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Abstract

In the search for new physics beyond the standard model, much of the computational
time is spent calculating the same cross section numerous times. Especially for col-
lisions involving protons, the evaluations of parton distribution functions are com-
putationally demanding. In this thesis we focus on slepton pair production and the
evaluation of the parton distribution functions by first calculating the hard partonic
cross section to leading order using relevant Feynman rules from the standard model
and the minimal supersymmetric standard model. This is done by first developing the
Feynman rules of Abelian and non-Abelian gauge theories through the use of group the-
ory and path integrals. This leads us to construct an invariant SU(N) Lagrangian and
find the corresponding Feynman rules. We also see that the gauge fixing quantization
procedure by Faddeev and Popov introduce ghost fields to the theory.

From the general SU(N) Lagrangian, we can find the Feynman rules for the theory
of quantum chromodynamics (QCD) by considering the SU(3) group. QCD is the
theory of quarks and gluons and is used together with the parton model to calculate the
deep inelastic scattering result for structure functions and introduce parton distribution
functions. We then introduce the minimal supersymmetric standard model to calculate
the Drell-Yan pp → l̃il̃

?
j cross section to leading order while the next-to-leading order

results are summarized.
We use the modules VegasFlow and PDFFlow to numerically evaluate the full cross

section and the corresponding uncertainties. Our data can be compared to similar
results where we did not take advantage of these modules. Upon doing so, we find
a nearly 50% time decrease in evaluation time with the use of the modules. This
increased efficiency shows that the inclusion of VegasFlow and PDFFlow optimizes the
evaluation of the parton distribution functions, therefore reducing the amount of time
spent calculating the same cross section.
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Sammendrag

I søket etter ny fysikk videre etter standard modellen brukes det mye tid på å regne
ut det samme tverrsnittet flere ganger. Spesielt for kollisjoner som involverer protoner
så er parton distribusjon funksjonene veldig krevende å regne ut. I denne avhandlin-
gen fokuserer vi på slepton par produksjon og evalueringen av parton distribusjon
funksjonene ved å først regne ut tverrsnittet til det ledende order ved å bruke relevante
Feynman regler fra standard modellen, og den minimale supersymmetriske standard
modellen. Dette blir gjort ved å først utvikle Feynman reglene for Abelske og ikke-
Abelske gauge teorier ved å bruke gruppe teori og vei integraler. Dette gjør at vi kan
konstruere en invariant SU(N) Lagrangian og deretter finne de tilsvarende Feynman
reglene. Vi ser også at den gauge fiksete kvantiserings prosedyren til Faddeev og Popov
introduserer såkalte spåkelsesfelt til teorien.

Fra den generelle SU(N) Lagrangianen, så kan vi finne Feynmanreglene til teorien
om kvantekromodynamikk ved å ta i betrakning SU(3) gruppen. Kvantekromody-
namikk er teorien som omhandler kvarker og gluoner og den blir brukt sammen med
parton modellen til å regne ut resultatet for struktur funksjonene fra dypt inelastisk
spredning og til å introdusere parton distribusjons funksjoner. Deretter gir vi et overb-
likk over den minimale supersymmetriske standard modellen slik at vi kan regne ut
Drell-Yan pp → l̃il̃j tverrsnittet til ledende orden, mens det nest-ledende orden blir
sitert.

Vi bruker modulene VegasFlow og PDFFlow til å beregne det fulle tverrsnittet num-
merisk og de tilsvarende usikkerhetene. Vår data kan da sammenlignes med tilsvarende
resultater der vi ikke brukte de overnevnte modulene. Fra dette fant vi en forberding i
tidsbruk på nesten 50% i evalueringstiden ved å bruke disse modellene. Denne øknin-
gen i effektivitet viser at det å inkludere VegasFlow og PDFFlow optimerer evalueringen
av parton distribusjon funksjonene, og dermed reduserer mengden tid brukt på å regne
ut det samme tverrsnittet.
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Introduction
The standard model is one of the best tested and precise physics models that we have
today. It is the theory of the fundamental interaction between elementary particles
such as leptons and quarks, and this model includes the weak, strong and electromag-
netic interactions between these particles. The standard model has been immensely
successful in predicting the behavior of the fundamental particles through extensive
experimental testing at different particle colliders such as the Large Hadron Collider
(LHC) at CERN or the Tevatron at Fermilab. As the LHC was built to search for
evidence of physics beyond the standard model, this collider was engineered to reach
new untested energies and to narrow the precision on measurements of different observ-
ables such as the masses of particles. The biggest achievement of the standard model
was the successful prediction and subsequent discovery of the Higgs boson which was
predicted through spontaneous symmetry breaking of the gauge symmetries, which is
the fundamental mathematic theory behind the standard model.

At the LHC we collide protons with high energies and in these collisions one parton
from each of the colliding protons will interact resulting in the production of other
particles such as leptons or hadrons. These new particles then form particle jets that the
detectors can measure. To study these collisions here we will focus on the mechanisms
at work in the collision of the proton pair and the interacting partons. This is done
by starting from the parton model of the protons, which is a model for describing the
collisions, and how the constituent particles interact with eachother. This introduces
the concept of parton distribution functions which gives a description as to how the
momentum of the proton is divided amongst these constituents, such as the up and
down quark and the gluons.

With the increase in energy that the LHC can provide, we can use the data from
the collider to search for new physics beyond the standard model. One such candidate
of beyond the standard model physics is the theory of supersymmetry. This theory
predicts that there exist scalar supersymmetric particles such as sleptons and squarks.
These particles could be created in proton collisions and it is the production of sleptons,
the supersymmetric partners of the ordinary leptons, that will be discussed in this
thesis.

A current big bottleneck in the development of high energy particle physics is the
computational time it takes to numerically evaluate the interactions containing pro-
tons because of the experimentally evaluated parton distribution functions. In addition,
with the search for new physics we need to explore a multi-dimensional space of new
parameters in order to figure out which models are consistent with the experimental
data provided from different experiments. For instance, the Minimal Supersymmet-
ric standard model (MSSM) contains several new parameters such as the masses of
the different new particles. These new parameters must be consistent with previous
measurements, and should also be able to explain any new inconsistencies between
experimental data and the predictions from the standard model. Such testing requires
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several repeated evaluations of the same cross section at different points in the param-
eter space in order to generate enough data to make comparisons.

Outline of the thesis This thesis will first give a brief overview on the necessary
quantum field theory that is needed in order to analytically and numerically calculate
cross sections. We will then present and study different tools and modules such as
VegasFlow and PDFFlow that are used to increase the speed of the calculations. Lastly,
we will present the results using these modules and evaluate whether or not we achieved
the desired speed up.

Chapter 1 will therefore give a brief overview of Quantum Field Theory, the under-
lying basis of the entire thesis, and it is here where we will focus on how the theory is
built from Lagrangians and gauge theories to the development of the standard model.

Then chapter 2 will include a brief historical angle looking at how physicists figured
out how to calculate the famous Deep Inelastic scattering from the parton model to
the development of quantum chromodynamics (QCD) and the introduction of parton
distribution functions.

In chapter 3 we will introduce supersymmetry and give a motivation as to why we
need to be looking at new physics and why the standard model will not be the final
model of physics. This will then lead into the calculation of slepton pair production to
leading order at partonic level and the next-to-leading order result will be stated.

Finally, in chapter 4, the procedure of numerically evaluating the cross sections will
be discussed. The different procedures will be explained and showcased such as the
Vegas algorithm and the LHAPDF library. This will lead into the results of the thesis
and the data will be visualized through different plots.

2



Chapter 1

Basics of Quantum Field Theory

Quantum Field Theory (QFT) is the basis for all current high-energy physics and the
development of QFT is what eventually led to the standard model. In this chapter
we will look at some basics of QFT, and give a overview of the constructions and the
derivation of different Feynman rules. This thesis will not dive too deep into each
derivation but will instead sketch an outline in order to provide a basic understand-
ing. For a more detailed and complete introduction to Quantum Field Theory and its
consequences, see e.g. [1, 2].

We will begin this chapter with a discussion about group theory where we will
introduce the concept of Lie groups and Lie algebras. The different representations one
can make from this set of groups will correspond to transformations that we want our
physics to be independent under. This will lead us into Yang-Mills theories where we
will first briefly discuss the Abelian case, which gives rise to QED, before we finally look
at the more generic non-Abelian case. From gauge theory we will find that the gauge
bosons that arise from the symmetries will be assumed massless, which has historically
caused some criticism and doubts about the formalism. This was rectified later when
the concept of particles acquiring mass through spontaneous symmetry breaking was
put forward. The chapter will then finish by briefly discussing this mechanism.

1.1 Group Theory
This section will give a brief overview of the relevant group theory needed for the
discussion in this thesis. We will first give an overview of the most generic definitions
of a group before building up Lie groups. We will then later use a specific representation
of the group to construct our Yang-Mills theory.

