
UNIVERSITY OF OSLO
Department of Informatics

Hop-by-hop Flow
Control in Ethernet
Networks;
Implementation and
Simulationbased
Analysis of
Performance

Bergfrid Marie
Skaara

7th May 2007

Abstract

T he overall goal of this thesis is to evaluate the properties of Protocol
P in an Ethernet context. The organization, amount and management of
buffers in a switch are the most important network resource studied here.
The evaluation is done through simulationbased analysis using the J-Sim
network simulator. Specifically, this thesis looks at how Protocol P behaves
compared to IEEE 802.3x and to the no flow control scenario with respect
to performance (throughput and latency), backpressure, packetloss, dead-
locks and livelocks in the Gigabit Ethernet context. And, we have searched
for differences in control message overhead, buffer occupancy and bottle-
neck link utilization between Protocol P and IEEE 802.3x.

U sing a irregular spanning tree with 16 switches and 64 hosts, our find-
ings are very internally coherent, and show a very small or none signific-
ant difference between the two flow control schemes. We have shown that
protocol P in fact exhibits all the promised properties, with the limitation
of deadlocks to store-and-forward deadlocks. The surprisingly low vari-
ance when comparing the two flow control schemes are mainly attributed
to using the same network components, and in particular pause scheme,
buffer thresholds and link scheduling. We conclude that in the current Eth-
ernet context, protocol P does not give additional performance, and has the
drawback of higher buffer management cost.

II

0.1 Acknowledgments

I would like to thank my mentor Tor Skeie, and his assistant Svein-Arne
Reinemo, for guiding me through the work related to this master thesis.
Thanks to my fellow students who have inspired me and encouraged me
to keep going when times were rough and the days at the computer room
endless.

T hanks to Hung-Ying Tyan for advice on the J-Sim in general, and per-
mission to use illustrations from the documentation.

M ark Karol, thank you for being interested in my work on implementing
your protocol, for providing me with illustrations from your papers, and
for answering my implementation related questions.

I would like to thank my friends and family for being patient, under-
standing and supportive during my long time involvement with the uni-
versity. In particular; thank you Linda for being such a great friend, I miss
our small-chats in the Katina; thanks to Anne-Helen and Sveinar for push-
ing me through to the final end, your support has been invaluable; Pedro
.. you are one in a million, and the one spot I find peace when everything
else is rough, thank you!

Contents

0.1 Acknowledgments . II

1 Introduction 1

1.1 Research questions and focus 1

1.2 Theoretical framework: network, switches and protocols . . 2

1.2.1 A simple network model 2

1.2.2 Network protocols and the OSI reference model . . . 4

Data Link Layer . 6

1.2.3 Topologies . 7

1.2.4 Generic switch model 7

1.2.5 Performance . 9

1.3 Problem domain . 10

1.3.1 Ethernet . 11

MAC . 12

Full-duplex operation 13

Beyond 10Mbps . 13

1.3.2 Flow control . 14

Flow control and the OSI stack 15

Defining congestion and flow control 16

Purpose of flow control 17

Approaches to flow control 17

1.3.3 Deadlocks . 17

1.4 Problem specification . 18

1.4.1 IEEE 802.3x PAUSE flow control 18

1.4.2 Protocol P flow control 18

1.4.3 Ethernet in the SAN environment 19

1.4.4 Buffer layout and queuing 20

Classical input and output queuing 20

Head-of-line blocking 21

Shared queuing . 21

Virtual output queuing 21

Buffer management 21

1.5 Terminology . 21

III

IV CONTENTS

1.6 Outline . 24

2 Simulation as Research Method 25

2.1 Introduction . 25
2.1.1 Research qualities . 26

2.2 Network Simulation . 27
2.2.1 Abstraction level . 27
2.2.2 Workload parameters 28

Type of workload . 28
Traffic pattern . 29

2.2.3 Data collection . 29
Sampling . 30

2.2.4 Focus points . 30
2.2.5 Design issues . 31

2.3 Approaches to Simulator Design 32
2.3.1 Cycle-based . 32
2.3.2 Event-driven . 32

States . 33
2.4 Simulation Tools . 34

2.4.1 Selection criteria . 34
2.4.2 Considered alternatives 35

OPNET . 35
In-house alternatives 36
The Network Simulator (ns-2) 37
J-Sim . 37

2.5 J-Sim . 38
2.5.1 The Autonomous Component Architecture (ACA) . . 38

Motivation for ACA 38
ACA basic concepts 39
ACA implementation in Java 41

2.5.2 Abstract Network Model 43
Core Service Level (CSL) 43
INET implementation in Java 45

2.6 Terminology summary . 46

3 Switching, topologies, deadlocks and routing algorithms 47

3.1 Switching . 48
3.1.1 Circuit Switching . 48
3.1.2 Packet switching . 48
3.1.3 Virtual cut-through and wormhole switching 49

3.2 Topologies . 50
3.3 Bridge operation . 51
3.4 Deadlocks . 52

3.4.1 Prevention, recovery and avoidance 53

CONTENTS V

3.4.2 Routing deadlocks . 54
3.4.3 Store and forward deadlocks 54

3.5 Livelocks . 55
3.6 Routing algorithms and packet forwarding scheme 56

3.6.1 Spanning Tree . 56
3.6.2 up*/down* . 57
3.6.3 TBTP . 57

4 Congestion and flow control 58

4.1 Congestion - a resource sharing problem 59
4.1.1 Rate-mismatch and traffic aggregation 60
4.1.2 The relevance of buffer space 60
4.1.3 Processing power . 60
4.1.4 Policies that affect congestion 60

Policies related to switching and routing 62
Buffers and packet drop policy - milk or wine approach 63
Timing and delay . 63
Flow control policy . 63

4.2 A taxonomy for congestion control algorithms 63
4.2.1 Open loop control schemes 63
4.2.2 Closed loop control schemes 64

Implicit feedback . 65
Explicit feedback . 65

4.3 Control scheme properties . 66
4.3.1 Credit vs rate based schemes 66
4.3.2 Active vs passive schemes 66
4.3.3 Feedback . 67
4.3.4 Control point . 67

Scheme location in the protocol stack 67
End-to-end or hop-by-hop scheme 68
Source or router centric scheme 69

4.3.5 Conservation of packet principle 69
4.3.6 Protocol interaction . 70

4.4 Flow Control . 70
4.4.1 Congestion control or flow control? 71
4.4.2 Flow control symmetry 71
4.4.3 The effect of frame loss 72
4.4.4 Schemes that address buffer management 72
4.4.5 On/off hop-by-hop backpressured flow control . . . 73

4.5 IEEE802.3 MAC Control . 74
4.5.1 Architecture . 74
4.5.2 Frame format . 75
4.5.3 PAUSE function . 75

PAUSE frame semantics 76

VI CONTENTS

PAUSE processing . 76
4.5.4 Performance studies 77

Work by Wechta, Eberlain, Halsall et.al. 78
Addressing the link speed mismatch 82

4.6 Suggested alternatives/improvements 82
4.6.1 Mishra’s HBH rate congestion control 82
4.6.2 QoS extension to IEEE 802.3x 82
4.6.3 FLORAX . 84
4.6.4 RATE . 85
4.6.5 Selective backpressure 85

Simple back-pressure scheme 86
MAC Address Back-Pressure 88

4.7 Summary - congestion and flow control terms 89

5 Protocol P 91

5.1 Motivation for a new protocol 91
5.2 Overview of the protocol . 92

5.2.1 Assumptions . 92
5.2.2 Overview . 93

Links . 93
Scheduling algorithm Sl 94
Avoiding packet drops 94
Maximum number of hops D 94
Transmit Feedback . 94
Packet Levels . 95
Interaction of the elements of P 95

5.3 Eligibility and level assignment 96
5.3.1 The Transmit Eligibility Rule 96
5.3.2 The Level Assignment Rules 97

Protocol designers’ observations regarding the rules . 99
5.4 Switch Model and Buffer Management 99

5.4.1 Switch Model . 99
5.4.2 Buffer Layout . 101

5.5 Theoretical Proof . 104
5.6 Extensions and variations to the protocol 106

5.6.1 Protocol P coexisting IEEE802.3x 107
5.6.2 Non-zero propagation delays 109
5.6.3 Variations on forwarding and routing 111

Compatibility with adaptive routing 111
Packet forwarding considerations 112

5.6.4 Other variations . 113

6 Implementation and Simulation Scenarios 116

6.1 Network interface operation 116

CONTENTS VII

6.1.1 Host node . 119
6.1.2 Switch node . 119
6.1.3 Queuing and processing of arriving frames 119

6.2 Our contributions to the J-Sim component hierarchy 122
6.2.1 Ethernet frame and packet modifier 122

6.3 IEEE 802.3x implementation issues 124
6.3.1 PAUSE timing . 124
6.3.2 Selecting values for pause_time 124
6.3.3 Flow control responsiveness and buffer requirements 125
6.3.4 Selecting threshold values for PAUSE actions 126
6.3.5 Parsing IEEE 802.3x 126

6.4 Protocol P implementation . 128
6.4.1 Parsing protocol P (received control frame) 128
6.4.2 Incoming interface operation (received data) 130
6.4.3 Partitioning the buffer pool 130
6.4.4 Managing queues . 131

Enque and deque behavior 133
6.4.5 Outgoing interface operation 133

6.5 Topologies and routing algorithms 133
6.6 Workload parameters . 135

6.6.1 Protocol stack issues 135
6.6.2 Traffic generator . 136
6.6.3 Link speed and injection rate 136
6.6.4 Source-destination pairs and address distribution . . 136

6.7 Setting up simulation with J-Sim and Tcl 137
6.7.1 Datarate parameters 137
6.7.2 Ethernet constants . 137
6.7.3 Automatic builders . 138
6.7.4 Bash and Tcl scripts . 138

7 Analysis 139

7.1 Performance measurements 139
7.2 Data collection . 140

7.2.1 Running the simulations 140
7.2.2 PStatCollector . 140
7.2.3 Dumping results . 141
7.2.4 Introduction to plots 141

7.3 Presentation of results . 142
7.4 Discussion . 149

7.4.1 Comparing the flow control scenarios 149
7.4.2 Complexity of buffer management 151
7.4.3 Topology and routing 152
7.4.4 Sources of errors . 153
7.4.5 Memory challenges for simulations 154

VIII CONTENTS

8 Conclusion 155

8.1 Conclusion . 155
8.2 Future Work . 156

Appendices 157

A Source code: Queues 157

A.1 BufferBudgetDropTailQueue 157
A.2 BufferBudgetCounter . 164
A.3 LevelTable . 170
A.4 LevelQElement . 172
A.5 VSFIFOLevelQueue . 173

B Tcl scripts and functions 183

B.1 Template script for main scenario 183
B.2 Utility Tcl scripts . 186

List of Figures

1.1 Simplistic network model with two devices connected by a
medium cloud . 3

1.2 The OSI Reference Model . 5

1.3 Generic Switch Model, here shown with 4 input and 4 output
channels in addition to single injection and ejection channel.
LC=link controller . 8

1.4 Classic Ethernet shared-medium layout. 5 devices are here
connected to a single chared channel 11

1.5 Ethernet Frame Format, FCS = Frame Check Sequence 13

1.6 LAN micro segmentation. 7 devices are here connected by
separate channels to a LAN switch 14

1.7 Queuing techniques . 20

2.1 OO class relationship . 38

2.2 Three components and the contracts they are bound to. Thick
lines between the contracts indicate the contracts are matched
to each other. 39

2.3 Analogy between an IC chip and a component 40

2.4 Encapsulation of the three-component system in 2.2 40

2.5 How the runtime handles data delivery 42

2.6 The internal structure of an INET node 43

2.7 The decomposition of the core service layer 44

2.8 A possible module stack using the abstract network model . 45

2.9 The class pyramid in J-Sim . 46

3.1 Network loop scenario, nodes A-D form a cycle 51

4.1 Rate mismatch . 60

4.2 Link aggregation . 61

4.3 Memory problems leading to packet discarding in the cases
to little and too much memory 61

4.4 Taxonomy for congestion control algorithms 64

IX

X LIST OF FIGURES

4.5 Control points, difference between end-to-end, hop-by-hop
and access flow control . 68

4.6 MAC Control architecture . 75

4.7 Interaction, 3-stage topology 79

4.8 Interaction, 2-stage topology 80

4.9 LAN configuration with micro segmentation 81

4.10 QoS extension . 83

4.11 Link Speed mismatch . 87

4.12 Noureddine Topology3 . 87

4.13 Noureddine Topology2 . 88

4.14 Noureddine Topology5 . 88

4.15 Noureddine Topology6 . 89

5.1 Protocol P: link from X to R 93

5.2 Protocol P: generic switch model 100

5.3 Budget allocations of link l ’s receiving queue 102

5.4 Buffer management parameters - l ’s receiving queue 103

5.5 Protocol P with adaptive routing 111

6.1 Description of flow chart elements 117

6.2 Host node with single network interface, droptail queue, packet
dispatcher with identification service, and components re-
lated to workload and framing. 118

6.3 Switch node with 2 network interfaces, level table and packet
dispatcher with identification and routing services 120

6.4 Processing of an arriving frame at the in-port of a network
interface (host or switch) . 121

6.5 Buffer thresholds with high/low water mark 127

6.6 Parsing IEEE 802.3x: the on/off state in the interface is toggled
based on pause time in the received control frame. 128

6.7 Parsing control frames of protocol P . F = frame, TF = trans-
mit feedback . 129

6.8 BB check . 132

6.9 Dequeue . 134

7.1 Throughput for a single topology for each flow control mode 142

7.2 Latency for a single topology for each flow control mode . . 143

7.3 Variation in throughput without flow control 143

7.4 Variation in throughput using IEEE 802.3x flow control . . . 144

7.5 Variation in throughput using protocol P flow control 144

7.6 Variation in latency without flow control 145

7.7 Variation in latency using IEEE 802.3x flow control 146

7.8 Variation in latency using protocol P flow control 146

LIST OF FIGURES XI

7.9 Sent, received and dropped frames in the absence of flow
control . 147

7.10 Throughput for flow control schemes 148
7.11 Latency for flow control schemes 149

Chapter 1

Introduction

G iven the scenario of a long-term power blackout striking a city, chaos
resulting from lack of interaction, frustration of not being able to do a
wide variety of the normal tasks, and confusing feeling of isolation might
soon become evident. Computers and communication networks connect-
ing them are a vital cornerstone in today’s modern society. They come in
all sizes and shapes today; devices connecting home PCs to the Internet,
corporate and campus networks as well as systems designed to aid high
performance processing, to mention a few. In each case there is an end-
less competition for resources, and handling these disputes is a vital part of
most communication networks. Flow control applied in packet networks is
one technique aiming to regulate resources and manage congestion prone
networks:

No packets will be dropped inside a packet network, even when
congestion builds up, if congested nodes send back/-pressure
feedback to neighboring nodes, informing them of unavailabil-
ity of buffering capacity - stopping them from forwarding more
packets until enough buffer becomes available.[43]

1.1 Research questions and focus

O ur overall goal is to evaluate the properties of Protocol P in an Eth-
ernet context. The organization, amount and management of buffers in a
switch are the most important network resource studied in this thesis. The
following list states our specific research questions for this thesis:

1. What is the current state of congestion and flow control approaches
in general, and backpressured store and forward packet switched net-

1

2 CHAPTER 1. INTRODUCTION

works in particular?

2. How does Protocol P behave compared to IEEE 802.3x and to the
no flow control scenario with respect to performance (throughput
and latency), backpressure, packetloss, deadlocks and livelocks in the
Gigabit Ethernet context?

3. Are there any differences in control message overhead, buffer occu-
pancy and bottleneck link utilization between Protocol P and IEEE 802.3x,
and if so, what characterize these differences.

4. To what extent do Protocol P apply to solving deadlocks in general,
or is it limited to handling store-and-forward deadlocks?

5. In what extent is Protocol P suited for SAN ?

T he first question will be solved through a literature review. Questions 2
and 3 require actual implementation and testing of the protocol. Question 4
is target for a theoretical discussion, in which we address some misconcep-
tions about Protocol P . The last research question touches the properties
of the interconnection network itself and evaluates the practical usage of
Protocol P .

T his chapter provides an introduction to the theoretical framework for
this thesis, as well as build an initial understanding of our research do-
main. At the end, you will find an overview of important concepts and
abbreviations.

1.2 Theoretical framework: network, switches and pro-

tocols

T his section precedes the problem domain of this thesis. Its intention is
to establish a theoretical framework for this work by defining key concepts
and models. In other words, this material is a necessary requirement for
describing and examining our research problems, but it is not part of our
research domain in its own right, hence the structural separation.

1.2.1 A simple network model

F or illustrating purposes we adopt a simplified network model that will
be further specified and adjusted when needed. In the purest form, a net-

1.2. THEORETICAL FRAMEWORK: NETWORK, SWITCHES AND PROTOCOLS3

Dev.2Dev. 1
Medium

Figure 1.1: Simplistic network model with two devices connected by a me-
dium cloud

work consist of a physical transmission medium and at least two devices
capable of communicating over that medium, illustrated by figure 1.1.

A device commonly reside inside a network node (node for short), and in
the following we use this term as a general concept including the transmis-
sion interface device. Likewise, the medium cloud connecting the nodes
will be referred to as an interconnection network (network for short). This
network is either a broadcast network, in which a single channel is shared
between all the connected nodes, or a point-to-point network in which indi-
vidual pairs of nodes are connected and data from one endpoint to another
might have to traverse one or more intermediate nodes enroute. The capab-
ilities of these intermediate nodes beyond the data forwarding ability, varies
greatly, and will be addressed later when applicable. Broadcast networks
are alternatively referred to as shared medium network.

N etworks can also be classified according to their scale [72]. For many
people scale means recognizing the difference between their office/campus
network, usually an Ethernet Local Area Network (LAN), and the world-
wide Internet. We will in this thesis in addition look at networks scaled
both between and below these two.

T he scale dimension can be summarized by ’X Area Network’, where the
X denotes the geographical magnitude of the network. Local Area Networks
(LANs) are well-known, but in order to be specific in our discussion, some
aspects must be clarified. Its size is restricted in the order of a few meters
to some kilometers [72, pg. 16]. Extending the campus boundaries, the

4 CHAPTER 1. INTRODUCTION

term LAN is replaced by Metropolitan Area Network (MAN) or Wide Area
Network (WAN) even further out. In the outer edge the Internet resides,
connecting computers worldwide. The shorter the range of the cabling, the
more common is the use of broadcast technology. Contrary, point-to-point
links dominate the layout of the Internet.

A System Area Network (SAN) may adopt existing LAN technologies as
well as network schemes targeted at SAN specifically. Among these are
Myrinet [7], Infiniband [3], Autonet [66], gigabit Ethernet (GE) and Ad-
vanced Switching Interconnect (ASI). [63] represent an overview of server
I/O demands and fabric types, and a comparison of gigabit Ethernet and
Myrinet is reported in [11].

B oth LAN and SAN are interconnection networks, the difference lies in
their scale, and partly in the way they are adopted in practical solutions.
A SAN tends to be denser with respect to number of nodes, and to have
physically shorter channels connecting them. Hence, the operations within
the nodes; the switching, routing, queuing and general protocol operations,
take up a large part of the end-to-end delay (latency) compared to the in-
terrouter delay determined by bandwidth and channel span.

1.2.2 Network protocols and the OSI reference model

Network terminology tends to follow the layered architectural
model[67, pg. 55]

I n this thesis we follow the OSI Reference Model [70] (shown in figure 1.2
as a theoretical framework for our discussion.

A (network) protocol is a set of rules regulating communication between
entities that exchange data, typical one per layer, in a system at a given
time: “a set of behavioral algorithms, message formats, and message se-
mantics used to support communications between entities across a net-
work” [35, pg. 676]. Together the list of protocols make up a protocol stack.
The seven-layered monolithic reference model outlines the tasks of each
layer, however it is not a network architecture; a term that should only be
used when denoting both the set of layers and the corresponding proto-
cols [72, pg.28]. In other words, the reference model dictates what whereas
a protocol dictates how.

1.2. THEORETICAL FRAMEWORK: NETWORK, SWITCHES AND PROTOCOLS5

Presentation layer

Application layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

Packet

Frame

Bit

Figure 1.2: The OSI Reference Model

6 CHAPTER 1. INTRODUCTION

L ogically data is exchanged horizontally between peer A and peer B.
Physical the data traverses down the protocol stack of peer A, over some
form of medium, and up the protocol stack of peer B. As such, one of the
most important properties of a layer is to offer a well-defined interface,
defining "which primitive operations and services the lower layer makes
available to the upper one"[72, pg. 27].

D ata unit encapsulation is performed at each layer; protocol control in-
formation is added to guard the data passed by the above layer, over the
network to the counterpart layer at the receiving node. The raw data offered
is termed Service Data Unit (SDU), whereas the result of encapsulation is
Protocol Data Unit (PDU). The PDUs relevant for this thesis are frame (link
PDU) and packet (network PDU). When the layer is of minor importance,
the term ’packet’ may be used here in a general way to denote ’data unit’.

Data Link Layer

R esiding directly above the physical layer, the data link layer handles dir-
ect communication between network entities over some form of physical
medium. As such, the linklayer must support framing, addressing and er-
ror detection to fulfill the requirement of an interface. Hence it also deals
with transmission errors and controls the flow of data, the latter being the
main attention of this thesis.

C onceptually and physically, the data link layer is split into Logical Link
Control (LLC) which interfaces to the above (network) layer in an uniform
manner [72], and Medium Access Control (MAC) which is specific to the net-
work technology, and exchanges data directly with the physical layer [67].

T he layer specific functions the intermediate nodes of an interconnec-
tion network perform, gives them their designations. The data link layer
uses the term bridge whereas at the network layer it is referred to as router.
The term switch is however more widely used at the link layer. In fact,
a switch and a bridge are technically the same thing, only labeled differ-
ent of marketing reasons [67, pg. 150]. Moreover, a hub is an intermediate
node termed repeater if it blindly broadcasts a data unit on all its links,
whereas termed a (switching) hub if it performs forwarding based on ad-
dress lookup.

1.2. THEORETICAL FRAMEWORK: NETWORK, SWITCHES AND PROTOCOLS7

W e will in the following use the term switch for all layer 2 intermediate
devices unless the context requires us to be more specific with respect to
functionality.

1.2.3 Topologies

A topology is the description of the physical (or logical) layout or arrange-
ment of edge and intermediate nodes and channels in a network. In other
words, a topology is like a road-map. [35] identifies four network classes
using topology as the classification criteria: shared-medium, direct, indir-
ect and hybrid networks. Ethernet is in this scheme classified as a shared-
medium LAN, in which the arbitration strategy is a key feature [35].

T he shared-medium networks (1) coincide with the above mentioned broad-
cast networks. Point-to-point networks are in this scheme split into direct
(2) and indirect (3) networks. The difference lies in that the former con-
nects processing nodes directly, whilst the latter positions switches between
those processing nodes.

1.2.4 Generic switch model

T he components of a generic switch are commonly buffers, switching unit,
routing and arbitration unit, link controllers connected to input/output
ports, and processor interface [35] shown in figure 1.3. The type charac-
teristics of the switch, as well as the buffering technique(s) used depend on
how the above elements are organized in relation to each other.

T he switching unit, also known as switch fabric, connects inputs to out-
puts, and in order to reduce the delay across the unit, a fully connected
crossbar is commonly used [35]1.

T he routing and arbitration unit implements the routing algorithm (ex-
plained in chapter 3), chooses an output link for each arriving message.
The algorithm used at a sending node selecting the next packet to be sent
over the link, also known as scheduling algorithm, can base the choice on
factors like packets’ order of arrival, service priorities, service deadlines,
fairness considerations. If a scheduling algorithm is well-behaved, it means

1Current status is that the switching unit itself is designed as an interconnection network

8 CHAPTER 1. INTRODUCTION

LC LC

LC

LC

LC

LCLC

LC

LC

LC

Switch

Routing and
Arbitration

Injection / Ejection channel

Input channels
Output channels

Figure 1.3: Generic Switch Model, here shown with 4 input and 4 output
channels in addition to single injection and ejection channel. LC=link con-
troller

1.2. THEORETICAL FRAMEWORK: NETWORK, SWITCHES AND PROTOCOLS9

that no packet is continually ignored/neglected and hence not continually
bypassed2, as can be the case in a strict priority-based scheduling.

T he link controller is in charge of coordinating transmission of flow con-
trol units between two adjacent nodes. In this context flow control refers
to a synchronization protocol for information exchange between two ad-
jacent nodes [35]. The information may be transferred and managed in
units of varying size, for example Ethernet frames. However, a packet can
be broken down into smaller logical information units, flits (flow control
units), that denotes the smallest unit dealt with by the request/acknowledge
signaling [35]. In contrast, a phit is the physical unit encompassing the ac-
tual number of bits that can be parallel transferred in a single cycle on the
channel.

S witching techniques will be covered in detail in chapter 3. For now we
only note the distinction between packet switching, also known as store-
and-forward switching (SAF) in which an entire packet is received and buf-
fered before the forwarding operation starts, and pipelined cut-through based
switching in which header processing starts as soon as the header has ar-
rived not waiting for the entire packet to arrive. The majority of this thesis
deals with store-and-forward packet switching exclusively, and the switch
buffering techniques discussed below reflect this focus.

1.2.5 Performance

I n relation to performance evaluation of a network in general, and switches,
routers and links therein in particular, parameters like bandwidth, through-
put and delay are considered. The first parameter refers to the theoretical
maximum amount of traffic it is possible to get through the network per
time interval (second). In contrast, throughput is the physical measured
amount of data flow obtained, a fact that highlights the wish to reduce
delay and tune the load in order to keep the throughput as close to the
theoretical limit as possible.

T he delay parameter can be subdivided based on the location it arises
according to [35]. Routing delay denotes the lookup time required by the
switch to determine output link for an arriving packet (and in some cases
also to set the switch). Intrarouter delay is the switch internal propagation

2a situation referred to as livelock in [43]

10 CHAPTER 1. INTRODUCTION

delay whilst interrouter delay, is the propagation time introduced by phys-
ical links. Latency refers to the cumulative delay, both intrarouter and inter-
router between a source and destination node pair. We use these perform-
ance parameters in our simulation studies, but only as a basis for compar-
ing different protocols. The interested reader should refer to [14, 15] for a
theoretical network calculus.

I n many ways Quality of Service (QoS) is a measure of performance para-
meters, but while the latter is simply a quantitative description, QoS refers
more to what guarantees the network can (and do) make regarding those
parameters. We do not explicitely address QoS issues in thesis, except for
the cases in which this has been integrated in a PAUSE flow control scheme,
partially because priority protocols and flow control protocols conteract
each others actions. An overview of the diffserv and intserv schemes can
be found in [82].

1.3 Problem domain

I n this thesis we will review the field of data link layer flow control and
evaluate a proposed protocol for handling deadlock issues in interconnec-
tion / system area networks. The protocol is implemented into a simulation
environment, and run in a varying set of scenarios. Simulation results will
also be obtained from alternate existing protocols, and the data analyzed
and compared.

O ur attention will, in line with our previously stated questions, be fo-
cused at three research areas and their intersection. First, the IEEE 802 Eth-
ernet technology and standard, with emphasis on MAC issues. Details of
the physical medium and encoding techniques are beyond the scope of this
thesis. Second, the phenomenon of (network) congestion will be reviewed,
laying the foundation for congestion management and flow control (with
emphasis on the latter). Third, we address deadlocks and schemes de-
signed to resolve them. Network topology, packet forwarding technique
and routing algorithm are closely related to the above three areas, and are
included to enhance the understanding of our focus area. Because the pro-
posed protocol is, as will be explained in detail later, tightly connected
to buffer management schemes, buffer layout and queuing techniques in
switches may be viewed as a fourth research focus.

1.3. PROBLEM DOMAIN 11

Figure 1.4: Classic Ethernet shared-medium layout. 5 devices are here con-
nected to a single chared channel

T he rest of this section gives an introduction to Ethernet technology, flow
control and deadlocks. In the next section, we narrow this domain into a
problem specification including Ethernet in the SAN context, buffer layout
and queuing, and the IEEE 802.3x and Protocol P flow control schemes. The
chapter closes with a concept summary and an outline for the rest of this
thesis. We start our journey with the history of Ethernet.

1.3.1 Ethernet

T he first local area network designed is credited to Bob Metcalfe. How-
ever, the Ethernet technology, as he termed it in 1973 in his PhD “Packet
communication” [49] at Harvard was not a completely new idea. During
his studies at M.I.T. and Harvard, Metcalfe was exposed to the work of Nor-
man Abramson at the university of Hawaii. This ALOHANET used short-
range radios with separate frequencies for upstream and downstream trans-
mission [72]. ARPAnet, which later developed into the Internet, also con-
tributed to Ethernet with its packet switching concept.

T ogether with the colleague David Boggs, Metcalfe designed and imple-
mented the Ethernet in 1976 [48], and received patent in the following year
[50]. The network connected computers via a thick coaxial cable running
at a datarate of 2.94 Mbps [72]. Figure 1.4 shows a classic Ethernet network
layout. Media access control (MAC) was crucial, as was the ability to confirm
successful transmissions in this shared medium technology.

D EC, Intel and Xerox outlined the DIX standard in 1978 for a 10Mbps
Ethernet, which was to become the IEEE 802.3 in 1983 with a few minor

12 CHAPTER 1. INTRODUCTION

changes. Today the two standards coexist and can be told apart by having
separate value ranges for a header field in the frame. Ethernet has con-
tinued to evolve with higher datarates, improved cabling and more soph-
isticated media access / utilization techniques, such as the introduction of
switching and flow control.

Media Access Control

L et the term station denote a network node in an Ethernet. A Collision
(/Access) Domain is then the stations that compete for the resources in a
shared-media environment, i.e. the stations that might attempt to trans-
mit on the media possibly in the same or overlapping time interval(s). The
access protocol used in Ethernet is termed CSMA/CD: Carrier Sense Mul-
tiple Access (with) Collision Detection, and is commonly implemented by
the network adapter in hardware [59]. The operation of Ethernet MAC is
specified in IEEE 802.3, and a descriptive illustration of the transmit and
receive processes can be found in in [67, fig 1.8].

I n short, a devise having data ready for transmission checks the channel
(carrier sense), starts transmission if the medium is clear or defers if it is
busy. After a short time period known as inter frame gap the station may
start the next transmission unless a collision has been detected. A collision
is characterized by the bitstream from two or more stations meeting and
merging on the channel causing interference. A transmitting station knows
its own bit pattern and will hence by sensing the medium know when that
pattern is altered. To alert other stations and make sure everyone sees the
collision, a detected collision is emphasized by continuing transmission a
bit longer (jamming). When a collision has cooled off, the stations ready
to transmit uses a binary exponential backoff algorithm to randomize waiting
time before new access attempts to avoid subsequent collisions. The inter-
ested reader should refer to [72] for a description of the algorithm and an
analyze of the resulting channel efficiency.

D ue to the collision detection mechanism, the propagation time (in stand-
ard Ethernet) of the media places an upper bound on the physical length of
a channel. With higher datarates, the length has to be reduced proportion-
ally to preserve the ability to detect interfering signals. Moreover, the back-
off algorithm results in statistical randomness, implicating that the Ethernet
CSMA/CD is non-deterministic by nature. Both issues restrain the possible
applications of Ethernet, and measures have been taken to overcome these
limitations, creating new niches for Ethernet.

1.3. PROBLEM DOMAIN 13

Preamble Destination
Address

Source
Address Type Data FCS

8 6 26 46−1500 4Bytes

Figure 1.5: Ethernet Frame Format, FCS = Frame Check Sequence

D ata units in an Ethernet are called frames and include both the raw data
to transmit and some control information. The frame format is shown in
figure 1.5. The source and destination address fields are 48 bit unicast MAC
addresses identifying the communication endpoints.

Full-duplex operation and micro segmentation

I n a shared-medium environment like the CSMA/CD MAC it should be
obvious that a station can only transmit or receive at a given time, as doing
both would imply more than one frame being on the channel simultaneous,
and hence a collision is occurring. Two stations connected to the channel
can obtain bi-directional communication, but only by taking turns using the
channel. This is known as half-duplex. Recall that collisions are associated
with an access domain. If the transmit and receive processes were using
separate access domains, no collision would occur, and full-duplex mode
would be enabled. In fact, this is done today by applying dedicated media
in the form of point-to-point cabling replacing coaxial cable with twisted
pair or optical fiber, and applying switches creating dedicated LANs [67].

I n a switched Ethernet, each port of the switch marks the termination point
of a collision domain and input buffers are available at the MAC in each
port to ensure no send/receive conflicts. Micro segmentation as illustrated
in figure1.6 denotes the situation in which a single end station resides in
a collision domain terminated by a switch port [67]. Applying full duplex
links, the need for access control vanishes, as there will be no collisions.
One also ensures that each station has dedicated bandwidth toward the
switch, Note however that this resource might get restricted downstream
in the network if links are aggregated toward a common destination.

Beyond 10Mbps

E thernet was in 1995 standardized for 100Mbps operation, also known
as fast Ethernet, in the IEEE 802.3u supplement to the existing 802.3 stand-

14 CHAPTER 1. INTRODUCTION

LAN switch

Figure 1.6: LAN micro segmentation. 7 devices are here connected by sep-
arate channels to a LAN switch

ard for backward compatibility. In a way, this was just a stepping stone
for the gigabit Ethernet standard published as IEEE 802.3z three years later.
The 3z supports both full-duplex operation as in the switched LAN de-
scribed above, in which CSMA/CD is disabled, and half-duplex operation
still in need of the access algorithm. To overcome the severe physical ex-
tension limit required by the MAC operating at 1Gbps datarates, features
as carrier extension and frame bursting has been included for the half-duplex
mode[72]. In 2002 yet another factor 10 was added to the Ethernet fam-
ily by the IEEE 802.3ae specifying 10Gbps operation. Measurement on real
HW architecture (Intel) for this latest addition can be found in [31].

D ue to the shared property, Ethernet and other shared-medium networks
have an upper bound on legal amount of hosts to prevent bandwidth from
becoming a bottleneck. Moreover, Ethernet uses CSMA/CD as the arbitra-
tion mechanism and [35] notes the limited bandwidth and span as factors
restricting Ethernet from having a reasonably use in multiprocessors, eg.
they have serious scalability problem. But, recall our description of switched
Ethernet with dedicated LAN and gigabit datarate. With these features
changed, Ethernet is virtually no longer a shared-medium network and
operates as if it were an indirect irregular network.

1.3.2 Flow control

T he main focus of this thesis is flow control schemes for managing conges-
tion at the data link layer in a packet switched network. Congestion, as in ’over-

1.3. PROBLEM DOMAIN 15

crowding’ and ’clogging’, is a well known phenomenon from every day
life, bringing images of weekend traffic on the highways and city rush-
hours into mind. Whenever “resources are scare and highly in demand”[55],
congestion occur.

T he issues of congestion and flow control have been a hot potato in
the field of computer communications ever since researchers, lead by M.
Schwartz and L. Kleinrock, started working on controlling network packet
flow in the mid 1970s[55]. One of the most well-known and frequently cited
works is Congestion Avoidance and Control [36] by Van Jacobsen in 1988. The
advances in processing power, memory, and channel bandwidth increasing
the resource pool have not contributed to eliminate congestion phenomena,
and several myths about congestion have been discussed by Jain [37, 38].

I n the years proceeding the popularity of the Internet and growth of mul-
timedia traffic, this research field was rather lucid and surveys like [25] and
[37] cover the development. However, recent work is more diverse and
both improvements to existing strategies and new suggestions are made
to accommodate the changing traffic pattern and load in today’s network.
Multimedia and real time data place quality of service restrictions on the
performance. Satellite and other wireless transmission media are also gain-
ing popularity, and call for their own congestion management techniques.

S everal decades ago Pouzin envisioned parts of this development:

Research on traffic control in packet networks is still much needed,
although it may not mature in time to be applied. Indeed, new
technologies are likely to obsolete existing designs intended to
optimize the use of low bandwidth fixed circuits. High rate
broadcast media and fast digital switching will eventually place
flow control in a totally different context.[60]

Flow control and the OSI stack

T he concept of flow control can be applied at multiple layers of the OSI
stack, but is found in its purest form at the data link layer. The overall task
is to prevent data units from arriving at a node faster than they can be pro-
cessed (and buffered / forwarded) there, eg. avoid swamping a receiver.
This requires the source to know the capacity of the intended receiver in ad-
vance, or the receiver must inform about its situation [74]. Congestion can
be handled by network nodes dropping excessive packets (and relaying on

16 CHAPTER 1. INTRODUCTION

end-to-end protocols for loss recovery) or exchanging information in order
to avoid drops. In fact, the default switch behavior under congestion is to
drop packets [67].

Defining congestion and flow control

T he terms congestion control and flow control are sometimes used inter-
changeable in the literature, whilst some researchers make a clear distinc-
tion between the two. Unfortunately, this distinction is not uniform and
hence the same principle can be termed congestion control in one text and
flow control in another. The criteria for making this distinction is com-
monly based on either the layer at which the mechanism is applied, the
location in the network where the control is applied, or a combination of
the two.

F or now, let us settle on the following definition of congestion related to
performance:

Definition 1.1 Congestion occurs in packet networks when the demand exceeds
the availability of network resources leading to lower throughput and higher delays. [43,
pg. 923]

F urther, the main issue is managing congestion scenarios, and hence the
term ’congestion control’ might be viewed as the key term. On the other
hand, controlling the flow of data between (adjacent) network entities at
the data link layer is the core of our simulation study, and consequently the
term ’flow control’ might be more precise. We therefore chose to use the
latter as our key term, as well as adopt the former when it is relevant for
generality and compatibility with the literature.

