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Abstract

This thesis is concerned with the module of Kähler differentials of an affine
scheme and its primary decomposition. For a smooth scheme, these are the
local building blocks of the cotangent bundle. Each inclusion of a closed
subscheme induces a reversed map of Kähler differentials. We aim to study
the kernel of this map, as well as its primary decomposition. First we review
Kähler differentials, then we review primary decompositions. Next we relate
the primary decomposition of the closed subscheme ideal to the kernel of the
map of differentials. Lastly, we look at the geometric aspect of the theory of
differentials. We will be working in the case of curves in the affine plane, but
we expect that many of our findings remain true for more general schemes and
their closed subschemes.
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Introduction

Kähler differentials were introduced by the German mathematician Erich Kähler
in the 1930s. They provide an algebraic analog to differential forms in Differential
Geometry. These essentially allow us to do calculus on schemes, the object of
interest in modern algebraic geometry.

Let A be a ring, B an A-algebra and M a B-module. An A-derivation is
an A-linear map

B →M

that satisfies the Leibniz rule. The set of such A-derivations is a B-module and
gives rise to a covariant functor of B-modules. This functor is representable in
the sense that

DerA(B,_) ' HomB(ΩB ,_),

where ΩB is exactly the Kähler differentials. When globalizing the Kähler
differentials, one gets a sheaf, called the cotangent sheaf, which is dual to the
tangent sheaf. As the name indicates, the tangent sheaf contains information
about all tangent spaces on a given scheme. For example, a scheme is smooth
if and only if the tangent sheaf is locally free, or equivalently, a vector bundle.

The cotangent sheaf also gives rise to the canonical sheaf, an object we
can attach to any scheme and is important when studying its geometry. For
example, when a scheme X is non-singular, then the canonical sheaf is the
dualizing sheaf. The sheaf of differentials is also used when computing algebraic
De Rham cohomology. Grothendieck [Gro66] showed that this can be used to
compute singular cohomology of smooth schemes over the complex numbers.
Later, it was shown by Liebermann and Herrera [HL71] that one can also do
this for singular schemes over C. In this thesis, we are concerned with local
properties of the cotangent sheaf, so we consider an affine scheme X = Spec(A)
for some ring A. The problem we are concerned with, is the following.

Problem 1. Given a closed subscheme Spec(A/a)→ Spec(A), what is a primary
decomposition of ΩA/a, and how does it relate to a primary decomposition of a?

In some sense, a primary decomposition of ideals abstracts prime factoriza-
tion of integers. On the other hand one can view it as an algebraic phenomenon,
that, in fact, gives a decomposition of schemes into irreducible components.
One could also look at this problem in a more global setting. In [DG67, Chapter
4, Section 3], Grothendieck introduces primary decompositions of OX -modules
for a scheme X. Thus, one can decompose the cotangent bundle ΩX as an
OX -module. Such decompositions give us information about the geometric
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representations of the cotangent sheaf, for example the tangents in a point
on the underlying scheme. The cotangent sheaf contains more information
than just its geometric representations, and the primary decomposition also
gives information about this algebraic structure. Primary decompositions of
OX -modules requires that one can do this locally, which is why we focus on the
affine situation in this thesis.

Outline

In Chapter 1 we introduce the module of Kähler differentials and some of its
properties. Our interest is the kernel of the differential map induced by the
quotient map A → A/a, which we would like to decompose. Therefore, we
establish some properties of the differentials on ideals which we can use in the
decomposition. We also compute the kernel of such a map for a general ring
and ideal, inspired by [Sta22].

In Chapter 2 we recall the fundamentals of the theory on primary
decompositions of ideals. We then generalize much of this to modules and
prove many of the results we will need when decomposing the differentials. To
illustrate the situation, we give an example of the associated primes to the
Kähler differentials of a quotient A/a. Furthermore, we examine the relation
between the primary components of the kernel of

ΩA → ΩA/a,

and the primary components of a.
Chapter 3 is devoted to computing the decomposition of ΩA/a. First, we

conjecture a statement about when the kernel of the induced quotient map is
primary. Then, we conjecture that there are more components in the differentials
than in the ideal, and finally, we find the missing component and conjecture
that it is primary.

Finally, Chapter 4 is meant to give some motivation for computing this
decomposition, and examines the geometry of the differentials. As the
differentials are dual to tangent spaces, they are geometric by nature, although,
as we have said, there are different uses for the differentials.

In the Appendix A, we compute several examples in [Macaulay2].
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CHAPTER 1

The differentials of closed
subschemes

We want to look at how differentials behave relative to ideals of a commutative
ring, and we are especially interested in the components of these ideals. All
rings in this thesis will be assumed to be commutative. We begin by giving
an introduction to differentials and some examples of those. Much of these
preliminaries are based on Hartshorne [Har77], Ellingsrud and Ottem [EO], and
Eisenbud[Eis13].

1.1 Kähler differentials

The Kähler differentials are, as the name conveys, a module that contains
information about the ‘differentiated’ elements of a ring. They are the analog of
covectors in the study of differential geometry and are named after the German
mathematician Erich Kähler. To define the differentials, we must first define
what it means for a map to be a derivation.

Definition 1.1.1 (Derivation). Let A be a ring, B an A-algebra and M a B-
module. Let d : B →M be an A-linear map satisfying the Leibniz rule:

d(b1b2) = b1 · d(b2) + b2 · d(b1)

We call such a map a derivation.

For our purposes, we will almost always assume that A = k and B will
usually be a polynomial ring or a quotient of one. Let us look at an easy
example to demystify this definition.

Example 1.1.2. Let A = k where k is an algebraically closed field, B = M =
k[x]. Then the map that sends a polynomial f(x) ∈ B to its formal derivative
with respect to x is a derivation, more specifically a k-derivation. For instance,

f(x) = 3x2 7→ 6x.

The set of derivations is denoted by DerA(B,M). This is in fact a B-module:
Let d1 and d2 be two different derivations from B into M . The sum of these is
defined to be

(d1 + d2)(b) = d1(b) + d2(b),
where b ∈ B. This is a derivation from B to M . Linearity also follows from the
linearity of each of d1 and d2.
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1.1. Kähler differentials

Definition 1.1.3. Let ΩB|A denote the B-module that represents the set of
derivations, i.e. the module such that

DerA(B,M) ' HomB(ΩB|A,M).

We call this module the Kähler differentials, or the differentials for short.

If we let M = ΩB|A in the definition, then the derivation

d ∈ DerA(B,ΩB|A)

that corresponds to the identity in the homomorphism-module

1 ∈ HomB(ΩB|A,ΩB|A)

is called the universal derivation. This is a derivation

d : B → ΩB|A

such that for each derivation from B to M , there exists a unique B-module
homomorphism

α : ΩB →M,

such that the derivation factors through this map.
Clearly ΩB contains a lot of information about how the derivations for that

ring will be. Naturally we want to know more about ΩB, which is referred to
as the Kähler differentials. We sometimes also refer to the Kähler differentials
of a ring A as ‘applying omega’ to that ring.

The Kähler differentials for a ring B over A can be constructed by taking
the direct sum ⊕

b∈B

Bdb.

Here d is the universal derivation, and we quotient out by the relations of the
derivation map which are

d(bb′) = bd(b′) + b′d(b) (1.1)
d(b+ b′) = (d(b) + d(b′)) (1.2)

d(a) = 0 (1.3)

for b, b′ ∈ B and a ∈ A. Note that Equation (1.1) stems from the Leibniz
rule, Equation (1.2) from linearity, and Equation (1.3) from the fact that d is
A-linear and the Leibniz rule combined. To see this, let a ∈ A, then

d(a · 1) = a · d(1).

Furthermore, because of the Leibniz rule

d(a · 1) = a · d(1) + 1 · d(a),

which means a · d(1) = 0 for all a ∈ A. These relations are in perfect
correspondence with the way we are used to differentiate polynomials with
respect to some variable. The universal derivation is simply defined by

B → ΩB
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1.1. Kähler differentials

b 7→ db.

We will in general assume that all rings we take the differentials of are over
k unless we specify otherwise. In the same spirit we will by the notation ΩA

mean ΩA|k. Let us see an example of the Kähler differentials of a ring.

Example 1.1.4. Let R = k[x, y]. We claim that ΩR will be generated by dx
and dy as a k[x, y]-module, i.e. any element can be written as fdx+ gdy for
f, g ∈ k[x, y]. Consider for example f = 2x3 +4xy2 and let us see what happens
when we apply d to this element. Since we have the relation d(b+b′) = d(b)+d(b′)
in this module, we get

df = d(2x3) + d(4xy2).
Furthermore, since d is k-linear we get

df = 2d(x3) + 4d(xy2),

and using the Leibniz rule we get

d(x3) = x(dx2) + x2(dx) = (x2dx+ x2dx) + x2dx = 3x2dx,

which is what we are used to from normal differentiation. Furthermore,

4d(xy2) = 4y2dx+ 8xydy,

and so we have
df = (6x2 + 4y2)dx+ 8xydy,

which are the partial derivatives of f with respect to x and y respectively. Let
g ∈ R be an arbitrary polynomial. We want to show that one can write dg as
g1dx+ g2dy for g1, g2 ∈ k[x, y]. Now, g will be of the form

g = a0 + a1x+ b1y + c2xy + a1x
2 + b2y

2 · · ·+ anx
n + bny

n,

where ai, bi, ci ∈ k. Let cixiyj be an arbitrary term in g, then

d(cixiyj) = ci(i · yjxi−1dx+ j · xidy),

so any term in g can be written in this way. Then, by linearity, dg can be
written as

dg = g1dx+ g2dy.

Thus, any element of ΩR is written as a sum of dx and dy with coefficients from
R.

We can state this generally:

Proposition 1.1.5 ([Eis13, Proposition 16.1]). If R = A[x1, . . . , xn] is the
polynomial ring in n variables, then

ΩR|A = Rdx1 ⊕ · · · ⊕Rdxn.

For the proof we refer to [Eis13]. So essentially for any polynomial ring, the
corresponding Kähler differentials are generated by the dxi’s as a module over
the polynomial ring.

Before we move on to studying the Kähler differentials of closed subschemes,
let us establish some basic properties of the universal derivation as an operator.
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1.1. Kähler differentials

The d-operator and its properties

For our purposes, it will be fruitful to have some notion of what the universal
derivation d or the ‘d-operator’ does to ideals and which properties are preserved
and which are not. We will only be concerned with rings that are Noetherian.

First of all, we must clarify what we mean by applying the d-operator to an
ideal. Let b ⊂ B be some ideal in a ring B. By the notation db we will mean
the module generated by the image of the ideal through the universal derivation

d : B → ΩB|A,

in other words
db = {r · d(f) | f ∈ b, r ∈ B} ⊂ ΩB .

So db is the submodule of ΩB generated by df for all generators f of b. Note
that it is a B-module, therefore it is closed under multiplication by elements
from B. Let us show that inclusions are preserved.

Proposition 1.1.6. Let a, b ⊂ B be two ideals of a Noetherian ring B such that
a ⊂ b. Then

da ⊂ db.

Proof. Since B is Noetherian, any ideal in this ring is finitely generated, so we
can write

a = (f1, . . . , fn)
and

b = (g1, . . . , gm).
Let ωa ∈ da. We want to show that ωa ∈ db. We can write ωa as

ωa = d

(
n∑
i=1

aifi

)
for some ai ∈ B. Since a ⊂ b, any generator of a can be written as

fi =
m∑
j=1

bjgj ,

where again bj ∈ B. But then we can rewrite ωa in the following way:

ωa = d

(
n∑
i=1

aifi

)
= d

 n∑
i=1

ai

 m∑
j=1

bjgj


= d

 m∑
j=1

(a1 + a2 + · · ·+ an)bjgj

 .

If we set cj = (a1 + a2 + · · ·+ an)bj , then we can write ωa as

ωa = d

 n∑
j=1

cjgj

 ,

where cj is an element of B. Now we have written ωa as an element of db, hence
da ⊂ db, which was what we wanted to show. �
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1.1. Kähler differentials

Let us see what applying d does to a sum of ideals.

Proposition 1.1.7. Let a and b be two ideals of a Noetherian ring B. Then

d(a + b) = da + db.

Proof. As before we assume that

a = (f1, . . . , fn)

and
b = (g1, . . . , gm).

Then, we know from basic abstract algebra that a + b is generated by all of
these, i.e

a + b = (f1, . . . , fn, g1, . . . , gm).

Now, let ω ∈ d(a + b), which means

ω = d

 n∑
i=1

aifi +
m∑
j=1

bjgj


for ai, bj ∈ B. But d is linear, so we can rewrite this as

ω = d

(
n∑
i=1

aifi

)
+ d

 m∑
j=1

bjgj

 ,

but clearly

d

(
n∑
i=1

aifi

)
∈ da

and

d

 m∑
j=1

bjgj

 ∈ db,
hence

ω ∈ da + db.

This means d(a + b) ⊂ da + db.
To show the converse let ω1 + ω2 ∈ da + db, thus

ω1 + ω2 = d

(
n∑
i=1

aifi

)
+ d

 m∑
j=1

bjgj


= d

 n∑
i=1

aifi +
m∑
j=1

bjgj

 ,

which is an element of d (a + b). This finishes the proof. �

Another natural property to check is how the d-operator behaves with maps
of rings and more specifically maps of ideals. The case with rings is a known
result where the arguments are based on those of Eisenbud in [Eis13].
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1.1. Kähler differentials

Proposition 1.1.8 ([Eis13, p. 386]). The d-operator is functorial on the category
of Noetherian rings in the following sense. For any map of rings over an
algebraically closed field k

φ : A→ B,

there is an induced map of A-modules

Ωφ : ΩA → ΩB .

Proof. We have

ΩA ΩB

A B

d

φ

d

and we would like to find a map between ΩA and ΩB . Observe that ΩB is an
A-module through the composition d ◦ φ. Furthermore, this composition is a
k-derivation since

d ◦ φ(aa′) = d(φ(aa′)) (1.4)
= d(φ(a) · φ(a′)) (1.5)
= φ(a′) · d(φ(a)) + φ(a) · d(φ(a′)), (1.6)

where Equation (1.5) follows from linearity of φ and Equation (1.6) follows from
the fact that d is a derivation. Hence, we see that Leibniz rule is satisfied. It is
also k-linear by a similar argument:

d ◦ φ(r · a) = d(φ(r) · φ(a))
= φ(r) · d(φ(a)),

where we have used A-linearity of φ and k-linearity of d. Thus, the composition
d ◦ φ is a k-derivation

d ◦ φ : A→ ΩB ,

and then by the universal property of ΩA, there is a unique map

Ωφ : ΩA → ΩB

such that the diagram in Figure 1.1 commutes. This finishes the proof. �

ΩA ΩB

A B

Ωφ

d

φ

d

Figure 1.1: Commutative diagram

Let us see that the same is true for ideals of rings. In other words, that
after applying d to the rings, da will be mapped into db through this map.
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1.2. The induced quotient map

Proposition 1.1.9. Let A, B and φ be as in Proposition 1.1.8 and assume
further that a ⊂ A and b ⊂ B are two ideals such that

φ(a) ⊂ b.

Then, applying the d-operator to both the ideals and rings we get

Ωφ(da) ⊂ db.

Proof. Let ω ∈ da. As earlier, we write it as

ω = d

(
n∑
i=1

aifi

)
,

where
n∑
i=1

aifi = a ∈ A. Since ω ∈ ΩA we can map it through Ωφ to ΩB. We

need to show that the image is contained in db. Now, the element ω will be
mapped to

ω 7→ Ωφ(ω).

