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Abstract

STAIRS is a method for the step-wise, compositional development of interactions in the set-
ting of UML 2.x. UML 2.x interactions, such as sequence diagrams and interaction overview
diagrams, are seen as intuitive ways of describing communication between different parts of a
system, and between a system and its users.

STAIRS addresses the challenges of harmonizing intuition and formal reasoning by providing
a precise understanding of the partial nature of interactions, and of how this kind of incomplete
specifications may be consistently refined into more complete specifications.

For understanding individual interaction diagrams, STAIRS defines a denotational trace se-
mantics for the main constructs of UML 2.x interactions. The semantic model takes into account
the partiality of interactions, and the formal semantics of STAIRS is faithful to the informal se-
mantics given in the UML 2.x standard. For developing UML 2.x interactions, STAIRS defines
a number of refinement relations corresponding to basic system development steps. STAIRS also
defines matching compliance relations, for relating interactions to real computer systems.

An important feature of STAIRS is the distinction between underspecification and inherent
nondeterminism. Underspecification means that there are several possible behaviours serving the
same overall purpose, and that it is sufficient for a computer system to perform only one of these.
On the other hand, inherent nondeterminism is used to capture alternative behaviours that must
all be possible for an implementation. A typical example is the tossing of a coin, where both
heads and tails should be possible outcomes. In some cases, using inherent nondeterminism may
also be essential for ensuring the necessary security properties of a system.
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Chapter 1

Introduction

This thesis presents work on the STAIRS method, a method for the step-wise, compositional
development of interactions in the setting of UML. This chapter gives a short introduction to
the thesis work, together with an overview of the thesis.

1.1 UML Interactions and STAIRS

During the past decade, UML has become the de facto modelling standard used in industry.
From being an approach unifying the leading modelling languages at the time, UML has gradu-
ally developed and is now in version 2.1 [OMG06].

UML 2.1 interactions, such as sequence diagrams and interaction overview diagrams, are
seen as intuitive ways of describing communication between different parts (e.g. components
or objects) of a system, and between a system and its users. According to the UML 2.1 stand-
ard [OMG06], an interaction describes a set of valid and a set of invalid traces, i.e. system be-
haviours. Interactions are usually incomplete specifications, meaning that there will typically be
many traces that are not described by the interaction at all, and it is impossible to know whether
these are valid or not.

A problem with UML 2.1 interactions is that their semantics is only explained in natural
language, and for a given interaction it is often difficult, or even impossible, to know its precise
meaning. Another aspect not addressed by the UML 2.1 standard is the relationships between
different interactions for the same system, i.e. what it means for one interaction to be a refinement
of another interaction, or for two interactions to describe the system from different viewpoints.
Also, it is not defined what it means for a computer system to be in compliance with an inter-
action, i.e. when is a computer system a valid implementation of a specification in the form of
UML 2.1 interactions. In particular, it is not clear whether the valid traces of an interaction
describe behaviours that must or may be present in the final system.

As long as these aspects are not addressed properly, different people tend to interpret the
same interaction differently. This leads to confusion and misunderstanding, where the end result
might be that the systems being built are not the ones requested by the customers.

Another problem is the lack of tools supporting system development using UML 2.1 interac-
tions. With a proper formal semantics, and with precise definitions of viewpoint correspondence,
refinement and compliance, it is possible to make advanced tools for e.g. automatic analysis and

3



4 CHAPTER 1. INTRODUCTION

consistency checking. Errors are an inevitable part of any system development process, but with
adequate tool support, fewer errors may be introduced during the development process, and
the errors that are made may be discovered earlier, possibly resulting in substantially reduced
development costs.

The STAIRS method presented in this thesis defines a denotational trace semantics for the
main constructs of UML 2.1 interactions. The semantic model takes into account the partial
nature of interactions, and the formal semantics of STAIRS corresponds closely to the informal
semantics given in the UML 2.1 standard. STAIRS also defines a number of refinement relations
for relating interactions made at different stages of the development process, and corresponding
compliance relations.

Our vision is that the intuitive feeling of UML 2.1 interactions should be maintained while
also providing the means for formal analysis such as security analysis, testing and automatic
transformation into executable code.

1.2 Contribution and Overview of the Thesis

This thesis is organised as a collection of eight papers presenting work on STAIRS, together with
an introductory part providing the context of this work. The organisation of the rest of this
introductory part is as follows: In chapter 2 we present our research method, while chapter 3
gives a thorough problem analysis, presenting the setting of this thesis together with the goals
and success criteria for the STAIRS method. Based on this problem analysis, in chapter 4 we
discuss the state of the art that are relevant for this thesis work. Chapter 5 gives a summary of
STAIRS, while chapter 6 provides a brief overview of the papers included in this thesis. Chapter 7
discusses the results obtained and recent related work on UML 2.1 interactions. Finally, ideas for
future work is presented in chapter 8.

STAIRS, and the papers included in this thesis, is the result of a collaborative effort in a
group of researchers led by Ketil Stølen and Øystein Haugen. In the following, we list the main
contributions of STAIRS together with references to the papers where these are described. In
chapter 6, the particular contributions of Ragnhild Kobro Runde are described for each of the
eight papers in question.

• STAIRS improves the language of UML 2.1 interactions by providing additional mechan-
isms for

– distinguishing between mandatory alternatives (e.g. inherent nondeterminism) and
potential alternatives (e.g. underspecification). Described in: Papers 1, 2, 4, 5 and 6.

– using two different negation operators depending on the desired positive behaviours.
Described in: Paper 3.

– distinguishing between the reception and the consumption of a message, an essential
feature when working with time constraints. Described in: Paper 2.

• STAIRS provides a precise understanding of the partial nature of UML interactions by

– defining a semantic model for UML 2.1 interactions with the extensions listed above.
Described in: Paper 1.
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– defining a denotational trace semantics for the most commonly used parts of UML
2.1 interactions, including time, guarded alternatives and the extensions listed above.
Described in: Papers 1, 2, 3, 4 and 5.

• STAIRS supports stepwise and compositional development of interactions by defining
basic refinement relations that

– take the partiality of interactions into account, together with all the features men-
tioned above. Described in: Papers 1, 2, 4, 5 and 7.

– are sound, meaning that the desirable mathematical properties of reflexivity, transit-
ivity and monotonicity hold. Described in: Papers 2, 3, 4 and 7.

• STAIRS defines what it means for a computer system to be compliant with an interaction
by

– explaining how computer systems may be understood in terms of our semantic
model. Described in: Paper 7.

– defining sound compliance relations corresponding to the different refinement rela-
tions. Described in: Paper 7.

• STAIRS provides methodological guidelines for how to create and refine interactions using
the main principles of STAIRS. Described in: Papers 5 and 8.

The research on STAIRS has been partly carried out within the context of the SARDAS
project [SAR], which is funded by the Research Council of Norway under the IKT-2010 pro-
gramme. The overall goal of SARDAS is to improve on state of the art for the specification,
design and development of systems with high availability. The main goal of STAIRS has been to
provide a firm foundation for the other activities to build on.

STAIRS has been successfully used both in other parts of the SARDAS project, and in re-
lated projects. Mass Soldal Lund has developed an operational semantics for STAIRS [LS06b]
and used it for building a tool for test case generation from UML 2.1 interactions [LS06a]. Atle
Refsdal and Knut Eilif Husa have developed probabilistic STAIRS [RHS05, RRS06], which ex-
tends STAIRS with probabilistic choice and soft real-time constraints. Fredrik Seehusen has used
STAIRS for defining secure information flow property preserving refinement and transformation
of interaction diagrams [SS06].
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Chapter 2

Research Method

This chapter presents the research method on which this thesis work has been based.
Compared to most other sciences, computer science is a relatively new discipline and without

an established research method [DC02]. Even the question of whether or not computer science
qualifies as a science in the traditional sense is still being debated [Den05]. Computer science
has ancestors in disciplines as diverse as mathematics, physics, engineering and social science.
Consequently, researchers in computer science have to a varying degree adapted research methods
used within each of these disciplines. However, computer science research is also often performed
in an ad hoc manner and without a clear thought about research method [Gla95].

Much of computer science research, including this thesis work, fall into the category called
technological research in [SS07]. While the aim of classical research in e.g. the natural and
social sciences is to achieve more knowledge about some existing part of the world, the aim of
technological research is to create new or improved artefacts. In computer science research, such
artefacts may be e.g. programs, programming languages, security protocols, hardware processors,
or methods as in our case.

Similar to classical research methods, the technological research method advocated in [SS07]
is an iterative process consisting of three main steps: problem analysis, innovation and evaluation.
These steps are very similar to the phases proposed in [Gla95]. Problem analysis corresponds to
the informational phase, i.e. gathering or aggregating information. Innovation covers both the
propositional and the analytical phase, i.e. proposing a hypothesis, method, etc, and exploring
this proposition. Finally, evaluation corresponds to the evaluative phase, where the proposition
is evaluated by e.g. experimentation or observation.

In the following sections, we describe how each of the steps in [SS07] have been instantiated
in this thesis work.

2.1 Problem Analysis

First, as documented in chapter 3, we investigated the current situation in model-based system
development using UML and identified the need for a new artefact — a method giving a precise
semantics for UML 2.x, definitions of model relations and methodological guidelines for using
UML 2.x for specifications. As this would be too much to cover within the scope of one thesis, we
identified the STAIRS method for developing UML 2.x interactions as the artefact to be created

7
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by this thesis work. Also, we formulated a number of requirements that should be fulfilled by
STAIRS.

Next, as documented in chapter 4, we investigated existing theories and methods in order
to evaluate to what extent these fulfilled our requirements for the formal framework. The main
conclusion from this investigation was that these theories and methods were not sufficient, and
that new research was needed in order to create the required framework.

2.2 Innovation

The innovation part of this thesis work has been to create the STAIRS method as a response to
the identified need for a formal framework for UML 2.x interactions. A summary of STAIRS is
given in chapter 5, and a more thorough description is given in the attached papers 1–7.

The development of STAIRS has been performed by treating the most basic parts of inter-
actions first, and then iteratively adding more and more features. Similar to what often happens
in iterative system development, the addition of new features to STAIRS has sometimes led to
minor modifications of previous work. The choice of what new features to include in each step
has been guided by feedback received when presenting our work to other researchers in the field,
and by ourselves identifying weaknesses and additional needs when trying to use STAIRS on
small toy examples.

Even though we have not reached all of the initial goals described in section 3.3, our claim
is that STAIRS satisfies the main requirements and provides a useful basis for further research in
this area.

2.3 Evaluation

In this thesis work, the evaluation has been performed alongside the development of the STAIRS
method, and is documented in the attached papers. Also, a summarizing discussion may be
found in chapter 7.

For evaluation, there exists a number of methods and techniques that may be categorized in
different ways. In [McG84], a distinction is made between eight different evaluation methods,
each with its own advantages and disadvantages. A perfect method leads to results that are both
general, realistic and precise. However, [McG84] points out that no such perfect method exists,
and that trying to increase one of these properties invariably results in reducing one or both
of the other properties. The key, then, is to use different methods that complement each other.
Several factors influence the exact choice of evaluation methods, including the time and resources
required to carry out each of the methods. Also, the stated requirements are important as the
chosen method must be able to both verify and falsify the claim that the artefact meets these
requirements.

The STAIRS method consists mainly of a formal foundation for UML 2.x interactions, and
it has therefore been natural to use formal theory and mathematical proofs for establishing desir-
able properties of this formalization. The main properties required of STAIRS are described in
section 3.3, and proved in the attachments of papers 2, 4, 6 and 7.