For a group, G, we define it by the set of group elements {gi} ∈ G and a multi-
plicative rule between the elements gi ◦ gj = gk, which takes two elements in the group
and gives a rule as to how they are combined, which gives a third element of the same
group. A basic example of this construction is the real numbers R, except zero, as
elements of the group and regular multiplication as the rule. It is this rule that defines
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the group, independent of the concrete representation. This definition also includes
a couple of requirements on the multiplication rule of the group. These requirements
are associativity of the rule, (gi ◦ gj) ◦ gk = gi ◦ (gj ◦ gk), that there exists an identity,
1 ◦ gi = gi ◦ 1 = gi, and that the group elements have inverses, g−1

i ◦ gi = 1, where
both the identity and the inverse are members of the group 1, g−1

i ∈ G.
So far these group elements are fully abstract objects, but to be able to work with

them in a vector space we need a representation that embeds these group elements gi
into operators that acts on vectors in this space. In our case we will often deal with
finite-dimensional representations where these group elements can be embedded into
matrices. An example of this kind of representation is the Lorentz group, which is the
set of boosts and rotations that keeps the Minkowski metric invariant, ΛTgΛ = g. These
Λ matrices are represented in the 4-vector space where they act as transformations on
the four vectors as

Xµ → Λµ
νX

ν . (1.1)
An example of a matrix in this representation can be a boost along the x axis which
is represented as

Λx =


cosh βx sinh βx 0 0
sinh βx cosh βx 0 0

0 0 1 0
0 0 0 1

 . (1.2)

This way of writing the Lorentz group into a set of matrices illustrates in particular
one representation of this group, and in this case, it is the 4-vector representation.
In order to investigate a general representation as desired, we need to first look at
the group separate from a specific 4-vector representation. This is made easier by
looking at an infinitesimal transformation of the representation. An infinitesimal 4-
vector transformation with the infinitesimal rotation angles θi and boosts βi can be
written as

δX0 = βiXi, (1.3)
δXi = βiX0 − εijkθjXk, (1.4)

where repeating indices are summed over, βiXi ≡
∑

i βiXi. Here εijk is the Levi-Civita
tensor, defined as ε123 = 1 where the interchange of any two indices flips the sign. This
can be written in a 4-vector form as

δXµ = i

3∑
i=1

[θi(Ji)µν + βi(Ki)µν ]X
ν , (1.5)

with Ji and Ki being the generators of the group. They can be written as 4×4 matrices
where

J1 = i


0

0
0 −1
1 0

 , J2 = i


0

0 1
0

−1 0

 , J3 = i


0

0 −1
1 0

0

 , (1.6)
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and

K1 = i


0 −1
−1 0

0
0

 , K2 = i


0 −1

0
−1 0

0

 , K3 = i


0 −1

0
0

−1 0

 .

(1.7)
These matrices are called the generators of the Lorentz group since any element of the
group for a specific rotation and boost can be written uniquely as

Λ = exp(iθiJi + iβiKi). (1.8)
An advantage of writing the group elements Λ in this manner is that it is also a

completely general way of writing down any group element of any specific representa-
tion. As long as the group has a finite dimensional representation, it can always be
written as an exponential of the generator matrices. In a more concrete formulation,
any members g in a group G can be written as g = exp(iθaT a). Here θa are real num-
bers while T a are the generic generators of the group. These generators live in what
we call an algebra, as we can add or multiply them together, while the group members
live in the group, since there is only a multiplication rule. Groups normally also have
a name corresponding to the symmetry of the group. For instance, the Lorentz group
is sometimes called O(1,3) because it is an orthogonal group acting on a vector space
with a metric, gµν , that has a (1,3) signature of (+,−,−,−).

1.1.1 Lie Groups
We can now turn our attention to a certain class of groups, namely the Lie groups.
This a class of groups where every group has an infinite number of elements but only a
finite number of generators. This is the class of groups which gives rise to the different
forces described in quantum field theory such as QED from the U(1) group, the weak
force from the SU(2) group and the strong force, QCD, from the SU(3) group which
we will study in more detail in chapter 2. From this description we can note that the
Lorentz group will be a Lie group. The generators of the group form the Lie algebra,
and these generators can be thought of as the basis of the group. They can also be
found for any explicit form of the members Λ by expanding for small changes around
the identity 1 like we did to find equation (1.5) and the generators of the Lorentz
group.

The Lie algebra, which is formed through the group generators T a, is a vector
space g with a multiplication operation known as the Lie bracket. This Lie bracket is
a bilinear mapping and can be written formally as

[·, ·] : g × g → g, (1.9)
where [·, ·] is the Lie bracket. For such a vector space to actually be defined as an
algebra, then the Jacobi identity has to be fulfilled. This identity is given as

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0, (1.10)

5



For all the elements, A,B,C, of the algebra.
The group generators can be written in terms of the Lie brackets as

[T a, T b] = ifabcT c, (1.11)

where fabc are known as structure constants of the algebra. We then define a Lie
group to be Abelian if the structure constants are all zero, while it is called non-
Abelian otherwise. An example of the latter is the Pauli spin group, SU(2), which
has the algebra su(2) with structure constants fabc = εabc, where εabc is the totally
antisymmetric Levi-Civita tensor with ε123 = 1.

For our purposes, when we embed the group generators in matrices for the physical
representation, the Lie bracket can also be referred to as the ordinary commutator.
This means we can write the mapping as

[A,B] = AB −BA. (1.12)

When we can write our mapping in this way it implies that the product of the generators
is well defined. This means that the relation [A, [B,C]] = ABC−ACB−BCA+CBA
holds, and from this one can check that the Jacobi identity in (1.10) automatically
holds. We can also write the Jacobi identity in terms of structure constants from
(1.11) as

f bcdfade + f cadf bde + fabdf cde = 0. (1.13)

We will now look at the definitions for the different Lie groups. The first is the
unitary group, which is defined as a group that preserves the complex inner product;

〈~ψ, ~χ〉 = 〈~ψ|U †U |~χ〉 . (1.14)

This means that U †U = 1, where U are elements of the unitary group. The subgroup
known as the special unitary group has the additional requirement that det(U) = 1.
These groups are defined by how they act on a vector space such that SU(N) is the
special unitary group acting on a N-dimensional vector space. A special unitary group
SU(N) will have in total N2−1 generators, this is then the definition of the dimension
of the group, i.e. d(G) = N2 − 1 for G = SU(N).

The special unitary groups will be the groups of interest for us when we will discuss
the construction of quantum field theory. In addition to this, we will quickly mention
some other Lie groups. Firstly, we have the orthogonal groups that preserves a real
inner product defined as

~V · ~W = ~V ·OTOW, (1.15)

where OTO = 1. These matricies have determinant of ±1 while members of SO(N)
have determinant 1. Other Lie groups include the symplectic group, and the five
exceptional simple Lie groups, G2, F4, E6, E7 and E8.
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1.1.2 Representations of SU(N)
We will now outline different representations of the SU(N) groups, which will be im-
portant in relating the group to physical complex valued fields that arises in quantum
field theory. These N-dimensional fields will then automatically be invariant under the
group transformations. The two most important representations and the two we will
cover in this section are the fundamental representation and the adjoint representation.

The fundamental representation of the group is the smallest non-trivial represen-
tation and is also often called the defining representation. For the SU(N) group this
representation will be generated by the set of all N ×N Hermitian matricies that also
have a trace of 0. There will then be a set of N fields, φi, that transforms in the funda-
mental representation. An infinitesimal transformation of these fields can be written
as

φi → φi + iba(T a
fund)ijφj, (1.16)

for any real numbers ba, and T a
fund being the generators in the fundamental repre-

sentation. The complex conjugate fields, however, transform in the anti-fundamental
representation but this can be related to the fundamental generators through the in-
finitesimal transformation

φ?
i → φ?

i − ibaφ?
j(T

a
fund)ji, (1.17)

so that both the regular and the complex conjugate fields transformations can always
be related to the fundamental generators.

Our default and most used representation will be the fundamental one, which leads
us to remove the subscript from the generators when we are in this representation,
T a

fund = T a. For the adjoint representation (see below) however, we will denote the
generators as T a

adj.
The algebra of the representation can be determined from an expansion of a basis

of group elements around the identity. For SU(2) you find that the generators in the
fundamental representation are the Pauli matrices σa normalized by a factor of 1/2 so
that

T a = τa ≡ σa

2
. (1.18)

These Pauli matrices satisfy the definition of a Lie algebra from (1.11) with fabc = εabc,
which shows that SU(2) is a non-Abelian group. For SU(3) it is conventional to write
the generators of the fundamental representation in the standard basis T a = 1

2
λa, where

λa are the Gell-Mann matrices found by Murray Gell-Mann in 1962 [3], with λ3 and
λ8 being diagonal.

For the normalization of these generators, a convention needs to be chosen. A
common convention in physics is that the structure constants are normalized by the
equation ∑

c,d

facdf bcd = Nδab. (1.19)

This convention leads to a fixed normalization of the generators in any representation
since the relation from (1.11) must hold for generators of different representations
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with the same structure constants. That relation is also not invariant under rescaling
of the generators T a. Equation (1.19) implies that the generators of SU(N) in the
fundamental representation is normalized by

tr(T aT b) =
1

2
δab, (1.20)

which can be checked explicitly for SU(2) and SU(3) from the generators we have
already listed.

The next important representation for us is the adjoint representation. This is
the representation that acts on the vector space that is spanned by the generators
themselves. For SU(N) there are N2 − 1 generators, which means that the adjoint
representation is an N2 − 1-dimensional representation. The definition of the matrices
that describes this representation is given by the equation

(T a
adj)

bc = −ifabc, (1.21)

which for SU(2) gives the 3× 3 matrices:

T 1
adj =

0
0 −i
i 0

 , T 2
adj =

 0 i
0

−i 0

 , T 3
adj =

0 −i
i 0

0

 . (1.22)

For SU(3) we will then have an 32 − 1 = 8 dimensional representation, so the adjoint
representation consists of 8 × 8 matrices. Later we will discuss how the importance
of the adjoint representation arises from the gauge fields, and that these fields must
transform in the adjoint representation.

