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Abstract

Density functional theory (DFT) based methods have been used to describe

the electronic, optical, and ferroelectric properties of Hafnium Dioxide (HfO2)

along with their binary oxide and Zirconium Dioxide (ZrO2) using PBE and

mBJ for three different phases. Corrective Hubbard (U) terms have been

added to exchange-correlation energy better to reproduce the excited-state

properties of hafnia and zirconia polymorphs. In the electronic properties,

the density of states is calculated and analyzed in detail, along with real and

imaginary parts of the dielectric function. As well as born effective charges

are also estimated. The monoclinic and tetragonal phase resulted in the non-

ferroelectric, while the orthorhombic showed peculiar properties due to its

intrinsic ferroelectric behavior.
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Part I

Introduction
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In recent decades, the microelectronics industry has been observed to struggle

with the expanded usefulness and execution of integrated circuits. That is

to create quicker, more modest, and less expensive electronic devices. The

thickness of cells on a chip is expanded by decreasing the base element size

and creating additional complicated circuits. A lower working voltage should

be applied when the component size decreases to keep a steady electrical

field; this will require the capacitance to increment for the devices to work

effectively. Since the capacitance is inversely proportional to the thickness

of the insulating layer between the capacitors, this thickness is reduced

accordingly.

The most commonly used capacitor material in random access memories

and field-effect transistors is silicon dioxide SiO2. Over the past few years,

the successful scaling of device dimensions has led to the current dielectric

thickness of about 2-nm. However, leakage currents have been found to affect

the performance of devices negatively[1].

Likewise, an oxide layer this thin is a low barrier against dopant diffusion. By

replacing the SiO2 with a higher dielectric constant material, the expected

capacitance can be accomplished with a thicker layer, thereby reducing

the leakage currents. The scaling towards higher cell densities can thus

subsequently be achieved. Currently, thermally grown amorphous SiO2 is

used in microelectronic devices due to its high stability, quality interface

with silicon, and higher electrical isolation properties[2].

The criterion for developing gate dielectrics such as homogeneous structures,

large bandgap, high dielectric strength, and stable electrical characteristics

makes silicon dioxide a reasonable candidate for practical applications.

Various materials have many characteristics that are vital for replacing

SiO2, but very few are considered promising and fulfill all requirements.

Materials that have shown some potential are Ta2O5, SrTiO3, TiO2, Al2O3,

ZrO2 and HfO2. Among these, Ta2O5, SrTiO3, TiO2 have the highest
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dielectric constants, between 25 and 80 in thin films, but are not stable

in contact with silicon. Reaction at the interface between film and substrate

during the deposition experiment or subsequent heat treatment may lead

to the formation of silicon oxide or silicides that is unfavorable to the

electrical properties [3]. Ta2O5 and SrTiO3 are still considered for memory

applications.

However, TiO2 is generally described as having a high leakage current,

making it not convenient to use in its pure form. Moreover, the integration

of the SrTiO3 due to "polar catastrophe"[4] presents a greater challenge

than that of the binary Ta2O5 and TiO2. In addition to this, Al2O3, ZrO2

and HfO2 are thermodynamically stable in contact with silicon [5]. If an

interfacial reaction occurs, the outcome will probably be silicates, which show

moderate dielectric constants and may even be advantageous for the leakage

characteristics. The dielectric constant of Al2O3 is only 8-10, and substituting

SiO2 with Al2O3 would thus only be a temporary solution. ZrO2 and HfO2,

Moreover, their structure-modified derivatives (e.g., Zr and Hf silicates) have

arisen as significant candidates for this reason since they have much higher

dielectric constants than SiO2 have dielectric constants of around 20 and offer

more long-term solutions[6][7].

Ferroelectricity

Ferroelectricity is also one of the most important properties for manipulating

and working microelectronic devices. In the early 1950s, the concept of

memory using the ferroelectric property was published [8][9]. Ferroelectricity

has been studied for application in electronics, such as the nonvolatile

semiconductor device. Ferroelectric materials offer an extensive range of

valuable properties for the electronic engineer to exploit, like insulating

materials that form dielectrics; in other words, materials that will

sustain a dielectric polarization under the application of an electric field.
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Ferroelectricity is the material property of having spontaneous polarization

and reversible switching under an applied electrical field. The polarization

induced by the ferroelectric dipole is retained even after external power is cut

off, and the external electrical field is zero. Various classes of ferroelectric

materials exist with various technological applications, such as perovskite

oxides.

Furthermore, ferroelectric materials are considered the most crucial electro

ceramic materials because of their outstanding dielectric properties and

electromechanical responses [10]. Therefore, perovskite-type ferroelectrics-

related materials are interested in both the industrial and scientific

fields. However, it is widely recognized that perovskite materials reduce

ferroelectricity while decreasing particle size or film thickness. This severe

issue makes it difficult to process them into integrated devices [11–13].
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Hafnia

The perovskite-type ferroelectrics and related materials are of great interest

due to their excellent dielectric properties and electrochemical responses [10].

But it is widely recognized that perovskite materials show deterioration

with downsizing, decreasing particle size, or film thickness. This problem

makes it not practical to process them into integrated devices [11]. It

has been reported that the perovskite-type ferroelectrics are incompatible

with semiconductor technologies, so it is a reason for limited applications of

ferroelectric thin films are reported[14]. HfO2 ferroelectric materials have

been reported by Böscke et al. [15] The most extraordinary attributes

of these materials are that they have a simple chemical composition

and thermodynamic stability, makes them highly compatible with various

technological applications like Si-based semiconductor technology [16][17].

Ferroelectricity has been discovered in HfO2 and ZrO2 based high-k

materials, [15] and these materials are of great interest due to their

potential applications. It has been reported that HfO2 based materials are

employed as dielectric layers instead of conventional silicon oxides layers

in current field-effect transistors due to their higher dielectric constant.[18,

19] Several intensive studies of ferroelectric devices for both capacitor-type

ferroelectric memories and ferroelectric field-effect transistors have been

reported [20]. However, specific applications such as ferroelectric tunnel

junctions,[21] tunable capacitors,[17] and use in energy storage devices have

been reported[22].

Zirconia

Furthermore, Zirconia (ZrO2) also has extensive technological importance

due to its exceptional mechanical and electronic properties, the dielectric

constant, and large bandgap. It is reported as used in refractory, intricate

ceramics, fuel cells, optical coating, catalytic agents, etc [23]. Due to its
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wide bandgap, and good thermal stability, it also has the potential to

replace SiO2 in advanced metal oxide semiconductor devices (MOS), memory

devices, and optical applications [3]. Besides the above applications, it

has been shown to have possible applications in capacitors, and metal-

oxide-semiconductor (CMOS) technology is one of the most promising high

constant dielectric materials. Overall, it can be said that ZrO2 and HfO2

can also be used as scaffold material to prevent leakage current through

grain boundaries [24–26]. These twin oxides are being investigated due to

their significant industrial and technological applications. Various works have

been performed experimentally and theoretically to modify the bandgap by

multiple means like doping and increase their effectiveness. Still, much room

is available for further optimization of these oxides. Furthermore, as the

ability to get crystalize, these materials have received prevalent attention

in research, so investigation of mechanical properties is also as necessary

as electronic and optical properties [27]. To the best of our knowledge, a

thorough comparative study of these binary oxides’ structural, electronic,

and mechanical properties still has room to perform. Further investigation

of their structural phases and electronic and ferroelectric properties may

provide some valuable information.
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Objectives
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The primary goal of this work is to describe the electronic properties of two

oxides ZrO2 and HfO2 and investigate the ferroelectric properties such as

spontaneous polarization. Also, in this work, the dielectric properties of the

orthorhombic, monoclinic, and tetragonal hafnia and zirconia are meant to

be studied in terms of electronic contribution. The structural, electronic,

and ferroelectric properties must be explored within the density functional

theory (DFT) framework. The results are compared with available earlier

reported experimental and theoretical data. These theoretical findings shall

be worthwhile in providing guidelines for further optimizing structures for

potential applications.

The details of the structures under study are described in the next chapter.

Then, in the final analysis, the obtained results are presented.
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Chapter 1

Introduction

1.1 Structural properties

Zirconium (Zr) and hafnium (Hf) are the transition metals resent in the 4-B of

the periodic table, having atomic numbers 40 and 72, respectively. Generally,

these metals form compounds having a hexagonal close-packed structure,

with the most common oxidation state being +4. The size of oxides formed

by these metals decreases down the group, but due to lanthanide contraction,

zirconium and hafnium have an almost similar atomic size. Under their

similar atomic properties, Zr and Hf show similar electronic and chemical

bonding nature[28].

Hafnia (HfO2) and zirconia (ZrO2) exhibit many promising physical; and

chemical properties. ZrO2 is surprisingly similar to HfO2 in many physical

and chemical properties. As the temperature increases, both oxides exhibit

multiple crystalline phases at ambient pressure, i.e., monoclinic, tetragonal,

and cubic. One more outcome because of the almost similar chemical natures

of the Hf and Zr atoms is that bulk hafnia and zirconia are shown to have

similar crystal phases and phase diagrams[29].
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1.1.1 Bulk Phases of HfO2 and ZrO2

The two twin oxides can adopt a variety of crystalline phases. Increasing the

temperature, the monoclinic phase (m-phase-space group P21/c) transforms

(between 1270 K and 1370 K for ZrO2 [30] and at about 2073 K for HfO2 [30,

31] into a tetragonal phase (P42/nmc) and further (at about 2650 K for ZrO2

[23] and about 2900 K for HfO2 [31] into a cubic phase (Fm3m). In addition,

orthorhombic phases exist as an orthorhombic I phase (O-phase-Pbca), an

orthorhombic II phase (OII-phase-Pnma), and a polar orthorhombic III phase

(Pca21). The mono and ortho phases have 12 atoms and for tetragonal has

six atoms in primitive crystal for both HfO2 and ZrO2.

Monoclinic

The chemical-physical properties depend hugely on the specific phase and

structure. At ambient pressure and temperature, the monoclinic phase is

the most stable form for ZrO2 (space group P21/c) and HfO2 (space group

P21/c)). In the monoclinic phase (a ̸= b ̸= c) and (β ̸= 90◦), oxygen atoms

can be either three or fourfold-coordinated, while the Hf atoms can be seven-

or eightfold-coordinated. In ZrO2 and HfO2, there are 12 ion structures with

four formula units where cation is surrounded by seven O atoms having two

oxygen sites OI and OII in Wyckoff position 4e.

