments uses this substituted
list when validating the arguments.

20These phases validate that every expected value is present and exists.

76 CHAPTER 5. IMPLEMENTATION

Figure 5.12: A sequent diagram representing the validation of arguments in a Frog func-
tion body.

Generic arguments are subtypes

The Function class o�ers the method validateGenericArgument, which validates that
every generic argument in the function's body is a subtype of its corresponding gen-
ric parameter. The validation of the generic arguments is similar to the validation of
arguments; since the Function class's method, validateGenericArgument, calls on the
FunctionCall class's method validateGenerics that recursively validates every generic
argument in the function body, as seen in Figure 5.13. The validateGenerics method
is a method implemented in the Term interface. This method is by default empty; how-
ever, implemented in the FunctionTerm, FunctionCall, and ListTerm class since a
ListTerm can contain function calls and function terms. As seen in Figure 5.13, the
validateGeneric method in the FunctionCall class consist of two steps: validating its
generic arguments and validating every argument's generic arguments by calling on the
validateGeneric method. Hence this method validates not only the function calls but
also the function terms.

Moreover, the implementation of the validateGeneric, in both the FunctionTerm and
FunctionClass class, utilises the Function class's method validateGenerics, which
takes in a list of generic arguments and validates that the arguments are a subtype of
the function's parameters. The genericMap argument used in Figure 5.13, is a map for
a generic variable to its type.

Compatible return type

Finally, we discuss the implementation of the return type validation. The Function class
o�ers this validation through the validateReturnType method. This method uses the

5.4. VALIDATION 77

Figure 5.13: A sequent diagram representing the validation of the use of generic argu-
ments.

isSubTypeOf method on the function body's type21 and sends in the function's return
type as the argument. The method produces an error message if the isSubType call
returns the value false, as depicted in Figure 5.14.

Figure 5.14: A sequent diagram representing the validation of the use of return type.

5.4.4 Execution of the validation

To execute the validation, the FunctionStore o�ers a method validateFunctions,
seen in Code 5.4.3, which validates the functions in the FunctionStore and returns

21The function body is a function call; thus, the function body's type is the outermost function call's
type.

78 CHAPTER 5. IMPLEMENTATION

Code 5.4.3. Shows the method validateFunctions in the FunctionStore class, which
validate the the functions are correct.

1 public MessageHandler validateFunctions(PrefixMapping prefixMapping) {

2 makeModel(prefixMapping);

3 var result = FrogChecks.checkFunctionExist.apply(model);

4 result = FrogChecks.checkVariableExists.apply(model). combine(result);

5 result = FrogChecks.checkGenericVariableExists.apply(model). combine(result);

6 result = FrogChecks.checkUnusedParameters.apply(model). combine(result);

7 result = FrogChecks.checkUnusedGenericParameters.apply(model). combine(result);

8 if (messageSeverityError(result)) return result;

9

10 result = FrogChecks.checkCntArgs.apply(model). combine(result);

11 result = FrogChecks.checkCntArgsGeneric.apply(model). combine(result);

12 result = FrogChecks.checkFunctionArg.apply(model). combine(result);

13 if (messageSeverityError(result)) return result;

14

15 setFunctionRef ();

16 return validateArgumentsGenericArgumentsAndReturnType (). combine(result);

17 }

18

19 private MessageHandler validateArgumentsGenericArgumentsAndReturnType () {

20 var mesgs = new MessageHandler ();

21 functions.forEach ((__, function) -> {

22 function.validateArguments(mesgs , getAllFunctions ());

23 function.validateGenericArguments(mesgs);

24 function.validateReturnType(mesgs);

25 });

26 return mesgs;

27 }

a MessageHandler containing messages produced by the validation. As described in Sec-
tion 4.5, we have implemented the validation in phases. Suppose the MessageHandler

contains any messages with severity error after a phase. In that case, the validation will
be stopped, and the MessageHandler containing the error messages will be returned. In
short, the validationFunctions method consist of four main parts: making the Jena
model containing the functions in the RDF query syntax, executing the SPARQL queries
over the Jena model, setting the reference to functions in the function bodies22, and
�nally executing the Java validation implementation on the functions.

5.5 Evaluation

In Section 4.6, we concluded that Frog should use lazy evaluation to evaluate function
calls. For Lutra's Frog implementation to be lazy, we implement a Map as a lookup table
to store a function's previous evaluations. Additionally, for the implementation to be non-
strict, we utilise Java's Supplier interface23. This section discusses the implementation
of memoisation and execution of function calls.

5.5.1 Memoisation

Before discussing our implementation of memoisation, we need to introduce two new con-
cepts: a function call signature and a function call description. Firstly, a function call sig-
nature is its function name combined with its arguments. Secondly, the function call de-

22For instance replacing an IRI referring to a function with that function.
23https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/

Supplier.html

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Supplier.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Supplier.html

5.5. EVALUATION 79

Figure 5.15: A generalisation of the lookup
table when only considering the function call
signature.

Figure 5.16: A generlaisation of the lookup
table consdiering the function call signature
and de�nition.

Figure 5.17: Example lookup table only con-
sidering the function call signature.

Figure 5.18: Example lookup table consider-
ing the function call signature and de�ntion.

scription is its function name, generic arguments and arguments. Thus the di�erence be-
tween the signature and description is that the description contains the generic arguments
while the signature does not. Hence the function call (fn:plus<<xsd:decimal>> 5 6)

and (fn:plus<<xsd:integer>> 5 6) have the same function call signature but di�er-
ence function call descriptions.

Two function calls with the same function call signature always evaluate to the same value
because Lutra performs the calculations over the same set of arguments. However, the re-
turn value's return type may vary due to the generic arguments. For instance, the function
ex:plus2 de�ned in Figure 4.13 can have di�erent return types beacause the return type
is determined from its generic parameter, ?T. Thus the function call (ex:plus2<<xsd
:decimal>> 5) evaluates to 15^^xsd:decimal while (ex:plus2<<xsd:integer>> 5)

evaluates to 15^^xsd:integer. Therefore, utilising only the function call signature may
result in wrong typing. For example, in the scenario of Figure 5.17 where Lutra has exe-
cuted (ex:plus2<<xsd:decimal>> 5), executing (ex:plus2<<xsd:integer>> 5) with
that lookup table would result in a value with a wrong type, namely xsd:decimal in-
stead of xsd:integer. Thus, a lookup table containing the function call signature and
the evaluated value will not be enough.

Consequently, we implement a solution in Lutra, which �rst checks if the function call
signature is present. If the signature is not present, the function call is evaluated and

80 CHAPTER 5. IMPLEMENTATION

Figure 5.19: An illustaration of the lookuptable with Java types.

appended to the lookup table. However, if the signature is present, we utilise another
table that maps function call descriptions to the evaluated value with the correct type.
The value is extracted if the function call description exists in the second table. On
the other hand, if the function call description is not present, we extract the value from
another function call description and recalculate the value's type. Thus, we only evaluate
each function call signature once and recalculate the type if necessary. The recalculation
of the evaluated value's type will only be calculated once per possible return type. Figure
5.16 depicts the structure generally, while Figure 5.18 shows the instance containing the
aforementioned function calls.

We implement the structure mentioned above by extending the Function class to contain
a Map named lookupTable where the key represents the function signature. However,
since the map is inside the Function class, the function name is stated implicitly. Thus,
in practice, the lookupTable's key is a list of terms referring to the arguments. More-
over, the value in the lookupTable is another map. In the inner map, we could have
had the full function call description; however, in practice, we are only interested in
the return type. Consequently, the second map has a type as its key and the evalu-
ated value with the correct type as the value. As a result, di�erent function call de-
scriptions with the same function call signature and return type will, in practice, use
the identical entry in the lookup table. The lookup table has the following Java type
Map<List<Term>, Map<Type,Term>>.Figure 5.19 shows how Figure 5.18 looks in prac-
tice.

5.5.2 Execution

To delay execution of the function call until the value is needed, we implement an execute

method that returns a Supplier24 that again returns a Result object containg a term.
This execute method is a part of the Term interface. By default, this method returns a
Supplier, which returns the result of itself. However, we have overridden this method in
four classes: FunctionCall, FunctionTerm, FrogFunction, and BaseFunction. More-
over, this execute method takes in the values needed to substitute the functions as
arguments, namely the arguments and generic arguments. As a result, the execute

method has the following signature:

24https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/

Supplier.html

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Supplier.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Supplier.html

5.5. EVALUATION 81

public Supplier <Result <Term >> execute(List <Term > arguments ,

List <GenericType > genericArguments)

In this section, we examine the implementation in the four classes that override the
execute method. However, before discussing these implementations, we want to note
one case where Frog evaluates a function call even though a base function does not
require it, namely, if the function call's name is a function call. Formally, a function call
name can only be a variable or an IRI referring to a known function. However, during
substitution and due to lazy evaluation, a function call that evaluates to a function can
replace a variable that is the function call's name, hence becoming the function call name.
Figure 5.20 exempli�es this scenario.

#Function using a function variable as function name in the function call

def ex:ParameterFunctionName(Function<xsd:string, xsd:boolean> ?fun)

-> xsd:boolean :: (

?fun "hello"

).

#A function call on the function

(ex:ParameterFunctionName

(fn:head (ex:stringIsEmpty ex:stringIsNotEmpty))

)

Substituting the function call arguments into ex:ParameterFunctionName

((fn:head (ex:stringIsEmpty ex:stringIsNotEmpty)) "hello")

Figure 5.20: A scenario where the function call's name is a function call after substitution
due to lazy evaluation.

FunctionCall

The executemethod in the FunctionCall class consists of calling on the executemethod
on the function call's name with its arguments and generic arguments as the argument.
If the function call's name is a function call, then the method evaluates this function call
before calling on the execute method. Hence, the function call's name is either a Frog
function, base function or function term when the method calls on the execute method.
The FunctionCall class returns the result returned when calling on the execute method.

FunctionTerm

The FunctionCall class's execute method sends its arguments and generic arguments
as arguments on its name's execute method. If this name is a FunctionTerm object,
we reach the implementation of the execute method in the FunctionTerm class. A
function term only consists of a reference to a function, a base or Frog function, and a
set of generic arguments. In short, the execute method in the FunctionTerm calls on

82 CHAPTER 5. IMPLEMENTATION

the execute method on its function sending in the arguments it received and its generic
arguments. Consequently, we replace the generic arguments sent in by a function call
with the function terms generic arguments.

FrogFunction

The FrogFunction class's execute method has two primary tasks. Firstly, substitute the
arguments and generic arguments into the function body and secondly, to preserve lazy
evaluation as the evaluation strategy. In order to substitute the function body, we create
a clone of the function's body where every variable is replaced with its corresponding
argument or generic argument, as seen on lines 5-10 in Code 5.5.1. It is essential to create
and substitute a clone of the function body rather than substitute the function body since
a substitution with di�erent arguments and generic arguments result in di�erent function
bodies.

To preserve lazy evaluation as the evaluation strategy, we implement the FrogFunction
class' execute method in two parts: the �rst part before and outside the Supplier (on
lines 4 to 11 in Code 5.5.1) and the second part inside the Supplier (on lines 13 to
20 in Code 5.5.1). The part before the Supplier performs the substitution and calls
the execute method on the result of the substitution, resulting in a Supplier object.
We delay the execution of this Supplier object until the second part, inside the Supplier.
Consequently, the implementation recursively substitutes and creates Suppliers; however,
these Suppliers are not executed before needed.

Code 5.5.1. The execute method in the FrogFunction class.

1 @Override

2 public Supplier <Result <Term >> execute(List <Term > arguments ,

3 List <GenericType > genericArguments){

4 if(getLookupTable (). containsKey(arguments)){

5 return () -> getResultFromLookupTable(arguments , genericArguments);

6 }

7 var substitutedFunctionBody = functionCall.substitute(

8 makeParToArgMap(arguments),

9 makeGenericMap(genericArguments));

10 var execution = substitutedFunctionBody.execute(List.of(),List.of());

11 return () -> {

12 if(getLookupTable (). containsKey(arguments)){

13 return getResultFromLookupTable(arguments , genericArguments);

14 }

15 var result = functionCallExecution.get();

16 var returnType = execution(genericArguments);

17 if(result.isPresent ()) result.get(). setType(returnType);

18 addResultToLookupTable(arguments , result , returnType);

19 return result;

20 };

21 }

Additionally, we implement the memoisation and lookup table as elaborated in Section
5.5.1. As seen in Code 5.5.1, we perform a lookup in the table twice in this execute

method, on lines 4 and 13. The two lookups in the method manage two di�erent sce-
narios. Firstly, the code utilises the lookup on line 4 if we have calculated the function
for the given arguments in a previous function call. For instance, when evaluating the
(ex:ParameterFunctionName ex:stringIsEmpty) twice. This lookup removes unnec-
essary substitutions and creations of suppliers since the code already contains the result

5.5. EVALUATION 83

ex:plus3<<?T subtypeOf owl:real>>(?T ?number1,?T ?number2) -> ?T :: (

fn:plus<<?T>> ?number1 ?number2

).

#FUNCTION CALL

(ex:plus3<<xsd:integer>> (ex:plus2<<xsd:integer>> 5) (ex:plus2<<xsd:integer>> 5))

Figure 5.21: An example of where the second lookup will be used in Code 5.5.1.

of executing this function with the set of arguments25. Secondly, the code utilises the sec-
ond lookup if the same function call signature occurs more than once while evaluating a
function call. Figure 5.21 illustrates a scenario where the code applies the second lookup.
In this case of Figure 5.21, the Supplier to the �rst ex:plus2 will be evaluated before the
second one. However, the evaluation of the �rst ex:plus2 occurs after creation of the
second Supplier. Consequently, the second ex:plus2's can not utilise the �rst lookup, it
can, however, use the second lookup.

BaseFunction

Finally, we discuss the implementation of the execute method in the BaseFunction

class. As informed in Section 4.1.1, a base function performs a single task on a set of
values, in other words, a set of arguments. The base functions are divided into two
di�erent groups, applying di�erent technologies: The base functions that work on base
types applies Saxon's XPath API26, while the base functions working on OTTR speci�c
types and the if function, known as the special functions, is implemented with pure Java.
Figure 5.22 illustrates the general �ow of the BaseFunction class's execute method.

In di�erence to Frog Functions, the base functions can create error messages. Lutra
produces these error messages if the execution of the base function for a particular set of
arguments is illegal but impossible to detect before evaluation. Examples of cases where
the base function creates error messages are if we try to divide a number by zero or try
to retrieve the �rst element of an empty list. Moreover, similar to the FrogFunction

class the BaseFunction class also implements memoisation. The BaseFunction class's
execute method performs memoisation in two cases:

1. Start of the supplier, check if the function call signature is previously applied27.

2. After the execution of the arguments since executing the arguments may change the
function call signature. For instance, the function call (fn:plus<<xsd:integer>>
(fn:plus<<xsd:integer>> 1 1)1) signature changes after evaluating the terms
because we replace the �rst argument with 2. Consequently, the function signature
(fn:plus (fn:plus 1 1) 1) changes to (fn:plus 2 1).

25The method getResultFromLookupTable handles the case where the lookup table only contains
function call signature.

26https://www.saxonica.com/documentation11/documentation.xml
27The BaseFunction does not perform substitution since they do not contain a function body.

https://www.saxonica.com/documentation11/documentation.xml

84 CHAPTER 5. IMPLEMENTATION

Figure 5.22: A �ow diagram over the implementation in the BasicFunction class in Lutra.
Does not include the producing of possible Messages.

We apply Saxon's XPath API to execute the base functions based on XPath functions
and operations. We chosen to use Saxon's XPath API because the built-in XPath library
in Java only supports XPath 1.028. However, we see a need for applying functions and
operations implemented in the later version of XPath, such as the functions for �nding
the smallest or highest number. Saxon's XPath API supports XPath version 2.0 and
3.129 and has an open source home edition.

In short, our XPath implementation consists of two steps: �rstly, to convert the function
or operation into an XPath expression and secondly, to evaluate this XPath expression.
Lutra builds up an XPath expression in two ways, depending on whether the base function
refers to an operation or a function. A base function based on a operation builds its
XPath expression by placing the operation between the terms: term (operator term)*.
For instance, Lutra transforms the function call (fn:plus<<xsd:integer>> 2 1) into
the XPath expression 2 + 1. On the other hand, a base function that refers to a XPath
function creates the following pattern: functionIRI'(' (term (',' term)*)* ')'. Thus, Lutra
transforms the function call (fn:concat "he""llo"), which utilises the XPath function
xpf:concat, into the XPath expression xpf:concat("he", "llo"). XPath can not interpret
Frog's function call, thus, Lutra needs to evaluate the function calls before creating the
XPath expression. For instance the function call (fn:plus<<xsd:integer>> (fn:plus

<<xsd:integer>> 1 1)1) can not be written into (fn:plus<<xsd:integer>> 1)+ 1,

as (fn:plus<<xsd:integer>> 1) is not a valid term in XPath. Consequently, all XPath
base functions require Lutra to evaluate the arguments.