Note that this means that a is mapped to Ωφ(ω) through the composition Ωφ ◦d.
However, the diagram in Figure 1.1 is commutative, thus we have

d ◦ φ(a) = Ωφ ◦ d(a).

Recall that φ(a) ⊂ b, hence φ(a) ∈ b and then

Ωφ ◦ d(a) = d ◦ φ(a) ∈ db.

Thus, da is mapped into db. This finishes the proof. �

Now that we have a good grasp on how the universal derivation behaves with
some basic operations, we can move on to examining how the ‘omega-operator’
behaves with polynomial rings, and specifically quotient rings of polynomial
rings. By the ‘omega-operator’ we mean the action of applying omega to some
ring A to get ΩA.

1.2 The induced quotient map

We are interested in comparing the Kähler differentials of a subscheme with those
of the ambient scheme. We will limit ourselves to studying subschemes of affine
schemes X = Spec(A), for some ring A. Our examples of closed subschemes
will primarily be curves in A2

k, the affine plane over some algebraically closed
field k.

Explicitly we have a polynomial ring A = k[x, y], where k is an algebraically
closed field. Assume further we have an ideal a ⊂ A, which will define a
subscheme of A2

Spec(A/a) ↪−→ Spec(A).

We want to consider the map

ΩA → Ω(A/I),

9



1.2. The induced quotient map

which we saw in Proposition 1.1.8 is naturally induced by the quotient map

A→ A/a.

To understand the map of differentials we should first familiarize ourselves with
how the module ΩA/I looks.

Theorem 1.2.1 ([EO, Theorem 17.13]). Let A be a ring and let B =
A[x1, . . . , xn]/(f1, . . . , fn). Then

ΩB|A =
⊕

iBdxi∑
j B (

∑
i (∂fj/∂xi) dxi)

and the universal A-derivation is given as

dB/A(f) =
n∑
i=1

(∂f/∂xi) dxi

for some f ∈ B.

This means that when taking the differentials of a quotient ring, we must
also quotient out by the image of the ideal through d. Let us see an example of
such a map between the differentials.

Example 1.2.2. Consider the polynomial ring A = k[x, y] and a = (y − x2).
Then the corresponding differential modules become

ΩA = k[x, y]dx⊕ k[x, y]dy,

ΩA/a = k[x, y]/(y − x2)dx⊕ k[x, y]/(y − x2)dy
dy − 2xdx .

We can simplify the situation by observing that k[x, y]/(y − x2) ' k[x]. Then,
the quotient map

k[x, y]→ k[x, y]/(y − x2) ' k[x]

is defined by
x 7→ x

y 7→ x2.

The induced map between differentials will then be defined by

dx 7→ dx

dy 7→ dx2 = xdx+ xdx = 2xdx

and the coefficients are naturally induced by the A-module structure.

Our goal is to find the kernel of the map between the differential modules.
In this simple example this is quite easy since we can just ‘kill’ one of the
generators, namely dy. We then end up with a free module with just one
generator, dx, modulo the relation a = (y − x2). Accordingly, we get

ΩA/a = k[x, y]/(y − x2)dx⊕ k[x, y]/(y − x2)dy
dy − 2xdx ' k[x, y]/(y − x2)dx, 0

10



1.2. The induced quotient map

where this isomorphism is induced by mapping dy 7→ 2xdx and dx 7→ dx. In
this case it is clear that the kernel is equal to the set

a · ΩA +A · da

since a is the zero ideal in (A/a) · dx and

da = (dy − 2xdx)

is sent to zero because we map dy 7→ 2xdx. Then, the sum of these two
submodules must be the kernel since these are the only relations we have.

As we will see, the submodule

a · ΩA +A · da

is equal to the kernel also in a general setting. For a general ring, the
computation is not that easy since we cannot always end up with an isomorphism
to a module generated by one element as above. This is because we might have
relations both between the coefficients and the basis elements of the module.
Let us look at one such situation.

Example 1.2.3. Consider

A = k[x, y]
a = (y2 − x2).

We have from Theorem 1.2.1 that the Kähler differentials of the quotient
ring becomes

Ω(A/a) = k[x, y]/(y2 − x2)dx⊕ k[x, y]/(y2 − x2)dy
2ydy − 2xdx .

Now we cannot ‘kill’ one of the basis elements of the module since we have a
y-coefficient and a x-coefficient in the relation between dx and dy. The elements
x and y are not invertible in A, which means we cannot ‘ignore’ these terms in
the relation. So, assume we have an element in the kernel

fdx+ gdy 7→ 0

for some f, g ∈ k[x, y]. Determining the kernel is equivalent to finding all the
different ways to write zero in the module. Assume g has a factor of y which
means it can be written

g = y · g′

for some g′ ∈ A. Assuming this we are in an equivalent situation as in
Example 1.2.2. Now, the relation

(2ydy − 2xdx) = 0

gives us

fdx+ gdy = fdx+ g′ydy = fdx+ g′xdx = (f + g′x)dx

in ΩA/a, and for this to be zero we need (f + g′x) ∈ (y2 − x2). That means

f + g′x = h(y2 − x2)

11



1.3. The omega-operator and its properties

for some h ∈ A. To summarize

fdx+ gdy − g′(ydy − xdx) + g′(ydy − xdx) = fdx+ g′xdx+ g′(ydy − xdx)

and
f + g′xdx = h(y2 − x2)dx

which shows that fdx+gdy is mapped to zero,0 since it is equal to h(y2−x2)dx
modulo (ydy−xdx). However, when g does not have a factor of y, the situation
is much more complicated. This is because we cannot replace all elements of
the form fdy with something of the form gdx.

As stated above, the kernel of the canonical map

ΩA → ΩA/a
for an ideal a of a Noetherian ring A will be the A-module

a · ΩA + da

where the fi’s are the generators of a. We will from now on denote this
submodule as

Ωa = a · ΩA + da. (1.7)
For this to make sense one must first establish which ring this ideal a is in. If
this is not clear from the context we denote this by

Ωa⊂A,

to make it clear that we are regarding a as an ideal of A and not some other
ring. For most of our purposes the ring in question will be understood from the
context.

However, before we show that this submodule is indeed the kernel we are
looking for, let us establish some basic properties of the omega-operator for
ideals as we did for the d-operator. By the omega-operator we just mean
applying omega to an ideal as in Equation (1.7).

1.3 The omega-operator and its properties

We establish that omega preserves inclusions, just as the d-operator does.

Proposition 1.3.1. Assume that a and b are ideals of a Noetherian ring A such
that a ⊂ b. Then the modules Ωa and Ωb are such that

Ωa ⊂ Ωb.

Proof. Recall that we defined Ωa as

Ωa = a · ΩA +A · da.

From Proposition 1.1.6 we have that

da ⊂ db,

so it remains to show that
a · ΩA ⊂ b · ΩA,

but this is clear since a ⊂ b. �
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1.3. The omega-operator and its properties

The omega-operator also preserves sums of ideals.

Proposition 1.3.2. Assume that a and b are as in Proposition 1.3.1. Then

Ωa+b = Ωa + Ωb.

Proof. Since A is Noetherian, we can assume

a = (f1, . . . , fn)
b = (g1, . . . , gm).

Now, let ω ∈ Ωa+b. We can write it on the form

ω = (a+ b) · γ +
n∑
i=1

cidfi +
m∑
j=1

cn+jdgj ,

where a ∈ a, b ∈ b, ci ∈ A and γ ∈ ΩA. We want to show that ω is in Ωa + Ωb.
This follows readily from factoring terms by whether they come from a or b:

ω = (a+ b)dg +
n∑
i=1

cidfi +
m∑
j=1

ci+jdgj

=
(
adg +

n∑
i=1

cidfi

)
+

bdg +
m∑
j=1

ci+jdgj

 .

Observe that now the first term is an element of Ωa and the second of Ωb, so it
is exactly an element of Ωa + Ωb. This means we have showed

Ωa+b ⊂ Ωa + Ωb. (1.8)

The converse is easily checked using the fact that the omega-operator
preserves inclusions. Since a ⊂ a + b and b ⊂ a + b we have that

Ωa ⊂ Ωa+b,

and
Ωb ⊂ Ωa+b.

Now, the sum of two sets contained in a third set is also contained in that set,
hence we have

Ωa + Ωb ⊂ Ωa+b.

Combining this and Equation (1.8) we get the desired equality

Ωa + Ωb = Ωa+b.

�

We also show that omega behaves well with ring homomorphisms.

Proposition 1.3.3. Assume A and B are rings, and that a and b are ideals of
these rings, respectively. Further, assume that we have a ring homomorphism

φ : A→ B

13



1.3. The omega-operator and its properties

such that φ maps a into b, i.e.

φ(a) ⊂ b.

Then, applying the omega-operator, we get

Ωφ(Ωa) ⊂ Ωb.

Proof. We know that applying omega to

φ : A→ B

we just get
Ωφ : ΩA → ΩB .

We would like to show that an element of Ωa is sent to Ωb through the induced
map Ωφ. Now, let ω ∈ a, which means it is of the form

ω = a · γ + ωa,

where a ∈ a, γ ∈ ΩA and ωa ∈ da. From Proposition 1.1.9 we have that

Ωφ(ωa) ∈ db,

and since Ωφ is a module homomorphism, we need only check that

Ωφ(a · γ) ∈ Ωb.

Well, Ωφ is an A-module homomorphism, which means

Ωφ(a · γ) = φ(a) · Ωφ(γ).

Remember that φ maps a into b, hence φ(a) ∈ b. Thus,

φ(a) · Ωφ(γ) ∈ b · ΩB ⊂ Ωb,

which finishes the proof. �

We state what omega does to maximal ideals.

Proposition 1.3.4. Let A be a finitely generated k-algebra, where k is an
algebraically closed field. If m ⊂ A is some maximal ideal, then

Ωm = ΩA|k.

In other words, applying the ‘omega-operator’ to a maximal ideal gives us
all Kähler differentials of the ring.

Proof. This is just because the module ΩA/m = 0, since

A/m ' k,

and clearly Ωk|k = 0. �
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1.4. The kernel of the quotient map of differentials

Alternate proof. We can also show this by considering Ωm. Since A is a finitely
generated k-algebra we know from Noether’s normalization lemma that we can
find x1, . . . , xn such that

A ' k[x1, . . . , xn].

Then, we know by Hilberts Nullstellensatz that any maximal ideal in such a
ring is of the form

m = (x1 − α1, . . . , xn − αn),

where αi ∈ k. Applying d to this ideal we get for each generator

d(xi − αi) = d(xi)− d(αi) (1.9)
= d(xi), (1.10)

where we have used linearity of d and that αi is a constant. But from
Proposition 1.1.5 we know that these dxi’s generate ΩA, and

dm ⊂ Ωm,

hence
Ωm = ΩA.

�

1.4 The kernel of the quotient map of differentials

We are now ready to prove that the kernel of the map

ΩA → ΩA/a,

for a ring A and ideal a, is exactly the submodule we introduced earlier,

Ωa = a · ΩA + da.

The proof is heavily inspired by [Sta22, Lemma 10.131.6].

Proposition 1.4.1 ([Sta22, Lemma 10.131.6]). Let A be a ring over some
algebraically closed field k and let a ⊂ A be some ideal of A. The quotient map

A → A/a

induces a map between the corresponding differential modules

ΩA → ΩA/a.

Then, the kernel of this map is

a · ΩA +A · da.

If (f1, f2, . . . , fn) generates a, then da is the module generated by

(df1, df2, . . . , dfn).
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1.4. The kernel of the quotient map of differentials

Proof. To find the kernel for a general ring it can be fruitful to find a resolution
through free modules. To this end, consider the module⊕

a∈A
A[a],

which is a direct sum of polynomial rings where each element of the ring is a
variable in one part of the sum. Now, define D to be the map from this graded
ring into ΩA by ⊕

α

rα[aα] D7−→
∑
α

rαd(aα),

where rα ∈ A are the coefficients in the graded ring, the [aα]’s are the variables,
and d is the universal derivation. Then, because d is a derivation, all elements
of the form [ab]− a[b]− b[a], [a+ b]− [a]− [b], and [r] are in the kernel, where
r ∈ k and a, b ∈ A. Next, we create an exact sequence by mapping a free
module with these relations as variables into

⊕
a∈AA[a]. We can write this

module as a direct sum of polynomial rings⊕
i

A[i],

where the i’s are all the relations mapped to zero through the map D. For
example, one relation is i = [xy]− x[y]− y[x] for x, y ∈ A, which stems from
the Leibniz rule. We map these relations to their corresponding element in⊕

a∈AA[a]. In other words,

[xy]− x[y]− y[x] 7→ [xy]− x[y]− y[x].

So, these relations are the elements mapped to zero by D. This yields the exact
sequence ⊕

i

A[i] −→
⊕
a∈A

A[a] D−→ ΩA −→ 0.

It is exact on the right since ΩA is generated by d(a) for all a ∈ A, and for
any da ∈ ΩA, we have [a] ∈

⊕
a∈AA[a] which is sent to da. So the map of

the generators of ΩA is surjective. The sequence has also been defined to be
exact in the middle. We can make a commutative diagram by mapping this
sequence into the corresponding sequence quotiented by the ideal a. This gives
the diagram in Figure 1.2.⊕

i

A[i]
⊕
a∈A

A[a] ΩA 0

⊕
i

(
A[i]�a

) ⊕
a∈A

A[a]�a ΩA�a
0

0 0 0

D

Figure 1.2: Free resolution of the kernel
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1.4. The kernel of the quotient map of differentials

The vertical sequences are exact since the maps are just quotient maps
which are automatically surjective. The elements are sent to their equivalence
class modulo a in the two leftmost vertical maps. The map

Φ : ΩA → ΩA/a

is induced by the quotient map of the rings and is also surjective. Recall that
we are interested in finding the kernel of this map, and we will use this diagram
to determine it. So assume an element ω ∈ ΩA is in the kernel so

Φ(ω) = 0 ∈ ΩA/a.

Since D is surjective we can find an element of the form

f = (rα · [aα]) ∈
⊕
a∈A

A[a]

such that
D((rα · [aα])) =

∑
α

rαd(aα) = ω,

where the rα’s are elements in A that act like coefficients in this polynomial ring,
and the [aα]’s are the variables. Now that we have an element in

⊕
a∈AA[a],

we can map it through the quotient map⊕
a∈A

A[a]→
⊕
a∈A

A[a]�a

f 7→ f̄ .

Consider the rightmost part of the diagram in Figure 1.2, which is depicted in
Figure 1.3. Recall that ω is mapped to zero through Φ, and since this diagram⊕

a∈A
A[a] ΩA

⊕
a∈A

A[a]�a ΩA�a

D

Φ

D̄

Figure 1.3: Right side of the diagram in Figure 1.2.

commutes, f̄ must also be mapped to zero through D̄. But then f̄ is in the
kernel of D̄, so it comes from an element in the relations module⊕

i

A/a[i].

Let us call this element ḡ ∈
⊕

i
A[i]�a. We have⊕

i

A[i]�a→
⊕
a∈A

A[a]�a

ḡ 7→ f̄ .
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1.4. The kernel of the quotient map of differentials

Now, since the quotient map is surjective we can find an element g of⊕
i

A[i]

that is mapped to ḡ. Consider the leftmost part of our diagram, depicted in
Figure 1.4. Here we have that ψ(g) = ḡ and γ(f) = f̄ = r̄(ḡ) since this diagram⊕

i

A[i]
⊕
a∈A

A[a]

⊕
i

(
A[i]�a

) ⊕
a∈A

A[a]�a

ψ

r

γ

r̄

Figure 1.4: Left part of our diagram

also commutes. In particular that means that f = r(g) modulo a. If we now
consider the element h = f − r(g), then we see

γ(h) = γ(f − r(g)) = f̄ − r̄(ḡ) = 0

by linearity, so h is in the kernel of γ. The salient point is that h also maps to
the element ω we started with through D. This is true by noting that

g ∈
⊕
i

A[i],

and by exactness we have
D(r(g)) = 0.