F low control generally aim to reduce the flow of excess traffic, and we
adopt the following definition by Seifert as a starting point:

Definition 1.2 Flow control is “a mechanism that prevents a sender of traffic from
sending faster than the receiver is capable of receiving”.[67]

This implies some form of dialog between the communicating entities that
may allow or stop information propagation in the system [35].

1.3. PROBLEM DOMAIN 17

Purpose of flow control

A set of main functions of flow control proposed in [25] match the focus
and framework for this thesis well:

1. prevention of throughput degradation and efficiency loss
due to overload.

2. deadlock avoidance,

3. fair allocation of resources among competing users, and

4. speed matching between the network and its attached users.

Together, these functions contribute to limiting access of traffic to selected
sections of the network.

Approaches to flow control

A taxonomy for flow control will be presented in chapter 4 along with a
discussion on the relation between these terms. From an end user perspect-
ive, it is more convenient to view the nett perceived performance than the
yield of distinct layers. Layers interact, and intervention at one level can
affect performance at other levels. I therefore chose to present a broad pic-
ture of congestion and flow control, as it in the future might be relevant to
study how this work relates to higher layers.

B asic throttling tools available for implementation of flow control in-
clude stop-and-go signals, credits (quantifying scheme, e.g. ACK), rate
(timeslot allocation), delay (outstanding ACK), and class (traffic segrega-
tion) [60].

1.3.3 Deadlocks

D eadlocks are an interesting phenomenon in computing, and can be gen-
eralized into involving two roles; the actor and the resource. Whenever an
actor requests a resource, there is a potential danger of creating a situation
that leads to a deadlock. However it is not the request itself that is the prob-
lem. The lock surfaces not until an actor is granted access to a resource but
cannot move on until a second resource, which at that point is unavailable,
is granted. Hence the actor must wait, and meanwhile it blocks the first
resource for subsequent actors. Actors ruled only by 1’s and 0’s are far less
likely to give up waiting when they first have made a claim than humans.

18 CHAPTER 1. INTRODUCTION

L ivelock situations are related to deadlocks, but differ in that resources
are being moved between actors, however only in such a way the needs of
one of more actors are not fulfilled. For example, consider the following
scenarios: driving your car you get stuck in a traffic jam caused by power
blackout making the traffic lights useless , or you enter a roundabout, end
up in the inner lanes and find that you cannot reach the exit and have to
keep circling for some time. These scenarios correspond to a deadlock and
livelock situation respectively, however very simplified.

1.4 Problem specification

T his section specifies our research focus with finer granularity by intro-
ducing the IEEE 802.3x and Protocol P flow control schemes, moving Eth-
ernet into the SAN context and introducing buffer layout and queuing. The
subsequent section derive a list of concrete research questions based on this
problem specification.

1.4.1 IEEE 802.3x PAUSE flow control

I EEE 802.3x flow control, also known as MAC Control, is a generalized
architecture and protocol for “real-time control and manipulation of MAC
sublayer operation” defined in [69, clause 31]. For backward compatibility,
MAC Control is an optional capability in Ethernet, and at the present time,
MAC Control PAUSE operation described in [69, Annex 31A and 31B] is
the only available control function.

T he key feature is to monitor buffer usage in each switch and send pause
control frames to the upstream neighbor if congestion is building up. In
other words, IEEE 802.3x is a simple stop/start form of flow control for
single full duplex links. It performs control at each node along the path
of a data stream, with a sender and a receiver entity separated by a single
link as the network subset constituting the control universe. Because the
’at each node’-property these protocols fall into the hop-by-hop category for
flow control and result in the phenomenon backpressure. This approach is
presented in detail in chapter 4.

1.4.2 Protocol P flow control

T he overall operation of protocol P can be described as a selective back-
pressure mechanism. It is partially an enhancement of IEEE 802.3x flow

1.4. PROBLEM SPECIFICATION 19

control, and as such it exhibits the same properties of hop-by-hop and back-
pressure. P uses gigabit Ethernet and PAUSE signals as an example of a
well-known backpressured packet network. The technique can however be
applied to other network technologies, and hence to claim P to be “a mod-
ified version of PAUSE” is slightly misleading. In addition, this protocol
provides selective backpressure and includes an advanced buffer manage-
ment scheme that is claimed to prevent deadlocks and livelocks. These lat-
ter issues targets our specific focus within the area of congestion and flow
control. The Protocol P approach is presented in detail in chapter 5.

1.4.3 Ethernet in the SAN environment

T he purpose of this section is to restrict the network environment to the
focus of this thesis. First, it is an underlying assumption that unless other-
wise noted, presentation and discussion herein is based on a connectionless
network layer with no form of reservation protocol in use. This framework
is consistent with [67].

S econd, we restrict our focus to the 802.3 Ethernet MAC sublayer (of the
data link layer). This implies adhering to the IEEE specifications on issues
such as frame format and data relaying.

T hird, we direct our focus to the SAN context when it comes to scale and
application of interconnection networks. However, we do not impose SAN
as a strict limit due to the fact that allot of existing flow control research is
targeted at LANs. Transferring that research material uncritically into the
SAN context would be a flaw in our work. We therefore take the approach
to present relevant research within its original context, conduct our experi-
ments within a SAN context and then analyze and evaluate our findings.

T here is general consensus that determinism is an important requirement
in the SAN context along with QoS requirements and traffic prioritizing
options. The debate on whether Ethernet is suited as a SAN technology
primarily focus on if, and to what degree, Ethernet is deterministic. In 2002
this was a hot topic, and the core of dispute was on whether a switched
dedicated link configuration, removing the randomness of the access mech-
anism, was sufficient to make Ethernet deterministic. [83] evaluated buf-
fering delay and suggested a means of estimating the worst-case response
time. The IEEE 802.1p priority mechanism were studied in [68], finding
that the main delay is inside the network nodes (protocol stack), indicating
that it is in the end-nodes that may gain the most by introducing priority.

20 CHAPTER 1. INTRODUCTION

shared buf
N logical q

1

N

shared buf
N logical q

1

N

shared buf
N logical q

1

N

controller

IQ
OQ

VOQ SQ

VOQ / SQ IQ / SQ

1

N

1

N

1

N

backpressure

grant flow dontrol

gfc

Figure 1.7: Queuing techniques

Arguments were also made based on network calculus ([24]) and OPNET
simulations([40]).

1.4.4 Buffer layout and queuing

T his section moves the focus into the network nodes, and we include
two issues: organization of buffers (queues) within a switch, and a brief
introduction to buffer management.

Classical input and output queuing

A s previously mentioned, it can vary how the buffers are physically or-
ganized in a switch. This can be viewed as applying a temporal ordering
of switching and queuing for classic architectures [9]. In both cases there
is one buffer per input or output. Queuing before switching is called input
queuing (IQ), and has the weakness of Head-of-line (HOL) blocking limiting
the throughput. If however switching is done first, before buffering, we
have output queuing (OQ). In the latter case HOL is avoided, but complex-
ity and cost will limit the buffer capacity so that packet drop becomes a
problem. See figure 1.7 for illustration of the different techniques.

1.5. TERMINOLOGY 21

Head-of-line blocking

H ead-of-line blocking is illustrated at the top left of figure 1.7. Both input
ports have a packet destined for the exact same output port. One of these
packets must thus wait to be served. In the case of subsequent packets are
waiting behind the one that is temporarily blocked, and these are destined
for available output ports, we say that they are blocked by the packet sitting
at the head of the line, hence the name. This fenomenon is a result of many-
to-one traffic pattern[67].

Shared queuing

A range of improvements have been suggested to enhance these two clas-
sical switching modes; Shared queuing (SQ) reduces the probability of packet
loss by utilizing the available buffer capacity better. This is done by not
retaining separate buffers for separate queues, rather by using a shared re-
source until it is collectively exhausted. We can also combine IQ and SQ so
that packet loss in the output queue is reduced, just by holding back in the
IQ if the SQ is full.

Virtual output queuing

A t each input, Virtual output queuing (VOQ) uses a separate queue per
exit. This however requires a scheduling algorithm to choose which packet
to move across the switch next. Because of this pre-sorting of arriving pack-
ets, one packet can be moved across the switch to each exit in parallel, hence
the need for scheduling. VOQ can also be combined with SQ for even bet-
ter performance, by having SQ handle contention, eg. take care of the head
of each queue. In this case a decentralized scheduler is required at the in-
put ports. And even as this increases complexity, we have arrived at a very
robust switch where HOL is eliminated.

Buffer management

1.5 Terminology

T his section reviews the main concepts introduced here, clarifies the defin-
itions and also add some more concepts that will be central in the upcoming
parts of this thesis:

22 CHAPTER 1. INTRODUCTION

A switch is a device used in a computer network to interconnect parts
of that network and relay data between those parts. A Packet (switched)
network is a computer network interconnected by switches where the data
units being relayed are packets (or frames). The first bytes of each packet
contains information necessary for the relay operation. A way to ensure
that information sent is in fact received by the intended recipient is to add
some form of explicit or implicit acknowledgement (ack) notifying the sender
about successfull reception. In the absence of such an ack, the sender might
have to retransmit the information.

T he concept of Performance refers to a collection of concepts describing
both theoretical and actual capabilities of a network. The three most com-
monly used are bandwidth, throughput and delay: bandwidth is the theor-
etical maximum amount of traffic it is possible to get through the network
per time interval (second); throughput is the physical measured amount of
data flow obtained; delay refers to the time spent crossing some part of
the network, being it the lookup time inside a switch (routing delay), the
switch internal propagation (intrarouter delay) or the propagation time in-
troduced by physical links (interrouter delay). Latency refers to the cumu-
lative delay, both intrarouter and interrouter between a source and destina-
tion node pair. Round trip time (RTT) is the accumulated time for a message
to pass from a source to a destination and back again. Quality of Service is
about placing restrictions and guarantees upon these(and other) perform-
ance parameters.

T he phenomenon of Congestion “occurs in packet networks when the de-
mand exceeds the availability of network resources leading to lower through-
put and higher delays.” [43, pg. 923] Flow control is “a mechanism that
prevents a sender of traffic from sending faster than the receiver is capable
of receiving” [67].

T he Data Link Layer is the lowest level of the OSI reference model ex-
cept for the physical layer itself. This layer deals with transmission of data
across single communication links, and there is such only 2 network nodes
and the channel connecting them involved.

A topology is the description of the physical (or logical) layout or arrange-
ment of edge and intermediate nodes and channels in a network. With
respect to nodes along a path within that topology, downstream refers to
the direction data is flowing from a node, while upstream refers to the path

1.5. TERMINOLOGY 23

leading to a node. The analogy here is a river where you are located some-
where along its path and observe how the water is moving either towards
or away from you.

A n entity is said to be scalable (e.g. have good scalability) if there is a
reasonable relationship between its proportions. For example if you need
to rent only a single extra office room when hiring a new employee, you
have a scalable room allocation scheme, in contrast to if you had to get a
total new office locale or rent an additional floor in the building.

E thernet (IEEE802.3) is the most widespread LAN technology in usage.
Originally designed as a shared medium network, regulating the usage of
the medium was crucial. Collision (/access) domain refers to the stations that
compete for the resources in a shared-media environment, i.e. the stations
that might attempt to transmit on the media possibly in the same or over-
lapping time interval(s). MAC is thus an important part of Ethernet regu-
lating medium usage as well as identifying the communicating entities and
managing control information. Two stations connected to the channel can
obtain bi-directional communication, but only by taking turns using the
channel (half-duplex). By applying dedicated media in the form of point-
to-point cabling, and switches dedicated LANs are created enabling full-
duplex mode and resulting in switched Ethernet. Each port of the switch
marks the termination point of a collision domain and input buffers are
available at the MAC in each port to ensure no send/receive conflicts.

T he phenomenon of deadlock is an actor / resource situation in which
some resource is held by an actor and needed by some other actor, but
because these actors directly or indirectly wait on each other to release
the resource, neither of them can resume normal operation without some
strategy to break the lock. A livelock is a situation of unfairness in which
some actor is continously neglected (or redirected) while others are being
served.

T he flow control strategy Protocol P is basically an extension or add-on
to the PAUSE scheme defined in IEEE802.3x (z). Both perform control at
each node along the path of a data stream, with a sender and a receiver en-
tity separated by a single link as the network subset constituting the control
universe. Because the ’at each node’-property these protocols fall into the
hop-by-hop category for flow control and result in the phenomenon backpres-
sure.

24 CHAPTER 1. INTRODUCTION

1.6 Outline

T his introduction looked at the problem domain and -specification. Next
chapter 2 address the method used in this thesis: Network simulation as
research method and the specific simulator used (j-Sim). Thereafter we
present theoretical material relevant to our research questions, more spe-
cifically background and research in the fields of switching, routing al-
gorithms, deadlocks (chapter 3), congestion and flow control including the
IEEE 802.3 MAC Control (chapter 4).

B ased on the established foundation Protocol P is described in detail
in chapter 5, followed by simulation scenarios in chapter 6. We then in
chapter 7 give you our performance measurements and present the results
of our simulation studies. The thesis closes with a conclusion and topics
for future research.

C hapters 4 and 5 will answer our first research question. The remaining
questions are addressed in chapters 7 and 8.

Chapter 2

Simulation as Research Method

T his chapter addresses the research methodology and tool used to eval-
uate the proposed Protocol P . The material is presented in a three-step ap-
proach beginning with putting our methodology in a context and advoc-
ating the selection criteria, followed by describing our chosen simulation
tool, and closing with describing how the evaluated Protocol P is imple-
mented into that tool.

I n step one we first present our rationale for selecting simulation as our
main method, followed by network simulation in particular and approaches
to simulator design. Thereafter we discuss selection criteria for a specific
simulation tool along with the tools considered for this thesis.

2.1 Introduction

E valuating a network protocol can be done in several ways. Mathemat-
ical reasoning and proof was used by the inventors of Protocol P in [42, 43]
to show the correctness of the protocol. However, to study the behavior and
performance of the protocol and to be able to quantify this, a mathematical
model approach is not sufficient.

T he ideal situation would be to set up a laboratory or testbed with a real,
physical network in which Protocol P is an integrated part of the protocol
stack and network parameters such as topology, size, link speed, buffering
and so on can easily be manipulated. For most research communities this
is an utopia due to funding in general and hardware implementation cost
and time in particular.

25

26 CHAPTER 2. SIMULATION AS RESEARCH METHOD

E ven if cost was not a limiting factor, there is a great deal of research in
the network domain that is prohibitively complex to be carried out in real
life[19, 8]. For example, studying behavior and performance of the world-
wide Internet and experimenting with alternative protocols and configur-
ation therein, is something you simply cannot do in a live scenario. Over-
looking the consequences, this is still not an ideal research situation because
the researcher lacks control over the scenario.

F or these reasons simulation “is a critical tool in developing, testing, and
evaluating network protocols and architectures”[8]. Especially student re-
search projects lean toward simulation as being more or less the only feas-
ible option. This is also true for our case. Because Protocol P has not to our
knowledge, at the time of writing, been implemented in hardware, doing
this and manufacturing a sufficient amount of network interfaces with this
hardware to carry out the study in real life is not possible.

E mulation, like real life experiments, requires physical equipment where
the protocol examined is included [8]. Because we are dealing with a link-
layer network protocol usually found within network interfaces, it cannot
be implemented in software on top of real hardware since that would both
break the order of the protocol stack as well as duplicate linklayer function-
ality already found in the hardware used.

2.1.1 Research qualities

W hen evaluating a network protocol, we find that determinism and re-
producibility are important aspects that needs to be taken into account. De-
terminism here refers to a scenario being limited in extent when it comes to
time and space. In other words, determinism guarantees that a task started
will finish within a finite amount of time using a finite amount of resources.
Reproducibility here refers to being able to repeat a scenario in such a way
that given the same input, the same output will be generated. Determin-
ism is a prerequisite for reproducibility: if you cannot ensure that a task
will finish, you can most certainly not put restrictions on the outcome of
that task.

W e will later in section 2.2.5 look at some means of working toward these
qualities.

2.2. NETWORK SIMULATION 27

2.2 Network Simulation

The quality of simulation results is only as good as the method-
ology used to generate and measure these results.[17]

A fter choosing simulation as research method, we need to review some
issues that apply to network simulation in particular. Choosing the ab-
straction level for the simulation affects subsequent choices like workload
parameters, data collection and design issues. It will also propagate into
selecting simulator approach as well as the specific tool implementing that
approach. These latter issues are discussed in the following sections.

T hree major parts of any network simulation are links, nodes and load
[8]. In our case the focus lays at nodes with links only viewed as transport
tube exhibiting some properties, and load viewed as the research paramet-
ers varied in the experiments carried out. We return to load below in sec-
tion 2.2.2 after first looking at abstraction levels.

2.2.1 Abstraction level

N etwork simulation does not come without a cost. To carry out a simu-
lation you need computational resources. More specifically, available pro-
cessing power and memory place an upper limit on how resource demand-
ing your simulation can be [19]. The more details the simulator captures,
the more accurate will the results be. But because of limited computa-
tional resources and the timeframe researchers have to carry out their work,
trade-offs have to be made between accuracy and execution time [8, 19, 17].
In other words, we want to capture the aspects important to our research
problem and at the same time leave out unnecessary details.

F ollowing [17], we adopt the four level simulation hierarchy ranging
from overall network behavior to hardware implementation details. The
list is organized from least to most accuracy (and opposite, the most to
least abstraction).

Interface level Behavioral simulation capturing network interface and simple
packet delivery

Capacity level Captures resource restraints such as channel bandwidth,
buffer capacity and rates.

28 CHAPTER 2. SIMULATION AS RESEARCH METHOD

Flit level Captures detailed resource usage at a flit-by-flit basis and re-
quires detailed modeling of mechanisms such as buffering, switching
and arbitration.

Hardware level Captures micro-architecture design.

T he following paragraphs discuss our case in relation to the above hier-
archy. Our research problem dictates that the interface level will not provide
sufficient details to answer our questions. The hardware level on the other
edge provides too much information since we want to evaluate perform-
ance in general. As [8] points out, implementation variations “can have a
dramatic impact on the protocol’s behavior and performance”. We there-
fore do not want to guess on details that would most likely vary across
vendors anyway.

T his leaves us with the choice of capacity versus flit level simulation.
In line with our research questions, we want to capture detailed resource
usage when it comes to buffer organization, management and usage. On
the other hand, a flit-by-flit approach is a little bit over the edge in the
Ethernet context, since the unit of flow control is Ethernet frames. But, as
we shall see, examining individual parts of each frame is important at the
link layer, so we cannot treat frames as a black box.

F ollowing from this reasoning, we adopt a modified version of the four
level simulation hierarchy using a mild rewrite of the flit level to frame
level.

2.2.2 Workload parameters

G iven an interconnection network, protocol behavior can be studied by
manipulating aspects such as size and topology, routing function, switch
design, parameter tuning (bandwidth, buffer size) and network workload.
The latter can be defined as “the pattern of traffic (such as packets) that is
applied to the network terminals over time”[17]. A generic switch model
was presented in 1.2.4. This section will focus on workload in general. The
remaining aspects will be addressed in 6.

Type of workload

I n general there are two kinds of network workload to consider; application-
driven and synthetic[17]. Of these two, the former is the most accurate and

2.2. NETWORK SIMULATION 29

ideal, but it is also the one hardest to mimic. While synthetic workload
introduces the risk of making wrong estimates about workload, it gives
us more control over the research environment and aids us in generating
reproducible results.

R eproducibility can also be achieved through application-driven work-
loads if traces of client execution is recorded and then fed into the simulation[17].
But then again you face the problem of capturing the right traces and en-
suring that they are representative. For other researches to be able to re-
produce results, trace files must be distributed along with other simulation
parameters.

I n our case when not considering behavior of upper layer protocols, nor
interaction with those protocols, a simple synthetic workload with control-
lable parameters is more than sufficient to investigate our research ques-
tions.

Traffic pattern

H aving decided on a synthetic workload, we need to consider the length
of packets as well as the process of injecting them to the network. For sim-
plicity we choose to use standard frame sizes for Ethernet data and control
frames, as specified in section 4.5.1 and chapter 6.

T he injection process can be described as being periodic or not. In its
simple form, a packet is injected at a regular and fixed rate. A more ad-
vanced injection process for network simulations is the Bernuolli process[17],
which adds randomness to the rate. To model bursty traffic the Markov mod-
ulated process (MMP) can be used. For reproducibility we will use a fixed
rate in our simulations.

2.2.3 Data collection

D ata collection is an important part of our simulation study. This section
therefore addresses the topics of sampling, possible sources of errors and
focus points for data collection and analysis.

30 CHAPTER 2. SIMULATION AS RESEARCH METHOD

Sampling

S imulator warm-up refers to the initialization phase of a simulation run.
When a simulation is started it is usually done so with all resources unused[17].
In other words, there are no packets in transit, nor sitting in a buffer some-
where or being serviced by scheduler or examined by a routing lookup
process. Because of this, packets injected early in the simulation will not
have to compete for resources in the same way as packets injected at a later
time. They will probably be able to travel the network faster and smoother
than the subsequent traffic. For this reason, events in this period should be
omitted from the collected data.

T he warm-up phase is over when the simulated system has reached a
steady state, and this is when the main sampling begins. Measurements
taken here can among others follow the batch means method or the replication
method[17]. In the former the simulation is run over a long time but only
once, and the values are chucked together (batched) in order to analyze
patterns and variance across the chunks. In the latter approach several
shorter runs are done, and each run is then examined and compared, as the
batches were in the former method.

W e postpone choosing a sampling method until a specific simulation tool
is selected, because we expect the tool to put some restrictions on the avail-
able alternatives.

2.2.4 Focus points

T his section identifies our focus points when it comes to evaluating the
proposed protocol, P . These have already influenced our choice of abstrac-
tion level, and will also have implications for design issues and selecting a
specific simulation tool later.

T hroughput and latency are two obvious focus points when it comes to
measuring performance. These concepts were introduced in section 1.2.5.
Further, we want to check that the claims about Protocol P being lossless
and free of both deadlocks and livelocks hold. This is easily done by ob-
serving and comparing the count of packets entering and leaving the net-
work, and by verifying that all simulations terminate properly.

2.2. NETWORK SIMULATION 31

R elated to the flow control itself, we want to measure bottleneck link
utilization. And related to the buffer management scheme of Protocol P we
want to examine queue behavior. For these latter focus points, we need to
record detailed trace information during the simulation runs. We expect
this to demand great amounts of processing power as well as memory, and
for this reason we might have to create smaller scenarios than in the main
experiments to obtain this data.

2.2.5 Design issues

R andom number generation plays an important role for non-periodic in-
jection processes used for network workload. It is also used for scheduling
of other events inside network nodes. The numbers generated can be either
truly random or pseudo-random [17].

P seudo-random numbers are calculated based on a seed value, and this
process is deterministic in the way that given a specific seed, the sequence
of numbers generated will be identical, and thus deterministic. Network
simulators do in fact in most cases benefit from this pseudo-randomness.
By controlling the seed, researchers can repeat a particular simulation run
and hence obtain reproducibility for the results. Likewise, by varying the
seed randomization across runs can also be obtained. In other words, pseudo-
random number generators provide the best controlled research environ-
ment for network simulations.

A nother design issue we will have to address in this work is modeling
source queues for flow control[17]. If flow control slows down a source
node injecting packets into the network, the amount of packets waiting to
enter the network will pile up inside the node. Those packets will age,
meaning accumulate delay, while being held back at the source node. This
delay will affect the measured performance and following the analyzed
results will be biased by the packet injection strategy.

I n a real life scenario, not only the network interface, but also the higher-
level protocols and eventually client applications would be aware of the
hold-back and potentially be able to react to it. It is according to [17] de-
sired that this behavior is also mimicked by the synthetic injection process.
They suggests to inject a new packet only if it can be serviced without un-
desired delay. We adopt this approach in our study, and return to the im-
plementation details in chapter 6.

32 CHAPTER 2. SIMULATION AS RESEARCH METHOD

W e return to the topics of choosing concrete parameters and generating
scenarios in chapter 6 after having examined flow control and Protocol P in
details. Below we direct our attention to different kinds of simulators.

2.3 Approaches to Simulator Design

T his section gives a short overview of two simulation approaches iden-
tified by [17], with emphasis on the one selected for our study. The distin-
guishing feature is how they handle simulation time. Once we have selec-
ted a specific tool in section 2.4 we expand the material presented here to
show how it maps to the specific tool (in section 2.5).

2.3.1 Cycle-based

T he first approach is cycle-based simulation. In this approach a global clock
is used, the simulation elapses as an alternation of read and write phases
accessing global variables, and the critical invariant requires that all actions
within a phase can be rearranged without affecting the outcome[17].

W e view this approach as too restrictive and inflexible for our needs.
In particular, working with buffer management and flow control actions
we cannot fulfill the critical invariant. Multiple simultaneous requests for
buffer occupancy will (and should) yield different results depending on the
order they are serviced.

2.3.2 Event-driven

T he second approach to simulation is event-driven simulation. In this ap-
proach simulation is broken down into individual events that are processed
from a timestamp sorted queue[17]. At these event times system state vari-
ables may change[10].

L iterature review within our problem domain has revealed that this is the
far most applied approach in the simulation tools used. More precisely, the
discrete event-driven simulation approach is used. In this context, ’discrete’
refers to discrete points in time in contrast to continuously with time[21]
when it comes to when the model state changes.

2.3. APPROACHES TO SIMULATOR DESIGN 33

D iscrete event-driven simulation has in fact two phases just as the cycle-
based approach we turned down. The difference is that while the latter
alternated between reading and writing global state variables, the former
alternates between processing all scheduled entities at the current discrete
timepoint and updating the simulated clock [65]. These phases are referred
to as Entity Movement Phase (EMP) and Clock Update Phase (CUP) respect-
ively.

F ive states in which system variables can be in a discrete event model
are identified in [65]. We include this material because it is relevant to the
explanation of our concrete protocol implementation later.

States

T he five states are ’active’, ’ready’, ’time-delayed’, ’condition-delayed’
and ’dormant’[65]. Each state is associated with a list containing all sim-
ulation entities currently being in that state. The ’active’ state stands out
from the others by having only one entity in the list at any time during a
simulation run.

W hile the ’active’ state relates to the entity currently being processed, the
’ready’ state relates to the list of entities that are waiting to be processed
within the current EMP. The simulation will not progress to the CUP phase
until the ’ready’ list is empty.

T he two delayed states, time-delayed and condition-delayed, both relate
to lists with entities that can progress to the ready and active state later.
Entities in the former list are delayed for a known amount of time. In other
words those entities are scheduled with a future timestamp, and simply
waits for the time to elapse before moving to the ready state. Entities in
the latter list are delayed with respect to some condition, and not a spe-
cific amount of time. For example, a time-delay is the natural choice for
implementing interframe gap in a network interface. In the domain of flow
control, scheduling the sending the next frame after a network interface has
been paused is in contrast usually object to condition-delay.

T he dormant state and list is managed manually and is not associated
with automatic triggers. As we shall see for our chosen simulation tool,
this state can be used to handle a resource pool.

34 CHAPTER 2. SIMULATION AS RESEARCH METHOD

A further detailed description of discrete event-based simulation is bey-
ond the scope of this thesis. We will however include relevant information
below when the chosen simulation tool is described.

2.4 Simulation Tools

A fter looking at network simulation and the discrete event-driven ap-
proach in particular, we now turn to the task of selecting a specific sim-
ulation tool to use in our research. First we discuss our selection criteria,
followed by giving an overview of the main alternatives considered and
relate them to the criteria. The next section will present our chosen simula-
tion tool in detail.

2.4.1 Selection criteria

A vailability and implementation cost is perhaps two of the most import-
ant criteria for a student researcher1. With limited time and resources, sev-
eral tools will automatically be out of the scope. This holds for most of
the proprietary solutions since we do not have a budget to acquire licensed
software. Moreover, writing a quality simulator from scratch for the pur-
pose of this thesis is not within the timeframe given for this project. The
timeframe also places restrictions to the amount of modifications that can
be done to an existing simulator before it is ready to use in our experiments.

T he availability criteria brings us to the portability criteria. Campus
computer facilities do not easily support locking computer resources to
a specific student. The distributed system call for general resources be-
ing provided by the system, and particular resources stored as files in the
students home directory. This division also ensures that the simulation en-
vironment can be easily transferred to project supervisors as well as other
researchers. The latter property also supports reproducibility and enables
others to test our results.

T he implementation cost criteria leads to the expandability criteria. The
simulation tool must be expandable in order for us to implement and in-
tegrate the proposed Protocol P . This brings us to the last three criteria,
which are partly interleaved: Level of control, level of detail (abstraction)

1and in the industry in general

2.4. SIMULATION TOOLS 35

and point of focus. We need to have full control over the parts of the simu-
lator affecting the outcome of our research questions. In particular, the tool
must support frame level abstraction as described in section 2.2.1 above.
The tool must provide detailed information about what happens inside
the data link layer, and enable us to control switch layout, packet schedul-
ing, buffer management, routing and other network interface specific tasks.
Protocol stack, topology and other network parameters are also of interest,
but we do not put much emphasize on it since these are supported by most
network simulators by default.

O ne of the things that separate simulation tools is their point of focus. It
can be a particular protocol layer, a specific protocol or implementation of
such, multiprotocol interaction, a transmission technology and so on [19],
[8]. We need to make sure that the chosen tool in fact supports our link
layer focus and Ethernet standards.

L ast but not least is the usability criteria. It is important that the user
interface is easy to work with, preferably with a familiar programming lan-
guage to do the implementation. Development and simulation must also
be feasible given the available computer resources. In addition, graphical
interfaces should not be of such nature that for example extensive usage of
a pointing device leads to health problems.

2.4.2 Considered alternatives

F rom the previous discussion, our selection criteria can be summed up
as availability, implementation cost, portability, expandability, level of con-
trol, level of detail (abstraction), point of focus and usability. With these
criteria in mind we look at the main alternatives we considered for carry-
ing out our experiments; OPNET, in-house alternatives, NS and J-Sim.

OPNET

T he first considered tool was the OPNET Modeler, which is a graphical
based hierarchical editor. At different depths in the hierarchy it is possible
to specify network components in close to any topology. At the bottom is
finite state machines and programmed code, in for example C, that specify
how components in the above levels should behave in specific situations.
When the model has been defined, simulations can be run and data collec-
ted.

36 CHAPTER 2. SIMULATION AS RESEARCH METHOD

T he OPNET Modeler is proprietary software, but free licenses are avail-
able for academic usage. This tool comes with several included libraries
for different protocols and architectures, but we would be required to im-
plement a switch model suiting our needs as well as in detail implement
Protocol P . In other words, using the OPNET Modeler in our case requires
a tedious and time consuming implementation process. This contradicts
our implementation cost criteria.

A ll though the OPNET Modeler meets the availability criteria, it does not
score high when it comes to the portability criteria. Moving the work to say
a home computer is not trivial due to licensing. Nor is it trivial to publish
all parts of the simulation environment.

T esting of the OPNET Modeler revealed that it is hard to work from a
remote computer over a network connection, cause in this case the graph-
ical editor becomes intensely slow and unresponsive. The OPNET Modeler
may also bring health problems related to the intense usage of the point-
ing device. However, the compelling reason for turning down the OPNET
Modeler in this project was the anticipation of high implementation cost
and difficulties with developing models that meet all the requirements of
our research problem.

In-house alternatives

A fter turning down the OPNET Modeler, we looked at miscellaneous in-
house alternatives. Research communities in the field of interconnection
networks commonly have one or more dedicated simulators written loc-
ally. The distribution of such simulators are however often restricted to
the community it was written, hence the term in-house. This contradicts of
the availability and portability criteria, especially when it comes to ensure
reproducibility.

W ithin our research community (www.ifi.uio.no and www.simula.no)
we have such in-house tools. This alternative would reduce implement-
ation cost compared to doing a implementation from scratch for this pro-
ject. However, available documentation is scarce and it is anticipated that
it would require a non-neglectible amount of time to obtain a full under-
standing of the tools in order to be able to expand the code to meet the re-
quirements placed by our research topic and questions. We therefore turn
down this alternative for the same major reason as given for the OPNET
Modeler, and in addition due to the closed nature of the simulation tools.

2.4. SIMULATION TOOLS 37

The Network Simulator (ns-2)

M otivated by our critique of the previous alternatives based on the avail-
ability criteria, we turned our focus toward the Network Simulator (ns-
2)[75], which is freely available as well as well-known and popular within
research communities. This discrete event-based simulator is a part of the
VINT project[76] funded by DARPA and run as a collaboration involving
USC/ISI, Xerox PARC, LBNL, and UC Berkeley.

I nitial review of ns-2 revealed a good match for our availability and port-
ability criteria. Its widespread usage and popularity also speaks to its ad-
vantage. However, its point of focus turned out to be the deciding factor
ruling ns-2 unusable for our needs. Specifically, “Ns provides substantial
support for simulation of TCP, routing, and multicast protocols over wired
and wireless (local and satellite) networks.”[75]. In other words, this sim-
ulator does not provide the required data link layer granularity. It can at
most simulate a LAN by link layer protocols, MAC protocol and physical
channel[2], but this provides at best a interface level abstraction. Due to the
diverging points of focus, we do not see a way of incorporating Protocol P

with and obtaining our desired test results from the Network Simulator.

J-Sim

A fter turning down ns-2 and continuing our search we finally found
a simulation tool compatible with our selection criteria: J-Sim[86]. This
simulator is freely available, is widely used for network simulation in aca-
demic circles, particularly among students, comes with solid documenta-
tion, founded on well-known design principles from the autonomous com-
ponent programming model, written in the Java programming language
and is “a truly platform-neutral, extensible, and reusable environment” [86].
It has been shown in comparative experiments that J-Sim has better scalab-
ility than the ns-2 simulator[87].

J -Sim easily meets our criteria of availability, portability, expandability
and usability. The experimental setting can readily be shared simply by
exchanging Java files and setup scripts (written in Tcl). In addition, the
component architecture provides the levels of control and abstraction re-
quired. Trace mechanisms let us tap into the system and monitor focus
points relevant to our research.

38 CHAPTER 2. SIMULATION AS RESEARCH METHOD

Figure 2.1: OO class relationship

O ur implementation costs are limited to modifying existing components,
developing additional components for specific features and setting up con-
crete simulation scenarios. The component architecture greatly reduce the
task of tailoring the link layer of an existing simulator to our needs. As the
chosen simulation tool, J-Sim is described in detail below.

2.5 J-Sim

W e start the presentation of J-Sim by describing the autonomous com-
ponent architecture (ACA) emphasizing the design motivation for J-Sim,
its basic concepts and how this is implemented in Java. Second, we look at
the abstract network model used, in which the core service layer plays an
important part. The entire presentation is based on documentation found
at www.j-sim.org, the Ph.D. thesis of the software architecture designer[87]
and also own experiences with the tool. Illustrations herein are used with
the written consent of Hung-Ying Tyan.

2.5.1 The Autonomous Component Architecture (ACA)

Motivation for ACA

T he technical motivation for Hung-Ying Tyan, the software architecture
designer of J-Sim was the fact that software fails to achieve the same mod-
ularity as hardware, and the desire to make a network simulator that mim-
ics the principles of integrated circuit (IC) chip design. Such chips inter-
face with the surroundings exclusively by pins, not very different from the
way objects interact with each other in the object-oriented programming
paradigm.

2.5. J-SIM 39

Figure 2.2: Three components and the contracts they are bound to. Thick
lines between the contracts indicate the contracts are matched to each other.

T he relationship between two object-oriented classes, ExtendedMath and
BasicMath is shown in figure 2.1. The claim of J-Sim’s inventors is that
“software design cannot achieve the same level of modularity as IC design
[..] because the object-oriented programming paradigm is fundamentally
different from hardware design in component binding”[84]. The desired
relationship between the components of figure 2.1 above is obtained by
separating contract binding from component binding, as illustrated in fig-
ure 2.2.

T o understand the illustration of figure 2.2 we need to examine the key
concepts of ACA, including component and contract.

ACA basic concepts

C omponents and ports are the main concepts of ACA. Their relationship,
and the parallel to IC chips are shown in figure 2.3. Ports reside within
components and are connected through wiring. Causality of information
exchange at port or component level is regulated by contracts. We elaborate
on these concepts in the following paragraphs.

C omponent is the basic entity of ACA. As figure 2.3 shows, endpoints are
referred to as ports, corresponding to pins on the IC chip. Through encap-
sulation composite components can be built. We have found that viewing the
system in different degrees of encapsulation can be directly transferred to
the abstraction levels previously discussed. Figure 2.4 illustrates encapsu-
lation. Parent component denotes the enclosing component, whereas child
component(s) denotes the components that are encapsulated.

40 CHAPTER 2. SIMULATION AS RESEARCH METHOD

Figure 2.3: Analogy between an IC chip and a component

Figure 2.4: Encapsulation of the three-component system in 2.2

A s the name ’autonomous component architecture’ suggests, compon-
ents form a hierarchical system. The autonomous part of ACA comes from
component and contract binding. Getting there requires us to look a bit
closer at ports and wiring.

C omponents are connected to each other through their endpoints (ports)
more or less in the same way as cabling physically connects stations and
switches in an interconnection network. A port has both an input and an
output wire. Whether the other end of those wires are bound to the wires
of one or more other ports dictate if the port is able to send and / or receive
data.

W iring is done by connecting the output wire of one port to the input
wire of one of more other ports. Whether or not this joining is mutual dic-
tates if the connection is simplex or duplex. By combining different wiring
scenarios it is possible to get one-to-one, one-to-many or many-to-many
connections. In our concrete protocol implementation we will exploit this
to obtain the link layer architecture desired.