28https://www.w3.org/TR/1999/REC-xpath-19991116/
29https://www.w3.org/TR/xpath-functions-31/

https://www.w3.org/TR/1999/REC-xpath-19991116/
https://www.w3.org/TR/xpath-functions-31/

5.6. INTEGRATING FROG FUNCTIONS WITH OTTR TEMPLATES IN LUTRA85

Furthermore, implement the special function by creating pure Java functions. We refer
to these Java functions as special functions. The special functions operates on the OTTR
speci�c types, such a the list types. Lutra implements its list terms by using the List

interface. Consequently, the special function regarding list uses the methods de�ned
in Java's List interface. The list interface can not be applied to a function call term.
Therefore if a list is a function call term, the function call term is evaluated. Another
special function is the if-function. The if-function returns either the �rst or the second
argument based on the third argument. Consequently, the if-function requires Lutra to
evaluate the �rst argument and the second or third based on the �rst evaluated value.

5.6 Integrating Frog Functions with OTTR Templates

in Lutra

This section discusses our changes in Lutra's OTTR implementation. We discuss how we
validate function calls and function terms inside a template body or instance. Since we
in De�nition 4.5.4 expanded the De�nition of a valid template dataset to include that
every template and instance has term correctness. Moreover, we discuss our changes in
Lutra's expansion after the discussion in Section 4.6.2.

5.6.1 Validating function terms utilised in templates

Lutra's OTTR template must validate that every function term used as an argument in an
instance is correct after De�nition 4.1.5. To validate that function terms has correctness,
we need to validate the three points described in Section 4.5.1 regarding the function
term.

As mentioned in Section 5.1, Lutra validates templates by applying queries in Lutra's
query language. As previously discussed, when validating Frog Functions, we have cho-
sen to apply SPARQL and pure Java methods implemented in the classes a�ected by the
validation. However, validating the template function terms through the aforementioned
methods would have required us to produce a RDF query syntax for template's heads
and bodies and implement the constructions of this syntax of templates. Furthermore,
validation on templates have already been implemented into Lutra; there exist several
query methods previously created that we can reuse when constructing the three valida-
tions needed for the function term. Consequently, we have chosen to use Lutra's query
language when validating function terms.

The construction of the function queries mainly consists of prede�ned queries; however,
there was a need to implement seven queries speci�c for the function terms, the function
type, and function, as shown in Table 5.1 and Table 5.2. Code 5.6.1 shows the validation
made for validating that every argument used as a function exists, containg both the
query and the error message produced when an validation error occurs.

Code 5.6.1. The code used to validate that a term used as function exists. The new
queryes are marked with the comment //new.

1 private static final Check undefinedFunction = new Check(

2 Query.template("Temp")

3 .and(Query.bodyInstance("Temp", "Ins"))

86 CHAPTER 5. IMPLEMENTATION

4 .and(Query.argumentIndex("Ins", "Index", "Arg"))

5 .and(Query.usedAsType("Ins", "Index", "Lvl", "UsedAs"))

6 .and(Query.containsFunctionType("UsedAs")) //new

7 .and(Query.hasOccurenceAt("Arg", "Lvl", "Term"))

8 .and(Query.not(Query.functionExist("Term"))), //new

9 tup -> Message.error("Function not found error in template "+tup.get("Temp") + ": "

10 + tup.getAs(Instance.class , "Ins"). getIri ()

11 + " expects function(s) as arguments on index "

12 + tup.get("Index") + ", however " + tup.get("Term")+" is not an function."

13)

14);

Name Job Parameters Returns

functinExists Checks whether an IRI can be
connected to a base function or a
function in the function library. 1. A string, which should

be bound to an IRI in the
tuple.

A stream of the tuple if the func-
tion exists and an empty stream
otherwise.

getFunction Retrieves a function based on the
IRI.

1. A string that is bound to
the function IRI.

2. A string in which the
query binds to the func-
tion

The stream of the tuple contain-
ing the binding of the function ob-
ject to the function string param-
eter.

getGenericParameters Retrieves the generic parameter
list to a function.

1. A string that is bound to
the function.

2. A string in which the
query bind the funtion's
parameter list.

The stream of the tuple contain-
ing the binding of the parameter
list object to the given parameter
list string.

genericParameterIndex Either retrieves the parameter on
a given index, or create a stream
for each parameter in the list. 1. A string that is bound to

the parameter list.

2. A string that may or may
not be bound to an in-
dex.

3. A string in which the
query binds the parame-
ter on the given index.

If the index is bound, the query
returns the stream containing the
binding of the parameter on the
index to the given parameter
string. Otherwise, the query re-
turns a stream for each parame-
ter in the list. Binding both the
index and the parameter to tuple
contained by the returned stream.

Table 5.1: The new queries introduced, working on Frog functions.

5.6.2 Validating function call terms utilised in templates

Similarly to the validation performed on the function calls in the function body, Lutra
needs to validate that the function calls used in instances in the template body. Vali-
dating the function calls in the template body and function body is similar because they
both need to validate that the function calls are correct. Section 4.5.1 contains the �ve
validations needed for validating the correctness of function calls.

Implementing these validation with SPARQL only require appending the template heads
of the templates containing function calls as arguments to the graph. The SPARQL
queries demand the template heads to be present in the graph since queries need infor-
mation about the type of the template head's parameters. Consequently, we only needed
to append the template's head to the RDF query syntax. Additionally, the graph only
need to contain the templates where function calls occur in the template body. In con-
trast, validating the function terms would need every template in the graph, as checking

5.6. INTEGRATING FROG FUNCTIONS WITH OTTR TEMPLATES IN LUTRA87

Name Job Parameters Returns

getGenericArguments Retrieve the generic argument list
from a function term. If the term
is an IRI term, we create an empty
list.

1. A string that is bound to
the term.

2. A string in which the
query bind the term's ar-
gument list.

the stream of the tuple containing
the binding of the argument list
object to the given argument list
string.

genericArgumentIndex Either retrieves the arguemnt on
a given index, or create a stream
for each arguemnt in the list. 1. A string that is bound to

the arguemnt list.

2. A string that may or may
not be bound to an in-
dex.

3. A string in which the
query binds the argu-
ment on the given index.

If the index is bound, the query
returns the stream containing the
binding of the argument on the in-
dex to the given parameter string.
Otherwise, the query returns a
stream for each parameter in the
list. Binding both the index and
the argument to tuple contained
by the returned stream.

containsFunctionType Checks whether a type contains a
the function type.

1. A string that is bound to
the type.

A stream of the tuple if the
type contains a functionc type, an
empty stream otherwise.

Table 5.2: The new queries introduced, working on the function term and the function
type.

whether we should interpret an IRI term as a function or an IRI depends on the corre-
sponding parameter's type. Additionally, and most importantly, validating the function
terms requires that we append the template body to the RDF query syntax as well as
the template head. As a result of the reasons mentioned above, we decide to utilise
SPARQL mainly due to two reasons: �rstly, the validation mainly consists of SPARQL
queries, which are already de�ned and therefore can be reused, and secondly, validating
the function calls do not require us to de�ne the whole template in the RDF query syntax
only the template heads. Moreover, creating the queries in Lutra's query language would
have needed many more de�ned queries regarding functions and function calls than when
validating function terms.

To validate typing, correct subtype of arguments and generic arguments, we reuse the
validateArguments and validateGenrics method in the
FunctionCall class, as described in Section 5.4.3. However, we commit minor changes
in the SPARQL queries. Firstly, by appending a separation between the function calls
in a function body and template body in the RDF query syntax. We have separated
the function call by establishing a triple connecting a blank node with the function calls
used in a template with the predicate frog:executableFunctionCall. Additionally,
this blank node relates to the IRI of the template containing the function call through
the frog:usedInTemplate predicate.

Secondly, as Figure 5.23 illustrates, a function call in a template body can contain param-
eter variables de�ned in the template head. As seen in the queries from Section 5.4.2, the
SPARQL queries need to know the type of the variable. For instance, Query 5.4.1 on lines
16-22 �lters out every function call name de�ned as a parameter of type function in the
function head. Consequently, we need to append the signature of the templates that has
function calls in their body. The signature for template heads in the RDF query syntax
is built up similarly to the function heads. The bene�t of utilising the same structure is
that we can reuse more extensive parts of the queries.

88 CHAPTER 5. IMPLEMENTATION

ex:functionTemplate[Function<xsd:integer,xsd:integer> ?fun] :: {

ottr:Triple([], ex:functionTemplateExample, (?fun 1))

}.

Figure 5.23: An example template with containg a function call that utlises a parameter
variable de�ned in the template head as the function call name.

Lastly, due to the additions to the RDF query syntax described above, the SPARQL
queries' �rst step in the object queries and the arity queries are slightly di�erent compared
to the SPARQL queries used to validate functions. The di�erence is a result of that
function calls in the function validation SPARQL queries are found through functions,
while the function calls in template validation SPARQL queries are found through the
predicate frog:executableFunctionCall. Query 5.6.1 depicts the SPARQL validation
query for validating that the function name in the function call exists for function calls
used in a template body. When comparing Query 5.6.1 with the counterpart Query 5.4.1,
we can see that the di�erence in the query pattern is in the �rst part, namely the part
that �nds the function calls.

Query 5.6.1. The validation query used to extract the function calls that does not use
an exisiting function (either from the function library or a base function) or a parameter
of the function type.

1 SELECT ?functionCallName ?templateName

2 WHERE{

3 #finds everything used as a function call

4 #as argument in an instance

5 [] frog:executableFunctionCall/

6 (frog:arg/frog:val)*/ frog:of ?functionCallName.

7

8 #removes all mathces where the function call name

9 #is an IRI and the IRI is of type function

10 FILTER NOT EXISTS{

11 ?functionCallName a frog:Function.

12 FILTER isIRI(? functionCallName)

13 }

14

15 #removes all mathces where a blank node is used as function is

16 #defined as a parameter of type function in the template

17 FILTER NOT EXISTS{

18 ?templateName a ottr:Template;

19 frog:parameter [frog:var ?functionCallName;

20 frog:parameterType/a frog:Function]

21 FILTER isBlank (? functionCallName)

22 }

23 }

5.6. INTEGRATING FROG FUNCTIONS WITH OTTR TEMPLATES IN LUTRA89

5.6.3 Expanding an instance/template containing function calls

As speci�ed in Section 4.6.2, Lutra should evaluate the function calls as soon as they
occur. However, if an instance contains a None value and a function call and the corre-
sponding parameter to the None argument is not optional or contains a default value, then
we have decided not to evaluate the function call. Since Lutra discards this instance re-
gardless of the function call's evaluated value. Therefore we expand the expandInstances
method in Lutra, depicted in Code 5.6.2 with the evaluation of function calls.

Code 5.6.2. The pseudocode for expanding instances in Lutra with the addition of Frog.

1 FUNCTION expandInstances(instance)

2 template <-gets the template with the same iri as the instance

3 IF template do not exist THEN

4 RETURN error

5 IF instance contain none at a non -optional posistion THEN

6 RETURN discard the instance

7 IF instance contains function call(s) THEN

8 RETURN instance with evaluated function call(s)

9 IF instance iri is a base template with no expander

10 OR the instace has ha expander but cannot expand THEN

11 RETURN instace

12 IF instance has list expandet THEN

13 generate instances , one instance per combination of the operator

14 RETURN expandInstaces on all the generated instances

15 ELSE

16 substitute the template 's body with the instance 's arguments

17 RETURN expandInstances all the substitute instances

90 CHAPTER 5. IMPLEMENTATION

Chapter 6

Discussion

In this chapter, we �rstly discuss interesting matters on the design and implementation
in Section 6.1. In Section 6.2, we evaluate whether the inclusion of Frog has improved
OTTR's bene�ts of the DRY principle, better abstraction, uniform modelling, and sep-
aration of design and content. We introduce two case studies regarding producing RDF
graphs from di�erent sources that we solve using both OTTR without Frog and Frog.
When discussing if Frog improves OTTR's bene�ts, we draw in examples from the two
case studies and, from these examples, we discuss these bene�ts in a more general case.

6.1 Design & implementation

In this section, we discuss interesting topics of discussion that have occurd during de-
signing and implementing Frog. We discuss why using SPARQL for validation instead
the Lutra's query language is bene�cial, the advantages and disadvantages of introducing
a new syntax for querying and �nally, how the addition of Frog con�icts with OTTR's
quality of guarantee termination on a valid template library. The discussion regarding
SPARQL for validation is an implementation discussion, while termination is a design
discussion. The introduction of the RDF query syntax is both a design and an imple-
mentation discussion.

6.1.1 SPARQL and validation

Section 5.4 described our validation implementation for Frog functions in Lutra. As pre-
sented by that section, Lutra performed this validation by applying two di�erent tech-
nologies, SPARQL and pure Java. Lutra, however, uses a custom created query language,
written in Java, to validate OTTR templates and instances, as described in Section 5.1.
Thus, maintaining Lutra's template and instance validation requires a maintainer to ac-
quire knowledge on this speci�c means of querying. The OTTR project intends to replace
this custom query language with a more established technology1. In this section, we argue
why an established technology such as SPARQL is bene�cial compared to Lutra's custom
created query language. Additionally, we look into the limitations of SPARQL and how
these limitations have resulted in the need for another technology to perform validation
on types.

1After discussion with the OTTR team.

91

92 CHAPTER 6. DISCUSSION

Before we discuss the proposed bene�ts of applying the established technology SPARQL
rather than Lutra's query language, we need to identify why SPARQL is a well-established
technology in regards to OTTR. Section 3.2 introduces SPARQL and describes SPARQL
as a query language over linked data structured by RDF. Mosser et al. [30, p. 1] and
Peréz er al. [33, p. 1] additionally state that SPARQL is the standard language to perform
queries and extract data from RDF documents. W3C further reinforces this statement
by endorsing SPARQL as a W3C reccomendation [42]. Hence, we argue that SPARQL
is a well-established semantic technology. Furthermore, we assume that template pro-
grammers and maintainers of OTTR are knowledgeable about well-established semantic
technologies due to OTTR being a macro language for the semantic technologies RDF
and OWL. Consequently, we consider SPARQL a known and established technology for
OTTR users and maintainers.

Now that we have introduced SPARQL as an established semantic technology in the
context of OTTR, we proceed with arguing why we believe that conducting validation
through SPARQL queries is bene�cial compared to Lutra's query language. Firstly, ap-
plying SPARQL queries results in Frog validation leveraging the existing W3C stack. In
addition, the SPARQL validation queries formally describe and specify Frog's validation.
Similarly to how SHACL shapes and OWL vocabularies de�ne OTTR's wOTTR seriali-
sation and Frog's RDF serialisation. Lutra's query language, however, is not established
outside the context of Lutra and does not have a speci�cation that formally describes the
language. Thus, we cannot utilise the queries written as a formal description of the vali-
dation. Secondly, the template programmers can understand the validation performed by
Lutra straight from the SPARQL queries due to SPARQL being a well known technology.

Thirdly, we argue that applying a well-established technology, such as SPARQL, is easier
to maintain rather than the Lutra speci�c query language. We assume that SPARQL
queries are easier to maintain because template programmers can suggest and perform
improvements as they are familiar with SPARQL. Additionally, with Lutra's current
SPARQL execution implementation, one does not need to change the Lutra code2. Con-
sequently, updating the validations later only require a programmer to know about
SPARQL queries and the RDF query serialisation in isolation. Lastly, other implemen-
tations of OTTR can reuse the queries for validation. Thus, the SPARQL queries can
work as a uniform means of validation across implementations. Utilising the queries made
for Lutra query language across several implementations is more di�cult as the query
language is implemented to work in the context of Lutra and not other systems.

Performing all the validations in SPARQL has proven impracticable due to the incapacity
to conduct recursive queries with SPARQL language [39, p. 711]. Recursive queries are
necessary to perform queries concerned with typing because OTTR's lists and function
types are nested. Reuter et al. discuss recursion in SPARQL and propose a recursive
linear operator, which they implemented as an extension of Jena [39, p. 732]. However,
implementing this solution in Lutra is out of scope for this thesis. Moreover, we made
an e�ort to create a representation of the types in the RDF query syntax and SPARQL
queries with property paths for the validations regarding types. However, in our �ndings

2Unless the changes require changes in the extraction of data from the query and the formulation of
messages.

6.1. DESIGN & IMPLEMENTATION 93

and to the best of our knowledge, there are no satisfactory solutions to this problem by
applying pure SPARQL.

The optimal solution for type validation would be to �nd another semantic technology
that makes it possible to recursively validate the typing through querying or another
method. However, we were not able to �nd such a technology. Thus, we were limited to
either constructing queries with Lutra's query language or validating through pure Java
implementations. A motivation for utilising Lutra's query language would be to reuse and
arrange the established constructions to validate typing in the Frog functions. However,
Lutra does not currently have support for Frog-constructs. Hence, we would need to
create a set of base relations in the Lutra query language for all of Frog's constructs.
We argue that creating these base relations in the Lutra query language would be more
complicated and complex than writing them in pure Java since Lutra already o�ers
methods for type validation3.. Moreover, the SPARQL validations validate that every
value needed for the type validations are present4. Consequently, the Java validation
implementations can assume that the values are present. This assumption allows us
to write the Java implementation without null-pointer checks, making the code shorter
and concise. Hence, we argue that a Java implementation is more readable and simpler
to comprehend for a Frog function programmer compared to the queries produced with
Lutra's query language. Thus, we believe that a pure Java validation implementation
preserves the maintenance bene�t of utilising SPARQL better than creating queries for
Lutra's query langue. For the reason above, we chose to create a pure java implementation
to validate the typing in the Frog functions, as seen in Section 5.4.