The map D is linear by the linearity of the universal derivation, hence

D(h) = D(f − r(g)) = D(r(g))−D(f) = 0−D(f).

That means we have found an element of
⊕

a∈AA[a] that is mapped to ω and
also mapped to zero through γ. By this diagram chase, for each element ω ∈ ΩA
in the kernel of Φ, we can find an element h ∈

⊕
a∈AA[a] that maps to ω, and

is also contained in the kernel of γ. So for any element in the kernel of

Φ : ΩA → ΩA/a

we can find an element in the kernel of⊕
a∈A

A[a] γ−→
⊕
a∈A

A[a]�a,

so we determine Ker(γ) to determine the Ker(Φ). Let x = ⊕α(rα · aα) ∈⊕
a∈AA[a] be an element in the kernel of γ. The image of this element through

γ is
⊕α(rαaα).

18



1.4. The kernel of the quotient map of differentials

This is zero if and only if it is zero for all α, so let α be some given index. We
have

rαaα = 0,

which means that either rα = 0 or aα = 0. So, either rα ∈ a or we have aα ∈ a.
Thus, the kernel is

Ker(γ) = a · [A] +A · [a].

But, now we have a characterization of the kernel of

ΩA
Φ−→ ΩA/a

by the fact that each element corresponds to at least one element of
⊕

a∈AA[a]
that is in the kernel of γ. But that means

Ker Φ = D(Ker γ) = D(a · [A] +A · [a]) = a · ΩA +A · da,

so now we have showed that

Ker Φ ⊂ a · ΩA +A · da.

It is clear that the converse holds true, hence

Ker Φ = a · ΩA +A · da.

�

Now that we have determined the kernel of the map

ΩA
Φ−→ ΩA/a

we would like to compute the primary decomposition of this, and see if there are
relations between the primary components of Ωa and the primary components
of the ideal a. To do this we need some theory from commutative algebra on
primary decomposition of ideals and modules.
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CHAPTER 2

Primary decomposition of ideals
and modules

We want to find a primary decomposition of the omega module. In this chapter
we will establish some preliminaries on primary decompositions. First, we
establish what it means for a module to be primary. Then, we study what a
decomposition into primary modules is.

We will introduce the theory for ideals in rings, and then generalize this
to modules. The results on ideals of rings are already heavily covered in the
reference literature, therefore we omit the proofs here. Much of the theory on
ideals is based on the theory in [AM69] and [Ell].

2.1 Primary ideals and primary modules

Definition 2.1.1. Let a be some ideal of a ring R. The ideal is said to be
primary if the following condition is met:

x · y ∈ a =⇒ x ∈ a or yn ∈ a, for some n ∈ N.

If
√
a = p for a prime ideal p, we say that a is p-primary

Note that this means that all prime ideals are primary since the definition for
prime ideals is the same by letting n = 1. This leads us to the next proposition.

Proposition 2.1.2 ([Ell, Proposition 10.3]). If a is a primary ideal of a ring R
then the radical of a √

a = {x ∈ R | xn ∈ a}

is a prime ideal.

Now that we have established what it means for ideals of rings to be primary,
we generalize this notion to modules of rings. First, recall that the annihilator
of an R-module is defined as

Ann(M) = {x ∈ R| x ·M ⊂ 0},

where we write 0 in the sense of the zero submodule of M . In other words, it is
the set of elements in R that multiplies the entire R-module M into the zero
module. Now we can define a primary submodule.
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2.1. Primary ideals and primary modules

Definition 2.1.3. Let M be a module of some ring R and N be a submodule of
M . We say that N is a primary submodule if it satisfies the following condition:

x · y ∈ N =⇒ y ∈ N or xn ∈ Ann(M/N) for some n ∈ N, 0

where x ∈ R and y ∈M .

If y ∈ N , then any ring element will multiply y into N . Note that in the
case of modules we have to define a primary module relative to some ambient
module. When specializing this to the case of ideals of rings we just consider
the ring as a module over itself and the ideal as the submodule. Further, note
that xn ∈ Ann(M/N) is equivalent to x ∈

√
Ann(M/N). We will say that a

primary module N ⊂M is p-primary if√
Ann(M/N) = p.

Consider the following example.

Example 2.1.4. Let M = k[x, y] and N = (x2). Then, N ⊂ M are both
naturally k[x, y]-modules, and we are in fact just checking if N is a primary
ideal. If

f · g ∈ (x2)

for some g ∈ k[x, y]/(x2) and f ∈ k[x, y], we have

f · g = hx2

for some h ∈ k[x, y]. If g ∈ (x2) we are done, so assume g /∈ (x2). However,
then we must have that f has a factor of x, since x is irreducible in this ring.
Then we have f ∈ (x), and then clearly

f2 ∈ Ann(k[x, y]/(x2)),

which shows that N is (x)-primary.

Let us look at an example of a primary submodule of the differentials.

Example 2.1.5. Assume that R = k[x, y] is a polynomial ring of two variables
and consider the ideal (x) ⊂ R. This ideal is prime, so it is certainly primary.
We know that

Ω(x) = (x) · ΩR + (dx) ·R,

and we are interested in whether Ω(x) is (x)-primary. Assume that ω ∈
Ωk[x,y]/Ω(x) is nonzero and a ∈ k[x, y] such that

a · ω ∈ Ω(x).

We want to show that this means that an ∈ Ann(Ωk[x,y]/Ω(x)) for some n ∈ N.
Since ω ∈ ΩR/Ω(x) we have that ω = (ω1dx + ω2dy) for some ωi ∈ k[x, y].
Further,

a · ω ∈ Ω(x)

means that
a · ω = x(udx+ vdy) + w · dx
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2.2. Existence of primary decompositions of ideals and their uniqueness

for some u, v, w ∈ R. We can split this equation by the generators of Ωk[x,y]
and get

a · ω1 = xu+ w (2.1)
a · ω2 = xv. (2.2)

Note that ω1 and ω2 cannot both be multiples of (x) since then ω ∈ Ω(x). From
Equation (2.2) we get that either ω2 ∈ (x) or a ∈ (x). If the latter is true, then
we are done since then certainly a = a′x multiplies all of ΩR into Ω(x). Assume
then that ω2 = ω′2x. However, now we have

ω = ω1dx+ ω′2xdy

which is an element of Ω(x), which is a contradiction. Therefore, we must have
a ∈ (x), so we have that Ω(x) is primary. We can also show that Ω(x) is in fact
(x)-primary by showing that√

Ann(Ωk[x,y]/Ω(x)) =
√
{r ∈ R : r · Ωk[x,y] ⊂ Ω(x)}

is equal to (x) when considering Ω(x) as a submodule of Ωk[x,y]/Ω(x). So we
are interested in polynomials of x and y over k such that they multiply all
differentials into Ω(x). But clearly this is just (x) since all differentials of the
form (dx) are already contained so what remains are those of the form (dy).
But then these must be multiplied by something in (x) to be in Ω(x), because
there are no relations between dx and dy. So

Ann
(
Ωk[x,y]/Ω(x)

)
= (x),

and Ω(x) is (x)-primary.

If possible we want to figure out what the primary components of a given
ideal is because it simplifies the situation and breaks the ideal into smaller parts.
This is done by primary decomposition, where we write a given ideal as an
intersection of primary ideals. Geometrically this corresponds to considering a
scheme or subscheme as a union of smaller schemes which have nicer properties.
We start by introducing primary decomposition for ideals of rings, and then, as
before, generalize this to modules of rings.

2.2 Existence of primary decompositions of ideals and
their uniqueness

Proposition 2.2.1 ([Ell, Proposition 10.18]). Let R be a Noetherian ring and a
an ideal of R. Then there exists a decomposition of a into finitely many primary
ideals.

Such a decomposition is not necessarily unique, but there are things we can
do to make them as unique as possible. To this end we let a minimal primary
decomposition a1, a2, . . . , an denote a decomposition such that all the radicals
of the components √ai are unique, and the intersection is irredundant in the
sense that no two components are contained in one another.

Note that when intersecting two sets where one contains the other, one
can always remove the larger set and the resulting set will not change. It
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2.2. Existence of primary decompositions of ideals and their uniqueness

x

y

Figure 2.1: Graph of (y2 − yx2)

turns out that one can always find a minimal decomposition given a primary
decomposition of an ideal.

Lemma 2.2.2 ([Ell, Theorem 10.19]). Let R and a be as in Proposition 2.2.1 and
assume we have a primary decomposition q1 ∩ q2 ∩ · · · ∩ qn. Then, there exists a
subset of these primary components qi such that their radicals are unique, and
the intersection is irredundant.

Let us look at an example where we get a minimal primary decomposition
from one that is not minimal.

Example 2.2.3. Let R = k[x, y], where k is an algebraically closed field.
Consider the ideal a = (y2 − yx2) ⊂ R. Geometrically this corresponds to
the union of the x-axis and the parabola y = x2 in A2, illustrated in Figure 2.1.
It is clear that

(y2 − yx2) = y(y − x2)

One primary decomposition of this ideal is

a = (y) ∩ (y − x2) ∩ (x, y).

However, note that
(y) ⊂ (x, y),

so the component (x, y) does not contribute anything to the intersection, and we
can omit it. This means that the primary decomposition above is not minimal
because the intersection is redundant. Removing the last component we get:

a = (y) ∩ (y − x2),
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2.2. Existence of primary decompositions of ideals and their uniqueness

where both components are prime ideals and clearly not contained in one
another, which means we have a minimal primary decomposition.

Let us see an example of non-unique radicals.

Example 2.2.4. Let R = k[x, y], where k is an algebraically closed field.
Consider the ideal

(y2) ∩ (y) ∩ (x).

Taking radicals of each component, we get (y), (y), and (x), so clearly the
radicals are not unique. We see that we can remove the second component

(y2) ∩ (y) ∩ (x) = (y2) ∩ (x).

This is also clear from the fact that (y2) ⊂ (y).

We state the uniqueness of the radicals.

Theorem 2.2.5 ([Ell, Theorem 10.23]). Let a ⊂ R be an ideal of a Noetherian
ring. Then, the radicals of the components in a minimal primary decomposition
of a are uniquely determined by the ideal.

Essentially, in a minimal primary decomposition the radicals of the
components are always the same. One cannot have two minimal primary
decompositions of the same ideal with different radicals.

In a primary decomposition, we categorize the components as isolated
or embedded. The isolated components are the ones with minimal radicals,
which means their radicals do not contain radicals of other components, so in
Example 2.2.3 above

(y) and (y − x2)

are isolated components. Embedded components are ones which do not have
minimal radical, so in Example 2.2.3

(x, y)

is an embedded component. The next theorem states that the isolated
components are unique. However, no such statement exists for the embedded
components, in fact, we will see examples of the embedded components not
being unique.

The name embedded comes from the geometrical viewpoint, which is why it
is inverse to our algebraic intuition, since it is an ideal that contains other ideals.
But, as we know from algebraic geometry when we go from ideals to closed sets
of Spec(R) we reverse this inclusion. The ideal (x, y) becomes V (x, y) which is
a point and (y) becomes V (y) which is the x-axis.

Theorem 2.2.6 ([Ell, Theorem 10.30]). The isolated primary components of an
ideal a in a Noetherian ring R are uniquely determined by a.

This means that the isolated components in a primary decomposition
will always be the same for a given ideal. However, there are no restraints
on the embedded components. Thus, we can have infinitely many primary
decompositions.

Now let us go back to the world of modules and generalize what we have
learned for ideals.
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2.3. Primary decompositions of Noetherian submodules and their uniqueness

2.3 Primary decompositions of Noetherian submodules
and their uniqueness

An essential part we must establish is that modules have primary decompositions
and the uniqueness of the radicals. Many of these statements are from the
Commutative Algebra lecture book of Robert B. Ash ([Ash]), and the proofs
are also heavily inspired by the proofs in his book. We include the proofs to
increase our intuition about the theory. First, we state existence.

Theorem 2.3.1 ([Ash, Theorem 1.2.5]). Let R be a Noetherian ring and M be a
finitely generated R-module. Further, let N be a submodule of M . Then there
exists a primary decomposition of N , in other words it can be written as

N =
n⋂
i=1

Ni

where each Ni is pi-primary for prime ideals pi.

Before we prove this theorem, we need to establish some statements that
will help us. First, we need to define an irreducible submodule.

Definition 2.3.2. Let M be a module and let N be a submodule of M . If there
are no submodules N1 ⊂M and N2 ⊂M such that

N = N1 ∩N2,

where N is properly contained in both N1 and N2, then we say that N is
irreducible.

In the Noetherian case, irreducible modules correspond to primary modules.

Proposition 2.3.3 ([Ash, Proposition 1.2.4]). Let N be an irreducible submodule
of M , a Noetherian module. Then N is a primary module.

Proof. Assume N is an irreducible submodule of a Noetherian R-module M ,
and assume for contradiction that N is not primary. This means that there is
some a ∈ R such that the map

φa : M/N →M/N

m 7→ a ·m

is neither injective nor nilpotent. The chain of submodules

Ker(φa) ⊂ Ker(φ2
a) ⊂ . . .

must terminate since M is Noetherian. Assume that it terminates at Ker(φka)
for k ∈ N, hence

Ker(φka) = Ker(φk+1
a ).

For simplicity, let ψ = φka, then of course Ker(ψ) = Ker(ψ2). We claim that

im(ψ) ∩Ker(ψ) = 0,
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2.3. Primary decompositions of Noetherian submodules and their uniqueness

where 0 is the zero-module of M . To see this, assume x ∈ im(ψ)∩Ker(ψ). This
means ψ(x) = 0, and that there exists some y ∈ M/N such that ψ(y) = x,
moreover ψ2(y) = ψ(x) = 0. However, Ker(ψ) = Ker(ψ2), thus

y ∈ Ker(ψ2) =⇒ y ∈ Ker(ψ).

This means that ψ(y) = 0, but ψ(y) = x, so x = 0, which proves the claim. The
map φa is not injective, i.e. Ker(φa) 6= 0, but

Ker(φa) ⊂ Ker(ψ).

Hence, Ker(ψ) 6= 0. Also, since φa is not nilpotent we have φma 6= 0 for
all m ∈ N. Therefore, there are elements not mapped to zero through
ψ, i.e im(ψ) 6= 0. Now, let p : M → M/N be the naturally induced
quotient homomorphism of modules. Further, let N1 = p−1(Ker(ψ)), and
N2 = p−1(im(ψ)). Now, since we have shown that the sets Ker(ψ) and im(ψ)
are not equal to zero, the sets N1 and N2 are not equal to the kernel of p, which
we know is just N .

We will show that N = N1 ∩N2 with N ( N1 and N ( N2, which means
N is reducible, contradicting our assumption. Let x ∈ N1 ∩N2, then

x ∈ p−1(Ker(ψ)) ∩ p−1(im(ψ)) =⇒
p(x) ∈ Ker(ψ) ∩ im(ψ)

since inverse images distribute over intersections. Recall that we showed
Ker(ψ) ∩ im(ψ) = 0, hence p(x) = 0, which means x ∈ Ker(p) = N . For
the converse assume that x ∈ N , which means

p(x) = 0 ∈ Ker(ψ) ∩ im(ψ).