Lastly, we will look at the basis independent Casimir invariants which for any
representation R is defined as

C2(R) ≡
∑
a

T a
RT

a
R, (1.23)

and
C(R)δab ≡ tr[T a

RT
b
R] (1.24)

where T a
R are the generators of the representation R. Here C2(R) is known as the

quadratic Casimir, while C(R) is the index of the representation. For the fundamental
representation we have from (1.20) that

C(fund) = TF =
1

2
, (1.25)

and for the adjoint representation we will have

C(adj) = CA = N, (1.26)

which comes from facdf bcd = Nδab with sum over repeating indices being implicit.
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To find the quadratic Casimir we can set a = b in (1.24) and sum over the indices
to get

d(R)C2(R) = C(R)d(G), (1.27)

with d(R) being the dimension of the representaion and d(G) the dimension of the
group. This implies that the quadratic Casimir in SU(N) for the fundamental repre-
sentation is

C2(fund) = CF =
TFd(SU(N))

d(fund) =
N2 − 1

2N
, (1.28)

since d(SU(N)) = N2 − 1 and d(fund) = N . For the adjoint representation we will get

C2(adj) = CA = N, (1.29)

since the dimension of the representation is the same as the dimension of the group,
so the quadratic Casimir is the same as the index in the adjoint representation.

1.2 Gauge theory
The most important quantity we have in quantum field theory is the Lagrangian. This
is the equation which determines the interactions between the fields in QFT. Gauge
theory then tells us that this Lagrangian is invariant under certain local transformations
of the Lie groups. This will lead us to be able to uniquely define a Lagrangian that
follows from gauge invariance.

In this section we will consider both the Abelian and non-Abelian case of local
transformations. For differentiation of the fields, we are moved to introduce a new
field that compares different local transformations at two different points. This new
field is called a Wilson line and we will show how the introduction of this leads to a
covariant derivative and gauge fields.

1.2.1 Abelian gauge theory
If we consider as an example a complex scalar field φ(x), then the phase of this field
should be just a convention and any phase shift should not affect the theory. General-
izing this to local transformations leads us to the transformation

φ(x) → eiQα(x)φ(x), (1.30)

which the Lagrangian should be invariant under. Here, Q is an arbitrary charge of the
field and α(x) is the local phase shift. This symmetry is the U(1) symmetry group of
the Lie groups discussed above.

From this we can see that a mass term like m2φ?φ automatically is invariant under
the transformation. Now let us compare two different points xµ and yµ which are very
far away from each other, so any choice for phase transformation at one point will
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not have an effect on the field value at the other point. This means that the phase
transformation of these two points is dependent on the local phase shifts α(x) and
α(y). If we then try to compare these two fields, we get

φ(x)− φ(y) → eiQα(x)φ(x)− eiQα(y)φ(y). (1.31)

In essence, we would get different results for this comparison depending on the con-
vention of phase transformation. Because of this, it would be impossible to define any
regular derivative of the field independent from the convention as ∂µφ(x).

If we then want to be able to compare the fields at different points, we need to
include a new ingredient. This new component is a new bi-local field W (x, y) that
depends on two points xµ and yµ. This field, referred to as a Wilson line, is what we
want to transform as

W (x, y) → eiQα(x)W (x, y)e−iQα(y). (1.32)
From this we result with

W (x, y)φ(y)− φ(x) → eiQα(x)W (x, y)e−iQα(y)eiQα(y)φ(y)− eiQα(x)φ(x)

= eiQα(x)[W (x, y)φ(y)− φ(x)]. (1.33)

From the resulting equation, we notice that |W (x, y)φ(y) − φ(x)| is independent on
the choice of phase and this means we can make comparisons between φ(x) and φ(y)
through the Wilson line.

We can now define a new derivative by setting yµ = xµ + δxµ, dividing by δxµ and
take the limit of δxµ → 0. Doing this gives the definition of the covariant derivative as

Dµφ(x) ≡ lim
δxµ→0

W (x, x+ δx)φ(x+ δx)− φ(x)

δx
, (1.34)

so that
Dµφ(x) → eiQα(x)Dµφ(x), (1.35)

which follows from (1.33) for a δxµ of any size.
A natural requirement to set now is that W (x, x) = 1, which means we do not need

to do anything to compare fields at the same point. Then, if δxµ is small, we should
be able to expand W (x, x+ δx) around 1 as

W (x, x+ δx) = 1− ieδxµAµ(x) +O(δx2), (1.36)

with e for now being an arbitrary constant, and Aµ(x) being the introduction of the
gauge field. The transformation of Aµ(x) can be determined from the transformation
of W (x, y) in (1.32) as

Aµ(x) → Aµ(x) +
1

e
∂µα(x). (1.37)

So then the derivative in (1.34) can be written as Dµφ = ∂µφ − ieAµφ. From this we
conclude that the gauge field, Aµ, is introduced as a connection that compares field
values φ at different points, independent of their different phases.
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Now we can combine what we have noted so far to write down a part of our scalar
Lagrangian as

L ⊃ |Dµφ|2 +m2|φ|2. (1.38)
This equation is invariant under the transformation in (1.30). What is missing from this
Lagrangian now is a kinetic expression for the gauge field Aµ. To find this expression
we can note that since Dµφ transforms like the field, then so will also DµDνφ. This
leads to

[Dµ, Dν ]φ(x) → eiQα(x)[Dµ, Dν ]φ(x), (1.39)
where [Dµ, Dν ] is the regular commutator bracket. Expanding the commutator, we get

[Dµ, Dν ]φ(x) = ([∂µ, ∂ν ]− ie[∂µ, Aν ] + ie[∂ν , Aµ])φ(x) = −ieFµνφ(x), (1.40)

where we have used that [Aµ, Aν ] = 0. Here Fµν = ∂µAν − ∂νAµ is the classical field
strength tensor.

From this discussion we now have a new definition of the field strength tensor from
the covariant derivatives of the fields as

Fµν ≡ i

e
[Dµ, Dν ]. (1.41)

Using this definition, we can find a geometric interpretation of the field strength tensor
as the difference of comparing fields as DµDν compared to the other direction of DνDµ.

With this new term, we can expand our lagrangian to include a kinetic term in the
gauge field. The term should then be invariant under the transformation of the gauge
field by equation (1.37). We then have our full scalar Abelian Lagrangian as

LQED = −1

4
F 2
µν + |Dµφ|2 +m2|φ|2. (1.42)

The QED name comes from the fact that this Lagrangian is the defining Lagrangian
for quantum electrodynamics (QED), and as we have seen, it arises from an U(1)
symmetry of the fields.

1.2.2 Non-Abelian gauge theory
To continue working out the gauge theory we would have to quantize the fields, and
from that calculate Feynman rules for interactions and propagators. First we will in-
stead discuss how the same procedure of finding an invariant Lagrangian looks for
a non-Abelian gauge theory, where instead of scalar complex fields φ we have N-
dimensional Dirac fermion field

~ψ =


ψ1(x)
ψ2(x)

...
ψN(x)

 . (1.43)
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where each of the ψi(x) is a Dirac spinor containing a right handed and a left handed
Weyl spinor so that

ψi(x) =

(
ψL(x)
ψR(x)

)
. (1.44)

Here each component of ψ transforms according to a local SU(N) symmetry as

ψi → (eiα
a(x)Ta

)ijψj, (1.45)

where the sum over j is once again implicit, and T a are the generators of the symmetry
group.

With this construction, the expected invariant contraction of the fields as ψ†ψ,
turns out to not be invariant. Because of this, we need to introduce another element
to the theory, namely the gamma matrices, γµ. If we define ψ̄ ≡ ψ†γ0 with this, we
can define an invariant Lorentz scalar as ψ̄ψ.

This gives us our first invariant term of our non-Abelian Lagrangian as L ⊃ mψ̄jψj.
For a kinetic term in the fields, we will encounter the same problem as we did for the
Abelian case being that we could not compare field values at different points and
hence any regular derivatives would not be well defined. We instead want to once
again introduce the Wilson line as

W (x, y) → eiα
a(x)Ta

W (x, y)e−iαa(y)Ta

. (1.46)

Here we have made use of that T a† = T a for generators in SU(N).
With this, the expression |W (x, y)~ψ(y)− ~ψ(x)| is again invariant under the different

local transformation of the fields, and we can use this to define the covariant derivative
in the same form as for the Abelian case. We then need to find the infinitesimal
expansion of the Wilson line, and using the transformation above we find

W (xµ, xµ + δxµ) = 1− igAa
µ(x)T

aδxµ. (1.47)

If we compare this equation to (1.36), we notice that we pick up the generators of the
group. In addition, we need to sum over N different generators which brings up N
different gauge fields Aa

µ. To be able to compare these equations more easily to the
case of the Abelian theory and to simplify calculations, we will define Aµ ≡ Aa

µT
a.

With this notation the covariant derivative becomes

Dµ = ∂µ1− igAµ, (1.48)

which looks exactly like the previous covariant derivative we found after the redefinition
of Aµ.