For evaluating the usefulness of STAIRS, the results from formal theory have been supple-
mented with the use of STAIRS in several examples. Papers 1–7 all contain running examples
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illustrating the main points. As STAIRS is meant to be a general method for UML 2.x interac-
tions, these examples are on purpose taken from quite different domains as can be seen from the
following overview:

Paper 1 describes an automatic teller machine, focusing on withdrawal of money.

Paper 2 elaborates on the original STAIRS example in [HS03], the making of dinner at an
ethnic restaurant.

Paper 3 illustrates its main point using a small example with a vending machine selling tea and
coffee.

Paper 4 uses an example of network communication.

Paper 5 is a tutorial paper using an appointment system as its running example.

Paper 6 describes the games of playing tic-tac-toe, flipping a coin and throwing a dice.

Paper 7 describes aspects of a gambling machine.

In addition to these examples, a larger case study has been performed. The case study de-
scribes a system for automatically matching service providers with users of those services. Based
on the case study, we performed an evaluation of STAIRS. Both the case study and the follow-
ing evaluation are documented in paper 8. The case study was performed by ourselves, which
gave complete control over the setting of the case study. This ensured that the subsequent eval-
uation really evaluated STAIRS, and not some other uncontrollable factor. A natural next step
in the evaluation of STAIRS, would be to perform a field study where STAIRS is used in the
development of a real system.
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Chapter 3

Problem Analysis

This chapter presents the result of the problem analysis. Sections 3.1 and 3.2 outline the problem
to be solved in this thesis, i.e. describing the need the STAIRS method is supposed to meet.
Section 3.3 refines this overall outline into a set of success criteria that the STAIRS method
should fulfil.

3.1 Problem Specification

During the past decade, UML has become the de facto modelling standard used in industry. For
this thesis work, we started out using the U2 Partners’ submission [OMG03a] for the UML 2.0
superstructure. In 2005, a revised version of this proposal became an adopted OMG specifica-
tion [OMG05], and UML is now being updated to version 2.1 [OMG06]. For our purposes,
there are no significant differences between these versions, and we will refer to them collectively
as “the UML 2.x standard” or simply “the standard”.1

Using the classification of Martin Fowler [Fow03], there are three primary ways of thinking
about UML. In UmlAsSketch, UML diagrams are used informally for discussing selected aspects
of a system to be built, or for explaining parts of an existing system. Using UmlAsBlueprint, the
UML diagrams serve as a detailed specification and/or documentation of the system, containing
all major design decisions. From the specification, programming the system should be pretty
straightforward. Finally, UmlAsProgrammingLanguage is the idea that UML may be used as a
high-level programming language, and that tools may automatically transform the UML models
into executable code.

We believe that one of the main reasons for the attractiveness of UML, is its intuitive use in
informal sketches. Our vision is that this intuitive feeling should be kept while at the same time
improving UML for better use in blueprints and as a programming language.

All UML users, including those who use UML only for informal sketches, desire tool sup-
port for drawing diagrams. More advanced users will also need tools for analysing UML diagrams
and for transforming them into executable code. Such tools, and in particular interoperability
between such tools, can only be achieved if the interpretation of a given UML diagram is unam-

1Note that there are important differences between UML 1.x and UML 2.x, in particular with respect to inter-
actions which is the topic of this thesis. The various composition operators introduced with UML 2.x interactions
have received particular attention in this thesis work.

11
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biguous, i.e. tool vendors need UML to have a well-defined, precise, semantics. As Bran Selic
points out in [Sel04], UML is not completely without a semantics, but the semantics given in the
UML 2.x standard is not detailed or precise enough to answer questions about the exact meaning
of more complicated diagrams. If the UML diagrams are to be used as blueprints, the lack of
precise semantics is problematic not only because of little tool support, but also because it leads
to situations where different users interpret the same diagram slightly differently. The result may
be that the system being built is not the same system as the one intended by the person(s) making
the blueprint.

Partly due to the fact that UML is a language and not a methodology, very little is found in
the UML 2.x standard with respect to the semantic relationship between different UML diagrams
of the same system, and between UML diagrams and computer systems. Understanding such
relationships is important for ensuring that the initial requirements are contained also in later
versions of the specification, for performing consistency checks across several diagrams, and for
enabling reuse of analysis results obtained on diagrams created early in the development process.

3.2 Limiting the Scope of this Thesis

Currently, the UML 2.x standard describes 13 different diagram types. Clearly, it is out of scope
for this thesis to cover all of UML 2.x and all possible relations between different UML models.
The purpose of this section is to define the limits for this thesis work. We discuss UML diagrams
in section 3.2.1, before turning to model relations and relationships between UML diagrams and
computer systems in section 3.2.2.

3.2.1 UML Diagrams

In the context of UML, much work has been done on diagram types for describing system
structure, but less has been done on diagram types for describing behaviour (see e.g. [Whi02],
which gives an overview of formal approaches to UML). For behaviour, the UML 2.x standard
describes altogether seven different diagram types, including state machine diagrams and four
kinds of interaction diagrams (interaction overview diagrams, sequence diagrams, communica-
tion diagrams, and timing diagrams).

While state machines describe the complete behaviour of one part of the system (typically
one or more objects), interactions are partial descriptions of communication between different
parts of the system. We expect that if we first understand how to deal with the partiality of
interactions, it will be relatively easy to generalize the obtained results to complete descriptions
in the form of e.g. state machines. Consequently, interactions have been chosen as the focus of
this thesis. Chapter 7.3 provides a more detailed discussion of to what extent the obtained results
generalize to other specification techniques.

Interactions are appealing, as they are seen to be intuitive and easy to understand and thus
useful for communicating both with customers and within the development team. In addition
to being used for capturing and analysing requirements, interactions are very useful as system
documentation as they describe how the different components or objects in the system interact
to achieve the required behaviour. Also, test scenarios may be specified and documented using
interactions.
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As an example interaction, the sequence diagram in figure 3.1 (taken from [PP05]) describes
how a workstation sends two ping packets to the server. The two responses may take different
routes in the network, leading to the second response message arriving at the workstation before
the first response. The workstation and the server are called lifelines, the arrows represent the
messages sent between them and the arrowheads indicate the direction of each message. The open
arrowheads indicate that the messages are asynchronous, meaning that the sender of a message is
not required to wait for a reply before continuing with its behaviour.

sd Sending Ping Packets

: Workstation : Server

sendPing(id:1)

sendPing(id:2)

sendResponse(id:1)

sendResponse(id:2)

Figure 3.1: Example interaction

A message consists of two events, the send event and the receive event. The implicit com-
position operator in UML 2.x interactions is weak sequencing, where events on the same lifeline
are ordered from the top and downwards. Events on different lifelines may happen in any order
(with the obvious restriction that a message must be sent before it may be received). For the in-
teraction in figure 3.1, this means for instance that the workstation may send both ping messages
before any one of them is received by the server, or that the server may receive the first message
(and possibly also send the response) before the workstation sends the second ping message.

The interaction in figure 3.1 is obviously not a complete specification of how ping packets
may be sent. Is the workstation allowed to send more ping messages if it takes too much time
before it receives any response? May the workstation send only one ping message? What if the
server is down, and the workstation never receives any response message at all? May the server
respond to some, but not all, of the ping messages? The given interaction does not provide an
answer to any of these questions. This does not mean that the interaction is wrong, but rather
suggests that the interaction is a partial specification as it only describes a few example scenarios.

Another example interaction is given in figure 3.2. In this sequence diagram, a time con-
straint is used to describe that after the server has received the request from the client, it should
take between zero and five time units before the server sends the response back. Again, this is
not a complete specification. The sequence diagram in figure 3.2 does not describe what should
happen if, for instance, the server receives a second request or if the server fails to respond within
the given time limit. Also, from the UML 2.x standard it is not clear whether the time constraint
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refers to the point in time when the request arrives in the input queue of the server, or to the
point in time when the sever consumes the message from the buffer and starts the handling of
the request.

sd Time constraint

: Client : Server

request

response {0..5}

Figure 3.2: Interaction with time constraint

For UML 2.x interactions, the standard also includes a number of operators for specify-
ing e.g. parallel execution and alternative behaviours. Figure 3.3 (taken from paper 5) is an
example interaction using the alt-operator when describing how a client may interact with an
appointment system in order to book an appointment. This interaction describes altogether four
different system behaviours. What is not clear from the UML 2.x standard, is whether a system

sd MakeAppointment

:Client :AppSystem

needApp(hour)

alt
needApp(date)

appointmentSuggestion(time)

alt yes()

appointmentMade()

no()

noAppointment()

Figure 3.3: Alternative behaviours
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compliant with the interaction must be able to perform all of these alternatives or if performing
only one (or maybe even none) is sufficient. In other words, does the alt operator specify altern-
ative behaviours that are mandatory (i.e. required) or potential (i.e. optional)? Currently, both
interpretations are being used by UML practitioners.

UML 2.x also provides operators for specifying negative behaviour in the interactions. As an
example, consider the interaction in figure 3.4 (which is a simplified version of an example given
in paper 3). Here, the neg operator of UML 2.x is used to specify that if a user orders coffee from
a vending machine, he should not receive tea. The exact interpretation of this interaction is not
given by the informal semantics in the UML 2.x standard. For instance, is the behaviour where
the user orders coffee and then nothing more happens positive? What about the behaviour where
the user orders coffee and then receives cappuccino?2 Does the interaction describe any positive
behaviours at all? And what is the exact set of negative behaviours described by the interaction?
For instance, if the user orders coffee and then receives both tea and coffee, is that behaviour also
negative?

sd Coffee

:Customer :Machine

coffee

neg tea

Figure 3.4: Negative behaviours

The discussion of these examples demonstrates that a precise semantics for UML 2.x in-
teractions is needed in order to understand the exact sets of positive and negative behaviours
described by an interaction. In particular, the following is a list of features of interactions that
must be addressed by the work in this thesis:

• An interaction may describe both positive (i.e. valid) and negative (i.e. invalid) system
behaviour.

• Interactions are partial, meaning that there are behaviours not described as either positive
or negative.

• Interactions may specify both mandatory (i.e. required) and potential (i.e. optional) beha-
viour.

• Interactions may specify time constraints, and these may be related to both the sending,
the arrival (i.e. reception) and the consumption of messages.

2Some readers may find that this is a strange question to ask for the given interaction. However, one possible in-
terpretation of the standard is that everything except the behaviour inside neg should be positive, i.e. that everything
is positive except from the user receiving tea.
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3.2.2 Model Relations

We find it useful to distinguish between three basic ways that two interactions describing the
same system may be related:

1. One of the interactions is a corrected version of the other, for instance correcting errors or
taking into account changed requirements.

2. One of the interactions is a refinement, i.e. a more detailed description, of the other inter-
action.

3. The two interactions describe the system addressing different concerns, i.e. using different
viewpoints.

Although correction is a central part of system development, relating the original and the
corrected model is interesting mainly for ensuring that important refinement relations and view-
point correspondences still hold after the correction. In general, using viewpoints are particularly
useful when specifying large and complex systems, while refinement is important in any step-wise
and incremental development process.

Consequently, the focus of this thesis is on refinement relations. The concept of refinement
has been studied within the area of formal methods since the early 1970s (see section 4.4), and
one of the challenges of this thesis is to find out how the essence of this theory may be explained
and used in the practical setting of UML 2.x interactions.