So x is mapped to Ker(ψ) ∩ im(ψ), which means it is in

p−1(Ker(ψ) ∩ im(ψ)),

which is just N1 ∩N2, so x ∈ N1 ∩N2.
The next part is showing N1 and N2 properly contain N . Therefore, let

y ∈ Ker(ψ) be a nonzero element. We know such a choice is possible since
we earlier showed that Ker(ψ) 6= 0. Now, since p is a quotient map it is
surjective, and therefore we can find x ∈ M such that p(x) = y. This means
that x ∈ p−1 Ker(ψ) = N1, but y is nonzero, hence

y /∈ Ker(p) = N,

so N1 contains elements that are not in N . Similarly choose y ∈ im(ψ) such
that y 6= 0, possible by earlier arguments. Again, there exists x ∈M such that
p(x) = y, which means x ∈ p−1(im(ψ)) = N2. However, y 6= 0, hence x /∈ N .
This means we have showed that N is reducible, a contradiction, so N must be
primary.

�

Now we are ready to prove Theorem 2.3.1, existence of primary decomposi-
tions of finitely generated modules. Using Proposition 2.3.3, our proof becomes
quite simple and beautiful indeed.
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2.3. Primary decompositions of Noetherian submodules and their uniqueness

Proof. Assume that there exists submodules of M that cannot be decomposed
into primary components. We let the set of such submodules be denoted

S = {N ⊂M | N does not have a primary decomposition}.

We claim that S = ∅. Since M is a Noetherian module we know such a set has
a maximal element, assume this is N ∈ S. This means that N cannot itself be
primary, hence it cannot be irreducible, so there exists N1, N2 ⊂M such that

N = N1 ∩N2,

and N is properly contained in both of N1 and N2. However, N is maximal
in S, so N1 and N2 cannot be in S, which means they each have primary
decompositions. But, then of course N can be decomposed using the
decompositions of N1 and N2, hence N is decomposable after all, so N /∈ S and
S is empty. This finishes the proof. �

The radical of each primary component is called an associated prime to the
ideal one is decomposing. They are, in loose terms, the information giving the
geometry of the module.

Definition 2.3.4 (Associated prime). Let M be an A-module, where A is some
ring. If there exists some m ∈M such that

Ann(m) = p,

and p is a prime ideal, then we say that p is an associated prime to M . We
denote the set of associated primes to M by Ass(M).

Example 2.3.5. Let R = k[x, y, z] and consider the ideal (xyz) ⊂ R. The
minimal primary decomposition of this ideal is

(xyz) = (x) ∩ (y) ∩ (z).

In fact, these three ideals are also the associated primes of (xyz). To see this,
observe that

Ann(xy) = (z),
where we are taking the annihilator in the module

k[x, y, z]/(xyz).

Similar computations can be made for the other two ideals. One interpretation
of the associated primes are as the building blocks of the ideal. This makes
more sense geometrically when we observe that (xyz) corresponds to the union
of the xy−, yz−, and xz-planes in three-dimensional space. Now, the ideal (z)
corresponds to the xy-plane, (x) corresponds to the yz-plane, and (y) to the
xz-plane. So each associated prime makes up one geometric component of the
ideal we are decomposing. Observe that the ideal (xyz2) can be decomposed

(xyz2) = (x) ∩ (y) ∩ (z2),

but the associated primes are the same. The geometry is also the same because

V (
√
a) = V (a)

from a fundamental result about the Zariski topology [EO, Lemma 2.5].
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2.3. Primary decompositions of Noetherian submodules and their uniqueness

The next result tells us that this connection between the associated primes
and components of the primary decomposition is a general pattern. However,
before we state it, we need a helpful lemma from commutative algebra. The
proof is inspired by [htt].

Lemma 2.3.6. Let A be a ring, p ⊂ A a prime ideal, and {ai} a set of ideals
ai ⊂ A such that

n⋂
i=1

anii ⊂ p.

Then, ai ⊂ p for some ai.

Proof. Assume that this is not the case, so we have for each i, some ri ∈ anii \ p.
The product

r1r2 · · · rj ∈

(
j⋂
i=1

anii

)
,

so it must be in p. However, because p is prime we must have r1 ∈ p or
r2 · · · rn ∈ p. If the former is true we have a contradiction, if the latter is true
we do this inductively until we end up with ri ∈ p for at least one i, which is a
contradiction. Hence, we have

anii ⊂ p,

but taking radicals on both sides we get the desired inclusion,

ai ⊂ p.

�

Theorem 2.3.7 ([Ash, Theorem 1.3.9]). Let M be a nonzero finitely generated
module over a Noetherian ring A. Assume N has a primary decomposition

N =
⋂
i

Ni,

where each Ni is pi-primary for some prime ideals pi of A. Then

Ass(M/N) = {p1, . . . pn}.

Proof. We start by showing that each associated prime is one of the radicals
in the decomposition. Let p ∈ Ass(M/N), which means that there exists some
nonzero m ∈M/N such that

p ·m ⊂ N.

Now, we want to show that there is some Ni that is p-primary. We renumber
the Ni’s of the primary decomposition such that m /∈ Ni for 1 ≤ i ≤ j, and
m ∈ Ni for j + 1 ≤ i ≤ r. Since Ni is pi-primary, we know that

pi =
√

Ann(M/Ni).

Further, we know that Ni is finitely generated which means that there exists
some ni ∈ N, such that

pnii M ⊂ Ni.
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2.3. Primary decompositions of Noetherian submodules and their uniqueness

Now, this means (
j⋂
i=1

pnii

)
m ⊆

r⋂
i=1

Ni = N.

This is because for each i, all elements in pnii multiplies m into Ni. So, if

r ∈

(
j⋂
i=1

pnii

)
,

then r multipliesm into allNi’s for i = 1, . . . , j. For the rest of the i = j+1, . . . r,
we have that m ∈ Ni so then of course pnii ∈ Ni, hence the inclusion holds.
This gives us (

j⋂
i=1

pnii

)
⊂ AnnM/N (m) = p.

Now we can apply our helpful Lemma 2.3.6 to get pi ⊂ p for some i ∈ {1, . . . , j}.
We want to show that in fact p = pi for this i. Let a ∈ p. Then, we know that
a ·m ∈ N . Further, since i ≤ j, we have that m /∈ Ni. This means the map

φa : M/Ni →M/Ni

is not injective, and as Ni is primary, φa must be nilpotent. That means that
aniM ⊂ Ni for some ni ∈ N. In other words,

a ∈
√

Ann(M/Ni) = pi.

This means p = pi, so any associated prime to N must be one of the pi’s.
For the converse we want to show that any of the pi’s is an associated prime.

Since the numbering does not matter, we can just choose i = 1. Recall that our
decomposition is minimal, which means N1 is not contained in the intersection
of the other Ni’s. This means we can choose m ∈ (N2 ∩ · · · ∩Nr) \N1. Since
N1 is p1-primary we know that

pn1 ·m ⊂ N1

and pn−1
1 ·m 6⊂ N1 for some n ≥ 1. If n = 1, we take p0

1 to be the entire ring R.
Now, if we take

y ∈ (pn−1
1 ·m) \N1,

then y /∈ N . If we can show that p1 = AnnM/N (y), the proof is done, since this
is exactly what it means to be an associated prime. We have

p1 · y ⊂ pn1 ·m ⊂ N1,

and, further we chose m ∈
⋂r
i=2Ni, which of course means pni ·m ⊂

⋂r
i=2Ni.

However, this gives us

pn1 ·m ⊂
r⋂
i=1

Ni = N,

hence p1 ⊂ AnnM/N (y).
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2.3. Primary decompositions of Noetherian submodules and their uniqueness

For the converse we must show that AnnM/N (y) ⊂ p1, so assume a ∈
AnnM/N (y), thus a ·y ∈ N . However, then a ·y ∈ N1, and y /∈ N1, which means
the map

φa : M/N1 →M/N1

is not injective. Then, φa must be nilpotent, hence a ∈
√

Ann(M/N1) = p1,
moreover p1 = AnnM/N (y). This finishes the proof. �

This means that the associated primes of M/N are exactly the ones that
make up the prime ideals that the components of a primary decomposition has
to be primary to. Determining a primary decomposition can then be simplified
by first computing the associated primes and vice versa. This lets us show the
analogue of the first uniqueness theorem for modules.

Theorem 2.3.8 ([Ash, Theorem 1.3.10]). Let M be a finitely generated module
over a Noetherian ring R. If N is a submodule with the primary decomposition

N =
r⋂
i=1

Ni,

where Ni is pi primary for a prime ideal pi for i = 1, . . . , r, then these prime
ideals pi are uniquely determined by the submodule N .

Proof. A reduced primary decomposition of N is given by
⋂r
i=1Ni/N where

Ni/N is pi-primary for 1 ≤ i ≤ r. Then, by Theorem 2.3.7 we have that

Ass(M/N) = {p1, . . . pr}.

However, the associated primes of M/N are determined by N , which of course
by the above equation means that the pi’s are determined by N . �

The following result is quite useful when determining whether submodules
are p-primary to some prime ideal p.

Corollary 2.3.9 ([Ash, Corollary 1.3.11]). Let N be a submodule of M , both
finitely generated over a Noetherian ring R. Then, N is p-primary for a prime
ideal p if and only if

Ass(M/N) = {p}.

Proof. Assume N is primary, then a minimal primary decomposition of N is
just N itself. We also know p =

√
Ann(M/N) for some prime ideal p. From

Theorem 2.3.7 we know that p is in fact the only associated prime of M/N . For
the converse assume that p is the only associated prime of M/N , then again by
Theorem 2.3.7 we get that N is p-primary. �

We include the second uniqueness theorem for good measure. Proving this
will lead us quite far astray, so we omit the proof and refer to [Ash].

Theorem 2.3.10 ([Ash, Theorem 1.4.5]). Let M be a finitely generated R-module
where R is a Noetherian ring. Suppose that

N =
⋂
i

Ni
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2.4. The associated primes of a differential module

is a minimal primary decomposition of the submodule N , and that Ni is pi-
primary for i = 1, . . . , r. If pi is minimal, then Ni is uniquely determined by
N .

The following result is often very useful to determine the associated primes
of a module. For the proof we refer to [Ash].

Proposition 2.3.11 ([Ash, Proposition 1.5.6]). If M is a finitely generated
module of a Noetherian ring R, then⋂

p∈Ass(M)

p =
√

Ann(M).

2.4 The associated primes of a differential module

Our conjecture is that the isolated components of a are one-to-one with the
isolated components of Ωa for an ideal a ⊂ A. We have not been able to prove
that they are the same, but we can at least show that each primary component
of a will be included in one of the components of Ωa.

Proposition 2.4.1. Let A be a Noetherian ring and assume a ⊂ A is an ideal.
Assume a has a primary decomposition

a =
⋂
i

qi,

such that each qi is pi-primary for a prime ideal pi. Further, assume that we
have a primary decomposition of Ωa

Ωa =
⋂
j

Nj ,

where each Nj is bj-primary for a prime ideal bj . Then each pi is contained in
one of the bj’s.

Proof. Assume we are in the situation above. Since there is a nonzero element
r ∈ A/a such that

pi · r ∈ a,

then we should certainly also have

pi · rdg ∈ Ωa

for any g ∈ A, since then pi · r ⊂ a. But then

pi · rdg ⊂ a · ΩA.

This means that
pi ⊂ AnnΩA/Ωa

(rdg),

so p is at least contained in a prime associated to ΩA/Ωa, in other words, one
of the bj ’s. �

31



2.4. The associated primes of a differential module

x

y

Figure 2.2: The axes in A2.

We conjecture in general that the isolated components of each decomposition
are equal, but that the omega module can contain more embedded components
that the ideal does not have. Let us look at an example where we can show
this.

Example 2.4.2. Let A = k[x, y], where k is an algebraically closed field, and
consider the ideal

a = (xy).
Geometrically we know that this corresponds to the union of the x- and y-axis
in the plane, A2. From Proposition 1.4.1 we know that the kernel of

Ωk[x,y] → Ωk[x,y]/(xy)

is

Ω(xy) = (xy) · ΩA + d(xy) ·A
= (xy) · ΩA + (xdy + ydx) ·A.

We regard this as a k[x, y]-module in the canonical way, so we can multiply
with elements from A. Now, the primary decomposition of (xy) is simply

(xy) = (x) ∩ (y),
and these components clearly have different radicals that do not include each
other, so they are both isolated components. The ideals are both prime, so
their radicals equal the ideals themselves([AM69, Proposition 1.14]). Thus, the
associated primes are

Ass(k[x, y]/(xy)) = {(x), (y)}.

From Proposition 2.4.1, we know that these two primes should also be associated
to the corresponding omega module, ΩA/Ω(xy). This is not hard to see, let us
show this first for (y).
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2.4. The associated primes of a differential module

Consider the element
ω = xdx ∈ ΩA. (2.3)

From arguments made earlier ω cannot be in Ωa. When considering

Ass(ΩA/Ωa),

we have the relation
(xdy + ydx). (2.4)

We will make a choice to ‘disregard’ all elements on the form

ydx,

and replace these with
−xdy.

This is legal since we are working in

Ωk[x,y]/Ω(xy).

It is clear that the only way to multiply Equation (2.3) into Ωa is by pushing
it into

(xy) · ΩA,

since it can never become something of the form (xdy + ydx) with just
multiplication from k[x, y]. Then, we have

AnnΩA/Ωa
(xdx) = (y),

which means that
(y) ∈ Ass(ΩA/Ωa).

To show that
(x) ∈ Ass(ΩA/Ωa),

we consider the nonzero element ydy ∈ ΩA/Ωa. Now, by the same arguments as
above the only way to multiply this into Ωa is by some element in (x), which
means

AnnΩA/Ωa
(ydy) = (x).

So (x) is also an associated prime. However, there should also be a third
component, which is (x, y)-primary. In other words, we should have that

Ass(ΩA/Ωa) = {(x), (y), (x, y)}.

This is where our choice of xdy in the relation Equation (2.4) comes into play.
Consider the element

xdy ∈ ΩA.

Now this is clearly ‘killed’ by all of (y), but by observing that

xdy = −ydx,

we also see that it is killed by all of (x), which means

AnnΩA/Ωa
(xdy) = (x, y).
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2.4. The associated primes of a differential module

To conclude, now we have shown that

Ass(ΩA/Ωa) ⊃ {(x), (y), (x, y)}.

We show that this is in fact an equality, so assume that p is some associated
prime of ΩA/Ωa which is not in

{(x), (y), (x, y)}.

This means that
p = AnnΩA/Ωa

(ω)
for some ω ∈ ΩA. We also have that (x), (y), (x, y) annihilates some elements
in ΩA/Ω(xy), which means

(xy) = (x) ∩ (y) ∩ (x, y) ⊃ Ann(ΩA/Ω(xy)).

The converse, that (xy) ∈ Ann(ΩA/Ω(xy)) is clear, so

(xy) = Ann(ΩA/Ω(xy)).

Of course, we must have p ⊃ Ann(ΩA/Ω(xy)), thus

p ⊃ (xy).

So the only possibility is that p contains (xy). Since we are in k[x, y] we need
only check primes of the form (f) for some irreducible f , and maximal ideals
(x − α, y − β) for α, β ∈ k. Assume first that p = (f) for some irreducible
f ∈ k[x, y]. We have (xy) ⊂ (f), in other words, xy = f · h for some h ∈ A.
However, this implies either f ∈ (x) or f ∈ (y), which contradicts our assumption
that

p 6⊂ {(x), (y), (x, y)}.
Therefore, assume that p = (x− α, y − β) for some α, β ∈ k. We can assume
that at least one of α and β is nonzero. Further, if both of them are nonzero,
then it is impossible that

(xy) ⊂ (x− α, y − β).