2.5. J-SIM 41

A s noted above, contracts regulate the causality of information exchange
at port or component level. Figure 2.2 showed contract initiators and react-
ors. A contract specifies how these fulfill a given task. A further detailed
explanation of ACA concepts is out of the scope of this thesis. Interested
readers should refer to [87] for a detailed description.

ACA implementation in Java

T he ACA was implemented in Java by the creators originally under the
name JavaSim, and later renamed to J-Sim due to trademark restrictions.
This section gives an overview of this implementation emphasizing on the
simulator engine. We also include showing how J-Sim fits with our selected
discrete event-driven approach.

J -Sim is “a real-time process-driven simulation technique that fits nat-
urally in ACA”[87, pg. 1]. Through describing the execution model of
ACA we show how this technique was designed extending the discrete-
time event-driven simulation approach.

I n the independence execution model data are handled in independent
execution contexts, giving the ACA its autonomous property[87]. In other
words, simultaneously-arrived data are also processed simultaneously and
independent. This calls for synchronization when accessing shared data.
In addition, J-Sim also provides a function-call execution model used for
send-receive operations among components. How we have complied to
these execution models is documented in 6.

J -Sim makes use of JVM Java Threads to provide independent execution
contexts[85]. For performance a background thread manager called Runtime
is used in the ACA implementation. Figure 2.5 illustrates how Runtime is
involved in delivering data between two components C1 and C2. Each
component represents a separate execution context. Consequently, it is the
responsibility of Runtime to create a new context for C2 when it hands of
the data.

R untime is the composite of two component classes, WorkerThread and
ACARuntime[84]. The former is a wrapper for the Java Thread class adding
features needed for the execution context models. The latter is used for
managing the WorkerThreads for the purpose of boosting performance.
Thread scheduling will not be an direct part of our work, but knowledge of

42 CHAPTER 2. SIMULATION AS RESEARCH METHOD

Figure 2.5: How the runtime handles data delivery

execution contexts and thread scheduling is important to ensure the integ-
rity of shared data such as buffers and flow control parameters.

Discrete-time event-driven simulation is actually a special case
of real-time process-driven simulation.[87, pg. 28]

C ompared to the discrete event-based approach, in which events hap-
pen in a sequence at discrete time points, the event execution of J-Sim sub-
stitutes the discrete time points with real time. This makes the network
simulator mimic real network scenarios closer[87].

T o accomplish this, the following three variables are used within ACAR-
untime: last_time_updated, time_scale and time_advances. These
variables maps the simulation time to real wall time and will be important
for us when specifying simulation parameters for the experiments.

T he current simulation time is calculated as the difference between cur-
rent wall time and last_time_updated divided at the sum of time_scale
and time_advances. [87] claim that by setting the ratio between real and
simulated time (time_scale) to infinity and limiting the total amount of
execution contexts to one, the simulation becomes “sequential [..] discrete-
time event-driven simulation”.

2.5. J-SIM 43

Figure 2.6: The internal structure of an INET node

2.5.2 Abstract Network Model

T his section introduces the abstract network model built on ACA. The
building blocks of this model was abstracted from the Internet, and this
background gave the model its name: Internetworking Simulation Platform
(INET)[85].

W e start by examining the core service layer, which will play an import-
ant role in our study. Thereafter we look at how INET is implemented in
Java, focusing on component classes and the class pyramid relevant for our
usage of this simulator.

Core Service Level (CSL)

T he core service layer (CSL) includes only the most fundamental services
like data forwarding/delivery, identity lookup and routing, and packet fil-
ter configuration. These services are defined as contracts. On top of this
layer protocols and applications are put, like illustrated in figure 2.6

T he data forwarding/delivery service handles exchanging data between
the CSL and the upper layer protocols. In other words this service dictates
how packets should move up and down the protocol stack. The identity
service maintains a list of addresses of other nodes in the network, and its
lookup and configuration contracts makes the identity service related to
the routing service.

44 CHAPTER 2. SIMULATION AS RESEARCH METHOD

Figure 2.7: The decomposition of the core service layer

T he route lookup contract of the routing service uses both source and
destination address as well as incoming interface to select the appropriate
outgoing interface. There is one routing table per node. We have not found
support for finer granularity route lookup in the INET documentation[85].

I n each node a collection of packet filters are available. These filters are
the extensible part of CSL[85]. Serially connected, a subset of the packet
filter pool act as outgoing and incoming interfaces for the node. In other
words, when a packet arrives at an incoming port on a node, it will pass
through one or more packet filters before it is handed off to the dispatcher.
This is illustrated in figure 2.7.

T he CSL also have an interface/neighboring service handling informa-
tion about the interfaces of the node and its adjacent neighbors. We will
treat this service as a black box, simply a feature of the simulation tool.

T he CSL is decomposed into components related to the services, as illus-
trated in figure 2.7. Note the packet dispatcher component and the series
of packet filters. These components, and modifications to them, will be our
main focus for this thesis.

2.5. J-SIM 45

Figure 2.8: A possible module stack using the abstract network model

I t should be noted that the sequence of packet filters “not necessarily
mirror the way in which the Internet protocol stack is layered”[85]. This
gives us the flexibility and tool to adopt the desired frame level abstraction
as described in 2.2.1 above.

T he abstract network model is laid out on top of ACA, and can be part of
a module stack as illustrated in figure 2.8. How components in this model
are implemented and organized is described in the following section.

INET implementation in Java

J -Sim includes an INET implementation in Java in which each compon-
ent corresponds to a Java class. These component classes together with
other J-Sim components form a class pyramid as illustrated in figure 2.9. It
should be noted that the internal structure of INET follows a client-server
model in which CSL is the server and the upper layer protocols act as
clients[87].

O ur focus lays within the NET and INET layer. After we have presented
the theoretical foundation leading up to our implementation of Protocol P

we return to this component class hierarchy to show exactly how our work
integrates into J-Sim.

46 CHAPTER 2. SIMULATION AS RESEARCH METHOD

Figure 2.9: The class pyramid in J-Sim

2.6 Terminology summary

T his section shortly recaptures the most important concepts from this
chapter. Frame level simulation abstraction captures detailed resource us-
age at a frame-by-frame basis and requires detailed modeling of mechan-
isms such as buffers, switching and arbitration. Injection process dictates
the traffic pattern and in general the workload that is put on the system.

S imulator design can be either cycle-based or event-driven. Based on
our selection criteria we arrived at J-Sim as the simulation tool to be used
for our experiments. This is an extended version of discrete event-driven
simulation referred to as real-time process-driven simulation. J-Sim uses
independent execution contexts and a real-time to simulation-time ratio to
accomplish this.

T he Autonomous Component Architecture makes it easy to modify and
extend J-Sim. The Core Service Layer is an important part of the abstract
network model and acts as an server to upper layer protocols and applica-
tions (clients).

Chapter 3

Switching, topologies,
deadlocks and routing
algorithms

D eadlocks are the main focus of this chapter. We aim to give a thorough
review on the issues relevant for our study, and in particular store and for-
ward deadlocks. These are related to both the switching technology and
the packet forwarding (routing algorithm) used, as well as the network to-
pology. The overall purpose is to establish a foundation for exploring one
of our research questions: To what extent do Protocol P apply to solving
deadlocks in general, or is it limited to handling store-and-forward dead-
locks? Detailed knowledge of Protocol P itself is also needed, and for that
reason we postpone conclusions to chapter 7.

R ecall from chapter 1 that a topology is the description of the physical (or
logical) layout or arrangement of edge and intermediate nodes and chan-
nels in a network. Moreover, the phenomenon of deadlock is an actor /
resource situation in which some resource is held by an actor and needed
by some other actor, and either direct or indirect these are connected in a
cycle in such a way that external intervention is needed to resolve it.

W e start with a quick overview of different switching techniques, em-
phasizing the store and forward approach, followed by elaborating on the
interconnection network classification introduced in 1.2.3, and considering
some issues related to bridge operation. With this necessary background
established, we turn our attention to deadlocks. In particular we will dis-
tinguish between routing deadlocks and store and forward deadlocks. A

47

48CHAPTER 3. SWITCHING, TOPOLOGIES, DEADLOCKS AND ROUTING ALGORITHMS

small section on livelocks is also included because it applies to one of the
properties of Protocol P to be studied.

T he last part of this chapter deals with routing algorithms, with em-
phasis on the spanning tree protocol and strategies that adopt some form
of that protocol. Our approach is to identify the key idea as well as critique
voiced in the literature, applicable to these strategies.

3.1 Switching

O ur first step in examining deadlocks is to provide a brief, and by no
means exhaustive, background on switching methods. Deadlock resolving
approaches defined for one swathing method is not necessarily applicable
to others. The presentation is based on [35].

3.1.1 Circuit Switching

I n circuit switching a physical path through the network from sender to
receiver is reserved by sending of a setup message containing destination
address and some control information. After this setup phase where the
source decided the complete path, data can be transmitted, and will always
follow the same route through the network from source to destination until
the line is removed either by break or explicit termination. Even if the setup
needs to be buffered at the nodes until the entire message has arrived, this
does not hold for the data flow, and hence this method does not require as
much buffer capacity at each node compared to packet switching. In short,
circuit switching is a fixed path, reservation based data flow approach. It
corresponds to opening a pipeline from location A to B with a reasonable
assurance that whatever you insert in one end will show up in the other
end, for example hooking up oil supply pipe from the well to the refinery.

3.1.2 Packet switching

I n contrast to the circuit switching approach, the first bytes of each packet
will in the packet switching method contain routing and control inform-
ation, eg. involves some overhead per packet transmitted in the network
compared to the pure payload. Each packet must here be stored completely
at each intermediate node before forwarded to the next. The buffering will
introduce delay proportional to the distance (number of hops) between
sender and receiver. Because of this trait, this method has been named Store

3.1. SWITCHING 49

and Forward (SAF) switching. In line with our above oil analogy, this corres-
ponds to pumping the oil into trucks labeled with the destination refinery
and providing the driver with a road map and route descriptions.

T he communication links will be fully utilized as long as there is data to
send, because multiple packets can be in transit at the same time. The total
buffer requirement can be reduced by using shared queuing (SQ) instead
of pure input queuing (IQ), pure output queuing (OQ) or input/output
queuing (IQ/OQ), but in either case the requirements will commonly ex-
ceed that of circuit switching. The store and forward approach consequently
tab into the field of buffer management. Solving problems like head-of-line
(HOL) blocking is an important part of this management. Another prob-
lem is store and forward deadlocks, which will be addressed later in this
chapter.

3.1.3 Virtual cut-through and wormhole switching

R ather than waiting until the whole packet has arrived before examin-
ation and forwarding, the packet header can be analyzed immediately at
reception so that forwarding can start as soon as a route has been selected
and the desired output port is free. Virtual cut-through (VCT) switching will
reduce the packet delay provided that there is enough capacity to handle
the arriving traffic flow. In cases of packet contention in the nodes, there
is however a need to buffer a few complete packets, as the transmission of
these units must be atomic1.

W ith wormhole switching packets are pipelined through the network, where
these are broken into smaller flow control units to reduce buffer require-
ments. In other words, wormhole switching also follows the cut-through
principle, but with a finer granularity than the VCT approach. A message
can hence stretch over multiple nodes, and complicates the mechanisms to
guarantee that deadlocks does not occur. In addition, different messages
cannot be intertwined over the same link at the same time, an ability that
calls for virtual channels to work. Since buffers usually are handled as FIFO
queues, there is a danger of HOL blocking.

B y letting a physical channel supporting multiple logical channels, or
virtual channels, it is still possible to avoid blocking by disconnecting phys-
ical channels from buffers and letting multiple messages share the same

1all-or-nothing approach to task

50CHAPTER 3. SWITCHING, TOPOLOGIES, DEADLOCKS AND ROUTING ALGORITHMS

link at the same time. In case of two such virtual channels multiplexed on
the same physical link, each of them will experience the situation as if they
were alone at the link, but at the cost of half the bandwidth available. Due
to this degrading of speed for each split into even more virtual channels,
the sum obtained increase in performance will be smaller. In addition, the
delay experienced by each packet increases, and, virtual links need dedic-
ated buffers which increases the cost and complexity of the switch.

3.2 Topologies

I nterconnection networks can, as we saw in 1.2.3, be classification as
shared-medium, direct, indirect and hybrid networks[35]. This section, as
does the original source, uses graph theory to further describe these net-
works.

L et us start by establishing some key graph theory concepts; node degree:
number of connections between a node and adjacent nodes, diameter: the
highest number of hops (or some other physical metrics) between a ran-
dom pair of nodes in the network. If all nodes are of identical degree, the
network is said to be regular. Equally, seen from a random node, if the
network resembles the same picture, the property symmetry holds.

T he perfect network would be a single crossbar switch with NxN ports
connection all N processing nodes of the network. There will always be a
balance between performance and cost, as to have all nodes being strictly
adjacent to every other node is a tad unfeasible to do in real life. Dir-
ect and indirect networks share the point-to-point connectivity aspect. In
the latter switches act as mediators between communication nodes. Net-
work adapters interface with the network, connecting nodes to ports at the
switches. Because processing and switching are done in separate nodes,
the distance/diameter parameter will be +2 in these networks, compared
to direct networks.

D irect networks include well-known topologies as mesh, torus and hy-
percube, but also various tree topologies fall herein. Indirect networks con-
sist of regular topologies, such as crossbar and Multistage Interconnections
Networks (MIN), and irregular topologies.

3.3. BRIDGE OPERATION 51

A

B

C

D

Figure 3.1: Network loop scenario, nodes A-D form a cycle

T he last of the four classes in [35] is Hybrid Networks, and hold net-
work topologies that deviate from or combine the schemes above. One
such network is the bridged shared LAN in which segments of shared-
medium LAN are connected in a hierarchical way. Further structuring into
a switched dedicated LAN places such a network in the indirect irregular
class. That is, if one does not argue that Ethernet should remain classified
as shared-medium network despite that the arbitration mechanism is dis-
abled.

F or this thesis we adopt the view of micro-segmented switched Ethernet
belonging to the indirect irregular class of interconnection networks. The
following section on bridge operation builds on this view.

3.3 Bridge operation

A bridge, better known as a layer 2 switch, relays frames between its
ports [67]. This relay is based on data link layer information, like the
48 bit unique network device address. In the following, we assume Eth-
ernet Store-and-Forward operation unless otherwise noted. Classical Eth-
ernet with a true shared broadcast medium employed filtering operation
on the destination address contained in arriving frames to prevent broad-
casting duplicates back in the shared medium it came from. Point-to-point
switched LANs are not prone to this duplicate creation, however without
proper filtering a frame can end up being ping-ponged back and forth, gen-
erating extra load, consuming resources and not getting closer to its destin-
ation.

52CHAPTER 3. SWITCHING, TOPOLOGIES, DEADLOCKS AND ROUTING ALGORITHMS

A s long as end nodes do not need to be aware of the intermediate switches,
those switches are said to be transparent [67]. Unicast frames are much less
dangerous in this scenario than multicast frames, as the latter tend to get
forwarded around forever if filtering /forwarding is malfunctioning. So
what happens if filtering and forwarding is ok, and the tables are sound
as well? Add a few links and you have a network loop scenario at your
hands, as shown in figure 3.1.

3.4 Deadlocks

buffer capacity is finite [..] A deadlock occurs when some pack-
ets cannot advance toward their destination because the buffers
requested by them are full[35, pg. 83].

A s stated in the chapter introduction, deadlock is an actor / resource
problem of direct or indirect mutual dependency. We have come to the
conclusion that the literature examined on deadlocks in interconnection
networks follow one of two approaches; the connectivity approach or the
buffer management approach. The former is characterized by emphasize on
routing algorithms and cycle breaking strategies [66, 64, 18, 58], while the
latter is characterized by store and forward scenarios, smart buffer alloc-
ation and flow control [6, 43, 28, 30, 47]. In other words, the connectivity
approach deals with routing deadlocks whereas the buffer management ap-
proach deals with store and forward deadlocks.

U nfortunately, there is also a gray area between these. For example [43,
pg. 923] is using performance as criteria and state that “backpressured net-
works that do not allow packet dropping [..] are susceptible to a condition
known as deadlock in which througput of the network or part of the net-
work goes to zero (i.e., no packets are transmitted)”.

R esearch reports and other sources do not necessarily explicitly state
which kind of deadlock they describe, and this constitutes a problem when
it comes to interpreting and using the material. We believe this has contrib-
uted to some misconceptions about the proposed Protocol P , a claim we
return to later.

W e start by outlining three well-known strategies for deadlock man-
agement: prevention, recovery and avoidance [35]. Thereafter we exam-

3.4. DEADLOCKS 53

ine routing deadlocks, and finally we explore store and forward dead-
locks. Livelocks are examined in the following section. Specific routing
algorithms are covered in section 3.6.

3.4.1 Prevention, recovery and avoidance

G enerally there are three ways of dealing with deadlocks, namely pre-
vention, recovery and avoidance. The distinguishing feature is how re-
sources are allocated. Prevention involves some form of resource allocation
prior to transmission so that a packet never get stranded enroute unable to
get served. This dedication however can lower overall performance, as the
requests rarely utilizes what s granted fully and for the whole duration of
the reservation[35]. It is like setting up roadblocks shielding the route from
downtown Manhattan (NY) to the airport Friday afternoon rush hour to
make sure a single car doesn’t get caught in traffic jam along the path.

A voidance on the other hand requests resources enroute, advancing one
step at the tine making sure not to make choices leading into dead ends.
In many ways this corresponds to not driving into a traffic light regulated
road junction until you are positive that you can clear the junction before
the lights turn red.

T he optimistic alternative is recovery, in which the behavior is to comply
to any request, keep an open eye and if (and when) a deadlock occurs,
reallocated resources so that the problem is solved. As this often include
dropping one of the offending packets, a property we intend to avoid in
our target system, recovery will not be pursued as an option.

O f the above three approaches, only the avoidance option is suitable for
our Ethernet context. The rationale for this is the fact that we are dealing
with data link layer protocols with only point-to-point connections, and
consequently the protocol cannot rely on end-to-end reservation schemes.
It should however be noted that [43] uses the term ’prevention’ although
Protocol P is designed to work on a hop-by-hop basis. While this initially
seems to contrast with the conceptual difference between ’prevention’ and
’avoidance’, it will be evident from the buffer management strategy of P de-
scribed in section 5.4 that classifying it as a preventive strategy is justified.
We now move on to routing deadlocks.

54CHAPTER 3. SWITCHING, TOPOLOGIES, DEADLOCKS AND ROUTING ALGORITHMS

3.4.2 Routing deadlocks

Definition 3.1 Deadlocks may appear if the routing algorithms are not carefully
designed.[18, 842].

B reaking channel dependencies seems to be the most used approach to
routing deadlocks in the literature: “When a packet is holding a channel,
and then it requests the use of another channel, there is a dependency
between those channels”[35, 90]. A condition for deadlock free routing was
presented in [18] by stating properties for the routing function including
the ability to deliver all packets and the non-existence of cyclic dependen-
cies.

T he Spanning Tree Protocol (STP) specified in IEEE 802.1d is one of the
most well-known algorithms for cycle-breaking. STP and successors such
as up*/down* routing[66] and Tree-Based Turn-Prohibition(TBTP) [58] are de-
scribed in section 3.6 below.

3.4.3 Store and forward deadlocks

Store-and-forward deadlock refers to the situation in which there
is a set of buffers, all of which hold messages waiting to be for-
warded, and these messages can be forwarded only to other buf-
fers of the set.[47]

T his mutual buffer dependency is inherent to the store-and-forward packet
switching scheme introduced earlier in this chapter. The surveyed mater-
ial is surprisingly coherent on this type of deadlocks, for example [28], [6]
and [30] use definitions very similar to the one quoted above. There is also
consensus in that buffer management is a reasonable approach to handling
the problem.

S tore and forward deadlocks can be direct or indirect[30]. The former
case is also known as head-on-collision due to the fact that it involves
packets stuck in buffers of adjacent nodes. Indirect SFD involve at least
three nodes that form a cycle. For the latter to occur, it is our view that
the network topology must contain cycle(s) and following that the routing
algorithm used is not deadlock-free. In other words, we choose to view dir-
ect SFD as true store and forward deadlocks, and indirect SFD as routing
deadlocks requiring dependency breaking measures.

3.5. LIVELOCKS 55

T o sum up some of the buffer strategies preceding Protocol P the journey
start with the work of K. D. Günther and the GMD-net protocol[62, 26, 47,
30]:

The problems of deadlocks and flow control are handled by sep-
arate but cooperating means: A structured buffer pool is used
against deadlocks whereas a two level dynamic window mech-
anism provides flow control.[62]

F or decades this strategy has matured and offspring can be found in for
example [13] and [29]. We refer interested readers to the literature, as a full
survey is out of the scope for this thesis. Protocol P and its advanced buffer
management scheme is presented in chapter 5.

A s we shall see when we examine flow control in detail in the next chapter,
there is also a potential risk of flow control deadlock in which a set of nodes
mutually halt each other. The specific flow control scheme will decide
whether this halt is permanent or temporal.

3.5 Livelocks

L ivelocks are a phenomenon related to deadlocks. Both describe a situ-
ation where some packets never reach their destination, however in the
livelock case, they are not solidly blocked, rather stuck on a trail in a round-
about without being allowed to get to an exit[35]. This can be the res-
ult of unfair scheduling, or even the bi-product of a deadlock prevention
strategy[43]. Observing this is typically done by looking at the through-
put and comparing the amount of injected traffic to the amount of drained
traffic (possibly accounting for packet drops).

W e sum up the topic of deadlocks and livelocks with the following defin-
itions from [43]:

Definition 3.2 A network is defined to be deadlock-free if, given an arbitrary
combination of packets sitting in its buffers, the delivery of each packet to its des-
tination is guaranteed within a finite time, provided that there are no new packet
arrivals to the network.

Definition 3.3 A network is defined to be livelock-free if, given an arbitrary
combination of packets sitting in its buffers and an arbitrary pattern of new ar-
rivals into the network, the delivery of each packet to its destination is guaranteed
within a finite time.

56CHAPTER 3. SWITCHING, TOPOLOGIES, DEADLOCKS AND ROUTING ALGORITHMS

3.6 Routing algorithms and packet forwarding scheme

A great portion of the deadlock handling mechanisms relate to routing al-
gorithms in some way, as indicated in section 3.4 above. A taxonomy using
number of destinations, routing decisions, implementation and adaptivity
(in that order) is presented in [35]. Routing algorithms are of secondary
interest in this thesis, and we therefore limit our focus to the classical span-
ning tree protocol, up*/down* routing and Tree-Based Turn-Prohibition.
We start by looking into the spanning tree protocol below.

3.6.1 Spanning Tree

I n contrast to the difficult task of managing a loop-free topology manu-
ally, a protocol is a better choice. LANs widely adopt a vendor independent
loop resolution protocol, known as the Spanning Tree Protocol(STP). Origin-
ating at DEC [82], this protocol was later standardized as IEEE802.1D 2. The
desired goal of a spanning tree is the properties of a natural biological tree:
a root sprouting into branches that divide into smaller branches and finally
end up in leaves. All arcs of the tree are connected direct or indirect to the
root, and no branch ever grows (joins) another branch, it just splits.

A LAN has exactly one root node, however it can be logical rather than
physical. Bridges are identified by a 64 bit unique identifier, which is the
concatenation of the MAC address of one of the bridge ports and a 16 bit
priority field enabling tree management. Similarly, ports are identified with
8bit port number plus a 8bit priority field. The spanning tree protocol use
these identifiers to determine the root and mark bridges and ports as des-
ignated3. Determining the root is done by an election algorithm, which
selects the lowest identifier.

I t is assumed that the network does not change more frequently than the
algorithm can stabilize the tree, and that it will not be constantly perform-
ing reconfigurations. The algorithm is simple, but has some severe limita-
tions; Because all active redundancy is prohibited, no load-sharing can oc-
cur and hence, frequently visited parts of the tree can become bottlenecks.
Sequential delivery and non-duplication are guaranteed by a standalone
LAN, and the single path , non-loop property of the STP maintains this in-
variant. The physical topology may offer more optimal paths between a
given source-destination pair sometimes, but the non-optimality is a trait

2The standard includes a definition of STP in C language
3responsible for forwarding data toward the root

3.6. ROUTING ALGORITHMS AND PACKET FORWARDING SCHEME57

we must accept to avoid loops. Being a natural congregation point, the root is
a severe bottleneck, unless topology is configured and resources allocated
to balance this congregation. In conclusion, the spanning tree protocol is a
link prohibition algorithm[58] meaning that entire links are pruned off with
respect to data transmission.

3.6.2 up*/down*

T he IEEE802.1d spanning tree has for the reasons given above frequently
been criticized in the literature, and more sophisticated versions have been
suggested[66, 64, 58].

C lassical up*/down* routing was presented in [66] for Autonet. The key
defining property is the assignment of direction to links based on a span-
ning tree over the given topology in such a way that channel dependencies
are broken. ’Up’ denotes the direction toward the root. Allowing for all
links to carry traffic, a simple routing rule has to be followed: “a legal route
must traverse zero or more links in ’up’ direction followed by zero or more
links in ’down’ direction”[64].

A lthough the up*/down* routing scheme has less restrictions than the
classical spanning tree, it is not optimal and excludes some of the minimal
paths[43, 64]. Measuring performance, [5] has found that throughput de-
pends on assigned direction of links.

C ycles are still broken in the up*/down* scheme, but in contrast to clas-
sical STP using link prohibition, this scheme is an (early) turn-prohibition[58]
scheme through its direction assignment and traversing rule. Especially
J. Duato has published allot of work on enhancements to the up*/down*
scheme. Recently, a more sophisticated turn-prohibition algorithm has been
introduced, and we close this chapter with an introduction to this.

3.6.3 TBTP

T he paper [58] describes the Tree-Based Turn-Prohiqbition algorithm. In
essence it exhibits the same characteristics as the up*/down* scheme. The
algorithms differ on which (and how many) turns to prohibit. TBTP is more
scalable, introduces fewer routing restrictions and guarantees that less than
1/2 of the turns in the network will be prohibited.

Chapter 4

Managing congestion - the art
of flow control mechanisms

R eturning to the classic analogy of cars, roads and traffic jam[25, 17],
flow control refers to traffic lights regulating road intersections. Moreover,
assuming an input queue based network node, buffer layout will then refer
to the number of lanes dedicated to traffic destined for the various exits of
the intersection. In its simplest form, an intersection has at least one lane
for all arriving traffic. And, upgrading our road to a highway, it is common
to differentiate between transit and on(off)-ramp traffic meaning that if you
have succeeded in getting in then you have some form of advantage over
those that have not.

T his chapter explores the field of congestion and flow control in terms of
a literature review. Recall the controversy from chapter 1 on the meaning
of these terms. The main purpose of this chapter is to address one of our
research questions, namely what is the current state of congestion and flow con-
trol approaches in general, and backpressured store and forward packet switched
networks in particular?

W e start off looking at congestion as a resource sharing problem, and
move on to examining a well-know taxonomy for congestion control al-
gorithms, followed by identifying different properties control schemes ex-
hibit. Unless specifically noted, this first part uses ’congestion’ as a general
term including flow control, and it is not coupled to any specific network
technology. In particular, the role of feedback (explicit or implicit inform-
ation sharing) is of special interest to us, as this plays an important role in
Protocol P .

58

4.1. CONGESTION - A RESOURCE SHARING PROBLEM 59

T he second part of this chapter is restricted to the data link layer, lead-
ing up to and exploring the IEEE 802.3 MAC Control in detail, including
performance, alternatives and improvements reported on this protocol. In
addition to answering our research question, this material lays the founda-
tion for the in-depth exploration of Protocol P in chapter (5).

4.1 Congestion - a resource sharing problem

C ongestion in computer networks is in essence a classic demand versus
supply dilemma. Controlling congestion dictates that these two entities are
kept in balance. In addition, a congestion control scheme must have low
overhead, be fair and responsive, work in bad environments and maximize
the overall performance [37].

Congestion control is concerned with allocation the resources
in a network such that the network can operate at an accept-
able performance level when the demand exceeds or is near the
capacity of the network resources. [37, pg. 24]

T he resources referred to here by Jain are channel bandwidth, buffer
space and processing power. A similar view on congestion is held by [16],
and emphasizes that it is the saturation of these network resources that
leads to the congestion state with performance degradation. Moreover, [35]
defines congestion as “the state where the offered network load approaches
or exceeds locally available resources designed to handle that load”.

N ot all communication networks are buffered, and depending on the
switching technique (see section 3.1) adopted, these three resources are
more or less relevant. Because our focus is on backpressured store-and-
forward packet networks, attention will mainly be given to buffer manage-
ment and hence the size and organization of queues are an important issue.

J ain [37] recognizes congestion as a dynamic problem which can be solved
by either increasing the resources or reducing the demand to balance the
equation. The algorithms relevant for our study fall into the latter category,
as the majority of the ones applied in packet switched store-and-forward
networks. Demand reduction schemes are basically service denial, service
degradation or scheduling based[37], and examples of these will be given
throughout this chapter.

60 CHAPTER 4. CONGESTION AND FLOW CONTROL

100Mbps 100Mbps 10Mbps

PROBLEM

Figure 4.1: Rate mismatch

4.1.1 Rate-mismatch and traffic aggregation

B andwidth itself is not a critical issue, but, when network links of differ-
ent capacities are combined in a topology creating rate-mismatch between
two subsequent links on a data path, or when the load and topology res-
ult in traffic aggregation at some point in the network, bandwidth becomes
an important factor of the resource puzzle and do often lead to congestion.
[72] points out that “the real problem is often a mismatch between parts of
the system”[pg. 385]

4.1.2 The relevance of buffer space

T he relevance and size of buffer space is intriguing and even frustrating.
Memory can be either too scarce or too plentiful. As seen in figure 4.3,
having to drop a packet before it enters memory due to lack of space, and
having to discard it after it has left memory because it has waited too long,
both result in the loss of a packet. As pointed out in [37], the latter can
be more harmful because resources in that case are consumed and then
wasted.

4.1.3 Processing power

P rocessing power being the third congestion related resource, might cre-
ate bottlenecks, and hence contribute to congestion, if not able to keep up
with packet arrivals. We will not pursue this parameter in this thesis.

4.1.4 Policies that affect congestion

V iewing congestion control as a resource sharing problem it is clear that
design choices affecting either the demand or supply of resources might

4.1. CONGESTION - A RESOURCE SHARING PROBLEM 61

100Mbps 100Mbps

PROBLEM

Figure 4.2: Link aggregation

No buffer

Timeout

b) too much memory

a) too little memory

Figure 4.3: Memory problems leading to packet discarding in the cases to
little and too much memory

62 CHAPTER 4. CONGESTION AND FLOW CONTROL

contribute to tip the weight scale toward or away from congestion. Table 4.1.4
presented in [37] and adopted by [72] summarize such contributing policies.

1. Network layer:

• Connection mechanism

• Packet queuing and service policy

• Packet drop policy

• Packet routing policy

• Lifetime control policy

2. Transport layer:

• Round-trip delay estimation algorithm

• Timeout algorithm

• Retransmission policy

• Out-of-order packet caching policy

• Acknowledgement policy

• Flow control policy

• Buffer management policy

3. Data link layer:

• Data link level retransmission policy

• Data link level queuing and service policy

• Data link level packet drop policy

• Data link level acknowledgement policy

• Data link level flow control policy

Policies related to switching and routing

T he distinction between connection-oriented and connectionless networks
have already been made in chapter 1, and the presence of a reservation pro-
tocol to limit access to the network and enforce that accepted data can and
will consume at most its allocated share of resources, is the key difference.
In Virtual Circuit (VC) networks it is common to adopt a admission policy
related to the reservation protocol [72]. Route selection and path splitting
were covered in chapter 3.

4.2. A TAXONOMY FOR CONGESTION CONTROL ALGORITHMS 63

Buffers and packet drop policy - milk or wine approach

P acket queuing and serving policies are related to buffer layout and schedul-
ing algorithm, and are covered later in section 5.4. Packet drop policy fol-
low buffer layout and is commonly adopted at the receiving entity in re-
sponse to overflow. Dropping a packet results in immediate relief and can
be used to clear buffers in addition to provide implicit feedback. When
using packet drops to provide load shedding, the milk or wine - policy [72]
applies.

Timing and delay

L ifetime control, network round-trip delay (RTT) and timeout intervals
affect the reaction time of a scheme and are themselves affected by queuing
policies at intermediate nodes that can make a packet grow severely old
while sitting in a queue at a (congested) node. Packet retransmission and
acknowledgment strategy dictate the consequences of a packet drop and
the feedback delay cycle respectively.

Flow control policy

F inally, flow control policy (i.e. window-based or rate-based) at the trans-
port layer depending on “the bottleneck resource at the destination”[37, pg.
28] are also considered when designing a congestion control scheme.

4.2 A taxonomy for congestion control algorithms

A now well-known theoretical framework for congestion control algorithms
has been offered in [16]. The taxonomy in figure 4.4 is based on control
theory and differentiates between open loop and closed loop control. At
the leaf nodes of the classification tree, existing control schemes can and
have been placed. We refer to [16] for classification of well-known existing
algorithms not covered in this thesis. Note that this taxonomy is a frame-
work for classification, and a specific algorithm may fit into more than one
category.

4.2.1 Open loop control schemes

O pen loop control schemes solve congestion mainly by good design and
are not dependent on network state[72]. Moreover, because of the de-

64 CHAPTER 4. CONGESTION AND FLOW CONTROL

Open loop control

Congestion control schemes

Closed loop control

Destination
controlcontrol

Implicit
feedback
(global)

Explicit
feedback

Persistent
(global)

Responsive

Global Local

Source

Figure 4.4: Taxonomy for congestion control algorithms

coupling from network state, which imply lack of feedback, open loop al-
gorithms are inherently rate-based[56, 38]. This decoupling leads to the
following attributes: First, the control decision is not dependent on feed-
back from congested spots. Second, no dynamic monitoring of network
is required. And third, control agent, either at source or destination, uses
local knowledge of network in the decision making process.

T he open loop category is subdivided based on whether it is the source
or the destination node that performs the control. Source control imple-
ments some form of admission policy “that stabilize the traffic arrival pro-
cess” [16, pg. 39]. Algorithms in this category include the input buffer limit
model [45] and stop-and-go policy [27]. Destination control is mainly some
form of (selective) packet discarding, because once a packet has entered the
network, a destination node has few other options, just like a glass of water
being filled until it eventually overflows.

4.2.2 Closed loop control schemes

C losed loop control schemes solve congestion by dynamic monitoring of
the network and issuing either implicit or explicit feedback to the source.
This category has also been termed credit-based control [56] and window-
based control [38]. A range of feedback mechanisms exist, and a summary
can be found in [37], including explicit feedback messages, feedback as part
of routing messages, rejection of excess traffic, probe packets and feedback
fields in packets.

4.2. A TAXONOMY FOR CONGESTION CONTROL ALGORITHMS 65

Implicit feedback

I mplicit feedback is inherently global in nature, since the whole network
with intermediate nodes between the node pair in question is involved, in
contrast to local information only involving adjacent nodes. Because the
feedback information is not transmitted, network state is deduced based
on local observation on factors like delayed acknowledgment on packets,
arrival rates and timeouts. Most schemes here are window-based, as is the
slow-start [71] algorithm deployed as part of the TCP congestion control
scheme.

Explicit feedback

E xplicit feedback can be sent either as separate control messages or by
piggybacking data packets. This category is divided further based on whether
the feedback is available constant or it is triggered by certain events, termed
persistent and responsive respectively. The subdivision into global/local, as
described for implicit feedback, applies here to the nature of the feedback.
Persistent explicit feedback is refreshed periodically; if done on a hop-by-
hop basis the algorithm adopts local control. Responsive explicit feedback
commonly involve some threshold parameters related to queue-length that
trigger feedback in response of traffic conditions. Global algorithms match-
ing this classification are source quench [61], choke packet and rate-based con-
gestion control. The source quench scheme has in addition a variation placed
in the local responsive category.

B oth the DECbit and Qbit scheme are based on a warning bit set in the
header of data packets passing a congested node. The DECbit method
monitors the percentage of ACK with the warning bit set, and adjust the
transmission rate accordingly. Choke packets are used in datagram net-
works reducing the rate of traffic entering the network. A control packet
is generated at a congested node and travels against the flow toward the
source. The choke principle can alternatively be applied by tagging data
packets and let that info return to the source via ACK form the destination.
If relying on end-to-end response is too slow to be useful by the scheme,
a hop-by-hop version is available. This tend to give a quick relief at the
congested node but consume more buffers upstream.

66 CHAPTER 4. CONGESTION AND FLOW CONTROL

4.3 Control scheme properties

C ongestion control and resource allocation are in [59] described along
tree dimensions: router centric versus host centric, which are covered be-
low in section 4.3.4, reservation-based versus feedback-based and window-
based versus rate-based. This is a slightly different approach than the tax-
onomy given in the previous section. In order to work with a broader
perspective, we acknowledge these dimensions and outline several control
scheme properties below.

4.3.1 Credit vs rate based schemes

W hether a scheme controls rate or credits/window size is mainly con-
nected to the open loop - closed loop classification in the taxonomy, but
exceptions exist. Credit-based control depend on some form of feedback
and works on a per link per window basis with the receiver issuing cred-
its to the sender. In this manner, storage of excess traffic is distributed in
the network, and more packets are stored inside the net during conges-
tion compared to rate-based schemes. However, the latter tends to center
the storage at a single point whereas the former distributes it over more
switches [55].

R ate-based schemes suffer from large overhead when used in short and
frequent congestion situations, and function more optimal during infre-
quent and longterm congestion [55]. In general, schemes like leaky bucket
and the additive increase, multiplicative decrease algorithm controlling the rate
are limited to admission control[38], reduce input traffic to the (sub)network
, and are never used at the link layer[72].