From formal methods, we know that in order to support step-wise, compositional develop-
ment, the semantics of UML 2.x interactions should be compositional. Following [dRdBH+01],
this means that the semantics of an interaction should be a function of the semantics of each of
its sub-interactions and the operator(s) used for composing them. No more knowledge about
the operands is required. Also, the composition operators should be monotonic with respect
to refinement, meaning that separate refinement of each operand results in a refinement of the
complete interaction. As demonstrated in e.g. [dR85], [Col93] and [MS00], achieving composi-
tionality is not straightforward, and great care should be taken when formalizing the semantics of
UML 2.x interactions. For the refinement relations, we also know that they should be transitive,
as this ensures that the result of several successive refinement steps is a refinement also of the
original interaction.3

In addition to refinement, we also address the notion of compliance for relating UML 2.x
interactions and computer systems. The final system should be in compliance with all of the in-
teractions made during the step-wise development process, meaning that compliance should be a
special case of refinement. As UML 2.x interactions does not prescribe any particular technology
to be used for the final system, the notion of compliance should not depend on any particular
kind of technology either.

3.3 Goals and Success Criteria

The overall goal of this thesis is to improve system development processes that use UML. Based
on the above analysis, we conclude that there is a need for a method that may be used by both

3For simplicity, we often refer to monotonicity as a property of the refinement relations, and list monotonicity
together with other refinement properties such as transitivity and reflexivity.
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tool vendors and UML users. In particular, tool vendors need:

• A precise semantics for UML 2.x, making it possible to create tools that may assist when
creating and analysing UML models, and possibly also perform automatic analysis of UML
models.

• Precise definitions of possible model relationships, enabling tools to perform consistency
checking and assist in creating and validating refinements.

In addition to improved tool support, UML users need

• Methodological guidelines for creating, developing, implementing and maintaining spe-
cifications expressed as UML models.

Looking at the combined needs of tool vendors and UML users, and narrowing it down
to the scope of this thesis, there is a need for a formal foundation for UML 2.x interactions,
consisting of:

• A formal definition of the semantics of UML 2.x interactions.

• An explanation of useful refinement relations for interactions, with corresponding formal
definitions.

• An explanation of the relation between interactions and computer systems, i.e. an answer
to the question of when a given system is in compliance with a given interaction. Again,
the informal explanation should be accompanied by corresponding formal definitions.

• A methodology explaining how to use this formal foundation in practical system develop-
ment with UML 2.x interactions.

In order to verify that the STAIRS method presented in this thesis provides the needed
foundation, based on the above analysis we also formulate a set of success criteria for such a
foundation.

• The formal semantics should

– take into account the partiality of UML 2.x interactions.

– handle both positive and negative behaviour.

– handle both mandatory and potential behaviour.

– include a notion of time.

– be compositional, i.e.

∗ the meaning of an interaction should be completely determined by the semantics
of its sub-interactions and the composition operators used.

∗ the composition operators should be monotonic with respect to refinement.

– be in accordance with the UML 2.x standard.

• The refinement relations should
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– take into account the partiality of interactions.

– handle both positive and negative behaviour.

– handle both mandatory and potential behaviour.

– capture the main refinement notions known from classical formal methods.

– be transitive, thus enabling stepwise development.

• The compliance relation between interactions and computer systems should

– be a special case of refinement.

– be independent of technology used for the computer system.

• The methodology should

– be conservative, i.e. based on existing UML methodology.

– be useful without thorough knowledge of the formal definitions.



Chapter 4

State of the Art

This chapter presents state of the art representing background material for this thesis work. In
particular, we investigate to what extent existing theories and methods fulfil the requirements
from section 3.3.

In section 4.1 we consider methods for defining semantics, and in section 4.2 we investigate
alternative ways of introducing time in the semantics. Section 4.3 considers different ways to
specify alternative behaviours, i.e. different kinds of nondeterminism. Section 4.4 provides an
overview of refinement in various formal methods, focusing on to what extent they include
mechanisms for supporting the special features of interactions described in section 3.2.1. In
section 4.5, we consider UML-related methodologies and other relevant work on UML. When
advancing UML from version 1.5 [OMG03b] to version 2.0 [OMG04], sequence diagrams
underwent a major revision, strongly influenced by Message Sequence Charts (MSC) [ITU99].
MSC is treated in section 4.6.

Our overall conclusion is that these theories and methods provide useful background ma-
terial, but they are not sufficient for fulfilling the requirements formulated for STAIRS in sec-
tion 3.3.

4.1 Semantics

The semantics of a language defines the meaning of statements formed using the syntactical
constructs of that language. In computer science, it is common to categorize semantics definition
methods as axiomatic, denotational or operational (see e.g. [Sch96]). In this section we give a
brief overview of each of these methods and evaluate their suitability for defining the semantics
of UML 2.x interactions.

In axiomatic semantics, the meaning of individual statements is defined indirectly by describ-
ing logical axioms and rules that apply to these statements. Axiomatic semantics are mainly used
for deriving or proving desirable properties of the statements, such as in Hoare logic [Hoa69].
The axioms given are usually concise and understandable, but the descriptions tend to be very
large and complex for real languages with many basic constructs [Pri00]. As a result, we find
axiomatic semantics less suitable for defining the semantics of interactions.

In denotational semantics, the meaning of statements in the language is given as a mathem-
atical function from syntactical expressions to a well-known domain. The main challenge using
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denotational semantics is deciding on the target domain that should be used. On the one hand,
the domain should be well-known and thus understandable, while on the other hand the se-
mantic function should be as simple as possible for improving readability. A common approach
is therefore to first define a specialized target language (using e.g. axiomatic semantics), and then
basing the denotational semantics on this specialized language [Pri00]. In the UML 2.x standard,
the semantics of interactions is explained using traces of event occurrences, meaning that such
traces would form a natural target domain for a formal denotational semantics of interactions.

Compared to axiomatic and denotational semantics, operational semantics is closer to a real
implementation. In operational semantics, the meaning of individual statements are defined
in terms of how these statements may be executed using an abstract interpreter (which in turn
must have a well-defined semantics). Operational semantics provides a good formalization of
implementation, and is often easily understandable for tool developers. However, it may be
difficult to derive formal proofs from an operational semantics [Pri00], making it less suitable for
our purposes.

To conclude, a formal semantics for UML 2.x interactions should most probably use a de-
notational semantics based on traces of events.

4.2 Time

There exists several techniques for introducing time in the syntax and semantics of specification
languages. In [Lam05], a distinction is made between explicit- and implicit-time descriptions.
In explicit-time descriptions, time is introduced by a special variable representing the current
time. The passing of time is modelled by an action incrementing this special variable. The
advantage of using explicit-time is that the time variable is treated in the same way as other
variables by both the language and its tools. Explicit-time works well for e.g. state machines,
but is less suitable for trace-based formalisms and other formalisms containing no explicit notion
of a global state. Instead, such formalisms usually use implicit-time descriptions, in which the
language is extended with special constructs for expressing timing properties.

[AH92] contains a survey of possible formal semantics for real-time systems. A general se-
mantics based on interval sequences is described, together with four semantical choices leading
to a total of sixteen possible kinds of formal semantics. The first choice is whether to use state
sequences or observation sequences in the semantics. In section 4.1, we have already concluded
that traces of events, i.e. observation sequences, should be used. Secondly, we will make the
assumption that events are instantaneous, meaning that using time points is sufficient and that
the more general time intervals are not needed.

The third choice in [AH92] is whether to use strictly monotonic or weakly monotonic time.
Weakly monotonic time means that adjacent time instants may be identical, and is necessary for
modelling interleaving of simultaneous events. This is the case for interactions, where two events
on different lifelines may occur at the same time. Finally, there is a choice between real-numbered
and integer time. [AH92] states that integer time is sufficient for synchronous systems. However,
interactions typically describe asynchronous messages, meaning that real-numbered time seems
to be the best choice.
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4.3 Nondeterminism

In some sense, potential and mandatory behaviours may be understood as different kinds of
nondeterminism. Potential behaviour is similar to nondeterminism in the form of underspecific-
ation, where an implementer is free to choose only one of the given behaviours. As for mandatory
behaviour, inherent nondeterminism requires that all of the behaviours given in the specification
are also reflected in the final system.

As pointed out in e.g. [Ros95] and [Jür01], distinguishing between underspecification and
inherent nondeterminism (also called unpredictability) may be essential for ensuring certain se-
curity properties of a system. For instance, when creating keys and nounces, the set of possible
outcomes should be sufficiently large to make them unguessable by an adversary. If the different
alternatives are specified using underspecification, this set may be significantly reduced in the fi-
nal system leading to an insecure system. However, most formalisms do not distinguish between
underspecification and inherent nondeterminism. In [Jür01], unpredictability is ensured using
specific primities instead of relying on nondeterministic choice being interpreted as inherent
nondeterminsm.

In the setting of algebraic specifications, [WM01] argues for using explicit nondeterminism
in cases where underspecification might in fact lead to overspecification. However, the resulting
system may still be deterministic.

In VDM-SL, a similar distinction is made between underdeterminedness (i.e. underspecifica-
tion) and nondeterminism when interpreting looseness in specifications (i.e. specifications allow-
ing alternative behaviours) [LAMB89]. Looseness in function definitions is interpreted as under-
determinedness, meaning that the exact definition is chosen at implementation time. Looseness
in operations is interpreted as nondeterminism where the choice may be delayed until run-time,
meaning that the final system may be either deterministic or nondeterministic.

CSP [Hoa85, Ros98] includes two different operators for nondeterminism. With internal
nondeterminism, the system is free to choose whether it should offer all alternatives or only one
(or some) of them. The choice may be performed at run-time, making the system nondetermin-
istic, but the choice may also be made by the implementer, resulting in a deterministic system.
For external nondeterminism (also called environmental choice), the behaviour is determined by
the environment and the system must be able to perform all alternatives.

A similar distinction is that between angelic and demonic choice made in e.g the refinement
calculus [BvW98]. With angelic choice, the choice between the alternatives is made by the
system with the goal of establishing a given postcondition. This means that if the behaviours are
similar up to some point, the choice between them may be deferred as long as possible in order
to increase the chances of obtaining the desired end result. Demonic choice, on the other hand,
is assumed to be resolved by an environment with another goal. Hence, the system may only
guarantee the given postcondition if that condition may be established for all of the demonic
alternatives.

[SBDB97] extends the process algebraic language LOTOS [ISO89] with a disjunction oper-
ators for specifying implementation freedom (i.e. underspecification), leaving the LOTOS choice
operator to be used for inherent nondeterminism. With this new disjunction operator, exactly
one of the alternatives may be implemented, in contrast to the usual interpretation of underspe-
cification which also allows implementations with several of the alternative behaviours.

To conclude, the described formalisms include a variety of operators for specifying non-



22 CHAPTER 4. STATE OF THE ART

determinism and choice, but the distinction between potential and mandatory behaviour is not
fully covered by any of these approaches.

4.4 Refinement

[Dij68], [Wir71] and [DDH72] introduced the notion of stepwise program construction/refine-
ment in the setting of sequential programs. In each refinement step, one or more high-level
instructions may be decomposed into more detailed instructions, refining also the data structure
whenever necessary. The notion of stepwise refinement was then formalized in e.g. [Hoa72]
and [Jon72].

Later, methods such as CSP [Hoa85, Ros98], TLA [AL91, Lam02] and F [BS01] have
investigated refinement in the setting of concurrent and reactive systems. Common for all of
these methods is that in each refinement step, properties are added to the specification in order
to make it more precise or deterministic. This means that the properties of the refinement should
imply the properties of the original specification. For trace-based formalisms this corresponds to
trace inclusion, i.e. all traces of the refinement must also be traces of the original specification.