Tetragonal

The tetragonal structures of twin oxides have space group P42/nmc. The

primitive unit cell for the tetragonal phase for both oxides is composed of

two cations, Hf, Zr (a = b ̸= c) and (β = 90◦). The Hf/Zr and O are in

Wyckoff positions 2(3/4,1/4,3/4) and 4d(1 / 4, 1 / 4, z), respectively.

11



Orthorhombic

Another significant phase of ZrO2 and HfO2 is the orthorhombic phase, as

this phase is reported to have spontaneous polarization. Usually, for this

oxide, two sorts of orthorhombic phases exist. One orthorhombic structure

(Ortho-I) has space group Pbca, while the other orthorhombic phase (Ortho-

II) has space group Pnma, and the last orthorhombic phase (Ortho-III) has

space group Pca21. The structure understudy for this project is Ortho-I.

The primitive cell consists of 12 ions while Hf/Zr is surrounded by O and OII

having Wyckoff position 8c.

12



Chapter 2

DFT

2.1 Introduction

Density functional theory (DFT) is the successful quantum mechanical

approach to investigating the electronic structures of many-body systems in

the ground state [32]. It is based upon a simple computational method, which

has become the most helpful tool in first-principle calculations to determine

the properties of molecular and condensed matter systems.

2.2 Quantum many-body Equation

In quantum mechanics,s all the information about the system can be obtained

from the wave function. To solve any system,m is just the eigenvalue

equation.[33]

ĤΨ = EΨ (2.1)

Is required. But the potential external properties of the whole system are not

as simple [34]. In the case of a single body problem, the observables remain

independent of the motion of particles and their positions in the system.

Meanwhile, the interaction of particles in the system and the variation make

the system complex for analysis. In the case of any solid where electrons

13



interact with themselves and ion cores that form the crystal structure makes,

these systems are complicated.

Different approximations have been developed to deal with complex systems

and simplify calculations. In this respect, DFT is one of the best methods to

calculate the properties of the many-particle system,s such as conductivity,

binding energy, and polarizability. With the help of current approximations,

it is easy to handle complex many-body interacting systems. The interacting

system is taken as a non-interacting system to find the properties of a system.

In short, it describes an interacting system by the density of fermions rather

than by its many-body wave functions. The density must be known to

calculate the ground-state properties of complex systems using the DFT.

Here, the electron density is observable,e, a function of three variables x,

y, and z, unlike the wave function consisting of 3N variables for N electron

systems. By determining the charge density of any particular system, the

whole system can be characterized; the number of calculations could be

reduced. DFT uses the charge density to describe the system of interacting

particles under the influence of external potential Vext(⃗r).

In an interacting system there is a collection of positively charged nuclei and

negatively charged electrons. Which is the situation of many body problem

having N+ZN particles, where N and ZN corresponds to number of nuclei

and electrons in the system, respectively. The Hamiltonian for the respective

system can be written as,

Ĥ =
−ℏ
2

∑
i

(
∇Ri

Mi

)
− −ℏ

2

∑
i

(∇2
ri

me

)
−
∑
i

∑
j

e2

4πϵ0

Zi

|R⃗i − r⃗j|

+
∑
i

∑
j ̸=i

e2

8πϵ0 |r⃗i − r⃗j|
+
∑
i

∑
j ̸=i

e2

8πϵ0

ZiZj

|R⃗i − R⃗j|
(2.2)

Here, Mi is the mass of a heavier particle (nucleus,) and me is the mass of the

lighter particle (electron). In the above equation, the first two terms refer to

the kinetic energy operators for the nucleus and electrons, respectively. The

third term represents the potential energy between the electrons and nuclei

14



– the total electron-nucleus coulombic attraction in the system. The fourth

term represents the potential energy arising from coulombic electron-electron

repulsion, and the last term is the potential energy arising from coulombic

nuclei-nuclei repulsions – also known as the nuclear repulsion energy.

2.3 Approximations

most complex systems Hamiltonian could not be solved simply. Exact

solutions of Schrödinger equations exist only for a few idealized systems.

Hence, for complex systems, approximations are needed. Several

approximations have been made to the time to solve the complex

problem,s, e.g., perturbation theory by Dirac, the variational method

by Hayllerass and WKB(Wentzel-Kramers-Brillouin) method are common

examples. Depending upon the Hamiltonian of the system to solve the

eigenvalue problem, the above approximation methods are primarily used.

The perturbation theory is employed where approximated solutions are

required based on the exact answer. In this case, the perturbed Hamiltonian

is solved separately from the solvable Hamiltonian in the results are

added as correction energy in the total solution. For such systems where

Hamiltonians can not be reduced to precisely solvable Hamiltonians,s and by

adding minor correction, another widely-used approximation is the WKB-

method (Wentzel-Kramers-Brillouin), a variational principle.[3] Usually,

WKB-method is regarded as the semi-classical approximation because it

applies to classical systems for which it is approximate,d the potential is

considered to remain constant over a region of de-Broglie wavelength. The

variational principle is used to calculate the ground state energy of the system

without solving the Schrodinger wave equation.
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2.3.1 The Born-Oppenheimer Approximation

In this approximation, nuclei are considered to be at rest as they are much

heavier than electrons, so the kinetic energy of the nucleus is zero,o and the

nuclei’s potential term becomes constant [4]. After implementation of this

approximation, the total Hamiltonian term reduces to

Ĥtot = T̂e + V̂ee + V̂ext (2.3)

Ĥtot =
−ℏ
2me

N∑
i=1

∇2
i +

1

2

N∑
i

∑
i ̸=j

1

|r⃗i − r⃗j|
− 1

2

N∑
i

∑
i ̸=j

Zi − Zj

|r⃗i − r⃗j|
(2.4)

Here, the first term shows the kinetic energy operator of the electrons,

while the other two terms are electron-electron and electron-nuclei coulombic

interaction,s respectively [5]. This approximation shapes the Hamiltonian

into a much simpler form.

2.3.2 Hartree Approximation

To solve the many-body problem, the first method was introduced by Hartree.

The concepts of the mean-field theory were utilized. To solve the many-

body problem and bring many-body systems to the approximated one body

system [6]. The simplest approximation of the wavefunction for the many-

electron Schrödinger equation is to assume that electrons act like independent

electrons. The wavefunction with N independent electrons can be written as

then,

Ψ(r⃗i) = ψ(r⃗1, ψ(r⃗2)ψ(r⃗3), . . . , ψ(r⃗N) (2.5)

Here, ψ(r⃗i) is the wave function of ith electron, and atoms are considered

as fixed in their positions, so, subsequently, the Ri are suppressed in the

wavefunction. The energy of the many-electron system within the Hartree

approximation can be written as

E = ⟨Ψ(r⃗i)ĤΨ(r⃗i)⟩ (2.6)
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Applying the hartree approximation to this hamiltonian, the Schrodinger

wave equation, is of the form:

Ĥ =
N∑
i=1

Ĥi +
1

2

N∑
i ̸=j

Vij (2.7)

The problem with this theory was the violation of conditions of the anti-

symmetric wave function because the Pauli exclusion principle was ignored.

Later this theory was improved by Fock by considering the anti-symmetric

wave functions [7]. From the Hartree approximation, the ground states can

be achieved,d and the many-electron equation becomes N single-electron

equations.

2.3.3 Hartree-Fock approximation

Hartree-Fock (HF) approximation is a method that considers antisymmetry

of the wave function. Slater introduced a way to construct such a wave

function[35]. The wave function of the many-electron Schrödinger equation

is described in the form of a matrix determinant for the N electrons, which

is defined as

Ψ(r⃗1, r⃗2, . . . , r⃗N) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r⃗1) ψ2(r⃗1) . . . ψN(r⃗1)

ψ1(r⃗2) ψ2(r⃗2) . . . ψN(r⃗2)
...

...
...

ψ1(r⃗N) ψ2(r⃗N) . . . ψN(r⃗N)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.8)

In the above equation, 1√
N !

is the normalization constant, and ψi(r⃗i) is the

wave function of the i -th electron according to Pauli’s exclusion principle, this

relation of wave functions describes the anti-symmetric nature of fermions,

and particles are indistinguishable. Utilizing the determinant for wave

function,s the product of the spin-wave function is given as:

ψi(r⃗i, σi) = ϕ(r⃗i)χ(σi) (2.9)

In general, the HF method allows the electron to move in the approximated

mean-field and nuclear potential,l which is often termed external potential,l
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which is acted upon by the system’s particles. This potential is usually

estimated as the effective potential. Somehow this theory provides a

qualitative approach to many materials,s but it is incapable of a quantitative

approach.

2.3.4 Density Functional Theory

To solve the many-electron Schrödinger equation, the Hartree and HF

methods are traditional, but the HF method only includes the exchange term

and not the electron correlation term. This makes them unsuitable for solid

materials. In addition to the Hartree and HF methods, there is a modern

method to solve the more complicated calculations of many-electron systems,

namely the density functional theory (DFT). It was introduced by Hohenberg

and Kohn in 1964 [36], and Kohn became practical in the mid-1980s. In 1998,

Kohn and Pople were awarded the Nobel Prize in Chemistry for developing

DFT and computational methods in quantum chemistry, respectively. The

idea of the DFT is to consider the electron density in solid materials instead

of using the many-electron wave function. Using this,s the degree of freedom

reduces from 3N (N is the number of electrons) to 3. Thereby it simplifies

the calculations.

The density as the primary variable

Considering the electron density as a wave function,n can have two

consequences. The first one is in a many-electron system to describe the

relationship between electron density and wave function. The second one

is how to solve the problem if considering the electron density instead of

the wave function. These problems can be explained with the help of two

theorems introduced by Hohenberg and Kohn [36][37].
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Theorem 1

The external potential Vext(⃗r) is determined uniquely for any many-electron

system by the ground-state electron density ρ.