4.3.2 Active vs passive schemes

T here are two ways to react when encountering a situation, the passive
and the active way. This is true for congestion as well. Passive schemes
are preventive by nature and commonly implemented during the design
phase. Active schemes on the other hand are reactive and are triggered
in the response of congestion indications [55]. The latter method involves
estimating the network state and informing the sources to reduce traffic.
This avoidance vs. recovery classification criteria is quite common in the
literature [16].

4.3. CONTROL SCHEME PROPERTIES 67

T he Transmission Control Protocol (TCP) for instance uses a combination
avoidance and recovery mechanisms, implemented by the DECbit scheme
and the slow-start algorithm respectively [59] 1.

4.3.3 Feedback

A simple classification criteria for congestion control algorithms is whether
a scheme uses feedback information or not, resulting in feedback-based and
rate-based flow control respectively [72, pg.192]. As the terms indicate, the
former method transmits feedback information to the sender, containing
some form of status indicator or a permission to transmit data. The latter
method has mechanisms built into the protocol / network interfaces that
put a restriction on the data rate without the need to exchange feedback
information.

R ate-based flow control is rarely used at the link layer [72]. In order to
provide feedback, the network is required to monitor load and then take
remedial action providing state information to some control point, and the
feedback frequency should match the control frequency [37]. The picture
is somewhat more complex than this, and the described taxonomy gives a
better and more complete view.

4.3.4 Control point

T he noted controversy of the terms ’congestion control’ and ’flow con-
trol’ is best addressed by looking at the points where control is implemen-
ted and applied. We have already seen in the preceding section on tax-
onomy that some algorithms are global whilst others are local, some apply
control at the source or the destination, others at the intermediate nodes.
In the current section this issue is related to location in the OSI protocol
stack as well as to whether control is limited to a single point or involve the
entire network, or somewhere in between.

Scheme location in the protocol stack

D ifferent policies affect design of control mechanisms at different lay-
ers, as seen in table ??. Data traffic originates in the end-systems of a net-
work, and with the packet conservation principle described in section 4.3.2

1additional algorithms contribute to the total TCP congestion management package

68 CHAPTER 4. CONGESTION AND FLOW CONTROL

SwitchEnd system

e2e window fc

access fc

hbh fc

e2e window fc

fc=flow control, e2e=end−to−end, hbh=hop−by−hop

Figure 4.5: Control points, difference between end-to-end, hop-by-hop and
access flow control

in mind, these hosts are in the best position to regulate network load, and
commonly do so by adopting dynamic window schemes [37].

T he network layer has two types of control point, and may apply differ-
ent schemes at these locations. First, network access exercises some form of
admission policy, exemplified by the input buffer limit scheme [45]. Second,
intermediate routers (and gateways) can act upon congestion by service
degradation to greedy sources. Schemes like fair queuing, buffer class and
leaky bucket are well suited to enforce these restrictions.

F inally, at the lowest layer capable of handling congestion, data link level
flow control applied at each hop in a backpressure manner can be an effi-
cient mechanism to control congestion. Different network and congestion
scenarios call for different solutions, and despite strengths and shortcom-
ings in the control schemes discussed, one has to consider the intended use
in order to pick the one best suited. Moreover, multiple schemes often co-
exist in a system to handle a variety of situations at different control points.
Some rules-of-thumb have been made, and are described below after a brief
review of the network subsets involved.

End-to-end or hop-by-hop scheme

F igure 4.5 illustrates the network subsystems involved in the different
control schemes, and as can be seen, the subdivisions follow the struc-
ture imposed by layers in the protocol stack described above. The figure
is inspired by [55], but the idea of using control point level as an analytic
measurement dates at least back to [25]. Both source-to-destination and
entry-to-exit control are termed end-to-end (flow) control(E2E) [55] despite
that they are applied at different layers. End-to-end flow control cannot
guarantee that resources are available at intermediate nodes, only at the

4.3. CONTROL SCHEME PROPERTIES 69

destination [67]. Hop-by-hop (flow) control denotes node-to-node (switch-to-
switch) control and are applied at layer 2.

M oreover, layer 2 flow control can in addition be viewed as not targeted
at congestion primarily, rather as a technique to ensure reliable transmis-
sion over a single link with acknowledgment, retransmissions and timeout
as tools. Positive Acknowledgment and Retransmission (PAR) algorithms [67],
also known as Automatic Repeat Request (ARQ) algorithms [59], implement
some form of sliding window scheme that ensure reliable delivery, preserve
packet order and yield flow control.

T he Sliding window protocol is a simple form of feedback-based flow con-
trol in which ACK and timeout serve as feedback signals [72]. The stop-
and-wait protocol is a minimal version of sliding window using a window
size of only 1. To prevent lost or delayed packets from interfering with
normal operation , some form of sequencing indicator is needed in the
packets. Lack of a timely ACK will trigger halt of the source (and maybe
retransmission). These algorithms mainly address allocation of the buffer
resource part of the congestion problem, and this is why the data link layer
in packet switched store-and-forward networks only uses feedback based
flow control, where the sender is given permission to send more data, and
rate-based control is rarely seen[72].

Source or router centric scheme

S ource-centric or router-centric control, represented by schemes as slowstart,
CUTE, DECbit on one side, and on the other side Qbit and random drop,
fair queuing, or backpressure respectively[38], is a question of protocol
layer and the type of congestion it aims to handle. Source-centric control
use network layer for feedback and transport layer for rate/traffic reduc-
tion.

4.3.5 Conservation of packet principle

J acobson introduce the conservation of packet - principle: “for a [TCP] con-
nection ’in equilibrium’ [...] the packet flow is what a physicist would call
’conservative’: A new packet isn’t put into the network until an old packet
leaves”[36, pg. 1]. Congestion is hence controlled by identifying and man-
aging points in the network where this principle is violated. Variations

70 CHAPTER 4. CONGESTION AND FLOW CONTROL

of this principle can be found at the basis of most congestion control al-
gorithms, modified by the degree the connection in equilibrium can be ap-
plied.

4.3.6 Protocol interaction

A s part of the TCP/IP suite used in the Internet, TCP has received a
great amount of research interest in the field of congestion control. One of
the lighthouses along the road have been the work of Van Jacobsen ([36]).
S. Floyd and R. Jain have put in remarkable contributions as well. The Ran-
dom Early Detection (RED) algorithm [22] and the DECbit scheme [39] have
both been proposed for use in TCP/IP networks. Both calculate average
queue length, and then mark (or drop) one or more packets to signal the
congesting source. The difference lies in that the former require only one
marked packet to trigger control action, where as the latter relies on a frac-
tion of packets being marked.

T CP performance has been studied in detail in the IP/Ethernet context [54,
53] as well as in the ATM context [57], hot-spots of TCP processing iden-
tified [23], and interaction with lower-layered backpressure mechanisms
examined [57, 52, 79]. Moreover, inter-working of switched Ethernet and
ATM flow control operating below TCP has been studied, concluding that
these flow control mechanisms are complementary [4]. And, a hop-by-
hop rate-based scheme have been proposed as an alternative to TCP at the
transport layer [51].

4.4 Flow Control

A fter our exploration of congestion as a resource sharing problem, the
well-know taxonomy and different properties of control schemes we are
now done with the general survey of congestion and move on to data link
layer flow control in particular. This section addresses general concepts,
followed by IEEE 802.3 MAC Control in the subsequent section. We start by
strengthening the conceptual difference between ’congestion control’ and
’flow control’. Second we examine flow control symmetry and some buffer
management schemes. Finally, we look at the concepts of ’on/off’, ’hop-
by-hop’ and ’backpressure’ in the link layer flow control context.

4.4. FLOW CONTROL 71

4.4.1 Congestion control or flow control?

A s a rule of thumb, “the longer the duration, the higher the layer at
which control should be exercised” [38, pg. 17]. It follows that router-based
flow control is best up to handling short-term congestion, whereas in order
to cope with long-term congestion source-based control schemes should be
applied to reduce the overall load entering the network.

I t might seem like the current dominant answer to the congestion or flow
control question can be put like in [72]: Congestion control is a global
issue involving all nodes whereas flow control relates to point to point
traffic between a specific source-destination pair. This distinction gets a bit
clouded however when hop-by-hop flow control are applied throughout
the entire network reaching all the way back to the sources by backpressure
giving a total effect much like the global end-to-end scheme. Moreover,
“some congestion control algorithms operate by sending messages back to
the various sources telling them to slow down when the network gets in
trouble. Thus, a host can get a ’slow down’ message either because the re-
ceiver cannot handle the load or because the network cannot handle it” [72,
pg. 386], and this situation is a major reason to confusion.

A s we have seen, if attention lays within the data link layer, there is a
tendency to reserve the term ’flow control’ for reliable transmission over a
single link, as in [59], and use the term ’congestion control’ for all higher-
layer control schemes. Flow control in interconnection networks “dictates
which messages get access to particular network resources over time” [17].
Moreover, in the field of interconnection networks [35] do not even mention
congestion control and only briefly address flow control as an issue closely
connected to buffer management algorithms. Designing LAN switches, the
use of (backpressured) hop-by-hop flow control to manage short-term buf-
fer congestion, exceeding the reliable transmission limited view, gets more
relevant, as seen in [67].

4.4.2 Flow control symmetry

F low control can be applied in either one or both directions of a full
duplex link. We adopt the following distinction between symmetric and
asymmetric flow control from [67].

Symmetric flow control is commonly seen on switch-to-switch links, char-
acterized by a relative uniform traffic pattern, nodes having similar buffer

72 CHAPTER 4. CONGESTION AND FLOW CONTROL

memory constraint and neither is source/sink of much of the traffic.

Asymmetric flow control results in a scenario where one of the link part-
ners can throttle the other, but not vice-verse. A switch can control an
end station reducing the total offered load by pushing back the source of
the frames entering the network. The opposite control direction is useful
whenever a destination host cannot operate at linkspeed (wirespeed) and
needs to borrow buffers at the switch in order to avoid being swamped.

4.4.3 The effect of frame loss

A ccording to [67], higher-level PAR-protocols have a performance pen-
alty on layer 2 packet loss. This is a strong motivating factor driving re-
search on preventing, or at least reducing, packet drops at the data link
layer. And it has has been studied over and over again how the TCP
congestion control interact with and can contribute from, flow control al-
gorithms applied at lower layers. This is addressed below in section 4.5.4.

4.4.4 Schemes that address buffer management

F low control at the data link layer can be divided into bufferless and buf-
fered flow control [17], a division that emphasizes the strong connection
between buffer management, switching technique and control scheme. By
decoupling allocation of resources used in sequence, buffered flow control
can yield a performance boost.

D ifferent families of buffer management schemes were identified in [25]
and include channel queue limit (CQL) and buffer class schemes. virtual cir-
cuit hop level schemes constitute a third family, but fall out of the scope of this
thesis. The interested reader should consult [25] for a review. The differ-
ence between the former two schemes is that in the CQL scheme, arriving
packets are distinguished based on the output queue they are destined for,
while in the buffer class schemes a hop-count is used as the distinguishing
criteria. We will later see that the proposed Protocol P has traits from both
families, and can thus be viewed as a hybrid.

B uffer management can take three forms in relation to backpressure,
namely credit-based, on/off and ack/nack[17]. Below we target on/off
backpressure, as this is the only one that apply to our simulation study.

4.4. FLOW CONTROL 73

4.4.5 On/off hop-by-hop backpressured flow control

T he principle of on/off flow control can be found in Sirpent [12] and
Autonet [66]. The latter notes explicit that on/off flow control is not inten-
ded or suited to handle long term congestion at the switches.

A control scheme is source-blind if it gives the same service to a packet
independent of its origin. The counterpart is selective schemes. A source-
blind on/off scheme can be unfair, because when issuing stop-signal, it
affects all traffic from the upstream node, including traffic not contributing
to the congestion. Moreover, [51] claims that it might spread congestion
and cause oscillating buffers throughout the network.

H op-by-hop flow control have been described in several contexts above.
It has a shorter delay in the feedback cycle compared to end-to-end schemes,
and is therefore more responsive during short-term congestion and has an
advantage in networks with a high bandwidth-delay product [51]. Early
hop-by-hop flow control struggled with deadlock problems and unfairness.
The former was solved in Autonet, but the latter issue still remain[56] and
is coupled to the source-blind versus selective approach.

W hen a hop-by-hop scheme is applied to a chain of adjacent nodes (or
links) a backpressure effect emerges. The advantage of backpressure is two-
fold; first, buffer sharing distributing storage of excess traffic over the up-
stream nodes[56, 55], and second, feedback may eventually propagate to
the edges of the network where sources get notified and can act to reduce
the traffic load. According to [53, 3.4] a back-pressure scheme is based on the
three main components; ’congestion detection’ which should be simple,
effective and instantaneous; ’notification’, which originally do not distin-
guish at input ports; and ’control actions’:

Congestion detection Even if several resources can be oversubscribed, the
fact that congestion leads to longer queues for some switch ports is
exploited to an easy detection mechanism. High/low thresholds are
set on output buffers.

Notification is to ask for control actions to be performed or cancelled. One
assumes that output buffered switches does not distinguish between
input links. Different schemes for what info to include in the mes-
sages sent is a) simple (all), b) CoS-based, c) Destination address based
choosing some flows random or all.

74 CHAPTER 4. CONGESTION AND FLOW CONTROL

Control actions are (un)blocking the traffic vs controlling the transmit rate.
Time period to pause vs indefinite time with explicit cancel can be
used. They differ in the number of control messages that has to be
sent.

W e return to identifying these three components in the specific flow con-
trol schemes studied, in their respective descriptions.

4.5 IEEE802.3 MAC Control

I n the following section, familiarity with Ethernet and the IEEE 802.3
standard is assumed.2. As we have seen, there is a need for flow control
at the Ethernet data link layer which is connectionless, operating on a best
effort basis. Because of the low worst case bit error rate (BER) of 10−8 [69,
Clause 16] 3, recovery from frame corruption is ignored in the data link
layer and handled at higher layers [67].

I t has been pointed out that transport protocols adopting end-to-end
flow control can only guard resource management at the sender and the re-
ceiver, and that (temporary) shortage of buffer at some intermediate node
is out of the scope of such a scheme. Hence, in the words of [67, pg. 325]: “If
we need to solve a link buffer overflow problem, we must solve it within
the link layer”.

MAC Control is a generalized architecture and protocol for “real-time
control and manipulation of MAC sublayer operation” defined in [69, clause
31]. For backward compatibility, MAC Control is an optional capability
in Ethernet, and at the present time, MAC Control PAUSE operation de-
scribed in [69, Annex 31A and 31B] is the only available control function.

4.5.1 Architecture

M AC Control is a transparent data link sublayer residing between the
MAC sublayer and the MAC Control client (like LLC) as illustrated in fig-
ure 4.6

2a brief introduction were given in chapter 1
3This is valid for 10Mbps copper media, while higher data rates and optical media be-

nefit from a BER orders of magnitude better

4.5. IEEE802.3 MAC CONTROL 75

Data link layer

OSI layers

MAC Control client (LLC)

MAC Control (optional)

MAC − Media Access Control

Figure 4.6: MAC Control architecture

MAC Control hence provide additional service to its clients extending the
traditional Ethernet MAC. Upon request, the sublayer generates control
frames transmitted to the link partner by the underlying MAC, much like
ordinary data frames. The difference is that these control frames are both
sourced and sunk within the data link layer, and never forwarded by the
receiving entity.

4.5.2 Frame format

M AC Control frames conform to the format of standard, valid Ether-
net frames as described in chapter 1 and in [69, Clause 3], with only the
Length/Type field identifier to distinguish them from other MAC frames.
This field should have the hexadecimal value 0x8808 to indicate MAC Con-
trol. Excluding Preamble and Start-of-Frame Delimiter, a MAC Control
frame is exactly 64 byte long, the length of a well-formed minimal Ethernet
frame. The first 2 bytes of the data field identify MAC control opcode, with
0x0001 indicating PAUSE operation., followed by opcode-specific parameter(s).

4.5.3 PAUSE function

A ccording to Seifert, chair of the IEEE 802.3x Task Force at the time of
writing, the PAUSE function

is specifically designed to prevent switches (or end stations)
from unnecessarily discarding frames due to buffer input over-
flow under short-term transient overload conditions.[67, pg. 336]

76 CHAPTER 4. CONGESTION AND FLOW CONTROL

More specific it “is used to inhibit transmission of data frames for a specific
period of time” [69, Annex 31B]. This provides a simple stop/start form
of flow control for single full duplex links. It is important to notice that
PAUSE operation only affect data frames, and that transmission of MAC
control frames cannot be inhibited. Moreover, some words of caution of the
limits of this scheme might be in place: like other hop-by-hop backpressure
schemes is does not solve the problem of steady-state network congestion,
neither does it provide end-to-end flow control and does not provide any
complexity beyond a simple start-stop mechanism [67].

PAUSE frame semantics

T he parameter list for the PAUSE opcode is short; it contains only the
pause_time operand which is an 2 byte unsigned int indicating the length of
time transmission of data frames should be suppressed. The value of the
pause_time parameter is not the absolute time interval, rather it is “meas-
ured in units of pause_quanta, equal to 512 bit times of the particular im-
plementation” [69, Annex 31B].

B eside the pause_time and the described type field and opcode, the des-
tination field in the MAC control PAUSE frames have a unique 48-bit mul-
ticast address 4.

PAUSE frame - transmit and receive operations

F or an exhausting and detailed specification of the PAUSE operation, we
refer to the Transmit and Receive state diagrams in [69, Annex 31B]. Below
is an overview of the operation of the receiving and sending side of the
MAC Control sublayer respectively.

Parsing received PAUSE frame is done by first checking that it is a well-
formed PAUSE MAC Control frame of correct length and valid opcode.
Data frames are silently passed on to the next sublayer, while control frame
are handled within the MAC Control sublayer. Frames containing unsup-
ported opcodes are discarded. Next, the pause_time parameter is extracted,
and the PAUSE function starts a pause_timer of the length (pause_time ∗
pause_quanta). The transmit side of the NI has to be informed (by state
variables) to act on the current value of the timer.

4the MAC address of the intended recipient of the control_frame may be used as stated
in [69, Clause 31]

4.5. IEEE802.3 MAC CONTROL 77

P AUSE operation always operate on the most recent value of pause_time,
meaning that a NI in the not-paused state receiving a non-zero pause_time
will enter the paused state. Herein, three events might affect the state.
First, the pause_timer expires with no new control frame seen leading to
the transmit restriction being lifted and the normal operation is resumed in
response to the change to not-paused state. Second, the situation at the link
partner eases off causing a subsequent control frame with a zero valued
pause_time. This works as a cancel message, with the same result as the
timeout just described. Third, a subsequent control frame with a non-zero
pause_time reset the timer, with the NI remaining in the paused state with
the now described options available.

Transmit PAUSE operation is not required by a IEEE 802.3 NI, but if it
does send PAUSE frames, it must implement the above referred to state
machine. Within the MAC Control sublayer the TransmitFrame function is
called in response of a control request from the client, which may be the
housekeeping processor or the queue buffer manager. This function pre-
pares a control frame, which mainly consist of constants: the pause_command
opcode, the reserved_multicast_address, the 802.3_MAC_Control type indic-
ator and the phys_Address of the local MAC. The only variable needed to be
inserted is the n_quanta_tx specifying the amount of pause_quanta reques-
ted. For this reason, [67] suggests that a well-formed PAUSE control frame
is kept and transmitted upon request.

A PAUSE control request should be served as soon as the boolean status
indicator transmission_in_progress is set to false resulting in the transmission
of a control frame. This will preempt pending data requests, however not
interrupt an ongoing transmission. Hence, control frames are given prior-
ity in order to reduce the feedback delay to a minimum. For illustration
refer to [67, Fig 8.8]. The IEEE standard does not specify the conditions re-
quired to assert and turn off PAUSE flow control, it simply states what the
response to such actions shall be for a MAC Control-aware NI. However,
some timing considerations are included in [69, Annex 31B] and will be ad-
dressed in the following section along with other implementation issues.

4.5.4 Performance studies

M any years have passed since the IEEE 802.3x was proposed, and in this
period the MAC PAUSE Control has been analyzed and the performance
studied, with emphasis on interaction with, and impact on, TCP [41] and
fairness issues [20]. A general trend in the research is the use of relative

78 CHAPTER 4. CONGESTION AND FLOW CONTROL

small networks just big enough to illustrate some point. This section intro-
duces some of this work focusing on the comments and critique the PAUSE
scheme has received. Details on TCP parameter tuning and observed win-
dow size are excluded for the clarity of presentation, and the interested
reader should refer to the cited papers for a complete description. Modi-
fications [46, 52] and suggested alternatives [88] are then described in the
next section.

I n 1997 [41] presented a simulation study of network performance with
and without this explicit congestion notification. Simulations were car-
ried out with OPNET and TCP persistent source based on RFC 793 and
1122. The switches used were non-blocking output buffered with one FIFO
queue of 64kB per output port, and network links operated at 10Mbps. A
asymmetric flow control is applied, with only switches generating PAUSE
frames. The switch operates with buffer threshold (400kb) per output port,
the authors chose to broadcast pause frames to all upstream neighbors. Ob-
served buffer occupancy was found to have a periodic behavior produced
by ACK and RTT. In addition PAUSE created a similar periodic behavior an
order of magnitude less than the former. It is concluded that explicit feed-
back gives a more fair distribution of bandwidth and that the interaction
of the two mechanisms results in high utilization of bottleneck links and
low loss rates. It should be noted that this work only examined traffic ag-
gregation, excluding link speed mismatch. Moreover, no non-conforming
sources were present and only a high water mark for activating flow control
were used.

Work by Wechta, Eberlain, Halsall et.al.

T he authors of [79] have published a series of papers on switched LANs,
and therein looked at the interaction between flow control at link layer
versus higher protocol layers. They claim that the interaction between TCP
and hop-by-hop switch flow control is too complex to be solved using the-
oretical analysis and hence simulation modeling has been used. Because of
the impact this work has had on the research field, we will go into some
more detail here.

Network model and design is characterized by switches having both
input- output- and shared-memory. A high/low threshold is set per in-
put port FIFO queue (16kB). This buffer is filled after buffers at output port
and shared memory has been filled. Control XOFF frames are sent with
indefinite pause time and explicit XON is required to resume sending in

4.5. IEEE802.3 MAC CONTROL 79

server

switch1 switch2 switch3

C1

C10

1Gb 100Mb 10Mb
10Mb

Figure 4.7: Interaction, 3-stage topology

the paused node5. Data in transition equals the product of TCP max win-
dow size and number of connections. Topology has one server attending to
1-10 clients on the other side of a strait switch chain with one order of mag-
nitude lower bandwidth for each step, see figure 4.7. The server transmits
an infinite file over TCP to each of its clients.

Simulation results , e.g. performance, is measured by throughput per
link, bandwidth used by a single source-destination pair, and number of
packets lost. With flow control on all links, packet drop is avoided and
the typical growth curve for TCP window is observed. Buffers are filled
faster close to the bottleneck link (L3). Restraining the flow control to only
inter-switch links packet drops do occur at the network edges and the con-
nections that avoid drops get better performance. Backpressure cannot
propagate information the last step toward the node(s) causing conges-
tion. Because packet drop is random, the different connections do not have
identical drop points for the TCP window size, and hence the throughput
differs. The harm is however not as critical as we shall see in the next scen-
ario, because all sending processes were in the slow increase phase when
the drops occurred. With flow control only on the access links packet loss
occurs while the senders are still in the rapid increase, all TCP senders are
affected by the drops, and because of bursts in this phase, the probability
of drops affecting the same source multiple times is higher. This behavior
is identical to the case of applying no flow control at all.

P receding this paper [78] presented a simulation based analysis with a 2-
stage topology shown in figure 4.8 designed intended to quantify the effect
of head-of-line blocking. The number of clients was varied from 2-10, with
client 1 connected by 10Mbps link, the rest of the clients by 100Mbps links,
to create a scenario with link speed mismatch. Simulation is done with
link layer flow control constant turned on (XOFF triggered and sent to S1),
and TCP end-to-end alternatively on/off. With TCP flow control on, traffic

5It should be noted that XOFF is non-selective (source-blind)

80 CHAPTER 4. CONGESTION AND FLOW CONTROL

server

switch1 switch2
1Gb 100Mb

C1

C10

10Mb

C2

100Mb

Figure 4.8: Interaction, 2-stage topology

destined for the slow client is limited to its low rate letting the remaining
clients share the rest of the bandwidth. Turning TCP control off, HOLB
occurs and all connections are throttled down to the capacity of the slowest
link. The researchers note that the larger the ratio storage/window size, the
lesser the probability of HOLB. They also point to the problems of control
frames not being sent directly to the sender. This work has later received
criticism for being non-selective (source-blind). However, because of the
topology used and the fact that PAUSE flow control is designed for input
buffered switches, this should be seen as a critique of the PAUSE control
scheme and not the simulation study of it.

L ater that year work on how the choice of topology and transport layer
protocol affects performance in a switched LAN, both theoretical and by
simulation, were presented in [80]. Topology influence on performance,
and the key idea is to locate bottlenecks and replace them. Micro segment-
ation reduces traffic for each segment and increases the total performance,
as seen in figure 4.9.

T he goal of TCP is to reach equilibrium where the window is fully open
and the data rate of transmissions is only limited by the presence of bottle-
neck link(s). However, a TCP window is rarely at its max in LAN context
because either the files are too small or buffer overflow leading to packet
loss reduces the window. A large window increases the end-to-end delay,
but it should not be smaller than allowing maximum utilization of the link.
The authors hence suggest using a small TCP window for local connections
(IP address) and a larger window for remote traffic. Moreover, regarding
the interaction of TCP with PAUSE flow control it is referred to the two
previous papers, however, hop-by-hop flow control is only presented as an
option with large TCP windows.

4.5. IEEE802.3 MAC CONTROL 81

switch2

switch1

switch3

fast clients 100Mbps slow clients 10Mbps

servers

100Mb

1Gb

Figure 4.9: LAN configuration with micro segmentation

T he following year another paper ([77]) came continuing the topologies
and design from[80] with only minor modifications. For all topologies
studied results show that throughput and transfer time are constant, while
end-to-end delay increases when TCP window increases, and hence power
decreases. Pointing to [78], the authors (of [77]) emphasize that hop-by-
hop flow control is responsible for buffer management, whilst bandwidth
is controlled by end-to-end flow control (TCP) , and that the two comple-
ment each other. Results show that fast links do not get optimal band-
width because of head-of-line blocking, as the slower links dictate how fast
the buffers at the bottleneck empties. As before, a smaller TCP window is
suggested to avoid head-of-line blocking and thereby also the throughput
degradation for the fast clients. The authors suggest to fine tune the TCP
parameters, and have underutilized links for QoS purposes.

T hen focus shifted more toward quality of service with a proposal sub-
mitted to the ETT Journal and the paper [81] presenting a modification to
802.3x based on ECN / RED which will presented in the next section.

82 CHAPTER 4. CONGESTION AND FLOW CONTROL

Addressing the link speed mismatch

I n 1999 [20] conducted a simulation study with OOSIM addressing the
link speed mismatch problem on the TCP with/without PAUSE scenario
as part of an ongoing study. The intention of the study was to compare the
loss of bandwidth caused by packet loss to the loss caused by flow control
and head-of-line blocking. Referring to [78] and [79] this study claims that
the former does not look into the fact that TCP stream suffer from discarded
packets. Still, the topology used by [20] is very similar to the one in [78], the
only difference being that the former uses multiple servers connected to the
first stage switch by links of identical bandwidth to the inter-switch link.
Layout and size of switch buffers, threshold levels etc, are not given, how-
ever, input buffering can be assumed because of the following sentence:
“The flow control scheme monitors the amount of data in the input buffers
and [...]” [20] The study concludes that flow control can help performance
in homogeneous networks, but link speed mismatch causing head-of-line
blocking reduces the throughput more than packet loss. More specifically,
fast clients are throttled down to match the speed of the slowest client.

4.6 Suggested alternatives/improvements

4.6.1 Controlling rate on a hop-by-hop basis

T he paper [51] presents a selective solution and uses periodic feedback
from neighbor switches of buffer occupancy. This congestion control scheme
has been frequently cited over the years, and is by several, including [16],
viewed as a classic definition of the hop-by-hop scheme. However this
takes a lot of calculation overhead, buffers, and extra messages.

4.6.2 QoS extension to IEEE 802.3x

I t is important that real-time traffic do not misuse the responsiveness
of elastic traffic that have flow control mechanisms (TCP senders), and [81]
presents an approach to grant high QoS to real time UDP-based flows in the
802.3 LAN context. It is assumed that the number of real-time flows with
guaranteed QoS can be restricted and that these are the last to experience
packet loss in times of congestion. The key idea is to create virtual pipes
through the network for the high priority flows.

T he modified scheme is based on the idea to offer two virtually separated
pipes in the network; data packets are transferred over the same path, but

4.6. SUGGESTED ALTERNATIVES/IMPROVEMENTS 83

switch1

switch2

switch3 switch4
TCP/UDP
receivers

TCP

UDP

TCP

UDP

bottleneck

Figure 4.10: Topology used on QoS extension to PAUSE flow control

stored in different queues with high/low priority (2 classes). End-to-end
control level uses source quench messages in ICMP packets to the sender, or
set the ECN bit in packets chosen by RED method. In relation to bandwidth
the latter option is better. XOFF frames are sent only to low priority traffic,
and provide short-term immediate relief.

T he four scenarios studied are no flow control, normal flow control to
all, modified flow control to low priority traffic, and modified flow con-
trol together with ECN/RED respectively, all using the topology shown in
figure 4.10. The authors conclude that the hybrid scheme fulfills the same
task as no flow control at all in making the source aware of the congestion,
and keeping the queuing delays low, but the difference is that is does so
without packet loss and without wasting bandwidth. Predicted through-
out for UDP were obtained and the inter switch link was fully utilized the
whole time. The case with standard 802.3x results in the highest end-to-end
delay and significant jitter variations. Still, the case with no flow control
is worse for UDP due to the packet losses. The weakness with the third
case is that TCP packets are allowed to flood the network unnecessarily so
that end-to-end delay gets high. Real-time traffic is no matter still exposed
to burst for other real-time flows. ECN demands that the LAN switches
are TCP aware, and so doing breaks the layering and demands extra pro-
cessing.

84 CHAPTER 4. CONGESTION AND FLOW CONTROL

4.6.3 FLORAX Flow-Rate Based Hop by Hop Back-pressure Con-
trol for IEEE 802.3x

T he paper [46] presents modifications to 802.3x based on flow6 rate to
fully utilize the performance in large scale LANs in a fair7 manner. Ad-
dressing shortcomings of the PAUSE flow control scheme found in [81, 52,
53, 41, 20, 78], FLORAX differ from PAUSE flow control by the shift to rate
control and the adoption of selectivity in identifying and throttling contest-
ing flows. Hence it leaves the other flows unaffected, and by so doing, aims
to evenly distribute bandwidth.

I t is assumed that sender processes in upper layers are told to reduce its
TCP window on the reception of XOFF frames. First, the scheme has to
identify the congesting flows to avoid unnecessary back-pressure. Second,
SLA provisions can be enabled for flows, giving preference to flows that
confirms to their bandwidth agreement, and not blindly stop the flow using
the largest share of the bandwidth. Third, there is a vulnerability to non-
conforming LAN devices in the schemes of standard 802.3x and without
source discrimination they might degrade performance for all flows. By
selective dropping packets originating from non-responding devices, some
resilience can be built into the network.

F or each outgoing buffer, the FLORAX requires the following set of ele-
ments. A Flow Table/List contains rate estimation and burst related info per
flow. Second, a XOFF Table/List records the flows currently under XOFF
control in order to restore them. Third, XOFF Control Messages are sent to
invoke control identifying a flow (source-destination pair) and its fair band-
width associated with an expiration time, whereas XON Control Messages
restores flows by canceling control action. These messages are triggered
by thresholds indicating the need to throttle all, the congesting or none of
the flows. Buffer occupancy has to be checked both at frame arrivals and
departures, in addition to the calculation of transmission rates for each re-
ceived frame. In contrast to the original PAUSE scheme, an XOFF message
triggers a modification of transmission rate at the upstream node for some
flow, not an absolute stop of that NI.

W ith respect to performance, FLORAX and IEEE 802.3x were both found
to distribute bandwidth equally between UDP and TCP avoiding the scen-
ario of UDP taking advantage of the responsiveness of TCP congestion win-

6defined as a source-destination MAC address pair
7Fairness is defined in terms of bandwidth distribution in times of congestion

4.6. SUGGESTED ALTERNATIVES/IMPROVEMENTS 85

dow seen when drop-tail buffering is applied [46]. However, FLORAX was
measured to have a shorter completion time for file transfers. It should
be taken into account that this modified scheme requires additional house-
keeping and processing as well as the additional information needed to be
included in the control frame.

4.6.4 RATE Control in IEEE 802.3

T he proposed RATE flow control scheme [88] was motivated by the de-
sire for bandwidth allocation enabled in Ethernet in the First Mile (EFM)
subscriber services. A simple byte-based leaky bucket at the end node
(source) is used to implement the scheme where flows are isolated. Com-
pared to a scenario without RATE control or one with PAUSE control for
mis-behaving flows, lesser loss and delay can be seen. It is also interesting
to note that this work looks into how RATE and PAUSE can complement
each other in a scenario where a switch is RATE controlled and the sending
source PAUSE controlled.

I n [88] the authors agree with [52] in that PAUSE flow control should
be selective for traffic classes / MAC address and [81] in that sending of
PAUSE signals for high priority flows should be avoided. However, both
modifications are said to be hard to implement, and because of the need to
isolate individual flows in EFM, RATE is seen as a necessary replacement
for standard Ethernet in this particular setting.

4.6.5 Selective backpressure

O ne of the perhaps most cited papers on IEEE 802.3 MAC flow control
and the call for a selective backpressure mechanism is [52]. This work of
Noureddine, occupied with TCP efficiency and the use of link layer flow
control to shield TCP from short term congestion packet drops, is found
in even more detail in his PhD thesis ([53]). Because of the impact this
work has had on the research field, we will go into some detail presenting
it below8.

Although switched LANs are usually over-provisioned, their
characteristics (short RTT, link speed mismatches) lead to in-
creased burstiness, and thus to the occurrence of transient con-
gestion. In order to fully utilize the potential of large switched

8However, the presentation will focus on the issues relevant to the link layer, glossing
over the details of TCP

86 CHAPTER 4. CONGESTION AND FLOW CONTROL

LANs, a link layer back-pressure mechanism may be used to
complement end-to-end flow control by handling the short term
congestion.

A s seen in the above quote from [52], switched LANs pose a challenge
to TCP with respect to enhancing performance. We have already seen in
section 4.5.4 that link layer flow control represented by the PAUSE scheme
is non-selective backpressure ([41], [78], [80], [81]). Noureddine takes the
analyze and simulation studies a step deeper showing that MAC PAUSE
Control can result in performance degradation as well as improvement.
short term congestion is conceptually distinguished from congestion in [53,
chap. 3] with the former being a temporary condition stemming from link-
speed mismatch, traffic aggregation, TCP bursts and multimedia inherent
variability, and the latter chronic long term network overload[53, pg. 130].

Network model and design used to highlight these benefit and drawback
scenarios include full duplex Ethernet links with different data-rate, BSD
Reno version of TCP with max congestion window of 64kB and fixed file
sizes. Switches are non-blocking output buffered with threshold values at
80% and 70% respectively for sending XOFF9 and XON frames10. For link
speeds of 1Gbps, 100Mbps and 10Mbps switch buffers are 1MB, 500kB and
70kB respectively.

Simple back-pressure scheme

W e now return to to some resource management issues introduced at
the beginning of this chapter, namely link-speed mismatch and traffic mer-
ging. Recall the self-clocking property of TCP running in a steady state.
Bursts occurring outside the steady state, as in the slow-start phase, might
however cause a temporary over-subscription of buffers at an intermediate
node, and [53] showed by simulation that merging of such bursts is harm-
ful and arguments that it should be sought to avoid packet drops due to
short-term buffer overflow in this phase. In fact, about 50% of the available
throughput was lost when subsequent connections were added to the link-
speed mismatch scenario shown in figure 4.11. Adding backpressure flow
control, the before experienced drop in throughput did not occur keeping
performance on a smooth maximum even as more connections were sub-
mitted.

9pause_time here interpreted as indefinite stop requiring explicit XON for resume
10Moreover, it is assumed that the switches do not distinguish between input ports (since

they are output buffered)

4.6. SUGGESTED ALTERNATIVES/IMPROVEMENTS 87

S D
100Mb 10Mb

70kB

Figure 4.11: Link Speed mismatch

D
10Mb

70kB

S1

S2

Sn

10Mb

Figure 4.12: Noureddine Topology3

E ven in a scenario without link-speed mismatch shown in figure 4.12
traffic merging and the merged bursts of the TCP connections from the dif-
ferent sources contribute to temporary buffer overflow and packet drop
at the bottleneck node. The preserving of throughput seen when adding
backpressure flow control in the previous case, holds here as well.

T he two above described scenarios can be found in most of the papers by
Wechta et.al. (), however Noureddine identifies a third topology, shown in
figure 4.13, involving link sharing where simple flow control can be benefi-
cial. Because of the big share S1 gets, packet loss can get frequent and hence
S1 is heavily throttled without backpressure flow control applied. A vari-
ation of this scenario involving a single destination is used for both sources,
addresses the issue of drop tail queues showing bias toward bursty sources.
In this case backpressure control may be used to handle fairness issues. More
over, “[by] using back-pressure, congestion can be moved out toward the
boundaries of the LAN where it can be dealt with more efficiently”[52, pg.
6].