In addition to reducing the set of possible behaviours, a refinement step may also make
changes to the representation of data. This is captured by the notion of interface refinement in
e.g. [Lam02] and [BS01], where the correspondence between the two representations is given as
part of the refinement step. A unifying treatment of data refinement may be found in [dRE98].
[BS01] also defines a more general notion called conditional refinement, in which additional
assumptions may be made about the environment.

Traditional refinement methods assume that the specifications are complete, meaning that if
a behaviour does not have the properties required by the specification, that behaviour is negative
and should not be exhibited by the specified system. As we have seen in section 3.2.1, this
“closed world assumption” does not hold for interactions in general. As a consequence, the
methods described so far cannot be directly applied in the setting of interactions.

In traditional pre/post-specifications [Hoa69], arbitrary behaviour is allowed if the pre-con-
dition is false. Still, all behaviours are categorized as either positive or negative. Positive beha-
viours are those where the pre-condition is false, together with the behaviours satisfying both the
pre- and the post-condition. Behaviours that satisfy the pre-condition but not the post-condition
are negative. Refinement means to reduce the set of positive behaviours, either by strengthening
the post-condition or weakening the pre-condition.

In [MBD00], pre/post-specifications in Z are given a three-valued interpretation, the third
truth value being “don’t care” or undefinedness. In this interpretation, behaviours with a false
pre-condition are undefined and may later be refined as either positive or negative. To restrict the
undefinedness, more general guards are introduced in addition to the pre-conditions. If a guard
is false, the behaviour is negative, while if the guard is true and the pre-condition is false, the
behaviour is undefined. Refinement now means removing undefinedness by either weakening
the pre-condition or strengthening the guard, or removing underspecification by strengthening
the post-condition.

[MBD00] also presents an alternative three-valued interpretation in order to capture required
nondeterminism, i.e. mandatory behaviour. In this interpretation, a behaviour is mandatory if
the pre-condition is true, while behaviours where the pre-condition is false and the guard is true
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are potential behaviours. A refinement step may no longer strengthen the post-condition, but the
gap between the guard and the pre-condition may be made smaller as long as it is not eliminated
entirely.

These results concerning pre/post-specifications cannot be directly applied to specifications
in the form of interactions. Typically, pre-conditions apply to the input values of a (sub-)system,
whereas post-conditions constrain the set of valid output values. In other words, if the pre-
condition holds, the post-condition categorizes all possible output behaviours as either positive
or negative. For an interaction, it is the complete sequence of events that are either positive,
negative, or not described by the interaction. As a result, an interaction may be incomplete also
with respect to the allowed output behaviours for some valid input.

[dJvdPH00] presents a formal method for refining incomplete requirements specifications,
incomplete meaning “yet unfinished”. However, the incompleteness addressed is a controlled
form of incompleteness, limited to additional nondeterminism (intended or unintended) and
parameterized specifications where the parameters refer to parts that are not specified yet. General
incompleteness, such as may be the case with interactions, is not addressed.

4.5 UML-Related Methodologies

There exists a number of UML-related methodologies, including the Unified Process [JBR99],
the Rational Unified Process (RUP) [Kru04], Catalysis [DW99], KobrA [ABB+02] and Agile
Modeling [Amb02]. As representatives, we have here chosen to focus on RUP and Catalysis.
RUP is a specialization of the Unified Process, and these two methodologies are the ones most
closely related to UML. Catalysis is chosen as it includes the most thorough treatment of refine-
ment.

RUP [Kru04] is a generic software engineering process developed as a complement to UML.
While UML is only a language that may be used for expressing models, RUP describes which
models should be created at each stage in the development process. RUP divides the development
process into four main phases consisting of a sequence of iterations, and nine disciplines that cut
across these iterations. Although prescribing the creation of a number of UML models (and
other documents), RUP is vague on the relationship between these. [Kru04] states a few places
that two or more models should be consistent, or that one model should refine another, but this
is not formalized and the concept of refinement is not explored in any depth.

Catalysis [DW99] is a method for object and component-based development using UML
1.x. For the development process, Catalysis gives a number of process patterns that may be
adapted by a concrete system development project. Catalysis include many of the same ideas as
RUP, such as phases, iterations, and the various activities performed within each of the iterations.
For our purposes, the most interesting part of Catalysis is its treatment of refinement. Four basic
kinds of refinement are defined:

• Operation refinement: Refining the behaviour of a type, i.e. its operation specifications
(usually in the form of pre- and post-conditions).

• Model refinement: Refining the attributes of a type, i.e. its static model, allowing the
implementation attributes to be different from those of the model.
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• Action refinement: Refines a single action into a set of actions or a complex protocol of
interactions between objects.

• Object refinement: Refines a single object into a set of objects.

Most refinements can be understood as combinations of these four, either in sequence (“big
refinements”) or performed together (for instance combining action and object refinement). The
same refinement relations are used both for relating two specifications at different level of ab-
straction, and for relating specifications and computer systems. Several examples of Java imple-
mentations are given.

Catalysis does not precisely define the various kinds of refinement as the aim is a “more
practical solution”. Instead, [DW99] gives an overview of questions that must be answered in
order to justify that a basic refinement step is correct. For action refinement, which is the most
relevant for interactions, the question to be answered is: “What sequences of detailed actions
will realize the effect of the abstract action?”. In addition to writing down a justification for the
refinement, one should also write down the reasons from choosing this realization instead of one
of the alternatives.

Neither of the methodologies mentioned above provides any attempt to do anything about
the lack of a precise semantics for UML 2.x. However, there have been many other attempts
to formalize UML (see e.g. [Whi02]). Much of the work on UML have focused on the static
diagram types (such as class diagrams), and are not relevant for our work on interactions.

[Öve99] gives meaning to UML 1.x collaborations (which are described using interaction
diagrams) by defining what it means for at set of objects to conform to a collaboration. Being
based on message sequences, and not sequences of events, there is no way to express weak se-
quencing. The partiality of interactions are taken care of, in that objects may participate in other
collaborations as well. As UML 1.x does not include any operators for negation, the concept of
negative behaviours is not treated. For relating two collaborations, [Öve99] defines the notion
of specialization. The specialization must include all sequences of the original collaboration, but
may add both new sequences and new messages interleaved in the original sequences.

A more formal treatment of UML 1.x collaborations is given in [Kna99], using temporal
logic and also incorporating semantics of actions in the form of transition systems. [Kna99] also
provides a semantics based on pomsets, which are seen as closer to the informal semantics given
in the UML 1.x standard. Again, the concept of negative behaviours is not treated. Neither is
there any notion of refinement.

In [GHK99], the behavioural diagram types of UML 1.x (including state diagrams and col-
laboration diagrams) are given a common semantics in the form of constraint processes in cTLA
(compositional TLA). Partial specifications are handled, in that each process constrains only
those actions that are relvant with respect to the given diagram. However, negative behaviours
are not treated, and neither are refinement.

[Jür02] (later published in a revised form as [Jür05]) provides a formal semantics for a re-
stricted and simplified part of several kinds of UML 1.x diagrams, including sequence diagrams.
The semantics is based on Abstract State Machines, and does not include explicit negative beha-
viours. Corresponding to the similar notions in [BS01], [Jür02] defines behavioural and interface
refinement for UML specifications. In addition, delayed refinement is defined for being able to
introduce time delays. However, the partiality of interactions is not taken into account. Neither
is there any distinction between mandatory and potential behaviours.
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4.6 Message Sequence Charts

UML 2.x interactions are strongly influenced by Message Sequence Charts (MSC) [ITU99]. Al-
though there are some differences in terminology and the graphical syntax used, the two sequence
diagram dialects are very similar [Hau04]. Simple MSCs correspond to the sequence diagrams
of UML 2.x, and includes operators for specifying alternatives, parallel composition, iteration,
exceptions and optional behaviour. All of these operators are included in UML 2.x interactions,
where the operator break corresponds to MSC exceptions [Hau04]. UML 2.x interaction over-
view diagrams are a slightly generalized version of high-level MSCs, which provides an overview
of how the basic MSCs are composed.

MSC does not provide any constructs for defining negative behaviour. Instead, [Hau97] pro-
poses a methodology where different MSC documents (a number of MSCs) may be categorized
as describing possible, not possible or all possible sequences of the system.

The MSC specification [ITU99] includes informal descriptions of the intended semantics.
This has not been formalized, but [ITU98] contains an official operational semantics for [ITU96],
a previous version of MSC. The semantics is defined compositionally, and includes definitions
for the time concepts given in [ITU96].

The only notion of refinement mentioned in [ITU99] is that of instance decomposition. This
refinement is fairly weak, as it does not require behavioural refinement but only that there is some
structural similarity between the decomposed instance and its decomposition. The formalization
in [ITU98] does not treat refinement at all.

The work in [Krü00] is very relevant in our setting as it contains both a formal semantics,
refinement notions and a methodology for MSC. While the operational semantics in [ITU98]
is based on process algebra, [Krü00] defines a denotational semantics based on streams where
the semantics of a given MSC specification is a set of channel and state valuations. The main
difference between the two is that [Krü00] uses strict and not weak sequencing. As noted in
section 3.2.1, weak sequencing is important for UML 2.x interactions. To achieve weak sequen-
cing, [Krü00] requires that this should be explicitly stated in the MSC. The semantics in [Krü00]
is defined compositionally, and important properties such as associativity and commutativity of
the operators are established. The inclusion of time is discussed informally, but is not part of the
formal semantics.

[Krü00] defines four different refinements notions for MSCs. [Krü00] allows references to
non-existing MSCs, which are interpreted as arbitrary behaviour. By reference binding, this
arbitrary behaviour may then be refined by defining the missing MSCs. Property refinement
means removing underspecification by reducing the possible behaviours of the overall system,
while message refinement means substituting an interaction sequence or protocol for a single
message. Finally, structural refinement means replacing a simple component with a set of other
components, similar to instance decomposition in MSC (and UML 2.x). Both message refine-
ment and structural refinement are global substitutions, i.e. all occurrences of the message or
component must be replaced by the same sequence or decomposition. Property refinement is
reflexive, transitive and monotonic with respect to all MSC operators.

Related to implementations, [Krü00] defines four possible interpretations of a single MSC,
such that within one specification the different MSCs may have different interpretations. While
an existential MSC describes partial system behaviour that may occur during execution of the sys-
tem, a universal MSC describes behaviour that must occur at some point in time in all executions
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of the system. An exact MSC prohibits all other behaviours than the ones specified by the MSC,
while a negated MSC describes negative behaviours. Except from existential interpretation, the
notions are monotonic with respect to property refinement.

Live Sequence Charts (LSC, [DH01, HM03]) is an extension of MSC focusing on the ability
to specify liveness, i.e. things that must occur. LSC has influenced the work in [Krü00], and to
some extent also UML 2.x interactions.

LSC distinguishes between existential and universal diagrams. An existential diagram spe-
cifies possible behaviour, i.e. example scenarios that must be satisfied by at least one execution
of the system. A universal diagram specifies necessary behaviour, i.e. behaviour that must be
fulfilled by all executions. A universal diagram consists of two parts, a prechart and the main
chart. If the system at some point in time fulfils the prechart, then the main chart must also be
fulfilled. However, if the prechart is never satisfied, the diagram imposes no restriction on the
system behaviour. [DH01] also discusses the closing of a specification with respect to a system,
which means that for all possible executions of the system at least one LSC is satisfied, i.e. the
system cannot exhibit behaviour not described by any of the diagrams.