Hence, we assume that α = 0. So, we have some element ω such that
(x, y − β) · ω ∈ Ω(xy). We assume that ω /∈ Ω(xy). Then, modulo Ω(xy), we can
write it on the form

ω = (a0 + a1x+ · · ·+ anxn)dx+ (b0 + b1y + · · ·+ bnyn)dy + (c1ydx+ c2xdy),

for some ai, bi, ci ∈ k. This is possible because each time we have terms on the
form f · (xy)dx or f · (xy)dy for some f ∈ A, we can remove them since they
are already in Ω(xy). We can also remove terms on the form y2dx, x2dy, since

y2dx = y · (ydx+ xdy)− (xy)dx
x2dy = x · (ydx+ xdy)− (xy)dy,

so these are both in Ω(xy). Now, we have that (x, y − β) · ω ∈ Ω(xy), so (y − β)
should multiply this element into Ω(xy). We have

−βω = −β(a0 + a1x+ · · ·+ anx
n)dx− β(c1ydx)
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2.4. The associated primes of a differential module

− β(b0 + b1y + . . . bny
n)dy − β(c2xdy)

which should be in Ω(xy). Looking at the degree zero part of this, there is no
way to choose a0 and b0 such that −β(a0dx+ b0dy) ∈ Ω(xy) without choosing
a0 = b0 = 0, since Ω(xy) has no elements of degree zero. There are also no
terms of degree zero coming from y · ω because y is of degree 1, and only the
constants are units in A. Then, we must let a0 = b0 = 0, which means there
are also no terms of degree 1 in y · ω. We see that there is no way to choose
a1, b1 nonzero such that

−β(a1xdx+ b1ydy) + c1ydx+ c2xdy = (xy)(udx+ vdy) + w(xdy + ydx).

This is because there is no way to get terms of degree 1 on the right side of the
form xdx or ydy, so we must have a1 = b1 = 0. Using this argument inductively
on i in ai, bi, we get that ai = bi = 0 for all i, which leaves us with

−βω = −β(c2xdy + c1ydx) ∈ Ω(xy).

However, this implies either c2 ∈ (y) and c1 ∈ (x) or c1 = c2, and both of these
cases gives us that

ω = (c2xdy + c1ydx) ∈ Ω(xy),

which is a contradiction. Now we have proven that the claim holds when α = 0,
however, the case when β = 0 is completely symmetrical. Thus, there are no
more associated primes to Ωk[x,y]/Ω(xy), i.e.

Ass(ΩA/Ωa) = {(x), (y), (x, y)}.

This equality is confirmed by the computations in Example A.2.1.
Intuitively it makes sense that these are the only components, because we have
only one point of intersection and two components. Each isolated component,
(x) and (y), corresponds to a component in the omega module, and there is one
embedded component, which corresponds to the intersection of these.
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CHAPTER 3

Computing the decomposition of
the omega module

Now that we have a good grasp on primary decompositions of modules we
would like to decompose the kernel of the naturally induced map

ΩA → ΩA/a,

where A is a ring and a an ideal of this ring. The goal of this thesis is examining
any relations between the primary decomposition of the ideal

a =
n⋂
i

qi,

and the primary decomposition of

Ωa =
m⋂
i

Ni.

From Theorem 2.3.1, we know that such decompositions exist.
In this chapter we conjecture that the isolated components of the two are

the same. We can check this by computing the associated primes of each and
compare these. For this thesis we will focus on curves in A2, but we expect
that our findings can be extended to the general case. We will then propose a
general primary decomposition for a specific type of curve.

3.1 An embedded component

Let p = (f) and q = (g) be two ideals of the polynomial ring of two variables
R = k[x, y]. If we assume these to be prime and to not have common components,
then the primary decomposition of (f)(g) is just

(fg) = (f)(g) = p ∩ q = (f) ∩ (g).

We would like to get a grasp of how the differential modules behave with such
products of ideals. Note that geometrically this corresponds to union of curves
in A2. Therefore, understanding this will give us information about how the
tangents of two curves in A2 behave when taking the union of them. We also
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3.1. An embedded component

get more information about the cotangent sheaf, which is a very important
structure in algebraic geometry. The cotangent sheaf, among other things,
gives rise to the canonical sheaf. One might think that ‘applying omega’ to the
product of the ideals we would get

Ω(fg) = Ω(f) ∩ Ω(g),

but this is not the case in general. When we say ‘applying omega’ to an ideal
we will mean the submodule

Ωa = a · ΩA + da.

If the two curves intersect in a point we get a third embedded component
corresponding to the intersection. So we would like to prove that

Ω(fg) 6= Ω(f) ∩ Ω(g)

when (f) and (g) intersect at a point. For simplicity we will always assume
that this intersection point is the origin, but one could make a linear change of
coordinates to move this point anywhere in the plane.

Example 3.1.1. A good example to keep in mind is f = x and g = y in
R = k[x, y]. Then, geometrically (fg) = (xy) corresponds to the axes in the
plane. By definition, we have that

Ω(xy) = (xy) · ΩR + (xdy + ydx) ·R.

Consider now the element
xdy ∈ ΩR.

Note that this is in (x) · ΩR and (dy) ·R, which are subsets of Ω(x) and Ω(y),
respectively. This means that xdy ∈ Ω(x) ∩ Ω(y). We see that xdy /∈ Ω(xy)
because the only way to get an element of degree one is to take

r · (xdy + ydx)

for r ∈ k. However, then we have the element xdy + ydx and have to rid
ourselves of ydx by adding an element from (xy) · ΩR, but it is impossible to
write

ydx = (xy)(udx+ vdy)

for any u, v ∈ R. This is because the right side has at least degree 2 and the
left side has degree equal to 1. Hence,

Ω(xy) 6= Ω(x) ∩ Ω(y).

Let us prove this generally.

Lemma 3.1.2. Let f, g ∈ k[x, y] be two polynomials that do not share common
components. Then,

Ω(fg) ⊆ Ω(f) ∩ Ω(g).

Furthermore, if f and g are irreducible and their corresponding curves intersect
in at least one point, then we have

Ω(fg) ( Ω(f) ∩ Ω(g).
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3.1. An embedded component

Proof. We begin by showing that

Ω(fg) = (fg) · ΩR +R · (fdg + gdf)

is contained in the intersection, i.e. contained in both Ω(f) and Ω(g). Note that
(fg) ⊂ (f) and (fg) ⊂ (g). We have from Proposition 1.3.1 that

Ω(fg) ⊂ Ω(f)

Ω(fg) ⊂ Ω(g),

which of course implies
Ω(fg) ⊂ Ω(f) ∩ Ω(g).

Now, assume that f and g are irreducible, and assume their curves intersect
in a point. We want to show that the inclusion above is proper. To do this,
we find an element in the intersection Ω(f) ∩ Ω(g) that is not in Ω(fg). One
candidate is f · dg, which is clearly in the intersection since fdg ∈ (f) · ΩR and
fdg ∈ R · (dg). We show that it is not in Ω(fg). To be in Ω(fg) it must be of
the form

fdg = afgdx+ bfgdy + c(fdg + gdf)

for some polynomials a, b, c ∈ R. We have

fdg = f(agdx+ bgdy + cdg) + cgdf

where the left side is divisible by f , so the right side must also be in (f), hence
c ∈ (f), since f and g do not have common components. Then, we get

dg = (agdx+ bgdy + c′fdg + c′gdf)

gxdx+ gydy = g(adx+ bdy + c′fxdx+ c′fydy) + c′fdg

for some c′ ∈ k[x, y]. Observe that evaluating this at (0, 0), we get zero on the
right side, since we have assumed that f and g intersect in the origin. However,
we have assumed g to be smooth, so both gx and gy cannot be zero in the origin,
which means we have a contradiction. �

Let us see an example of the proper inclusion and an example of equality.

Example 3.1.3. Consider f = y and g = y − x2 in R = k[x, y], which as we
have seen corresponds to the graph in Figure 2.1. It is clear that these two
curves only intersect in the origin, which means Lemma 3.1.2 applies. We have
the element

ω = yd(y − x2) = ydy − 2xydx ∈ ΩR.

Note that d((y − x2)) = (dy − 2xdx) · k[x, y], and that we can write

ω = ydy − 2xydx = y(dy − 2xdx),

which means that ω is in Ω(y−x2), because

Ω(y−x2) = (y − x2) · ΩR +R · (dy − 2xdx).

Also, ω is trivially in Ω(y), hence it is in the intersection. However, it is not in

Ω(y2−yx2) = (y2 − yx2) · Ωk[x,y] + (−2xdx+ (2y − x2)dy) · k[x, y].
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3.1. An embedded component

We can see this by observing that the only way to get the term ydy in Ω(y2−yx2)
is by

1
2 · (−2xdx+ (2y − x2)dy) = xdx+

(
y − x2

2

)
dy.

However, now we have to remove xdx− x2

2 dy, which is impossible by any choice
of u, v ∈ k[x, y] in

(y2 − yx2)(udx+ vdy),

since all terms here have degree at least 2, and we have a term of degree 1. We
can also see this by the argument in our proof of this lemma, assuming

y(dy − 2xdx) = (y2 − yx2)(udx+ vdy) + w(−2xdx+ (2y − x2)dy),

for some u, v, w ∈ k[x, y]. But, w ∈ (y) by the same argument as in the proof,
and then

(dy − 2xdx) = (y − x2)(udx+ vdy) + w′(−2xdx+ (2y − x2)dy).

Evaluating this equation in the origin we get

dy = 0,

a contradiction.

Example 3.1.4. Let f = y and g = y − 1, which in A2 are two parallel lines
that never intersect. The curves of these polynomials are depicted in Figure 3.1.
Our claim is that Ω(y2−y) = Ω(y) ∩ Ω(y−1). We have already shown

x

y

Figure 3.1: The two lines defined by y and y − 1.
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3.2. Curves that give rise to primary modules

Ω(y2−y) ⊂ Ω(y) ∩ Ω(y−1)

generally in Lemma 3.1.2. The other inclusion is computed in Macaulay2, in
Example A.2.3.

The example showcases why we need to assume that we have intersecting
curves when stating proper inclusion in Lemma 3.1.2.

This was the first step in showing that applying omega to a product of
ideals has an embedded component corresponding to the intersection of the two
subschemes. Next we show that Ω(f) is in fact (f)-primary. Then, we know
that Ω(g) is also (g)-primary, and that Ω(fg) is contained in the intersection of
two primary components. This in turn will mean that Ω(fg) must have at least
a third associated prime, hence a third primary component. The number of
additional components is completely determined by the amount of intersections
between the two closed subschemes in A2.

3.2 Curves that give rise to primary modules

For a given ideal a, if we have that Ωa is primary, we say that a is a ω-primary
ideal. We conjecture that irreducible ideals are ω-primary ideals. In fact, from
our computations in Macaulay2 we are led to believe that even primary ideals
are ω-primary, but proving this is outside the scope of this thesis.

Conjecture 3.2.1. Let f ∈ k[x, y] be an irreducible and smooth polynomial.
Then,

Ω(f) = (f) · Ωk[x,y] + (df) · k[x, y]
is a (f)-primary module, in other words (f) is a ω-primary ideal.

We will show that (f) is at least contained in all associated primes. The
claim is that √

Ann
(

ΩR�Ω(f)

)
= (f).

Because of Proposition 2.3.11, this means that the intersection of all associated
primes is equal to (f), which of course means they all contain (f). It is clear
that (f) is contained in the left side since (f) · ΩR ⊂ Ω(f), so (f) kills all
elements of ΩR. To show the converse, assume that

r ∈
√

Ann
(

ΩR�Ω(f)

)
which means that rn multiplies all of ΩR into Ω(f). Let adx+bdy be an arbitrary
element of ΩR. Since rn kills all elements of ΩR, we can let b = 0 and let a be
free for the moment. We get

rn(adx) = ufdx+ vfdy + w (fxdx+ fydy)
rna = uf + w · fx

0 = vf + w · fy

for some u, v, w ∈ k[x, y]. Since f is irreducible we know that fy can not divide
f which means that w must divide f , in other words w = fw′ for some w′ ∈ R.
Then we are left with

rna = uf + w′f · fx
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3.2. Curves that give rise to primary modules

rna = f (u+ w′ · fx) .

However, the right side is a multiple of f , hence the left side must also be a
multiple of f . This means that in general rn must be a multiple of f since we
can just choose a /∈ (f). So, we have rn ∈ (f), hence√

Ann
(

ΩR�Ω(f)

)
= (f).

Even so, this does not mean that Ω(f) is primary. For it to be primary we must
show that every zero-divisor in

ΩR/Ω(f)

is nilpotent. For now let us show that (f) is in fact an associated prime. From
Proposition 2.3.11 we see that if there are other associated primes, these must
contain (f). However, by basic commutative algebra (f) can only be contained
in primes that are maximal. Consider the element

dx ∈ Ωk[x,y]/Ω(f).

Now, we know that the only relations on this module is

(f) · (adx+ bdy) + c(fxdx+ fydy) = 0,

for all a, b, c ∈ k[x, y]. Assume fx /∈ k, which means that there are no relations
on dx, because there are no other ways to get dx from our aforementioned
relations. Then, it is clear that the only way to multiply dx into Ω(f) is by
multiplying by (f), which means

AnnΩk[x,y]/Ω(f)(dx) = (f),

which means that
(f) ∈ Ass(Ωk[x,y]/Ω(f)).

If however, fx ∈ k, then we have a relation

dx = −fy
fx
dy

modulo (df). Now if fy ∈ k, then we still get

AnnΩk[x,y]/Ω(f)(dx) = (f),

but of course we get
AnnΩk[x,y]/Ω(f)(dy) = (f)

as well, since dx and dy are equal up to multiplication by a constant in this
case. If fy /∈ k, we just consider dy instead and by the same argument as for
dx we get

AnnΩk[x,y]/Ω(f)(dy) = (f).
This means that (f) is some prime associated to Ω(f). To show that it is the
only associated prime, we must somehow use that f is a smooth polynomial,
because the statement does not hold for singular curves. We will see why we
need smoothness in Example 3.2.3. Let us see some examples.
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3.2. Curves that give rise to primary modules

Example 3.2.2. Let f = x ∈ k[x, y], which geometrically just corresponds to
the y-axis. We show that

Ass
(
Ωk[x,y]/Ω(x)

)
= {(x)},

in other words that Ω(x) is (x)-primary. As we argued earlier, by results in
commutative algebra and Proposition 2.3.11, if there are other associated primes,
then (x) is contained in these. Thus, any other associated prime is of the form

m(x,y−β) = (x, y − β)

for some β ∈ k. Assume that this is the case, so there is some element

ω = ω1dx+ ω2dy ∈ Ωk[x,y]

such that
(x, y − β) = AnnΩk[x,y]/Ω(f)(ω).