To summarise, we have leveraged SPARQL queries to the extent as technically possible
and used relatively simple pure java methods where applying SPARQL is proven to be
complicated. We argue that the bene�ts mentioned regarding SPARQL, such as getting
a formal de�nition, reuse and maintenance, are more substantial compared to Lutra's
query language; although we only leverage in parts of the validation.

6.1.2 RDF query syntax

As presented in Section 5.4.2, we have introduced a new syntax to Frog, the RDF query
syntax. However, Frog already had an RDF syntax that SPARQL could have queried over
before introducing the RDF query syntax. This section discusses why we chose to include
another RDF syntax in the Lutra implementation instead of the already established RDF
syntax.

Firstly we establish the possible bene�ts of using the existing RDF syntax. In the previous
section, we discussed that one of the bene�ts of applying SPARQL rather than Lutra's
query language is that it is easier to maintain. In addition, the SPARQL validation
queries can be used as a formal description of the validation. However, introducing
a new syntax compared to utilising an existing one would require comprehending the
RDF query syntax in addition to the established RDF syntax. Additionally, using the
established RDF syntax opens up the possibility to leverage even further of the W3C

3Section 5.4.3 elaborates on the methods isSubtypeOf and isCompatibleWith
4Due to the arity validation performed by SPARQL.

94 CHAPTER 6. DISCUSSION

Figure 6.1: An alternative basic �ow of a Frog implemntation.

stack. As illustrated by Figure 6.1, when utilising the established RDF syntax, we can
translate the HRS syntax into the RDF syntax and then perform validations on the RDF
graph with the SHACL shapes before validating directly on the graph with SPARQL.
Consequently, we can leverage the W3C stack as far as possible before producing and
working on Java objects. Additionally, several OTTR and Frog implementations can
reuse this pipeline.

Another solution could be to introduce the RDF query syntax as a o�cial Frog syntax, ei-
ther by replacing the already established syntax or by having two di�erent RDF syntaxes.
Using the RDF query syntax as an o�cial Frog syntax would require more validation.
Since replacing list structures with blank node structures removes order and continuity
regarding the parameters and arguments; because each blank node must state their index
explicitly. Example 6.1.1 shows that the RDF query syntax allows us to write a function
with parameters only on indexes 2 and 6. Consequently, if we were to introduce the
RDF query syntax as an o�cial Frog syntax, we would need to validate that the indexes
regarding parameters and arguments form a proper list. In other words, that the indexes
are in the range of 0 to N - 1, where N is the number of parameters or arguments.

Example 6.1.1. An example showing that it is possible to write indexes in the RDF
queries that are discontinuous.

ex:plus2Times a frog:Function;

frog:parameter [frog:type xsd:integer;

frog:var _:number1

frog:index 2],

[frog:type xsd:integer;

frog:var _:number2

frog:index 6].

The disadvantages of constructing queries over Frog's RDF syntax are a lack of data and
metadata, primarily due to Frog's RDF syntax using lists to represent several constructs.
As seen in query 6.2, many of the properties in the queries is property paths combining
rdf:rest and rdf:first, for instance, �nding the generic arguments of a function call,
as seen on lines 10 to 12. In comparison, the RDF query syntax can use the property
frog:typeArg to �nd blank nodes containing information about the generic arguments
of a function call. When constructing queries for the two syntaxes, we experienced that
the queries for the RDF syntax required additional subqueries to extract metadata. For
example, �nding the index of a parameter or an argument. In comparison, the RDF

6.1. DESIGN & IMPLEMENTATION 95

1 SELECT *

2 WHERE {
3 #FINDS EVERY FUNCTION CALL
4 ? functionName a : Function ;
5 : de f [] .
6
7 { #Used as / in a gene r i c argument
8 ? functionName : de f / rd f : r e s t /
9 rd f : r e s t / rd f : f i r s t /
10 (rd f : r e s t */ rd f : f i r s t)*
11 ? func t i onCa l l .
12 ? func t i onCa l l rd f : f i r s t : f unc t i onCa l l .
13
14 ? func t i onCa l l rd f : r e s t / rd f : r e s t
15 / rd f : f i r s t _: g e n e r i cL i s t .
16 _: g e n e r i cL i s t rd f : f i r s t : typeArgs .
17 _: g e n e r i cL i s t rd f : r e s t+/rd f : f i r s t /
18 (rd f : r e s t */ rd f : f i r s t)*
19 ? gene r i cVar i ab l e .
20
21 } UNION { #Used as / in the return type
22 ? functionName : type / : returnType/
23 (rd f : r e s t */ rd f : f i r s t)*
24 ? gene r i cVar i ab l e .
25 } UNION { #Used as / in parameter types
26 ? functionName : type / : parameterTypes/
27 rd f : r e s t */ rd f : f i r s t /
28 (rd f : r e s t */ rd f : f i r s t)*
29 ? gene r i cVar i ab l e .
30 }
31
32 FILTER(isBlank (? gene r i cVar i ab l e))
33 FILTER NOT EXISTS {
34 ? functionName : typeVars / rd f : r e s t */
35 rd f : f i r s t / : var
36 ? gene r i cVar i ab l e
37 }
38 }

1 SELECT ? functionName ? gene r i cVar i ab l e
2 WHERE {
3 ? functionName a : Function ;
4 : body [] .
5
6 { #Used as / in a gene r i c argument
7 ? functionName : body / (: arg / : va l)*/ : typeArg/
8 (: type / (: argType+/: type)+)?
9 ? genericArgument
10 } UNION { #Used as / in the return type
11 ? functionName : returnType/
12 (: argType+/: type)* ? genericArgument
13 } UNION { #Used as / in parameter types
14 ? functionName : parameter / : parameterType/
15 (: argType+/: type)* ? genericArgument
16 }
17
18 ? genericArgument a : GenericType ;
19 : type ? gene r i cVar i ab l e .
20 FILTER NOT EXISTS{
21 ? functionName : typeVar / : var ? gene r i cVar i ab l e .
22 }
23
24 }

Figure 6.2: The query on the left is written for Frog's RDF syntax, while the query on
the right is for the RDF query syntax. The two queries both �nds unde�ned generic
arguments in the function body.

query syntax contains metadata through the property frog:index about the indexes of
the arguments and parameters. Thus, we argue that the readability of the queries for the
RDF query syntax is better than Frog's RDF syntax. Moreover, the RDF query syntax
contains information regarding the OTTR type of a term. As discussed in Section 6.1.1,
we do not use queries to validate typing. However, if we were to construct these recursive
queries5, the RDF query syntax would be the most suitable solution.

Including yet another syntax has its disadvantages as well, especially in regards to main-
tenance. If we introduce another construct to Frog, we need to de�ne the construct not
only to the two o�cial serialisations but also to the RDF query serialisation. Moreover,
the translation from the two other syntaxes to the RDF query syntax introduces yet an-
other step in implementing Frog. Hence, introducing the possibility of more bugs in the
implementation. Frog would have required a translation between the HRS and RDF syn-
tax if Frog used the RDF syntax to query over. However, a translation between the HRS
and RDF syntax would be bene�cial not only in regards to validation but also because
HRS is the preferred syntax for writing functions and the RDF syntax for publishing
functions. Consequently, with a translation, we can write the functions in HRS and get
a Frog implementation to translate the functions to the RDF syntax for publication and
visa versa.

To conclude, the choice of whether to make a new RDF syntax for querying or utilising
Frog's existing RDF syntax is a choice between improved readability or not having to

5For instance, by appending Reutter et al.'s recursive clause [39] on top of Jena.

96 CHAPTER 6. DISCUSSION

learn a new syntax. We chose improved readability because we argue that the complexity
of understanding the queries for Frog's RDF syntax is higher compared to learning the
RDF query syntax, even though this requires more maintenance in Frog implementations.
An alternative solution can be to construct queries for both syntaxes; however, an e�ort
to construct all the queries for Frog's RDF syntax was not made, in this thesis, due to
time limitations6.

6.1.3 Termination

An expansion of an instance on a template from a valid template library guarantees
termination. This guaranteed termination stems from the de�nition of a valid template
library, which the mOTTR speci�cation [21] de�nes. Notably, the mOTTR speci�cation
de�nes that a valid template library must be acyclic7. In other words, a valid template
library does not support recursion on templates, consequently guaranteeing termination.

However, Frog is a programming language allowing recursive functions, thus making it
possible to create non-terminating functions. Example 6.1.2 illustrates a Frog function
that never terminates when the input is a non-empty list. Finding out whether function
calls terminate or not is impossible to validate before executing them8, in contrast to
validating that a template library is acyclic. Thus, we can not guarantee that a template
which depends on a Frog function terminates, even though the template is a part of
a valid template library. Consequently, when introducing Frog into OTTR, we remove
OTTR's quality of guaranteed termination of an instance on a template from a valid
template library.

Example 6.1.2. An example of a Frog function that does not terminate if ?lst is a
non-empty list.

ex:addAll(List<xsd:integer> ?lst) -> xsd:integer :: (

if<<xsd:integer>> (fn:isEmpty ?lst)

0

(fn:plus<<xsd:integer>> (fn:head<<xsd:integer>> ?lst) (ex:addAll ?lst))

).

A solution to the problem mentioned above could be to restrict Frog such that the func-
tions in the function library need to have an acyclic dependence relation, similar to OTTR.
Then Frog could o�er the known terminating recursive functions map, �lter and reduce
as built-in Frog functions, making it possible to create recursive functions by applying
them.

6.2 Improving OTTR by including Frog

To discuss if the addition of Frog actually has improved the OTTR framework, we look
into two case studies. These studies compares a solution with and without Frog. Fur-

6Writing the queries for both RDF syntaxes would also require more maintenance.
7De�nition 3.4.2 de�nes an acyclic template library.
8The Halting problem.

6.2. IMPROVING OTTR BY INCLUDING FROG 97

Table 6.1: An extraction of the CSV data retrieved from Extrasolar Planets Encyclopae-
dia. The actual CSV �les contain more columns but have been removed in this extracti
for simplicity.

name planet_status mass star_name
11 Com b Con�rmed 11 Com
11 Oph b Con�rmed 21.0 Oph 1622-2405
14 And b Con�rmed 14 And

Table 6.2: An extraction of the execl data retrieved from NASA Exoplanet Archive. The
actual excel �les contain more columns but have been removed in this extraction for sim-
plicity.

rowid pl_hostname pl_name pl_bmassj
1 11 Com 11 Com b 19.4
2 11 UMi 11 UMi b 14.74
3 14 And 14 And b 4.8

thermore, we discuss which of OTTR bene�ts Frog strengthens in general terms based
on examples from the two case studies. We also look into other notable bene�ts and
disadvantages when including Frog into OTTR.

6.2.1 Case Study: Planets

Case Description and the Data Sources

Let us assume we have two data sets on planets from two di�erent sources: the Extrasolar
Planets Encyclopaedia9 and the NASA Exoplanet Archive10. Data extraction from the
Extrasolar Planets Encyclopaedia results in a CSV �le. This CSV �le contains data
regarding planets with their name, planet status, mass and the name of the star it orbits,
as seen in table 6.1. On the other hand, extracting data from the NASA Exoplanet
Archive gives us an Excel table with data about a planet's name, mass, and the name of
the star the planet orbits. Table 6.2 is an example of an extracted excel �le from NASA.

We want to create a model of planets in RDF from these two sources. The following
vocabulary should represent our model of a planet:

� The name of the planet.

� The relation from a planet to the star it orbits.

� The name of the star that the planet orbits, if present.

� The mass of the planet, if present.

Additionally, we want both the planets and the stars to have an IRI where their name
is the local name. Figure 6.3 illustrates a general graph of how we desire to model a
planet11.

9http://exoplanet.eu/catalog/
10https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&

config=PS
11This case is inspired by a case presented in a lecture in the subject IN5800 at the University of Oslo

http://exoplanet.eu/catalog/
https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=PS
https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=PS

98 CHAPTER 6. DISCUSSION

Figure 6.3: A generalisation of the structure of a planet in a RDF graph.

To create the RDF graph, we use OTTR. We solve this case both with and without Frog.
Moreover, we utilise both bOTTR and tabOTTR to create instances from the �les due
to the retrieved data being in a CSV and an Excel format.

Without Frog

When working with OTTR without Frog, all the terms and values must be calculated
before creating the instances. Consequently, the template modelling a planet must, among
other things, take in the IRIs of the planets and stars as arguments. As previously
mentioned, these IRIs need to include the planet's or star's name as their local name.
Thus, we have created Template 6.2.1, which encapsulates our modelling of a planet.

Template 6.2.1. The template modelling a planet without the use of Frog.

ex:Planet [:IRI ?iri, xsd:string ?name, :IRI ?star,

? xsd:string ?starName, xsd:decimal ?mass] :: {

o-rdf:Type(?iri, ex:Planet),

o-rdfs:Label(?iri, ?name),

:Triple(?iri, ex:orbitsStar, ?star),

o-rdfs:Label(?star, ?starName),

ottr:Triple(?iri, ex:hasMass, ?mass)

} .

As seen in table 6.1 and 6.2, neither of the sources contain IRIs for the planets and
stars. Thus, we need to create the IRIs through the mapping or excel sheet with the
tabOTTR preamble. The planet's and star's names, which our IRIs are based on, may
contain spaces in their name. Spaces are not allowed in IRIs. We replace spaces with
an underscore (_) in our mapping and excel sheet. As seen in Figure 6.4, our mapping
removes the spaces with the REPLACE function and combines the localname and name of
the planet or star with the CONCAT function; resulting in a valid IRI. We produce the
IRIs in the Excel sheet by creating two new columns containing the IRIs, which Excel
calculated through the following formula:

=CONCAT ("http :// example.xyz/ns/",

SUBSTITUTE(<pl_hostname or pl_name cell >, " ", "_"))

Table 6.3 shows the result of adding the tabOTTR preamble and the calculated columns
to table 6.2.

https://leifhka.org/in5800/lectures/mappings/slides/index.html .

https://leifhka.org/in5800/lectures/mappings/slides/index.html

6.2. IMPROVING OTTR BY INCLUDING FROG 99

ex:Planet a :InstanceMap ;

:template ex:Planet ;

:query

"""SELECT

CONCAT('http://example.xyz/ns/', REPLACE(name, ' ', '_')),

name,

CONCAT('http://example.xyz/ns/', REPLACE(star_name, ' ', '_')),

star_name,

mass

FROM CSVREAD('<csv file path>',null,'charset=UTF-8 fieldSeparator=,');""" ;

:argumentMaps ([:type :IRI] [:type xsd:string]

[:type :IRI] [:type xsd:string]

[:type xsd:decimal]) ;

:source [a :H2Source] .

Figure 6.4: Our mapping creating instances of ex:Planet from a CSV �le with the format
shown in table 6.1.

Table 6.3: Table 6.2 with tabOTTR preamble and the calculated IRIs.

#OTTR pre�x
ex http : //example.xyz/ns/
#OTTR end
#OTTR template ex:Planet
0 4 2 1 3 5

xsd:string xsd:string iri iri xsd:decimal
rowid pl_hostname pl_name pl_iri pl_hostiri pl_bmassj
1 11 Com 11 Com b ex:11_Com ex:11_Com_b 19.4
2 11 UMi 11 UMi b ex:11_UMi ex:11_UMi_b 14.74
3 14 And 14 And b ex:14_And ex:14_And_b 4.8
#OTTR end

100 CHAPTER 6. DISCUSSION

def ex:toIRIWNamespace(xsd:string ?localName) -> ottr:IRI :: (

ex:toIRI "http://example.org/data/" ?localName

).

def ex:toIRI(xsd:string ?namespace, xsd:string ?localName) -> ottr:IRI

:: (

fn:castToIRI (fn:concat ?namespace (fn:translate ?localName " " "_"))

).

Figure 6.5: Frog function's used in the template to generate IRIs in the template.

With Frog

In contrast to the solution without Frog, the addition of Frog makes it possible to create
functions that can manipulate terms inside templates. Consequently, as Figure 6.5 illus-
trates, we can create Frog functions that creates an IRI based on a namespace and a local
name. We have created the function ex:toIRIWNamespace since all of the instances have
the same namespace12. Then we can use this Frog function in the template to calculate
the IRI based on the names of the planets and stars. As seen in Template 6.2.2, we have
chosen to create a new Template ex:PlanetFrog, with a body containing an instance of
ex:Planet from Template 6.2.1 with the necessary function calls to create IRIs.

Template 6.2.2. The template modelling a planet with the use of the Frog function,
which constructs IRIs.

ex:PlanetFrog [xsd:string ?name,? xsd:string ?starName,? xsd:decimal ?mass]

:: {

ex:Planet((ex:toIRIWNamespace ?name),?name,

(ex:toIRIWNamespace ?starName), ?starName, ?mass

)

} .

As a consequence of the template performing the calculations of IRIs, the mapping and
excel with tabOTTR preamble does not need to perform or contain any calculation, only
extracting of terms to create instances, as seen in Figure 6.6 and table 6.4.

6.2.2 Case Study: Weather stations

Case Description and the Data Sources

This case is inspired by the motivation example regarding weather stations introduced
in Section 1.1. We have extended this case further, including more data to model. In
short, we want to model historical data on weather stations in RDF. A weather station
should contain the average temperature, maximum temperature, minimum temperature,
amount of rain, and snow depth for each date if present. Additionally, a weather station
should contain the name of its location, and the station id should be the local name of

12In the subsequent case study, we see that this removes repetition.