Within a single diagram, LSC elements may be specified as cold (meaning that they may
occur) or hot (meaning that they must occur). LSC does not include the standard MSC operators
for control structures like alternatives and iteration. Instead, cold conditions may be used for
specifying this. Hot conditions may be used to specify anti-scenarios (i.e. negative behaviour) by
including the unwanted behaviour in the prechart of a universal diagram where the main chart
contains a single false hot condition.

[HM03] provides an operational semantics for LSC, tailored towards their Play-Engine tool
which provides means for capturing requirements by using a graphical user interface and after-
wards executing the resulting LSCs. For simplifying the tool, the LSC semantics differ from
MSC on important aspects. For instance, synchronization between all lifelines is performed at
the beginning of each sub-diagram. As a result, the semantics of a loop is not the same as the
semantics of writing its content in full. Also, the temperature (hot/cold) of messages is only syn-
tactic sugar without any semantic implication, as the temperature of the corresponding locations
(for the send and the receive event) is given higher priority.

[HM03] also includes more advanced constructs such as variables and time. Even though
there is a notion of sub-diagrams, there are no construct for referencing one LSC within another
or for composing LSCs. LSC contains no notion of refinement, but [HM03] mentions object
refinement (i.e. decomposition) as an important area for further research.



Chapter 5

STAIRS

In this chapter we give an introduction to the STAIRS method. First, in section 5.1 we describe
the initial work on STAIRS by Øystein Haugen and Ketil Stølen. In section 5.2, we give a brief
summary of STAIRS as it appears today.

5.1 The First STAIRS

At the UML 2003 conference, Øystein Haugen and Ketil Stølen presented the first paper on
STAIRS, called “STAIRS — Steps to Analyze Interactions with Refinement Semantics” [HS03].
This paper contained the basic ideas of STAIRS, which has been further developed by the work
presented in this thesis.

The main ideas in [HS03] can be summarized as follows:

Mandatory vs potential behaviour. A specification may employ nondeterminism in order to
capture two very different kinds of requirements. First, nondeterminism in the form of
under-specification is used where there are alternative behaviours serving the same pur-
pose and a correct implementation is only required to fulfil one of these. The alternative
behaviours then represent what is referred to as potential behaviour.

On the other hand, explicit nondeterminism is used where the nondeterminism is required
also by a correct implementation. As an example, every lottery ticket in a lottery should
have the possibility to win the prizes, even though only one ticket is drawn for each prize.
Explicit nondeterminism is referred to as mandatory behaviour.

For describing potential behaviour, the common UML alt operator is used, while a new
operator called xalt is introduced in order to capture mandatory behaviour and distinguish
this from potential behaviour.

Negative, positive and inconclusive behaviour. An interaction is understood as describing a
set of positive (i.e. valid, legal, or desirable) traces, and a set of negative (i.e. invalid, il-
legal, or undesirable) traces. Traces not considered by the interaction are referred to as
inconclusive.

Supplementing, narrowing and detailing. Three basic refinement relations are described, cor-
responding to basic system development steps:

27
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Supplementing categorizes earlier inconclusive traces as either positive or negative, re-
cognizing that early specifications in the form of interactions are usually incomplete.
Positive traces remain positive, and negative traces remain negative.

Narrowing reduces the set of positive traces by redefining some of them as negative, cap-
turing new design decisions or matching the problem better. Inconclusive traces
remain inconclusive and negative traces remain negative.

Detailing introduces a more detailed description without significantly altering the extern-
ally observable behaviour.

Semantics. Trace semantics for simple interactions using the operators seq (weak sequencing),
ref (interaction occurrence), par (parallel combined fragment), neg (negation), alt (po-
tential behaviour) and xalt (mandatory behaviour) are explained informally using small
example interactions.

A semantic model for interactions is proposed, capturing all of the ideas described above
and in particular the distinction between mandatory and potential behaviour. In our later
work on formalizing STAIRS, we chose a slightly different semantic model. The reasons
for this, and a comparison between the different models, may be found in section 7.1. We
also chose another interpretation of the neg operator, as discussed in paper 3

5.2 STAIRS Today

As explained in section 2, the STAIRS method has been developed by iteratively adding more and
more features (e.g. new operators, refinement relations or methodological advice) to it. As our
understanding of system development using UML 2.x interactions has improved, some minor
adjustments have been made to the formal definitions in order to reflect this. In this section,
we give a brief overview of the main syntax, semantic model and refinement relations as they
appear in STAIRS today. For motivation, examples, and more details we refer to the attached
papers. Also, the pragmatical guidelines from paper 5 are not repeated, neither are the compliance
relations from paper 7.

5.2.1 Syntax

The syntax of basic STAIRS interactions is defined by the BNF-grammar in figure 5.1. Signal
represents the actual content of a message, Lifeline is the name of a lifeline (representing
a component) in the diagram and Set should be an expression that evaluates to a subset of
N0 ∪ {∞} (the natural numbers including 0, and ∞).

In addition to the operators in figure 5.1, veto and opt are defined as high-level operators by:

veto d
def
= alt [refuse [d], skip] (5.1)

opt d
def
= alt [d, skip] (5.2)

The ref construct is seen as a syntactical short-hand for the contents of the referenced interaction.
Gates are treated in appendix A of paper 2.
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〈Interaction〉 → 〈Empty〉 | 〈Event〉 | 〈Refuse〉 | 〈Assert〉 |
〈Weak sequencing〉 | 〈Parallel execution〉 |
〈Loop〉 | 〈Potential alternatives〉 |
〈Mandatory alternatives〉

〈Empty〉 → skip
〈Event〉 → ( 〈Kind〉 , 〈Message〉 )

〈Kind〉 → 〈Transmission〉 | 〈Reception〉
〈Transmission〉 → !

〈Reception〉 → ?

〈Message〉 → ( Signal , 〈Transmitter〉 , 〈Receiver〉 )

〈Transmitter〉 → Lifeline

〈Receiver〉 → Lifeline

〈Refuse〉 → refuse [ 〈Interaction〉 ]

〈Assert〉 → assert [ 〈Interaction〉 ]

〈Weak sequencing〉 → seq [ 〈Interaction list〉 ]

〈Parallel execution〉 → par [ 〈Interaction list〉 ]

〈Loop〉 → loop Set [ 〈Interaction〉 ]

〈Potential alternatives〉 → alt [ 〈Interaction list〉 ]

〈Mandatory alternatives〉 → xalt [ 〈Interaction list〉 ]

〈Interaction list〉 → 〈Interaction〉 | 〈Interaction list〉 , 〈Interaction〉

Figure 5.1: Syntax of basic STAIRS interactions

In our work, we have defined two orthogonal extensions of STAIRS, TimedSTAIRS (pa-
per 2) and guarded STAIRS (paper 4). For TimedSTAIRS, the syntax is extended as defined
by the BNF-grammar in figure 5.2. Nonterminals that are unchanged from the syntax of basic
STAIRS in figure 5.1 are not repeated. In TimedSTAIRS, every event is decorated with a unique
timestamp tag (TimestampTag) as a placeholder for real timestamp values. TimeConstraint
is a boolean expression on such timestamp tags. In TimedSTAIRS, we also distinguish between
the reception of a message (the arrival of the message in the input buffer of the lifeline) and
the consumption of the message (when it is taken from the input buffer and processed by the
lifeline).

For interactions with data and guards, the syntax is extended as defined by the BNF-grammar
in figure 5.3. Variable should be either a global variable or a variable local to the lifeline on
which the assignment is placed (not shown in our textual syntax), while Expression is a math-
ematical expression and Constraint is a boolean expression on variables. In guarded STAIRS,
alt/xalt-operands without an explicit guard, are interpreted as having the boolean constant true

as guard.
Except from having a few additional operators, we only address sequence diagrams that are

considered syntactically correct in UML 2.x. Also, we do not handle extra global combined
fragments, and for all operators except from seq and par we assume that each operand consists
of complete messages only. We also require that for diagrams consisting of more than one event,
the message should be complete if both the transmitter and the receiver lifelines are present in
the diagram. These requirements are written down formally in paper 2.



30 CHAPTER 5. STAIRS

〈Interaction〉 → 〈Timed interaction〉
〈Timed interaction〉 → 〈Empty〉 | 〈Event〉 | 〈Refuse〉 | 〈Assert〉|

〈Weak sequencing〉 | 〈Parallel execution〉 |
〈Loop〉 | 〈Potential alternatives〉 |
〈Mandatory alternatives〉 |
〈Time-constrained interaction〉

〈Time-constrained interaction〉 → 〈Timed Interaction〉 tc TimeConstraint

〈Event〉 → ( 〈Kind〉 , 〈Message〉 , TimestampTag )

〈Kind〉 → 〈Transmission〉 | 〈Reception〉 | 〈Consumption〉
〈Transmission〉 → !

〈Reception〉 → ∼
〈Consumption〉 → ?

Figure 5.2: Syntax of TimedSTAIRS interactions

〈Interaction〉 → 〈Empty〉 | 〈Assignment〉 | 〈Constraint〉 | 〈Event〉 |
〈Refuse〉 | 〈Assert〉 | 〈Weak sequencing〉 |
〈Parallel execution〉 | 〈Loop〉 | 〈Guarded alt〉 |
〈Guarded xalt〉

〈Assignment〉 → assign ( Variable , Expression )

〈Constraint〉 → constr ( Constraint )

〈Guarded alt〉 → alt [ 〈Guarded list〉 ]

〈Guarded xalt〉 → xalt [ 〈Guarded list〉 ]

〈Guarded list〉 → 〈Guarded interaction〉 |
〈Guarded list〉 , 〈Guarded interaction〉

〈Guarded interaction〉 → 〈Guard〉 → 〈Interaction〉
〈Guard〉 → Constraint

Figure 5.3: Syntax of guarded STAIRS interactions

5.2.2 Semantics

STAIRS defines denotational trace semantics for interactions that are using the syntax of sec-
tion 5.2.1. Our semantic domain is the set of all well-formed traces, denoted H. In basic
STAIRS, a trace is well-formed if, for each message, the send event is ordered before the cor-
responding receive event. For TimedSTAIRS, we also have additional requirements ensuring
e.g. that all events in a trace are ordered by time. These requirements may be found in paper 2.

The semantics of an interaction is given as a set of m interaction obligations, where an
interaction obligation is a pair of trace-sets (p, n) which gives a classification of all traces in H
into three categories: the positive traces p, the negative traces n, and the inconclusive traces
H\ (p∪n). Visually, we illustrate an interaction obligation as an oval divided into three regions
as shown in figure 5.4.

Intuitively, each interaction obligation represents a mandatory alternative that must be present
in any computer system compliant with the interaction. In earlier work on STAIRS, we classified
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Positive: p

Negative: n

Inconclusive: H \(p n)

Figure 5.4: Illustrating an interaction obligation

an interaction obligation with p ∩ n 6= ∅ as contradictory. We no longer find this term useful,
as the same trace may very well be both positive and negative in the same interaction obligation
when e.g. abstracting away guards or other details.

When defining the semantics of the individual operators, we have used the following main
principles:

• The definitions should be in accordance with the informal semantics and explanations
given in the UML 2.x standard.

• The definitions should be context-free, i.e. the meaning of an operator should not depend
on the context in which it is used.

• All traces that are not explicitly described in a (sub-)interaction should be inconclusive for
that (sub-)interaction.

• In order to support compositional development of interactions, the composition operators
should be monotonic with respect to refinement.