According to the above theorem, it is indicated that all ground-state

properties can be determined by the ground state density ρo.For instance,

the total ground-state energy E = E[ρo] where, ρo(r⃗) = |Ψo(r⃗)|2 . The

theorem suggests that the external potential can be obtained if the ground-

state electron density is known. Thus the Hamiltonian is known for the

external potential. The corresponding wave function is determined from

which electron density can be calculated. Moreover, the external potential

is uniquely determined by the electron density. Hence all ground-state

properties are determined uniquely from the electron density. To prove

this: assume that there exits two potentials Vext(⃗r) and Vext′(⃗r) leads to the

same ground-state density, so it will have two Hamiltonian H and H′ which

corresponds to two wave functions Ψ and Ψ′. these lead to the following

equation

E = ⟨Ψ|H|Ψ⟩ < ⟨Ψ′|H|Ψ′⟩, and E ′ = ⟨Ψ′|H ′|Ψ′⟩ < ⟨Ψ|H ′|Ψ⟩ (2.10)

using 2.4 and 2.10 following relation can be derived

E < E ′ +

∫
(Vext(r⃗)− V ′

ext(r⃗)ρ(r⃗)dr⃗) (2.11)

and analogous relation can be derived for ⟨Ψ|H ′|Ψ⟩

E ′ < E +

∫
(V ′

ext(r⃗)− Vext(r⃗)ρ(r⃗)dr⃗) (2.12)

form 2.3.4 and 2.12

E + E ′ < E ′ + E (2.13)

Which implies the significance of the uniqueness of Vext.
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Theorem 2

There is a universal functional F [ρ] for the total energy in the terms of the

electron density ρ with any external potential Vext(r⃗), and the exact ground-

state density is obtained when the ground-state total energy functional

reaches its minimal value, that is, E[ρ′] > E[ρ]. Here, ρo is the exact ground-

state density.

The first theorem implies that the kinetic and interaction energies are

functionals of electron density. The total energy can be expressed in the

following way (ignoring the interaction between nuclei)

E[ρ] = ⟨Ψ|Ve + Vint + Vext|Ψ⟩

= ⟨Ψ|Vext(r⃗)|Ψ⟩+ ⟨Ψ|Ve + Vint|Ψ⟩

E =
∫
ρ(r⃗)Vext(r⃗)dr⃗ + F [ρ]

(2.14)

In the many-electron system,m F [ρ]is universally functional in the above

equation. At exact ground state density ρ, the functional of total energy

E[ρ′] reaches the minimum. Here, the total energy for the case of exact

ground-state electron density is smaller than in any other case. Therefore,

the exact ground-state electron density can be achieved by minimizing the

total energy.

2.3.5 Kohn-Sham Equations

According to the Kohen and Hohenberg theorems, the ground state density

contains all information about the physical properties of the systems as a

wave function. But they could not determine the respective ground state

density for the systems. Later in 196,5, Kohn and Sham preceded the sets

of equations known as the Kohn-Sham Equation[38]. With the exact ground

state energy for two systems, the system of interacting electrons follows the

auxiliary system of non-interacting electrons. The KS (Kohn-Sham)equation
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is a method to solve the many-electron Schrödinger equation exactly while

using an incorrect simplified wavefunction, typically chosen as a Hartree-like

wave function. Assume that the Hartree-like wave function obtains the exact

ground-state density. The electron density is defined as:

ρ(r⃗) =
n∑
i

ψKS∗
i (⃗r)ψKS

i (⃗r) (2.15)

Here, n is the number of electrons, and ψKS
i

⃗(ri) is an auxiliary independent

single-electron wave function. If the electron density is exact the total energy

is exact which can be stated as:

E[ρ] = T [ρ] + Vint[ρ] + Vext[ρ]

= T0[ρ] + VH [ρ] + Vext[ρ] + (T [ρ]− T0[ρ]) + (Vint[ρ]− VH [ρ])

= T0[ρ] + VH [ρ] + Vext[ρ] + Exc[ρ].

(2.16)

In 2.16 E[ρ] is the total energy, and ρ is the ground-state density.

T [ρ], Vint[ρ], andVext[ρ] represent energies from the exact kinetic, the exact

electron-electron interaction, and external potential, respectively. Exc[ρ]

is called the exchange-correlation energy. The T0[ρ], VH [ρ], and Vext[ρ]

represent the kinetic energy in the Hartree approximation, the electron

interaction energy in the Hartree approximation, and the electron-nuclei

interaction energy, respectively. Moreover, the term VH [ρ] includes the self-

interaction and electron,s thereby allow to interact with themselves. It is

widespread to write in this way for many-electron problems.

To derive the ground-state properties in the many-electron system, one can

view this problem as the process of minimizing the total energy by varying

the wave function ψKS∗
i (⃗r) such as;

δ

δψKS∗
i (⃗r)

(
E[ρ]−

N∑
i

N∑
j

EKS
i,j

(
⟨ψKS

i
⃗(ri)ψ

KS
i

⃗(rj)⟩
))

(2.17)

using the variational principle, the KS equation can be derived as;

HψKS
i (⃗r) =

(
−ℏ2∇2

2m
+ V KS(r⃗)

)
ψKS
i (⃗r) = εKS

i ψKS
i (⃗r) (2.18)
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and

V KS(r⃗) = Vext(r⃗)+

∫
ρ(r⃗′)

|r⃗ − r⃗′|
dr⃗′+

δEXC

δρ(r⃗)
= Vext(r⃗)+

∫
ρ(r⃗′)

|r⃗ − r⃗′|
dr⃗′+VXC(r⃗)

(2.19)

KS equation is equal to the Hartree equation and derived in similar manner

if VXC r⃗ = 0 and ΨKS{ri} = ΨHF{ri}, and VXC r⃗ is have only exchange

potential then Kohn-Sham equation will be equal to Hartree Fock equation.

The total energy expression is given below:

E[ρ] =
N∑
i

−1

2

∫ ∫
ρ(r⃗′)ρ(r⃗)

|r⃗ − r⃗′|
dr⃗dr⃗′ + EXC [ρ]−

∫
VXC(r⃗)ρ(r⃗)dr⃗ (2.20)

In the KS equation, the auxiliary independent single-electron wave function

in the KS equation is not an exact single electron wave function. However,

the exact ground-state density may be calculated using the auxiliary wave

function. Therefore, the KS equation is exact only if the VKS(r⃗) is exact[39].

2.3.6 Exchange-correlation potential

The most challenging part of solving the KS equation is the exchange-

correlation potential because the exact form is still unknown today.

Therefore, there are various approximations, such as the local density

approximation (LDA) [33, 40], a generalized gradient approximation (GGA)

[39, 41–43].

Local density approximation

The local density approximation (LDA) is an approximation and a simple way

to approximate the exchange-correlation part[44]. Which is based on the free

homogeneous electron gas theory, which has a constant electron density. This

scheme assumes that many-body electron systems are uniformly distributed,

having a constant density remaining in the same system. In the LDA, then

it is considered that the exchange-correlation energy for an electron in a very
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minute small volume in a many-particle system is equal to the exchange-

correlation for an electron in the free electron gas with the same density

as in the volume for this analytical approximation for exchange-correlation

functional within the density of the system is given as,

ELDA
XC [ρ] =

∫
ρ(r⃗)εgasXC(ρ(r⃗)dr⃗ (2.21)

and compatible exchange-correlation potential can be written as,

V LDA
XC (r⃗) =

δELDA
XC [ρ]

δρ

Somewhat the LDA could be pretty accurate for solids. This is mainly

due to a cancellation of errors between the exchange and correlation parts

since it fulfills the sum rule for the so-called XC-hole [45]. HOWEVER, the

LDA tends to over-bind solids, resulting in somewhat underestimated lattice

constants and overestimated bulk moduli [46].

Generalized Gradient Approximation

The LDA does not generate good accurate results for the more modified

systems where electron density does not vary slowly. The generalized gradient

approximation (GGA) is used to solve this issue. This approximation uses

both the exchange-correlation functional as function of density and gradients

of density |∇ρ(r⃗)|. The outcomes obtained from GGA were proved to be

better in many cases than the LDA and other approximations. It provides

satisfactory results for the total energy of the systems, binding energies,

ground-state properties of many compounds, and structural optimizations

[44]. The mathematical representation of GGA is given as,

EGGA
XC [ρ] =

∫
ρ(r⃗)εGGA

XC (ρ(r⃗,∇ρ(r⃗))dr⃗

As the GGA can not be derived uniquely, there are many variants of GGA

functionals, varying in implementing the gradient component. A different

approach is to design functional forms to make εGGA
XC (ρ(r⃗,∇ρ(r⃗)) satisfy a set
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of properties (typically certain constraints and limiting behaviors) known to

be obeyed by the exact XC functional. Well-known examples along this route

are the Perdew-Wang91 [47], the Perdew-Burke-Ernzerhof (PBE), [48] and

the PBEsol [49]. The GGA functional used in this work has been a variant

of the (PBE) functional. The PBE form is the most widely used GGA.

DFT+U

The LDA and GGA will often fail to accurately describe electron states

that are strongly localized, typically d or f-like states. This is primarily

maybe due phenomenon of the self-interaction of the KS particles in the

LDA/GGA description, i.e., that the KS particles feel repulsion from their

presence. There are many approaches in use to attempt to resolve this issue.

One of them is taking inspiration from the well-studied Hubbard model.

One common way is by augmenting the DFT description with an on-site,

Hubbard-like term. The total modified energy with new insertion can be

written as,

EDFT+U [ρ] = EDFT [ρ] + EHubbard

[
{nI,σ

m,m′}
]
− EDC

[
{nI,σ}

]
(2.22)

where, EHubbard

[
{nI,σ

m,m′}
]
, is the Hubbard-like on-site term and EDC

[
{nI,σ}

]
is a ”double counting” term, which is needed since EDFT [ρ] already describes

part of the energy that is added in EHubbard

[
{nI,σ

m,m′}
]
.
[
{nI,σ

m,m′}
]

is on site

occupation matrix such as;

nI,σ
m,m′ =

occ.∑
i

⟨ψσ
i |ϕI,σ

m ⟩⟨ψσ
i |ϕ

I,σ
m′ ⟩, (2.23)

with ψKS
i are the KS-orbitals, ϕI,σ

m localized (typically d- or f-)orbtials at

atomic site I and σ the spin-index. Many other various forms exist for both

EHubbard and EDC . A popular variant is that of Dudarev et al.[50] where the

energy takes the form like that:

EDFT+U [ρ] = EDFT [ρ] +
U − J

2

∑
I,σ

(∑
m

nI,σ
m,m −

∑
m,m′

nI,σ
m′,mn

I,σ
m,m′

)
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Here, U and J can not be used separately. Only the value of Ueff = U − J

is of importance. The "J" parameter is the exchange interaction term that

accounts for Hund’s rule coupling. The Ueff is generally preferred because the

J parameter is proven crucial to describing the electronic structure of certain

classes of materials, typically those subject to strong spin-orbit coupling.