88 CHAPTER 4. CONGESTION AND FLOW CONTROL

S1

S2

D1

D2

100Mb

10Mb

10Mb

10Mb

Figure 4.13: Noureddine Topology2

100Mb

S1

S2

500kB

70kB

100Mb

10Mb

D1

D2

D3

Figure 4.14: Noureddine Topology5

MAC Address Back-Pressure

A s noted, link layer backpressure flow control do in some cases result
in performance degrading instead of increase. One such case involves un-
necessary control issues that might occur in the topology setting shown in
figure 4.14. Control actions obtain good performance on the most conges-
ted path, but degrades the other paths. The problem lays in the fact that
the sources are connected with different link speeds11, and that the control
notification does not differentiate between input links. If one had differen-
tiated on input links the non-selective flow control would not cause harm
to the others even in the presence of link speed mismatch.

S econd, sharing of upstream resources as illustrated by figure 4.15 may
also lead to performance reduction because “when non-selective control
is performed, the most congested path [...] dictates the performance of the
others”[53, pg. 164].

11S2 and S3 share the 100Mbps, while S1 is connected directly to the rightmost switch by
a 100Mbps link

4.7. SUMMARY - CONGESTION AND FLOW CONTROL TERMS 89

S1

S2

D1

D2

100Mb

10Mb

10Mb

100Mb

500kB

70kB

Figure 4.15: Noureddine Topology6

I t is suggested in [53] to make modifications to the IEEE802.3x standard
to insert a Type length field of 4 bit for a CoS field and a Adr field, these
four fields being inserted after the pause time in slots field in the present
header. Moreover, it is remarked that “the implementation of switches
which provide selective forwarding of frames based on destination MAC
address [...] may be challenging”[53]. The buffer management is signific-
antly more complex that FIFO.

4.7 Summary - congestion and flow control terms

B ecause of the global/local dimension of the taxonomy we claim that the
flow control mechanisms discussed in this thesis for the link layer, fits well
into the taxonomy. An important point regardless of whether our focus is
flow control or congestion control, is that the control mechanisms are in
one way or the other closely connected to buffer layout and -management.
Understanding and handling the queues are crucial to understanding how
the control mechanisms work.

Congestion is a state in which sharing of network resources, such as com-
munication links, processing power and buffer capacity, fail because
the total demand (load) exceeds capacity, resulting in performance
degradation of the system.

Flow Control acts on a specific sender-receiver node pair and prevent the
sender from feeding traffic faster than it can be handled by the re-
ceiver.

Congestion Control is the task of managing networks susceptible to con-
gestion in order to preserve performance, and is a generalized form
of flow control that is not limited to a specific sender-receiver node
pair and might involve network-wide status in the decision making
process.

90 CHAPTER 4. CONGESTION AND FLOW CONTROL

Hop-by-hop flow control is a scheme exercised at each node along the path
between two communicating entities.

Chapter 5

Protocol P

T he work on Protocol P was first introduced by Mark Karol, S. Jamaloddin
Golestani and David Lee at ISCOM’99 [44], followed by a more generalized
version including theoretical proof at the IEEE INFOCOM 2000 [42], and
subsequently revised and printed in IEEE/ACM Transactions of Network-
ing 2003 [43] titled Prevention of deadlocks and livelocks in lossless backpressured
packet networks.

Protocol P

prevents deadlocks and livelocks in backpressured networks
without introducing any packet losses, without corrupting packet
sequence, without relying on elaborate network-wide coordin-
ation requiring multihop control messages, and without requir-
ing any change to packet headers. [43]

5.1 Motivation for a new protocol

I n the words of [43], here is the desired result of the proposed protocol:

No packets will be dropped inside a packet network, even when
congestion builds up, if congested nodes send backpressure feed-
back to neighboring nodes, informing them of unavailability of
buffering capacity - stopping them from forwarding more pack-
ets until enough buffer becomes available.

T he authors point to Noureddine [52] for arguments in favor of a back-
pressure flow control mechanism. Arguments are made to favor link layer

91

92 CHAPTER 5. PROTOCOL P

flow control instead of letting TCP handle it (LAN context), but no simula-
tion is done do measure how in fact the link layer affects upper layers

I n chapter 3 we pointed out that deadlock prevention strategies using
some kind of distance information like hop counters in the packet head-
ers are problematic because of non-compatibility with the IEEE802.3ae (z)
standard. Protocol P aims to only use existing fields in this frame format.

5.2 Overview of the protocol

T he overall operation of protocol P can be described as a selective back-
pressure mechanism. Whenever the network, or a node, is in a non-congested
state, all packets pending at a given node X are judged eligible for transmis-
sion. Eligibility is the qualification to be chosen, that is, making a packet
a selectable candidate to the scheduling algorithm. As the condition at the
downstream node of X worsens and congestion builds up, P gradually re-
stricts the amount of eligible packets to avoid buffer overflow, by sending
feedback to node X . Whenever congestion eases off, new feedback will re-
lax the restrictions laid on eligibility. In other words, protocol P is about
managing eligibility in terms of when, where and how.

5.2.1 Assumptions

I t is an underlying design requirement that no change to the standard
Ethernet control frame header will be needed. Moreover, three assump-
tions on network behavior are made to highlight the properties of protocol
P . First, we assume that the routing is static, see chapter 3. This implies
that topology changes and varying traffic conditions in the network, that
ordinary would trigger routing updates, are ignored. Later in section 5.6.3
we will show how the protocol can be modified to work with adaptive
routing.

N ext we assume that destination-based packet forwarding is used. As
we saw in section 3.1, the forwarding choice at a network node is based
only on the destination address contained within the packet header. This
leads to a network property where all traffic, both original and transit, hav-
ing the same destination, will follow exactly the same path from a given
node. Put in other words, data flows of a given source-destination pair al-
ways pass the same intermediate nodes, in the same order, and unless the
scheduling algorithm at one of those nodes is ill-behaved (see below), the

5.2. OVERVIEW OF THE PROTOCOL 93

X R

s

link l

transmit feedback f

Figure 5.1: Protocol P: link from X to R

internal packet order of each data flow will be preserved. In section 5.6.3
we will explore how packet forwarding can be based on other information
like ATM-VCI while still preserving the per flow packet sequence.

F inally, we assume all network links to have zero propagation delays.
This is an important simplification when dealing with feedback based flow-
control, because it implies that all control information is delivered instantly,
and control action can take effect almost immediately eliminating the need
for worst-case margins. Margins that will depend on factors like band-
width, traffic patterns, network architecture and switch design. However,
this assumption will be relaxed in section 5.6.2, and as we shall see both
when discussing the implementation of P 6.4 and our simulation scen-
arios 6, link propagation delay is emulated.

5.2.2 Overview

We will now turn our attention to some building blocks and concepts for
protocol P .

Links

L et us break down our packet network to the smallest unit still large
enough to discuss all aspects of protocol P ; one-way communication links
l connecting two adjacent nodes, see figure 5.1. In this model we name the
sending side Xl and receiving side Rl respectively, and the reverse link l ’.
Note that for most switch architectures a port play both the role as input
and output access point, and hence Xl and Rl for opposite directions of its
link at the same time.

94 CHAPTER 5. PROTOCOL P

Scheduling algorithm Sl

A s we saw in section 1.2.4 the scheduling algorithm Sl can base its choice
of the next eligible packet on a range of factors, including the arrival order
of packets, and we will here adopt a first in first out (FIFO) basis for Sl in
order to keep examples as pure as possible. When applying protocol P and
its eligibility restrictions, this however imposes a semi-priority property to
Sl on top of FIFO. The algorithm Sl is also assumed to be well-behaved, a
necessary condition in order to avoid livelocks. We will return to eligibility
issues in detail later.

Avoiding packet drops

I n chapter 3 we saw that dropping packets is a simple way to avoid
deadlocks. Protocol P however was introduced as a backpressure con-
gestion control mechanism that when applied per link leads to avoided
packet drops while still avoiding deadlocks. Like other backpressure con-
trol mechanisms it sends a stop signal over the link l ’ to node X before
buffer at R overflows. This mechanism is selective with regard to the des-
tination MAC address. Because of assumption of zero propagation delay,
the signal reaches X instantly.

Maximum number of hops D

T he maximum number of hops D that a packet has to traverse enroute,
depends on the network topology and routing protocol applied. A minimal
number of hops is for instance seen when shortest path routing is used,
giving D equal the network diameter. Worst case this number will equal
the number of nodes in the network: host 1 and host 2 connected to a serial
line of N intermediate switches, gives a D value of N if ’hop’ is interpreted
as the number of switches traversed, D = N+1 if interpreted as the number
of links crossed, or D = N+2 if all nodes involved are counted. In any
legitimate network route, regardless of how ’hop’ is defined, D represents
an upper bound that has implications on logical buffer management and
layout, which we will return to shortly.

Transmit Feedback

T ransmit Feedback fl is sent as standard control messages in the reverse
direction of the link, from R to X , restricting the set of eligible packets
when congestion builds up. Values have to be chosen so that subsequent

5.2. OVERVIEW OF THE PROTOCOL 95

packets can be stored at the receiving node, and are integers between 0 and
D . The fl parameter tends to be higher the more severe the congestion gets.
Likewise, as congestion eases off fl decreases resulting in gradually more
eligible packets.

Packet Levels

F or each packet buffered at a given node a packet levelλp :, i.e. an integer
level varying between 0 and D is determined. This value is local to the
nodes and is not transmitted, but λd can be predicted at the neighboring
nodes based on the previous seen transmit feedback parameter. Includ-
ing packet levels in headers would compromise the goal of not modifying
the existing Ethernet header. Level assignment process will be described
below.

I n all nodes a level table is kept for destination - λd pairs. Entries are only
kept for current destinations of buffered packets, unlisted destinations have
a λd of zero. Levels are stored per destination currently having packets in
the buffer, and not pr packet.

Interaction of the elements of P

B efore delving deeper into the inner workings of the protocol, let us take
a look at the superficial mechanisms of P . Monitoring buffer occupancies,
P gradually restricts the amount of packets in a node that are selectable by
Sl for transmission by sending transmit feedback fl to the upstream node
X . Given the last sent fl , the packet p arriving at R is assigned a level fl +1
to prevent deadlock, as the packet must have had a level of at least fl when
it was selected at X .

A ll packets destined for the same endpoint must have identical levels to
prevent reordering of packets. Hence, if there are packets pending at R for
the same destination as arriving packet p , these should all have their level
reset if p is assigned a level higher than the previous. In this way there is
only one valid level per destination d at a given time at a given node.

I n the following sections we present protocol P in detail. We have chosen
to keep close to the IEEE/ACM paper ([43]) for the exactness of the basic
requirements. These will however be elaborated and illustrated including
material and issues discovered during the implementation phase.

96 CHAPTER 5. PROTOCOL P

5.3 Eligibility and level assignment

T he concept of eligibility and the way it is embedded in this protocol, can
be viewed as one of the properties that differentiate P from the standard
IEEE802.3x, and we will now have a formal look on this concept. As we
shall see, the two parameters involved are transmit feedback parameter fl

and packet level λd , hence the level assignment process is also covered in
this section.

5.3.1 The Transmit Eligibility Rule

A s we have seen, both transmit feedback fl and packet level λp are in-
tegers between 0 and D , inclusive. Eligibility of packets waiting for trans-
mission over a link l at node Xl having received transmit feedback fl is
determined by applying the following rule.

Transmit Eligibility Rule: A packet p waiting at node Xl is eligible
to be picked up by the scheduler of link l for transmission over
l , if its current level λp satisfies

λp ≥ fl (5.1)

where fl is the most recent transmit feedback received by Xl

from the receiving node Rl .

H ence, a packet remains eligible as long as its current level is equal to,
or higher than, the most recent transmit feedback received. In the case of
fl = 0, it follows from the rule that any packet is eligible. The higher the fl

parameter, the more restrictive P behaves.

A t some point when the network/node is experiencing congestion, it
might be that no packet is eligible at all in Xl . In this scenario, the con-
gested node/interface/queue at Rl is shielded from arriving traffic while
packets are allowed to proceed toward their destinations, freeing up buf-
fer resources until once again Xl is given a feedback fl resulting in eligible
packets.

D ue to the assumption of zero propagation delay, we have instant deliv-
ery of transmit feedback. In real network scenarios this is an utopia, and in
section 5.6.2 modifications to protocol P relaxing this assumption are intro-
duced.

5.3. ELIGIBILITY AND LEVEL ASSIGNMENT 97

5.3.2 The Level Assignment Rules

I t has been showed how packet level λp affects the outcome of eligibility
evaluation, and below we describe the determination process and rules for
level assignment.

Let packet p arrive to node Rl over link l and assume that fl is
the most recent transmit feedback sent to Xl . It follows that
the level of p prior to transmission from the previous node (Xl)
must have been fl or larger. To guarantee freedom of deadlocks
in the network, it suffices to assign level 1 + fl to packet p [43,
pg. 925].

T his simple scheme has the advantage of being easy to comprehend and
straightforward to implement. However, because feedback parameter fl

can and will vary over time in response of traffic pattern and load, we face
the danger of assigning different levels to packets belonging to a single ses-
sion. If this happens, those packets might get misordered when forwarded
onto the downstream neighbor. Remember that scheduling is FIFO based,
but that eligibility evaluation lies on top of FIFO principles so that the first
packet from the head that satisfies the eligibility criteria is selected for trans-
mission. Hence, packet p 1 of a session might be skipped and packet p 2
selected if they have non-equal levels λp .

B ecause of the assumption of destination-based packet forwarding (see
section 5.2.1), and the implications that has on the path taken by packets
belonging to a specific session, measures have been taken in the design of
protocol P to avoid the above mentioned misordering:

at each node and at each point of time, all buffered packets that
have a common destination should have the same level so that
all will be eligible/ineligible at the same time, and therefore se-
lected for transmission in the correct order.[43, pg. 926]

T o accomplish this re-leveling, protocol P monitors the packet level λp for
all packets having an identical destination address at a given node, and for
all those packets lift their levels to the highest λp among them. A potential
advantage following directly from re-leveling is that those packets are more
likely to evaluate as eligible for transmission.

T he above described design principle for P in fact simplifies housekeep-
ing involved in level management. Instead of storing a level λp per packet,

98 CHAPTER 5. PROTOCOL P

a level λd can be kept per destination in a list referred to as the level table. To
determine the level of a packet p at a given time, the protocol has to check
the level table and apply the following rules.

Level Assignment Rules:

1. At each node, initially set λd = 0 for all destinations d .

2. When a packet p with destination d arrives from another
network node over some link l , the level associated with d
is updated as

λd ←- max(λd , 1 + fl) (5.2)

where fl is the value of the most recent transmit feedback
sent over the reverse link l ’.

3. When a packet p with destination d enters the network
at node n (over some network access link) the destination
level λd does not change.

W hen a P enhanced node is brought online, the level table begins as an
empty list. Any destination d not found in the table, is assigned λd = 0 as
default. Remember that all packets with a zero λp are eligible. The protocol
works by putting restrictions on eligibility, and hence it makes sense only
to keep records for those packets/destinations currently under some form
of control action. When the last of the packets belonging to a session, or
more precise belonging to a destination, as sessions toward a common des-
tination d are treated identical by P , has left the node, the entry d - λd can
be removed from the table in order to keep table sizes small. Another way
to view this removal, is to reset λd to 0 for all d not matching any buffered
packet at a node.

G iven an arbitrary packet p destined for destination d at an arbitrary
node n at time t, let jd

n(t) denote the associated level. As seen above, a
destination d not listed in the level table leads to jd

n(t) = 0. Moreover, jd
n(t)

was necessary updated or set to its current value in response of a previously
arriving packet p1 (for d), which was transmitted in response of a transmit
feedback fl 1 less than jd

n(t) sent from the current node. Hence, the λd must
have been jd

n(t) − 1 at some point of time at the upstream node. This
argument can be applied on each step of the reverse path1, for a total of h
steps indicating that the source of packet p has been reached. Since h must
be less or equal to parameter D , and λd at the network enter point is 0, the
expression jd

n(t) ≤ h ≤ D holds, and will be true for all p ’s , n ’s and d ’s.

1The upstream subset of the path taken by packets belonging to the session including
packet p

5.4. SWITCH MODEL AND BUFFER MANAGEMENT 99

Protocol designers’ observations regarding the rules

T he following section presents a list of observations as reported by [43]
regarding the Level Assignment Rules. The implications of these issues
will be summarized thereafter.

• If all packets encountered by node n and destined for des-
tination d enter the network at n , then λd is always equal
to zero (at n since it is never subjected to the update in 5.2.
[...]

• When a packet arrives at node n from another network
node, it will be assigned a level of at least 1, since the
level associated with its destination will undergo the up-
date in 5.2.

• Updating according to the above rules will never result in
a level larger than D . [...] by the time the level associated
with a packet reaches D , it must have reached its destina-
tion [...]

T raffic entering the network at node n have λd = 0 unless other traffic
for d passes through that node. Lowest level for packets being forwarded
is 1, and always no greater than D .

5.4 Switch Model and Buffer Management

5.4.1 Switch Model

P rotocol P was designed as a technique to be used with any switch con-
figurations, and this leads us to a general switch model used to illustrate
the properties of P (see figure 5.2). It will later be shown that this model
has some implications for implementation in our simulation environment,
as well as pointed to that this model is not all but unproblematic.

Virtual input-output queue Qi,j associated with input-output pairs (i, j)

Virtual receiving queue for each incoming network link, used for monit-
oring buffer occupancies and choosing the next transmit feedback fl

based on the current situation

Virtual sending queue for each outgoing network link, used by the schedul-
ing algorithm Sl selecting the next eligible packet for transmission

100 CHAPTER 5. PROTOCOL P

1

2

N

1 2 3 N

Virtual Receiving Queue 1
(for Transmit Feedback fl)

Virtual Sending
Queue N (for scheduling
algorithm Sl)

Virtual Input-
Output Queue

QN,1

OUTPUT NETWORK LINKS

I
N
P
U
T
S

Figure 5.2: Protocol P: generic switch model

A packet p belongs to both the latter queues at the same time in this
model. In fact, the layout of figure 5.2 can be viewed as a plain two dimen-
sional matrix where Qi,j is represented by a single square, and the receiving
and sending queues are represented by a single row and single column re-
spectively.

N ote that this switch model only includes interfaces for inter-switch com-
munication in the network. Drop-links (access-links) connecting a switch to
endnodes (data sources and/or destinations) are not shown. Furthermore,
protocol P does not specify anything regarding these drop-links, not even
on admission policies, flow control or buffer requirements.

P hysical (hardware) implementation of this switch model is by [43] claimed
to be possible “in many ways” [43, pg. 927]:

in a completely-shared-memory switch , all input-output , re-
ceiving, and sending queues are maintained in lists as packets
arrive on various incoming links and depart on various outgo-
ing links. In an input-buffered (output-buffered) switch, how-
ever , the receiving (sending) queue could be a physical buf-
fer and the other queues would still be virtual entities that are
maintained

5.4. SWITCH MODEL AND BUFFER MANAGEMENT 101

W e will return to this claim in section 6.4 when discussing how protocol
P is implemented and fitted into our simulation environment. Until then,
we will keep to this general switch model, and ignoring the issue of drop-
links. Moreover, the fact that some switch configurations can have variable
size queues (space allocated to those queues) is ignored for the clearness of
the presentation. Meanwhile attention is turned toward layout and man-
agement of (virtual) buffers.

5.4.2 Buffer Layout

B uilding on the knowledge of protocol P that we have established so far,
it is now to fill in the last pieces with rules for buffer management and
transmit feedback. Let us return to the scenario of figure 5.1 with a link l
connecting a sending node Xl and a receiving node Rl , and let size of the
receiving queue at Rl be denoted by bl . More, let γmax be the value of the
networks MTU. This parameter will be used as a chunk unit for the buffer
layout, as it is of little use to have buffer space not capable of holding an
entire packet.

M anaging the receiving queue and, in relation to that, set the fl para-
meter accordingly will be our main focus for the rest of this section. For the
receiving queue initialize a threshold Bi guarding the upper limit of buffer
space available to packets of levels leq i. The fl sent by Rl to Xl is the low-
est level of packets Xl can transmit and Rl receive without violating the Bi

thresholds.

T he buffer space bl is divided as shown in figure 5.3 into D parts bi, i = 1, 2, . . . , D
where

bi ≥ γmax (5.3)

and

bl =
D

∑
j=1

bj ≥ D × γmax (5.4)

[...] We refer to bi as the buffer budget of level i and require that
a packet of level i be accepted into the buffer only if there is
enough budget available for it at levels i below. Let ni, i = 1, 2, . . . , D,
denote the combined size of packets of level i that are stored in
the receiving queue of link l . The above requirement may be
stated as [...]

102 CHAPTER 5. PROTOCOL P

b1

b2

bD

bD-1

bl

BD

BD-1

B1

B2

Figure 5.3: Budget allocations of link l ’s receiving queue

i

∑
j=1

nj ≤
i

∑
j=1

bj, i = 1, 2, . . . , D. (5.5)

In other words, the combined packet sizes nj don’t exceed the combined
buffer sizes.

T he buffer budget of level i is hence established as bi. Moreover, we need
an upper threshold on buffer used by packets of level ≤ i:

Bi =
j=i

∑
j=1

bj (5.6)

It is crucial that this constraint is satisfied for all i at all times. Following
from equation 5.6 and figure 5.3, we have that BD = bl .

V irtually, these requirements can be implemented as seen in figure 5.4
using a set of buffer management parameters mi, where mi refers to the
part of combined buffer budget of levels j ≤ i not yet allocated to packets
of these levels respectively:

mi ,

j=i

∑
j=1

(bj − nj), i = 1, 2, . . . , D. (5.7)

5.4. SWITCH MODEL AND BUFFER MANAGEMENT 103

b1

b2

bD

bD-1

Buffer Budget Allocations Packet Level Occupancies

n1

n2

n4
(n3=0)

mD

m2

m1

Figure 5.4: Buffer management parameters - l ’s receiving queue

F rom these definitions, [43] point to some relations between buffer man-
agement parameters and packet level occupancies. First, “out of the com-
bined buffer budget of levels j ≤ i, a budget mi is either allocated to
packets of levels j ≥ i or not allocated to any packets at all”. Second,
mD denotes the sum of non-allocated buffer space in the receiving queue.
Third, “since packets of level j can use the buffer budget of any level k ≤ j,
the term bj − nj [... in equation 5.7] can be negative, for some j. However,
mi cannot be negative for any i since packets of levels j ≤ i cannot use the
buffer budget of a level higher than i”[43, pg. 928].

Buffer Management Rules:

1. When the receiving queue of link l is empty, initiate

mi =
j=i

∑
j=1

bj, i = 1, 2, . . . , D. (5.8)

2. If a packet of length γ arrives and is buffered at level j,
decrease mi by γ, for i ≥ j.

3. If a packet of length γ and level j leaves the buffer, increase
mi by γ, for i ≥ j.

4. If a packet of length γ is lifted from level j to level k ≥ j,
increase mi by gamma for all i such that k ≥ i ≥ j.

104 CHAPTER 5. PROTOCOL P

N ow that we have a set of buffer management parameters, we also have
the means of choosing the transmit feedback parameter fl to enforce the
above declared rules. mi should never be negative, as that would indicate a
serious error where more budget than available has been allocated. Hence,
as long as mi ≥ γmax for i ≥ j, an arriving packet designated level j will
be allowed into the queue. [43] conclude that “ fl should be set to a level j
such that mi ≥ γmax, for all i ≥ j + 1, and mj ≤ γmax “ . If there is at
least γmax space available at all levels, there is no need for control action
as all packets will be eligible, and hence fl = 0. In the opposite case where
mD ≤ γmax, fl must be set to D , resulting in zero eligible packets at Xl

. Remember that in the case a node n encounters a packet of level D , that
packet is destined for n (or an endnode connected to n), and consequently
that packet will under no circumstances be forwarded on to the link of an
downstream switch.

Transmit Feedback Rules:

1. At the receiving end of Rl of each link l , set the correspond-
ing transmit feedback fl = j, where j is the largest level for
which mi ≤ γmax. If no such level exists, set fl = 0.

2. Whenever fl changes, send an immediate feedback with
the new value of fl to the transmitting node Xl .

F inally, a comment on the scheduling algorithm Sl regarding eligibility.
Contrary to plain backpressure mechanisms, like IEEE802.3x described in
chapter 4, which either mark all or none packets eligible at a given time at a
given node, P might, and is likely to, mark a subset of the packets pending
at n eligible whilst the rest is in-eligible. In this way protocol P interferes
with the normal operation of Sl , and may change the order of packet trans-
missions. However, because of the common level table in the node, the
order is not changed for each source-destination pair, which internally are
treated in FIFO manner. As promised, we will return to implementation
issues on buffer layout for protocol P in section 6.4, and see how D affect bl

.

5.5 Theoretical Proof

P rotocol P was introduced as a proposed technique, a technique whose
properties are formally stated in the form of a theorem that is proved by
reasoning and induction. Up to today, to the knowledge of the designers
of P and the author of this thesis, there has been no implementation of the

5.5. THEORETICAL PROOF 105

protocol, neither software simulation nor in hardware. As described in the
problem domain of this thesis 1.3, we here represent a software based sim-
ulation focusing on the performance measurements. Hence, the detailed
mathematical reasoning of [43] will only be summarized in this section, and
we refer to the paper for a complete description. The definitions, theorems
and lemmas below in this section are all cited directly from [43, pg. 929-
931].

R ecall the definitions of a deadlock and livelock free network (3.23.3)
along with the criteria for a deadlock or livelock (1). It has been demon-
strated in the above sections that protocol P is sufficient to avoid deadlocks
based on the level assignment rules and eligibility rule. To eliminate the
possibility of livelock in a network, the following conditions must hold for
each link in the network. 2.

Definition 5.1 The eligibility age of a packet waiting for transmission over a
link l is the combined duration of all periods of time during which the packet has
been waiting and has been eligible for transmission over l .

Definition 5.2 The scheduling algorithm of a link l is defined to be livelock-
free if the eligibility age of no packet waiting for transmission over l can
grow indefinitely.

T he properties of protocol P are formally stated below

Theorem 5.1 Consider a packet network using the selective backpressure protocol
P . Assume that no packet in the network travels more than D hops. Furthermore,
assume that the propagation delays of all links are zero, the network routing is
static and packet forwarding in the network is destination-based. In the absence of
transmission or processing errors, the following properties hold.

1. Packet transmission in the network is loss free.

2. The order of packets belonging to the same session is maintained as they
pass through the network provided that their order would be maintained by
the scheduling algorithm Sl of each traversed link l when operating in the
absence of protocol P .

3. The network is free of deadlock.

4. The network is free of livelock provided that the scheduling algorithm Sl of
each network link is livelock-free

2The definition 5.2 below is not satisfied by all scheduling algorithms, e.g. strict priority

106 CHAPTER 5. PROTOCOL P

T o support this theorem, three lemmas are needed

Lemma 5.1 The level λp of a packet p buffered at a given node n always satisfies

λp ≤ D (5.9)

with equality only if n is the destination node for p .

Lemma 5.2 At the receiving queue associated with any link l , parameters mi

always satisfy
mi = mi−1 + bi − ni, i = 2, 3, . . . , D (5.10)

and
mi ≥ 0, i = 1, 2, . . . , D (5.11)

Lemma 5.3 Consider the receiving queue associated with a network link l and an
arbitrary level k, 1 ≤ k ≤ D. Assume that each packet in the buffer has a level
k or higher, will leave the buffer within some finite time. It follows that for any
arbitrary time t0, there is a finite time t1 ≥ t0 at which fl ≤ k.

T he proof of theorem 5.1 can be summarized as follows. At a node n (Rl)
there will always be available space to buffer packet p because the upstream
node Xl would not send p unless a feedback fl ≤ D − 1 has been sent it
from Rl indicating that mD ≥ γmax (at least 1 MTU worth of free buffer
total). Second, since all packets destined for d stored at n at a given time
t are assigned the same level, they will either all be eligible or all in-eligible
with respect to transmission over l . Consequently, since Sl is assumed to
preserve the relative order of packets, the same would hold in the presence
of P. Third, it can be shown by induction (applying lemma 5.1 and 5.3) that
a packet of arbitrary level 1− D enqueued at node n will leave n in finite
time3. Finally, “since each packet may travel a bounded number of hops
in the network, and since the waiting time of each packet at each node is
bounded, each packet will leave the network in finite time.” [43, pg. 31].

5.6 Extensions and variations to the protocol

I n this section we will present alternatives that has been suggested on
protocol P in [42] and [43]. Because of the focus of this thesis, emphasis
will be put on demonstrating how protocol P can coexist in a network with
IEEE802.3x capable nodes, and in addition the issue of non-zero propaga-
tion delays. The other assumptions made in section 5.2.1 are covered more
lightly along with some variations of minor importance for our study.

3It is assumed that after some point of time, there are no new packet arrivals to the
network

5.6. EXTENSIONS AND VARIATIONS TO THE PROTOCOL 107

5.6.1 Protocol P coexisting IEEE802.3x

H ow protocol P transmits its feedback parameter fl is a bit glossed over
in the 2003-paper ([43]), where “PAUSE signals of gigabit Ethernet (IEEE802.3z)
technology” (pg. 923) is used as an example of backpressure based net-
working, and it is pointed out that the proposed protocol should be com-
patible with this frame format. It is however not required that the under-
lying technology is gigabit Ethernet, nor that the fl is exchanged between
nodes using PAUSE frames. But, for the rest of this thesis we will assume
these requirements fulfilled unless otherwise noted.

W e have seen in chapter 4 how the PAUSE signals of gigabit Ethernet
works, but let us brief review the important traits; Congestion is handled
with a stop-start mechanism using XOFF and XON units transmitted form
the node experiencing congestion to its troublesome upstream neighbor.
These units are carried inside the standard control frame as an integer in the
headers pause_value field, and the network interface receiving this unit as
a number of 512 bit time slots that it is required to refrain from transmission
of any new data frames. It varies between vendors whether this activates
a deactivation timer, or an explicit XON has to be received before normal
operation can be restored.

L et us refer to nodes implementing XOFF PAUSE signals and transmit
feedback parameter as regular and enhanced nodes respectively. Upon re-
ceiving a control frame, a regular node will interpret the pause_field in ac-
cordance with PAUSE rules and stop(start) the interface, whereas enhanced
nodes will interpret it as a fl value adjusting the basis for eligibility criteria.

I ntroducing networks with a mix of regular and enhanced nodes, a po-
tential source of misinterpreting arises. The regular nodes have no means
to know anything about protocol P nor how it reinterprets the pause_field
in the control frame header. Hence, regular nodes will always operate in
compliance of the standard protocol. Enhanced nodes on the other side
have the potential advantage of knowing that there might be regular nodes
somewhere in the network, but without adding a signaling sub-protocol to
probe the network4 they can only infer from the response seen on trans-
mit feedback sent, the nature of their adjacent link partners. However, not

4or a network administrator explicit setting this parameter in the switches; an inter-
vention that will prohibit (proper) reaction to dynamic topology changes during system
operations

108 CHAPTER 5. PROTOCOL P

knowing for sure if Rl is enhanced or not, Xl has to react to a control frame
as if Rl were a regular node not to violate the IEEE standard.

T herefore,to reduce the danger of misunderstanding,

When a PAUSE frame is sent form an “enhanced” node to sig-
nify a Transmit Feedback value, then the PAUSE frame should
be followed immediately by a second PAUSE frame with its
parameter set equal to zero (to continue the immediate trans-
mission of data frames).

We will refer to the second PAUSE frame containing XON for protocol P as
confirm frame. The list below represents the four different scenarios that a
mix of regular and enhanced nodes can create.

Xl regular Rl regular : Link partners in this scenario both understand, use
and comply to standard PAUSE signaling, and the resulting performance
has been studied in detail in papers like [52], [81] etc. Both nodes interpret
the pause_field as bit times, and no extra XON is ever generated.

Xl regular Rl enhanced : In this case, Rl sends a first control frame con-
taining the fl parameter, followed by a confirm frame. Upon reception, Xl

will assume that the first control frame with a positive non-zero value was
sent it to halt transmission for the given time period. The value 0 in the
subsequent frame will cancel the previous seen stop signal. Consequently,
Xl will continue sending at full rate in spite of Rl ’s attempts to throttle
it, and likely cause packet drops at Rl as buffers overflow. This is clearly
the most dangerous combination of the two protocols in terms of potential
unwanted packet loss.

Xl enhanced Rl regular : In the third scenario the enhanced node will
have to assume that the first control frame from Rl tells it to pause for the
specified time period. In the absence of the expected control frame, this
case is identical to the both Xl and Rl regular combination in that a pause
in fact occurs. But, when Rl sends the XON message, Xl will interpret it as
confirmation and resume sending with a eligibility criteria dictated by the
previous seen XOFF value (which most likely will be an integer way out of
the range of normal fl and even exceeding D . Despite [42] does not men-
tion it explicit, we find that this scenario in particular has the potential of in-
definitely halting a network interface creating a serious deadlock. Whether
this is worse than the previous scenario leading to packet loss, depends on
the higher-level protocols and applications used. In case of zero-tolerance

5.6. EXTENSIONS AND VARIATIONS TO THE PROTOCOL 109

on packet loss, a deadlock might be better, but unless the network has some
form of fault-tolerance and capability to adapt to topology changes in re-
sponse of a link failure, we are facing a growing network-wide breakdown.

Xl enhanced Rl enhanced : Last we have the case of a pure enhanced net-
work, or at least link partner pair, and this is the only scenario where guar-
antees against deadlock, livelock and packet loss are preserved by protocol
P . All nodes interpret the pause time as fl , and adjust the amount of pack-
ets being eligible at Xl while continuing transmissions upon receiving the
confirm frame. The latter frame can be removed to increase performance if
the two nodes learn that they both are enhanced.

Conclusions on inter-working of regular and enhanced nodes Protocol
P needs to use confirm frames for each control frame with transmit feed-
back fl sent, to discriminate operation from standard gigabit Ethernet flow
control. We have pointed to different harmful effect that some of the com-
binations of these two mechanisms can lead to. The authors of [42] con-
clude with that

when a network is built with a mixture of both “enhanced” and
“regular” IEEE802.3 equipment, there are no guarantees against
the possibility of network deadlocks and livelocks, and packet
loss.

5.6.2 Non-zero propagation delays

A non-existing propagation delay on inter-switch links is a networking
utopia, but despite the hard facts of reality, many network administrators
have probably wished for just that on some occasion. It may also be con-
venient to ignore this parameter when designing, proving and testing new
protocols. However, it is now time to relax this assumption and look at
how the effects of non-zero propagation delays can be incorporated into
protocol P .

L et T denote the round-trip-time (RTT) of the link l in figure 5.1. Ac-
cording to [43], “we simply need to redefine (re-interpret) the ni occupancy
parameters to include (worst-case) potential packets of level i that might be
received at Rl during the next T time units” [43, pg. 932]. In other words,
we have to expand ni to include a margin of x packets (x ∗ γmax), where
x depends on the underlying technology and RTT.

110 CHAPTER 5. PROTOCOL P

T he idea is to make sure that the fl signals are transmitted early enough
to reach the upstream node Xl and take effect in time to alter the eligib-
ility criteria before the buffers at Rl overflow. For action wanted at time
t0 the control frame has to be sent at time t0 − T. The two most recently
published revisions of protocol P ([42] and [43]) have a slightly different
view on how and and which rules to modify. The latter paper seems to
have the theoretical most sound suggestion. However, despite that it only
requires the above cited re-interpretation of ni, along with altering the level
assignment rule 5.2, it requires Rl to keep a history record of all transmit
feedbacks fl sent during the previous T period. This will require additional
book-keeping to a protocol already burdened with extensive virtual buffer
management.

O n the other hand, the former paper mentioned above requires changes
both to the transmit feedback rule and the level assignment rule. But,
instead of emulating filling and shrinking of queues (buffer occupancies)
based on the current fl , this paper suggests to calculate the worst-case
amount of packets that might arrive from Xl to Rl during time T. The value
rT arrived at will be a function of the datarate r and the RTT (T) of link l
, and indicate how much the ’water’ on the receiving queue bar will rise.
In other words, rT is the margin reffered to a few paragraphs above. Con-
sequently, the described strategy leads to the following modified rules5:

Transmit Feedback Rule: This rule replaces step 1 of the old transmit
feedback rule on page 104, preserving step 2 as it is.

Set link l ’s Transmit Feedback fl = j, where j is the largest Level
for which mj − rT ≤ γmax. If no such Level exists, set fl = 0.

Level Assignment Rule: This rule replaces step 2 of the old level assign-
ment rules on page 98 (i.e. equation 5.2), preserving steps 1 and 3.

When a packet p with destination d arrives from another net-
work node over somelikn l , the Level associated with d is up-
dated as

λd ←- max(λd, 1 + j) (5.12)

where j is largest Level for which currently mj ≤ γmax (if no
such Level exists, set j = 0).

5note that both transmit eligibility rule and the buffer management rules are unchanged

5.6. EXTENSIONS AND VARIATIONS TO THE PROTOCOL 111

N1

N2

N3

N4 Path 2

Path 1

Figure 5.5: Topology and alternative paths N1-N4 using adaptive routing

I t is noted in [42] that Rl should have correct estimate of the RTT T. If
this is not the case and the RTT is greater than the estimate, buffer overflow
and packet loss might occur. On the other hand, a too generous estimate
will waste valuable buffer resources. Because of this, an upper bound for the
T is suggested applied to all nodes, in the same way as the parameter D .
Moreover, to ensure that packet burst during a non-congested time period
do not lead to buffer overflow at Rl , the following expression should hold:

b1 ≥ γmax + rT (5.13)

W e have now seen how non-zero propagation delays and their effect can
be incorporated onto protocol P . Next, we present some other variations
that are suggested in the papers describing P , but of lesser importance for
this thesis.