A few times, these principles have been in conflict, and we have had to make minor com-
promises. In our work, monotonicity has been an important principle, as we find it essential
that different parts of a specification may be developed separately. As proved in the attached
papers, all operators except assert are monotonic with respect to refinement.1 For assert, we
have monotonicity in the special case of narrowing.

For the formal definitions of each operator, we refer to the attached papers, and in particular
papers 1, 2 and 4. Some definitions are slightly different in the various papers. This is mainly
structural differences, such as defining operators also on the level of sets of interaction obligations
or changing the number of operands (which makes no difference due to the associativity results
in paper 2). In the following, we comment on the more significant changes that have been made
during the development of STAIRS.

First of all, papers 1 and 2 used the UML operator neg for specifying negative behaviour.
In paper 3, we investigated alternative formal definitions for neg, and argued for replacing neg

1Actually, each of the attached papers includes only a subset of the total set of operators covered by STAIRS,
depending on the focus of that particular paper. All operators (except assert) are proved to be monotonic with
respect to the most general refinement relation (section 5.2.3, definition (5.7) with definition (5.5)). However, in
the papers introducing other refinement relations, monotonicity is only proved for the operators included in each of
these papers.
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Positive: p

Negative: n

Inconclusive: H \(p n)

Figure 5.5: Supplementing of interaction obligations

with two new negation operators called refuse and veto. The operator refuse is the most basic
operator, used in the definition of veto (which corresponds to our initial definition of neg). All
later papers use refuse and veto instead of neg.

In the definition of guarded alt in paper 4, we followed the UML 2.x standard in that if
all guards in an alt-construct is false, the empty trace (i.e. doing nothing) should be positive.
However, the resulting definition is not associative, difficult to read and understand, and also
contradicts our principle that traces not explicitly described should be inconclusive. As a result,
in paper 5 we changed the definition so that the implicit empty trace was no longer included.
The resulting definition is more readable, and also re-establishes associativity of alt. If the empty
trace should be positive in case all other guards are false, this is easily specified by including skip
with the guard else as the last alt-operand. For alt-constructs where the guards are exhaustive,
the definitions in papers 4 and 5 are equivalent.

5.2.3 Refinement

In STAIRS, we have defined several refinement relations for relating UML 2.x interactions made
at different stages of the development process. The refinement relations are found at two different
levels: refinement of interactions and refinement of individual interaction obligations.

For individual interaction obligations, we have formalized the notions of supplementing,
narrowing, and detailing described in [HS03]. In addition, in paper 7 we introduced the notion
of restricted refinement.

Supplementing means adding more behaviours to the specification by reducing the set of
inconclusive behaviours. This is illustrated in figure 5.5 and formally defined by:

(p, n) s (p′, n′)
def
= p ⊆ p′ ∧ n ⊆ n′ (5.3)

Narrowing means reducing underspecification by redefining positive traces as negative. This
is illustrated in figure 5.6 and formally defined by:

(p, n) n (p′, n′)
def
= p′ ⊆ p ∧ n′ = n ∪ p \ p′ (5.4)

Combining supplementing and narrowing results in our most common refinement relation,
formally defined by:

(p, n) r (p′, n′)
def
= n ⊆ n′ ∧ p ⊆ p′ ∪ n′ (5.5)
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Positive: p

Negative: n

Inconclusive: H \(p n)

Figure 5.6: Narrowing of interaction obligations

In restricted refinement, supplementing traces as positive is not allowed:

(p, n) rr (p′, n′)
def
= (p, n) r (p′, n′) ∧ p′ ⊆ p (5.6)

Detailing means reducing the level of abstraction by decomposing one or more lifelines,
corresponding to structural decomposition in UML 2.x. The decomposition may result in a
change in the sender/receiver of the messages, and also in internal messages, guards, etc being
revealed. For a formal definition of detailing, we refer to paper 5.

For interactions which may have several interaction obligations as their semantics, we have
defined two refinement notions: general and limited refinement. In general refinement, each
interaction obligation for the original interaction must be refined by an interaction obligation
for the refining interaction, but new interaction obligations may be added freely:

d g d′ def
= ∀o ∈ [[ d ]] : ∃o′ ∈ [[ d′ ]] : o o′ (5.7)

where the refinement relation is one of the refinement relations given for interaction obliga-
tions above.

Limited refinement restricts the possibility of adding new interaction obligations by also
requiring that each interaction obligation for the refining interaction must be a refinement of
and interaction obligation for the original interaction:

d l d′ def
= d g d′ ∧ ∀o′ ∈ [[ d′ ]] : ∃o ∈ [[ o ]] : o o′ (5.8)
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Chapter 6

Overview of the Papers

The main results of this thesis work are documented in the eight papers found in part II. In the
following, we list the publication details of each paper, together with a short description of its
main research contributions. For each paper, my contribution is specified.

Paper 1: Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stølen. STAIRS
towards formal design with sequence diagrams. Journal of Software and Systems Modeling,
22(4):349–458, 2005.

This paper formalizes the main ideas of STAIRS, based on the presentation in [HS03].
This includes formal definitions of the main UML 2.x operators, the distinction between
mandatory and potential alternatives, and the refinement relations supplementing, nar-
rowing and detailing. In particular, all of the definitions take into account the partial
nature of interactions. The semantic model used in this paper and all our subsequent
work on STAIRS is slightly different from the one proposed in [HS03]. This difference is
discussed in section 7.1.

My contribution: One of four main authors, responsible for approximately 25% of the
work (with an emphasis on the more formal aspects).

Paper 2: Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stølen. Why
timed sequence diagrams require three-event semantics. Technical Report 309. Extended
and revised version of: Why timed sequence diagrams require three-event semantics. In
Scenarios: Models, Transformations and Tools, volume 3466 of LNCS, pages 1–25. Springer,
2005.

This paper extends STAIRS with time and three-event semantics, arguing that distin-
guishing between the reception and the consumption of an event is essential for evaluating
whether a system fulfils the specified time constraints or not. This paper also provides
formal definitions for the treatment of gates, and for additional operators such as assert
and loop. The other main contribution of this paper is the appendices (not included in
the LNCS-publication) containing several proofs for the soundness of the given formal-
ization. We have associativity, commutativity and distributivity where expected, and the
refinement relations are reflexive, transitive and monotonic with respect to the defined
operators, enabling step-wise and compositional development of interactions.

35
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My contribution: One of four main authors of the original paper, and the main author
behind the revised report. My main responsibility was the writing up of the detailed proofs.
Altogether, I was responsible for approximately 35% of the work.

Paper 3: Ragnhild Kobro Runde, Øystein Haugen, and Ketil Stølen. How to transform UML
neg into a useful construct. In Norsk Informatikkonferanse NIK’2005, pages 55–66. Tapir,
2005.

This paper contains a discussion of alternative definitions of the neg operator used for
negation in UML 2.x. The main conclusion is that having only one operator for negation
is not sufficient to capture the different uses, and we propose replacing neg with the two
operators refuse and veto (where veto is defined in terms of refuse).

My contribution: I was the main author, responsible for approximately 90% of the work.

Paper 4: Ragnhild Kobro Runde, Øystein Haugen, and Ketil Stølen. Refining UML interac-
tions with underspecification and nondeterminism. Technical Report 325. Extended and
revised version of: Refining UML interactions with underspecification and nondetermin-
ism. Nordic Journal of Computing, 12(2):157–188, 2005.

First of all, this paper contains a thorough discussion of the difference between potential
alternatives in the form of underspecification, and mandatory alternatives in the form of
inherent nondeterminism. Secondly, STAIRS is extended with data and guards. Also,
the notion of limited refinement is introduced, restricting the possibilities for increasing
the inherent nondeterminism required of the specified system. Again, the appendices
(not included in the journal-publication) contain the necessary proofs that transitivity and
monotonicity holds also for this extended version of STAIRS, and that the definitions
of guarded alternatives are consistent with the original definitions given for unguarded
alternatives.

My contribution: I was the main author, responsible for approximately 80% of the work.

Paper 5: Ragnhild Kobro Runde, Øystein Haugen, and Ketil Stølen. The pragmatics of
STAIRS. In Proc. Formal Methods for Components and Objects (FMCO 2005), volume
4111 of LNCS, pages 88–114. Springer, 2006.

This is a tutorial paper giving pragmatical guidelines for creating and refining interactions.
Also, the refinement relations of STAIRS are described in more detail.

My contribution: I was the main author, responsible for approximately 80% of the work.

Paper 6: Atle Refsdal, Ragnhild Kobro Runde, and Ketil Stølen. Underspecification, inherent
nondeterminism and probability in sequence diagrams. Technical Report 335. Extended
version of: Underspecification, inherent nondeterminism and probability in sequence
diagrams. In Proc. Formal Methods for Open Object-Based Distributed Systems (FMOODS
2006), volume 4037 of LNCS, pages 138–155. Springer, 2006.

This paper provides a further discussion of the different kinds of nondeterminism, and in
particular how to understand interactions where these are combined in various ways. In
addition to underspecification and inherent nondeterminism, we also discuss probabilistic
choice, which may be understood as a generalization of inherent nondeterminism. The
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report version includes an appendix containing proofs of claims made in the main body
of the paper. Probabilistic STAIRS first appeared in [RHS05], and is slightly revised in
this paper. In the setting of this thesis, it is interesting how probabilistic choice relates to
underspecification and inherent nondeterminism, but we are not interested in probabilities
as such. Hence, probabilities has not been a theme in the other parts of this introductory
part.

My contribution: One of two main authors. The paper was written in close collaboration,
and I was responsible for approximately 45% of the work.

Paper 7: Ragnhild Kobro Runde, Atle Refsdal and Ketil Stølen. Relating computer systems
to sequence diagrams with underspecification, inherent nondeterminism and probabilistic
choice. Part 1: underspecification and inherent nondeterminism. Technical Report 346.

In this paper we define how to understand computer systems in terms of the semantic
model of STAIRS, and give criteria for when a system is correct with respect to a given
interaction containing different kinds of nondeterminism. We discuss different refine-
ment relations and corresponding compliance relations for relating computer systems to
interactions, and we explore the mathematical properties of these relations. This is part
1 of the work, discussing underspecification and inherent nondeterminism. In part 2,
we discuss probabilistic choice. As this thesis focuses on underspecification and inherent
nondeterminism, and not on probabilities or probabilistic choice, this second part is not
included here.

My contribution: The paper was written in close collaboration, with me as the main author
responsible for approximately 65% of the work.

Paper 8: Ragnhild Kobro Runde. STAIRS case study: The BuddySync System. Technical
Report 345.

This is the last paper in the thesis, presenting a case study demonstrating the practical
usefulness of STAIRS. The paper also describes some weaknesses identified during the
work on the case study, and provides suggestions for improving these weaknesses.

My contribution: I was the sole author.
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Chapter 7

Discussion

This chapter contains a more detailed discussion of STAIRS than what has been possible within
the context of the attached papers. In section 7.1 we compare the original semantic model of
STAIRS as proposed in [HS03] to the one used in our work. In section 7.2 we evaluate STAIRS
with respect to the success criteria in section 3.3, while in section 7.3 we discuss to what extent
the results obtained for interaction diagrams may be generalized to other diagram types such as
UML state machine diagrams. Finally, in section 7.4 we discuss related work.

7.1 The Original Semantic Model of STAIRS

The semantic model proposed in [HS03] is slightly different from our semantic model as presen-
ted in section 5.2.2. In this section we first present the semantic model of [HS03] in sec-
tion 7.1.1. Our main motivation for using another semantic model comes from being able
to refine and implement the different xalt-operands separately. Hence, in section 7.1.2 we define
the refinement notion supplementing and narrowing for the semantic model in [HS03], while
section 7.1.3 contains a discussion of alternative definitions of xalt.