So, for all a, b ∈ k[x, y],

(ax+ b(y − β))(ω1dx+ ω2dy) = x(udx+ vdy) + w(dx)

for some u, v, w ∈ k[x, y]. Splitting this equation, we get

(ax+ b(y − β))ω1 = xu+ w

(ax+ b(y − β))ω2 = xv. (3.1)

Now, let a = 0. Then Equation (3.1) becomes

b(y − β)ω2 = xv,

hence ω2 ∈ (x). Then, we can rewrite our element

ω1dx+ ω2dy = ω1dx+ ω′2xdy

for some ω′2 ∈ k[x, y]. Now it is clear that ω ∈ Ω(x). This shows that the only
elements in

Ωk[x,y]/Ω(x)

that are multiplied into Ω(x) by all of

m(x,y−β) = (x, y − β)

are the ones already in Ω(x), which means that there are no nonzero elements in

Ωk[x,y]/Ω(x)

that gets multiplied to zero by any other prime ideal than (x), hence Ω(x) is
(x)-primary, i.e. (x) is ω-primary.

Example 3.2.3. A non-example is the singular nodal curve defined by

f = y2 − x3 − x2.

We know that (f) is a prime ideal, but it is not smooth, which should mean it
is not ω-primary. In Example A.2.2 we show that Ω(f) has two components,
one (y2 − x3 − x2)-primary and one (x, y)-primary, since the curve intersects
itself in the origin. This shows why we must assume (f) is smooth when we
claim that (f) is ω-primary.
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3.3. The last component of the decomposition

x

y

Figure 3.2: The nodal cubic defined by (y2 − x2(x+ 1)).

3.3 The last component of the decomposition

We have seen that there must be a third component in the decomposition of

Ω(fg).

The third component we propose is

N(fg) = Ω(fg) + (xddx, yddx), (3.2)

where d = deg(fg). The last generators are included to make the module
(x, y)-primary. Many calculations of different examples of f and g in Macaulay2
has given us an idea of how N(fg) should look, which led us to Equation (3.2).
Examples of such calculations can be found in Appendix A. We claim that
raising x and y to the d-th power ensures that xd and yd can be written as

xd = a1 · f + b1 · g
yd = a2 · f + b2 · g

for some ai, bi ∈ k[x, y]. Since f and g only intersect in the origin, we know
that √

(f, g) = (x, y).
This means that xn1 ∈ (f, g) and yn2 ∈ (f, g) for some n1, n2 ∈ N. By
Bezout’s theorem, we know that f and g intersect deg(f) deg(g) times, counting
multiplicities. In our case, we have assumed they only intersect in the origin,
therefore the multiplicity of this point is deg(f) deg(g). This means that the
k[x, y]-module

k[x, y]/(f, g)
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3.3. The last component of the decomposition

has maximum length deg(f) deg(g). Hence, xn ∈ (f, g) when n =
deg(f) deg(g) + 1. However, we know that deg(fg) > deg(f) deg(g) for all
non-constant f and g, hence choosing d = deg(fg) is enough to get that
xd ∈ (f, g) and yd ∈ (f, g).

As mentioned earlier, we assume that our curves only intersect in the
origin. Therefore, we can just consider the cases where we have (x, y)-primary
components, which means the module geometrically is in the origin.

Note that N(fg) is equal to the module we want to decompose, Ω(fg),
but with some extra generators. We must therefore show that adding these
generators does not make the intersection contain other elements than Ω(fg).
The following lemma will be useful.

Lemma 3.3.1. Let A, B and N be modules of the same ring R. Assume that
B ⊂ A and N ∩A ⊂ B. Then,

A ∩ (N +B) = B.

Proof. We begin by showing the right to left inclusion. Let b ∈ B. Since B ⊂ A,
we have b ∈ A. Further, B ⊂ N +B, so b ∈ N +B, hence

b ∈ A ∩ (N +B),

which proves the right to left inclusion. For the converse, let

a ∈ A ∩ (N +B).

Then, we have a ∈ N +B, which means a = n+ b for some n ∈ N and b ∈ B.
Since A is a module and b ∈ A, we can subtract b from a and still get an element
in A. We get

a− b = n ∈ A.
This is in N and A, i.e.

n ∈ A ∩N.
By assumption, we have A ∩N ⊂ B, so n ∈ B. Then, a = n + b ∈ B, hence
A ∩ (N +B) ⊂ B. This means we have equality between the two modules. �

Having this lemma means that to show

Ω(fg) = Ω(f) ∩ Ω(g) ∩N(fg),

we need only show that

Ω(f) ∩ Ω(g) ∩ (xddx, yddy) ⊂ Ω(fg).

To see this, let

R = k[x, y],
B = Ω(fg),

A = Ω(f) ∩ Ω(g),

N = (xddx, yddy)

in Lemma 3.3.1. Then we see that by adding

N = (xddx, yddy),
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3.3. The last component of the decomposition

we still get the desired equality. For this to be the desired last component, it
remains to show that

Ω(f) ∩ Ω(g) ∩ (xddx, yddy) ⊂ Ω(fg).

We state the conjecture.

Conjecture 3.3.2. Let f and g be two irreducible, smooth polynomials of k[x, y]
that do not share components. Then,

Ω(f) ∩ Ω(g) ∩ (xddx, yddy) ⊂ Ω(fg),

where d = deg(fg).

We look at an example.

Example 3.3.3. Let f = y and g = x, then

(fg) = (xy),

which corresponds to the axes in the plane. We need to show that

Ω(y) ∩ Ω(x) ∩ (x2dx, y2dy) ⊂ Ω(xy).

Consider ω = ω1x
2dx+ ω2y

2dy ∈ (x2dx, y2dy) and assume that

ω ∈ Ω(y) ∩ Ω(x).

First, since ω ∈ Ω(x), we get the following:

ω1x
2dx+ ω2y

2dy = (x)(u1dx+ v1dy) + w1 · dx (3.3)

for some u1, v1, w1 ∈ k[x, y]. An equivalent argument for Ω(y) gives us that

ω1x
2dx+ ω2y

2dy = (y)(u2dx+ v2dy) + w2 · dx (3.4)

for u2, v2, w2 ∈ k[x, y]. Splitting Equation (3.3) by the two generators of Ωk[x,y]
gives us

ω1x
2 = xu1 + w1 (3.5)

ω2y
2 = xv1. (3.6)

Doing the same for Equation (3.4) gives

ω1x
2 = yu2 (3.7)

ω2y
2 = yv2 + w2. (3.8)

Given these equations, we want to show that the element we started with is in

Ω(xy) = (xy) · Ωk[x,y] + (xdy + ydx) · k[x, y].

From Equation (3.6), we get that

ω2 ∈ (x) and v1 ∈ (y2).
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3.3. The last component of the decomposition

Furthermore, from Equation (3.7), we get that

ω1 ∈ (y) and v2 ∈ (x2).

However, now we can rewrite the element we started with as

ω1x
2dx+ ω2y

2 = h1yx
2dx+ h2xy

2dy (3.9)
= xy(h1xdx+ h2ydy) ∈ Ω(xy) (3.10)

for some h1, h2 ∈ k[x, y]. Thus,

Ω(y) ∩ Ω(x) ∩ (x2dx, y2dy) ⊂ Ω(xy).

Now, using Lemma 3.3.1, we get that

Ω(y) ∩ Ω(x) ∩ (x2dx, y2dy) = Ω(xy),

which means we have a candidate for a primary decomposition of Ω(xy). We
only need to check that N(fg) is (x, y)-primary. A computation of this example
can also be found in Example A.2.1.

Let us look at a more interesting example.

Example 3.3.4. Let f = y − x2 and g = x be two polynomials in A = k[x, y].
We claim that

Ω(yx−x3) = Ω(y−x2) ∩ Ω(x) ∩N(yx−x3),

where N(yx−x3) = Ω(yx−x3) + (x3dx, y3dy), is a primary decomposition. We
want to show that these two modules are equal, but we already know that
Ω(yx−x3) is contained in the right side by Lemma 3.1.2, so it remains to show
the converse. We can write the module

Ω(y−x2) = A · (y − x2)dx+A · (y − x2)dy +A · (dy − 2xdx),

where A = k[x, y]. However, the generator A · (y − x2)dy is superfluous to
generate Ω(fg), since we can write

(y − x2)dy = (y − x2) · (dy − 2xdx) + 2x · (y − x2)dx.

So, we can write the middle generator as a linear combination of the other two
over A. This means we have

Ω(y−x2) = A · (y − x2)dx+A · (dy − 2xdx).

We push Ω(y−x2) into Ω(x). Observe that the first generator, A·(y−x2)dx ∈ Ω(x),
but the generator A · (dy− 2xdx) is not in Ω(x) in general, so we must multiply
by x to push the dy part into (x) · ΩA. So, we get

Ω(y−x2) ∩ Ω(x) = A · (y − x2)dx+A · (xdy − 2x2dx).

What remains is to intersect this module with (x3dx, y3dy). To do this, we
must multiply with elements from A to make the coefficients of each dx in the
generators be in (x3), and analogously each dy coefficient be in (y3). We see that
to get A ·(y−x2)dx in Ω(x) we must multiply with x3, so this generator becomes
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3.4. Showing the last component is primary

A ·(x3y−x5)dx. Similarly, for the other generator we get A ·(xy3)(xdy−2x2dx).
To summarize, we now have

Ω(y−x2) ∩ Ω(x) ∩N(yx−x3) = A · x3(y − x2)dx+A · (xy3)(xdy − 2x2dx).

If we show that each of these generators are in Ω(xy−x3) we are done. Recall

Ω(xy−x3) = A · (xy− x3)dx+A · (xy− x3)dy+A · ((y− x2)dx+ x(dy− 2xdx)).

Clearly, x3(y − x2)dx ∈ A · (xy − x3)dx, so this generator is in Ω(xy−x3). For
the other one, we can write

(xy3)(xdy − 2x2dx) = (xy3)((y − x2)dx+ x(dy − 2xdx))− y3(xy − x3)dx,

where we have written (xy3)(xdy − 2x2dx) as an element of the generators of
Ω(xy−x3). This means that

Ω(yx−x3) ⊃ Ω(y−x2) ∩ Ω(x) ∩N(yx−x3),

moreover
Ω(yx−x3) = Ω(y−x2) ∩ Ω(x) ∩N(yx−x3).

We have computed more examples of this in Appendix A.3.

3.4 Showing the last component is primary

The remaining part of establishing that

Ω(fg) = Ω(f) ∩ Ω(g) ∩N(fg)

is a primary decomposition, is to show that N(fg) is primary. As we have stated
before, we conjecture it to be (x, y)-primary. Let us see an example of this.

Example 3.4.1. Let f = y and g = x+ y. Geometrically the principal ideals
these generate correspond to the x-axis and the line y = −x, respectively. An
illustration is depicted in Figure 3.3.

In order to show that

N(x(x+y)) = Ω(x2+xy) + (x2dx, y2dy)

is primary, let us first show that

xddy, yddx ∈ N(fg).

We first show that xddy is in N(fg), so we want to take a general element of
N(x2+xy),

fg(udx+ vdy) + w((fgx + gfx)dx+ (fgy + gfy)dy) + α · xddx+ βyddy

and choose u, v, w, α and β such that this element is equal to

xddy.

47



3.4. Showing the last component is primary

x

y

Figure 3.3: Zero set of (yx+ y2).

We can split the computation into one computation for each generator of Ωk[x,y].
For dx, we want

fgu+ w(fgx + gfx) + αxd = 0. (3.11)
And for dy, we want

fgv + w(fgy + gfy) + βyd = xd. (3.12)

This is for general f and g, so let us insert our example here. Equation (3.11)
becomes

(yx+ y2)u+ w(y) + αx2 = 0, (3.13)
and Equation (3.12) becomes

(yx+ y2)v + w(y + (x+ y)) + βy2 = x2

(yx+ y2)v + w(x+ 2y) + βy2 = x2, (3.14)

since d = deg(yx + y2) = 2. However, these two curves only intersect in the
origin, thus we know that √

(y, x+ y) = (x, y), (3.15)

which means that there exists some N1, N2 ∈ N such that

xN1 = a1y + b1(x+ y)
yN2 = a2y + b2(x+ y)

for some a1, a2, b1, b2 ∈ k[x, y]. It will suffice to use d = deg(fg), by the
arguments made before Lemma 3.3.1. In this simple example we actually do
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3.4. Showing the last component is primary

not need to use this fact though, we see from Equation (3.14) that the only way
to get a term of the form x2 is to choose

w = x+ w′,

for some w′ ∈ k[x, y], because all other terms have a factor of y. Inserting this
fact into Equation (3.13), we get

(xy + y2)u+ (x+ w′)y + αx2 = 0,

and we see in order to remove the xy term here, we must choose u = −1, which
gives us

(xy + y2)(−1) + (x+ w′)y + αx2 = −y2 + w′y + αx2.

Now, the only way to get rid of the term −y2 is to choose

w′ = y,

and then we can just let
α = 0

to satisfy Equation (3.13). Now, back to Equation (3.14), the choice of

w = x+ y

gives us

x2 = (xy + y2)v + y(x+ 2y) + x(x+ 2y) + βy2

= (xy + y2)v + 3xy + 2y2 + x2 + βy2,

and we want to choose v, β ∈ k[x, y] such that this holds. We want to remove
the terms

3xy + 2y2,

and we begin by choosing
u = −3

in Equation (3.14). Then we end up with the equality

(yx+ y2)(−3) + x2 + 3xy + 2y2 + βy2 = x2 − y2,

and now we just need to remove the last term, −y2, but this is simply done by
choosing

β = −1,

and we have the desired equality Equation (3.14). We have now written

x2dy

as an element of N(fg), which means

x2dy ∈ N(fg).

Next we show that also
y2dx ∈ N(fg)
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3.4. Showing the last component is primary

in a similar fashion. So, we want

yddx = (xy + y2)(udx+ vdy) + w(ydx+ (x+ 2y)dy) + αx2dx+ βy2dy.

Splitting as we did before we get

y2 = (xy + y2)u+ wy + αx2 (3.16)
0 = (xy + y2)v + w(x+ 2y) + βy2. (3.17)

We would like to find some choice of u, v, w, α, β ∈ k[x, y] such that these
equations hold. Consider Equation (3.16) first. There are two ways to get a
term of y2 on the right side. We try one of them and see if it works. The first
is choosing

u = 1 + u′

for some u′ ∈ k[x, y]. This gives us

(xy + y2)(1 + u′) + wy + αx2 = xy + y2 + u′(xy + y2) + wy + αx2,

and we want to remove the term xy, which we do by choosing

w = −x+ w′

for some w′ ∈ k[x, y]. Let us see how this fits into Equation (3.17). We get

(xy+y2)v+(−x+w′)(x+2y)+βy2 = (xy+y2)v+w′(x+2y)−x2−2xy+βy2,

but there is now no way to choose v or β to remove x2. Therefore, this cannot
be the right choice of w, and we have to try the other option. Again let all the
coefficients be arbitrary and consider Equation (3.16) where we now let

w = y + w′.

Let us check how this fits into Equation (3.17):

(xy+ y2)v+ (y+w′)(x+ 2y) +βy2 = (xy+ y2)v+xy+ 2y2 +w′(x+ 2y) +βy2.

We can now let
v = −1,

and we get

(xy + y2)(−1) + xy + 2y2 + w′(x+ 2y) + βy2

= −y2 + 2y2 + w′(x+ 2y) + βy2

= y2 + βy2 + w′(x+ 2y),

where we see that if we let

β = −1 (3.18)
w′ = 0. (3.19)

Then, we get the desired equality

(xy + y2)(−1) + y(x+ 2y) + (−1)y2 = 0.
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3.4. Showing the last component is primary

Now, let us go back to Equation (3.16) and see if we can solve this. Recall that
we chose w = y, thus we get

(xy + y2)u+ y2 + αx2,

but now we can just let

u = 0 (3.20)
α = 0. (3.21)

We have now written
y2dx,

of the form of an element of

N(fg) = Ω(xy+y2) + (x2dx, y2dy),

which means that
y2dx ∈ N(fg).