Having this in hand, we get the kinetic term in the Lagrangian to determine all the
elements with the Dirac fermion and its interaction with the gauge fields as follows

L = ψ̄i(δiji/∂ + g /A
a
T a
ij −mδij)ψj, (1.49)
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where the terms are written in spinor form, and the slashed notation describes /∂ =
γµ∂µ.

The final term we need now is again a kinetic term for the gauge field, which we can
find by again considering the definition of the field strength tensor Fµν from equation
(1.41). By inserting the covariant derivative we find ourselves with

Fµν =
i

g
[Dµ, Dν ] =

i

g
(−ig(∂µAν − ∂νAµ)− g2[Aµ,Aν ]). (1.50)

Now we can use the Lie algebra of the commutators, [T a, T b] = ifabcT c, and then use
that Fµν = F a

µνT
a to get that the field strength tensor becomes.

F a
µν = ∂µA

a
µ − ∂νA

a
µ + gfabcAb

µA
c
ν . (1.51)

Comparing this to the Abelian case we see that the difference is the structure constants
fabc since in an Abelian group these are defined as fabc = 0. Inserting this into the field
strength tensor we find that F a

µν reduces to the classical electromagnetic field strength.
In order to write down an invariant term from the field strength tensor, we need

to determine the transformations of the gauge field Aa
µ. To derive the transforma-

tion we can look at the transformation of the field Dµ
~ψ → U · Dµ

~ψ where U(x) =
exp(iαa(x)T a) ∈ SU(N) is the group element of a local transformation. Then

D′
µ
~ψ′ = (∂µ − igA′

µ) · U · ~ψ = U · (∂µ − igAµ) · ~ψ, (1.52)

with A′
µ being the transformed version of Aµ. Then we get

∂µU − igA′
µU = −igUAµ. (1.53)

Solving this for A′
µ we have

A′
µ = UAµU

−1 − i

g
(∂µU)U

−1. (1.54)

We can then look at the infinitesimal transformation and view the component form
where Aµ = Aa

µT
a. This gives the transformation of the gauge field as

Aa
µ(x) → Aa

µ(x) +
1

g
∂µα

a(x)− fabcαb(x)Ac
µ(x). (1.55)

With this we can finally write down the full locally invariant SU(N) Lagrangian as

LYM = −1

4
(F a

µν)
2 + ψ̄i(δiji/∂ + g /A

a
T a
ij −mδij)ψj, (1.56)

where the subscript YM comes from that this is often referred to as the Yang-Mills
Lagrangian. In addition to (1.56) there is another term which is consistent with SU(N)
invariance that we could add which is

Lθ = 2θ∂µ(ε
µναβAa

νF
a
αβ). (1.57)
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where θ is a real number. This term is a total derivative, so it does not contribute
to any order in a perturbative theory. Although, thanks to non-perturbative effects,
it can contribute in other ways. In quantum chromodynamics for example, θ is called
the strong CP phase and would induce an electric dipole moment to the neutron
proportional to this phase. The absence of this moment is known as the strong CP
problem. This is beyond the scope of this thesis, but this problem and a proposed
solution can be found in, for example [4].

1.3 Quantum Yang-Mills theory
To be able to make any predictions in quantum field theory, we need to quantize the
fields in question so that they can act on different states in order to create or destroy
particles and anti-particles.

In this chapter, the procedure of quantizing the fields and deriving the Feynman
rules from them are discussed. This will first be done through a path integral formalism,
otherwise known as the Faddeev-Popov procedure. Then the concept of gauge fixing
will be reviewed before we end the discussion with presenting the resulting QED rules,
and we will generalize to non-Abelian gauge theories.

1.3.1 Path integral formulation
In quantum field theory we want to compute interaction matrix elements known as
S-matrix elements, and these are time ordered products of fields valued at n differ-
ent points as 〈Ω|T{φ(x1)φ(x2) · · ·φ(xn)}|Ω〉, with |Ω〉 being the vacuum state of the
interaction theory, this is also known as a correlation function. In the path integral
formalism, calculating the correlation function is done through the equation

〈Ω|T{φ(x1) · · ·φ(xn)}|Ω〉 =
∫
Dφφ(x1) · · ·φ(xn)eiS[φ]∫

DφeiS[φ]
, (1.58)

with S[φ] =
∫
d4xL being the classical free action. The Dφ means the product of all

the fields φ(x) with the correct boundary conditions so that

Dφ = dφ1(x) · · · dφn(x). (1.59)

In order to compute these correlation functions in quantum field theory, we consider
the normal action in the presence of an external classical current J(x). This gives rise
to a functional called the generating functional which is denoted as

Z[J ] =

∫
Dφexp

{
iS[φ] + i

∫
d4xJ(x)φ(x)

}
. (1.60)

Then, when J = 0, this reduces to the vacuum amplitude without any source as

Z[0] =

∫
DφeiS[φ]. (1.61)
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From this we can introduce variational partial derivatives and in the end define our
correlation function as

〈Ω|T{φ(x1) · · ·φ(xn)}|Ω〉 = (−i)n 1

Z[0]

∂nZ

∂J(x1) · · · ∂J(xn)

∣∣∣∣
J=0

. (1.62)

We now have a systematic way of calculating correlation functions and we can use
this to find our Feynman rules by considering different correlation functions. This will
be done separately for scalar QED first, then we will outline the main differeces for
non-Abelian gauge theories, before showing the QCD rules used in chapter 2.

1.3.2 Path integrals for scalar Abelian theory
The Lagrangian of interest in scalar quantum electrodynamics was given in equation
(1.42) and this consists of kinetic terms of φ and Aµ in addition to interaction terms.
Firstly, to make the fields quantized, we need to make them operator valued by intro-
ducing creation and annihilation operators to the fields. Then we can use the above
procedure for the correlation function of interest to find the relevant Feynman rules.

Expanding the Lagrangian in (1.42) gives

L = −1

4
F 2
µν − φ?(�+m2)φ− ieAµ[φ?(∂µφ)− (∂µφ

?)φ] + e2A2
µ|φ|2. (1.63)

We can then use this on the different correlation functions. For the scalar propagator
in the free theory we must calculate

〈0|T{φ(x)φ(y)}|0〉 = (−1)2
1

Z[0]

∂2Z[J ]

∂J(x)∂J(y)

∣∣∣∣
J=0

, (1.64)

where the generating functional, omitting terms that will not contribute to the final
result, is

Z[J ] =

∫
Dφexp

{
i

∫
d4x

(
−1

2
φ(�+m2)φ+ J(x)φ(x)

)}
. (1.65)

This exponential can be turned into a quadratic expression of J(x) and J(y) by the
use of the relation ∫

d~pe−
1
2
~pA~p+ ~J~p =

√
(2π)n

detA e
1
2
~JA−1 ~J , (1.66)

with A = i(�+m2). This gives that the generating functional is

Z[J ] = Nexp
{
−i
∫
d4x

∫
d4y

1

2
J(x)Π(x− y)J(y)

}
, (1.67)

where Π(x − y) is the solution of A−1 which can be computed through the Green’s
function as

(�+m2)Π(x− y) = −δ(x− y), (1.68)
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which results in
Π(x− y) =

∫
d4p

(2π)4
1

p2 −m2
eip(x−y). (1.69)

Using all of the above, we can finally compute the correlation function as

〈0|T{φ(x)φ(y)}|0〉 = (−1)2
1

Z[0]

∂2Z[J ]

∂J(x)∂J(y)

∣∣∣∣
J=0

= iΠ(x− y)

=

∫
d4p

(2π)4
i

p2 −m2
eip(x−y).

Then in momentum space, this scalar propagator becomes i
p2−m2 .

From the generating functionals, one can see that to find the interacting Feynman
rules, one can, in principle, simply read off the terms in front of the chosen interaction
vertex, letting derivatives pick up momentum factors. For example, for the three-point
vertex of two scalars and the photon field one gets

p1

p2

φ

φ?

= ie(±p1µ ± p2µ). (1.70)

where the ± is dependent on the orientation of the momentum and if the scalar is a real
scalar or an anti-scalar. This vertex rule come from the term ieAµ[φ?(∂µφ)− (∂µφ

?)φ]
in the Lagrangian. Then from the term e2A2

µ|φ|2, we get the vertex rule

= 2ie2. (1.71)

The final piece of the scalar theory now is the photon propagator. Here we run into
a problem where the operator we need to invert has a determinant equal to zero and
is thus not invertible. To solve this, the Lagrangian will pick up an extra term called
a gauge fixing term of the form 1

2ξ
(∂µA

µ)2, where ξ is a real parameter that any final
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physical calculations should be independent of. With this new term the operator will
be invertible and the photon propagator becomes

p
µ ν = −

gµν − (1− ξ)pµpν
p2

p2
, (1.72)

in which we have used generating functionals. In order to introduce the gauge fixing
term in the path integrals, we have divided and multiplied by the function

f(ξ) =

∫
Dπe−i

∫
d4x 1

2ξ
(�π)2 =

∫
Dπe−i

∫
d4x 1

2ξ
(�π−∂µAµ)2 . (1.73)

where the last equation is just a shift in π which leaves the integral unchanged and is
therefore independent of Aµ. From this, the dependence on the π-field will lead to an
overall normalization and drops out of any physical quantities.

1.3.3 Quantization of non-Abelian theory
For the non-Abelian theory, the quantization of the particle field propagators and
interaction terms follows from the Abelian case in which we can read of the terms
of interest from the Lagrangians. There is, however, one big difference in the non-
Abelian case for gauge fixing, and it follows from the Faddeev-Popov procedure which
is explained in detail in [5].