5.6.3 Variations on forwarding and routing

Compatibility with adaptive routing

R elaxing the assumption of static routing made in 5.2.1, there is a poten-
tial danger of entering an endless loop of level table updates that would
lead to violation of lemma 5.1. Let us illustrate this scenario with an ex-
ample using the topology and paths shown in figure 5.5. Assume that all
traffic originates at node N1 and that all packets pn have d = N4 and follow
Path 1 (N1-N2-N3-N4). Assume further that D is set to 3, as no route in
this four-node topology can span more than 3 hops. While packets for d
still are routed along Path 1, the entry for d in level table at N3 reaches its
maximum value 2 6.

6Refer to section 5.3 for review of level assignment rules and explanation of why λd caps
at D -1 for a packet waiting to be forwarded ont the next link

112 CHAPTER 5. PROTOCOL P

A t this point of time a routing update occurs in the network, where the
internal order of the two intermediate nodes change so that packets follow
Path2. Packet p arriving at N3 will according to the rules be assigned λp

= 2 despite that it have only traversed one hop. If the most recent feedback
level fl sent N3 form N2 is 2, then p will be assigned level 3 (i.e. λd = D)
upon arriving node N2, despite that one link remains to be traversed before
p reaches its destination. This behavior will repeat if the routing continues
to alter between Path 1 and Path 2, and as a result λd may grow indefinitely.

T he source of this problem is the preserving nature of the level table com-
bined with the principle of assigning all packets with a common destination
identical levels, as described in section 5.3.2 (equation 5.2), in order to not
corrupt the packet sequence. [43] therefor suggest a new set of level assign-
ment rules that will permit packets with a common destination d at node n
to have dissimilar packet levels, provided that for two arbitrary packets p1

and p2 with destination d , the oldest packet should never have λp lower
than the newer one. Note that this alternative involves storing levels per
packet in stead of per destination.

Level Assignment Rules -revised:

At each node n , when a packet p with destination d arrives from
another network node over some link l :

1. assign p with the level

λp = 1 + fl (5.14)

where fl is the value of the most recent transmit feedback
sent over the reverse link l ’;

2. lift the level of all packets p ’ that have the same destination
d and which are currently buffered at n as

λp′ ←- max(λp, λp′). (5.15)

Packet forwarding considerations

I n most network scenarions it is desirable to preserv the relative ordering
of packets as they are being forwarded. Different technologies use different
header fields to identify the subset of packets that belong to a session and
hence should remain in order. So far we have assumed destination-based
forwarding where destination address is mapped to packet level λd . How-
ever, the underlying principle can easily be fitted into other technologies

5.6. EXTENSIONS AND VARIATIONS TO THE PROTOCOL 113

by redefining the mapping criteria. In practice, this would mean mapping
the virtual circuit identifier (VCI) in ATM networks, or the label in MPLS
networks, to vc-levels or label-levels respectively.

I f maintaining the packet sequence is irrelevant, the level assignment can
be done individually for each packet, with λp = 0 for packets arriving the
network and λp = fl + 1 for the rest.

5.6.4 Other variations

W e have now seen how protocol can be modified to coexist with stand-
ard IEEE802.3 equipment in a network. Further, the assumptions on zero-
propagation delays, static routing and destination-based packet forward-
ing have been relaxed to make protocol P more fit for real networking scen-
arios. Before we turn to how P was implemented in our simulation envir-
onment, a few more alternatives have been addressed in [42] and [43], and
are presented below. In short, these alternatives regard fairness issues and
situations in which P relates to other network properties (beside deadlock,
livelock and lossless transmission) and higher-level protocols .

N etworking issues other than the ones addressed by protocol P might
rely on packet dropping for proper operation. This is the case when a
packet gets corrupted, or its lifetime expires, and hence as the packet is
no longer deliverable it should be allowed removed (i.e. dropped).

M oreover, during congestion some input-output port pair in a given
node can become a bottleneck with potential unfair memory-sharing in the
virtual receiving queue of the input port in question. Recall the layout of
these virtual queues, see figure 5.3. Assume that most of the packets resid-
ing in queue Q0, as well as the majority of packets arriving on that interface
(Ni0), are destined for output link l2 and that Ni2 is not capable of trans-
mitting packets onto the link at the speed packets for that destination port
arrives the switch.

I f all ports of a switch are link speed capable, and traffic arriving at port
A (at linkspeed) exclusively is forwarded onto port B with no other traffic
crossing the switch toward port B, then this traffic will not cause problems.
However, the excess traffic arriving from other input ports will contribute
to a fan-in effect toward port B, and hence these packets will gradually fill

114 CHAPTER 5. PROTOCOL P

up the virtual input queues of the switch. This might cause protocol P con-
trol action sending transmit feedback to the upstream node. For the packets
entering at port A but exiting on a different output port being free (under-
utilization), this behavior implies that some packets will be unnessesary
delayed. To resolve this issue, [43] suggest to drop some of the offending
packets, and notes that:

performance of the protocol P (which reduses end-to-end delay
when network resources are used in a "fair" fashin) coubled
with selective dropping of packets that take "too much" of a
node’s memory is a topic for future research [43, pg. 933].

A s established in chapter 1 flow control at the link layer mainly addresses
short-term congestion, whereas long-term (sustained) congestion more of-
ten is handled at higher levels. Protocol P does not address fairness in
providing service to different users, as it only inspects MAC destination
addresses and has no concept of users7. Therefore, it might be relevant
“to couple this technique with end-to-end congestion control schemes that
handle congestion problems on a quasi-static basis while providing the de-
sired fairness and/oir priorities in the amount of services given to different
users in the long run” [43, pg. 933].

T he Transmission Control Protocl (TCP) relies on packet dropps to rate
control its sources for end-to-end congestion management. To internet-
work a lossless network applying protocol P with TCP, gateways at the
network edges might be inserted to handle losses and signal TCP while
preserving a lossless nature inside the P enhanced network.

F inally, the question of Quality of Service (QoS) in networks utilizing the
proposed protocol need attention. The current buffer layout and manage-
ment does not allow priorities nor differentiated service at a node. How-
ever, some modifications have been suggested to accomodate thisl. If ded-
icated buffers are avaialble to prioritized traffic, this subset of packets might
be permitted to ignore the transmit feedback parameter fl and be evaluated
as eligible at all times. Alternatively, a minimum threshold can be set on
the packet level λp assignable to this traffic.

A ll the above alternatives require additional book-keeping, processing,
buffers and/or devices to funcion. The total cost of these factors must be

7However, like described in 5.6.3 above, replacing the MAC address with VCI in ATM
networks might give a stronger bond to users

5.6. EXTENSIONS AND VARIATIONS TO THE PROTOCOL 115

taken into account and weighed agains the resulting performance effects in
order to answer whether the modifications is worth to pursue.

Chapter 6

Implementation and
Simulation Scenarios

T his chapter explains how we have implemented and carried out simu-
lations of the flow control schemes. We start by showing the overall net-
work interface operation in terms of how the host and switch nodes are
composed, and the initial processing of arriving frames, followed by mak-
ing our contributions to the J-Sim architecture explicit. Subsequently we
move on to specific implementation issues for IEEE 802.3x and protocol P

respectively. Sections 6.5 and 6.6 state and explain topologies, routing and
workload parameters used. The chapter closes with a section on how we
have set up the simulations using J-Sim and Tcl.

6.1 Network interface operation

I n the following we will make extensive usage of flowcharts to explain
behavior of network interface operation. Figure 6.1 shows the most com-
monly used symbols, arrows excluded. When simply showing the rela-
tionship between elements, for example the main components of a node,
we resort to a simpler scheme using rectangles for network interface and
queue elements, and circles for the remaining.

F urther, we use a shorthand notation and also abbreviations related to
the specific protocol implementation. Abbreviations are introduced in the
context they appear, whereas the shorthand notation is listed below.

• Q, queue

• NI, network interface

116

6.1. NETWORK INTERFACE OPERATION 117

Figure 6.1: Description of flow chart elements

• RT, routing/ routing table

• BB, buffer budget (BBQ = bb queue, BBC = bb counter)

• FC, flow control

• N/Y, no/yes (for choices)

• P, Protocol P

• X, IEEE 802.3x

• two letter combinations ending with F, various timers named by the
fork process it is associated with

• flags, are used within, and in relation to, the flowcharts. Names are
based on what each flag is used for, and not directly related to a spe-
cific protocol or standard.

W e define integer constants for flow control types as FC_TYPE_NONE = 0,
FC_TYPE_IEEE = 1 and FC_TYPE_P = 2.

T o relate the following models of network nodes to the J-Sim envir-
onment, recall the illustrations of the Core Service Layer (CSL) from fig-
ures 2.6 and 2.7.

118 CHAPTER 6. IMPLEMENTATION AND SIMULATION SCENARIOS

Figure 6.2: Host node with single network interface, droptail queue, packet
dispatcher with identification service, and components related to workload
and framing.

6.1. NETWORK INTERFACE OPERATION 119

6.1.1 Host node

F igure 6.2 shows a host node (end station) with a single network inter-
face. Host nodes act in our study only as sources/sinks. Traffic is injected
by using the built-in traffic generation tool of J-Sim, then converting these
packets to well-formed Ethernet frames, inserting them to a droptail queue,
and within turn handing them off to the the link scheduler. This queue en-
sures that a host node will always have data to inject to the network if it is
permitted to send. The droptail property ensures that in the absence of an
upper layer protocol, outgoing frames do not pile up and grow out of age.
This behavior is in line with [17] and our remarks in section 2.2.5 earlier.
Incoming frames destined for a host node are delivered directly to the dis-
patcher and drained.

6.1.2 Switch node

T he scenario gets more complicated within the switch nodes, as shown
in figure 6.3. In contrast to the host node, switches have multiple network
interfaces, a level table and RT component, but no source/sink or Ethernet
converter. Each enclosed group of rectangles corresponds to one network
interface. Each element of the NI has a suffix corresponding to the local id
of that interface. As for the host node in figure 6.2, there is a NI_in and
a NI_out as well as a queue. The simple droptail queue is here replaced
with a buffer budget queue associated with a local counter (bbc) and global
level table, and a FIFO queue of variable size. Queue functionality and
implementation is given below in section 6.4.3.

6.1.3 Queuing and processing of arriving frames

I n general we use the input/output queue scheme shown in ??. The loca-
tion within the actual simulation environment uses physical output queues,
one per NI_out. However, reservations are done through the buffer budget
counter based on NI_in id and the destination address of the frame.

W ithout flowcontrol enabled, control frames are ignored and droptail
queues are assumed to cause frame loss when congestion builds up. The
processing of an arriving frame at some NI_in is illustrated in figure 6.4.
This processing is consistent with the MAC Control Receive state diagram
given in [69, clause 31].

120 CHAPTER 6. IMPLEMENTATION AND SIMULATION SCENARIOS

Figure 6.3: Switch node with 2 network interfaces, level table and packet
dispatcher with identification and routing services

6.1. NETWORK INTERFACE OPERATION 121

Figure 6.4: Processing of an arriving frame at the in-port of a network in-
terface (host or switch)

122 CHAPTER 6. IMPLEMENTATION AND SIMULATION SCENARIOS

D ifferent tests are applied to the received data, starting with determining
if it is data or control frame (type field check). Since data frames are to be
sunk within host nodes, and enqueued to be forwarded in switch nodes,
the flowcontrol and buffer check only apply to switches. On the other hand,
control frames are only valid if flow control is enabled, the received frame
is well-formed and contain one of the correct protocol field values. The
control frame is then further processed depending on the protocol, either
IEEE 802.3x or protocol P , described below in the implementation sections.

6.2 Our contributions to the J-Sim component hier-

archy

I mplementation has been an important part of our work, and we would
like to specify our J-Sim contributions. The following Java classes have
been developed for this project:

• EthConstants

• EthFrame

• PktModifyer

• P2PNIPIn

• P2PNIPOut

• BufferBudgetDropTailQueue

• BufferBudgetConstants

• BufferBudgetCounter

• LevelQElement

• VSFIFOLevelQueue

• PNodeBuilder

• ProtocolPBuilder

• AddressModifier

• PStatCollector

6.2.1 Ethernet frame and packet modifier

T he Ethernet frame class, EthFrame, is a subclass of the built-in Packet

class of J-Sim. We have included framesize, bodysize, seqnr(frame se-

6.2. OUR CONTRIBUTIONS TO THE J-SIM COMPONENT HIERARCHY123

quence number), type and pauseTime to achieve desired Ethernet proper-
ties.

T he type field corresponds to the protocol opcode field for MAC con-
trol. We have in our implementation added an opcode for protocol P in
order to be able to distinguish it from standard MAC PAUSE control. In
a real hardware implementation, this simplification would cause problems
for a network consisting of a mix of P enhanced and regular switches. The
challenge is that the regular switches would not recognize the new opcode
and discard all those control frames, leading to flow control effectively be-
ing prohibited between heterogeneous switches, at least for the duration
it takes the P enhanced node to detect the lack of response and resort to
standard PAUSE behavior. Such adaptivity would require additional con-
trol logic in the interface.

T he packet modificator, PktModifyer ,extends drcl.net.Module of J-
Sim and is used for the Ethernet converter (shown in figure 6.2), with the
single purpose of creating a new well-formed Ethernet data frame (EthFrame),
and inserting it to the body of the InetPacket that is to be injected to the
network. This breaks with the well-established scheme of encapsulation,
by wrapping the lower-level protocol data inside, and not around, the re-
ceived SDU.

T his behavior is the result of an implementation choice related to J-Sim
using InetPackets as the data unit in the simulation. In order to preserve
proper encapsulation, we would have to rewrite extensive parts of the sim-
ulator. By ensuring that our special-purpose components developed for
network interfaces and buffer management uses the info stored within the
Ethernet frames, we obtain a stronger degree of code reuse with respect to
well-proven J-Sim components, and a lower implementation cost.

C omponents for network interfaces and buffer management are described
in the implementation sections below. The builders are explained in sec-
tion 6.7, the address modifier in section 6.6 and the statistical component is
introduced in section 7.2 of the following chapter.

124 CHAPTER 6. IMPLEMENTATION AND SIMULATION SCENARIOS

6.3 IEEE 802.3x implementation issues

T he basics of IEEE 802.3x was explained in section 4.5. This section deals
with how MAC Control is handled in our specific implementation. We
have in our Java code, as well as in the following text, adopted some gen-
eral implementation tips from [67]. These tips are given high confidence
and weight due to Seiferts strong involvement with the IEEE related to the
topic domain.

6.3.1 PAUSE timing

P AUSE timing is crucial in order to ensure effective flow control. When
the MAC Control sublayer receives a valid PAUSE control frame with a
non-zero pause_time, an upper bound has been set on the length of time
that interface is permitted to transmit data frames before it must halt [69,
annex 31B]. This upper bound serves a twofold purpose: it ensures that
PAUSE control requests are served in a timely manner, and second, it al-
lows completion of an already submitted transmission. Moreover, this re-
sponse time is measured in pause_quantum: a NI operating at 100Mbps or
less, is restricted from starting transmission of a data frame 1 pause_quanta
after reception of the control frame. Operating at speeds beyond 100Mbps,
the upper bound is extended to 2 pause_quantum [69, annex 31B], [67].

6.3.2 Selecting values for pause_time

S election of pause times is left to the implementer/vendor and values
between 0x0000 and 0xFFFF are available (“2-octet unsigned integer” [69,
annex 31B]. A simple choice of pause_time is to use the latter as a XON
flow control assertion signal, and the former as a XOFF cancel signal in
line with the standard. In this case, when a congested buffer that empties
more rapid than the pause_time indicated and drops below the low water
mark, action should be taken to issue an explicit cancel message to prevent
unnecessary idle operation that would otherwise follow from waiting for
the timer to expire.

F or such short-term scenarios, each triggering of flowcontrol has the
overhead cost of an additional control frame to lift it. On the other hand,
a switch that is part of a heavily congested subset of the network, might
need several re-invocations of XON, and the longer the pause_time in this
latter scenario, the fewer control frames need to be sent and processed, re-
ducing the overhead compared to shorter time intervals. Hence, selecting

6.3. IEEE 802.3X IMPLEMENTATION ISSUES 125

the non-zero pause_time can be done based on simplicity, desire for more
control granularity, and/or desire to minimize control overhead.

M AC PAUSE Control is commonly implemented in hardware due to the
tight time constraints[67]. If keeping a well-formed control frame like de-
scribed in paragraph 4.5.3, keeping to the minimum and maximum values
of pause_time would add to implementation simplicity.

P lacing an upper bound on the pause_time and the use of a timer in the
MAC Control sublayer, ensures that permanent disabling of a NI cannot
occur, even if the XON control frame gets lost or corrupted. Despite this
safeguard, some has advocated to eliminate the pause_timer and use the
XON/XOFF as a simple light switch that remains in a position until flipped.
This may simplify implementation on some areas like the need for timer
and periodic testing for whether an issued XON has to be prolonged by
sending a subsequent XON message. However, caution has to be made to
prevent flow control deadlocks, in which a NI is constantly prevented from
transmitting.

6.3.3 Flow control responsiveness and buffer requirements

B uffering additional data is required when using the PAUSE flow con-
trol because link propagation delay and MAC Control response time pre-
vent instant reaction to a control frame. A list of worst case amount of
additional data a NI might receive after issuing a PAUSE request before the
link-partner halts transmission, is given in [67]:

• 1 MTU frame on transit

• 1 PAUSE frame time

• PAUSE frame decode time (1 or 2 pause_quanta)

• 1 MTU frame on receive

• 1 link RTT

E xcluding the RTT measured in bytes, this totals approximately 3.2KB.
A 100m 1Gbps UTP cable has a RTT of 143 byte. 10Mbps and 100Mbps
links have RTT in corresponding orders of magnitude less. Following, in
the LAN/SAN context a buffer margin of 3 MTU for triggering flow con-
trol should be sufficient to prevent buffers from overflowing. Shortening
the links yields lower RTT. For other link types, like the 1000BASE-LX, a

126 CHAPTER 6. IMPLEMENTATION AND SIMULATION SCENARIOS

larger margin is required. The exact design of buffer organization and -
management within the switch also influence the buffer margin choice. For
example, a pure output queued switch may have to allow for this amount
of data to arrive per incoming interface in order to preserve lossless opera-
tion.

I n the host nodes a simple droptail queue is used with a capacity of
2 MTU (3044B) without any buffer margin, since these queues handle only
frames from the traffic generator, not from the network. In other words,
host queues do not need margins since no traffic from within the network
is buffered there.

6.3.4 Selecting threshold values for PAUSE actions

T hreshold selection for asserting and canceling flow control is tied to
the above described buffering requirements of input queued switches. The
buffer margin arrived at can be used to avoid buffer starvation as well as
accommodating additional traffic, as illustrated in figure 6.5.

B y issuing PAUSE control when the buffer occupancy exceeds a preset
high water mark, at least buffer margin less than the total available buf-
fer, and canceling PAUSE when buffer occupancy drops below a preset low
water mark, with least a buffer margin worth of data still in the buffer, the
NI will always have enough, but not too many, frames in order to operate
continuously (and hence optimal). Buffer management for PAUSE control
uses partially the same components as protocol P , and is described in sec-
tion 6.4.3 below.

6.3.5 Parsing IEEE 802.3x

F igure 6.6 illustrates how standard IEEE 802.3x control frames are parsed.
This scheme connects with figure 6.4. The on/off state variable for flow
control is set in the outgoing interface (of the current link) to 1 or 0 de-
pending on the received value of pause field. This corresponds to a simple
XON/XOFF scheme. Utility methods are called to ensure scheduling reacts
to the control message.

6.3. IEEE 802.3X IMPLEMENTATION ISSUES 127

High water mark

Low water mark

buffer n

buffer n−1

buffer 3

buffer 2

buffer 1

buffer k

Queue

Departing frames

Arriving frames

Figure 6.5: Buffer thresholds with high/low water mark

128 CHAPTER 6. IMPLEMENTATION AND SIMULATION SCENARIOS

Figure 6.6: Parsing IEEE 802.3x: the on/off state in the interface is toggled
based on pause time in the received control frame.

6.4 Protocol P implementation

T his section addresses the implementation issues of protocol P in our
simulation environment, focusing on processing and the components needed
in the simulator to administrate the protocol.

6.4.1 Parsing protocol P (received control frame)

P arsing protocol P control frames at the receiving NI_in contrasts to hand-
ling arriving data frames and monitoring buffer occupancy, and we there-
fore handle these issues separately. Within the implementation, these issues
are handled by dedicated methods in the components.

I n order to preserve backward compatibility with IEEE 802.3x, protocol
P needs, as described in 5.6.1, to use control confirmation frames when
sending transmit feedback. Consequently, housekeeping must, to ensure
proper operation, take not only the current frame, but possibly also the
previous frame into account. In other words, the first sequence of checks for
a valid, well-formed control frame is done to establish whether the current
frame is the main or confirming frame of P , and also if there is a chance that
the control frame originated from a node that is not P enhanced, in which

6.4. PROTOCOL P IMPLEMENTATION 129

Figure 6.7: Parsing control frames of protocol P . F = frame, TF = transmit
feedback

130 CHAPTER 6. IMPLEMENTATION AND SIMULATION SCENARIOS

case the NI must fall back on standard PAUSE control operation. Basically
we distinguish between four different cases:

• P control frame, specifying transmit feedback

• P control frame, confirmation

• standard IEEE 802.3 PAUSE control frame

• error

T he R-flag is used to decide if the current frame should be stored for ref-
erence after it is parsed, or the old reference should be cleared. The X-flag
indicates whether flow control should be activated according to the simple
on/off scheme. The actions in the lower part of the figure are related to ad-
justing transmit feedback level and pause status according to the received
control frame. We now move on to examining the reception of data frames.

6.4.2 Incoming interface operation (received data)

I ncoming data frames are processed according to the scheme shown in
figure ??. A flow control enabled switch is the only non-trivial case here,
and it is directly related to buffer management. The buffer budget check is
preformed regardless of the type of flow control used, but the action out-
come of that check is protocol dependent, leading us to buffer partitioning
and queuing.

6.4.3 Partitioning the buffer pool

T his section explores the buffer budget check and the engueue / dequeue
procedures. We start with layout of how we have organized the buffers.
Default switch memory is calculated based on an estimated hop limit, MTU
size, amount set of for b1 and the port count of the switch.

The buffer size bl is only weakly dependent on the maximum
route length D . Most of the buffer space is in b1 - i.e., bj is very
small for j > 1 - and the partitioning is ”virtual”. The buffer
space set aside solely for higher level packets is only used when
congestion occurs and a small amount of space is needed to pre-
vent deadlocks/livelocks.[43, pg. 928]

6.4. PROTOCOL P IMPLEMENTATION 131

I n our implementation the main queue type for switches is a BufferBudgetDropTailQueue
(BBQ) extending drcl.inet.core.Queue of J-Sim. This is associated with
an array of BufferBudgetCounters, one for each incoming interface of
the switch, as well as a LevelTable, a VSFIFOLevelQueue and a current
value of transmit feedback. A BBQ contains enqueue and dequeue proced-
ures, along with utility tools for managing the level table and enforcing the
eligibility rule of protocol P , as explained in section 5.3.

W e have defined default buffer budget constants in a Java interface class.
Exact used values are set during build for each buffer budget counter (BBC).
The amount of memory required for a switch that is protocol P enhanced,
using virtual input-output queues with reservation regulated per incoming
link, totals to the allowed memory per NI_in multiplied with the number
of interfaces at that switch. This can further be specified per interface as
the size of the shared buffer pool b1 added to the product of the hop limit D
and dedicated buffer bi. Using 1 MTU at for all i > 1, we see that the addi-
tional memory requirement by P to solve store-and-forward deadlocks, is a
direct consequence of network topology, while standard PAUSE operation
does not come with this dependence.

6.4.4 Managing queues

A buffer budget check is triggered in a flow controlled switch by an arriv-
ing data frame, or a deactivation timer (DF). The outcome is, as shown in
Figure 6.8, setting flow control to on / off, unless an error occurred. The A-
flag indicates if the outgoing interface is, or should be set to be, in an active
state capable of sending frames.

I n the case of timeout of the deactivation timer, the queue is examined if
the flow control is still on. The queue is also automatically examined when
new data frames arrive. We have used the following queue states: above
high threshold, below low threshold, or between marks. The second case
unconditionally leads to flow control being deactivated, as there is no need
for throttling the sender any longer. In the case of buffer occupancy being
somewhere between the marks, status qua is preserved. This implies that if
the flow control was on, it will be kept on and timers possibly reset. If the
flow control was off, it will not yet be asserted, but arrival of subsequent
data frames might trigger its onset.

T he most complicated issue is when the queue is filled beyond the high
threshold level, and this is directly connected to protocol differences. For

132 CHAPTER 6. IMPLEMENTATION AND SIMULATION SCENARIOS

Figure 6.8: BB check

6.5. TOPOLOGIES AND ROUTING ALGORITHMS 133

standard PAUSE operation, existing pause state is maintained with refreshed
timers, or a beginning pause is triggered. In the case of P , transmit feed-
back (j) is calculated and compared to the previous value. If flow control
was currently off, or calculation arrived at a different transmit feedback
than previously transmitted, a notification is sent to the upstream node. As
for the PAUSE case, timers are updated to ensure proper expiration and de-
activation of ongoing flow control action to avoid flow control deadlocks.

Enque and deque behavior

E nqueuing a frame is done at the outgoing side of an interface (OQ), but
based on info about destination address and incoming interface (IQ), and
set for the BBC of that NI_in. IEEE802.3x uses plevel 0 and qlevel 1. Pro-
tocol P assigns these values based on info from the level table and transmit
feedback j. Frames are accepted to the queue if and only if the queue is not
full and there is free space at qlevel. All frames exceeding available buffer
space are thrown away unconditionally (droptail behavior).

D equeueing is done by obtaining a level-key, finding an eligible frame
in a FIFO manner, and afterwords updating the bbc and availability para-
meters. In other words this is more or less straight forward given the key.
Protocol P ’s eligibility is expected to impose lookup costs on long queues.
This issue will therefore be included in our analysis. For IEEE 802.3x all
packets have the same level and thus only FIFO principles apply, reducing
the frame retrieval cost.

6.4.5 Outgoing interface operation

T he complexity of the buffer management imposed by protocol P is mostly
hidden from the outgoing interface. In other words, it operates as if it were
a normal flow control enabled network interface capable of scheduling
frames from a queue and adhering to PAUSE actions. Eligibility is man-
aged within the queue, upon a dequeue request. In our opinion, when a
NI_out issues a dequeue request, it is at that point committed to sending
the received frame without unnecessary delay.

6.5 Topologies and routing algorithms

W e have used 16 different irregular topologies, each consisting of 16
switches and 64 hosts. Each switch has 8 ports, four of them for drop-links

134 CHAPTER 6. IMPLEMENTATION AND SIMULATION SCENARIOS

Figure 6.9: Dequeue

6.6. WORKLOAD PARAMETERS 135

connecting to hosts, and the remaining for inter switch connections. A con-
nection table is used as input to create an adjacency matrix by built-in J-Sim
tools. drcl.inet.InetUtil.createTopology is then utilized to build a
spanning tree.

A s seen in B, the buildSpanningTree Topology procedure used drcl.comp.lib.MSTKruskal

to prepare the adjacency matrix. After the development phase and simu-
lation runs with the 16 irregular topologies, we learned that this feature
has been become deprecated / unavailable. Attempts to reproduce our
old scenarios have failed, and consequently we have to admit that without
time to conduct a second implementation phase, we are stranded with the
data so far collected. Additional scenarios of interest include relaxing the
spanning tree with up*/down* routing and the TBTP scheme. We have
included these in the section about future work at the end of this thesis.

T he routing tables, one within the RT component of each switch node,
are populated by the setupRoutes method in drcl.inet.InetUtil in a
bi-direction manner between all possible switch pairs. Source-destination
pairs are handled by the AddressModifyer component described later.

6.6 Workload parameters

6.6.1 Protocol stack issues

D ealing with an unreliable data link layer should be addressed when
transmitting PAUSE frames[67]. Despite the low BER, a control frame might
be corrupted, and because they are sourced and sunk within the MAC,
no higher level protocol or application is available to deal with the loss.
Adding this to our simulation environment would add complexity to the
network interfaces implemented and buffering used, without providing
significantly more information in the results. Hence, in line with our con-
siderations around abstraction level in section 2.2.1, we choose to assume
reliable links in our implementation.

T he protocols normally impose a limit on the size of a SDU, and hence
mapping a SDU to smaller or larger data unit blocks commonly done con-
currently to encapsulation. This is not of importance to our study, and we
use a 1:1 mapping on all layers and in all scenarios as it does not contribute

136 CHAPTER 6. IMPLEMENTATION AND SIMULATION SCENARIOS

to any variations in behavior nor performance between the protocols stud-
ied. Further, MTU is set to 1522, a maximum well-formed valid Ethernet
frame.

6.6.2 Traffic generator

W orkload in our simulations is overall handled by drcl.net.traffic.traffic_PeakRate
of J-Sim. This class generates traffic based on packet size and inter arrival
time of those packets. Separate maximum and minimum values can be spe-
cified, however for strict reproducibility concerns we have chosen to use a
fixed value in stead of a range.

6.6.3 Link speed and injection rate

W e have used a fixed wire speed of 1Gbps (1000Mbps). Both hosts and
switches operate at wirespeed. Using a inter frame gap of 96ns, the result-
ing injection and sending datarate of the network interfaces is 0.000012. All
links are set to 10m UTP resulting in an interrouter propagation delay of
1.14e-6 (cable holds 120 bits).

6.6.4 Source-destination pairs and address distribution

R outes are set up by using J-Sim functionality through Tcl script func-
tions as previously described. Addressing is handled by the address modi-
fying component, AddressModifyer (AM). This component is located between
the source and the packet dispatcher of the host nodes. It was originally
written by Svein-Arne Reinemo as an university in-house tool.

T he AM has three different but related tasks. It wraps the raw packet
from the traffic generator within an InetPacket, it sets the source and
destination address within the packet, and it sets the time to live (TTL)
field. The source address is the id of the current host node. We have used
a uniform address distribution in our final runs. The destination address is
consequently calculated with the nextInt feature of Javas random number
generator, Random, limited to the range of available hosts. The TTL is set to
one more than the number of switches in the network, in our case 17. The
packet dispatcher of J-Sim decrements this value when it relays packets
from an incoming interface. The worst case scenario is a topology with all
switches serially connected. The +1 assures that the packet is not discarded
in the packet dispatcher of the sink host in such a worst case scenario.

6.7. SETTING UP SIMULATION WITH J-SIM AND TCL 137

6.7 Setting up simulation with J-Sim and Tcl

S imulations are with J-Sim run through the built-in RUntime Virtual sys-
tem (RUV) on top of Tcl/Java:

java drcl.ruv.System ?<script>? ?<argument>...?

Information about the special-purpose scripting environment can be found
at the J-Sim webpage [86].

W e have run the simulations with a duration of packet injection set to
2, and a finishing time set to 1000. The rationale for choosing these exact
values were based on memory restrictions and observed behavior in test
simulations. The finishing time needs to be fine-tuned to the duration of
packet injection phase so that we ensure all packets have been drained be-
fore halting the run.

6.7.1 Datarate parameters

D atarate constants for use within Java code are defined in EthConstants.java,
and can be overridden by scripts:

Real Time Datarate : 1.0e9 (1Gbps) as default, with 100 and 10 Mbps op-
tions available

Time Scale : proportion simulation vs real time (J-Sim), 1.0e3 as default

6.7.2 Ethernet constants

W e have used standard compliant values for our Ethernet constants

MTU : maximum 1522, minimum 64 byte

BODY : 1500 / 42 byte

HEADER : 18 byte (InetPacket adds 4B overhead, yielding 22 byte in total)

BIT_TIME : 512 (multiplication factor)

MAX_PAUSE : 255 (8bit value)

Inter Frame Gap(IFG) : 96 bit times

Propagation Delay : 1140 bit times

138 CHAPTER 6. IMPLEMENTATION AND SIMULATION SCENARIOS

6.7.3 Automatic builders

To build the network topology and its nodes, J-Sim provides automatic
node builder tools. We have implemented our own version, the PNodeBuilder
extending drcl.inet.NodeBuilder of J-Sim, and using our own CSLBuilder
ProtocolPBuilder in the build method override. This gives us full con-
trol of the components and their relation within the CSL in each host and
switch node.

6.7.4 Bash and Tcl scripts

S etting up and tuning parameters of simulation scenario is best illus-
trated by exploring the scripts we used for the simulations. A complete
and general version of these can be found in appendix B. We here only in-
clude selected features significant to our scenarios. The general simulation
setup script simply creates all needed output files, and stitches together all
possible combinations of the topologies, flow control options and different
data rates, and enters these parameters into the master scenario script listed
in B.1. The scenario template also uses various utility scripts that contain
subroutines and constants, some of them already described.

I n order to enhance customization, several Bash (bin/sh) scripts were de-
veloped to automatically create log fies, per simulation scenario Tcl scripts
and submit files for Condor. Condor is a “a specialized workload manage-
ment system for compute-intensive jobs”[73]. This system was available
and used at campus for our main simulation runs. The author can be con-
tacted for further information and re-purposing of scripts.

Chapter 7

Analysis

W ith the background so far given in this thesis, we now report on our
data collection process and the outcome of that. The research goals stated
in the introduction, play an important role in our analysis. We compare
the different flow control scenarios, re-visit issues related to deadlocks and
routing, and discuss buffer management complexity. The chapter closes
with a critical view on our own research, sources of errors and simulation
related memory challenges.

7.1 Performance measurements

A ccording to our research goals we have measured latency, throughput
and packet drop, as well as observed deadlock and livelock symptoms.

I n a simulation environment researchers have control over both switch
based and external variables, whereas in a real life scenario with vendor
produced hardware components, we have influence only over the latter.
Traffic pattern and injection rate is consequently the easiest factor for a re-
searcher to manipulate, and this was described in section 6.6. In summary,
our scenarios uses a fixed high data injection rate, with sources injecting
packets of 1 MTU (1522B) to the network continuously with only a con-
stant inter frame gap (and the time it takes to shuffle the bits onto the link),
only halted or throttled by flow control actions.

T he switch based parameters include switching method, flow control
protocol, network connectivity, routing algorithm and buffer layout and

139

140 CHAPTER 7. ANALYSIS

management, all of them previously examined. For the clarity of the fol-
lowing analysis, we briefly list the selected parameters:

• Store-and-forward packet switching

• IEEE 802.3x PAUSE flow control / protocol P enhancement to PAUSE

• Irregular topologies with 16 switches (4 inter switch links and 4 drop
links) limited to a spanning tree, 64 hosts

• Destination based Ethernet routing tables, ensuring that all frames
between a source-destination pair always follow the same path

• static routing, no dynamic updates occur

• single droptail output queue in hosts, advanced switch buffer man-
agement with flow control actions taken based on input queue while
actual queuing happens in an output scheme. Packets are associated
with a packet level.

7.2 Data collection

D ata collection is in our studies done by running the simulations with
an associated component for collecting results, and dumping information
from that component to log files when the simulation terminates. These log
files can then be used as input to plot generation tools.

7.2.1 Running the simulations

F ollowing a long implementation phase, simulations were set up and
submitted batch-wise to the Condor system at campus (Ifi). The local sys-
tem administration group has noted that Condor has problems related to
estimating memory requirements of a Java job prior to running it, espe-
cially in the presence of multithreading[34]. The solution is to specify memory
requirements in the submit file. From trial and error we arrived at 256MB
as a minimum. Observations were made of extreme memory consump-
tions of our jobs. We have therefore dedicated a section in our analysis to
memory related issues.

7.2.2 PStatCollector

T he PStatCollector extends the general built-in component class of
J-Sim, and is a customized version of an earlier in-house component, the

7.2. DATA COLLECTION 141

drcl.net.StatCollector. A single instance of this component is hooked
up to all network nodes, and receives data about all frames sent (injected),
received (drained) and dropped. Results are recorded continuously during
a simulation run building a statistic per node as well as in total.

F or measuring throughput we simply count packets in a two dimen-
sional array. Latency is recorded by adding up the latency value of each
drained InetPacket, and keeping a count of packets that have contributed
to this accumulated value.

7.2.3 Dumping results

A t the termination of each simulation run, data on throughput, pack-
etloss and accumulated latency are dumped from the PStatCollector to
log files. The dump is triggered form the main Tcl script for each simulation
scenario using the dumpLatency and dumpThroughput procedures listed
in B.2.

D ue to the high number of simulation runs arrived through all possible
combinations of topology, datarate and flow control type, we developed
bash scripts to parse these log files and generate data input files for Gnuplot [1].

7.2.4 Introduction to plots

W e have in general two different types of graphs; Throughput graphs and
latency graphs. Other figures are special purpose variants of these used to
high-light a point of interest.

T o get the best possible picture of each combination of topology and flow
control type, we performed some initial simulation runs using data rates
of coarse granularity to learn where to invest our computational resources.
The data rates range from 10 to 1000 Mbps, with measures taken at 10Mbps
intervals between 10 and 100, 20Mbps intervals between 100 and 200, and
subsequently 100Mbps intervals up to the 1000Mbps limit.

I n all result plots, we use a scale of 100Mbps at the horizontal axis un-
less specifically stated. Vertical axis for throughput graphs use number
of frames as measuring unit with intervals of 100000. Latency graphs use
seconds at the left axis, with intervals adjusted to the granularity of the

142 CHAPTER 7. ANALYSIS

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 100 200 300 400 500 600 700 800 900 1000

th
ro

ug
hp

ut
 #

fr
am

es

load scale Mbps

throughput agains load, topology 01

IEEE802.3
IEEE802.3x

IEEE802.3 w/P

Figure 7.1: Throughput for a single topology for each flow control mode

results plotted (ranging from 0 to the highest latency observed in those res-
ults). Description of the different line styles is included in the upper right
corner of each plot.