Now that we have both

y2dx ∈ N(fg)

x2dy ∈ N(fg)

we can use this to conclude that N(fg) is (x, y)-primary. Any element in Ωk[x,y]
is of the form

adx+ bdy,

where a, b ∈ k[x, y]. Well, using that we have√
Ann

(
Ωk[x,y]/N(fg)

)
= (x, y)

and Proposition 2.3.11, we know that⋂
p∈Ass(M/N(fg))

p = (x, y),

where we have denoted M = Ωk[x,y]. However, now we have an intersection of
prime ideals equal to a maximal ideal, which can only mean that the set of
intersection is just the maximal ideal itself, i.e

Ass(M/N(fg)) = {(x, y)}.

From Corollary 2.3.9 we have that this means precisely that N(fg) is (x, y)-
primary, which is what we wanted to show.

Proving this fact in general has shown to be much harder, and one would
need to use the fact that the two curves V (f) and V (g) only intersect in the
origin, in other words that √

(f, g) = (x, y).

We have not been able to prove this in this thesis, but have checked many cases
in Macaulay2, see Appendix A.1 and Appendix A.3.
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Conjecture 3.4.2. Let f, g ∈ k[x, y] be two polynomials such that their
corresponding curves in A2 are smooth, irreducible and only intersect in the
origin. Then it is our contention that the submodule of Ωk[x,y];

N(fg) = Ω(fg) + (xddx, yddy)

where d = deg(fg), is (x, y)-primary.

Let us show another simple example.

Example 3.4.3. Let f = x and g = y, which means we are geometrically
considering the x- and y-axes. We want to show that

N(fg) = Ω(xy) + (x2dx, y2dy)

is (x, y)-primary. Again we do this by showing that

(x2dy, y2dx) ∈ N(fg).

Recall that
Ω(xy) = (xy) · Ωk[x,y] + (xdy + ydx) · k[x, y].

Consider the equations

(xy)u+ wy + αx2 = 0 (3.22)
(xy)v + wx+ βy2 = x2. (3.23)

Now, if we can choose u, v, w, α, β ∈ k[x, y] such that both of these equations
hold, then we are done. Observing the latter we need

w = x+ w′

for some w′ ∈ k[x, y]. Let us now insert this fact into Equation (3.22), which
gives us

(xy)u+ (x+ w′)y + αx2,

so if we choose u = −1, then we can let

w′ = 0
α = 0

which gives
(xy)(−1) + xy + 0 · x2 = 0

as we wanted. Now we have chosen

w = x.

Let us insert this into Equation (3.23). We get

(xy)v + x2 + βy2,

and we want this to be equal to x2 for some choice of v, β ∈ k[x, y]. However,
this is easy, just let

v = 0
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β = 0,

and we get the desired equality. This means that

x2dy ∈ N(fg).

Let us show that we also have y2dx ∈ N(fg). To be clear, we want to find
u, v, w, α, β ∈ k[x, y] such that

y2 = (xy)u+ wy + αx2 (3.24)
0 = (xy)v + wx+ βy2. (3.25)

From Equation (3.24) we see that we need w = y + w′ for some w′ ∈ k[x, y].
Let us insert this fact into Equation (3.25) and see what we get.

0 = (xy)v + (y + w′)x+ βy2.

Now we need to choose v, w′, β such that this equation holds, and we see that
the only term we have no control over is xy, which we need to remove. We can
do this by letting v = −1. Then the equation becomes

−xy + xy + w′x+ βy2 = w′x+ βy2,

where we can just choose
w′ = β = 0,

and we get the that the desired equality holds. Now, we go back to
Equation (3.24), inserting that w′ = 0, and get

y2 = (xy)u+ y2 + αx2,

which one sees easily holds if we choose

u = α = 0.

This means that
y2dx ∈ N(fg),

so now we have that
(x2dy, y2dx) ⊂ N(fg).

Again, by the fact that√
Ann

(
Ωk[x,y]/N(fg)

)
= (x, y),

and Proposition 2.3.11, we know that

Ass(Ωk[x,y]/N(fg)) = {(x, y)},

which is equivalent to N(fg) being (x, y)-primary.

Let us look at a more interesting example.
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Example 3.4.4. Consider the polynomials f = y − x2 and g = x, which
geometrically define the y-axis and the parabola y = x2. We claim that
N(yx−x3) is (x, y)-primary, and we start by showing that (x3dy, y3dx) ⊂ N(fg).
So, we want to show that x3dy ∈ N(yx−x3), where

N(yx−x3) = ((yx− x3) · Ωk[x,y] + (xdy − (y − 3x2)dx)) + (x3dx, y3dy).

So we want

x3dy = (yx− x3)(udx+ vdy) + w(xdy − (y − 3x2)dx) + αx3dx+ βy3dy,

for some u, v, w, α, β ∈ k[x, y]. Splitting this by generators we get

0 = (yx− x3)u+ w(3x2 − y) + αx3 (3.26)
x3 = (yx− x3)v + wx+ βy3. (3.27)

One possibility is to choose w = x2 + w′ for some w′ ∈ k[x, y], and insert this
into Equation (3.26). We get

0 = (yx− x3)u+ (x2 + w′)(3x2 − y) + αx3,

where we need to choose u,w′ and α such that this holds. Let u = x+ u′ for
some u′ ∈ k[x, y], then we are left with

(yx− x3)u′ + w′(3x2 − y) + 2x4 + αx3.

Now, we can just choose u′ = w′ = 0 and α = −2x, which makes Equation (3.26)
hold. Back to Equation (3.27), we get

x3 = (yx− x3)v + x3 + βy3,

but now we can just choose v = β = 0. Hence, x3dy ∈ N(yx−x3).
Next we want to do the same for y3dx. This gives the equations

y3 = (yx− x3)u+ w(3x2 − y) + αx3 (3.28)
0 = (yx− x3)v + wx+ βy3. (3.29)

The only way to get a term y3 in Equation (3.28) is by choosing w = −y2 + w′

for some w′ ∈ k[x, y]. Inserting this into Equation (3.29), we get

(yx− x3)v + (w′ − y2)x+ βy3,

so again we want to choose v, w′, β ∈ k[x, y] such that it is zero. To cancel the
−y2x term we choose v = y, and get

−yx3 + w′x+ βy3.

Now, choosing w′ = yx2 and β = 0 this becomes zero, so Equation (3.29) holds.
We chose w = −y2 + yx2, so inserting this into Equation (3.28) we get

(yx− x3)u+ (−y2 + yx2)(3x2 − y) + αx3 (3.30)
= (yx− x3)u− 3x2y2 + y3 − 3yx4 + x2y2 + αx3 (3.31)
= (yx− x3)u+ xy(−3xy − 3x3 + xy) + αx3 + y3 (3.32)
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= (yx− x3)u+ xy(xy − 3xy − 3x3) + αx3 + y3. (3.33)

Let u = (−3xy2 − 3yx3 + xy2), then we get

(−3xy2 − 3yx3 + xy2)(−x3) + αx3 + y3,

and if we choose α = −u we get the desired equality Equation (3.29). We have
showed that (x3dy, y3dx) ⊂ N(yx−x3), and by the same arguments as in the last
example, that N(yx−x3) is (x, y)-primary.

In Example 3.4.1, Example 3.4.3 and Example 3.4.4 we showed that N(fg)
is (x, y)-primary by showing that

(xddy, yddx) ⊂ N(fg).

Because of this, we could just as well have defined N(fg) as

N(fg) = Ω(fg) + (xddx, xddy, yddx, yddy),

where d is the degree of fg. This has the advantage we get that N(fg) is
(x, y)-primary. The downside is that showing the equality

Ω(fg) = Ω(f) ∩ Ω(g) ∩N(fg)

gets much harder, since we have a larger N(fg) module.
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CHAPTER 4

Examining the geometry of the
Kähler differentials

The differentials are directly connected to the tangent space of a scheme. For a
general scheme the tangent space is the dual of the differential module. The
differentials, or globally the cotangent sheaf, are invariant to the underlying
scheme and contains information about its geometry. To understand more
about the geometry of the Kähler differentials, we examine some geometric
representations of them in this chapter.

First we examine homomorphisms from the differentials into k, where
k = k(p) is the residue field at a point p. In other words, the fiber of the
global sections of the tangent sheaf at a point p. We start by considering a
polynomial ring R = k[x, y] and the ideal we have already worked with

a = (y2 − yx2).

Recall that this ideal corresponds to the union of the x-axis and the parabola
y = x2 in A2.

In general, we conjecture that the omega module Ωa of an ideal a does not
behave like the ideal. By this we mean that the decomposition of Ω(y2−yx2) is
not simply applying omega to each of

(y) and (y − x2)

and intersecting them, instead we get a third component that gives the
information about the point of intersection, namely the origin. For this specific
example we can even show that this is true, which we have done in Appendix A.
As we have seen earlier, the corresponding omega module is

Ωa = (y2 − yx2) · ΩR + (−2xydx+ (2y − x2)dy) ·R.

Consider the homomorphisms of ΩR into R. This is a set of vector fields of A2

where the fiber at a point is a tangent space. We know from [EO, Definition
17.2] that the definition of the tangent bundle is

Definition 4.0.1. Let X be a smooth scheme over an algebraically closed field
k. Then we define the tangent bundle to be the sheaf

TX = HomOX (ΩX ,OX).
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Figure 4.1: The unit circle in A2.

Example 4.0.2. Let us look at a simple affine example. Assume that

X = Spec(A),

where
A = k[x, y]/(y2 + x2 − 1).

This is the unit circle in A2, which we know is smooth everywhere.
We know that the tangent space at any point of X is just the line in A2

that is tangent to the circle in this point. This fits into our definition of the
tangent bundle since choosing a point on the unit circle and computing the
tangent space is exactly equivalent to taking the fiber of the tangent bundle in
this point. So the tangent space at a point (α0, β0) on the unit circle is

HomA(ΩA, A)(x−α0,y−β0) ⊗A(x0,y0) k(p),

where p is the point (α0, β0). If we choose a point (α0, β0) not on the unit circle,
i.e.

α2
0 + β2

0 6= 1,

then

HomA(ΩA, A)(x−α0,y−β0) = 0,

since localizing A = k[x, y]/(x2 + y2 − 1) outside the unit circle will invert
the ideal (x2 + y2 − 1). In other words, the zero ideal will be inverted, hence
the whole ring becomes the zero ring. This means we have the module of
homomorphisms into the trivial ring, which is just the zero homomorphism.
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This makes sense with our intuition of tangent spaces since a scheme
should not have tangents defined outside its topological space. Let us assume
(α0, β0) ∈ k2 are such that

α2
2 + β2

0 = 1.
In other words, (α0, β0) corresponds to a point on the unit circle. As we saw
earlier, the tangent bundle is defined by

dx 7→ α1

dy 7→ β1

such that 2x · α1 + 2y · β1 = 0. We are looking at the stalk in the point
corresponding to the maximal ideal

mα0,β0 = (x− α0, y − β0),

and everything not in this ideal is inverted. Now, if α0 6= 0 we can invert x and
therefore let β1 be free and write

α1 = −yβ1

x
,

which means we have a one-dimensional tangent space in such a point when
taking the fiber. If α0 = 0, then we know β0 6= 0 since otherwise we are not on
the unit circle. Then we can invert y, so we let α1 be free and write β1 as

β1 = −xα1

y
.

Then, taking the fiber at any point on the circle gives us a one-dimensional
tangent space. This makes sense since for any point on the circle we know the
tangents are just the lines through the point. In Figure 4.2 we see the line
tangent to the circle in the point

(α0, β0) = ( 1√
2
,

1√
2

),

and the tangent space are all the vectors on this line.

Here we considered the tangents globally as a sheaf, and to look at the
tangents at a point, we take the fiber. This fits with the definition of the tangent
bundle in differential geometry, where a tangent bundle is a map

E
π

→M,

where M is a manifold and E ' M × Rn for some n ∈ N. Computing the
tangent space in this case is taking the fiber of this map at a point p ∈ M .
One could also just look at the point from the start by considering the Zariski
tangent space.

Definition 4.0.3. The Zariski tangent space TxX to X at the point x ∈ X is
the dual vector space of mx/m2

x. That is,

TxX = Homk(x)(mx/m2
x, k(x)).

The space mx/m
2
x is called the Zariski cotangent space of X at x. An element

of TxX is called a tangent vector; it is a linear functional

mx/m
2
x → k(x).
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Figure 4.2: Tangent space to a point on unit circle

We prefer however, to work with the Kähler differentials rather than the
maximal ideals at the point one is considering. This has the advantage that of
being a global structure, which corresponds to the structure at the point when
one takes the fiber. Luckily, there is a relation we can use in certain situations
for this exact purpose. For more general settings one can use the statement
[EO, Proposition 17.35], but for our case we can make the situation simpler.

Proposition 4.0.4. Let R be a Noetherian ring over an algebraically closed field
k. Further, let x ∈ Spec(R) be a point, so it corresponds to some maximal ideal
mx. Then mx/m

2
x represents the derivations

Derk(x)(R, k(x)).

In other words,

Derk(x)(R, k(x)) ' Homk(x)(mx/m2
x, k(x)).

Proof. We begin by noting that since R is a ring over k, an algebraically closed
field, we have that

k(x) = R/mx ' k.
Now, we want to show that

Derk(x)(R, k(x)) ' Homk(x)((mx/m2
x, k(x))),

so we define a map between them and show it is an isomorphism. Define the
map by

Derk(R, k)→ Homk(mx/m2
x, k)

D 7→ TD,
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where TD(m) = D(m) for m ∈ mx/m
2
x, and remember that k is an R-module.

To check that it is well-defined, let m · n ∈ mx/m
2
x. Then we have that

TD(mn) = D(mn) = mD(n) + nD(m)

by the Leibniz rule. However, m and n is zero in k through the exactness of

0→ mx → R→ R/mx ' k,

hence
TD(mn) = mD(n) + nD(m) = 0D(n) + 0D(m) = 0,

which means the map is well-defined. To see that it is surjective, let
TD ∈ Homk(mx/m2

x, k). Any element in R can be written as a + m, where
a ∈ R is a unit and m ∈ mx. But, D(a + m) = D(m), since a ∈ k, and then
D(a+m) = TD(m). To show the map is injective, assume TD = 0, which means
all of mx is mapped to zero in k. Then, the corresponding D also maps all of
mx to zero, but as we said,

a+ mx = R

and
D(a+m) = D(a) +D(m) = 0,

so D is the zero map. This finishes the proof. �

Now that we have this fact, we can use ΩR instead of mx/m2
x when computing

the Zariski tangent space at a point. Let us consider the situation we had
in Example 4.0.2. We consider the point ( 1√

2 ,
1√
2 ) and compute the Zariski

tangent space at this point. Choosing this point we map

k[x, y]/(y2 + x2 − 1)→ k

x→ 1√
2

y → 1√
2

which gives the R = k[x, y]/(y2 + x2 − 1)-module structure to k. Now we want
to map ΩR into k given this structure. Recall that

ΩR ' Ωk[x,y]/Ω(y2+x2−1)

where
Ω(y2+x2−1) = (y2 + x2 − 1) · Ωk[x,y] + (ydy + xdx) ·R.

Through our definitions above (y2 + x2 − 1) is already mapped to zero through
our R-module structure, so what remains is to map

dx→ α

dy → β

such that (ydy + xdx) is mapped to zero. In other words, 1√
2α = − 1√

2β. But,
this just means

α = −β,
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so we can let β be free and let α depend on it. This gives a one-dimensional
tangent space, which is exactly the same we found in Example 4.0.2 when we
computed the fiber of the stalk of the tangent bundle in this point.