The consequence of this new method is the introduction of Grassmann valued fields
which are known as Faddeev-Popov ghosts. These arise from a constant determinant
that cannot be factorized out of the generating functionals. To remedy this, we can
use a property of the Grassmann numbers where any determinant can be written as a
path integral over Grassmann numbers as

det(O) =

∫
Dθ̄Dθexp

(
−i
∫
d4xθ̄Oθ

)
, (1.74)

in which θ and θ̄ are the Grassmann and anti-Grassmann numbers, respectively. The
determinant in question here has the form det(∂µDµ) so the path integral arising from
this is

det(∂µDµ) =

∫
Dc̄Dc exp

(
i

∫
d4xc̄(−∂µDµ)c

)
. (1.75)

This then enters into the Lagrangian together with the gauge fixing term to provide
the full gauge-fixed path integral for a non-Abelian theory as

Z[0] = const. ×
∫

DADψiDc̄Dc exp
{
i

∫
d4x

[
L[A,ψi]−

1

2ξ
(∂µA

aµ)2 − c̄a∂µDµc
a

]}
,

(1.76)
with ca and c̄a are anticommuting Lorentz scalars, known as the Faddeev-Popov ghosts
and anti-ghosts respectively. There is one such pair for each of the gauge fields indexed
by a.
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From the exponent of the integral above, we can write the full Faddeev-Popov
Lagrangian extending (1.56) as

LFP = −1

4
(F a

µν)
2 − 1

2ξ
(∂µAa

µ)
2 + (∂µc̄a)(δac∂µ + gfabcAb

µ)c
c + ψ̄(i /D −m)ψ. (1.77)

The vertex rules that arises from this theory, and specifically from the SU(3) group,
are listed in chapter 2.

A final note from this procedure is that the gauge fields in the non-Abelian theory
are all assumed massless, but the experimentally discovered gauge bosons Z,W+ and
W− are all massive. The masses of these bosons have been shown to arise from spon-
taneous symmetry breaking (SSB) of the vacuum expectation value. This introduces
a new boson which was named the Higgs boson. This concept will not be further dis-
cussed in this thesis, however a construction of SSB and the Higgs mechanism where
these particles pick up masses is given in [6, 7].
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Chapter 2

From partons to QCD

In this chapter we will discuss the development of the strong interactions of quantum
chromodynamics (QCD). This is achieved by starting from the classical Coulomb scat-
tering, then calculate the deep inelastic scattering (DIS) by introducing the parton
model before finally deriving the strong interaction from an SU(3) gauge symmetry.
This will allow us to derive the Feynman rules of QCD and see how such rules affect
the previously calculated scattering result from the parton model at a higher order in
perturbation theory

2.1 Coulomb scattering
The concept of the existence of small constituents inside the protons originates from
Richard Feynman, who stated that there are some objects inside the proton that he
called partons and that these are essentially free within the proton [8]. This assertion
was used to describe the high energy behavior of electron proton scattering. In this
section, we will outline the discussion about electron proton scattering from the low
energy limit and then connect this to the theory of quantum chromodynamics and the
subsequent discovery of the quarks and gluons.

From the scattering of electrons and protons at lower energy levels one would mea-
sure different properties of the proton, and early experiments of electron-proton scat-
tering showed that the proton behaved as a fermion. Given this fermionic behavior
we can then use normal Feynman rules for fermionic scattering and find the resulting
cross section from these rules. The Feynman diagram corresponding to this interaction
is shown in figure 2.1.

This diagram is the leading order diagram for electron proton scattering and in the
low energy limit the cross section simplifies to

dσ

dΩ
=

α2

4E2 sin4
(
θ
2

)E ′

E

(
cos2

θ

2
− q2

2m2
p

sin2 θ

2

)
, (2.1)

with E and E ′ being the initial and final energies of the incoming electron, qµ = kµ−k′µ
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Figure 2.1: Fermionic scattering of electrons and protons mediated by a photon, γ.

being the momentum transfer vector from the electron to the proton, θ being the angle
between the incoming and outgoing electron, and α = e2/(4π). This cross section is
the classical Coulomb scattering and has been derived from normal QED rules. By
going to higher orders one can find corrections to the Coulomb scattering.

To study more closely the corrections to this scattering, particularly for the proton,
we can consider the vertex of an off-shell photon with momenta qµ as being absorbed
by the proton with incoming and outgoing momenta pµ and p′µ. Then we can parame-
terise this vertex to any loop order into form factors F1 and F2 because of momentum
conservation and the Ward identity [9]. This incoming off-shell photon with momenta
will then be absorbed by the proton in a vertex that can be written on the form
ū(p′)(ieΓµ)u(p) with u(p) and ū(p′) as the incoming and outgoing proton spinors. We
can now decompose the Γµ into our form factors as

Γµ = F1(q
2)γµ +

iσµν

2mp

gνF2(q
2) (2.2)

If we then insert this general vertex as the original vertex in the Feynman rules for
computing the matrix element, we will derive the Rosenbluth formula given as

dσ

dΩ
=

α2

4E2 sin4
(
θ
2

)E ′

E

[(
F 2
1 − q2

4m2
p

F 2
2

)
cos2

θ

2
− q2

2m2
p

(F1 + F2)
2 sin2 θ

2

]
. (2.3)

In this equation, all the factors can be measured through the cross section’s dependence
on the energy and angle of the incoming and outgoing electron. We can then use this
expression to find the form factors from experimental data. Through this procedure,
the first form factor was shown to fit well to data with the expression F1(q

2) ≈ 1/(1−
q2/0.71GeV2)2 [10]. Using the form factor, we find the characteristic size of the proton
to be r0 ∼ (0.84GeV)−1 ∼ 1 fm. The experimentally determined form factors and the
characteristic size of the proton created the notion that the proton is not actual a point
particle but instead is an extended object. This led experimentalists to increase the
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energies of the collisions so that they could get more precise measurements and probe
deeper into the proton. When energies got higher in the experiments, |q2| > 1GeV2,
researchers expected that the scattering would show an even more complicated charge
distribution with higher scales. In contrast, the scattering simplified into point like
scattering with the increase in energy. So, at high energy levels when the electron
probes deep enough into the proton, point like behavior was observed. From this the
theory of the parton model was formed by Feynman, which later enabled the discovery
of the quarks.

2.1.1 Deep inelastic Coulomb scattering
As the energies of the incoming electron increased, the experimental data showed that
the scattering was equivalent to that of point like scattering, and at center-of-mass
energies above mp, the proton would start to break apart in the final state. This led
to reactions such as e−p+ → e−p+π0. At even higher energies, the proton can break
apart completely and reactions such as e−p+ → e−X occur, where X is any hadron
state that the proton can break apart into as long as the baryon number is conserved,
was observed.

For the lower energy scattering, we can look at an off-shell photon being absorbed
by a proton and then parameterise the cross section using form factors F1(q

2) and
F2(q

2). However, since the proton now breaks apart at high energies, we can no longer
have vertices like ū(p′)γµu(p) that were necessary for the parametrisation. Instead, we
have to look at the process of an off-shell photon being absorbed by the proton and
then breaking the proton up into hadronic states.

To parameterise the cross section in these conditions, it is more natural to look at
the entire cross section, and not just the photon vertex, in terms of momentum transfer
and the proton momenta. Then we can separate the hadronic and the leptonic part of
the cross section into two tensors. The kinematics of this calculation are the same for
the electron, and we can again define E and E ′ as the incoming and outgoing electron,
in addition to θ as the scattering angle, and kµ and k′µ as the momenta of the electron.
From this we can write the parameterised cross section as

dσ2

dΩdE ′ =
α2

4πmpq4
E

E ′L
µνWµν , (2.4)

where Lµν is the leptonic tensor that encodes the e− → γ?e− part of the cross section,
and Wµν is the hadronic tensor that encodes the γ?p+ → X part of the cross section.
The leptonic tensor is the unpolarised cross section of electron radiation and therefore
is given by the spin-averaged expression of

Lµν =
1

2
Tr[/k′γµ/kγν ] = 2(k′µkν + k′νkµ − k · k′gµν). (2.5)

This expression is only dependent on the incoming and outgoing momenta of the elec-
tron.