6.2. IMPROVING OTTR BY INCLUDING FROG 101

ex:Planet a :InstanceMap ;

:template ex:PlanetFrog ;

:query

"""SELECT name, star_name, mass

FROM CSVREAD('<CSV file path',null,'charset=UTF-8 fieldSeparator=,');""" ;

:argumentMaps ([:type xsd:string] [:type xsd:string][:type xsd:decimal]) ;

:source [a :H2Source] .

Figure 6.6: Our mapping creating instances of ex:PlanetFrog from a CSV �le with the
format shown in table 6.1.

Table 6.4: Table 6.2 with tabOTTR preamble.

#OTTR pre�x
ex http : //example.xyz/ns/
#OTTR end
#OTTR template ex:Planet
0 2 1 3

xsd:string xsd:string xsd:decimal
rowid pl_hostname pl_name pl_bmassj
1 11 Com 11 Com b 19.4
2 11 UMi 11 UMi b 14.74
3 14 And 14 And b 4.8
#OTTR end

the station's IRI. Furthermore, the model should store the temperature measurements in
Celcius (C) and the rain and snow depth measurements in millimetres (mm). Figure 6.7
illustrates how we want to model the weather stations in a general graph.

We have retrieved data from two di�erent sources: Natural Centers for Environmen-
tal Information13 (USA) and from Meteorlogisk institute14 (Norway). We extracted �ve
CSV �les from the Centers for Environmental Information in the same format contain-
ing data for �ve weather stations placed in di�erent cities across the USA15. The �rst
line of the CSV �le contained a string with the station's name and its id, for instance,
"LAGUARDIA AIRPORT, NY US (USW00014732)". We removed this data from the CSV
�le and placed the information directly into the mapping for each �le. Additionally, we
have shortened some of the column names, for example, TAVG (Degree Fahrenheit) to
TAVG. Table 6.5 illustrates the format of the CVS �les after this cleaning. These CVS
�les contain their temperature data in Fahrenheit (F) and their data regarding snow
depth and rain in inches (in).

Moreover, we retrieved data from three weather stations in di�erent cities16 in Norway
from Meteorlogisk institute in an excel format. The data from Meteorlogisk institute

13https://www.ncei.noaa.gov/access/past-weather/
14https://seklima.met.no/observations/
15More speci�c: New York, Boston, Orlando, Seattle and Los Angeles.
16More speci�c: Oslo, Trondheim, and Bergen.

https://www.ncei.noaa.gov/access/past-weather/
https://seklima.met.no/observations/

102 CHAPTER 6. DISCUSSION

Figure 6.7: A generalisation of the structure of a weather station in the RDF graph.

Date TAVG TMAX TMIN PRCP SNOW SNWD
2011-09-01 78 83 63 0.00 0.0
2011-09-02 77 83 61 0.0 0.0
2011-09-03 86 59 0.00 0.0 0.0

Table 6.5: The table illustrates the format of the CSV data from Natural Centers for
Environmental Information, after cleaning.

uses the scale Celcius (C) and millimetre (mm). The �les represented no data with a
cell with only a dash character (-); however, we replaced these cells with empty cells for
OTTR to interpret the cells as a none existing value. Additionally, we have shortened
the column names in the excel sheets; the column Tid(norsk normaltid) has, for instance,
been shortened down to Tid. Table 6.6 shows a generalisation of the format of the excel
sheets retrieved from Meteorlogisk institute with our cleaning regarding empty cells.

Without Frog

As mentioned in the case description, the model should only contain Celcius (C) and
millimetre (mm) data. Consequently, when using OTTR without Frog, we assume that
the data in di�erent scales are calculated into Celcius (C) and millimetre (mm) before
creating the instances. Thus, we constructed Template 6.2.3, which encapsulates our
model from the case description.

Furthermore, we have created one mapping for each of the CSV �les extracted from
the Natural Centers for Environmental Information. However, as previously explained,

Navn Stasjon Tid Maktemp Midtemp Mintemp Snodybde Nedbor
Bergen SN50540 02.01.2010 -2.7 -8.3 -9.9 20 0.1
Bergen SN50540 03.01.2010 -2.9 -5 -10 20 0
Bergen SN50540 04.01.2010 -0.1 -4.2 22 1.1

Table 6.6: The table illustrates the format of the excel data from Meteorlogisk institute,
after cleaning.

6.2. IMPROVING OTTR BY INCLUDING FROG 103

Template 6.2.3. The template modelling a weather stations without the use of Frog.
ex:WeatherStationCelcius[:IRI ?iri, xsd:string ?name, xsd:date ?date, ? xsd:decimal ?avgTemp,

? xsd:decimal ?minTemp, ? xsd:decimal ?maxTemp, ? xsd:decimal ?snow, ? xsd:decimal ?rain]
:: {

o-rdf:Type(?iri, ex:WeatherStation),
o-rdfs:Label(?iri, ?name),
:Triple(?iri, ex:dateMeasurement, _:measurement),
:Triple(_:measurement, ex:date, ?date),
ex:Measurement(_:measurement, ex:avgTemp, ex:AvgTempMeasurment, ?avgTemp, "C"),
ex:Measurement(_:measurement, ex:avgTemp, ex:MinTempMeasurment, ?minTemp, "C"),
ex:Measurement(_:measurement, ex:avgTemp, ex:MaxTempMeasurment, ?maxTemp, "C"),
ex:Measurement(_:measurement, ex:rain, ex:RainMeasurment, ?rain, "mm"),
ex:Measurement(_:measurement, ex:snowDepth, ex:SnowDepthMeasurment, ?snow, "mm")

} .

ex:Measurement[:IRI ?iri, ! :IRI ?prop, :IRI ?type, xsd:decimal ?meas, xsd:string ?scale] :: {
:Triple(?iri, ?prop, _:measurment),
o-rdf:Type(_:measurment, ?type),
:Triple(_:measurment, ex:measurment, ?meas),
:Triple(_:measurment, ex:scale, ?scale)

} .

ex:MapBosten a :InstanceMap ;
:template ex:WeatherStationCelcius ;
:source [a :H2Source];
:query """SELECT

\'http://example.xyz/ns/USW00014739\',
\'BOSTON, MA US\',
CAST(Date as date),
ROUND((CAST(TAVG as decimal) - 32) * 5/9, 1),
ROUND((CAST(TMIN as decimal) - 32) * 5/9, 1),
ROUND((CAST(TMAX as decimal) - 32) * 5/9, 1),
ROUND(CAST(SNWD as decimal) * 25.4, 1),
ROUND(CAST(PRCP as decimal) * 25.4, 1),

FROM CSVREAD('<path to boston csv file>', null, 'charset=UTF-8 fieldSeparator=,');""" ;
:argumentMaps (
[:type :IRI] [:type xsd:string] [:type xsd:date] [:type xsd:decimal]
[:type xsd:decimal] [:type xsd:decimal] [:type xsd:decimal][:type xsd:decimal]
) .

Figure 6.8: The map creating instances of ex:WeatherStationCelcius from a CSV �le
with the format shown in table 6.5

the data in the CSV �les use Fahrenheit (F) and inches (in) as scales. Therefore, each
mapping needs to convert the measurements into the correct scale. We have created
the conversion using numerical operation, as seen in Figure 6.8. The excel �les from
Meteorlogisk institute, on the other hand, represent their measurement data in Celcius
(C) and millimetre (mm); consequently, no conversion is needed. However, we need to
create IRIs based on the Stasjon column for the weather stations. The creation of the
IRIs uses the same formula as the case study regarding planets in the previous section.
Table 6.7a shows the result of adding the IRIs to the excel sheet shown in table 6.2 and
the tabOTTR preamble.

With Frog

As seen in the section above, the mappings and the excel �les have di�erent types of
calculations. However, it is possible to move these calculations from mappings and excel
�les into the template using the functions de�ned in Figures 6.9 and 6.5, as seen in
Template 6.2.4. Template 6.2.3 assumes that the terms used as arguments in instances
are on the correct scale. When we move these calculations into the templates, we can
no longer assume that the measurements are on the correct scale. Therefore, in contrast
to Template 6.2.3, Template 6.2.4 takes in the scale of temperatures, snow depth, and
rain scale. Template 6.2.4 applies ex:convertToMMIfInches and ex:convertToCIfF to
check whether the measurements are on the correct scale and convert them if necessary.

104 CHAPTER 6. DISCUSSION

T
able

6.7:
T
ables

for
the

w
eather

case.
W
ithou

t
F
rog

on
the

left
an
d
w
ith

F
rog

on
the

right.

(a
)
T
a
ble

6
.2

w
ith

ta
bO

T
T
R

p
rea

m
ble

a
n
d
th
e
ca
lcu

la
ted

IR
Is.

F
o
r
th
e
so
lu
tio

n
w
ith

o
u
t
F
rog.

#
O
T
T
R

p
re
�
x

e
x

h
ttp

:
/
/
e
x
a
m

p
le
.x

y
z
/
n
s
/

#
O
T
T
R

e
n
d

#
O
T
T
R

te
m
p
la
te

e
x
:W

e
a
th
e
rS
ta
tio

n
C
e
lc
iu
s

2
0

1
3

4
5

6
7

8
x
sd
:strin

g
iri

x
sd
:d
a
te

x
sd
:d
e
c
im

a
l

x
sd
:d
e
c
im

a
l

x
sd
:d
e
c
im

a
l

x
sd
:d
e
c
im

a
l

x
sd
:d
e
c
im

a
l

N
a
v
n

S
ta
sjo

n
S
ta
sjo

n
Id

T
id

M
a
k
te
m
p

M
id
te
m
p

M
in
te
m
p

S
n
o
d
y
b
d
e

N
e
d
b
o
r

B
e
rg
e
n

S
N
5
0
5
4
0

e
x
:S
N
5
0
5
4
0

0
2
.0
1
.2
0
1
0

-2
.7

-8
.3

-9
.9

2
0

0
.1

B
e
rg
e
n

S
N
5
0
5
4
0

e
x
:S
N
5
0
5
4
0

0
3
.0
1
.2
0
1
0

-2
.9
,-5

-1
0

2
0

0
B
e
rg
e
n

S
N
5
0
5
4
0

e
x
:S
N
5
0
5
4
0

0
4
.0
1
.2
0
1
0

-0
.1

-4
.2

2
2

1
.1

#
O
T
T
R

e
n
d

(b)
T
a
ble

6
.2

w
ith

ta
bO

T
T
R

p
rea

m
ble

a
n
d
co
lu
m
n
s
fo
r
th
e
sca

les.
F
o
r
th
e
so
lu
tio

n
w
ith

F
rog.

#
O
T
T
R

p
re
�
x

e
x

h
ttp

:
/
/
e
x
a
m

p
le
.x

y
z
/
n
s
/

#
O
T
T
R

e
n
d

#
O
T
T
R

te
m
p
la
te

e
x
:W

e
a
th
e
rS
ta
tio

n
C
e
lc
iu
s

2
1

3
4

5
6

7
8

9
1
0

x
sd
:strin

g
x
sd
:strin

g
x
sd
:d
a
te

x
sd
:d
e
c
im

a
l

x
sd
:d
e
c
im

a
l

x
sd
:d
e
c
im

a
l

x
sd
:d
e
c
im

a
l

x
sd
:d
e
c
im

a
l

x
sd
:strin

g
x
sd
:strin

g
N
a
v
n

S
ta
sjo

n
T
id

M
a
k
te
m
p

M
id
te
m
p

M
in
te
m
p

S
n
o
d
y
b
d
e

N
e
d
b
o
r

B
e
rg
e
n

S
N
5
0
5
4
0

0
2
.0
1
.2
0
1
0

-2
.7

-8
.3

-9
.9

2
0

0
.1

B
e
rg
e
n

S
N
5
0
5
4
0

0
3
.0
1
.2
0
1
0

-2
.9
,-5

-1
0

2
0

0
B
e
rg
e
n

S
N
5
0
5
4
0

0
4
.0
1
.2
0
1
0

-0
.1

-4
.2

2
2

1
.1

#
O
T
T
R

e
n
d

6.2. IMPROVING OTTR BY INCLUDING FROG 105

def ex:inchesToMM(xsd:decimal ?inces) −> xsd:decimal :: (
fn:times<<xsd:decimal>> ?inces 25.4

).

def ex:convertToMMIfInches(xsd:decimal ?number, xsd:string ?scale) −> xsd:decimal :: (
fn:if<<xsd:decimal>> (ex:stringEquals ?scale "I")

(ex:inchesToMM ?number)
?number

).

def ex:convertToCIfF(xsd:decimal ?number, xsd:string ?scale) −> xsd:decimal :: (
fn:if<<xsd:decimal>> (ex:stringEquals ?scale "F")

(ex:FtoC ?number)
?number

).

def ex:getFinalScale(xsd:string ?scale) −> xsd:string :: (
fn:if<<xsd:string>> (fn:or (ex:stringEquals ?scale "F") (ex:stringEquals ?scale "C"))

"C"
"MM"

) .

def ex:stringEquals(xsd:string ?str1, xsd:string ?str2) −> xsd:boolean :: (
fn:if<<xsd:boolean>> (fn:equal<<xsd:integer>> 0 (fn:compare ?str1 ?str2))

true
false

).

Figure 6.9: The functions needed for Template 6.2.4. Figure 4.7 de�ned the function
ex:FtoC which function ex:convertToCIfF utilises.

Template 6.2.4. The template modelling a weather stations with the use of Frog.
ex:WeatherStationCelcius[ottr:string ?stationID, xsd:string ?name, xsd:date ?date, ? xsd:decimal ?avgTemp, ? xsd:decimal ?minTemp,

? xsd:decimal ?maxTemp, ? xsd:decimal ?snow, ? xsd:decimal ?rain,
xsd:string ?tempScale = "C", xsd:string ?snowAndRainScale = "mm"] :: {

o-rdf:Type((ex:toIRIWNamespace ?stationID), ex:WeatherStation),
o-rdfs:Label((ex:toIRIWNamespace ?stationID), ?name),
ottr:Triple((ex:toIRIWNamespace ?stationID), ex:dateMeasurement, _:measurement),
ottr:Triple(_:measurement, ex:date, ?date),
ex:Measurement(_:measurement, ex:avgTemp, ex:AvgTempMeasurment, ?avgTemp, ?tempScale, ex:convertToCIfF),
ex:Measurement(_:measurement, ex:avgTemp, ex:MinTempMeasurment, ?minTemp, ?tempScale, ex:convertToCIfF),
ex:Measurement(_:measurement, ex:avgTemp, ex:MaxTempMeasurment, ?maxTemp, ?tempScale, ex:convertToCIfF),
ex:Measurement(_:measurement, ex:rain, ex:RainMeasurment, ?rain, ?snowAndRainScale, ex:convertToMMIfInches),
ex:Measurement(_:measurement, ex:snowDepth, ex:SnowDepthMeasurment, ?snow, ?snowAndRainScale, ex:convertToMMIfInches)

} .

ex:Measurement[ottr:IRI ?iri, ! ottr:IRI ?prop, ottr:IRI ?type, xsd:decimal ?meas,
xsd:string ?scale, Function<xsd:decimal, xsd:string, xsd:decimal> ?fun] :: {

ottr:Triple(?iri, ?prop, _:measurment),
o-rdf:Type(_:measurment, ?type),
ottr:Triple(_:measurment, ex:measurment, (fn:roundPrecision<<xsd:decimal>> (?fun ?meas ?scale) 1)),
ottr:Triple(_:measurment, ex:scale, (ex:getFinalScale ?scale))

} .

106 CHAPTER 6. DISCUSSION

ex:MapBosten a :InstanceMap ;
:template ex:WeatherStationCelcius ;
:source [a :H2Source];
:query """SELECT

'USW00014739', 'BOSTON, MA US', Date,
TAVG, TMIN, TMAX, SNWD, PRCP,'F','in'

FROM CSVREAD('path to boston csv file', null, 'charset=UTF-8 fieldSeparator=,');""" ;
:argumentMaps (
[:type xsd:string] [:type xsd:string] [:type xsd:date]
[:type xsd:decimal] [:type xsd:decimal] [:type xsd:decimal] [:type xsd:decimal] [:type xsd:decimal]
[:type xsd:string] [:type xsd:string]
) .

Figure 6.10: The map creating instances of ex:WeatherStationCelcius from a CSV �le
with the format shown in table 6.5.

As a consequence of moving the calculation of measurements into the templates in Tem-
plate 6.2.4, the template ex:WeatherStationCelcius needs to know the scales of the
measurements. Therefore, we have added data regarding the scales in the mappings and
Excel �les, as seen in tables 6.10 and 6.7b. Note that sources with millimetre and Celcius
as their scales do not explicitly need to state their scales due to the default values in
Template 6.2.417. Moreover, by moving the calculation of IRI into the templates, we can
remove the calculation to produce IRIs in both the mappings and the Excel �les.

6.2.3 Discussion

Don't repeat yourself (DRY)

In Section 1.1, we argued that Frog would improve the Don't repeat yourself (DRY)
principle. We claimed that by moving calculations from mappings or through tools for
handling tabular data, such as Excel, and into the templates, we only needed to add one
procedure instead of one for each source type. The planet case presented in Section 6.2.1
is an example of how we can take advantage of Frog to remove repetitious calculations.
In the planet case, when we utilised OTTR without Frog, we produced two di�erent
computation methods for the same task, namely to produce IRIs for the stars and planets
with their name as the local name. In contrast, OTTR with Frog only required one
Frog function to calculate the IRIs, namely ex:toIRIWNamespace. Thus, applying Frog
functions instead of calculations in the mappings and tabular �les makes it possible to
remove unnecessary repetitions of similar calculations.