To do so, values of U and J or Ueff should be chosen, and some results may

depend sensitively on the value of U. In principle, methods exist to determine

them from the first principle [51]. Still, they are often chosen to match results

from higher-order theory or the experiment in practice.

The U correction’s fundamental role is to treat the solid on-site Coulomb

interaction of localized electrons with an additional Hubbard-like term. The

Hubbard Hamiltonian describes the strongly correlated electronic states (d

and f orbitals) while treating the rest of the valence electrons by the normal

DFT approximations.

2.3.7 Electronic density of states

Several physical quantities can be calculated once DFT calculations are

completed to run. The electronic density of states (DOS for the present

work) is a calculation of great importance [52]. Electronic DOS is used,

e.g., to classify the bulk material and estimate electronic properties such as

bandgap properties. In addition, the energy density of states D(ϵ) is helpful

when dealing with sums over functions, such as F (ϵk), which depend on the

k-states that act through an energy function ϵk such as:∑
k,σ

F (ϵk) = ν

∫
dϵD(ϵ)F (ϵ) (2.24)

In the above equation ν is regarded as the volume of the material and the

Pauli exclusion principle allows two electrons with opposite spins (σ) to be

present for each k-point. 2
ν

∑
k =

∫
dk can be used to calculate D(ϵ), the

relationship between the summation and integration of density of states is

given as:
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∑
k,σ F (ϵk) = ν

∫
[dk]F (ϵ)

= ν
∫
dϵ
∫
[dk]δ(ϵ− ϵk)F (ϵ)

(2.25)

A value of unity with integrating the δ function concerning ϵ.The integration

2.24 was done concerning k, then 2.24 is compared to 2.25 so, the D(ϵ) can

be written as:

D(ϵ) =

∫
[dk]δ(ϵ− ϵk)

The density of states (DOS) of a system describes the proportion of states

that are occupied by the system at each energy. The density of states is

defined as D(E) = N(E)/V , where N(E)dE is the number of states in the

system of volume V whose energies lie in the range from E to E + dE.

The electronic DOS analyzes the bulk material by dealing with the bandgap

located between the valence and conduction bands in insulators and

semiconductor materials. The material is claimed to be metal if it has no

bandgap. Unfortunately, the bandgap in LDA/GGA calculations is typically

underestimated [98, 99], and several correction methods for this problem

have, in some instances, been achieved as well as utilized described in, e.g.

[100].

Local density of states

To interpret the structure of material ultimately, a description of actual states

in the domain of specific atoms is quite a handful. A common way of finding

this is by calculating the local density of states (LDOS). The LDOS can be

explained as the number of electronic states at specific energy that appears

in a specified volume around the nuclei. LDOS can be split into the specific

partial density of states (PDOS) due to an element’s s, p, and d-orbitals.
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2.4 Computational Details

In this project, density theory calculations have been performed using the

Vienna ab initio simulation package (VASP) [53–55], which performs a

variational solution of the Kohn–Sham equations in a plane-wave basis set.

Electronic exchange and correlation are described in the generalized gradient

approximation, using the functional proposed by Perdew–Burke–Ernzerhof

(PBE) [56]. The input parameters in these calculations are only the atomic

number and atomic positions in the unit cell of the considered material. For

the plane-wave set, cutoff energy of 600 eV for structural relaxation is used.

The k-point meshes in the full wedge of the Brillouin zone (BZ) are sampled

by 10 × 10 × 10 grids according to the Monkhorst-Pack [57]. The hafnium

5p6 6s1 5d3 and for oxygen 2s2 2p4 electrons are treated as valence electrons.

The strong on-site Coulomb repulsion among the localized Hf 5d electrons is

described by using the formalism developed by Dudarev et al.[50] .
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Chapter 3

Results and Discussion
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3.1 Structural Optimization

The optimized structures of monoclinic (mono) and orthorhombic (ortho)

phases of twin oxides are represented in Fig 3.1 and 3.2 respectively. The

monoclinic and ortho ( Pca21 ) phases of MO2 ( M = Hf and Zr ) have

seven-fold cation coordination (there are seven oxygen atoms around each M

atom) and two different oxygen sites OI and OII ( OI atom is coordinated to

three M atoms in an almost planar environment, and OII atom is surrounded

by a distorted tetrahedron of four M atoms).

Figure 3.1: Optimized monoclinic crystal structure for MO2 (M = Hf and

Zr). The green and red balls represent cation M and O atoms, respectively

[58].

Figure 3.2: Optimized crystal structure of orthorhombic MO2 (M = Hf and

Zr) .
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Figure 3.3: Optimized crystal structure of tetragonal MO2 (M = Hf and Zr).

From the Fig. 3.3, it can seen that the tetragonal(tetra) MO2 ( M = Hf and

Zr ). It has been studied that this structure is derived from the cubic one by

an increase of the c/a ratio from
√
2 for the perfect cube to 1.437 and there

is an internal displacement of the oxygen atoms along the z-direction. These

alternating columns of oxygen atoms are shifted upwards and downwards

by an amount of z. Then the tetragonal MO2 is characterized by the two

lattice parameters along x-axis (a) and z-axis (c) and the third one, the

internal parameter dz related to this displacement of the oxygen atoms by

dz = ∆/c. The Zr cation (O anion) is inside a distorted cubic (tetrahedron)

tetragonal MO2 has eight-fold cation coordination (there are eight oxygen

atoms around each M atom) and an identical oxygen site. The Wyckoff

positions for optimized structures are listed in Table. 3.1 and Table. 3.2 for

zrO2 and HfO2 respectively.
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Table 3.1: Wyckoff positions, cation and anion coordination of ZrO2

Phases Mono Tetra Ortho

Wyckoff Zr(4e) Zr(2a) Zr(4a)

positions x = 0.276 0 0.265

y = 0.044 0 0.749

z = 0.210 0 0.031

OI(4e) O(2d) OI(4a)

x = 0.066 0.5 0.0655

y = 0.327 0 0.604

z = 0.476 0.31 + 0.19 0.866

OII(4e) O(2d) OII(4e)

x = 0.549 0 0.465

y = 0.743 0.5 0.0

z = 0.523 0.69 - 0.19 0.2732

Cation Zr(7-O) Zr (8-O) Zr(7-O)

Anion OI(3-Zr) O (4-Zr) OI(3-Zr)

OII(4-Zr) O OII(4-Zr)
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Table 3.2: Wyckoff positions, cation, and anion coordination of HfO2

Phases Mono Tetra Ortho

Wyckoff Hf(4e) Hf(2a) Hf(4a)

positions x = 0.276 0 0.265

y = 0.044 0 0.749

z = 0.210 0 0.031

OI(4e) O(2d) OI(4a)

x = 0.066 0.5 0.0655

y = 0.327 0 0.604

z = 0.476 0.31 + 0.19 0.866

OII(4e) O(2d) OII(4e)

x = 0.549 0 0.465

y = 0.743 0.5 0.000

z = 0.523 0.69 - 0.19 0.273

Cation Hf(7-O) Hf (8-O) Hf(7-O)

Anion OI(3-Zr) O (4-Zr) OI(3-Zr)

OII(4-Zr) O OII(4-Zr)

Bond lengths

For the monoclinic phase, the average bond lengths for Zr–OI, Zr–OII are

observed to be 2.25 and 3.01 Å respectively. For Hf–OI and Hf–OII 2.21 and

2.01 Å respectively. Further, the estimated average distance between cations

Zr–Zr and Hf–Hf bonds are 3.54 and 3.48 Å respectively. When structural

relaxation using U = 3eV is employed, for both oxide the increase of 0.1 Å

in values of bond lengths is observed.
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Furthermore, the average bond lengths from the optimized structure of the

orthorhombic phase approximated for Zr–Zr and Hf–Hf bonds are found to be

4.34 and 3.58 Å respectively. Also for Zr–OI, Zr–OII are detected to be 2.14

and 2.22 respectively. For Hf–OI and Hf–OII 2.11 and 2.19 Å respectively.

Subsequently, for the tetragonal phase, the bond distance between Zr–Zr, and

Hf–Hf is 3.70 and 3.64 Å. For Zr-O and Hf-O are 2.27 and 2.24 Å respectively.

3.1.1 Lattice parameters

Table 3.3: Calculated lattice parameters (a, b and c ) for three phases HfO2

are in Å and volume (in Å3 ).

Phases space group experiment Theoratical PBE PBE+U

a = 5.12b 5.14a 5.14 5.20

Mono P21/c b = 5.17b 5.19a 5.19 5.23

c = 5.29b 5.32a 5.33 5.29

ν = 140.02 142.92 140.46 143.86

a = 5.23d 5.29c 5.05 5.10

Ortho Pca21 b = 5.23d 5.01c 5.08 5.13

c = 5.05d 5.08c 5.27 5.30

ν = 138.13 134.63 135.20 138.66

a = 3.40f 3.13e 3.10 3.62

Tetra P42/nmc b = 3.40f 3.14e 3.60 3.62

c = 5.29f 5.24e 5.22 5.19

ν = 61.15 51.66 67.65 68.01

a[59, 60],b[61],c[62],d[63],e[29],f[64]

The lattice parameters of the HfO2 and ZrO2 unit cells of each phase under

study are optimized under 0 K and stress-free conditions are listed in Table.

3.3 and 3.4 along with available experimental data and also previously

reported theoretical values. The structural optimization is performed using

33



total energy per unit cell versus the lattice parameters, and thus optimized

lattice constants are computed.

It has been reported earlier that the accuracy of the calculated results

depends on the chosen density functional and pseudo-potential. While lattice

constants from GGA calculations are typically too large, the results from

LDA calculations are typically too small (about 1 %). From the Table

3.3 and 3.4it is evident that some of the computed values in this work

are in good agreement with the results reported from the experimental

study and other theoretical works. Comparing HfO2 and ZrO2, it can be

seen that the latter has a slightly bigger unit cell that can be observed

from the reported values of volume of unit cells. That is consistent with

the lanthanide contraction argument as described earlier. Zr and Hf have

electronic configuration ([Kr]4d25s2) ([Xe]4f145d26s2) respectively, occupies

the same group of the periodic table, with the most similar electronic

structure difference between them being that hafnium possesses a closed

subshell of electrons and zirconium has no f-electrons. Also, due to ensuing

lanthanide contraction, both the atomic and the ionic radii of these atoms

are nearly the same[65].
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Table 3.4: Calculated lattice parameters (a, b and c ) for three phases ZrO2

are in Å and volume (in Å3).