22



The hadronic tensor however is a bit more complicated, as it has to include all
the possible states that the proton can disperse into. Once included, the different
possible states will then have to be summed over, and the momenta of these hadrons
are integrated over. The hadronic tensor can be written as

e2ε?µενW
µν =

1

2

∑
X,spin

∫
dΠX(2π)

4δ4(q + pp − pX) · |M(γ?p+ → X)|. (2.6)

Because all the final state hadrons and their momenta are integrated over, the
cross section will not depend on any of these. Wµν will therefore only depend on
the momentum of the proton, pµ, and the momentum of the photon, qµ. Since the
total cross section is unpolarized, the hadronic tensor has to be symmetric such that
W µν = W νµ. Additionally, since the final state particles involved are on-shell, the
hadronic tensor will also satisfy the Ward identity, which states that qµW µν = 0. With
these restrictions we can write down the general tensor as

W µν = W1

(
−gµν + qµqν

q2

)
+W2

(
pµ − p · q

q2
qµ
)
·
(
pν − p · q

q2
qν
)
. (2.7)

This expression includes the two scalar form functions W1 and W2. These can
only depend on the two invariant scalars p · q and q2. The vector q is spacelike from
momentum conservation of the high energy electron, and we therefore have that q2 < 0.
Because this scalar is negative, it is often a convention to instead write the cross section
in terms of Q2 ≡ −q2. Another common variable to use in addition to Q2 is the
dimensionless ratio known as Bjorken x, which was introduced by James Bjorken in
1969 [11]. This variable is defined as

x ≡ Q2

2p · q
. (2.8)

We then use these two variables and contract the tensors Lµν and Wµν together
given in (2.5) and (2.7) before plugging it back in to equation (2.4) to get the cross
section in terms of the scattering angle θ, which results in

dσ2

dΩdE ′ =
α2

8πE2 sin4 θ
2

[
mp

2
W2(x,Q) cos

2 θ

2
+

1

mp

W1(x,Q) sin
2 θ

2

]
. (2.9)

Again we have defined the expression only in terms of measurable quantities of the
incoming and outgoing momenta of the electron, and therefore no information about
the final hadronic state X is needed as it is integrated over in the hadronic tensor. This
means that we can measure the structure functions W1 and W2 only by experimentally
measuring the energies and angles of the scattered electron.
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2.1.2 Parton Model
Continuing on, we need to deduce what parts of the proton will be interacting with
the high energy electron. This is where Feynman introduced what he called the parton
model. In this model he suggested that the electron interacts with a single particle for
each scattering process, and it is in fact these partons that contributes to the point like
scattering. In order to test this model, we need to figure out what the consequences
of the parton model are. The elastic scattering between the incoming electron and
a single parton inside the proton with mass mq then needs to be calculated as well.
The parton will also carry some of the momenta of the original proton and at high
energies the parton momenta should be almost collinear to the momentum of the
proton. Acknowledging this we can write the momentum of these partons as a fraction
of the full proton momentum ξp, with 0 ≤ ξ ≤ 1. In addition, the initial momenta of
the parton will be called pµi and the final momenta is pµf . By momentum conservation
we can then write, for the parton vertex, that pµi + qµ = pµf . If we now square both
sides we will get

p2i + 2pi · q + q2 = p2f . (2.10)
Now, given that the partons will have almost light like momenta, we can write p2i =
p2f = mq, where mq is the mass of the partons. Using this with our previous definition
of the fractional momentum and that q2 = −Q2 we get

Q2

2ξp · q
= 1 ⇒ x

ξ
= 1. (2.11)

This shows that if we can measure the Bjorken x of a scattering then we would also au-
tomatically have the fraction of the protons momenta that is involved in the scattering
with the electron.

Turning our attention now to the partonic cross section, which will be the reaction
of e−pi → e−pf where we assume that the partons are essentially free with the exception
of their QED interactions with the photons. The scattering would then be like any
other point like scattering and follow the Rosenbluth formula given in Eq. 2.3 with
the form factors F1 = 1 and F2 = 0. If we do not integrate over the energy of the final
state electron, this cross section will then take the form(

dσ(e−q → e−q)

dΩdE ′

)
lab

=
α2
eQ

2
i

4E2 sin4 θ
2

[
cos2

θ

2
+

Q2

2m2
q

sin2 θ

2

]
δ

(
E − E ′ − Q2

2mq

)
,

(2.12)
where Qi is the QED charge of the interacting parton. The assumption of free point like
partons is why there are no extra generic form factors F1,2(Q) in front of the sine and
cosine terms, as it was for the low energy limit of the electron proton scattering. This is
because the elastic scattering of the electron and parton, given the weakly interacting
state of these partons with photons, is expected to have a small logarithmic dependence
on Q2 when the initial partonic momentum pi is fixed. This scale dependence comes
from the fact that the partons are point like objects, unlike the proton that has a size,
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and therefore we result with the structure functions. When we have a fixed pi, then we
would also have a fixed x, according to equation 2.11. This experimentally observed
relative independence of Q2 at a fixed value for x is known as Bjorken scaling [11], and
it is one of the essential results from the parton model.

The last thing we now need to get a precise prediciton for the Bjorken scaling in
the parton model, is a procedure on how to deal with the question of which parton
the virtual photon will exchange with. For this we must consider the wavefunctions
of the partons inside the proton and the timescale that the photon is probing. Since
the momenta of the proton sloshes around its constituents at a timescale roughly equal
to the inverse of its mass, ∼ Λ−1

QCD ∼ m−1
p , and the timescale the photon probes

is around the inverse of the exchange energy ∼ Q−1, we can notice that this time
scale is significantly smaller than the sloshing of momenta in the proton. Because the
scales are several orders of magnitude apart, Q � ΛQCD, this allows us to treat the
parton wavefunctions as decoherent, i.e. independent. This means that we can adopt
a probabilistic interpretation and then introduce the classic probability fi(ξ)dξ that
the photon hits parton i, which carries a fraction ξ of the proton momentum.

2.1.3 Parton distribution functions
The functions fi(ξ) (mentioned above) are called parton distribution functions (PDFs).
With these functions we can make more precise statements as to the calculations of
the interacting partons. We do also have some constraints on these functions given
that they should be probabilities of some kind. For example if the proton had one
down quark, d, then this quarks need to carry some momentum and

∫
dξfd(ξ) = 1.

However, inside the proton we can have several virtual quark anti-quark pairs and
gluons. But we can use the fact that quark numbers are conserved in both QED and
QCD interactions, so the proton will have a total down-quark number of 1, up-quark
number of 2 and any other quark number as 0, and this gives the relations∫

dξ[fd(ξ)− fd̄(ξ)] = 1,∫
dξ[fu(ξ)− fū(ξ)] = 2,∫
dξ[fi(ξ)− fī(ξ)] = 0. (2.13)

Here d̄ is the down anti-quark, u and ū are the up quark and anti-quark, and i and
ī are the rest of the so-called sea quarks, which are the strange, charm and bottom
quarks. However, for the gluon, there is no conserved number, so there is no further
sum rules corresponding to fg. Lastly, we have momentum conservation which gives
the final rule as ∑

j

∫
dξ[ξfj(ξ)] = 1, (2.14)
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where the sum here is over all partons.
In order to determine the PDFs, it is required to do a global fit to not only data

from DIS experiments, but also many other high energy processes such as pp̄ and pp
collisions, the latter of which we will focus on later in this thesis.

Now we shall take a step back and look at the original assumption of the parton
model. This assumption is that a cross section of the form e−p+ → e−X, with X being
any final hadronic state, is given by the partonic scattering of e−pi → e−X, where
the parton pi carries the momentum pµi = ξpµ, and we integrate over the momentum
fraction ξ. This gives

σ(e−p+ → e−X) =
∑
i

∫ 1

0

dξfi(ξ)σ̂(e
−pi → e−X). (2.15)

Here we introduce the convention of adding circumflexes to the partonic level cross
section.

Now we can compare this equation to the DIS equation given in equation (2.9)
by inserting in to the partonic level cross section we found in (2.12). Since we are
integrating over the incoming quark momenta, we can also use that in the lab frame,
the proton is at rest and the relation pµi = ξpµ to infer that the effective mass of the
parton must be also given by mq = ξmp. This results in(

dσ(e−P+ → e−X)

dΩdE ′

)
lab

=
∑
i

∫ 1

0

dξfi(ξ)
α2Q2

i

4E2 sin4 θ
2

[
cos2

θ

2
+

Q2

2(ξmp)2
sin2 θ

2

]
× δ

(
E − E ′ − Q2

2ξmp

)
. (2.16)

To compute this integral we can note that since qµ = (E − E ′, ~k − ~k′). Then the
Lorentz invariant quantity of

ν ≡ p · q
mp

, (2.17)

would be reduced to the energy lost by the electron in the rest frame of the proton,
which is also the same frame as lab frame. So that

p · q
mp

= (E − E ′)lab, (2.18)

since in the proton rest frame we have that pµ = (mp,~0). We can then insert the
definition of Bjorken x from equation (2.8) to get that

E − E ′ =
Q2

2mpx
. (2.19)

Using this relation, the delta function becomes

δ

(
E − E ′ − Q2

2ξmp

)
= δ

(
Q2

2xmp

− Q2

2ξmp

)
=

2mp

Q2
x2δ(ξ − x). (2.20)
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Now we can insert the expression for the delta function back into (2.16) and perform
the integral, which, because of the delta function, boils down to the replacement ξ → x,
and we get(

dσ(e−P+ → e−X)

dΩdE ′

)
lab

=
∑
i

fi(ξ)
α2Q2

i

4E2 sin4 θ
2

[
2mp

Q2
x2 cos2

θ

2
+

1

mp

sin2 θ

2

]
. (2.21)

We can now compare this result to the form factors we introduced in (2.9), and we
see that

W1(x,Q) = 2π
∑
i

Q2
i fi(x),

W2(x,Q) = 8π
x2

Q2

∑
i

Qifi(x). (2.22)

This gives us the final prediction for Bjorken scaling, and it shows that the quantities
W1(x,Q) and Q2W2(x,Q) are indeed independent of Q at a fixed x. We can also notice
that there exists a ratio between W1 and W2 given by W1(x,Q) =

Q2

4x2W2(x,Q). This
relation is known as the Callan-Gross relation [12]. A demonstration of the predicted
Bjorken scaling was shown by the Particle Data Group [13] and is visualized here in
figure (2.2)

Figure 2.2: Demonstration of Bjorken scaling by the Particle Data Group from 2012.
Here the structure function F2(x,Q

2) is related to our W2(x,Q) through the relation
F2(x,Q

2) = Q2

2x
W2(x,Q). In addition, it is multiplied by 2ix , where ix is the number

of the x bin. From the function we see that x = 0.85 corresponds to ix = 1, while
x = 0.00005 would correspond to ix = 24.
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2.2 Quantum chromodynamics and DIS
In this section we will look at quantum chromodynamics (QCD) from a group theory
perspective and utilize what we have learned from chapter 1. This will lead us to
derive the Feynman rules of the QCD theory, and finally we can calculate the deep
inelastic scattering result from a perturbative quantum chromodynamics perspective
to next-to-leading order. This will then allow us to make a prediction about Bjorken
scaling at higher orders in perturbative QCD where it is in fact not fully independent
of the energy scale Q2, but instead contain a weak logarithmic dependence on Q2.