7.1.1 Semantic Model

The semantic model proposed in [HS03] differs from our semantic model as presented in sec-
tion 5.2.2 in that in [HS03] there are several positive trace-sets (corresponding to our interaction
obligations), but only one negative trace-set. This alternative semantic model is illustrated in
figure 7.1.

    (p1)
Positive

Negative (n)

Inconclusive (I)

(pm)
Positive

…

Figure 7.1: Illustrating the semantic model of [HS03]
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Formally, the semantics described in [HS03] is a pair (P, n), where P is at set {p1, . . . , pm}
of m sets of positive traces, while n is a set of negative traces. The inconclusive traces are those
that are neither in any of the positive trace-sets nor in the negative trace-set, i.e. all traces in
the set I = H \ (n ∪

⋃

i∈[1,m] pi). The intuition behind this semantic model is that a correct
implementation should be able to perform at least one trace from each of the positive trace-sets,
but none of the negative traces.

Using only one negative trace-set is intuitively appealing, since defining a trace as negative
would mean that the system should definitely not be able to perform that trace. In contrast, in
our semantic model a trace that is negative in one interaction obligation may still be positive or
inconclusive in another, and the trace may or may not be performed by the system.

7.1.2 Refinement

Refinement is only informally explained in [HS03], and not all special cases are treated. The
following formalization constitutes our interpretation of the informal exposition in [HS03].

Supplementing means to reduce the set of inconclusive traces by adding former inconclusive
traces to the negative trace-set, to one of the positive trace-sets, or as a new positive trace-set.
Formally:

(P, n) s (P ′, n′)
def
= n ⊆ n′ ∧ n′ \ n ⊆ I (7.1)

∧ ∀p ∈ P : ∃p′ ∈ P ′ : p ⊆ p′ ∧ p′ \ p ⊆ I

Narrowing means reducing underspecification by reducing one or more of the positive trace-
sets without making any of them empty. If, as a result of this, a former positive trace is no longer
in any of the positive trace-sets, the trace should be included in the negative trace-set. Formally:

(P, n) n (P ′, n′)
def
= n′ = n ∪ (

⋃

pi∈P

pi \
⋃

p′
i
∈P ′

p′i) (7.2)

∧ ∀p ∈ P : ∃p′ ∈ P ′ : p′ ⊆ p ∧ p′ 6= ∅

One problem with these refinement definitions is that combining supplementing and nar-
rowing is not transitive with respect to the proposed notion of compliance. As an example, let
t1 and t2 be two different, well-formed, traces and consider the three interactions d1, d2 and
d3 with semantics as follows:

[[ d1 ]] = ({{t1}}, ∅)
[[ d2 ]] = ({{t1, t2}}, ∅)
[[ d3 ]] = ({{t2}}, {t1})

It is straightforward to see that d3 is a narrowing refinement of d2, which is a supplementing
refinement of d1. A system performing only the trace t2 is in compliance with d3 (and d2), but
not d1 as it contains no trace from the positive trace-set {t1}.

This problem could be solved for instance by a more relaxed notion of compliance where
for each of the positive trace-sets, the system must perform either one of the positive traces or
an inconclusive trace. This notion would be closer to our compliance relation for interaction
obligations.
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7.1.3 Definition of xalt

We now turn to discussing possible definitions of xalt, using the semantic model described above.
From the explanations in [HS03], we get that the new set of positive trace-sets is the union of the
two sets given by each of its operands. However, it is not obvious what the new negative trace-set
should be. The two most obvious choices are using disjunction or union of the two operand sets.

In our chosen semantic model in section 5.2.2, consisting of a set of interaction obligations,
a trace is negative for a system only if it is negative in all interaction obligations. In the semantic
model of [HS03], this would correspond to using disjunction of the negative trace-sets of the
two operands:

[[ xalt [d1, d2] ]]
def
= (P1 ∪ P2, n1 ∩ n2) (7.3)

where we assume that [[ d1 ]] = (P1, n1) and [[ d2 ]] = (P2, n2).
However, this definition is not monotonic with respect to the refinement definitions (7.1)

and (7.2), meaning that d1 and d2 cannot be developed separately. One problem is that in the
original specification, a trace may be inconclusive in one operand and positive in the other. As a
simple example, consider the interaction

d = xalt [t1, alt [t2, t3]]

with semantics
[[ d ]] = ({{t1}, {t2, t3}}, ∅)

A valid narrowing refinement of the operand alt [t2, t3] is the interaction
alt [t2, refuse [t3]]. Replacing alt [t2, t3] with its refinement in the original interaction, we get
the interaction

d′ = xalt [t1, alt [t2, refuse [t3]]]

with semantics
[[ d′ ]] = ({{t1}, {t2}}, ∅)

However, d′ is not a valid refinement of d as the trace t3 has been moved from positive to
inconclusive which is not allowed by either supplementing or narrowing.

Another problem with definition (7.3) is that when refining each of the xalt-operands sep-
arately, the positive traces of the first operand may be supplemented as positive in the second
operand, and vice versa. Consider again the interaction d in the previous example. A valid
supplementing refinement of the operand alt [t2, t3] is the interaction alt [t1, alt [t2, t3]]. Substi-
tuting this into the original interaction, we get the interaction

d′′ = xalt [t1, alt [t1, alt [t2, t3]]]

with semantics
[[ d′′ ]] = ({{t1}, {t1, t2, t3}}, ∅)

Again, this is not a valid refinement of d. We also see that a system performing only the trace t1
is in compliance with d′′ but not with the original interaction d.

Using union instead of disjunction for the negative trace-set, xalt could be defined by:

[[ xalt [d1, d2] ]]
def
= (P1 ∪ P2, n1 ∪ n2) (7.4)
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This definition solves the monotonicity problems with respect to the first, but not the second
of the examples above. In fact, with the semantic model used in this section, it is not possible
to define xalt in a way that ensures monotonicity when supplementing each operand separately.
Instead, a possible solution is using different negative trace-sets for each positive trace-set, as with
our interaction obligations.

7.2 Evaluating STAIRS with Respect to the Success Criteria

In this section, we evaluate STAIRS with respect to each of the success criteria given in sec-
tion 3.3.

• The formal semantics should take into account the partiality of UML 2.x interactions.

This is achieved by the semantic model of STAIRS, categorizing behaviours as either pos-
itive, inconclusive or negative. As explained in section 5.2.2, one of the main principles
behind our formalization is that all traces not explicitly described as positive or negative in
a (sub-)interaction are inconclusive for that (sub-)interaction.

• The formal semantics should handle both positive and negative behaviour.

Again, this is achieved by the semantic model of STAIRS as described for the previous
success criteria.

• The formal semantics should handle both mandatory and potential behaviour.

Mandatory behaviour, also referred to as inherent nondeterminism, is specified using xalt,
and is reflected in the different interaction obligations in the semantic model. Potential
behaviour, or underspecification, is specified using alt (or through weak sequencing), and
is reflected in each interaction obligation having a set of positive behaviours.

• The formal semantics should include a notion of time.

Time is included by giving all events a timestamp in the form of a positive, real number
(see paper 2). All events in a trace must be ordered by time, but two events may happen
at the same time. Time constraints restrict the valid timestamps of one or more events
such that traces with valid timestamps are defined as positive, while traces with invalid
timestamps are defined as negative.

• The formal semantics should be compositional.

The semantics of an interaction is given in terms of the semantics of its sub-interactions,
and the operators used for composing these. All operators except assert are monotonic
with respect to general refinement, meaning that different sub-interactions may be de-
veloped separately. This is proved in papers 2, 4 and 7, which also contains monotonicity
proofs for the operators and refinement relations covered by each particular paper. For as-
sert, we have monotonicity in the special case of narrowing. As explained in paper 2, the
lack of monotonicity with respect to supplementing is not important, as assert is usually
used to state that all positive behaviours have been defined and that no more supplement-
ing is needed.
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• The formal semantics should be in accordance with the UML 2.x standard.

We believe that the formalization in STAIRS is faithful to the underlying ideas of UML
2.x, including the partial nature of interactions and using weak sequencing as the main
composition operator. However, it has not always been possible to follow the standard
in every respect. In particular, we have defined two different operators for negation as
explained in paper 3, extended the language with the xalt operator, and given a slightly
different interpretation of guarded alt in paper 5.

The UML 2.x standard is vague regarding how the different composition operators should
be understood with respect to negative behaviours. In this situation, we have tried to
follow the other principles given in section 5.2.2, and in particular that of monotonicity.

• The refinement relations should take into account the partiality of interactions.

All of the refinement relations in STAIRS acknowledges that an interaction usually does
not provide a complete description of the system. In particular, the notion of supplement-
ing may be used to define more traces as positive or negative. Also, the notion of general
refinement may be used to add more mandatory behaviours to the interaction.

• The refinement relations should handle both positive and negative behaviour.

As the semantic model of STAIRS includes both positive and negative behaviour, so does
the refinement relations. Within a single interaction obligation, negative behaviour is
interpreted as behaviour that must not be present in the system, while positive behaviour
is interpreted as behaviour that may be present.

• The refinement relations should handle both mandatory and potential behaviour.

Refinement of both mandatory and potential behaviour is handled by defining relations
for refining both individual interaction obligations and sets of interaction obligations (see
section 5.2.3). By narrowing, positive traces in an interaction obligation may be redefined
as negative, hence reducing the set of potential behaviours. General and limited refinement
requires that all mandatory behaviour specified in the original interaction must be present
also in the refinement.

• The refinement relations should capture the main refinement notions known from
classical formal methods.

Classical refinement in the sense of reducing underspecification is captured by the STAIRS
notion of narrowing. In addition, STAIRS includes the notion of supplementing, for
adding earlier inconclusive traces to the specification. Interface refinement is partially cap-
tured by the STAIRS notion of detailing, but including a more general notion of message
refinement in STAIRS would probably be useful.

• The refinement relations should be transitive.

All refinement relations are proved to be transitive, see papers 2, 4 and 7.

• The compliance relation between interactions and computer systems should be a
special case of refinement.
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The compliance relations in paper 7 are all special cases of refinement. With the exception
of restricted compliance, all compliance relations are special cases of the corresponding
refinement relations. In addition, it is proved that all systems that are in compliance with
a refinement will also be in compliance with the original interaction.

• The compliance relation between interactions and computer systems should be inde-
pendent of technology used for the computer system.

Technology independence is achieved by assuming that a computer system is given by its
set of traces, and then translating this trace-set into the semantics model of STAIRS.

• The methodology should be conservative, i.e. based on existing UML methodology.

Within the limits of this thesis, there has not been room for creating a thorough methodo-
logy based on STAIRS. What we have, is a number of pragmatic guidelines for creating and
refining UML 2.x interactions (see paper 5). In paper 8 we give some initial ideas of how
these may be used together with existing development methodologies such as e.g. RUP.

• The methodology should be useful without thorough knowledge of the formal defin-
itions.

The guidelines in paper 5 were proven useful in the case study in paper 8. However, they
are not complete, and more guidelines must be defined before the principles of STAIRS
may be applied to system development by people without knowledge of the formal defin-
itions.