Phases space group experiment Theoratical PBE PBE+U

a = 5.12[61] 5.13[28] 5.18 5.26

Mono P21/c b = 5.17[61] 5.19[28] 5.24 5.28

c = 5.29[61] 5.30[28] 5.30 5.34

ν =140.03 141.11 143.85 148.30

a=5.20[62] 5.23[63] 5.01 5.15

Ortho Pca21 b = 5.00[62] 5.03[63] 5.13 5.18

c = 5.05[62] 5.06[63] 5.32 5.35

ν =131.30 133.11 136.73 142.72

a = 3.64[64, 66] 3.57[29] 3.62 3.65

Tetra P42/nmc b = 3.64[64, 66] 5.07[29] 3.62 3.65

c = 5.27[64, 66] 5.20[29] 5.28 5.24

ν =69.82 66.27 69.19 69.80

3.2 Dielectric Properties

A dielectric material is an insulator that can be polarized when an electric

field is applied. When placed into an electric field, the material’s internal

structure becomes polarized, with the positive ions shifting towards the field

and the negative ions moving in the opposite direction. This creates a charge

difference across the whole material without the conductance of electrons.

A material’s dielectric constant, k (the average value taken from the dielectric

tensor matrix), also known as relative permittivity, indicates how easily an

applied electric field polarizes it. k is a dimensionless ratio between the

complex frequency-dependent absolute permittivity of the material ϵ(ω), and
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permittivity of free space ϵ0 while

k =
ϵ(ω)

ϵ0
(3.1)

and k is related to electric susceptibility χe as.

k = 1 + χe

The electric susceptibility is defined as the constant of proportionality which

relates to the dielectric polarizability p induced by an electric field, E:

p = ϵ0χeE (3.2)

3.2.1 Dielectric permittivity tensors

As mentioned earlier, ZrO2 and HfO2 are promising candidates to

replace silicon-based dielectrics as dielectric gate material in modern

integrated circuit technology due to their excellent dielectric properties and

thermodynamic stability in contact with the Si substrate. However, the

dielectric properties of the crystals are anisotropic and depend upon the

lattice structures. So studying the dependence of the dielectric constant on

the crystal phase and orientation is necessary for further application to select

a suitable phase and its crystal orientation from the phases.

The static dielectric permittivity tensor ϵ0ij can be separated into two parts.

first, the electronic contribution ϵ∞ij and ionic (lattice) contribution ion ϵionij ,

the latter can be further decomposed in the contributions of different IR-

active phonon modes m [67].

ϵ0ij = ϵ∞ij + ϵionij = ϵ∞ij +
∑
m

∆ϵm,ij (3.3)

where in 3.3 (i,j = 1,2,3 and m = 1,2,3. . . ).

The dielectric permittivity tensors computed of both electronic contribution

ϵ∞ij and ionic contribution ion ϵionij are compared for monoclinic, ortho (

Pca21), and tetragonal phases of HFO and ZRO. From the calculated values,
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it can be seen that firstly for all the phases of twin oxides, all-dielectric

permittivity tensors of both electronic contribution ϵ∞ij and ionic contribution

ϵionij are symmetric about the leading diagonal, satisfying the symmetry of the

crystal point-group.

To compare different phases of structures and between our current calculated

values and previously available theoretical or experimental data, the

approach to average the values of the leading diagonal elements are used

because of the zero or negligible off-diagonal elements.

ϵ∞ =
ϵ∞11 + ϵ∞22 + ϵ∞33

3

ϵion =
ϵion11 + ϵion22 + ϵion33

3

ϵ◦ = ϵion + ϵ∞

Monoclinic

The monoclinic phase with the lowest point-group symmetry of 2/m as it

can be seen from the figure among the other phases of HFO and ZRO.

Thus having off-diagonal elements ϵ∞13 = ϵ∞31 = 0.13 and ϵion13 = ϵion31 = 1.22

for mono-HFO and ϵ∞13 = ϵ∞31 = 0.14 and ϵion13 = ϵion31 = 1.46 for mono-

ZRO repectively. While it has been observed that for the other phases

understudy, the dielectric permittivity tensors of both ϵ∞ij and ion ϵionij are

diagonal. Nevertheless, for all the phases of HFO and ZRO, the electronic

contributions ϵ∞ij to the static dielectric constant are not too large enough,

and neither strongly anisotropic nor strongly dependent on the structural

phase. In contrast, the ionic contribution ion ϵionij to the static dielectric

constant is substantial, more anisotropic, and more sensitive to the structural

phase. In the monoclinic phase, the low point-group symmetry of 2/m

introduced the minor off-diagonal elementals to different leading diagonal

elements.
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The calculated dielectric tensor for mono-HFO is given as follow:

ϵionmono =


15.2 0.00 1.22

0.00 13.5 0.00

0.122 0.00 10.8



ϵ∞mono =


4.84 0.00 0.13

0.00 4.85 0.00

0.13 0.00 4.58


The tensors from electronic contributions from other studies are 3.87 [60] and

3.32[68] for experiment and theoretical study, respectively. But the current

reported average value (ϵ∞) is 4.75, which is relatively high.

and for mono-ZRO is as:

ϵionmono =


19.28 0.00 1.47

0.00 17.77 0.00

1.47 0.00 14.43



ϵ∞mono =


5.31 0.00 0.14

0.00 5.31 0.00

0.14 0.00 5.02


The dielectric tensors reported for mono-ZRO, especially ϵion, are in good

agreement with earlier reported values by Zhao et al. [69], and for ϵ∞,

the experimentally reported value is 4.8. However, in the present study,

the average ϵ∞ (for electronic contribution) is 5.21, which is larger than the

experimental one but comparable to other calculated reported values by DFT

[67, 69, 70].
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Tetragonal

The calculated dielectric tensors for tetragonal HFO are descibed below:

ϵiontetra =


35.36 0.00 0.00

0.00 35.45 0.00

0.00 0.00 13.17



ϵ∞tetra =


5.15 0.00 0.00

0.00 5.15 0.00

0.00 0.00 4.64


The computed dielectric tensors for tetra-ZRO are such as:

ϵiontetra =


43.67 0.00 0.00

0.00 43.67 0.00

0.00 0.00 13.16



ϵ∞tetra =


5.15 0.00 0.00

0.00 5.15 0.00

0.00 0.00 4.64


It has been reported that overall average dielectric values for tetragonal ZrO2

and HfO2 range from 34.5 [71] to 39.8 [72]. The values calculated from present

calculations for the total dielectric constant of ZrO2 and HfO2 are 38.48 and

32.97, respectively.

Orthorhombic

The values dielectric tensors reported from earlier are 5.59 and 21.59 for ϵ∞

and ϵion respectively [73]. But in current calculations the values are ϵ∞ = 5.45

and ϵion = 23.99 which are comparable to reported earlier. Dielectric tensors

calculated for ortho-ZRO are such as:

ϵionortho =


27.36 0.00 0.00

0.00 24.45 0.00

0.00 0.00 20.17


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ϵ∞ortho =


5.67 0.00 0.00

0.00 5.36 0.00

0.00 0.00 5.33


the calculated dielectric tensors for ortho-HFO are given below:

ϵionortho =


19.37 0.00 0.00

0.00 17.91 0.00

0.00 0.00 14.86



ϵ∞ortho =


5.10 0.00 0.00

0.00 4.89 0.00

0.00 0.00 4.85


The values dielectric tensors reported from earlier are 5.01 and 18.16 for ϵ∞

and ϵion respectively [73]. But in current calculations the values are ϵ∞ = 4.94

and ϵion = 17.38 which are close to reported earlier.

Table 3.5: The average dielectric permittivity tensors of both electronic

contribution ϵ∞ and ionic contribution ϵion and total ϵ◦

Monoclinic Orthorhombic Tetragonal

(P21/c ) (Pca21) (P42/nmc)

ϵ∞ ϵion ϵ◦ ϵ∞ ϵion ϵ◦ ϵ∞ ϵion ϵ◦

HfO2 4.75 13.16 17.91 4.94 17.38 22.32 4.98 27.99 32.97

ZrO2 5.21 17.16 22.37 5.52 23.99 29.51 4.98 33.5 38.48

3.3 Born effective charge tensors

To evaluate the mixed covalent-ionic bonding in three phases of HFO and

ZrO, the Born effective charge tensors (BEC, denoted by Z∗) are calculated

by a linear response method concerning an external electric field.

The Born effective charge tensor governs the strength of Coulomb interaction
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responsible for the splitting between the longitudinal optical (LO) and

transverse optical (TO) infrared-active phonon modes.

Born effective charge, also known as transverse or dynamic an effective charge

is an essential quantity that manifests coupling between lattice displacements

and electrostatic fields. Advances in ab-initio techniques now enable one to

determine BEC theoretically using perturbation theory or finite difference

in polarization. It has been found [74] that BEC values are relatively

insensitive to isotropic volume change but are strongly affected by changes

in atom positions associated with the phase transitions. BEC is vital in

the theoretical study of ferroelectrics since the ferroelectric transition takes

place from the competition of long-range Coulomb interactions and short-

range forces. The Born effective charge tensor Z∗
ij is defined as a force (Fi)

in the direction i on one atom as a result of applying a unitary external

electric field (Ei) along the direction j

Z∗
ij =

1

e

∂Fi

∂Ei

(i, j = 1, 2, 3) (3.4)

The calculated Born effective charge tensors of the tetragonal, monoclinic,

and orthorhombic phases of Hf2 and Zr2 are presented in Table 3.6, 3.6 3.8

respectively.