2.2.1 QCD from gauge theories
Quantum chromodynamics is a gauge theory formed from the local transformations of
the SU(3) group. Here the fermionic fields with spin 1/2 are called quarks, and the
gauge fields are called gluons with spin 1. The quarks carry an extra quantum number
in the form of colour that corresponds to the charge of the group.

The quark fields live in the fundamental representation of the group, this vector
space is called colour space, and is written as a triplet

~ψ(x) =

ψ1(x)
ψ2(x)
ψ3(x)

 . (2.23)

We have already seen that the triplet will transform under local gauge transformations
as

~ψ(x) = U(x)~ψ(x), (2.24)

with
U(x) = eiα

a(x)Ta

. (2.25)

T a are, in the SU(3) case, 3× 3 hermitian matrices, while αa(x) are real numbers.
The generators are traceless and form a basis for SU(3), so we know that the index

a will sum over eight values a = 1, ..., 32 − 1 = 8. This implies that there exists
three different coloured quarks and eight gluons. However, it has been discovered
experimentally that there are three different families of quarks represented as SU(2)
quark doublets (

u
d

)
,

(
c
s

)
,

(
t
b

)
. (2.26)

So in total we have 18 different coloured quark states. Though for scattering processes
we will sum over the contributions of the quarks, so we will not need to explicitly state
which specific quark is in the interaction.

The generators of the SU(3) Lie group will satisfy the Lie algebra defined in (1.11)
as a commutation relation [T a, T b] = ifabcT c. In section 1.1 we also defined Casimir
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invariants such as the quadratic Casimir C2(R) and the index of the representation
C(R). The definition of these were given in (1.23) and (1.24) respectively.

In the fundamental representation for the quarks we get

C(fund) = TF =
1

2
,

C2(fund) = CF =
4

3
, (2.27)

and in the adjoint representation for the gluons we get

C(adj) = C2(adj) = CA = 3. (2.28)

The full locally SU(3)-invariant Lagrangian of QCD containing the interactions and
the kinematics of the quarks and gluons is

L =− 1

4
(F a

µν)
2 − 1

2ξ
(∂µAa

µ)
2 + (∂µc̄a)(δac∂µ + gfabcAb

µ)c
c + ψ̄(i /D −m)ψ, (2.29)

where ca and c̄a are the so-called ghost and anti-ghost fields respectively that appear
from the Faddeev-Popov procedure. Additionally, a summation over the quark flavors
α = u, d, s, c, t, b and the color i = 1, 2, 3 is understood, so that ψ = (ψα i). The term
1
2ξ
(∂µAµ)

2 comes from the gauge fixing term discussed in section 1.3.
In order to derive the Feynman rule from this Lagrangian, we need to expand the

field strength tensor by using equation (1.51). This is a tedious process but in the end,
the kinetic terms of the QCD Lagrangian are shown to be

Lkin = −1

4
(∂µA

a
ν − ∂νA

a
ν)

2 − 1

2ξ
(∂µAa

µ)
2 + ψ̄(i/∂ −m)ψ − c̄a�ca (2.30)

The corresponding propagators of these terms can be read off the Lagrangian
through the procedure of finding the equations of motions for the given particle and
then finding the Greens function of the operator we end up with. This gives

ν;b µ,a = i
−gµν + (1− ξ)p

µpν

p2

p2 + iε
δab, (2.31)

j i =
iδij

/p−m+ iε
, (2.32)

b a =
iδab

p2 + iε
, (2.33)

for the gluon, quark, and ghosts respectively.
The vertex rules can be found by reading off the interaction Lagrangian, which we

noticed in the previous chapter when discussing the path integral formalism in section
1.3. The interaction Lagrangian we get from equation (2.30) is

Lint =− gfabc(∂µA
a
ν)A

µ,bAν,c − 1

4
g2(fabeAa

µA
b
ν)(f

cdeAµ,cAν,d)

+ gfabc(∂µc̄
a)Aµ,bcc + gAa

µψ̄γ
µT aψ. (2.34)
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From this expression we can see that there will be a triple- and a four-gluon vertex in
addition to the quark-quark-gluon and the ghost-ghost-gluon vertex.

For the triple-gluon vertex, the derivative can act on any of the gluons giving the
Feynman rule as

p
q

k

ν; a

ρ; c

µ; a

= gfabc[gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν ], (2.35)

where all the momenta is taken as incoming, p + k + q = 0. Then for the four-gluon
vertex we have

µ; a

σ; d

ν; b

ρ, c

= −ig2 × [fabcf cde(gµρgνσ − gµσgνρ)

+fabcf cde(gµρgνσ − gµσgνρ)

+fabcf cde(gµρgνσ − gµσgνρ)],

(2.36)

and the quark-gluon vertex becomes

j i

µ; a

= igγµT a
ij, (2.37)

and finally

p
cc c̄a

µ; b

= −gfabcpµ, (2.38)

as the ghost-gluon vertex of QCD. In this thesis we will not go to a high enough order
in perturbation theory to have a need for ghosts, but we have included them here for
completeness sake. We can also notice that from the quark-gluon vertex, where the
color of the incoming quark is i and color of the outgoing quark is j, can change the
color of the quark through the interaction with a gluon as it depends on if the generator
T a
ij is diagonal or not.
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2.2.2 Deep inelastic scattering from QCD
As we now have the needed Feynman rules from QCD, we can again turn our attention
back to the electron-proton scattering. This was previously calculated from the parton
model, which assumes free particles inside the proton and that only one of these interact
with the electron in the scattering process. We can then parametrize the cross section
in a leptonic and a hadronic tensor. It was this hadronic tensor that contained the
quantities W1 and W2, which we found to be roughly independent of Q2 for a fixed value
of the Bjorken x. This came from the property known as Bjorken scaling. However,
from figure (2.2), we can notice that there is still some weak dependence on Q2, which
would imply that there is more to the theory than just the parton model.

Due to these observations, we will combine the parton model with a perturbative
calculation in QCD in order to show this dependence of Q2. This means we will assume
that the parton model still holds, but will then identify these partons with the quarks
from QCD. Recalling then, from the previous section, that the hadronic tensor, W µν ,
was given by the vertex γ?p+ → X where we summed over the final states, X. We
will now instead write Ŵ µν(z,Q) as the partonic version of the hadronic tensor which
encodes the vertex γ?q → X integrated over the final states. z is here the partonic
version of x from (2.8) and is defined by

z ≡ Q2

2pi · q
. (2.39)

Here pi is still the momenta of the parton, or rather the quark, that interacts with the
incoming photon.

We can now use the assumption from the parton model that the probability of
parton i having a given fractional momenta pµi = ξpµ for some fraction 0 ≤ ξ ≤ 1, is
given by a PDF fi(ξ). We then have that x = zξ and we must integrate over ξ to get
the hadronic tensor

W µν(x,Q) =
∑
i

∫ 1

0

dz

∫ 1

0

dξfi(ξ)Ŵ
µν(z,Q)δ(x− zξ)

=
∑
i

∫ 1

x

dξ

ξ
fi(ξ)Ŵ

µν

(
x

ξ
,Q

)
. (2.40)

We can calculate this to leading order in QCD. Here, the only partonic process con-
tributing to Ŵ is the process γ?q → q, which becomes

pf
pi

γ?

= −ieγµQi. (2.41)
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Using the definition of the hadronic tensor given above, the tensor then becomes

Ŵ µν(z,Q) =
Q2

i

2

∫
d3~pf
(2π)3

1

2Ef

Tr
[
γµ /piγ

ν
/pf

]
(2π)4δ4(pi + q − pf )

= 2πQ2
i

[(
−gµν + qµqν

q2

)
+

4z

Q2

(
pµi −

pi · q
q2

qµ
)
·
(
pνi −

pi · q
q2

qν
)]

δ(1− z).

(2.42)

We can now read out the quantities Ŵ1 and Ŵ2 by comparing to the definition of the
hadronic tensor in (2.7). This gives

Ŵ1 = 2πQ2
i δ(1− z), (2.43)

Ŵ2 = 8π
z

Q2
Q2

i δ(1− z). (2.44)

Comparing these quantities to eachother confirms the Callan-Gross relation [12]. By
plugging each of the structure functions into (2.40) they will separately reproduce
(2.22). This shows that the definition of the partonic hadronic tensor is valid from the
parton model up to leading order in QCD.