7.3 Presentation of results

F igures 7.1 and 7.2 shows graphs of throughput and latency for a selected
topology. For the clarity of presentation, packet drop has been deliberately
omitted in these figures. We start by noting that there is a striking difference
between standard Ethernet with no flow control on one side, and the two
flow control schemes on the other side. In fact, IEEE 802.3x and protocol P

is so close in this plot that it is hard to distinguish the one from the other.

T his topology was randomly selected out of the 16 used. Our first ques-
tion, before examining it in detail, is whether or not it is representative.
To answer this, we have compiled plots illustrating the variation in both
throughput and latency across topologies fore each of the tree flow control
modes.

7.3. PRESENTATION OF RESULTS 143

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0 100 200 300 400 500 600 700 800 900 1000

la
te

nc
y

#s
ec

on
ds

load scale Mbps

latency agains load, topology 01

IEEE802.3
IEEE802.3x

IEEE802.3 w/P

Figure 7.2: Latency for a single topology for each flow control mode

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 100 200 300 400 500 600 700 800 900 1000

th
ro

ug
hp

ut
 #

fr
am

es

load scale Mbps

throughput agains load, all topology, no flow control

Figure 7.3: Variation in throughput without flow control

144 CHAPTER 7. ANALYSIS

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 100 200 300 400 500 600 700 800 900 1000

th
ro

ug
hp

ut
 #

fr
am

es

load scale Mbps

throughput agains load, all topologies, IEEE802.3x

Figure 7.4: Variation in throughput using IEEE 802.3x flow control

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 100 200 300 400 500 600 700 800 900 1000

th
ro

ug
hp

ut
 #

fr
am

es

load scale Mbps

throughput agains load, all topologies, protocol P

Figure 7.5: Variation in throughput using protocol P flow control

7.3. PRESENTATION OF RESULTS 145

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 0.0006

 0 100 200 300 400 500 600 700 800 900 1000

la
te

nc
y

#s
ec

on
ds

load scale Mbps

latency agains load, IEEE802.3, no flow control for all topologies

Figure 7.6: Variation in latency without flow control

F igure 7.3 shows throughput variation across all 16 topologies in the ab-
sence of flow control, while figures 7.4 and 7.5 show this for scenarios us-
ing either IEEE 802.3x or protocol P flow control. We observe that the curve
shapes are strikingly similar for the two latter, while the no flow control
scenario differs.

B ased on the material presented so far, we note that the difference between
the three schemes starts to emerge around 60Mbps. Moreover, for all schemes,
throughput seems to stabilize and remain at a specific amount around 400Mbps.

F igures 7.6 through 7.8 show latency variation for the same three cases
as the previous illustration set. We observe again the curve shape simil-
arities for the two flow control cases. Unlike seen for the throughput, the
latency does not stabilize entirely for the flow control schemes, but increase
extreme slowly with the increasing data rate.

I n the absence of flow control, shown in figure 7.6, we observe almost
parallel constant lines. Although the left part of this figure looks like fig-
ures 7.7 and 7.8, there is one important difference, namely the values in
the vertical axis. Without flow control the highest latency seen is less than

146 CHAPTER 7. ANALYSIS

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0 100 200 300 400 500 600 700 800 900 1000

la
te

nc
y

#s
ec

on
ds

load scale Mbps

latency agains load, IEEE802.3x for all topologies

Figure 7.7: Variation in latency using IEEE 802.3x flow control

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0 100 200 300 400 500 600 700 800 900 1000

la
te

nc
y

#s
ec

on
ds

load scale Mbps

latency agains load, protocol P for all topologies

Figure 7.8: Variation in latency using protocol P flow control

7.3. PRESENTATION OF RESULTS 147

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 100 200 300 400 500 600 700 800 900 1000

th
ro

ug
hp

ut
 #

fr
am

es

load scale Mbps

throughput agains load, no flow control

send
receive

drop

Figure 7.9: Sent, received and dropped frames in the absence of flow control

0.0006 seconds, while in the flow control scenarios this measure is as high
as 0.002 seconds.

L et us look at throughput in the absence of flow control for a selected
topology to illustrate packet drops. Figure 7.9 shows throughput in terms
of received frames, in addition to amount of sent and dropped frames. The
number of sent frames grows linear from 0 to slightly above 10000000, cor-
responding to the increasing data rate. From the first packet drop occur-
rence, around 60Mbps as pointed out earlier, the actual throughput stabil-
izes and remains at a fixed value. The amount of dropped packets however
continue to increase linear, and parallel to, the amount of total sent frames.
The gap between these two climbing lines equals the actual throughput
observed.

B efore trying to explain the differences observed in variation, we look
to the raw data log files to find minimum, maximum and average values
within the data. Motivated by the preceding graphs, we choose 1000Mbps
as the value for calculating these values in order to reduce variance.

A verages for throughput are 811621, 541863 and 506578 frames respect-
ively for the three flow control modes. The actual range of each case is cor-

148 CHAPTER 7. ANALYSIS

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 50 100 150 200 250 300 350 400

th
ro

ug
hp

ut
 #

fr
am

es

load scale Mbps

throughput agains load for flow control schemes

IEEE802.3x
IEEE802.3 w/P

Figure 7.10: Throughput for flow control schemes

respondingly 781278 - 884285, 472092 - 677208 and 467193 - 677550 frames.
While the case with flow control disabled has the highest throughput, and
smallest variance interval, it is also the only one with packet loss. Protocol
P has a lower average and min value than IEEE 802.3x but shows a slightly
higher max value.

F or latency only min and max values are available due to floating point
precision of the recorded values being inexact within our calculating tools.
For figure 7.6, the range is approximately 0.00047 to 0.00059. In contrast,
the corresponding values for figures 7.7 and 7.8 are 0.00137 to 0.00197, and
0.00137 to 0.00198. In other words, latency behavior is very much the same
in the presence of flow control.

L et us now look closer at the lower data rates, 0 to 400 Mbps, for dif-
ferences between the two flow control protocols. This is illustrated in fig-
ures 7.10 and 7.11 with a topology that yielded results very close to the
averages. These curves are very typical, and are found for each of the to-
pology sets. Also, even with the finer granularity at the horizontal axis, it
is hard to spot the small deviation between the two schemes.

7.4. DISCUSSION 149

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0 50 100 150 200 250 300 350 400

la
te

nc
y

#s
ec

on
ds

load scale Mbps

latency agains load for flow control schemes

IEEE802.3x
IEEE802.3 w/P

Figure 7.11: Latency for flow control schemes

W ith the above findings as input we now dedicate the reminder of this
chapter to in-depth discussion and analysis of our research questions from
chapter 1, except the literature survey which was covered in chapter 4.

7.4 Discussion

T he outline follows in general the order of the research questions as they
were listed in the introduction. In addition, we include thoughts and ob-
servations around sources of errors within our research, as well as lessons
learned about memory challenges related to simulation based studies. This
content is highly subjective to our interpretation of results and earlier re-
ferred to literature. We only include references to other work to identify
points where our view deviate from this.

7.4.1 Comparing the flow control scenarios

Q uestion 2: How does Protocol P behave compared to IEEE 802.3x and to the
no flow control scenario with respect to performance (throughput and latency),
backpressure, packetloss, deadlocks and livelocks in the Gigabit Ethernet context?

150 CHAPTER 7. ANALYSIS

T o our surprise, the two flow control schemes were found to be remark-
ably similar. Based on the selection of graphs reported, and figures 7.10 and 7.11
in particular, we claim that the measured difference in throughput and
latency between IEEE 802.3x and protocol P is significantly small enough to
be ignored. This is also supported by the minimum, maximum and average
values found within the data sets.

A s illustrated in figure 7.9, the absence of flow control results in a highly
predictable behavior under congestion. Lower latency and higher through-
put is seen in the lossy scheme compared to the flow controlled schemes.
However retransmissions of lost data frames are not taken into account. In
other words, this scenario only provide a best effort service where extreme
packet loss rations are accepted.

N one of the flow control schemes lead to packetloss, consequently neither
to deadlocks or livelocks. We have compared the number of sent to the
number of received frames in all scenarios, and in all cases we arrived at a
true match. Since no frame is dropped, or lost within the network, a dead-
lock or livelock situation cannot be present.

L ast for this question we address the backpressure property. Our scen-
arios do not have rate mismatch, since both inter-switch and drop-links
operate at 1Gbps, and network interfaces are wirespeed capable. What re-
mains to account for the change in behavior when congestion builds up are
link aggregation and buffer contention. In other words a question about
resource allocation. As seen in figures 7.1 and 7.2, both throughput and
latency stabilizes with little variance at some data rate. Attempting to in-
ject traffic at a higher rate does not produce a significant change in perform-
ance.

T he above leads us to the conclusion that the effect of hop-by-hop flow
control propagates in a backpressure manner all the way upstream to the
source host nodes and throttles them, limiting the traffic accepted into the
network to the maximum capacity of the current network configuration.

P ut in other words, in the absence of a higher layer protocol, the hop-
by-hop flow control of both IEEE 802.3x and protocol P adopts the role of
an end-to-end congestion control scheme, manging a long term congestion
scenario. We believe that this end-to-end behavior might play a role in the
similarities found between the two flow control schemes. Consequently,

7.4. DISCUSSION 151

in the presence of long term congestion, and identical policies for traffic
admission to the network, the observed performance similarities have a
plausible explanation.

B ased on the evidence given, we conclude that protocol P does not yield
any additional performance beyond what standard IEEE 802.3x does. In
other words, here P only contribute to increased buffer management cost.

7.4.2 Complexity of buffer management

Q uestion 3: Are there any differences in control message overhead, buffer occu-
pancy and bottleneck link utilization between Protocol P and IEEE 802.3x, and if
so, what characterize these differences.

B oth flow control schemes are implemented and run using the same
simulation software and components. In other words, they use the same
scheduling algorithm, same control frame format, same set of timers, same
processing procedures, and same buffer occupancy thresholds for activat-
ing flow control. In the light of this information it is reasonable to expect
few observed variations, and this is in fact what we found.

W hile protocol P might send updated transmit feedbacks in response to
changing buffer occupancy, but still above the high threshold, the stand-
ard PAUSE scheme would send refresh feedback to extend an ongoing
pause period. Alerted by the same trigger and examining the queue using
identical thresholds, the outcome is also the same. In other words, differ-
ences in control message overhead is tied to implementation choices and
not exclusively to the protocol properties. This also hold for the buffer oc-
cupancy.

A n interesting observation has been made on bottleneck link utilization.
Due to the above mentioned end-to-end congestion scenario that emerges,
we cannot target specific links at bottlenecks, since all parts of the network
are assumed to be part of that congestion scenario (given the uniform ad-
dress distribution). However, if we compare the steady state throughput
and latency plotted for flow control enabled versus disabled, it is striking
that not only do the uncontrolled frames spend less times waiting in buffer
queues, more frames are actually being transmitted over the links in the
absence of flow control.

152 CHAPTER 7. ANALYSIS

T his leads to the conclusion that the flow control schemes impose a less
optimal link utilization! This degrading is shown in for example figure fig:tp-
compare-fc where the peak performance is at 70Mbps, and is reduced when
the offered load increases beyond that point.

O ur implementation has not taken into account the extent of intraswitch
delay, e.g. the processing cost of the buffer management scheme in general,
and eligibility and level table maintenance in particular. We believe this
depends on possible vendor specific implementations, but expect it to con-
tribute significantly to increased latency compared to the standard PAUSE
scheme.

T he hop-limit D puts restrictions on switch design leading to need for
configurable switches and more functionality within software. This claim
originates from the observation that D imperatively must be equal to or
greater than the worst-case longest path in the network. Physical buffer
is wasted if this value is set too high, since no packets will in that case be
assigned with such high packet levels, and consequently, those buffers set
aside to resolve buffer deadlocks will never be used. On the other hand, if
a too low D is statically set, that switch would have a fixed upper limit to
the size of the network it could be deployed in.

I n other words there is a strong reason for vendors to be cautious when
implementing this part of the protocol.

W e also note that the buffer reservation scheme with 1 MTU worth of
space available at each level above the shared pool will result in wasted
space if not max MTU is received. This allocation however also apply to
selected threshold margins for the simpler PAUSE scheme

7.4.3 Topology and routing

Q uestion 4: In what extent do Protocol P apply to solving deadlocks in general,
or is it limited to handling store-and-forward deadlocks?

I t is not explicitly clear from the articles describing protocol P what kind
of deadlock P is designed to solve, it can only be inferred from the context
of the claims. For example, the phrase packet networks brings immediate as-
sociations to store-and-forward scenarios. Also, the following quote points

7.4. DISCUSSION 153

in that direction:“if peak amounts of bandwidth and buffers are available
and are dedicated for all network traffic flows, then buffers do not overflow
and deadlocks are not created”[43, pg. 924].

O ur explorations of deadlocks in chapter 3, and the properties stated by
the creators of protocol P , including: “[This] technique is quite general
and can be used for networks with various types of routing”[43, pg. 925],
leads us to arriving at the conclusion that protocol P is not a routing scheme
and cannot solve routing deadlocks through its buffer management scheme. It
is important that all packets between a source-destination pair follow the
same path through the network, thus schemes using alternative routing, or
misrouting, for example, is not compatible with the protocol.

P rotocol P is commonly referred to, and evaluated, in the Ethernet con-
text, using the MAC Control scheme, but it should be noted that this is not
the only possible option. However, for this thesis, we cannot break com-
patibility with the Ethernet standards. Consequently we are stuck with
the spanning tree protocol and its routing restrictions. Protocol P alone
cannot solve the tasks of a routing algorithm, so replacing the STP with
up*/down* or TBTP can only be done in a P scenario if it can also be done
for the IEEE 802.3x scheme.

Q uestion 5: In what extent is Protocol P suited for SAN ? In the Ether-
net context, we claim that protocol P is not better suited than the original
PAUSE scheme. Hence all drawbacks and problems associated with this
scheme reported in the literature, also apply to protocol P . This contrasts
with what we believed at the onset of this project, but through close study-
ing of protocol P it seems to us that its properties have been overestimated
and its deadlock prevention misunderstood.

T his said, protocol P has during our implementation and study received
a United States Patent, number 6859435, a fact which only strengthens our
view that this invention is solid and well designed. Our skepticism relates
to the areas P is implemented and used.

7.4.4 Sources of errors

D uring our implementation and subsequent analysis we have identified
some problems related to the behavior of both our link scheduler and us-
age of the pause_quanta / pause field of the MAC Control. First we admit

154 CHAPTER 7. ANALYSIS

to a implementation difference regarding the inter frame gap used by the
link scheduler of the outgoing interfaces. It has been previously stated that
we use an inter frame gap of 96ns or 96 bit times. However, the actual Java
code uses a value set to the packet size left-shifted by 3. This is done con-
sistently throughout the simulations, and is expected to affect all scenarios
the same. It can however accommodate for some of the observed restric-
tions to throughput and latency in the steady state.

S econd, we shed light on the fact that we have used a maximum pause
value of 255, which is a single byte value, while the IEEE standard defines
this to be a 2 octet value with a maximum of 255 0xFFFF. This has severe im-
plications for pause timing, but not for the overall on/off behavior. We are
in fact in line with the standard by using a smaller range than allowed. But
unfortunately this has lead to a much higher buffer check interval, timer
granularity and frequency of sent control frames. With a higher pause dur-
ation per control frame, it can as previously described give more space for
ordinary data on the link.

7.4.5 Memory challenges for simulations

D uring our work we have been constantly challenged by the memory re-
quirements introduced by J-Sim in the computing environment. Repeatedly
we have returned to our simulation output files to find that it has been ab-
normally terminated due to running out of memory on the computer, even
when using the Condor system at campus. Our network is not very large,
but there are many hidden components within each node that adds to the
total.

A n example calculus of memory consumption has been presented by
Hung-ying Tyan in his thesis on J-Sim[87], and he directs focus to all the
hidden component costs like wires and ports. In particular, we have the
additional cost of Ethernet frames wrapped within InetPackets, the level
queue elements and also all the excess traffic generated but dropped before
it was permitted to enter the network. We believe that the garbage col-
lection routine of Java is not entirely capable of keeping up with the high
memory consumption of our Ethernet and sophisticated buffer manage-
ment approach. In the light of this we acknowledge that the implementa-
tion could have been carried out more optimal if we at the outset possessed
the current knowledge.

Chapter 8

Conclusion

8.1 Conclusion

T he implementation and simulation based study of hop-by-hop link layer
flow control in general, and protocol P in particular, is well summarized
through the words of the people who invented the protocol:

No packets will be dropped inside a packet network, even when
congestion builds up, if congested nodes send back/-pressure
feedback to neighboring nodes, informing them of unavailabil-
ity of buffering capacity - stopping them from forwarding more
packets until enough buffer becomes available.[43]

W e have in this thesis seen that usage of the terms ’congestion control’
and ’flow control’ vary both with respect to control point within the net-
work, location within the protocol stack and over time.

O ur attention has been focused at three research areas and their inter-
section; the IEEE 802 Ethernet technology and standard, with emphasis
on MAC issues; network congestion, with emphasis on flow control; and
deadlock schemes. Buffer management has been the main focus through
the thesis.

W e have developed J-Sim components, including a set of queue related
tools to incorporate protocol P as well as IEEE802.3x flow control at the link
layer of the simulator.

155

156 CHAPTER 8. CONCLUSION

B ased on the evidence given in our findings, we conclude that protocol P

does not yield any additional performance beyond what standard IEEE 802.3x
does. In other words, here P only contribute to increased buffer manage-
ment cost. Further, we have not any differences in control message over-
head, buffer occupancy and bottleneck link utilization between Protocol
P and IEEE 802.3x, and attribute this to the implementation similarities.
Third, protocol P is not a routing scheme and cannot solve routing dead-
locks through its buffer management scheme. It is thus only capable of
handling store-and-forward deadlocks. Especially within the Ethernet con-
text, protocol P is limited to the spanning tree protocol and associated rout-
ing algorithm, and it not better suited than the original PAUSE scheme to
solve congestion problems.

8.2 Future Work

T hroughout our work we have arrived at interesting ideas for expanding
the current scenario, if time permits and with appropriate resources alloc-
ated. First and foremost this includes running simulations with other rout-
ing schemes like up*/down* and TBTP, as well as testing adaptive routing.
Second, we would like to test our claim of P not being able to handle rout-
ing deadlocks by running it in deadlock prone topologies, including setups
that uses minimal path routing and uses all channel bandwidth. The latter
is directed toward further exploring usage in the SAN domain.

I ntroducing priority mechanisms in protocol P enhanced nodes could be
interesting, but we are somewhat skeptical due to the amount of existing
literature stating that combining flow control and priorities is not a desir-
able solution.

L ast, we would like to run TCP over the studied link layer protocols,
to see how TCP retransmission and RED behaves with the underlying flow
control. These scenarios could perhaps resemble those used by Noureddine
in his thesis.

Appendix A

Source code: Queues

A.1 BufferBudgetDropTailQueue

package drcl.inet.core.queue;

import java.util.Vector;

import drcl.comp.∗;
import drcl.comp.lib.∗;
import drcl.data.∗;
import drcl.inet.InetPacket;
import drcl.inet.core.ni.∗;
import drcl.inet.core.queue.∗;
import drcl.net.∗;
import drcl.util.queue.∗;

/∗∗
∗ Queue implementation special to switch nodes implementing Protocol
∗ P. It is asumed that a switch allways has at least two interfaces.
∗
∗ @author Bergfrid Marie Skaara
∗ @version 1.0, 06/03/2004
∗ @see drcl.inet.core.queue.DropTail
∗/

public class BufferBudgetDropTailQueue extends drcl.inet.core.Queue implements BufferBudgetConstants
{

// repository of all bbc at this node
protected BufferBudgetCounter [] bbc_repository;

protected VSFIFOLevelQueue q = null;
public static final String EVENT_QLEN = "Instant Q Length";

157

158 APPENDIX A. SOURCE CODE: QUEUES

protected int capacity;
protected int available;
protected int currentFeedbackLevel;

protected Component parentComponent;
protected LevelTable levelTable;

protected boolean linkEmulation;
protected boolean firstEncounter;

/∗∗
∗ Enqueues the object at the end of the queue. Choses the correct
∗ BufferBudgetCounter based on information in the packet to be
∗ enqueued. Looks up packet level in the LevelTable with
∗ destination as key. Capacity for this (shared memory) switch
∗ depends on buffer occupancy of this bbc.
∗
∗ @param obj_ the object to be enqueued
∗
∗ @return the object being dropped due to the enqueue; null
∗ otherwise.
∗/

public synchronized Object enqueue(Object obj_)
{

if(obj_ == null || !(obj_ instanceof Packet)) return obj_;
Packet p = (Packet) obj_;
int psize = isByteMode()? p.size: 1;

long p_ldestination = ((InetPacket)p).getDestination();

Long p_Ldestination = new Long(p_ldestination);

double pkey = p_Ldestination.doubleValue();
if(Double.isNaN(pkey)) return obj_;

int plevel = levelTable.getLevel(p_Ldestination);
int qlevel = plevel;
int feedback ;

P2PNI_PIn in_ = (P2PNI_PIn) (this.getParent()).getComponent(p.getInInterface());
if(in_ == null) return obj_;

BufferBudgetCounter bbc = getBufferBudgetCounter(p);
if(bbc == null) return obj_;

/∗ CASE first time initializations ∗/
if (firstEncounter)

populateBbc_repository();

A.1. BUFFERBUDGETDROPTAILQUEUE 159

if (q == null)
q = new VSFIFOLevelQueue();

/∗ CASE determine value of feedback ∗/
if(linkEmulation)

{
/∗ find the highest value of j where mi_j is less than mtu ∗/
if(bbc.getSharedFree() >= MTU)

feedback = 0; // default
else

{
feedback= 1;
while(feedback <= bbc.getMaxHops() && bbc.get_mi(feedback) < MTU) feedback++;

}
}

else
{

/∗ use received value stored in bbc ∗/
feedback = bbc.getReceivedTF();

}

/∗ CASE check packet level ∗/
if(in_.isProtocolPaware())

{
if(((InetPacket)p).getHops() == 2)

{
/∗ Packet arriving from network enter link, no level updates permitted.
∗ Differentiate qlevel from plevel if needed
∗/

qlevel = (plevel == 0)? 1:plevel;
}

else
{

/∗ Packet arriving from network internal node ∗/
plevel = (plevel == 0)? 1:plevel;

if (feedback + 1 > plevel) // Level Assignment Rule
{

// now we kick over possibility of unknown source
updateLevel(plevel, feedback + 1, p_ldestination);
plevel = feedback + 1;

}
else if(qlevel == 0) // no entry for this destination

{
levelTable.setLevel(p_Ldestination, 1);

}
qlevel = plevel; // plevel has been raised, keep them identical

160 APPENDIX A. SOURCE CODE: QUEUES

// LevelTable held the highest value, use this both for enqueue and reservation
}

}
else

{ // std values for buffering without protocol P
plevel = 0;
qlevel = 1;

}

/∗ CASE no availaboe space, count and drop p ∗/
if (psize > bbc.get_mi(qlevel))

{
if (isGarbageEnabled())

drop(p, "Out of memory: " + psize + ">" + bbc.get_mi(qlevel));
drainPort.doSending((InetPacket) p); // count drops
return obj_;

}

/∗ CASE enqueue ∗/
if (bbc.reserveBufferBudget(psize, qlevel))

{
getAvailable();
q.enqueue(pkey, p, psize);
if (isDebugEnabled())

{
EthFrame frame;
long nr;
if (((InetPacket) p).getBody() instanceof EthFrame) {

frame = (EthFrame) ((InetPacket)p).getBody();
nr= frame.getFrameNumber();

}
else nr = 1;

}
return null;

}

/∗ CASE cannot enqueue packet of this level ∗/
if (isGarbageEnabled())

drop(p, "Capacity exceeded at level: " + qlevel);
drainPort.doSending((InetPacket)p); // count drops

return obj_;
}

/∗∗
∗ Dequeues and returns the first eligible object in the
∗ queue. Traverse q and find first eligible packet to dequeue. This
∗ is the basis of scheduling. Choses the correct
∗ BufferBudgetCounter based on information in the packet

A.1. BUFFERBUDGETDROPTAILQUEUE 161

∗ dequeued. Looks up packet level in the LevelTable with
∗ destination as key.
∗
∗ @return the object dequeued; null if queue is empty.
∗/

public synchronized Object dequeue()
{

int psize = 0; // packet size
int plevel = 0; // packet level
int qlevel = 0; // level index for queue
double pkey; // packet key
Packet p = null; // tmp packet
BufferBudgetCounter pbbc; //bbc this packet is recorded on

if (q == null || q.isEmpty())
{

if(isDebugEnabled()) debug ("NO Q or EMPTY");
return null;

}

/∗ determine the key ∗/
pkey = getEligibleKey(currentFeedbackLevel);

if(Double.isNaN(pkey)) // no eligible packets
{

if(isDebugEnabled()) debug ("NO ELEGIBLE");
return null;

}

/∗ performes dequeue and frees up Bufferbudget ∗/
p = (Packet) q.dequeue(pkey);
if (p == null)

{
if(isDebugEnabled()) debug ("P NULL");
return null;

}

plevel = levelTable.getLevel(new Long (((InetPacket)p).getDestination()));
qlevel = (plevel == 0) ? 1 : plevel;

pbbc = getBufferBudgetCounter((InetPacket)p);
if (pbbc == null)

return null;
psize = isByteMode()? p.size: pbbc.getMTU();

pbbc.freeBufferBudget(psize, qlevel); // update BufferBudgetCounter

if (qLenPort._isEventExportEnabled())

162 APPENDIX A. SOURCE CODE: QUEUES

qLenPort.exportEvent(EVENT_QLEN, new DoubleObj(q.getSize()), null);

getAvailable();

return p;
}

/∗∗
∗ Updates the BudgetBufferCounter for the given destination and
∗ level. If ByteMode is used, packet size is not fixed.
∗
∗ @param oldlevel the previous level
∗ newlevel the level to use for this destination
∗ destination the destination to raise level for
∗/

protected synchronized void updateLevel(int oldlevel, int newlevel, long destination)
{

int i = 1;
BufferBudgetCounter bbc;

Object o_ [] = q.retrieveAllBy(oldlevel); // objects of desired level
if(o_ == null) return;

while(++i < o_.length)
{

InetPacket p = (InetPacket) o_[i];
if (p == null) return;
if(p.getDestination() == destination)

{
bbc = getBufferBudgetCounter(p);
int size = isByteMode()? p.size: 1;
bbc.liftLevel(oldlevel, newlevel, size);

}
}

levelTable.setLevel(new Long (destination), newlevel);
}

/∗∗
∗ Returns the first key matching an eligible packet level
∗
∗ @param level_
∗
∗ @return eligible key
∗/

protected double getEligibleKey(int level_)
{

double keys [] = q.keys();
int i = 1;
while (++i < keys.length)

A.1. BUFFERBUDGETDROPTAILQUEUE 163

{
// Transmit Eligibility Rule
if((levelTable.getLevel(new Long ((long)keys[i]))) >= level_)

return keys[i];
}

return Double.NaN;
}

/∗∗
∗ tests if a packet is eligible
∗
∗ @param packet
∗
∗ @return true if verified
∗/

public boolean verifyEligibility(InetPacket p)
{

if (levelTable.getLevel(new Long (p.getDestination())) >= currentFeedbackLevel)
return true;

return false;
}

/∗∗
∗ Calculates the amount of available space in the queue, defined as
∗ sum available buffer budget in all BufferBudgetCounter at this
∗ node, asuming switch is shared memory with max defined by the
∗ combination of buffer in all interfaces. Calculates by traversing
∗ the bbc_repository.
∗
∗ @return available_
∗/

public int getAvailable()
{

int available_ = 0 ;
int i = 1;

while((++i < bbc_repository.length) && bbc_repository[i] != null)
{

available_ += bbc_repository[i].getAvailable();
}

available = available_;
return available_;

}
}

164 APPENDIX A. SOURCE CODE: QUEUES

A.2 BufferBudgetCounter

package drcl.comp.lib;
import drcl.comp.∗;
import drcl.comp.lib.∗;
import java.io.∗;

/∗∗
∗ A counter for Buffer Budget per NI
∗
∗ @author Bergfrid Marie Skaara
∗ @version 1.0, 20040527
∗/
public class BufferBudgetCounter extends Component implements BufferBudgetConstants
{

int lastReceivedTF; // transmitt feedback
int lastSentTF; // transmitt feedback

int budgetTotal; // total buffer for this NI
int mtu; // maximum packet size for the link determined by the NI
int maxHops; // maximum number of valid hops in the network
int dDedicated; // dedicated buffer per destination level > 1
int shared_b1; // shared memory, buffer budget level 1
int inUse; // total memory in use for virtual receiving queue

/∗ Tables for buffer budget values, all 1 >dHops size, slot 0 unused ∗/
int [] size_bi; // size memory at level i
int [] threshold_Bi; // upper threshold for level i
int [] used_ni; // combined packet sizes of level i
int [] combinedFree_mi; // combined buffer including lvl i that is not taken by packets of lvl <

protected int fcType = FC_TYPE_IEEE; // used to determine threshold marks

/∗∗
∗ Constructor for setting local variables
∗
∗ @param maxHops_ // hoplimit for network
∗ budgetTotal_ // capacity
∗ dDedicated_ // bytes dedicated buffer for each level > 1
∗/

public void initBufferBudgetCounter(int maxHops_, int budgetTotal_, int dDedicated_)
{

maxHops = maxHops_;
lastReceivedTF = 0;
lastSentTF = 0;

size_bi = new int [maxHops+1];
threshold_Bi = new int [maxHops+1];
used_ni = new int [maxHops+1];

A.2. BUFFERBUDGETCOUNTER 165

combinedFree_mi = new int [maxHops+1];

budgetTotal = budgetTotal_;
mtu = MTU;
dDedicated = dDedicated_;
shared_b1 = budgetTotal (dDedicated_∗(maxHops_ 1));
inUse = 0;

setDebugEnabled(false);
setGarbageEnabled(false);

}

/∗∗
∗ Initiates the buffer budget values in the tables
∗/

protected void initTables()
{

int i = 1;
size_bi [i] = shared_b1;
threshold_Bi [i] = shared_b1;
used_ni [i] = 0 ;
combinedFree_mi[i] = shared_b1;

while(++i <= maxHops)
{

size_bi [i] = dDedicated ;
threshold_Bi [i] = threshold_Bi [i 1] + dDedicated;
used_ni [i] = 0;
combinedFree_mi[i] = combinedFree_mi[i 1] + dDedicated;

}
}

/∗∗
∗ Reports the total amount of free memory in the virtual input
∗ queue
∗
∗ @param data_ that arrived
∗ inPort_ data arrived at
∗/

public synchronized void process(Object data_, drcl.comp.Port inPort_)
{

if (0 == combinedFree_mi[maxHops])
inPort_.doLastSending("Out of Memory");

else {
inPort_.doLastSending("Available " + combinedFree_mi[maxHops]);

}
}

/∗∗

166 APPENDIX A. SOURCE CODE: QUEUES

∗ Reserves one unit of buffer budget at the specified
∗ packetlevel. Updates budget variables oposit to freeBufferBudget.
∗
∗ @param psize_ amount to reserve
∗ plevel_ to reserve at
∗
∗ @return true if reservation is ok, false if out of memory on that
∗ level
∗/

public synchronized boolean reserveBufferBudget(int psize_, int plevel_)
{

/∗ cannot reserve if BufferBudget is exhausted ∗/
if(isFull())

{
if(isGarbageEnabled())

debug("Out of memory");
return false;

}

int psize = (psize_ == 1)? mtu: psize_; //if packetmode use std size mtu
int plevel = plevel_;

/∗ Check if BufferBudget is available for a packet of psize_ of
∗ the given level, if available reserve by updating used_ni,
∗ inUse and combinedFree_mi.
∗/

if(combinedFree_mi[plevel_] >= psize)
{

used_ni[plevel_] += psize;
inUse += psize;

while(plevel <= maxHops)
{

combinedFree_mi[plevel++] = psize;
}

return true;
}

return false;
}

/∗∗
∗ Frees one unit of buffer budget at the specified packet
∗ level. Updates budget variables oposit to reserveBufferBudget.
∗
∗ @param psize_ amount to reserve
∗ plevel_ to reserve at
∗
∗ @return true if free is ok, false if free cannot be performed.
∗/

A.2. BUFFERBUDGETCOUNTER 167

public synchronized boolean freeBufferBudget(int psize_, int plevel_)
{

int psize = (psize_ == 1)? mtu: psize_; //if packetmode use std size mtu
int plevel = plevel_;

/∗ Make sure there really is minimum psize_ reserved before
∗ proceding
∗/

if(inUse >= psize_ && used_ni[plevel_] >= psize_)
{

used_ni[plevel_] = psize;
inUse = psize;

while(plevel <= maxHops)
{

combinedFree_mi[plevel++] += psize_;
}

return true;
}

return false;
}

/∗∗
∗ Lifts the level for one packet from oldLevel to newLevel. Calls
∗ liftLevel forwarding parameters and adding count=1.
∗
∗ @param oldLevel_
∗ newLevel_
∗ psize_
∗
∗ @return
∗/

public synchronized boolean liftLevel(int oldLevel_, int newLevel_, int psize_)
{

int psize = (psize_ == 1)? mtu: psize_; //if packetmode use std size mtu
return liftLevel(oldLevel_, newLevel_, psize, 1);

}

/∗∗
∗ Lifts the level for count number of packets with common
∗ destination packet from oldLevel to newLevel. Free BufferBudget
∗ at oldLevel, and reserve at newLevel. Note that the inUse remains
∗ constant! combinedFree_mi is lifted at the levels from old and to
∗ below new.
∗
∗<p> only valid for count > 1 if network has constant psize!
∗
∗ @param oldLevel_
∗ newLevel_

168 APPENDIX A. SOURCE CODE: QUEUES

∗ psize_
∗ count_
∗
∗ @return
∗/

public synchronized boolean liftLevel(int oldLevel_, int newLevel_, int psize_, int count_)
{

int oldLevel = oldLevel_;
int newLevel = (newLevel_ > maxHops) ? maxHops : newLevel_;
int psize = (psize_ == 1)? mtu: psize_; //if packetmode use std size mtu

if(newLevel <= oldLevel)
{

if(isDebugEnabled())
debug("Cannot reduse level!"); //REMOVE

return false;
}

used_ni[oldLevel] = psize∗count_; //free BufferBudget at oldLevel
used_ni[newLevel] += psize∗count_; //reserve BufferBudget at newLevel

/∗ Adjust combinedFree_mi for the levels between old and new, as
∗ the packet(s) don’t take up space here any more
∗/

while(oldLevel < newLevel)
{

combinedFree_mi[oldLevel++] += psize∗count_;
}

return true;
}

/∗∗
∗ Returns true if there is no space left in shared level 1, meaning
∗ flow control has to be activated
∗/

public boolean isAboveHighMark(boolean linkEmulation_)
{

return isAbove_Threshold(linkEmulation_);
}

/∗∗
∗ Returns true if there is space left in shared level 1,
∗ meaning flow control can be deactivated
∗/

public boolean isBelowLowMark(boolean linkEmulation_)
{

int margin = linkEmulation_? MARGIN:0;
if(fcType == 1)

margin +=3;

A.2. BUFFERBUDGETCOUNTER 169

if(shared_b1 >= inUse + margin∗mtu)
return true;

return false;
}

/∗∗
∗ Returns true if there is space left in shared level 1,
∗ meaning flow control can be deactivated
∗/

public boolean isBelowLowMark_Arriving(boolean linkEmulation_, boolean arriving)
{

int margin = linkEmulation_? MARGIN:0;
if(arriving)

margin +=1; // add 1 for margin to the arriving frame
if(fcType == 1)

margin +=3;
if(fcType == 2)

margin +=3; // test for overflow ttl=2 in protocol p
if(shared_b1 >= inUse + margin∗mtu)

return true;
return false;

}

/∗∗
∗ Returns true if there is no space left in shared level 1, meaning
∗ flow control has to be activated
∗/

public boolean isAbove_Threshold(boolean linkEmulation_)
{

int margin = linkEmulation_? MARGIN:0;
if(shared_b1 <= (inUse + margin∗mtu))

return true;
return false;

}

/∗∗
∗ Returns true if there is no space left in shared level 1, meaning
∗ flow control has to be activated
∗/

public boolean isAbove_Threshold_Arriving(boolean linkEmulation_, boolean arriving_)
{

int margin = linkEmulation_? MARGIN:0;
if(arriving_) margin +=1; // add 1 for margin to the arriving frame

if(shared_b1 <= (inUse + margin∗mtu))
return true;

return false;
}

170 APPENDIX A. SOURCE CODE: QUEUES

/∗∗ Returns true if there is no room for another mtu size packet ∗/
public boolean isFull()
{

if(budgetTotal < inUse + mtu)
return true;

return false;
}

protected int sum_ni(int plevel_)
{

int plevel = plevel_;
int sum = 0;
while(plevel > 0)

{
sum += used_ni[plevel];

}
return sum;

}

protected int calc_mi(int plevel_)
{

return (threshold_Bi[plevel_] sum_ni(plevel_));
}

public int get_mi(int level_)
{

if(level_ == 0) return 0;
return calc_mi(level_);

}
}

A.3 LevelTable

package drcl.comp.lib;

import drcl.comp.∗;
import java.util.Hashtable;