Firstly, it has been observed that for every atom, the Born effective charges

are mainly distributed on the leading diagonal elements (Z∗
ii). Secondly, the

magnitudes of Z∗
ii(M) and Z∗

ii(O) are more significant than their nominal

ionic valences (+4 for Zr and Hf and -2 for O), indicating a robust dynamic

charge transfer from M-atoms to oxygen atoms as the bond length changes

and a composite covalent-ionic bonding in three different phases of MO2. Due

to their complex structures, the Born effective charge tensors are complicated

in monoclinic and orthorhombic phases. For example, the non-equivalent two

oxygen sites (OI and OII) and one cation lead to three kinds of atoms in the

lattice. However, only one site symmetry leads to the Born effective charge

tensors of all three kinds of atoms being neither diagonal nor symmetric.
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Table 3.6: Born effective charge tensors Z∗
ij for tetragonal phase of ZrO2 and

HfO2 (values in parentheses are other theoretical results for ZrO2 [30] and

HfO2 [31] respectively. )

ZrO2 Zr OI OII

xx 5.76 (5.75) -3.74 (-3.50) -3.74(-3.50)

yy 5.76 (5.76) -2.02 (-2.34) -2.02(-2.34)

zz 4.80 (5.37) -2.40 (-2.59) -2.40 (-2.59)

HfO2 Hf OI OII

xx 5.49 (5.84) -2.06 (-3.53) -2.06 (-3.53)

yy 5.49 (5.84) -3.43 (-2.50) -3.43 (-2.50)

zz 4.75 (5.01) -2.38 (-2.31) -2.38 (-2.31)
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Table 3.7: Born effective charge tensors Z∗
ijfor monoclinic phase of ZrO2 and

HfO2 (Values in parentheses are other theoretical results for ZrO2[30] and

HfO2[31] respectively. )

ZrO2 Zr OI OII

xx 5.48 (5.45) -3.02 (-3.02) -2.45 (-2.46)

xy -0.35 (-0.43) 1.19 (1.17) 0.21 (0.17)

xz 0.20 (0.18) -0.19 (-0.19) -0.01 (0.02)

yx -0.21 (-0.16) 1.43 (1.45) 0.25 (0.24)

yy 5.42 (5.61) -2.69 (-2.76) -2.73 (-2.86)

yz -0.23 (-0.15) -0.67 (-0.69) 0.35 (0.37)

zx 0.20 (0.12) -0.18 (-0.19) -0.03 (-0.02)

zy 0.36 (0.38) -0.74 (-0.68) 0.35 (0.41)

zz 4.97 (4.97) -2.36 (-2.23) -2.62 (-2.66)

HfO2 Hf OI OII

xx 5.29 (5.57) -2.91 (-3.10) -2.37 (-2.47)

xy -0.35 (-0.56) 1.05 (0.90) 0.15 (0.15)

xz 0.21 (0.91) -0.21 (-0.53) 0.01 (-0.36)

yx -0.16 (-0.02) 1.26 (1.29) 0.21 (0.11)

yy 5.25 (5.57) -2.56 (-2.79) -2.69 (-2.87)

yz 0.17 (0.07) -0.65 (-0.61) 0.34 (0.40)

zx 0.22 (0.27) -0.18 (-0.20) -0.03 (-0.09)

zy 0.33 (0.45) -0.67 (-0.51) -0.40 (0.46)

zz 4.79 (4.64) -2.26 (-2.16) -2.53 (-2.52)
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Table 3.8: Born effective charge tensors Z∗
ij for orthorhombic phase of ZrO2

and HfO2 (values in parentheses are other theoretical results for ZrO2 [30].)

ZrO2 Zr OI OII

xx 5.74 (5.45) -3.07 (-3.02) -2.64 (-2.46)

xy -0.17 (-0.43) 0.78 (1.17) -0.32 (0.17)

xz 0.39 (0.18) 0.80 (-0.19) -0.10 (0.02)

yx -0.28 (-0.16) 0.77 (1.45) -0.24 (0.24)

yy 5.19 (5.61) -2.59 (-2.76) -2.59 (-2.86)

yz -0.06 (-0.15) 0.33 (-0.69) -0.28 (0.37)

zx -0.03 (0.12) 1.05 (-0.19) -0.14 (-0.02)

zy 0.02 (0.38) 0.31 (-0.68) -0.24 (0.41)

zz 5.28 (4.97) -2.56 (-2.23) -2.71 (-2.66)

HfO2 Hf OI OII

xx 5.29 -2.91 -2.37

xy -0.35 1.05 0.15

xz 0.21 -0.21 0.01

yx -0.16 1.26 0.21

yy 5.25 -2.56 -2.69

yz 0.17 -0.65 0.34

zx 0.22 -0.18 -0.03

zy 0.33 -0.67 -0.40

zz 4.79 -2.26 -2.53

3.4 Ferroelectricity

The non-centrosymmetric crystals possess a unique axis of symmetry. These

crystals are named polar. Piezoelectric rics that are polar crystals also

exhibit pyroelectric. Then when their temperature is changed, charges will

appear on their surfaces. Polar structures have a dielectric polarization built

44



into the unit cell of the crystal structure. This is regarded as spontaneous

polarization. The application of stress or a change in temperature causes

a change in this dipole moment, which causes the separation of charge on

the surfaces of the crystal. The direction and magnitude of the spontaneous

polarization in a polar dielectric can be changed by applying an electric

field. Still, on removing the field, it will return to its zero-field value. The

spontaneous polarization is calculated for three different phases for both bulk

HfO2 and ZrO2. Ferroelectricity is, in many cases associated with a structural

phase transition from a higher symmetric to a lower polar phase symmetric

polar. The ferroelectricity in HfO2 and ZrO2 arises from the polar ( non-

centrosymmetric) orthorhombic phases. HfO2 and ZrO2 undergo structural

phase transitions. These are monoclinic, tetragonal, and cubic, which appear

by the successive phase transitions, and have been well studied. Some of them

have an inversion center that does not show ferroelectricity [75].

As the atoms deviate from their centrosymmetric positions in the unit cell,

it affects the bond lengths between cation and anion, resulting in more

distortions and polarization in either direction. Because it is found that

structural relaxation has a significant effect on the chemical bonding, which

later causes a remarkable impact on the polarization [76].

To quantitatively illustrate, the spontaneous polarization (Ps) where, s =

x, y, z is calculated in each case as [76]:

Ps =
e

V

N∑
i

Z∗
nδzi (3.5)

Where e is the electronic charge (1.6× 10−19 C), V is the total volume of the

unit cell, Z∗
n is the Born effective charge for n-th atom, and δzi is the relative

displacement between the ith cation and O anion in the respective plane.

The spontaneous polarization for each phase is computed using flexible axes

structure. Consequently, the relaxation results in decreased atomic layer

distance between the first and second top cation layers compared to un-
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relaxed ones.

The value of calculated polarization using the eqs. 3.5 and using calculated

born effective charges are for ZrO2 and HfO2 are given in Table. 3.10 and

3.9.

Table 3.9: Computed Ps (s = x, y, z) in µCcm-2 for three phases ZrO2.

Phases space group PBE PBE+U mBj mBJ+U

Px = 0.03 0.06 0.03 0.06

Mono P21/c Py = 0.05 0.06 0.05 0.06

Pz = 1.74 2.01 1.74 2.02

Px = 9.63 9.48 9.62 9.34

Ortho Pca21 Py = 12.42 12.01 12.40 12.05

Pz = 32.45 33.01 32.45 33.01

Px = 0.01 0.01 0.00 0.01

Tetra P42/nmc Py = 0.02 0.04 0.03 0.04

Pz = 6.00 6.05 5.98 6.05

Table 3.10: Computed Ps (s = x, y, z) in µCcm-2 for three phases HFO2.

Phases space group PBE PBE+U mBj mBJ+U

Px = 0.06 0.07 0.06 0.07

Mono P21/c Py = 0.08 1.00 0.08 1.01

Pz = 1.74 2.01 1.74 2.02

Px = 5.08 6.21 5.08 6.21

Ortho Pca21 Py = 16.73 17.01 16.73 17.02

Pz = 38.45 39.27 38.45 39.25

Px = 0.08 0.08 0.08 0.08

Tetra P42/nmc Py = 1.07 2.00 1.07 2.00

Pz = 10.23 11.43 10.23 11.44
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In comparison with other reported theoretical results from [75][30] the

present values for both oxides are overestimated. A significant amount of

spontaneous polarization has been detected in the orthorhombic phase of

both oxides. The four Hf/Zr atoms form a distorted crystal structure, with

the eight O atoms occupying the pseudo-tetrahedral interstitial site. The

Pca21 and P/mnc phases reveal that oxygen atoms shift along with the c-

axis, allowing spontaneous polarization.

The above results show that HfO2 has a slightly higher polarization value

than ZrO2. For monoclinic phase the c/a ratio is 1.037 and 1.023 for HfO2

and ZrO2, repectively. For orthorhombic phase the c/a ratio is 1.042 and

1.062 for HfO2 and ZrO2, repectively. The HfO2 structure is more distorted

as compared to ZrO2 which can be a reason of higher value of polarization.

Also, for tetragonal phase ZrO2 has less c/a ratio as compared to HfO2. To

check the effect of Hubbard potential (U) on spontaneous polarization. It

has been discovered that compared to calculations performed with PBE, the

atomic positions were changed slight. The difference between spontaneous

polarization using PBE and PBE+U is in the order of 0.01-0.04, 0.023, and

0.12 for monoclinic, tetragonal, and orthorhombic phases, respectively for

HfO2.

3.5 Electronic Properties

The density of states (DOS) is another important property that plays a

significant role in analyzing electronic properties. The DOS at a specific

energy level signifies the number of vacant states available for an electron

to occupy. The contribution of different atoms can be illustrated from

total and partial DOS plots. The bandgap (The term "bandgap" refers to

the energy difference between the top of the valence band and the bottom

of the conduction band. When the electronic band structure is described

graphically, the valence band lies below the Fermi level and the conduction
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band above the Fermi level. The top of the valence band is called valence

band maximum (VBM), and the bottom of the conduction band is referred to

as (CBM). So, the electrons can jump from one band to another by absorbing

or releasing an amount of energy equal to the bandgap. It usually happens in

semiconductors and is crucial in forming necessary devices for semiconductor

applications. In the present work, the valence band maximum energy (EVBM)

is set as zero.

3.5.1 Band gap for HfO2 and ZrO2

Table 3.11: Computed band gap energies (Eg) in eV from the structures

under investigation.