In general, di�erent sources have di�erent approaches for calculating the same values. For
instance, the binding BIND(?IRI, CONCAT(?namespace, REPLACE(?localName, " ", "_")))

could have been used to produce IRIs in a mapping with a SPARQL source. In contrast,
PostgreSQL would similarly calculate the IRIs with the function call
concat(<namespace>, translate(<local name>, " ", "_")). As a result, when util-
ising OTTR without a Frog Function, one must create one method for the same calcula-
tion for each source type18. When utilising a Frog Function inside the template instead,
only one calculation method is needed regardless of the number of di�erent sources.

Moreover, the introduction of Frog has made it possible to remove repetitious calculation
over the source type with the same structure, as seen in the weather station case presented

17In this case, this regards the Excel �les, as seen in table 6.7b.
18Where the calculation is required.

6.2. IMPROVING OTTR BY INCLUDING FROG 107

in Section 6.2.2. In the weather case without Frog, we constructed �ve mappings, one for
each CSV �le, containing the same calculations for converting Fahrenheit to Celcius and
inches to millimetres, as seen in Figure 6.8. When we utilised Frog, on the other hand,
we only de�ned one function for each conversion which we used in Template 6.2.4. Only
having one de�nition for each calculation, a Frog function, is bene�cial as it is easier to
maintain one function compared to N functions, where N is the numbers of mappings or
tabular �les.

If the calculated value is required in several places in the template, utilising Frog functions
may result in the template containing repetitious function calls. Template 6.2.4, for the
weather station case, is an example of repetitious function calls resulting from utilising
Frog functions19. Changes to the IRI de�nition, for instance, what should be in the
local name, would require a change in three di�erent function calls in the template. In
contrast, no changes would be necessary for Template 6.2.3, where Frog functions are
absent. However, changing the local name would have required changing each mapping
and tabular �le. Consequently, both solutions, in this case, are not optimal with regards
to the DRY principle. A solution, when utilising Frog, could have been to create a
wrapper template as seen in the planet case with Template 6.2.2.

To conclude, through the planet and weather station case and the general case, we see
that the inclusion of Frog has strengthened OTTR's bene�t of the DRY principle. This
principle is strengthened because OTTR with Frog only requires one Frog function while
OTTR without Frog requires one calculation method for each source. Additionally, the
inclusion of Frog facilitates the possibility to remove repetitious calculations in mappings
and tabular sources of similar structure into one Frog function.

Better Abstraction & Uniform modelling

OTTR claims to provide better abstraction, as OTTR templates create an abstraction
layer between data and model or structure of the data, consequently ensuring uniform
modelling [29, p. 50]. For instance, in the planet case presented in Section 6.2.1, we
created a model i.e. case description that, among other things, contained that a planet
was related to the star it is orbiting. Additionally this model contains that the local name
of the planet's and star's IRIs should be their name. Nevertheless, Template 6.2.1, which
did not apply Frog functions, could not encapsulate the premises regarding the IRIs. As
a result, the mappings and tabular �les need to ensure that this part of our model is
correct. On the other hand, Template 6.2.2, which applies Frog functions, encapsulated
the model's description of the IRIs directly into the template. Consequently, we argue
that the inclusion of Frog in OTTR has made it possible for the OTTR templates to
model not only the structure of the data but also the logic on terms stated by the model.
Including the model's logic on terms in the templates results in the template abstracting
the logic on terms, hence improving uniform modelling.

The weather case introduced in Section 6.2.2 also emphasises the above claim. Partic-
ularly in regards to the scale of the measurements. As explicitly stated in this case
description, the scale of the measurements should either be in Celcius or millimetres.

19The function calls in the �rst three instances calculating the IRI of the weather station.

108 CHAPTER 6. DISCUSSION

Without Frog, we could not model these criteria directly into the template. Therefore,
we needed to assume that the data were on the correct scale. With Frog, we moved the
necessary conversions into the templates. Thus, this template became an abstraction not
only for the structure and pattern but also for the logic over terms.

A bene�t of these abstractions, as previously stated, is that they strengthen OTTR's
claimed bene�t of uniform modelling. As presented in the previous discussion regarding
the DRY principle, without Frog, the mappings and tabular �les need to perform the
calculations before creating the instances. In contrast, with Frog, the templates can
perform these calculations. As seen in the planet case, we needed, without Frog, to
create one method for the mapping and one for the tabular �le for the same calculation.
The number of di�erent methods increase as the number of di�erent sources increase.
However, when placing the calculation into the templates, we only use one Frog function
regardless of the number of sources. Hence, this results in one uniform method for
performing calculations on terms. Without Frog, a logical change in the model regarding
the terms requires modi�cations in every method of calculations in the di�erent mappings
and tabular �les. In contrast, utilising one uniform Frog function in the template would
only require modi�cations in the Frog function. Thus, we argue that OTTR with Frog is
easier to maintain then OTTR without Frog.

The possibility of placing the calculations in the templates can, in some cases, create
templates that are easier to use, as we move the complexity from mappings and tabular
�les into templates. When comparing the mappings and tabular �les in the two cases, we
see that the mappings and tabular �les used for templates with Frog functions are less
complex than those without Frog. However, as seen in the weather station, some extra
data regarding the measurements' scale was required by Template 6.2.4 due to using
Frog functions. Notably, there is a di�erence between adding data regarding the scales
and, for instance, adding IRIs. This di�erence is that we produce IRIs across sources,
while adding data regarding scales only concerns the data within the speci�c mapping
or tabular �le. Moreover, we argue that adding the data regarding the scales in the
mappings and tabular �les is less complex than converting the degrees in the mappings.

Furthermore, when calculating terms inside the templates, we ensure that data follows
the given model. As discussed in the weather case, Template 6.2.3 assumes that the
measurements were on the correct scale. Consequently, if the data used to create the
instances is on an incorrect scale and not converted, expanding the instances would
create logical errors in regards to the model. However, Template 6.2.4, which performs
the necessary conversions, ensures that our logic regarding the scales is correct.

Lastly, we note that the inclusion of Frog makes it possible to create all of the IRIs inside
the template, which is an RDF or semantic technology-speci�c requirement for a resource,
as seen in both cases. Hence, the OTTR templates can be an abstraction for RDF or
semantic technology-speci�c elements.

To summarise this discussion, we believe that the addition of Frog strengthens OTTR's
bene�ts of better abstraction and uniform modelling; since OTTR with Frog allows us to
encapsulate a model's logic on terms inside the templates. As discussed, better abstrac-

6.2. IMPROVING OTTR BY INCLUDING FROG 109

tion and uniform modelling o�er several bene�ts, such as ease of use and less maintenance.

Seperation of design and content

In the previous discussion, we argued why Frog improved the uniform modelling and
abstraction by using the template as an abstraction for the structure of the data and the
logic over terms. Following these discussions, we can also argue that Frog strengthens
OTTR's bene�t of separation of design and content. Regarding the separation of design
and content, the OTTR team argues that the templates create a natural separation
between the design of the knowledge base and the content [38]. In our two cases, we can
refer to the model or case description as the knowledge base and the data extracted from
the tabular �les and mappings as the content since they create the instances. Placing
Frog functions inside templates makes it possible to encapsulate the logic over terms.
Hence, creating a further separation of design and content; as we move our design of logic
over terms from the content (instances and creation of instances) and into the design
(templates).

For instance, in the weather case study presented in Section 6.2.2, we needed to calculate
temperatures, snow, and rain in mappings. These calculations were a part of our design.
Thus, we placed parts of our design in the creation of instances, which represent the con-
tent. However, with Frog, we placed these calculations in the template, which represents
the design. Consequently, we argue that the inclusion of Frog makes it possible to create
an improved separate design and content.

Other notable points

The previous discussions in this section have focused on how the addition of Frog has
improved some of OTTR's bene�ts, which is the focus of this thesis. However, we would
like to introduce and shortly discuss some of the inconveniences and disadvantages of
applying Frog compared to performing calculations in the mappings and tabular �les.

In Section 1.2, we noted that the focus of this thesis was not to implement an e�cient
implementation of Frog. However, it is interesting to note that it is more time-consuming
to produce an RDF graph for Lutra with Frog compared to Lutra without Frog. Fig-
ure 6.11 illustrates the time on the OTTR execution used to determine the e�ciency of
applying Frog compared to performing the calculations with SQL in the bOTTR map-
pings. This graph shows the time used by OTTR to expand N weather case instances.
We performed the test on 100, 1000, 10 000 and 100 000 instances, each executed ten
times, producing an average time to plot the graph20. The data were extracted from the
Natural Centers for Environmental Information21 and created the instance by applying
the bOTTR mappings shown in Section 6.2.2.

Moreover, we need to compare how error-prone the two solutions are. As previously
discussed, the addition of Frog makes it possible to create one uniform function compared
to one for each source to compute the same calculations. Creating several methods for the
same calculations is more error-prone than only having one function. On the other hand,

20Appendix C stores the complete data set on the time takings.
21https://www.ncei.noaa.gov/access/past-weather/

https://www.ncei.noaa.gov/access/past-weather/

110 CHAPTER 6. DISCUSSION

Figure 6.11: An graph showing the di�erence time it took to expand instances over OTTR
when performing the calculation with Frog functions versus in the mappings. In other
words, Frog function versus SQL functions.

compared to the technologies used for handling tabular �les and extracting data from
sources through bOTTR, Frog is more likely to contain errors in the source code, which
may produce errors when performing the calculation. Due to the other technologies being
well-established, hence, better tested than Frog. In conclusion, Frog is more error-prone
when considering the code, while the use of Frog, on the contrary, is less error-prone
compared to the technologies used with tabular �les and mappings over bOTTR.

In Section 6.1.1, we discussed the bene�t of using a well-established technology rather
than creating and using a speci�c one. In this case, we can argue that creating Frog
is using a speci�c way of performing calculations over terms rather than utilising the
existing methods through the mappings and tabular �les, which apply well-established
technologies. Consequently, many developers of, for instance, bOTTR mappings already
know how to create the necessary calculations in the technology for that source. Utilising
Frog could then be considered yet another technology to learn. However, a notable
di�erence between the discussion in Section 6.1.1 and this discussion is choosing between
two solutions and adding another method to perform the calculations. Including Frog
into OTTR does not remove the possibility of performing calculations in the mapping and
tabular �les; it only adds the possibility to perform the calculations inside the templates.
Thus, learning and applying Frog to abstract a model's logic over terms into the templates
is an option for the template programmer, not a requirement.

6.2. IMPROVING OTTR BY INCLUDING FROG 111

6.2.4 Summary of discussion and conclusions

In this chapter, from two case studies that use real-life data, we have seen how the
inclusion of Frog is bene�cial and how the inclusion of Frog has strengthened OTTR's
bene�ts of the DRY principle, better abstraction, uniform modelling and separation of
design and content. Moreover, we have discussed some of the disadvantages of including
Frog, such as that utilising Frog function is more time-consuming than performing the
calculations in mappings. Notably, the addition of Frog has made it possible to move
calculations into the templates. However, the inclusion of Frog does not remove the
possibility of conducting calculations in the mappings and tabular �les. Consequently,
the user of Frog can choose whether to perform the calculation in the templates or the
mappings or tabular �les. Nevertheless, we suggest, from the �ndings in the discussions,
using Frog and templates to execute calculations instead of mappings and tabular �les in
the following cases:

1. The calculation is a part of the model or knowledge base, such as creating an IRI
based on another parameter.

2. Calculations that are not a part of the model or knowledge base but are needed by
several sources and tabular �les. A wrapper template can perform these calcula-
tions.

112 CHAPTER 6. DISCUSSION

Chapter 7

Related Work

The introduction of Frog into OTTR tries to improve some of the bene�ts by making it
feasible to manipulate terms inside the templates. As presented in the previous chap-
ter, we intentionally designed Frog such that it seamlessly integrates with OTTR. For
instance, by choosing to use the same type and term system. Frog and OTTR having
the same type of system is especially important because OTTR performs type validation
on the arguments in the instances, as discussed in section 4.5. Importantly, Frog is also
designed to be placed and executed inside the templates and not on the expanded graph.

In this chapter, we introduce alternative approaches to Frog with the focus on existing
technologies that allow for manipulations of RDF terms. Since the task of this thesis is
to integrate manipulation of terms into OTTR seamlessly, we will discuss the di�erent
technologies with a focus on the following set of criteria.

1. We require that the technology can be integrated into the templates and not work
on a graph, as this would require the calculations to be performed after the expan-
sion of the ground instances. Consequently, it would be impossible to manipulate
and create terms that OTTR requires for the expansion, such as producing IRI to
identify the current resource uniquely.

2. The technologies need to be statically typed1 since OTTR requires type validation
of the argument in instances.

3. Moreover, the type system must be compatible with the OTTR type system; this
would, among other things, require the type system to have a compatible counter-
part to the OTTR speci�c LUB and list types.

4. We require that the typing of the terms are compatible, for instance, that "Hello",
which OTTR types as an xsd:string is typed as an xsd:string by the technology.
Thus the term system must be compatible, especially regarding the OTTR list term.

5. We require that there exists a publicly available implementation of the technology.

6. We will discuss if the technology has any known limitations

Table 7.1 summarises the discussion in this section based on the previously mentioned
criteria.

1Or have an easy way to make it statically typed.

113

114 CHAPTER 7. RELATED WORK

Table 7.1: Shows which criteria the di�erent technologies mentioned in this section full�les

Semantic
Technologies

SHACL
Functions

Ripper Adenine

1. Manipulate terms during the expansion X X X X
2. Is statically typed X X X X

3. Compatible type system with OTTR X X X X
4. Compatible term system with OTTR X X X X

5. Accessible (or open-source) X X X X
6. Does not have too signi�cant restrictions X X X ?

7.1 Semantic Technologies

Several established semantic technologies o�er manipulation of terms or values, such
as SPARQL [42] and SWRL [14]. SPARQL, for instance, contain a set of functions,
which is a subset of XQuery 1.02 and XPath 2.0 functions and operators3 on terms, that
can be utilised in SPARQL queries. A combination of INSERT queries with functions
and DELETE queries makes it feasible to insert manipulated values into the graph and
remove values that only were in the graph to calculate the manipulated values previously
inserted. Moreover, SWRL, a proposed language for the semantic web, can express rules
that can modify a graph by appending additional data based on the rules [14]. As with
SPARQL, SWRL o�ers a function based on functions and operations from XPath and
XQuery. Example 7.1.1 shows an example of a SWRL rule.

Example 7.1.1. An example of a SWRL rule that calculate the degree in Celcius based
on the Fahrenheit and insert it into the graph.

ex:hasFahrenheitDegree (?x, ?fD) ->

ex:hasCelciusDegree (?x,

swrlb:multiply(swrlb:substract (?fD, 32), swrlb:divide (5 ,9)))

These two semantic technologies work on and extract data from existing graphs, which is
also the case for many other semantic technologies such as OWL4. Thus we can apply these
technologies on a graph, however, not on a single term inside the templates. Consequently,
when using semantic technologies after the expansion, we make it feasible to calculate
terms inside the templates but after, hence removing the calculations from the OTTR
system altogether. Furthermore, these technologies also come with their limitations. As
noted, functions in SPARQL is built on a subset of XPATH 2.0 and SWRL on a subset
of an unspeci�ed version of XPath. Thus, we are limited to the functions and operations
these technologies have chosen to utilise.

7.2 SHACL functions

In the previous section, we discussed semantic technologies in general through the exam-
ples of SWRL and SPARQL. However, we want to explicitly discuss an advanced feature

2https://www.w3.org/TR/2010/REC-xquery-20101214/
3https://www.w3.org/TR/xquery-operators/
4https://www.w3.org/TR/owl2-overview/

https://www.w3.org/TR/2010/REC-xquery-20101214/
https://www.w3.org/TR/xquery-operators/
https://www.w3.org/TR/owl2-overview/

7.2. SHACL FUNCTIONS 115

in SHACL, namely SHACL functions. SHACL Advanced Features working group note [2]
introduces the SHACL functions as a work in progress; however, it is still an interesting
technology to look at regarding calculations in OTTR. A SHACL function produces a
single RDF term from an arbitrary number of parameters and is de�ned with an IRI
uniquely identifying the function, similarly to Frog. The functions can be de�ned ei-
ther from SPARQL [2] or a SHACL-js document [27], making it possible to point to an
implemented JavaScript function. Moreover, we can state the parameter types and re-
turn types. However, this is not required; consequently, being dynamically typed. Thus,
utilising SHACL functions would require us to validate that the parameter types and
return types are stated in the SHACL functions; this validation is, however, fairly easy
to implement. Example 7.2.1 is an example of a SHACL function with SPARQL that
adds values together.

Example 7.2.1. An example of a SHACL function applying SPARQL that adds to num-
bers together.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix ex: <http://example.net/ns#> .

@prefix sh: <http://www.w3.org/ns/shacl#>

ex:plus a sh:SPARQLFunction ;

sh:parameter [

sh:path ex:num1;

sh:dataType xsd:integer;

sh:order 0

],

[

sh:path ex:num2;

sh:dataType xsd:integer;

sh:order 1

];

sh:returnType xsd:integer ;

sh:select """

SELECT ($num1 + $num2 AS ?res)

WHERE {}

""".