/∗∗
∗ Component that records the level assigned to a network destination
∗ foreach destination currently having packets inside the
∗ switch. Protocol P assumes destination based routing, hence all
∗ packets intended for the same host are bound to leave the switch
∗ via the same port. The (destination,level) pairs are hence global
∗ to the switch, and can be updated and checked from all NI
∗ implementing Protocol P.
∗

A.3. LEVELTABLE 171

∗ @author Bergfrid Marie Skaara
∗ @version 1.0, 20040527
∗/

public class LevelTable extends Component
{

protected Hashtable destinationLevelPair; // the level table for (destination,level) pairs
public int dHops; // the value D according to Protcol P

/∗∗
∗ Resets level value for a given destination in the
∗ destinationLevelPair HashTable to 0.
∗
∗ @param destination_ to reset
∗/

public synchronized void clearLevel(Long destination_)
{

if(destination_ == null) return;
if (destinationLevelPair.containsKey(destination_))

{
destinationLevelPair.remove(destination_);

}
}

/∗∗
∗ Overwrites the previous level value for a given destination in
∗ the destinationLevelPair HashTable. Only one entry per
∗ destination, so remove old entry if it excists and insert new
∗ with the updated value
∗
∗ @param destination_
∗ level_
∗/

public synchronized void setLevel(Long destination_, int level_)
{

if(destination_ == null) return;
if(level_ == 0)

{
clearLevel(destination_);
return;

}

if (destinationLevelPair.containsKey(destination_))
{

destinationLevelPair.remove(destination_);
}

destinationLevelPair.put(destination_, new Integer(level_));
}

172 APPENDIX A. SOURCE CODE: QUEUES

/∗∗
∗ Gets the level assosiated with the given destination, if no entry
∗ is found, default value is 0.
∗
∗ @param destination_
∗
∗ @return level, 0 as default
∗/

public synchronized int getLevel(Long destination_)
{

if(destination_ == null) return 0;
if (destinationLevelPair.containsKey(destination_))

{
return ((Integer)(destinationLevelPair.get(destination_))).intValue();

}
else

return 0;
}

}

A.4 LevelQElement

/∗∗
∗
∗ @author Bergfrid Marie Skaara
∗ @version 1.0, 06/14/2004
∗ @see drcl.util.queue._Element
∗/

package drcl.inet.core.queue;

public class LevelQElement extends drcl.DrclObj implements drcl.util.queue.Element
{

double key; // corresponding to level
int size;
Object obj;
LevelQElement next;

/∗∗
∗Preferred constructor
∗/

LevelQElement (double key_, Object o_, int size_)
{

key = key_;
size = size_;

A.5. VSFIFOLEVELQUEUE 173

obj = o_;
next = null;

}

void recycle()
{

obj = null;
next = null;

}

public Object getObject()
{

return obj;
}

public int getSize()
{

return size;
}

public double getKey()
{

return key;
}

}

A.5 VSFIFOLevelQueue

package drcl.inet.core.queue;

import java.util.∗;
import drcl.util.queue.∗;
import drcl.comp.lib.∗;

/∗∗
∗ Variable size version of {@link FIFOQueue} with special LevelQ addition.
∗
∗ @author Bergfrid Marie Skaara
∗ @version 1.0, 06/14/2004
∗ @see drcl.util.queue.VSFIFOQueue
∗/

public class VSFIFOLevelQueue implements BufferBudgetConstants
{

LevelQElement head;
LevelQElement tail;

174 APPENDIX A. SOURCE CODE: QUEUES

int size;
int length;

/∗∗
∗ Enqueues the element in FIFO manner with level = 1 (default
∗ endnode) and std MTU. Forwards request to enqueue(double, Object,
∗ int)
∗
∗ @param element_ to be enqueued
∗/

public void enqueue(Object element_)
{

enqueue((double)1, element_, MTU);
}

/∗∗
∗ Enqueues the element in FIFO manner with level = 1 (default
∗ endnode) and specified size. Forwards request to enqueue(double,
∗ Object, int)
∗
∗ @param element_ to be enqueued
∗ size_ of the element
∗/

public void enqueue(Object element_, int size_)
{

enqueue((double)1, element_, size_);
}

/∗∗
∗ Enqueues the element in FIFO manner with specified key and std
∗ MTU. Forwards request to enqueue(double, Object, int)
∗
∗ @param element_ to be enqueued
∗ size_ of the element
∗/

public void enqueue(double key_, Object element_)
{

enqueue(key_, element_, MTU);
}

/∗∗
∗ Enqueues the element in FIFO manner with the associated key and
∗ specified size. Key is connected to destination level, not the
∗ std q interpretation.
∗
∗ @param key_ of the element
∗ element_ to be enqueued
∗ size_ of the element
∗/

A.5. VSFIFOLEVELQUEUE 175

public void enqueue(double key_, Object element_, int size_)
{

LevelQElement e_ = head;
LevelQElement new_ = new LevelQElement(key_, element_, size_);

if (tail == null)
head.next = new_;

else
tail.next = new_;

tail = new_;
size += size_;
length ++;

}

/∗∗
∗ Dequeues the first element
∗
∗ @return dequeued object
∗/

public Object dequeue()
{

if (head.next == null)
return null;

LevelQElement e_ = head.next;
Object o_ = e_.obj;
head.next = e_.next;
size = e_.size;

if (length == 0)
tail = null;

e_.recycle();

return o_;
}

/∗∗
∗ Dequeues the first element matching the specified key
∗
∗ @param key_
∗
∗ @return dequeued object
∗/

public Object dequeue(double key_)
{

for (LevelQElement e_ = head; e_.next != null; e_ = e_.next)
{

176 APPENDIX A. SOURCE CODE: QUEUES

if (e_.next.key == key_)
{

LevelQElement out_ = e_.next;
Object o_ = out_.obj;
e_.next = out_.next;
size = out_.size;

if (length == 0)
tail = null;

else if (e_.next == null)
tail = e_;

out_.recycle();
return o_;

}
}

return null;
}

/∗∗
∗ Removes the first object matching element and key from the queue
∗
∗ @param key_ of the element to remove
∗ element_ tp remove
∗
∗ @return object removed
∗/

public Object remove(double key_, Object element_)
{

if (head == null)
return null;

for (LevelQElement e_ = head; e_.next != null; e_ = e_.next)
{

LevelQElement tmp_ = e_.next;
Object o_ = tmp_.obj;
if (key_ == tmp_.key && (o_ == element_ || o_ != null && o_.equals(element_)))

{
e_.next = tmp_.next;
size = ((LevelQElement)o_).getSize();

if (length == 0)
tail = null;

else if (e_.next == null)
tail = e_;

tmp_.recycle();
return o_;

}

A.5. VSFIFOLEVELQUEUE 177

}
return null;

}

/∗∗
∗ Removes the first object matching element from the queue
∗
∗ @param element_
∗
∗ @return object removed
∗/

public Object remove(Object element_)
{

for (LevelQElement e_ = head; e_ != null && e_.next != null; e_ = e_.next)
{

LevelQElement tmp_ = e_.next;
Object o_ = tmp_.obj;

if (o_ == element_ || o_ != null && o_.equals(element_))
{

e_.next = tmp_.next;
size = tmp_.size;

if (length == 0)
tail = null;

else if (e_.next == null)
tail = e_;

tmp_.recycle();
return o_;

}
}

return null;
}

/∗∗
∗ Removes all objects matching element from the queue
∗
∗ @param element_
∗/

public void removeAll(Object element_)
{

for (LevelQElement e_ = head; e_ != null && e_.next != null; e_ = e_.next)
{
LevelQElement tmp_ = e_.next;
Object o_ = tmp_.obj;
if (o_ == element_ || o_ != null && o_.equals(element_))

{
e_.next = tmp_.next;

178 APPENDIX A. SOURCE CODE: QUEUES

size = tmp_.size;

if (length == 0)
tail = null;

else if (e_.next == null)
tail = e_;

tmp_.recycle();
}

}
}

/∗∗
∗ Removes all objects matching element and key from the queue
∗
∗ @param key_
∗ element_
∗/

public void removeAll(double key_, Object element_)
{

for (LevelQElement e_ = head; e_ != null && e_.next != null; e_ = e_.next)
{
LevelQElement tmp_ = e_.next;
Object o_ = tmp_.obj;
if (tmp_.key == key_ && (o_ == element_ || o_ != null && o_.equals(element_))

{
e_.next = tmp_.next;
size = tmp_.size;

if (length == 0)
tail = null;

else if (e_.next == null)
tail = e_;

tmp_.recycle();
}

}
}

/∗∗
∗ Removes the nth element of the queue
∗
∗ @param n_
∗
∗ @return object removed
∗/

public Object remove(int n_)
{

LevelQElement e_= head;
for (int i=0; i<n_ && e_.next != null; i++, e_ = e_.next); // traverse list

A.5. VSFIFOLEVELQUEUE 179

if (e_.next == null)
return null;

LevelQElement tmp_ = e_.next;
Object o_ = tmp_.obj;
e_.next = tmp_.next;
size = tmp_.size;

if (length == 0)
tail = null;

else if (e_.next == null)
tail = e_;

tmp_.recycle();

return o_;
}

/∗∗
∗ Returns the first element of the queue
∗
∗ @return object
∗/

public Object firstElement()
{ return head.next == null? null: head.next.obj; }

/∗∗
∗ Returns the last element of the queue
∗
∗ @return object
∗/

public Object lastElement()
{ return tail == null? null: tail.obj; }

/∗∗
∗ Returns the first key of the queue
∗
∗ @return key
∗/

public double firstKey()
{ return head.next == null? Double.NaN: head.next.key; }

/∗∗
∗ Returns the first key found at or above level
∗
∗ @param level_
∗
∗ @return eligible key
∗/

public double getEligibleKey(int level_)

180 APPENDIX A. SOURCE CODE: QUEUES

{
for (LevelQElement e_ = head; e_.next != null; e_ = e_.next)

{
if (e_.next.key >= level_)

return e_.next.key;
}

return Double.NaN;
}

/∗∗
∗ Retieves the object at the given pos without performing dequeue
∗
∗ @param n_
∗
∗ @return object
∗/

public Object retrieveAt(int n_)
{

LevelQElement e_= head.next;
for (int i=0; i<n_ && e_ != null; i++, e_ = e_.next); // traverse list

return e_ == null? null: e_.obj;
}

/∗∗
∗ Retieves the key at the given pos without performing dequeue
∗
∗ @param n_
∗
∗ @return key
∗/

public double retrieveKeyAt(int n_)
{

LevelQElement e_= head.next;
for (int i=0; i<n_ && e_ != null; i++, e_ = e_.next); // traverse litst

return e_ == null? Double.NaN: e_.key;
}

/∗∗
∗ Retrieves the first object matching the key
∗
∗ @param key_
∗
∗ @return object
∗/

public Object retrieveBy(double key_)
{

for (LevelQElement e_ = head; e_.next != null; e_ = e_.next)
if (e_.next.key == key_)

A.5. VSFIFOLEVELQUEUE 181

return e_.next.obj;
return null;

}

/∗∗
∗ Retrieves the all objects matching the key
∗
∗ @param key_
∗
∗ @return object []
∗/

public Object [] retrieveAllBy(double key_)
{

Object[] o_ = new Object[length];
int i = 0;

for (LevelQElement e_ = head; e_.next != null; e_ = e_.next)
{

if (e_.next.key == key_)
o_[i++] = e_.obj;

}
return (Object [])o_;

}

/∗∗
∗ Returns true if the list contains that element
∗
∗ @param element_
∗
∗ @return true if the list contains that element
∗/

public boolean contains(Object element_)
{

for (LevelQElement e_ = head.next; e_ != null; e_ = e_.next)
if (e_.obj.equals(element_)) return true;

return false;
}

/∗∗
∗ Returns true if the list contains that key
∗
∗ @param key_
∗
∗ @return true if the list contains that element
∗/

public boolean containsKey(double key_)
{

for (LevelQElement e_ = head; e_.next != null; e_ = e_.next)
if (e_.next.key == key_)

182 APPENDIX A. SOURCE CODE: QUEUES

return true;
return false;

}

public double[] keys()
{

double[] keys_ = new double[length];
LevelQElement e_ = head.next;
for (int i=0; i<keys_.length; i++) {

keys_[i] = e_.key;
e_ = e_.next;

}
return keys_;

}

/∗∗
∗ Returns the length of the list.
∗
∗ @return length
∗/

public int getLength()
{ return length; }

/∗∗
∗ Returns the length of the list.
∗
∗ @return size
∗/

public int getSize()
{ return size; }

public boolean isEmpty()
{ return (length == 0)? true: false; }

}

Appendix B

Tcl scripts and functions

B.1 Template script for main scenario

#a=rate, b=fctype, c=topology, d=logTp, e=logLat

source "simulationSettings.tcl"

source "simulationTools.tcl"

source "simulationRoutingTools.tcl"

Create root components

cd [mkdir drcl.comp.Component $simRoot]

set link [java::new drcl.inet.Link]

$link setPropDelay $linkPropagation

#Settings

set minSendRate $a

set maxSendRate $minSendRate

#012

set fcType $b

if {$fcType == 0} {

set flowControlStatus disableFlowControl

set protocolPStatus disableProtocolP

}

if {$fcType == 1} {

set flowControlStatus enableFlowControl

set protocolPStatus disableProtocolP

}

if {$fcType == 2} {

set flowControlStatus enableFlowControl

set protocolPStatus enableProtocolP

}

183

184 APPENDIX B. TCL SCRIPTS AND FUNCTIONS

#fName topology

set currentTopologyLASH $c

puts $currentTopologyLASH

set debugStatus false

set garbageStatus false

proc setInitNI { path bandwidth propagation} {

global protocolPStatus

global flowControlStatus

global debugStatus

global garbageStatus

[! $path] setBandwidth $bandwidth

[! $path] setPropDelay $propagation

[! $path] setDebugEnabled $debugStatus

[! $path] setGarbageEnabled $garbageStatus

[! $path] $flowControlStatus

[! $path] $protocolPStatus

}

build topology

puts "Building topology"

buildSpanningTreeTopology

set hostBuilder [mkdir drcl.net.PNodeBuilder .hostBuilder]

set switchBuilder [mkdir drcl.net.PNodeBuilder .switchBuilder]

set cslBuilder [mkdir drcl.net.ProtocolPBuilder .cslBuilder]

build hosts

puts nonewline "Building hosts"

for {set i $nSwitches} {$i < [expr $nHosts + $nSwitches]} {incr i} {

$hostBuilder build [! h$i] $cslBuilder

cd $simRoot/h$i/

add source

set src_model [java::new drcl.net.traffic.traffic_PeakRate

$minPacketSize $maxPacketSize $minSendRate $maxSendRate]

mkdir [java::call drcl.net.traffic.TrafficAssistant

getTrafficComponent $src_model] source

address modifyer

setAm "$simRoot/h$i/" "$i" $nSwitches $nHosts

stats collector: packets sent and received

set stats [mkdir drcl.net.PStatCollector .stats]

$stats setStats $nHosts $nSwitches

B.1. TEMPLATE SCRIPT FOR MAIN SCENARIO 185

connect c csl/0@down to $stats/send@

connect c csl/pd/100@up to $stats/received@

setInitNI "$simRoot/h$i/csl/nip_out"

$hostIFBandwidth $linkPropagation

setInitNI "$simRoot/h$i/csl/nip_in"

$hostIFBandwidth $linkPropagation

cd ..

puts nonewline "."

}

puts ""

build switches

puts nonewline "Building switches"

for {set i 0} {$i < $nSwitches} {incr i} {

$switchBuilder build [! n$i] $cslBuilder

for {set j 0} {$j < $switchNumPorts} {incr j} {

[! $simRoot/n$i/csl/bbc$j] setFcType $fcType

setInitNI "$simRoot/n$i/csl/nip_out$j"

$switchIFBandwidth $linkPropagation

setInitNI "$simRoot/n$i/csl/nip_in$j"

$switchIFBandwidth $linkPropagation

}

cd $simRoot/n$i

stats collector: packets dropped, packets received at PD

set stats [mkdir drcl.net.PStatCollector .stats]

$stats setStats $nHosts $nSwitches

connect c csl/drain@ to $stats/dropped@

connect c csl/pd/100@up to $stats/received@

cd ..

puts nonewline "."

}

puts ""

puts "Done building"

setup routes

puts "Setting up routes"

setSpanningTreeRoutes $nHosts $nSwitches

puts "Starting simulation"

set fNameThroughput $d

186 APPENDIX B. TCL SCRIPTS AND FUNCTIONS

set fNameLatency $e

cd $simRoot

set sim [attach_simulator .]

run .

script at $SIM_RUNTIME "! /eth/h*/source stop" on $sim

script at $SIM_STOPTIME "dumpThroughput

$nSwitches $nHosts $fNameThroughput $minSendRate" on $sim

script at $SIM_STOPTIME "dumpLatency

$nSwitches $nHosts $fNameLatency $minSendRate" on $sim

$sim stopAt $SIM_STOPTIME

B.2 Utility Tcl scripts

proc setSpanningTreeRoutes { nHosts nSwitches } {

global simRoot

puts nonewline "% Setting up spanning tree routes "

for {set i $nSwitches} {$i < [expr $nHosts + $nSwitches]} {incr i} {

puts nonewline "$i."

for {set j $nSwitches} {$j < [expr $nHosts + $nSwitches]} {incr j} {

if {$i == $j} {

continue

}

java::call drcl.inet.InetUtil setupRoutes

[! $simRoot/h$i] [! $simRoot/h$j] "bidirection"

}

}

}

proc buildSpanningTreeTopology {} {

global simRoot

global currentTopologyLASH

global link

global nSwitches

global nHosts

global nHostsPerSwitch

cd $simRoot

set iu [java::new drcl.inet.InetUtil]

set adjMatrix_ [$iu getAdjMatrixFromFile $currentTopologyLASH]

set k [java::new drcl.comp.lib.MSTKruskal]

$k readAdjMatrix $adjMatrix_

$k performKruskal

set adjMatrixMST [$k createAdjMatrixFromMST

B.2. UTILITY TCL SCRIPTS 187

$nSwitches $nHosts $nHostsPerSwitch]

java::call drcl.inet.InetUtil createTopology [! .]

$adjMatrixMST $link

}

proc setAm {hostpath hostID nSwitches nHosts} {

cd $hostpath

mkdir drcl.net.AddressModifier am

! am setNumSwitches $nSwitches

! am setNumHosts $nHosts

! am setAddressDistribution 0

1 for static destination, 0 for uniform

! am setAddress [! . getDefaultAddress]

connect c source/down@ to am/up@

connect c am/down@ to csl/100@up

}

host stats

proc dumpThroughput {nSwitches nHosts fName rate} {

set pktsent 0

set pktreceiveddata 0

set pktdropped 0

if {$fName != "stdout"} {

if [catch {open $fName a} fID] {

puts stderr "Cannot open $fName: $fID"

} else {

set fName $fID

}

}

puts $fName "($rate) "

for {set i $nSwitches} {$i < [expr $nHosts + $nSwitches]} {incr i} {

send and received from hosts

set tmpsent [! /eth/h$i/.stats getTotalSent]

set tmpreceiveddata [! /eth/h$i/.stats getTotalDataReceived]

set pktsent [expr $pktsent + $tmpsent]

set pktreceiveddata [expr $pktreceiveddata + $tmpreceiveddata]

dropped from switches

if {[expr $i $nSwitches] < $nSwitches} {

set tmpdropped [! /eth/n[expr $i $nSwitches]/.stats getTotalDropped]

set pktdropped [expr $pktdropped + $tmpdropped]

} else {

set tmpdropped 0

}

puts $fName "$tmpsent $tmpreceiveddata $tmpdropped"

}

188 APPENDIX B. TCL SCRIPTS AND FUNCTIONS

puts $fName "TOTAL: "

puts $fName "$pktsent $pktreceiveddata $pktdropped"

}

dump latency for all packets

proc dumpLatency {nSwitches nHosts fName rate} {

set sumLat 0

set sumPkt 0

set avg 0

if {$fName != "stdout"} {

if [catch {open $fName a} fID] {

puts stderr "Cannot open $fName: $fID"

} else {

set fName $fID

}

}

puts $fName "($rate)"

for {set i $nSwitches} {$i < [expr $nHosts + $nSwitches]} {incr i} {

set tmpLatency [! /eth/h$i/.stats getAccNetworkLatencyArray]

set lat [java::call java.lang.reflect.Array getDouble $tmpLatency 0]

set nPackets [java::call java.lang.reflect.Array getDouble $tmpLatency 1]

set sumLat [expr $sumLat + $lat]

set sumPkt [expr $sumPkt + $nPackets]

puts $fName "$lat $nPackets"

}

set avg [expr $sumLat / $sumPkt]

puts $fName "$sumLat $sumPkt $avg"

}

Bibliography

[1] gnuplot homepage. http://www.gnuplot.info/, March 2007.

[2] Eitan Altman and Tania Jimènez. Ns
simulator for beginners. http://www-
sop.inria.fr/maestro/personnel/Eitan.Altman/COURS-NS/n3.pdf,
Dec. 2003.

[3] I. T. Assosiation. Infiniband architechture specification. Technical re-
port, I. T. Assosiation, 2000.

[4] James Aweya, Michel Ouellette, and Delfin Y. Montuno. Interworking
of switched ethernet and atm flow control mechanisms. Int. J. Netw.
Manag., 12(6):357–366, 2002. issn = 1099-1190.

[5] A. Bermúdez, R. Casado, F. J. Alfaro, F. J. Quiles, J. L. Sánchez, and
J. Duato. On the performance of up*/down* routing. In The Fourth
Workshop on Communication, Architecture, and Applications for Network-
based Parallel Computing [33], pages 61–72.

[6] Dimitri Bertsekas and Robert Gallager. Data Networks. Prentice Hall,
second edition, 1992. fist edition 1987.

[7] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Ku-
lawik, Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet:
A gigabit-per-second local area network. IEEE Micro, 15(1):29–36,
1995.

[8] Lawrence S. Brakmo and Larry L. Peterson. Experiences with network
simulation. In SIGMETRICS, pages 80–90, 1996.

[9] W. Bux, W.E. Denzel, T. Engbersen, A. Herkersdorf, and R.P. Luijten.
Technologies and building blocks for fast packet forwarding. IEEE
Communication Magazine, january 2001.

[10] J. S. Carson. Modeling and simulation worldviews. In Winter Simu-
lation Conference (WSC ’93), pages 18–23, New York, dec 1993. ACM
Association for Computing Machinery. ISBN = 0-7803-1381-X.

189

190 BIBLIOGRAPHY

[11] H. Chen and P. Wyckoff. High performance commodity interconnects
for clustered scientific and engineering computing. Ldrd 98-0260 final
report, Sandia National Laboratories, aug 2000.

[12] David R. Cheriton. Sirpent: A high-performance internetworking ap-
proach. In SIGCOMM, pages 158–169, 1989.

[13] I. Cidon, J. M. Jaffe, and M. Sidi. Distributed store-and-forward dead-
lock detection and resolution algorithms. IEEE trans. on commun.,
COM-35, 11:1139–1145, 1987.

[14] Rene L. Cruz. A calculus for network delay. i. network elements in
isolation. Information Theory, IEEE Transactions on, 37(1):114 – 13, jan
1991.

[15] Rene L. Cruz. A calculus for network delay. ii. network analysis. In-
formation Theory, IEEE Transactions on, 37(1):132 – 141, jan 1991.

[16] A.V.S. Cui-Qing Yang Reddy. A taxonomy for congestion control al-
gorithms in packet switching networks. In Network, IEEE, volume 9,
pages 34 – 45. Dept. of Comput. Sci., North Texas Univ., Denton, TX,
USA, jul 1995.

[17] William James Dally and Brian Towels. Principles and Practices of In-
terconnection Networks. Morgan Kaufmann Publishers - Elsevier, 500
Sansome Street, Suite 400, San Francisco, CA 94111, 2004. ISBN: 0-12-
200751-4.

[18] Duato. A necessary and sufficient condition for deadlock-free rout-
ing in cut-through and store-and-forward networks. IEEETPDS: IEEE
Transactions on Parallel and Distributed Systems, 7, 1996.

[19] L. Breslau et al. Advances in network simulation. IEEE Computer,
33(5):59–67, May 2000.

[20] O. Feuser and A. Wenzel. On the effects of the IEEE 802.3x flow con-
trol in full-duplex Ethernet LANs. In IEEE, editor, LCN’99: proceedings:
24th Conference on Local Computer Networks, pages 160–163, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA, oct 1999. IEEE Com-
puter Society Press. ISBN 0-7695-0309-8.

[21] George S. Fishman. Discrete-event simulation : modeling, programming,
and analysis. Springer series in operations research. Springer, New
York, 2001. ISBN: 0-387-95160-1, ib.

[22] Sally Floyd and Van Jacobson. Random early detec tion gateways for
congestion avoidance. IEEE/ACM Transactions on Networking, 1(4):397–
413, 1993.

BIBLIOGRAPHY 191

[23] Annie P. Foong, Thomas R. Huff, Herbert H. Hum, Jaidev P. Patward-
han, and Greg J. Regnier. Tcp performance re-visited. In ISPASS-2003
2003 IEEE International Symposium on Performance Analysis of Systems
and Software, 2003.

[24] Jean-Philippe Georges, Eric Rondeau, and Thierry Divoux. Evaluation
of switched ethernet in an industrial context by using the network cal-
culus. In 4th IEEE International Workshop on Factory Communication Sys-
tems [32], pages 19–26.

[25] Mario Gerla and Leonard Kleinrock. Flow control: A comparative sur-
vey. IEEE Transactions on Communications, COM-28(4):553–574, april
1980.

[26] A. Giessler, J. Hanle, A. Konig, and E. Dade. Free buffer allocation -
an investigation by simulation. Computer Networks, 2:191–208, 1978.

[27] S. Jamaloddin Golestani. Congestion-free communication in high-
speed packet networks. IEEE Transactions on Communications,
39(12):1802–1812, december 1991.

[28] I. S. Gopal. Prevention of store-and-forward deadlock in computer
networks. IEEE trans. on commun., C-33, 12:1258–1264, 1985.

[29] Inder S. Gopal. Prevention of store-and forward deadlock in com-
puter networks. In Isaac D. Scherson and Abdou S. Youssef, editors,
Interconnection Networks for High-Performance Parallel Computers, pages
338–344, Los Alamitos-Washington-Brussels-Tokyo, 1994. IEEE Com-
puter Society Press. Originally in: IEEE Trans. Communications, Vol.
COM-33, No. 12, Dec. 1985 pp. 1258-1264.

[30] K. D. Günther. Prevention of deadlocks in packet-switched data trans-
port systems. IEEE trans. on commun., COM-29:512–524, 1981.

[31] Justin Hurwitz and Wu chen Feng. Initial end-to-end performance
evaluation of 10-gigabit ethernet. In Proceedings of IEEE Hot Intercon-
nects: 11th Symposium on High-Performance Interconnects. IEEE, IEEE,
aug 2003.

[32] IEEE. 4th IEEE International Workshop on Factory Communication Sys-
tems, aug 2002.

[33] IEEE Computer Society. The Fourth Workshop on Communication, Archi-
tecture, and Applications for Network-based Parallel Computing, jan 2000.

[34] Driftsseksjonen Inf. Condor på institutt for informatikk, uio.
http://www.ifi.uio.no/condor/.

[35] S. Yalamanchili J. Duato and L. Ni. Interconnection Networks an Engin-
eering Approach. IEEE Computer Society, 1997. Revised Printing.

192 BIBLIOGRAPHY

[36] Van Jacobson. Congestion avoidance and control. In ACM SIGCOMM
’88, pages 314–329, Stanford, CA, aug 1988.

[37] R. Jain. Congestion control in computer networks: issues and trends.
In IEEE Network Magazine, volume 4-3, pages 24 – 30. Digital Equip-
ment Corp., Littleton, MA, USA, may 1990. ISSN: 0890-8044.

[38] R. Jain. Myths about congestion management in high-speed networks.
Internetworking: Research and Experience, 3:101–113, 1992. (Technical
Report-726, Digital Equipment Corporation, October 1990).

[39] Raj Jain and K. K. Ramakrishnan. Congestion avoidance in computer
networks with a connectionless network layer: Concepts, goals and
methodology. In Proc. IEEE Computer Networking Symposium, Washing-
ton D.C., pages 134–143, april 1988.

[40] Jurgen Jaspernite, Peter Neumann, Michael Theis, and Kym Watson.
Deterministic real-time communication with switched ethernet. In
4th IEEE International Workshop on Factory Communication Systems [32],
pages 11–18.

[41] R. Jing-Fei Ren, Landry. Flow control and congestion avoidance in
switched ethernet lans. In IEEE, editor, ICC 97, volume 1, pages 508–
512, 1997.

[42] Mark Karol, S. Jamaloddin Golestani, and David Lee. Prevention of
deadlocks and livelocks in lossless, backpressured packet networks.
In Proceedings of the 2000 IEEE Computer and Communications Societies
Conference on Computer Communications (INFOCOM-00), pages 1333–
1342, Los Alamitos, mar 2000. IEEE.

[43] Mark Karol, S. Jamaloddin Golestani, and David Lee. Prevention of
deadlocks and livelocks in lossless backpressured packet networks.
In IEEE/ACM Trans. Netw., volume 11-6, pages 923–934. ACM Press,
2003. issn=1063-6692.

[44] Mark Karol, David Lee, and S. Jamaloddin Golestani. A simple tech-
nique that prevents packet loss and deadlocks in gigabit ethernet.
In Proc. 1999 International Symposium on Communications (ISCOM’99),
pages 26–30, november 1999.

[45] Simon S. Lam and Martin Reiser. Congestion control of store-and-
forward networks by input buffer limits - an analysis. IEEE Transac-
tions on Communications, COM-29(1):127–134, january 1979.

[46] Duke Lee, Sinem Coleri, Xuanming Dong, and Mustafa Ergen. Florax
- flow-rate based hop by hop back-pressure control for ieee 802.3x.
citeseer.ist.psu.edu/535134.html.

BIBLIOGRAPHY 193

[47] P. M. Merlin and P. J. Schweitzer. Deadlock avoidance in store-and-
forward networks - I: store-and-forward deadlock. IEEE trans. on com-
mun., COM-28:345–354, 1980.

[48] R. M. Metcalfe and D. R. Boggs. ETHERNET: distributed packet
switching for local area networks. Computer networks / ACM, 19(5):395–
404, 1976.

[49] Robert M. Metcalfe. Packet Communication. Phd thesis, Harward Uni-
versity, december 1973.

[50] Robert M. Metcalfe, David R. Boggs, Charles P. Thacker, and But-
ler W. Lampson. Multipoint data communication system with
collision detection, united states patent 4063220, december 1977.
www.freepatentsonline.com/4063220.html.

[51] Partho P. Mishra and Hermant Kanakia. A hop-by-hop rate-based con-
gestion control. In SIGCOMM ’92: Conference procedings on Communica-
tions architectures & protocols, pages 112–123, Ner York, NY, USA, 1992.
ACM Press. ISBN: 0-89791-525-9.

[52] W. Noureddine and F. Tobagi. Selective backpressure in switched eth-
ernet lans. In Proceedings of IEEE GLOBECOM, pages 1256–1263, 1999.

[53] Wael Noureddine. Improving the Performance of TCP Applications Using
Network Assisted Mechanisms. PhD thesis, Stanford University, june
2002.

[54] Wael Noureddine and Fouad Tobagi. The transmission control pro-
tocol, an introcuction to tcp and research survey. Technical report,
Stanford University, july 2002.

[55] G. Omidyar, C.G. Pujolle. Guest editorial - introduction to flow and
congestion control. In Communications Magazine, IEEE, volume 34,
page 30, nov 1996. ISSN: 0163-6804.

[56] C. M. Ozveren, R. Simcoe, and G. Varghese. Reliable and efficient hop-
by-hop flow control. In Selected Areas in Communications, IEEE Journal
on, volume 13, pages 642 – 650. Digital Equipment Corp., Littleton,
MA, USA;, may 1995. ISSN: 0733-8716.

[57] Carlos M. D. Pazos, Juan C. Sanchez-Agrelo, and Mario Gerla. Us-
ing back-pressure to improve TCP performance with many flows. In
INFOCOM (2), pages 431–438, 1999.

[58] Francesco De Pellegrini, David Starobinski, Mark G. Karpovsky, and
Lev B. Levitin. Scalable cycle-breaking algorithms for gigabit ethernet
backbones. In INFOCOM, 2004.

194 BIBLIOGRAPHY

[59] Larry L. Peterson and Bruce S. Davie. Computer Networks, A Systems
Approach. Morgan Kaufman Publishers, 2000.

[60] Louis Pouzin. Methods, tools, and observations on flow control in
packet-switched data networks. IEEE Transactions on Communications,
COM-29(4):413–426, april 1981.

[61] W. Prue and J. Postel. Rfc 1016 - something a host could do with source
quench:. Technical report, Network Working Group, july 1987.

[62] E. Raubold and J. Haenle. A method of deadlock-free resource alloc-
ation and flow control in packet networks. In Proceedings of the Third
International Conference on Computer Communication, 1976.

[63] Renato John Recio. Server i/o networks past, present, and future. In
ACM SIGCOMM 2003 Workshops, pages 163–178, aug 2003.

[64] José Carlos Sancho, Antonio Robles, and José Duato. A new method-
ology to compute deadlock-free routing tables for irregular networks.
In The Fourth Workshop on Communication, Architecture, and Applications
for Network-based Parallel Computing [33], pages 45–60.

[65] T. J. Schriber and D. T. Brunner. Inside simulation software: how it
works and why it matters. In Winter Simulation Conference (WSC ’96),
pages 23–30, New York, 1996. ACM Association for Computing Ma-
chinery.

[66] M. D. Schroeder, A. D. Birrell, M. Burrows, H. Murray, R. M. Need-
ham, T. L. Rodeheffer, E. H. Satterhwaite, and C. P Thacker. Autonet:
A high-speed, self-configuring local area network using pointto-point
links. IEEE Journal on Selected Areas in Communications, 9(8):1318–1335,
oct 1991.

[67] Rich Seifert. The Switch Book : The Complete Guide to LAN Switching
Technology. John Wiley & Sons, Inc., 605 Third Avenue, NY, 2000.

[68] Tor Skeie, Svein Johannessen, and Øyvind Holmeide. The road to an
end-to-end deterministic ethernet. In 4th IEEE International Workshop
on Factory Communication Systems [32], pages 3–9. ABB Corporate Re-
search.

[69] IEEE Computer Society. Ieee standard for information technology
- telecommunications and information exchange between systems -
local and metropolitan area networks - specofoc requirements part 3:
Carrier sence multiole access with collision detection(csma/cd) acces
method an physical layer specifications. Technical report, IEEE Stand-
ards Institution, march 2002. IEEE Std 802.3-2002.

BIBLIOGRAPHY 195

[70] JTC 1 ISO Standards. Iso/ice 7498-1:1994 information technology
– open systems interconnection – basic reference model: The basic
model, 1994. www.iso.org.

[71] W. Stevens. Rfc 2001 - tcp slow start, congestion avoidance, fast re-
transmit. Technical report, Network Working Group, january 1997.

[72] Andrew S. Tanenbaum. Computer Networks (Fourth Edition). Prentice
Hall PTR (Pearson Education Inc.), Upper Saddle River, New Jersey
07458, 2003.

[73] the Conbdor Project. Condor high throughput computing.
http://www.cs.wisc.edu/condor/.

[74] I. Theiss. Evaluering av metodar for svitsja sci. Master’s thesis, De-
partment of Informatics, University of Oslo, Nowrway, feb 1999.

[75] VINT. The network simulator - ns-2.
http://www.isi.edu/nsnam/ns/.

[76] VINT. Virtual internetwork testbed. a collabor-
ation among ucs/isi, xerox parc, lbnl and ubc.
http://www.isi.edu/nsnam/vint/index.html.

[77] J. Wechta, A. Eberlein, and F. Halsall. The impact of topology and
choice of tcp window size on the performance of switched lans. Com-
puter Communications, 22:955–965, 1999.

[78] J. Wechta, A. Eberlein, F. Halsall, and M. Spratt. Simulation-based
analysis of the interaction of end-to-end and hop-by-hop flow control
schemes in packet switching lans. In Proceedings of the Fifteenth UK
Teletraffic Symposium on Performance Engineering in Information Systems,
1998.

[79] J. Wechta, Armin Eberlein, and F. Halsall. The interaction of the TCP
flow control procedure in end nodes on the proposed flow control
mechanism for use in IEEE 802.3 switches. In HPN, pages 515–534,
1998.

[80] J. Wechta, Armin Eberlein, and F. Halsall. An investigation into the
performance of switched lans. In in Proceedings of the Conference on
Network and Optical Communications, Manchester, UK, 1998.

[81] J. Wechta, M. Fricker, and F. Halsall. Hop-by-hop flow control as a
method to improve qos in 802.3 lans. Proccedings of the Seventh Interna-
tional Workshop on Quality of Service, pages 239–247, may 1999.

[82] X. Xiao and L. M. Ni. Internet qos: A big picture. IEEE Network,
13(2):8–18, mar 1999.

196 BIBLIOGRAPHY

[83] A. Koubaa Loria Y. Song and F. Simont. Switched ethernet for real-
time industrial communication: Modelling and message buffering
delay evaluation. In 4th IEEE International Workshop on Factory Com-
munication Systems [32], pages 27–35.

[84] Hung ying Tyan.

[85] Hung ying Tyan.

[86] Hung ying Tyan. J-sim. http://www.j-sim.org.

[87] Hung ying Tyan. Desig, realization and evaluation of a component-based
compositional software architechture for network simulation. Ph.d., The
Ohio State University, 2002.

[88] K. Yoshigoe and K. Christensen. Rate control for bandwidth allocated
services in ieee 802.3 ethernet. citeseer.ist.psu.edu/471682.html.