Phases PBE PBE+U mBJ mBJ+U Theo. Exp.

m-HfO2 4.02 4.27 6.10 6.40 3.36[60],5.79[59] 5.80Ni

m-ZrO2 3.64 3.86 4.59 4.99 3.60[77], 5.80[77] 5.80[78]

o-HfO2 4.35 4.63 6.43 6.57 4.75[31] 5.67[79]

o-ZrO2 3.83 4.09 4.80 5.23 4.46[79] 4.70[79] 5.90[80]

t-HfO2 4.66 4.72 6.61 6.67 4.36[81], 5.78[81] 5.86 [82]

t-ZrO2 4.02 4.23 4.97 5.47 4.11[81] 5.90[83]

Monoclinic

Fig. 3.4(a) and (b) and 3.5(a) and (b) represents the total DOS curves for

monoclinic HfO2 and ZrO2, The TDOS is represented between the energy

range -6eV to 10 eV. In the general analysis for PBE calculated DOS, it

has been analyzed that both hafnia and zirconia are composed of three

prominent bands: the lower valence band ranges between -16.13 and -15.5 eV,

the valence band just below the Fermi level lies in between -6.8 and 0 eV. The

lower valence band is composed of mainly O 2s orbitals. O 2p states control

the valence band near the VBM (as shown in Fig. 3.4(e) and (f)) and3.6,

with a minor presence of Hf/Zr-5d states (Fig. 3.4 and 3.6(c) and (d)). The
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presence of Hf/Zr 4p and 4s states in the valence band range is small. From

Fig 3.4 and 3.6(c)(d), it can be seen that the unoccupied conduction band

consists essentially of Hf/Zr 5d/4d states, separated from the valence band

by an energy gap of 4.022 eV and 3.64 eV for HfO2 and ZrO2, respectively.

To improve the bandgap, the approach to induce Hubbard potential (U)

considered to produce improve the bandgap, the Ud = 3 eV for 5d orbitals

on the Hf atom is introduced. As illustrated in Fig. 3.4 and 3.6 when Ud =

3 eV is applied on cation on d-orbital. The application of Ud decreases the

width of the valence band by 0.1 eV. In contrast, the conduction band mainly

comprises d-states that shift towards higher energy levels by 0.25 eV and 0.22

eV for HfO2 and ZrO2, respectively. This overall results in an increase in the

bandgap.

Since standard semi-local GGA underestimates band gap [38, 84], the

exchange and correlation effect is also treated using the mBJ [85].

Subsequently, mBJ and mBJ+U are employed with Ud = 3 eV for d orbitals

on the cations. The total DOS (TDOS) along with partial DOS (PDOS)

for mBJ and mBJ+U are shown in Fig. 3.5 and 3.7 for HfO2 and ZrO2,

respectively. It has been observed that while using mBJ-potential, the

bottom of the valence band has been shifted towards the EVBM or lower

energy levels, while the shift in the conduction band towards higher energy

levels have also been observed. These shifts yield a wider band gap for both

HfO2 and ZrO2. For example, the band gap value obtained for monoclinic

HfO2 using mBJ is 6.10 eV which is in excellent agreement with other

theoretically values using mBJ which is 6.08 eV. The present mBJ value

(6.10 eV) for HfO2 is in excellent agreement with the theoretical value of

6.08 eV using mBJ [86].

The band gaps estimated during the present calculations are presented in the

Table 3.11.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.4: Total DOS for monoclinic HfO2 (a) PBE (b) PBE+U. Partial

DOS for (c) Hf and (e) O for PBE and (d) Hf (f) O for PBE+U. The dotted

line at zero energies represents the VBM and EVBM are set at zero.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.5: Total DOS for monoclinic HfO2 (a) mBJ (b) mBJ+U. Partial

DOS for (c) Hf and (e) O for mBJ and (d) Hf (f) O for mBJ+U.

51



(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.6: Total DOS for monoclinic ZrO2 (a) PBE (b) PBE+U. Partial

DOS for (c) Hf and (e) O for PBE and (d) Hf (f) O for PBE+U.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.7: Total DOS for monoclinic ZrO2 (a) mBJ (b) mBJ+U. Partial

DOS for (c) Hf and (e) O for mBJ and (d) Hf (f) O for mBJ+U.

Tetragonal

For tetragonal phase of HfO2 and ZrO2, TDOS and PDOS are represented

in Fig. 3.8 and 3.9 for energy range -6 eV to 10 eV. The lower valence band

lies between -18.3 eV to -16 eV mainly composed of O 2s and Hf/Zr 5d/4d

orbitals. While below the EVBM (between -5.7 eV to 0 eV) lies upper valence

band. The main contribution towards the upper valence band comes from

O 2p (see Fig 3.8 and 3.9(e)(f) in blue lines, with little contribution from
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Hf-5d/Zr-4d as depicted in fig 3.8 and 3.8 (c)(d) for both PBE and PBE+U.

When Ud = 3 eV is applied of Hf-5d/Zr-4d the bandgap is increased by

almost 0.2 eV for HfO2 and 0.1 eV for ZrO2. The largest band gap of all

hafnia/zirconia polymorphs is predicted for the tetragonal structure while

utilizing PBE and mBJ and even with application of Ud. The band gap

predicted using mBJ (6.61 eV) for HfO2 is more close to experimental value

(5.86 eV [82]) while mBJ+U predicts it be 0.6 eV larger as comapared to

experimental. Meanwhile, for ZrO2 band gap predicted using mBJ+U (5.47

eV) is close to experimental value of 5.90 ev [83].

(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.8: Total DOS for tetragonal HfO2 (a) PBE (b) PBE+U. Partial

DOS for (c) Hf and (e) O for PBE and (d) Hf (f) O for PBE+U.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.9: Total DOS for tetragonal HfO2 (a) mBJ (b) mBJ+U. Partial

DOS for (c) Hf and (e) O for mBJ and (d) Hf (f) O for mBJ+U.

55



(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.10: Total DOS for tetragonal ZrO2 (a) PBE (b) PBE+U. Partial

DOS for (c) Hf and (e) O for PBE and (d) Hf (f) O for PBE+U.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.11: Total DOS for tetragonal ZrO2 (a) mBJ (b) mBJ+U. Partial

DOS for (c) Hf and (e) O for mBJ and (d) Hf (f) O for mBJ+U.

Orthorhombic

For orthorhombic phase of Hf2 and Zr2 TDOS per unit cell are shown in

Fig. 3.12 and 3.14. As described in previously studied structures, the lower

valence band is mainly dominated by 2p orbitals of O, as illustrated in Fig.

3.12 and 3.14(e)(f), overlaps with a minor contribution from 6s, 5p, and 5d

orbitals of Hf/Zr. Where 5d/4d orbitals of Hf/Zr mainly contribute to the

conduction band, and O has less contribution to the conduction band. The
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insertion of Ud on d orbital of cation is responsible for the shift in states,

mainly d states and results in increase in the energy gap between VBM and

CBM by 0.28 eV and 0.26 eV for HfO2 and ZrO2, respectively.

Fig. 3.13 and 3.15 depicts the TDOS per unit cell alongside PDOS per

atom of cation and O. As described earlier for former structures, the band

gap modifies with mBJ. The same trend is observed for the orthorhombic

phase also. For example, for HfO2, the mBJ potential predicts the band gap

to be 0.38-0.76 eV, more considerable than the experimental 5.67 eV [79].

Contrary to that, for the orthorhombic phase of ZrO2, both mBJ (4.80 eV)

and mBJ+U (5.23 eV) predicted band gaps are close to band gaps of 4.70 eV

[79] and 5.90 eV experimentally [80].

Finally, all mBJ calculated band gaps are significantly increased and

improved towards experimental values compared with the PBE values for

most polymorphs. Overall, for all phases of both oxides the valence band

(VB) of -0.5 to 0 eV is mainly constructed from the O 2p states, which

hybridized strongly with Zr 4d and Hf 5d states, indicating stronger covalent

bonding. The unoccupied band is contributed chiefly by cation d-states

followed by O 2p states. It is well known that traditional DFT functionals

such as PBE underestimates the energy band gap in insulators because these

functionals are not accurate in describing systems with localized strongly

correlated d and f electrons. This lack of accuracy of the DFT functionals

has been solved by introducing a solid intra-atomic interaction, known as

on-site coulomb interaction. The U correction was applied both to the d

states of cations. The implication of U is aimed to improve localization of

d and f-states. In the energies below VB there are strong O-p states. By

comparing PBE with PBE+U and also for mBJ and mBJ+U, there is an

increase in the band gap value due to the U correction and a “sharpening” of

the PDOS due to the higher level of localization of states that are corrected.

Comparing estimated band gaps with PBE and mBJ, it has been analyzed
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that the main change in mBJ calculations is in the position of unoccupied

states in conduction band (CB). So, the mBJ potential narrows the Hf 5d

and Zr 4d band and shifts it towards higher energies, increasing the band gap

w.r.t PBE calculations. the width of VB using mBJ is reduced by 0.5 eV and

0.7 eV for HfO2 and ZrO2, respectively. Hence, the discrepancy between the

experimental and theoretical band gaps is significantly reduced with semi-

local exchange and correlation effects. As a result, the band gap values

computed using them for solids have a good agreement with experimental

data.

(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.12: Total DOS for orthorhombic HfO2 (a) PBE (b) PBE+U. Partial

DOS for (c) Hf and (e) O for PBE and (d) Hf (f) O for PBE+U.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.13: Total DOS for orthorhombic HfO2 (a) mBJ (b) mBJ+U. Partial

DOS for (c) Hf and (e) O for mBJ and (d) Hf (f) O for mBJ+U.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.14: Total DOS for orthorhombic ZrO2 (a) PBE (b) PBE+U. Partial

DOS for (c) Hf and (e) O for PBE and (d) Hf (f) O for PBE+U.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.15: Total DOS for orthorhombic ZrO2 (a) mBJ (b) mBJ+U. Partial

DOS for (c) Hf and (e) O for mBJ and (d) Hf (f) O for mBJ+U.

3.5.2 Ferroelectric and electronic properties of periodic

layered Structures of HfO2 and ZrO2

HfO2/ZrO2 based ferroelectric memory devices have been the focus of

research due to their promising results regarding non-remanent polarization

[87]. Especially for ferroelectric tunnel junctions based on HfO2/ZrO2

layered or hetrostructures can overcome some limitations from ferroelectric

memories, e.g., by having a nondestructive read-out [88]. Accordingly, the
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supercell of 1 × 1 × 6 for HfO2 is constructed for the orthorhombic and

tetragonal phase with single and two-layer of Zr at cation site. The big

supercell in the z-direction is constructed instead of the smaller one to observe

the layered effect more accurately; that might not be possible for a small

structure. Such as, (HfO2)n/(ZrO2)n, n is the number of layers for HfO2 and

ZrO2, respectively. In the present study, the 50 % mix of Hf with Zr atoms

is chosen, thus n for HfO2 is equal to ZrO2.