Notably, the following two reasons make SHACL functions hard to utilise in OTTR:
�rstly, there is no well-known public implementation5. For instance, the established
semantic web API in java Apache Jena [3] does not implement SHACL functions, only
SHACL core and SHACL SPARQL constraints. Furthermore, none of the public available
implementations in the SHACL Test Suite and Implementation Report [10] implements
SHACL functions. Secondly, the type system for SHACL functions is not the same as the
OTTR type system. Notably, the SHACL type system uses the XSD schema for types
such as xsd:integer, meaning that some of OTTR's basic types have a corresponding and
compatible type in the SHACL function type system. There are, however, no correspond-
ing types for the OTTR speci�c types, such as the Lists and LUB types. Consequently, it

5To the best of our knowledge.

116 CHAPTER 7. RELATED WORK

would have been necessary to create a translation between the type systems and perform
it in OTTR.

7.3 Ripple

Ripple is a functional stack-based scripting language made for manipulating on RDF
graphs and RDF terms, with a syntax inspired by the turtle serialisation of RDF. Mainly,
Ripple o�ers queries and commands or directives [43]. The directive @de�ne can, com-
bined with a query expression, produce a function, as seen in �gure 7.1. Furthermore,
Ripple o�ers a set of core libraries, such as the math and string library. We can �nd the
complete library set in the publicly available implementation of Ripple6.

n => factorial(n)

@define fact:

/dup 0 /equal # if n is 0...

(1 /popd) # yield 1

(/dup 1 /sub /:fact /mul) # otherwise, yield n*fact(n-1)

/branch. # => 120

5/:fact.

Figure 7.1: Shows an function in Ripple that recursively adds together the factorial num-
ber. This example is taken from Shinaver's article [43, p. 6].

However, Ripple is not statically typed and consequently not compatible with the OTTR
system. Furthermore, utilising Ripple would have restricted us to produce functions
by combining the function in the Ripple libraries and Ripple queries. Thus, we need to
depend that these libraries and the implementation are relatively regularly updated when
shortages are found. However, the last release that we could locate was from 2016.

7.4 Adenine

The Haystack project introduced Adenine as an imperative scripting language to ma-
nipulate RDF-encode metadata [18, pp. 9-10]. One of the motivations behind Adenine
was to create a language with a syntax that supported the RDF data model, which the
Haystack team believed to remove unnecessary verbose compared to utilising program-
ming languages like Python and C++ [18, pp. 9-10]. To perform the functions, Adenine
extracts data from an RDF container performs operations on them and append new
statements to the same RDF container [18, pp. 9-10]7.

Consequently, Adenine works on an RDF graph and not on a single RDF term, thus
making it hard to utilise inside OTTR for the same reasons as with the semantic tech-

6https://github.com/joshsh/ripple
7Adenins interpreter is written in Java, and the developers have made it possible to access the call

on Java methods [18, pp. 9-10].

https://github.com/joshsh/ripple

7.5. SUMMARY 117

nologies. Furthermore, Adenine is not a typed language, thus not having a compatible
type system with OTTR.

7.5 Summary

To summarise, we have in this chapter discussed possible alternative approaches to Frog
and shed light on existing technologies made for manipulating data in the semantic web.
As discussed, several of these technologies work on RDF graphs and not single RDF
terms, making it hard to incorporate them into OTTR templates. Furthermore, and
most notably, none of the technologies presented in this chapter has a compatible term
and type system with OTTR. Table 7.1 summarises the criteria the di�erent technologies
ful�l and do not ful�l.

We have not discussed a solution to use existing scripting languages, such as Python and
Java. However, since OTTR has OTTR speci�c types, it would require a translation of
the typing system. Moreover, Skjæveland et al. [44] have discussed several related works
regarding OTTR relevant to Frog, such as Tawny OWL.

118 CHAPTER 7. RELATED WORK

Chapter 8

Conclusion

In this thesis, we have designed and developed a functional programming language, Frog,
that seamlessly integrates with OTTR, making it possible to modify and perform calcula-
tions over terms inside OTTR templates. By introducing Frog into the OTTR framework,
we have improved OTTR's following bene�ts: Don't repeat yourself (DRY) principle, bet-
ter abstraction, uniform modelling and separation of design and content.

Frog seamlessly integrates with OTTR as function calls on Frog functions have become
a part of OTTR's term system. Hence, using a function call term as an argument in a
template's body is as natural as placing an integer. Additionally, the inclusion of Frog
preserves the semantics of OTTR, both in terms of validation of template datasets and
expanding instances. Firstly, Frog preserves OTTR's validations by validating the Frog
functions. Validating the Frog functions ensures that a function's return value's type
corresponds with this function's stated type. Consequently, as the type of a function call
is the a�liated function's stated return type, Frog guarantees that the function call terms
have the correct type. Moreover, Frog and OTTR have the same term and type system.
Hence, easing the use of OTTR because we do not need to be aware of a translation of
terms and types when creating Frog functions. Secondly, we preserved OTTR's expansion
semantics by evaluating function calls in an instance before expanding it. Thus, function
calls work in terms of discarding instances and list expanders. Notably, OTTR without
Frog guarantees termination on a valid template library. However, a Frog function does
not guarantee termination as the functions can have cyclic dependency relations that may
lead to in�nite recursion. Thus, including Frog into OTTR removes OTTR's quality of
termination.

The inclusion of Frog has enhanced OTTR's bene�ts, and is making it possible to further
encapsulate our design of an RDF graph. OTTR without Frog encapsulated this design's
structure. On the other hand, OTTR with Frog encapsulates this design's structre and
logic over terms. In this paragraph, we refer to the design of an RDF graph as a data
model. Firstly, Frog has improved the Don't repeat yourself (DRY) principle since we can
create one Frog Function instead of one function for each data source when using OTTR to
map data to an RDF graph, reducing repetition. Secondly, Frog has enhanced the better
abstraction bene�t and uniform modelling as templates can use Frog functions. With
the possibility of applying frog functions in templates' bodies, we can now encapsulate
both a data model's data structure and logic over terms. Additionally, making it possible
to abstract logic over terms inside templates. Thirdly, we have strengthened OTTR's

119

120 CHAPTER 8. CONCLUSION

bene�t of separation of design and content by including Frog because the data model's
logic over terms can now be encapsulated in the templates. Consequently, the mappings
and tabular �les, which extract or contain data, can solely focus on creating instances
from the content and not on performing calculations on the content such that it follows
the data model.

8.1 Future Work

We suggest the following points as interesting future work regarding Frog and OTTR:

� As discussed in Section 6.2.3, using Frog may result in repetitious function calls in
a template body if the calculated value is needed as several arguments. A possible
approach is binding of variables inside the template body.

� In this thesis, we did not focus on the e�ciency of our Frog implementation. One
may still choose to perform calculations in the mappings and tabular �les since
applying Frog functions is slower in comparison, especially when OTTR expands
many instances. Having an e�cient implementation of Frog will presumably make
Frog a more suitable solution not only in theory but also in practice.

� In Section 6.1.1, we argued why we believe well-established semantic technologies
are be bene�cial for validating Frog functions. However, SPARQL has limitations
regarding recursive querying, making it di�cult to create queries over our encoding
of types in RDF. A further investigation into how di�erent semantic technologies
may be used to perform these types of validations may be of interest, both in regards
to Frog and OTTR.

� In Section 6.1.3, we discussed how the addition of Frog into OTTR has removed
OTTR's quality of guaranteed termination. A solution to keep this quality is to
o�er a set of terminating higher-order functions as a basis to conduct iterations
and to make all other Frog functions' dependency relation acyclic. We propose that
for further work, one can inspect if the removal of guaranteed termination has a
tangible impact on the OTTR framework and which changes in Frog are needed if
the impact is signi�cant.

Bibliography

[1] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Computer
Programs. eng. MIT Electrical Engineering and Computer Science. Cambridge: The
MIT Press, 1996. isbn: 9780262510875.

[2] Dean Allemang, Simon Steyskal, and Holger Knublauch. SHACL Advanced Fea-
tures. W3C Note. https://www.w3.org/TR/2017/NOTE-shacl-af-20170608/. W3C,
June 2017.

[3] Apache Jena SHACL. url: https://jena.apache.org/documentation/shacl/
index.html (visited on 03/10/2022).

[4] Tim Berners-Lee, James Hendler, and Ora Lassila. �The Semantic Web: A New
Form of Web Content That is Meaningful to Computers Will Unleash a Revolution
of New Possibilities�. In: Scienti�cAmerican.com (May 2001), p. 1.

[5] Katalin Bimbo. Combinatory logic : pure, applied and typed. eng. Boca Raton, 2012.

[6] Gavin Carothers and Eric Prud'hommeaux. RDF 1.1 Turtle. W3C Recommenda-
tion. https://www.w3.org/TR/2014/REC-turtle-20140225/. W3C, Feb. 2014.

[7] Alonzo Church. The calculi of lambda-conversion. eng. Princeton, N.J, 1985.

[8] H. B. Curry. �Grundlagen der Kombinatorischen Logik�. In: American Journal of
Mathematics 52.3 (1930), pp. 509�536. issn: 00029327, 10806377. url: http://
www.jstor.org/stable/2370619 (visited on 04/27/2022).

[9] Richard Cyganiak, Markus Lanthaler, and David Wood. RDF 1.1 Concepts and Ab-
stract Syntax. W3C Recommendation. https://www.w3.org/TR/2014/REC-rdf11-
concepts-20140225/. W3C, Feb. 2014.

[10] Jose Emilio Labra Gayo, Holger Knublauch, and Dimitris Kontokostat. SHACL Test
Suite and Implementation Report. Tech. rep. https://w3c.github.io/data-shapes/data-
shapes-test-suite/. W3C, Jan. 2021.

[11] Jose Emilio Labra Gayo et al. �Validating RDF data�. In: Synthesis Lectures on
Semantic Web: Theory and Technology 7.1 (2017), pp. 1�328.

[12] Mauro Guerrini and Tiziana Possemato. �Linked data: a new alphabet for the
semantic web�. English. In: JLIS.it 4.1 (2013). Copyright - Copyright University of
Florence, Department of Studies on the Antiquities, Middle Age, the Renaissance
and Linguistics 2013; Last updated - 2018-09-24, pp. 67�70. url: https://www-
proquest- com.ezproxy.uio.no/scholarly- journals/linked- data- new-

alphabet-semantic-web/docview/1270767702/se-2?accountid=14699.

[13] Pascal Hitzler, Markus Krtzsch, and Sebastian Rudolph. Foundations of Semantic
Web Technologies. 1st. Chapman and Hall/CRC, 2009. isbn: 9781420090505.

121

https://jena.apache.org/documentation/shacl/index.html
https://jena.apache.org/documentation/shacl/index.html
http://www.jstor.org/stable/2370619
http://www.jstor.org/stable/2370619
https://www-proquest-com.ezproxy.uio.no/scholarly-journals/linked-data-new-alphabet-semantic-web/docview/1270767702/se-2?accountid=14699
https://www-proquest-com.ezproxy.uio.no/scholarly-journals/linked-data-new-alphabet-semantic-web/docview/1270767702/se-2?accountid=14699
https://www-proquest-com.ezproxy.uio.no/scholarly-journals/linked-data-new-alphabet-semantic-web/docview/1270767702/se-2?accountid=14699

122 BIBLIOGRAPHY

[14] Ian Horrocks et al. SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. https://www.w3.org/Submission/2004/SUBM-SWRL-20040521/. W3C, May
2004.

[15] C. Arnaud Le Hors. RDF Data Shapes Working Group Charter. Tech. rep. https://www.w3.org/TR/2017/REC-
shacl-20170720/. W3C, July 2017.

[16] Paul Hudak. �Conception, Evolution, and Application of Functional Programming
Languages�. In: ACM Comput. Surv. 21.3 (Sept. 1989), pp. 359�411. issn: 0360-
0300. doi: 10.1145/72551.72554. url: https://doi.org/10.1145/72551.
72554.

[17] J. Hughes. �Why Functional Programming Matters�. In: The Computer Journal
32.2 (Jan. 1989), pp. 98�107. issn: 0010-4620. doi: 10.1093/comjnl/32.2.98.
eprint: https://academic.oup.com/comjnl/article-pdf/32/2/98/1445644/
320098.pdf. url: https://doi.org/10.1093/comjnl/32.2.98.

[18] David Huynh, David R Karger, Dennis Quan, et al. �Haystack: A Platform for
Creating, Organizing and Visualizing Information Using RDF.� In: Semantic Web
Workshop. Vol. 52. 2002.

[19] Bart Jacobs. Categorical logic and type theory. eng. Amsterdam, 1999.

[20] Leif Harald Karlsen and Martin G. kjæveland. Concepts and Abstract Model for
Reasonable Ontology Templates (mOTTR). Oct. 2019. url: https://spec.ottr.
xyz/stOTTR/0.1/ (visited on 05/14/2021).

[21] Leif Harald Karlsen and Martin G. kjæveland. Concepts and Abstract Model for
Reasonable Ontology Templates (mOTTR). Mar. 2019. url: https://spec.ottr.
xyz/mOTTR/0.1/ (visited on 05/14/2021).

[22] Martin G. Kjæveland. Batch Instantiation of OTTR templates (bOTTR). url:
https://spec.ottr.xyz/bOTTR/0.1/ (visited on 09/21/2021).

[23] Martin G. Kjæveland. Tabular OTTR template instances (tabOTTR). url: https:
//spec.ottr.xyz/tabOTTR/0.3/ (visited on 09/21/2021).

[24] Martin G. kjæveland. Web Reasonable Ontology Templates (wOTTR). Dec. 2020.
url: https://spec.ottr.xyz/wOTTR/0.4/ (visited on 03/02/2022).

[25] Martin G. Kjæveland and Leif Harald Karlsen. Adapting Reasonable Ontology Tem-
plates to RDF (rOTTR). url: https://spec.ottr.xyz/rOTTR/0.2/ (visited on
12/09/2021).

[26] Holger Knublauch and Dimitris Kontokostas. Shapes Constraint Language (SHACL).
W3C Recommendation. https://www.w3.org/TR/2017/REC-shacl-20170720/. W3C,
July 2017.

[27] Holger Knublauch and Pano Maria. SHACL JavaScript Extensions. https://www.w3.org/TR/2017/NOTE-
shacl-js-20170608/. W3C, June 2017.

[28] Lukasz Lachowski. �On the Complexity of the Standard Translation of Lambda
Calculus into Combinatory Logic�. eng. In: Reports on mathematical logic 53.53
(2018), p. 23. issn: 0137-2904.

[29] Daniel P Lupp, Melinda Hodkiewicz, and Martin G Skjæveland. �Template libraries
for industrial asset maintenance: A methodology for scalable and maintainable on-
tologies�. eng ; nor. In: CEUR Workshop Proceedings. Vol. 2757. Technical Univer-
sity of Aachen, 2020, pp. 49�64.

https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/72551.72554
https://doi.org/10.1093/comjnl/32.2.98
https://academic.oup.com/comjnl/article-pdf/32/2/98/1445644/320098.pdf
https://academic.oup.com/comjnl/article-pdf/32/2/98/1445644/320098.pdf
https://doi.org/10.1093/comjnl/32.2.98
https://spec.ottr.xyz/stOTTR/0.1/
https://spec.ottr.xyz/stOTTR/0.1/
https://spec.ottr.xyz/mOTTR/0.1/
https://spec.ottr.xyz/mOTTR/0.1/
https://spec.ottr.xyz/bOTTR/0.1/
https://spec.ottr.xyz/tabOTTR/0.3/
https://spec.ottr.xyz/tabOTTR/0.3/
https://spec.ottr.xyz/wOTTR/0.4/
https://spec.ottr.xyz/rOTTR/0.2/

BIBLIOGRAPHY 123

[30] Matthieu Mosser et al. �Querying APIs with SPARQL�. eng. In: Information sys-
tems (Oxford) 105 (2022), p. 101650. issn: 0306-4379.

[31] Rob Nederpelt and Herman Geuvers. �Simply typed lambda calculus�. In: Type The-
ory and Formal Proof: An Introduction. Cambridge University Press, 2014, pp. 33�
68. doi: 10.1017/CBO9781139567725.005.

[32] Terence (Terence John) Parr. The de�nitive ANTLR 4 reference. eng. Dallas, Texas,
2012.

[33] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. �Semantics and complexity of
SPARQL�. eng. In: ACM transactions on database systems 34.3 (2009), pp. 1�45.
issn: 0362-5915.

[34] Axel Polleres, Paula Gearon, and Alexandre Passant. SPARQL 1.1 Update. W3C
Recommendation. https://www.w3.org/TR/2013/REC-sparql11-update-20130321/.
W3C, Mar. 2013.

[35] Project Information. url: https://projects.apache.org/project.html?jena
(visited on 01/24/2022).

[36] Eric Prud'hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
W3C Recommendation. https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.
W3C, Jan. 2008.

[37] Reasonable Ontology Templates (OTTR). url: https://ottr.xyz/ (visited on
09/21/2021).

[38] Reasonable Ontology Templates (OTTR). url: https://ottr.xyz/#Benefits
(visited on 09/21/2021).

[39] Juan L Reutter, Adrian Soto, and Domagoj Vrgoc. �Recursion in SPARQL�. eng.
In: Semantic Web 12.5 (2021), pp. 711�740. issn: 1570-0844.

[40] Raul Rojas. �A Tutorial Introduction to the Lambda Calculus�. eng. In: (2015).