7.3 Generalization of the Results

In our work, we have focused exclusively on UML 2.x interactions in the form of sequence
diagrams and interaction overview diagrams. This means that we have only studied semantics
and refinement with respect to dynamic behaviour, and not static structure. The static structure
diagrams of UML 2.x, such as class diagrams and object diagrams, are also partial descriptions
in the same manner as interactions, and the distinction between positive (i.e. possible or valid),
inconclusive and negative (i.e. impossible or invalid) may be useful also for such description
techniques. However, it is not common to talk about negation in this setting, and it is not
obvious how the results of STAIRS may be used for these diagram types.

The interaction diagrams of UML 2.x include also communication diagrams and timing dia-
grams. These have not been explicitly treated in our work, but it is straightforward to use these
diagram types within the context of STAIRS. As with sequence diagrams, communication dia-
grams specify interaction between objects. The difference between the two is that while sequence
diagrams focus on the ordering of events, communication diagrams focus on the relationships
between the objects. However, for the behavioural description, any communication diagram may
be translated into an equivalent sequence diagram. Similarly, timing diagrams are a special kind
of sequence diagrams, explicitly showing the time ticks and also state changes in the lifelines.

The main principles of STAIRS generalize nicely to other approaches for behavioural spe-
cification, both within and outside UML. The exact semantics must of course be defined in each
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case, but the basic semantic model consisting of several interaction obligations, each distinguish-
ing between positive, inconclusive and negative behaviour, should be applicable for a wide range
of languages. In particular, our results with respect to refinement and compliance are applicable
for other behavioural specifications as soon as the basic understanding of their semantics is ob-
tained. Usually, only a simpler notion of refinement is needed, as most behavioural description
techniques are seen as giving complete specifications where the set of inconclusive behaviour is
empty. In those cases, the most interesting contribution of STAIRS is the distinction between
mandatory and potential behaviour, and how this difference is treated in the semantic model and
by the refinement relations.

7.4 Related Work

In this section we discuss closely related work on UML 2.x interactions. For a general treatment
of related work, such as other kinds of sequence diagrams and work on the different kinds of
nondeterminism, we refer to chapter 4 and the sections on related work in the attached papers.

7.4.1 Harald Störrle: Trace Semantics of Interactions in UML 2.0

In [Stö04], Harald Störrle defines trace semantics for interactions, based on the UML 2.0 stand-
ard [OMG04]. The basic concepts are very similar to those in STAIRS, and the two approaches
mainly agree with respect to the definitions of positive behaviour. Neither approach treats extra
global combined fragments, but Störrle defines semantics for operators not covered by STAIRS,
including consider, ignore and variants of break and critical. Guards are not treated in [Stö04],
while time is treated in a manner very similar to that of STAIRS.

Positive behaviours are in [Stö04] interpreted as must, similar to our xalt operator and analog-
ous to negative behaviours being interpreted as must not (in both approaches). Underspecification
is not treated in [Stö04].

For negative behaviours, there are also interesting differences. STAIRS and [Stö04] mainly
agree on the definition of assert, where the only positive traces are the positive traces of the
operand. The difference between the two definitions is that if a trace is both positive and negative
in the operand, the trace will remain both positive and negative in STAIRS, whereas it becomes
only positive in [Stö04].

With respect to neg, Störrle investigates three alternative definitions, but neither of these cor-
responds to the STAIRS definitions of refuse and veto. For all of the alternatives in [Stö04], the
negative traces of neg are the positive traces of its operand (and not also the negative behaviours
as in STAIRS). The difference between the three alternatives is with respect to what constitutes
the positive behaviours. The first alternative in [Stö04], loose negate, is similar to our refuse
in that the set of positive behaviours are empty. With this definition, the negative traces of the
operand is “lost”, i.e. they become inconclusive. Therefore, a second alternative, strict negate, is
proposed for which all traces that are not negative in the operand are taken as positive (i.e. neg

is taken as the opposite of assert). The third alternative, flip negate, takes the negative traces of
the operand as positive, corresponding to negation in classical logic. This alternative seems to be
the one favoured by Störrle. Our reasons for not choosing this definition are given in paper 3.

[Stö04] also discusses some problems of combining neg with other operators. For instance,
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an interaction such as seq [d1, neg [d2]] intuitively means that the behaviours of d2 should not
follow the positive behaviours of d1. However, using the definitions in [Stö04], the only negative
behaviours of this interaction is the negative behaviours of d1 sequenced with the negative beha-
viours of d2. These problems lead Störrle to conclude that “maybe, the concept of negative traces
is not such a good idea after all”. We do not agree with this statement, and the formal definitions
in STAIRS do not have similar problems as the ones discussed in [Stö04].

For refinement, [Stö04] defines refinement of traces, refinement of interactions, and refine-
ment of time constraints. A single trace may be refined by adding new events to it, or replacing
coarse-grained events by sequences of fine-grained events. This may be seen as a generalization of
detailing refinement in STAIRS. For refining interactions, Störrle only considers a notion similar
to STAIRS supplementing, as there are no underspecification in the interactions. Finally, a time
constraint may be refined by narrowing the valid timestamps for the events constrained by it. In
STAIRS, this is captured by the general definition of narrowing.

7.4.2 María Victoria Cengarle and Alexander Knapp: UML 2.0 Interac-

tions — Semantics and Refinement

Another trace-based formalization of UML 2.0 interactions is the work by Cengarle and Knapp
in [CK04]. The operators consider and ignore are treated, but not break or critical as in [Stö04].
Extra global combined fragments are not treated, neither are time nor guards.

For the positive traces of an interaction, the semantics in [CK04] mainly coincides with that
in [Stö04] (and STAIRS), except that having several positive traces is interpreted as underspe-
cification, similar to alt in STAIRS. Also, the empty trace is taken as the only positive trace for
the interaction neg [d], similar to our veto operator.

For the negative traces of an interaction, there are several differences between STAIRS and
the approach in [CK04]. The definitions of assert are similar, but for negation, Cengarle and
Knapp takes only the positive traces of the operand as negative, similar to Störrle. For alt, a trace
is taken as negative only if it is negative in both operands.

Cengarle and Knapp pose an interesting question with respect to the use of negation in
specifications: Should a trace be negative if a prefix of it is specified as negative? Their answer
is essentially yes, proposing an even stronger approach where a trace is taken as negative as soon
as it has completed a negative sub-interaction. An advantage of this is that it allows for earlier
identification (or even prevention) of negative traces. With this approach, there will typically be
many traces that are negative for an interaction even though the traces are not explicitly described
in the diagram. In STAIRS, we follow our main principles as stated in section 5.2.2 and regard
these traces as inconclusive. For a further discussion of these alternative approaches, see the
discussion of related work in paper 3.

For Cengarle and Knapp, a valid implementation of an interaction must show at least one
positive trace and no negative traces. This is similar to the STAIRS notion of restricted compli-
ance (see paper 7), which is indeed inspired by the notion in [CK04].

The refinement notion in [CK04] is based on a model-theoretic view, and states simply that
one interaction is a refinement of another interaction if all valid implementations of the refine-
ment are also valid implementations of the original interaction. This implies that at least one
of the positive traces of the initial specification must remain positive during all of the develop-
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ment process, and that supplementing inconclusive traces as positive is not allowed (similar to
our notion of restricted refinement). In contrast to all of the refinement relations in STAIRS,
refinement in [CK04] allows positive traces to become inconclusive.

A major disadvantage with the refinement relation in [CK04] is that it does not give mono-
tonicity for all of the composition operators. In an attempt to remedy this, Cengarle and Knapp
define a restricted refinement notion, positive refinement, where the set of positive traces are kept
unchanged during refinement (i.e. the only possible refinement step is supplementing traces as
negative). This refinement notion gives monotonicity for all operators under the assumption that
all refinements are implementable and does not contain the same trace as both positive and neg-
ative. With this refinement notion, an implementation may still remove underspecification by
implementing only some of the positive traces, but refinement can no longer be used to resolve
this at the specification level.

7.4.3 Other Work on UML 2.x Interactions

Other recent work on UML 2.x interaction include [GS05], [EFM+05] and [HM06]. As these
deviate more from the UML 2.x standard, they are treated here with less detail than the two
approaches above.

[GS05] interprets positive and negative interactions as specifying liveness and safety prop-
erties, respectively. This is a much stronger interpretation than the traditional use of sequence
diagrams for illustrating example runs. Based on a large amount of transformation, [GS05] then
defines the semantics of interactions in the form of two Büchi automata, one for the positive and
one for the negative behaviour. Refinement is defined as language inclusion, and is monotonic
with respect to the most common composition operators.

[EFM+05] uses Petri Nets to give semantics to UML 2.x interactions. However, the approach
deviates from UML on important points. First of all, it is assumed that all possible behaviours
are explicitly described in the diagram (i.e. there are no inconclusive behaviours), meaning that
operators such as assert and neg are not defined as there is no need for specifying negative
behaviours. Also, in contrast to the UML 2.x standard, synchronization between all lifelines are
assumed at the beginning of each sub-interaction. Still, [EFM+05] is interesting as it includes
aspects of sequence diagrams not treated in most other formal approaches, including lost and
found messages, and the creation and destruction of lifelines. Data in sequence diagrams is also
covered, but not time. No notion of refinement is included in [EFM+05].

[HM06] argues that the assert and neg operators are insufficient for specifying required and
forbidden behaviours, and proposes Modal UML Sequence Diagrams (MUSD) as an extension
to UML 2.x sequence diagrams. Based on LSC ([DH01, HM03], see section 4.6), MUSD allows
sequence diagram elements to be specified as either hot (universal) or cold (existential). With this
approach, assert is interpreted as specifying that all of the events in the operand should be hot,
while neg is interpreted as if the condition false was added immediately after the last event(s) in
the operand. This interpretation of neg leads to the same approach as that proposed in [CK04],
where a trace is negative as soon as it has completely traversed a negative (sub-)interaction.
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Chapter 8

Future Work

As mentioned in chapter 1 this work has already been used as a basis for other work on UML 2.x
interactions including test case generation [LS06a], probabilistic sequence diagrams [RHS05,
RRS06] and for defining secure information flow [SS06]. Also, we have been involved in
work on extending sequence diagrams with time exceptions for handling violation of time con-
straints [HRH07].

This work may also be extended in several other directions, some of which are hinted at
in sections 7.2 and 7.3. One possible direction is continuing the work on providing a formal
semantics for UML 2.x interactions. Although we have covered what we believe is the most
commonly used parts of interactions, interesting aspects such as critical region and extra global
combined fragments are not treated, and their formalization is not entirely obvious. In section 3
we identified a need for new or improved UML tools based on a precise semantics for UML 2.x.
Providing a semantics for interactions is only the first step. Covering all of UML 2.x is a large and
complex work, which is currently being addressed by the UML 2 semantics project [BCD+07].

A more interesting direction is extending our work on refinement, both with respect to the
formal definitions and with respect to the pragmatic guidelines explaining them. Formally, we
believe that we have covered the interesting variations of behavioural refinement (i.e. supple-
menting, narrowing and restricted refinement), but more work is needed with respect to message
refinement. As a step towards defining more pragmatical guidelines for refinement, developing a
formal refinement calculus for STAIRS would be very useful. Also, guidelines could be developed
with respect to when the different refinement and compliance notions are most successfully used
in practical system development.

For relating different specifications of the same system there is also the notion of viewpoint
correspondences. For a simple notion of viewpoint consistency, we may use STAIRS and say that
two specifications are consistent if there exists a specification that is a valid refinement of both of
the original specifications. However, viewpoint correspondences involves more than just simple
consistency. We believe that STAIRS provides a useful basis for investigating these issues, but
much more work is needed here.

49
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