(a)

(b)

Figure 3.16: Structural representation of (a) (HfO2)1/(ZrO2)1 (b)

(HfO2)2/(ZrO2)2. The green balls represents Zr atoms while yellow and red

represents Hf and oxygen atoms, respectively.

orthorhombic

The orthorhombic phase is found to have the highest value of polarization

among other phases studied. The crystal structure representation of

(HfO2)n/(ZrO2)n structures is in Fig. 3.16. The polarization is calculated

using eqs. 3.5 as single layer and two layer of Zr content in super-cell. Like the

primitive structures the polarization is found to be prominent in z-direction

that is P z = 41.64 µCcm-2 and P z = 44.37 µCcm-2 for (HfO2)1/(ZrO2)1

and (HfO2)2/(ZrO2)2, respectively. The other directions also found to have

almost some value for spontaneous polarization that is almost P x = 3.34

µCcm-2 and P y = 7.23 µCcm-2. From the other studies it has been found

that (HfO2)/(ZrO2) based thin film show remnant polarization about 12µ
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Ccm-2 for thickness of 12 nm [89]. The estimated band gaps for layered

structures along with spontaneous polarization is depicted in 3.12.

Table 3.12: Computed band gap energies (Eg) in eV and spontaneous

polarization Px, Py and Pz in µCcm-2 for (HfO2)n/(ZrO2)n, n = 1, 2 in

orthorhombic phase.

PBE PBE+U mBJ mBJ+U

n = 1

4.09 4.26 5.06 5.77

Px 3.34 3.94 3.34 3.91

Py 7.23 8.01 7.20 8.03

Pz 41.64 42.01 41.65 42.02

c/a 1.05 1.08 1.05 1.98

n = 2

3.87 4.10 4.90 5.31

Px 2.43 2.67 2.42 2.60

Py 7.23 7.64 7.20 7.69

Pz 44.37 45.02 44.36 45.00

c/a 1.06 1.09 1.06 1.09

Fig. 3.17 and 3.18 represents that total DOS for (HfO2)1/(ZrO2)1 and

(HfO2)2/(ZrO2)2 thus, a structure with 50% of HfO2 layers and 50% ZrO2

layers as shown in Fig. 3.17. such that there is one layer of Hf-O and next is

of Zr-O. The band gap predicted for such a case is 4.09 eV and 4.26 eV for

PBE and PBE+U, respectively.

To further improve the band gap, mBJ is utilized with primitive structures,

and it can be seen that the bandgap has improved to a value of 5.06 eV

and 5.77 eV for mBJ and mBJ+U respectively. Meanwhile, to introduce

the broader layer of almost 0.2nm thick, the two layers of Hf and Zr are

introduced in the super-cell. Thus, for (HfO2)2/(ZrO2)2 the band gap
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calculated is 3.87 eV and 4.10 eV for PBE and PBE+U, respectively. For

mBJ and mBJ+U are 4.90 eV and 5.31 eV, respectively.

Figure 3.17: Total DOS of (HfO2)1/(ZrO2)1 for orthorhombic phase (a) PBE

and PBE+U (b) mBJ and mBJ+U. The zero of energy corresponds to the

top of valence bands EVBM.
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Figure 3.18: Total DOS of (HfO2)2/(ZrO2)2 for orthorhombic phase (a) PBE

and PBE+U (b) mBJ and mBJ+U. The vertical dotted line represents the

EVBM set at zero.

Tetragonal

(a)

(b)

Figure 3.19: Structural representation of (a) (HfO2)1/(ZrO2)1, (b)

(HfO2)2/(ZrO2)2 in tetragonal phase.
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The optimized crystal structure of (HfO2)n/(ZrO2)n with n = 1 and 2

are represented in Fig. 3.19. The band gaps for (HfO2)1/(ZrO2)1 and

HfO2)2/(ZrO2)2 along with spontaneous polarization in is described in Table.

3.13

Table 3.13: Computed band gap energies (Eg) in eV and spontaneous

polarization Px, Py and Pz in µCcm-2 for (HfO2)n/(ZrO2)n, n = 1, 2 in

tetragonal phase.

PBE PBE+U mBJ mBJ+U

n = 1

4.24 4.43 5.27 5.77

Px 0.04 3.94 3.34 3.91

Py 0.42 8.01 7.20 8.03

Pz 3.32 4.01 3.29 4.00

c/a 1.45 1.46 1.45 1.46

n = 2

4.18 4.46 5.16 5.85

Px 0.00 2.67 2.42 2.60

Py 0.26 7.64 7.20 7.69

Pz 4.26 5.02 4.30 5.00

c/a 1.45 1.46 1.45 1.46

The tetragonal phase lacks distinguishable polarization. However, while

calculating using eqs. 3.5 polarization is observed, which are P z = 3.32

µCcm-2 and P z = 4.26 µCcm-2 for (HfO2)1/(ZrO2)1 and (HfO2)2/(ZrO2)2,

respectively along z-axis. The other directions also found to have small value

for spontaneous polarization that is almost P x = 0.04 µCcm-2 and P y = 0.42

µCcm-2.

TDOS for (HfO2)1/(ZrO2)1 and (HfO2)2/(ZrO2)2 are illustrated in Fig. 3.20

and 3.21 the band gap is 4.24 eV and 4.43 for (HfO2)1/(ZrO2)1 for PBE and
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PBE+U, respectively. The band gap is modified using mBJ have value of

5.27 eV and 5.77 eV for mBJ and mBJ+U, respectively. For (HfO2)2/(ZrO2)2

the estimated band gaps are 4.18 eV and 4.46 eV for PBE and PBE+U,

respectively. While for mBJ and mBJ+U, 5.16 eV and 5.85 eV, respectively.

Figure 3.20: Total DOS for tetragonal phase (HfO2)1/(ZrO2)1 (a) PBE,

PBE+U (b) mBJ, mBJ+U.
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Figure 3.21: Total DOS for tetragonal phase (HfO2)2/(ZrO2)2 (a) PBE,

PBE+U (b) mBJ, mBJ+U.

Overall, it has been observed that the band gaps for primitive structures of

ZrO2 are smaller as compared to those of HfO2 as it has been described above

that Zr has more d-states just below the EVBM as compared to Hf. As the

Zr-concentration increases, the more and more d-states starts to accumulate

on EVBM (EVBM = 0) but still the results are underestimated as compared

to the experimental. However, the reduction in the band gap for the layered

configurations could be explained because of the incorporation of 4d orbitals

of Zr, which downshift the CBM.

Although the insertion of Ud = 3 eV has improved the band gap for both

phases, the trend remains the same. The incorporation of Zr modifies the

conduction band structure of HfO2. The results of the total density of

state show good coherence with the literature; as reported earlier [90], the

addition of Zr into HfO2 causes a few energy states to move up into the band

69



gap, and impurity energy lies closer to the bottom of the conduction band.

Consequently, electron transition level spacing is expected to decrease, and

hence the conductivity of the whole system is increased [90]. Nevertheless,

it is evident from the observed results that alloying of HfO2 with other

materials can cause significant changes in energy gap (Eg) and ferroelectricity

of HfO2. For (HfO2)1/(ZrO2)1 the band gaps and spontaneous polarization

is found be smaller as comapared to (HfO2)2/(ZrO2)2 for both orthrhombic

and tetragonal phase. It has been analyzed that for (HfO2)2/(ZrO2)2 the

c/a ratio is increased the and thus due to increased structural distortions the

value of spontaneous polarization is increased.
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Part IV

Conclusion

71



Using first-principle computations on tetragonal, monoclinic, orthorhombic

phases of ZrO2 and HfO2 to investigate the structural, electronic, optical,

and ferroelectric properties using the PBE and mBJ potentials. As well

as the Born effective charges and dielectric properties are also investigated.

The following conclusions have been obtained. First, lattice parameters

obtained after structural optimization agree with the previously reported

results. Second, for all phases of ZrO2 and HfO2 under discussion, the

electronic contributions ϵ∞ij to the static dielectric constant of value (range

from 5 to 6.5) and neither strongly anisotropic nor strongly dependent on

the structural phase, while the ionic contributions ion ϵionij are much larger,

more anisotropic, and more sensitive to the structural phases. Third, the

average dielectric constant for three phases of ZrO2 and HfO2 decreases in

the sequence of tetragonal, orthorhombic, and monoclinic phases.

The magnitudes of the Born effective charges of the Zr/Hf and oxygen atoms

are more significant than their nominal ionic valences (+4 for Zr/Hf and

-2 for O), indicating a solid dynamic charge transfer from Zr/Hf atoms to

O atoms and a mixed covalent-ionic bonding in all three phases of both

twin oxides. In the electronic properties, the computed spectra for the

density of states are discussed. To calculate electronic properties, a complete

comparison of three phases of ZrO2 and HfO2 along with alloying of hafnia

with Zr-atoms has been reported using PBE, PBE+U, mBJ, and mBJ+U

methods in combination. Further, the on-site Coulomb interactions have

been included for the 5d/4d orbital of the Hf/Zr atom for all phases to

solve the discrepancies between experimental and predicted excited states

properties, improving the description of the electronic properties. The

optimal value of Ud = 3 eV is used. The optimal values for band gaps are

obtained using PBE+U and mBJ potentials. In addition to optical and

electronic properties, ferroelectric properties have also been investigated.

For primitive bulk structures, the tetragonal and monoclinic found have

non-polar structures, thus contributing significantly less or no spontaneous
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polarization. In contrast, the ortho-phase for both oxides, even in super-cell

of hafnia with Zr-content, has shown a significant amount of spontaneous

polarization.
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Part V

Future Work
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The calculations here presented mainly consist of a study of the

electronic and ferroelectric properties of primitive structures. However, the

mechanisms proposed here could be tested within large-scale systems such

as heterostructures accompanied by a study of layered structures with the

incorporation of other d-orbital atoms dopants on the cation site. The

tetragonal phase is reported to have higher dielectric constants but low

ferroelectricity. Furthermore, studies have shown that tetravalent doping

usually favors the tetragonal phase over the orthorhombic phases of HfO2

and ZrO2. It can lead to a change in polarization, most probably polarization

switching.
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