[41] M. Schön�nkel. �Über die Bausteine der mathematischen Logik�. In:Mathematische
Annalen 92 (1924), pp. 305�316. doi: 10.1007/BF01448013. url: https://link.
springer.com/content/pdf/10.1007/BF01448013.pdf (visited on 04/27/2022).

[42] Andy Seaborne and Steven Harris. SPARQL 1.1 Query Language. W3C Recom-
mendation. https://www.w3.org/TR/2013/REC-sparql11-query-20130321/. W3C,
Mar. 2013.

[43] Joshua Shinavier. �Functional programs as linked data�. eng. In: CEUR Workshop
Proceedings. Vol. 248. 2007.

[44] Martin G. Skjæveland et al. �Practical Ontology Pattern Instantiation, Discovery,
and Maintenance with Reasonable Ontology Templates�. In: The Semantic Web �
ISWC 2018. Ed. by Denny Vrande£i¢ et al. Cham: Springer International Publish-
ing, 2018, pp. 477�494. isbn: 978-3-030-00671-6.

[45] Martin G Skjæveland et al. �OTTR: Formal Templates for Pattern-Based Ontol-
ogy Engineering�. In: Advances in Pattern-Based Ontology Engineering 51 (2021),
p. 349.

[46] Steve Bratt. Semantic web, and other technologies to watch. url: https://www.
w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24) (visited on 05/05/2022).

https://doi.org/10.1017/CBO9781139567725.005
https://projects.apache.org/project.html?jena
https://ottr.xyz/
https://ottr.xyz/#Benefits
https://doi.org/10.1007/BF01448013
https://link.springer.com/content/pdf/10.1007/BF01448013.pdf
https://link.springer.com/content/pdf/10.1007/BF01448013.pdf
https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)
https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)

124 BIBLIOGRAPHY

Appendix A

Formal Descriptions of Frog's Syntaxes

A.1 RDF syntax

The following two sections contain the OWL ontology for Frog's RDF syntax and the
SHACL shapes de�ning the grammar. Additionally, we have described the OWL ontology
in tables, one for the classes and the properties. The de�nition column in the tables
represent skos:definition.

A.1.1 OWL vocabulary

Table A.1: Frog's RDF syntax classes vocabulary

Class IRI De�nition

frog:Function An function speci�es that permissible input for function calls and a function body containing function
calls that can be substituted and executed

frog:functionCall The �rst element of a list that should be interpreted as a function call

frog:typeArgs The �rst element of a list that should be interpreted as list of generic arguments

frog:functionTerm The �rst element of a list that should be interpreted as list of generic arguments

frog:lambda The �rst element of a list that should be interpreted as a list containing a list of parameters as the second
element, and a function call as the third element

Table A.2: Frog's RDF syntax properties vocabulary

Class IRI Domain Range De�nition

frog:type frog:Function Associates a function with the type of function

frog:parameterTypes List of (List of (rdfs:Resource))* Associates the type with a list containing the parameter types

frog:returnType List of (rdfs:Resource)* Associates the type with the return type of the function

frog:returnType List of (rdfs:Resource)* Associates the type with the return type of the function

frog:def frog:Function rdf:List Associates the function with the list containing the lambda, with
the parameter variables and function body

frog:typeVarsOf frog:Function rdf:List Associates the function with the list containing the generic pa-
rameters

frog:subtypeOf List of (rdfs:Resource)* Associates a generic parameter with the type it is a subtype of

frog:var (rdfs:Resource)* Associates a generic parameter with the generic variable

@prefix cc: <http://creativecommons.org/ns#> .

125

126 APPENDIX A. FORMAL DESCRIPTIONS OF FROG'S SYNTAXES

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ottr: <http://ns.ottr.xyz/0.4/> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix vann: <http://purl.org/vocab/vann/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix frog: <http://ns.frog.ottr.xyz/0.1#> .

frog:Function skos:definition """An *function* specifies that

permissible input for function calls and

a function body containing function calls

that can be substituted and executed""" .

frog:functionCall skos:definition """The first element of a list that

should be interpreted as a

function call""" .

frog:typeArgs skos:definition """The first element of a list that should

be interpreted as list of

generic arguments""" .

frog:lambda skos:definition """The first element of a list that should be

interpreted as a list containing a list of

parameters as the second element, and a

function call as the third element""".

frog:functionTerm skos:definition """The first element of a list that should

be interpreted as a function term""".

frog:type a owl:AnnotationProperty ;

rdfs:domain frog:Function ;

skos:definition """Associates a function

with the type of function""" .

frog:parameterTypes a owl:AnnotationProperty ;

rdfs:range rdf:List ;

skos:definition """Associates the type with

a list containing the parameter types""" .

frog:returnType a owl:AnnotationProperty ;

skos:definition """Associates the type with the

return type of the function""" .

frog:def a owl:AnnotationProperty ;

rdfs:domain frog:Function ;

rdfs:range rdf:List ;

skos:definition """Associates the function with the list containing

the lambda, with the parameter variables

A.1. RDF SYNTAX 127

and function body""" .

frog:typeVars a owl:AnnotationProperty ;

rdfs:domain frog:Function ;

rdfs:range rdf:List ;

skos:definition "Associates the function with the list

containing the generic parameters" .

frog:subtypeOf a owl:AnnotationProperty ;

skos:definition """Associates a generic parameter with

the type it is a subtype of""" .

frog:var a owl:AnnotationProperty ;

skos:definition "Associates a generic parameter with the generic variable" .

A.1.2 SHACL shapes

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix vann: <http://purl.org/vocab/vann/> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix cc: <http://creativecommons.org/ns#> .

@prefix sh: <http://www.w3.org/ns/shacl#> .

@prefix shsh: <http://www.w3.org/ns/shacl-shacl#> .

@prefix ottr: <http://ns.ottr.xyz/0.4/> .

@prefix o-wottr: <http://spec.ottr.xyz/wOTTR/0.4/tpl/> .

@prefix frog: <http://ns.frog.ottr.xyz/0.1#> .

<> owl:imports

<http://www.w3.org/ns/shacl-shacl> ,

<http://spec.ottr.xyz/rOTTR/0.2/types.shacl.ttl> .

frog:FunctionShape a sh:NodeShape;

sh:targetClass frog:Function;

sh:targetSubjectsOf frog:type, frog:def, frog:typeVars;

sh:class frog:Function;

sh:nodeKind sh:IRI;

sh:property

[sh:path frog:type ;

sh:minCount 1;

sh:maxCount 1;

sh:node frog:TypeShape

128 APPENDIX A. FORMAL DESCRIPTIONS OF FROG'S SYNTAXES

],

[sh:path frog:def ;

sh:minCount 1;

sh:maxCount 1;

sh:node frog:DefinitionShape

],

[sh:path frog:typeVars ;

sh:maxCount 1;

sh:node frog:TypeVarsShape

].

frog:TypeVarsShape a sh:NodeShape;

sh:targetObjectsOf frog:typeVars;

sh:node shsh:ListShape;

sh:property [

sh:path ([sh:zeroOrMorePath rdf:rest]

rdf:first);

sh:node frog:GenericParameterShape;

].

frog:GenericParameterShape a sh:NodeShape;

sh:targetSubjectsOf frog:var, frog:subtypeOf;

sh:property[

sh:path frog:var;

sh:minCount 1;

sh:maxCount 1;

#The shape for a generic variable

#This shape node needs to be a blank node

sh:node frog:GenericVariableShape;

sh:name "generic variable";

sh:message "a generic parameter must

be a blank node";

],

[

sh:path frog:subtypeOf;

sh:minCount 1;

sh:maxCount 1;

#The shape for valid Frog types

sh:node frog:TypeListShape;

];

sh:name "generic parameter";

sh:message "a generic parameter needs a

blank node and type.".

frog:TypeShape a sh:NodeShape ;

sh:targetSubjectsOf frog:returnType, frog:parameterTypes;

sh:targetObjectsOf frog:type;

sh:nodeKind sh:BlankNode;

A.1. RDF SYNTAX 129

sh:property

[sh:path frog:returnType;

sh:minCount 1;

sh:maxCount 1;

sh:node frog:TypeListShape;

sh:name "Return type";

sh:message "Every type needs one return type"

],

[sh:path frog:parameterTypes;

sh:minCount 1;

sh:maxCount 1;

sh:node shsh:ListShape;

sh:property [

sh:path ([sh:zeroOrMorePath rdf:rest] rdf:first);

sh:node frog:TypeListShape

];

sh:name "Parameter types";

sh:message "Every type needs exactly (possibly empty)

list of parameter types"

].

frog:DefinitionShape a sh:NodeShape;

sh:targetObjectsOf frog:def ;

sh:node shsh:ListShape ;

sh:property [

sh:path rdf:first ;

sh:hasValue frog:lambda ;

sh:minCount 1

],

[

sh:path (rdf:rest rdf:first);

sh:node frog:ParameterListShape ;

sh:minCount 1 ;

],

[

sh:path (rdf:rest rdf:rest rdf:first);

sh:node frog:FunctionCallShape ;

sh:minCount 1;

],

[

sh:path (rdf:rest rdf:rest rdf:rest);

sh:hasValue rdf:nil ;

sh:minCount 1;

].

frog:ParameterListShape a sh:NodeShape ;

sh:node shsh:ListShape ;

sh:property

130 APPENDIX A. FORMAL DESCRIPTIONS OF FROG'S SYNTAXES

[sh:path ([sh:zeroOrMorePath rdf:rest] rdf:first);

sh:nodeKind sh:BlankNode;

].

frog:FunctionCallShape a sh:NodeShape ;

sh:node shsh:ListShape ;

sh:property [

sh:path rdf:first ;

sh:hasValue frog:functionCall ;

sh:minCount 1

],

[

sh:path (rdf:rest rdf:first) ;

sh:nodeKind sh:BlankNodeOrIRI ;

sh:minCount 1

] ;

sh:or (

[

sh:property [

sh:path (rdf:rest rdf:rest rdf:first);

sh:minCount 1 ;

sh:node frog:GenericArgumentsShape

],

[

sh:path (rdf:rest rdf:rest

[sh:oneOrMorePath rdf:rest] rdf:first) ;

sh:name "Arguments"

]

]

[

sh:property [

sh:path (rdf:rest [sh:oneOrMorePath rdf:rest]

rdf:first) ;

sh:name "Arguments"

] ;

sh:not [

sh:property [

sh:path (rdf:rest rdf:rest rdf:first);

sh:node shsh:ListShape ;

sh:property [

sh:path rdf:first;

sh:hasValue frog:typeArgs

]

]

]

]

) .

A.1. RDF SYNTAX 131

frog:GenericArgumentsShape a sh:NodeShape;

sh:node shsh:ListShape;

sh:property

[

sh:path rdf:first ;

sh:hasValue frog:typeArgs;

sh:minCount 1;

],

[

sh:path ([sh:oneOrMorePath rdf:rest] rdf:first);

sh:node frog:TypeListShape;

].

frog:TypeListShape a sh:NodeShape ;

sh:targetObjectsOf frog:returnType, frog:subtypeOf;

sh:xone

(

[sh:node ottr:ListTypeShape ;

sh:name "List type" ;

sh:message """Unrecognised list type. A list a list of types,

where the last item in the list must be a basic type, the second

last can be a 'least upper bound'

type, and the types preceeding it can be list types."""

]

[sh:node ottr:LUBTypeShape, shsh:ListShape ;

sh:name "List type" ;

sh:message """Unrecognised lub type. A LUB a list of types,

a list of the LUB iri and basic/generic type."""

]

[sh:node ottr:FunctionTypeShape ;

sh:name "Function type" ;

sh:message """Unrecognised lub type. A LUB a list of types,

a list of the LUB iri and basic/generic type."""

]

[sh:node ottr:BasicTypeShape ;

sh:name "Basic parameter type" ;

sh:message "Unrecognised basic type. A type is specified

either as an RDF list of types or a single basic type."

]

[

sh:node frog:GenericVariableShape ;

sh:name "Generic type" ;

sh:message "Unrecognised generic type. A type is specified

either as an RDF list of types or a single basic type."

]

).

132 APPENDIX A. FORMAL DESCRIPTIONS OF FROG'S SYNTAXES

frog:GenericVariableShape a sh:NodeShape;

sh:nodeKind sh:BlankNode ;

sh:name "Generic variable";

sh:property

[sh:path ([sh:zeroOrMorePath rdf:rest] rdf:first) ;

sh:minCount 0;

sh:maxCount 0;

] .

ottr:ListTypeShape a sh:NodeShape ;

sh:node shsh:ListShape ;

sh:or (# Last value is a function, generic or base type

[sh:property [

sh:path [sh:zeroOrMorePath rdf:rest];

sh:or (

[sh:hasValue rdf:nil]

[

sh:property [

sh:path rdf:first;

sh:or ([sh:hasValue rdf:List]

[sh:hasValue ottr:NEList])

];

sh:not[a sh:PropertyShape;

sh:path rdf:rest;

sh:hasValue rdf:nil]

]

[

sh:property

[sh:path rdf:first;

sh:node ottr:BasicGenericAndFunctionShape],

[sh:path rdf:rest;

sh:hasValue rdf:nil]

]

)

]

]

[#last value is a lub type

sh:property [

sh:path [sh:zeroOrMorePath rdf:rest];

sh:or (

[sh:hasValue rdf:nil]

[

sh:property [sh:path rdf:first;

sh:or ([sh:hasValue rdf:List]

[sh:hasValue ottr:NEList])

];

sh:not[a sh:PropertyShape;

sh:path rdf:rest;

A.1. RDF SYNTAX 133

sh:hasValue rdf:nil

]

]

[

sh:property

[sh:path rdf:first; sh:minCount 1;

sh:hasValue ottr:LUB],

[sh:path (rdf:rest rdf:first); sh:minCount 1;

sh:node ottr:BasicGenericAndFunctionShape],

[sh:path (rdf:rest rdf:rest); sh:minCount 1;

sh:hasValue rdf:nil]

]

[

sh:property

[sh:path rdf:first; sh:minCount 1;

sh:node ottr:BasicGenericAndFunctionShape],

[sh:path rdf:rest; sh:minCount 1;

sh:hasValue rdf:nil]

]

)

]

]

).

ottr:FunctionTypeShape a sh:NodeShape ;

sh:node shsh:ListShape ;

sh:property [

sh:path rdf:first;

sh:hasValue frog:Function;

sh:minCount 1

],

[

sh:path ([sh:oneOrMorePath rdf:rest]

rdf:first);

sh:minCount 1;

#The shape for valid Frog types

sh:node frog:TypeListShape

].

ottr:LUBTypeShape a sh:NodeShape ;

sh:property [

sh:path rdf:first ;

sh:minCount 1;

sh:hasValue ottr:LUB

],

[

sh:path (rdf:rest rdf:first);

134 APPENDIX A. FORMAL DESCRIPTIONS OF FROG'S SYNTAXES

sh:minCount 1;

sh:node frog:TypeListShape

],

[

sh:path (rdf:rest rdf:rest);

sh:minCount 1;

sh:hasValue rdf:nil

].

ottr:BasicAndGenericShape a sh:NodeShape ;

sh:xone (

ottr:BasicTypeShape

frog:GenericVariableShape

).

ottr:BasicGenericAndFunctionShape a sh:NodeShape ;

sh:xone (

ottr:BasicAndGenericShape

ottr:FunctionTypeShape

).

A.2 Human Readable Syntax

The following �le is the ANTLR4 grammar formally describing the syntax of Frog's HRS
and stOTTR:

1 grammar stOTTR;

2
3 import Turtle;

4
5 stOTTRDoc

6 : (directive // Turtle prefixes and base

7 | statement)* EOF

8 ;

9
10 statement

11 : (signature

12 | template

13 | baseTemplate

14 | instance

15)

16 '.'

17 ;

18
19
20 /*** Comments ***/

21
22 Comment

23 : '#' ~('\r' | '\n')* -> skip

A.2. HUMAN READABLE SYNTAX 135

24 ;

25
26 CommentBlock

27 : '/***' .*? '***/' -> skip

28 ;

29
30
31 /*** Signature ***/

32
33 signature

34 : templateName parameterList annotationList?

35 ;

36
37 templateName

38 : iri

39 ;

40
41 parameterList

42 : '[' (parameter (',' parameter)*)? ']'

43 ;

44
45 parameter

46 : ParameterMode* type? Variable defaultValue?