However, these two notions are not always equivalent. Whenever we have a
smooth scheme they are equivalent, but when we look at singular points they
are different. In rough terms; the Zariski tangent space is only interested in
the point, while the tangent sheaf is a local structure which always keeps some
information about the scheme around the point one localizes at. Note that
when we have a non-smooth scheme we refer to the sheaf known as the tangent
bundle as the tangent sheaf. This is because when the scheme is singular, then
the sheaf is not a bundle.

Let us see an example of the tangent sheaf being different from the Zariski
tangent space at a singular point.

Example 4.0.5. Let f = y and g = x, so (fg) gives rise to the scheme in
Figure 3.3. We choose the point (0, 0), which is certainly on this graph and a
singular point, so the Zariski tangent space and the fiber of the tangent bundle
should not be equivalent here. The tangent bundle is not defined for singular
schemes, but let us observe what happens when we look at the tangent sheaf.
Choosing this point is equivalent with choosing the module structure

k[x, y]/(xy)→ k

x 7→ 0
y 7→ 0.

Now, computing the Zariski tangent space we need to map Ωk[x,y]/(xy) into k
with the structure above. We need to choose α, β ∈ k such that

Ωk[x,y]/(xy) ' Ωk[x,y]/Ω(xy) → k

dx 7→ α

dy 7→ β

is a homomorphism. In other words, we need (xdy+ ydx) to be mapped to zero.
Recall that through the module structure we gave above, (xdy + ydx) becomes
0 · dy + 0 · dx, so we need 0 · β + 0 · α = 0. This is true for any α, β ∈ k, so we
can choose these freely. Hence, the tangent space is the set of all vectors in A2

located in the origin. The situation is illustrated in Figure 4.3, the red vector is
just one example, we can let this vector be anywhere in the plane as long as it
is located in the origin. This is quite strange, since this vector is certainly not
tangent to our scheme in the geometric sense as we are used to. Let us compare
this to the tangent sheaf. We want to compute the fiber of the tangent sheaf at
this point, which is

TX,(x,y) ⊗OX,(x,y) k(0) = HomOX (ΩX ,OX)(x,y) ⊗OX,(x,y) k(0)

where X = Spec(k[x, y](xy)). First taking the stalk is just

S−1 HomB(ΩB , B)

where S is the localizing set. So we must choose where to send

dx 7→ f

dy 7→ g,
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4.1. What the embedded component means for the cotangent sheaf

x

y

Figure 4.3: The tangent space in (0, 0) of Figure 3.3.

for f, g ∈ B. We must choose f and g such that xg + yf = 0, i.e. f ∈ (x) and
g ∈ (y). Now, for each choice of f and g such that this holds, we get a vector
field, and evaluating in the origin we see that f(0, 0) = g(0, 0) = 0, so at the
origin this vector field is always zero. Thus, we see that the tangent sheaf in
the origin, which is a singular point, does not correspond to the Zariski tangent
space, which was a two-dimensional space. This is why we assume that X is a
smooth scheme when defining the tangent bundle, because in the singular case
the sheaf is no longer a bundle.

4.1 What the embedded component means for the
cotangent sheaf

Let B = k[x, y], where k is an algebraically closed field. We have computed
that

Ωk[x,y]/(xy) ' Ωk[x,y]/Ω(xy),

and that Ω(xy) contains more than a (x)-primary component and a (y)-primary
component. As we have shown, a primary decomposition is

Ω(xy) = Ω(x) ∩ Ω(y) ∩ (Ω(x,y) + (x2dx, y2dy),

whereas the ideal is just (xy) = (x) ∩ (y). This begs the question, what this
last component means geometrically. We compute the Zariski tangent space of
(xy). Consider the origin in Spec(k[x, y]/(xy)).

Ωk[x,y](xy)(k[x, y]/(xy), k)→ k
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dx 7→ α

dy 7→ β.

For this map to be well-defined we need elements that are in Ω(x) ∩ Ω(y) to be
mapped to zero. An element in Ω(x) looks like

ω = x(udx+ vdy) + w(dx)

for some u, v, w ∈ k, and for ω to be in Ω(y), we need xu+ w ∈ (y). Hence, an
element in the intersection looks like

x(vdy) + yh(dx),

where yh = xu+w for some h ∈ k[x, y]. Well, by the module structure this will
be mapped to

0 · (v(0, 0) · β) + 0 · h(0, 0) · α,
which is always zero, so α and β are free, hence we have a two-dimensional
tangent space in the origin. This is the same as we get computing

HomB(ΩB/Ω(xy), k).

This is in fact true for every evaluation at a point on (xy), so geometrically
there is no difference. However, let us consider the stalk of each of them at the
(y)-axis. The one corresponding to Ω(xy):(

ΩB/Ω(xy)
)

(x) .

Here (y) is inverted, and the relation

xdy + ydx = 0

becomes
x

y
dy + dx = 0.

However, Ω(x) ∩ Ω(y) is generated by

xdy and ydx

and so the relations on (
ΩB/Ω(x) ∩ Ω(y)

)
(x)

becomes
xdy = 0 and dx = 0,

since y is a unit. So, we have(
ΩB/Ω(xy)

)
(x) '

ΩS−1B(
dx− x

y dy
)

and (
ΩB/Ω(x) ∩ Ω(y)

)
(x) ' ΩS−1B/(dx, xdy).

Note that once we evaluate at any point on (xy) these are both equal. They
are however subtly different before looking at just a point. Thus, this third
component does change the algebraic structure of the Kähler differentials, but
the geometric representation does not change.
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APPENDIX A

Computations in Macaulay2

A.1 The script used to compute decompositions

This is the program we use to check if our proposed decomposition of Ωa is
right. We give the program an ideal I ⊂ k[x, y], and it computes the actual
decomposition, and then we check if our decomposition has the same associated
primes and intersects to the correct module ΩI . Note that

decompomeg

can be used to calculate the decomposition of any Ωa, not just the ones we
work with in this thesis.

One can also calculate that our proposed decomposition generalizes to curves
f and g intersecting in several points by adding

Ni = Ω(fg) + ((x− α)ddx, (y − β)ddy)

for each point (α, β) they intersect in, to the intersection.
-- Program to calculate primary decomposition of omega module
restart
omegagens = (I) -> (

-- Creates the matrix containing the generators of omega(I).
-- Applying image to the output will give us the module omega(I).
pols = entries gens I;
-- Makes a nonempty matrix
mat = matrix{{1,0}};
for i in pols_0 do (

-- The (I)\cdot omega(k[x,y]) part
mat = mat || matrix{{i, 0}};
mat = mat || matrix{{0, i}};
-- The d(I)\cdot k[x,y] part
mat = mat || matrix{{diff(x,i), diff(y,i)}};

);
-- Remove the 0 entry
mat = submatrix’(mat, {0},{})

)

decompomeg = (I) -> (
-- Computes an accurate primary decomposition of omega(I)
-- Get the generators of omega(I)
mat = transpose matrix omegagens(I);
N = image mat; -- omega(I)
M = ambient N;
T = M/N;
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A.1. The script used to compute decompositions

-- This gives us the primary decomposition as subquotients
decomp = primaryDecomposition T;
comps = {1};
-- We resolve the subquotients as k[x,y]-modules
for i from 0 to #decomp-1 do (

test = image gens(decomp_i);
T2 = T/test;

phi = inducedMap(T2,M);
comps = append(comps, trim image matrix entries gens trim ker phi);

);
comps = delete(1, comps);
comps
-- List of components in decomposition
-- The intersection will be omega(I)

)

computeEmbedded = (I, prim) -> (
-- I is the ideal we are taking omega of.
-- prim is the associated prime we are creating
-- a component for.
-- prim will usually be (y,x)
pols = entries gens I;
mat = matrix{{1,0}};
-- Create the module omega(I)
for i in pols_0 do (

mat = mat || matrix{{i, 0}};
mat = mat || matrix{{0, i}};
mat = mat || matrix{{diff(x,i), diff(y,i)}};

);
d = degree I;
-- Add the generators of (x^ddx, y^ddy)
mat = mat || matrix{{prim_1^d, 0}, {0, prim_0^d}};
-- Remove unnecessary element
mat = submatrix’(mat, {0},{})

)

compareDecomps = (I) -> (
-- Computes our proposed analytic decomposition for I
-- and compares it with the one macaulay gives.
-- The comparison checks whether they intersect to the
-- same ideal and it checks whether
-- our proposed decomposition consists of primary components.
-- If the proposed decomposition is right this will print nothing,
-- if, however, the decomposition is not equal to omega(I) it will
-- print "not equal sets".
-- If the proposed decomp has non-primary components it will print
-- "not primary".

actualcomps = (decompomeg(I));
lng = #actualcomps;
N = intersect(actualcomps);
par = primaryDecomposition I;
propComps = {1};
count = 0;
for i in par do (

count = count + 1;
isoComp = trim image transpose omegagens(i);
-- The isolated components
propComps = append(propComps, isoComp);

);
rest = lng - count;
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A.2. Computing examples

-- Compute all embedded components of our proposed
for i from 1 to rest do (

-- Checks what the remaining components are primary to,
-- in our examples this will just be (x,y).
curr_comp = actualcomps_(lng-i);
prim = associatedPrimes (ambient curr_comp/curr_comp);
-- The prime ideal the (lng-i)th component is primary to
prim2 = entries gens prim_0;
-- Compute the module N_2 = omega(I) + (x^d, y^d)
propLast = image transpose computeEmbedded(I, prim2_0);
propComps = append(propComps, propLast);

);
-- This will be the proposed analytic primary decomposition of omega(I)
propComps = delete(1, propComps);
for i from 0 to (lng-1) do (

-- Check if the analytic components are in fact primary
if not isPrimary(ambient propComps_i, propComps_i) then (

print(i | "not primary");
);

);
-- Intersecting the components we have calculated,
-- if everything is right this should be omega(I)
N2 = intersect(propComps);
if not (N2==N) then (

-- Check if the decompositions are equal sets
-- when you intersect the components.
print("Not equal sets");

);
-- The two decompositions (proposed, macaulay2 computed)
{propComps, actualcomps}

)

R = QQ[x,y]
p = ideal(x)
decomp = compareDecomps(p)

A.2 Computing examples

Example A.2.1. The computation of Example 3.3.3 and Example 2.4.2. We
show that N2 is (x, y)-primary, that our proposed decomposition is correct, and
that Ω(xy) has the associated primes

{(x), (y), (x, y)}.

R = QQ[x,y]
p = ideal(x*y)
decomp = compareDecomps(p)
-- This prints only the two decompositions;
-- the one macaulay calculates, and the one we propose.
-- Nothing else is printed, which means the proposed decomposition
-- is correct.

-- Checking whether N_2 is primary:
associatedPrimes(ambient decomp_2/decomp_2)
-- This prints out (y, x), so the N_2 component is (x,y)-primary.

-- Writing omega(xy) analytically and checking whether is has
-- the proposed associated primes.
-- omegafg will be omega(xy), the matrix entries correspond to the
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-- generators (xydx), (xydy) and (ydx+xdy), respectively.
omegafg = image matrix entries transpose matrix{{x*y,0},{0,x*y},{y,x}}
associatedPrimes(ambient omegafg/omegafg)
-- Prints list of (x), (y) and (x,y), the ideals we conjectured.

The following example shows why we must assume (f) defines a smooth
curve when claiming Ω(f) is (f)-primary.

Example A.2.2. We let f = y2 − x2(x+ 1), so we are working with the nodal
curve in Example 3.2.3.
-- We check that omega of the nodal cubic is not primary.
-- gensnod will be the generators of omega of the nodal cubic.
gensnod = matrix{{(y^2-x^3-x^2),0},{0,(y^2-x^3-x^2)},{-3*x^2-2*x,2*y}}
omegafg = image matrix entries transpose gensnodal
-- The module omega(f) for f=(y^2-x^3-x^2)
associatedPrimes(ambient omegafg/omegafg)
-- Prints out {(x,y), (y^2-x^3-x^2)}, in other words,
-- it is not primary.

We compute Example 3.1.4.
Example A.2.3.

-- Computing omega(y)\cap omega(y-1) = omega(y^2-y)
omegaf = intersect(decompomeg(ideal(y)));
omegag = intersect(decompomeg(ideal(y-1)));
omegafg = intersect(decompomeg(ideal(y^2-y)));
intsct = intersect(omegaf, omegag);
intsct == omegafg
-- prints true.
-- This means omega(fg) = omega(f)\cap omega(g)
-- in this specific example.

A.3 Computing more examples of the conjectures

In the last section we verified some statements for specific examples in the
thesis. Here we compute examples of the conjectures made in Chapter 3 on a
larger scale in an attempt to verify the statements made.

The first conjecture claimed that for any smooth and irreducible f ∈ k[x, y],
the module

Ω(f) = (f) · Ωk[x,y] + (df) · k[x, y]

will be primary. To generate the module Ω(f) we can use the

omegagens

from Appendix A.

Computing primary omega modules

checkPrimary = (I) -> (
-- Checks if omega(I) is primary, and then
-- if it is rad(I)-primary.
-- If it is rad(I)-primary nothing gets printed.
omegafg = trim image transpose omegagens(I);
asscomps = associatedPrimes(ambient omegafg/omegafg);
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if not (#asscomps==1) then (
print("Not primary!!");
print(asscomps);

);
if not ((radical I) == asscomps_0) then (

print("Not rad(I)-primary!!");
print(asscomps);

);
)

checkPrimary(ideal(x))
-- Prints nothing, so omega(x) is (x)-primary
checkPrimary(ideal(x^2))
-- Same, omega(x^2) is (x)-primary
-- Note that this means that not only irreducible
-- polynomials can give rise to primary omega modules.
checkPrimary(ideal(y-x^2))
-- parabola, true
checkPrimary(ideal(y-x))
-- line, true
checkPrimary(ideal(y+x^2))
-- inverse parabola, true
checkPrimary(ideal(y^2-x^2*(x+1)))
-- The nodal cubic, a primary ideal, but not smooth
-- so it is not a sound ideal, hence we get two
-- associated primes.
checkPrimary(ideal(y-x^3))
-- true

-- One can also calculate this for large n
n = 1000
for i from 4 to n do (

checkPrimary(ideal(y-x^n))
)
-- this prints nothing, so ideals of this form
-- are sound up to at least n=1000.

-- We can change the situation a little
n = 1000
for i from 4 to n do (

if (i%25==0) then (
print(i);

);
checkPrimary(ideal(y-x^n+x^(n-1)))

)
-- Also true, takes a while so we print a counter
-- to see how far in the computation we are.

Computing the equality of the sets

We check the statements Conjecture 3.3.2 and Conjecture 3.4.2. Checking this
for an ideal I is just running the function

compareDecomps(I)

The script tells whether the sets are not equal or if any of the components in
the intersection are not primary. Assume we have the script in Appendix A.1.
The script is explained in more detail in that section.

compareDecomps(ideal(x*y))
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-- true
compareDecomps(ideal(x))
-- true
compareDecomps(ideal(y-x^2))
-- true
compareDecomps(intersect(ideal(x+y), ideal(x-y)))
-- true

-- Doing the same as when computing primary modules
n = 1000
for i from 4 to n do (

if (i%25==0) then (
-- We do this to see how far
-- in the computation we are.

print(i);
);
compareDecomps(ideal(y-x^n))

)
-- true
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