47 ;

48
49 ParameterMode

50 : '?' /* optional */

51 | '!' /* non blank */

52 ;

53
54 defaultValue

55 : '=' constant

56 ;

57
58 annotationList

59 : annotation (',' annotation)*

60 ;

61
62 annotation

63 : '@@' instance

64 ;

65
66
67 /*** Templates ***/

68
69 baseTemplate

70 : signature '::' 'BASE'

71 ;

136 APPENDIX A. FORMAL DESCRIPTIONS OF FROG'S SYNTAXES

72
73 template

74 : signature '::' patternList

75 ;

76
77 patternList

78 : '{' (instance (',' instance)*)? '}'

79 ;

80
81
82 /*** Instance ***/

83
84 instance

85 : (ListExpander '|')? templateName argumentList

86 ;

87
88 ListExpander

89 : 'cross'

90 | 'zipMin'

91 | 'zipMax'

92 ;

93
94 argumentList

95 : '(' (argument (',' argument)*)? ')'

96 ;

97
98 argument

99 : ListExpand? term

100 ;

101
102 ListExpand

103 : '++'

104 ;

105
106
107 /*** Types ***/

108
109 type

110 : basicType

111 | lubType

112 | listType

113 | neListType

114 | functionType

115 | genericType

116 ;

117
118 functionType

119 : 'Function<'((type ',')* type) '>'

A.2. HUMAN READABLE SYNTAX 137

120 ;

121
122 genericType

123 : Variable

124 ;

125
126 listType

127 : 'List<' type '>'

128 ;

129
130 neListType

131 : 'NEList<' type '>'

132 ;

133
134 lubType

135 : 'LUB<' (basicType | genericType) '>'

136 ;

137
138 basicType

139 : prefixedName

140 ;

141
142
143 /*** Terms ***/

144
145 term

146 : Variable

147 | constant

148 | list

149 | functionCall

150 | functionTerm

151 ;

152
153 functionCall

154 : '(' functionCallDef? functionCallName genericArguments? term* ')'

155 ;

156
157 functionCallName

158 : iri

159 | Variable ;

160
161 functionCallDef : iri ;

162
163 genericArguments

164 : '<' '<' (genericArgument (',' genericArgument)*)? '>' '>'

165 ;

166
167 genericArgument

138 APPENDIX A. FORMAL DESCRIPTIONS OF FROG'S SYNTAXES

168 : Variable

169 | type

170 ;

171
172 Variable

173 : '?' BNodeLabel

174 ;

175
176 /* Turtle blank node labels without trailing '_:' */

177 fragment BNodeLabel

178 : (PN_CHARS_U) ((PN_CHARS | '.')* PN_CHARS)?

179 ;

180
181 constant

182 : iri

183 | blankNode

184 | literal

185 | none

186 ;

187
188 none

189 : 'none'

190 ;

191
192 list

193 : '(' (term (',' term)*)? ')'

194 ;

195
196 functionTerm

197 : iri genericArguments

198 ;

199
200
201 /*** Frog ***/

202 frogDoc

203 : (directive

204 | function

205 | functionCall)* EOF ;

206
207 function

208 : functionHead '::' functionBody '.'

209 ;

210
211 functionHead

212 : definition genericParameterList* frogParameterList returnType

213 ;

214
215 definition

A.2. HUMAN READABLE SYNTAX 139

216 : 'def' name

217 ;

218
219 name

220 : iri

221 ;

222
223 genericParameterList

224 : '<' '<'

225 ((genericParameter ',')* genericParameter?)

226 '>' '>'

227 ;

228
229 genericParameter

230 : Variable 'subtypeOf' type

231 ;

232
233 frogParameterList

234 : '(' (frogParameter (',' frogParameter)*)? ')'

235 ;

236
237 frogParameter

238 : type Variable

239 ;

240
241 returnType

242 : '->' type

243 ;

244
245 functionBody

246 : functionCall

247 ;

140 APPENDIX A. FORMAL DESCRIPTIONS OF FROG'S SYNTAXES

Appendix B

Validation queries

Pre�xes used in this appendix:

1 PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

2 PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>

3 PREFIX xs: <http ://www.w3.org /2001/ XMLSchema#>

4 PREFIX frog: <http ://ns.frog.ottr.xyz /0.1#>

B.1 Function de�ned

1 SELECT DISTINCT ?functionName ?functionCallName

2 WHERE {

3 #finds everything used as a function call

4 #name in the function body

5 ?functionName a frog:Function;

6 frog:body/(frog:arg/frog:val)*/ frog:of ?functionCallName.

7

8 #removes all mathces where the function call

9 #name is an IRI and the IRI is of type function

10 FILTER NOT EXISTS {

11 ?functionCallName a frog:Function.

12 FILTER isIRI(? functionCallName)

13 }

14 #removes all mathces where a blank node is used as

15 #function is defined as a parameter of type function

16 FILTER NOT EXISTS {

17 ?functionName frog:parameter

18 [frog:var ?functionCallName;

19 frog:parameterType [a frog:Function]

20]

21 FILTER isBlank (? functionCallName)

22 }

23 }

B.2 Unde�ned parameter variable

1 SELECT DISTINCT ?functionName ?parameterVariable

141

142 APPENDIX B. VALIDATION QUERIES

2 WHERE {

3 #Finds every parameter variable used as in function body

4 ?functionName a frog:Function.

5 { #parameter used as an argument (also in a list)

6 ?functionName frog:body/(frog:arg/frog:val)+/

7 (rdf:rest*/rdf:first)* ?parameterVariable

8 } UNION { #parameter used as a function

9 ?functionName frog:body/(frog:arg/frog:val)*/

10 frog:of ?parameterVariable

11 }

12

13 FILTER isBlank (? parameterVariable)

14 FILTER NOT EXISTS{ #remove defined parameters

15 ?functionName frog:parameter/frog:var ?parameterVariable

16 }

17

18 #NEXT TO NOT EXISTS REMOVES BLANK NODES THAT ARE NOT VARIABLES

19 FILTER NOT EXISTS { #remove list blank nodes

20 ?parameterVariable rdf:first [];

21 rdf:rest [].

22 }

23

24 FILTER NOT EXISTS { #remove function calls blank nodes

25 ?parameterVariable frog:of [].

26 }

27 }

B.3 Unde�ned generic parameter variable

1 SELECT ?functionName ?genericVariable

2 WHERE {

3 ?functionName a frog:Function;

4 frog:body []. #only finds Frog functions.

5

6 { #Used as a generic argument

7 ?functionName frog:body/(frog:arg/frog:val)*/ frog:typeArg/

8 (frog:type/(frog:argType +/frog:type)+)? ?genericArgument

9 } UNION { #used on return type

10 ?functionName frog:returnType/

11 (frog:argType +/frog:type)* ?genericArgument

12 } UNION { #used in parameter

13 ?functionName frog:parameter/frog:parameterType/

14 (frog:argType +/frog:type)* ?genericArgument

15 }

16

17 ?genericArgument a frog:GenericType;

18 frog:type ?genericVariable.

19 FILTER NOT EXISTS{

20 ?functionName frog:typeVar/frog:var ?genericVariable.

21 }

22

B.4. CORRECT ARITY ARGUMENTS 143

23 }

B.4 Correct arity arguments

1 SELECT DISTINCT *

2 WHERE{

3 ?functionName a frog:Function;

4 frog:body/(frog:arg/frog:val)* ?functionCall.

5 ?functionCall frog:of ?functionCallName.

6

7 { #finds how many arguments the function call has

8 SELECT ?functionCall (COUNT(?rec) AS ?received)

9 WHERE {

10 ?functionCall frog:of [].

11 OPTIONAL{

12 ?functionCall frog:arg ?rec.

13 }

14 }

15 GROUP BY ?functionCall

16 }

17 #finds how many parameters the function has

18 { #if the function is defined with a parameter variable

19 {

20 SELECT ?functionCallName (COUNT(?exp) AS ?expected)

21 WHERE {

22 [] a frog:Function;

23 frog:parameter [

24 frog:var ?functionCallName;

25 frog:parameterType ?parType

26].

27 ?parType a frog:Function.

28 OPTIONAL { #finds the parameters

29 #of a parameterfunction

30 ?parType frog:argType/frog:index ?exp

31 }

32 }

33 GROUP BY ?functionCallName

34 }

35 } UNION { #if the functon is defined with a IRI

36 {

37 SELECT ?functionCallName (COUNT(?exp) AS ?expected)

38 WHERE {

39 ?functionCallName a frog:Function.

40

41 OPTIONAL{

42 ?functionCallName frog:parameter ?exp.

43 }

44 FILTER isIRI(? functionCallName)

45 }

46 GROUP BY ?functionCallName

47 }

144 APPENDIX B. VALIDATION QUERIES

48 }

49 FILTER (? received != ?expected)

50 }

51 ORDER BY ?functionName ?functionCallName

B.5 Correct arity generic arguments

1 SELECT *
2 WHERE {
3 ?functionName a frog:Function;
4 frog:body/(frog:arg/frog:val)* ?functionCall.
5
6 ?functionCallName a frog:Function.
7
8 #finds how many generic argument a function call has
9 {
10 {
11 SELECT ?functionCall ?functionCallName (COUNT(?rec) AS ?received)
12 WHERE {
13 ?functionCall a frog:functionCall;
14 frog:of ?functionCallName.
15 OPTIONAL{
16 ?functionCall frog:typeArg ?rec.
17 }
18 }
19 GROUP BY ?functionCall ?functionCallName
20 }UNION{ #Function used as arguments
21 SELECT ?functionCall ?functionCallName (COUNT(?rec) AS ?received)
22 WHERE{
23 ?thisFunctionName a frog:Function;
24 frog:body/(frog:arg/frog:val)* ?functionCall.
25 ?functionCall a frog:functionCall;
26 frog:of ?outerFunctionCall;
27 frog:arg [frog:index ?index;
28 frog:val/(rdf:rest*/rdf:first)* ?functionCallName
29].
30 #CHECK THAT ?functionCallName SHOULD BE A FUNCTION
31 { #Function name is an IRI and parameter is a function
32 ?outerFunctionCall frog:parameter [frog:index ?index;
33 frog:parameterType/rdf:type frog:Function
34].
35 FILTER isIRI(? outerFunctionCall)
36 }UNION { #Function name is an parameter variable and parameter is a function
37 ?thisFunctionName frog:parameter [frog:var ?outerFunctionCall;
38 frog:parameterType[
39 frog:argType [a frog:Function; frog:index ?index]
40]
41
42].
43 FILTER isBlank (? outerFunctionCall)
44 } UNION{ #Function name is an IRI and parameter is a list of functions
45 SELECT ?outerFunctionCall ?index
46 WHERE {
47 VALUES ?listIRI {rdf:List ottr:NEList}
48 ?outerFunctionCall frog:parameter [frog:index ?index;
49 frog:parameterType [a ?listIRI; frog:argType+ ?innerMost];
50].
51 ?innerMost a frog:Function.
52 FILTER NOT EXISTS{
53 ?innerMost a ?listIRI
54 }
55
56 FILTER NOT EXISTS{ #Remove the function inside a function
57 ?innerMost ^frog:argType+ [a frog:Function].
58 }
59 }
60 } UNION { #Function name is an parameter variabel and parameter is a list of functions
61 SELECT ?thisFunctionName ?index ?outerFunctionCall
62 WHERE {
63 VALUES ?listIRI {rdf:List ottr:NEList}
64 ?thisFunctionName frog:parameter [frog:var ?outerFunctionCall;
65 frog:parameterType [a frog:Function;
66 frog:argType [
67 a ?listIRI;
68 frog:argType+ ?innerMost;
69 frog:index ?index
70];
71
72];
73].
74 ?innerMost a frog:Function.
75 FILTER NOT EXISTS{
76 ?innerMost a ?listIRI
77 }
78
79 FILTER NOT EXISTS{ #Remove the function inside a function , execept the first
80 ?innerMost ^frog:argType+ ?invers.
81 ?invers a frog:Function;
82 FILTER NOT EXISTS{
83 [] frog:parameterType ?invers
84 }
85 }
86 }

B.6. UNUSED PARAMETER 145

87 }
88
89 FILTER isIRI(? functionCallName)
90 }
91 GROUP BY ?functionCall ?functionCallName ?functionCallName
92 } UNION { #FUNCTION IRI
93 SELECT ?functionCall ?functionCallName (COUNT (?rec) AS ?received)
94 WHERE {
95 ?functionCall a frog:functionCall;
96 frog:arg/frog:val/(rdf:rest*/rdf:first)* ?potentialFunction.
97
98 ?potentialFunction a frog:Function;
99 frog:of ?functionCallName.
100 OPTIONAL{
101 ?potentialFunction frog:typeArg ?rec
102 }
103 }
104 GROUP BY ?potentialFunction ?functionCall ?functionCallName
105 }
106 }
107 #find hoe many generic arguments the function expects
108 { # function defined by IRI
109 SELECT ?functionCallName (COUNT(?exp) AS ?expected)
110 WHERE {
111 ?functionCallName a frog:Function.
112
113 OPTIONAL{
114 ?functionCallName frog:typeVar ?exp.
115 }
116 FILTER isIRI(? functionCallName)
117 }
118 GROUP BY ?functionCallName
119 }
120 FILTER (? received != ?expected)
121 }
122 ORDER BY ?functionName ?functionCallName

B.6 Unused parameter

1 SELECT ?functionName ?parameterVariable

2 WHERE {

3 ?functionName a frog:Function;

4 frog:parameter [frog:var ?parameterVariable];

5 frog:body []. #only Frog functions

6 FILTER isBlank (? parameterVariable)

7

8 #finds every parameter variable used as an argument(also lists)

9 FILTER NOT EXISTS {

10 ?functionName frog:body/(frog:arg/frog:val)+/

11 (rdf:rest*/rdf:first)* ?parameterVariable

12 }

13 # finds every parameter varaibel used as an function

14 FILTER NOT EXISTS {

15 ?functionName frog:body/(frog:arg/frog:val)*/

16 frog:of ?parameterVariable

17 }

18 }

B.7 Unused generic parameter variable

1 SELECT ?functionName ?genericVariable

2 WHERE {

3 ?functionName a frog:Function;

4 frog:typeVar/frog:var ?genericVariable;

5 frog:body []. #only Frog functions

6 FILTER isBlank (? genericVariable)

7

8 FILTER NOT EXISTS { #In parameter

146 APPENDIX B. VALIDATION QUERIES

9 ?functionName frog:parameter/frog:parameterType/

10 (frog:argType +/frog:type)* [a frog:GenericType;

11 frog:var ?genericVariable].

12 }

13

14 FILTER NOT EXISTS { #In return type

15 ?functionName frog:returnType/

16 (frog:argType +/frog:type)* [a frog:GenericType;

17 frog:var ?genericVariable].

18 }

19

20 FILTER NOT EXISTS { #In generic argument

21 ?functionName frog:body/(frog:arg/frog:val)*/

22 frog:typeArg /(frog:type/

23 (frog:argType +/frog:type)+)? [a frog:GenericType;

24 frog:type ?genericVariable]

25 }

26

27 }

Appendix C

Timing of OTTR execution with and

without Frog

This appendix contains the times used to create Figure 6.11 in Section 6.2.3, which
compares the time used to expand instances with and without Frog. Note that the times
are in seconds.

Without Frog

100 1000 10000 100000

1 2 4 14 164
2 2 4 17 168
3 2 4 17 168
4 3 4 17 178
5 3 5 17 174
6 3 5 17 173
7 4 5 17 171
8 2 5 26 176
9 3 5 22 181
10 3 5 15 178

Avg 2,7 4,6 17,9 173,1

With Frog

147

148APPENDIX C. TIMING OF OTTR EXECUTION WITH AND WITHOUT FROG

100 1000 10000 100000

1 5 7 34 479
2 4 8 37 498
3 5 8 36 522
4 5 9 35 507
5 5 10 35 512
6 7 9 35 518
7 6 9 35 506
8 5 9 35 517
9 6 9 49 510
10 5 10 33 507

Avg 5.3 8.8 36.4 507.6

Average of with and without Frog

100 1000 10000 100000

Without Frog 2,7 4,6 17,9 173,1
With Frog 5.3 8.8 36.4 507.6

	Abstract
	Acknowledgements
	Introduction
	Background and Motivation
	Problem statment and scope
	Outline

	Functional Programming
	Lambda Calculus
	Definitions and notations
	Bound and Free variables
	Conversion and Reduction
	Combinatory logic

	Simply Typed Lambda Calculus
	Typing rules

	Evaluation strategies
	Functional programming and functional programming principles

	Semantic Web & OTTR
	RDF
	Lists in RDF

	SPARQL
	SHACL
	OTTR
	Terms
	Types in OTTR
	Template library and template dataset
	Expansion of OTTR instances

	Design
	Overview
	Concepts
	Abstract Model

	Syntax
	Similarities in the two syntaxes
	RDF Syntax
	Human Readable Syntax

	Extending the OTTR type system
	Syntax of the function type

	Generic type
	Validation
	Validation on function call and Function term
	Validation on Frog functions
	The three phases of validating Frog functions
	Validation warnings

	Evaluation
	Arguments for lazy evaluation
	Evaluation in OTTR

	Discussion and conclusions

	Implementation
	Overview of Lutra's OTTR implementation
	Result and MessageHandle

	FunctionStore
	Parser
	RDF Syntax
	Human Readable Syntax

	Validation
	Technology
	SPARQL
	Java
	Execution of the validation

	Evaluation
	Memoisation
	Execution

	Integrating Frog Functions with OTTR Templates in Lutra
	Validating function terms utilised in templates
	Validating function call terms utilised in templates
	Expanding an instance/template containing function calls

	Discussion
	Design & implementation
	SPARQL and validation
	RDF query syntax
	Termination

	Improving OTTR by including Frog
	Case Study: Planets
	Case Study: Weather stations
	Discussion
	Summary of discussion and conclusions

	Related Work
	Semantic Technologies
	SHACL functions
	Ripple
	Adenine
	Summary

	Conclusion
	Future Work

	Formal Descriptions of Frog's Syntaxes
	RDF syntax
	OWL vocabulary
	SHACL shapes

	Human Readable Syntax

	Validation queries
	Function defined
	Undefined parameter variable
	Undefined generic parameter variable
	Correct arity arguments
	Correct arity generic arguments
	Unused parameter
	Unused generic parameter variable

	Timing of OTTR execution with and without Frog