Going forward now to find corrections to Bjorken scaling, we will consider the
contracted structure function W0 ≡ −gµνWµν which presents as

W0(x,Q) = 3W1(x,Q)−W2(x,Q)

(
m2

p +
Q2

4x2

)
. (2.45)

In the high energy limit, Q � mp, this simplifies to W0(x,Q) = 3W1 − Q2

4x2W2. To
leading order at parton level this is Ŵ LO

0 = 4πQ2
i δ(1− z).

Going to next-to-leading order in QCD we will pick up one virtual contribution to
γ?q → q, in addition to s- and t-channel graphs of γ?q → qg as:

q pf

pi

γ?

,
q

pi pg

pf
γ?

,

pfq

pi pg

γ?

. (2.46)

The virtual graph can be calculated through dimensional regularization by going
to d = 4 − ε dimension. This will, however, lead to UV divergences. These can be
removed through renormalization of the free parameters of the theory such as the fields,
ψ and Aµ, the different masses, and the charges e and g. The interference between the
leading order graph and the virtual loop with the counter term diagram is

Ŵ V
0 = 4πQ2

i

αs

2π
CF

(
4πµ2

Q2

) ε
2 Γ(1− ε

2
)

Γ(1− ε)

(
− 8

ε2
− 6

ε
− 8− π2

3

)
δ(1− z), (2.47)
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where terms that will not contribute when ε→ 0 have been omitted and αs = g2/(4π)
is called the strong coupling constant. Since we have included the counter term results,
any ε poles will be IR divergences.

The calculations of the two real emission graphs are a bit more challenging, as we
would have to integrate over the phase space of both the quarks and the gluon and the
result is found in [14]. Here we will simply give the result from the above reference as

ŴR
0 =4πQ2

i

αs

2π
CF

(
4πµ2

Q2

) ε
2 Γ(1− ε

2
)

Γ(1− ε)

×
[
3z + z

ε
2 (1− z)−

ε
2 ·
(
−2

ε

1 + z2

1− z
+ 3− z − 3

2

1

1− z
− 7

4

ε

1− z

)]
. (2.48)

Looking at the expressions for the virtual and real emission graphs, it would appear
that the virtual graph has a 1

ε2
double pole while the real emission graphs only have a

single pole. However, the real emission result indeed has a double pole. This appears
in the terms that include 1

1−z
(1− z)−

ε
2 . To see this we will consider the identity

1

(1− z)1+ε
= −1

ε
δ(1− z) +

1

[1− z]+
− ε

[
ln(1− z)

1− z

]
+

+
∞∑
n=2

(−ε)n

n!

[
lnn(1− z)

1− z

]
+

.

(2.49)
Here we have introduced two plus functions which are defined as∫ 1

0

dz
f(z)

[1− z]+
≡
∫ 1

0

dz
f(z)− f(1)

1− z
, (2.50)∫ 1

0

dzf(z)

[
lnn(1− z)

1− z

]
+

≡
∫ 1

0

dz(f(z)− f(1))
lnn(1− z)

1− z
. (2.51)

so that in general for our two functions [g(z)]+ = g(z) for z 6= 1.
We can now insert this identity into the real emission result to get

ŴR
0 = 4πQ2

i

αs

2π
CF

(
4πµ2

Q2

) ε
2 Γ(1− ε

2
)

Γ(1− ε)
×

{
3 + 2z − 1 + z2

1− z
ln(z) +

(
8

ε2
+

3

ε
+

7

2

)
δ(1− z).

−
(
2
1 + z2

ε
+

3

2

)[
1

1− z

]
+

+ (1 + z2)

[
ln(1− z)

1− z

]
+

}
.

(2.52)

where we observe the double pole of the real emission result, and that it will perfectly
cancel with the double pole from the virtual graph.

We can now plug these together with the leading order result to find the form factor
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Ŵ0 up to next-to-leading order as

Ŵ0 = Ŵ LO
0 + Ŵ V

0 + ŴR
0 = 4πQ2

i

{
δ(1− z)− 1

ε

αs

π
Pqq(z)

(
4πµ2

Q2

) ε
2 Γ(1− ε

2
)

Γ(1− ε)

+
αs

2π
CF

[
(1 + z2)

[
ln(1− z)

1− z

]
+

− 3

2

1

[1− z]+

−1 + z2

1− z
lnz + 3 + 2z −

(
9

2
+

1

3
π2

)
δ(1− z)

]}
, (2.53)

with
Pqq(z) = CF

[
(1 + z2)

1

[1− z]+
+

3

2
δ(1− z)

]
. (2.54)

This distribution, Pqq(z), is known as a DGLAP splitting function after Dokshitzer,
Gribov, Lipatov, Altarelli and Parisi [15, 16, 17].

Now we have cancelled the double pole, but we are still left with a single pole
in the partonic cross section. This itself is inconsequential as long as the pole drops
out of physical predictions. To see how the pole vanishes, we will be considering the
infinite part of Ŵ0 separately and inserting this into the expression for the total W0

from equation (2.40). Doin so, we result with

W0(x,Q) = 4π
∑
i

Q2
i

∫ 1

x

dξ

ξ
fi(ξ)

[
−αs

2π
Pqq

(
x

ξ

)(
2

ε
+ ln µ̃

2

Q2

)
+ finite

]
, (2.55)

where µ̃2 ≡ 4πe−γEµ2. Now, from the definition of plus functions, the DGLAP splitting
function satisfies ∫ 1

0

Pqq(z)dz = 0, (2.56)

and then by integrating W0 over x, the single pole will exactly cancel for a total cross
section at a given Q.

For a fixed x however, the single pole does not vanish, and W0 is divergent. We
will instead consider differences to get finite answers and the difference in W0(x,Q) at
a fixed x, but different energy scales Q and Q0 is written as

W0(x,Q)−W0(x,Q0) = 4π
∑
i

Q2
i

∫ 1

x

dξ

ξ
fi(ξ)

[
αs

2π
Pqq

(
x

ξ

)
lnQ

2

Q2
0

]
. (2.57)

This integral is finite and hence the difference between W0(x,Q) at different energy
scales are also finite. We then see that as the finite part of equation (2.53) drops
out of such differences, it is instead the single pole at parton level that contributes to
predictions of logarithmic Q dependence in the hadronic tensor.

The reason we must consider differences here, eventhough QCD is a renormalizable
theory, is firstly because we have not introduced any cut offs at some physical scale in
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order to remove the IR divergences. This is reasonable due to the notion that for low
energy scattering, these partons are bound in the proton and does not interact with
the incoming electron. The IR divergences can also be absorbed into the definitions of
the PDFs and will be handled separately from the partonic cross section. In addition,
the difference of W0 gives a more practical calculation, and we get an answer that we
can test. From the result we can see that Bjorken scaling does in fact no longer hold
to higher order in perturbative QCD theory as seen in figure 2.2.

2.3 Factorization of the PDFs
In our calculation of the deep inelastic scattering cross section, we have already used
factorization so that we can write the cross section as a convolution between a pertur-
bative hard calculation, H, and the parton distribtion functions, f , as

σ = f ⊗H. (2.58)

This way of writing the cross section assumes that factorization is allowed, so that
we can treat the PDFs and the perturbative cross section independent of each other.
Hence for any scattering process, we can use the same PDFs for different perturbative
calculations. This factorization has only been proven to work in a few cases, including
the deep inelastic scattering that we have previously considered, and the Drell-Yan
process in which a lepton pair is produced from pp or pp̄ collisions via a gauge boson.

For a full discussion about the proof of factorization, one can read the article by
John Collins [18]. In this section, however, we will only briefly outline the process of
proving factorization before showing the consequence of factorization in the Drell-Yan
case.

2.3.1 Outline of factorization proof
In the approach to show factorization in the DIS case, we can relate the cross section to
a product of currents Jµ(x)Jν(y). We can then rewrite this in terms of local operators
before expanding around xµ = yµ since in the DIS limit where Q2 → ∞ then xµ−yµ →
0. Finally, we can define the PDFs as a matrix element of these local operators with
proton states as f ∼ 〈P |O|P 〉, where |P 〉 is the proton state.

We want to use the electromagnetic current defined as Jµ(x) = ψ̄(x)γµψ(x) to write
the hadronic tensor in terms of a product of this current. For DIS, this means that
we write the matrix element as the current at x = 0, as it couples to an initial proton
state |P 〉 and an arbitrary final hadronic state 〈X| as

M(γ?p+ → X) = eεµ〈X|Jµ(0)|P 〉. (2.59)

Then we can compare this to (2.6), and after integrating over the phase space of the
final hadronic state using

〈P |Jµ(0)|X〉 = e−i(pp−pX)x〈P |Jµ(x)|X〉, (2.60)
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we get that
Wµν(ω,Q) =

∫
d4xeiq·x〈P |Jµ(x)Jν(0)|P 〉, (2.61)

where ω = 1/x > 1.
We now want to write this by using operator product expansion to expand in the

Q→ ∞ limit around xµ = 0. However, in order to complete this, we first need to turn
our product of operators into a time-ordered product by using the optical theorem [19].
This theorem states that the total rate for γ?p+ → X is given as the imaginary part
of the forward scattering rate γ?p+ → γ?p+ so we can write

Wµν = 2ImTµν , (2.62)

with
Tµν(ω,Q) = i

∫
d4xeiq·x〈P |T{Jµ(x)Jν(0)}|P 〉. (2.63)

We can now use operator product expansion (OPE) on this new time ordered
product. For our case we use the definition of OPE given as∫

d4xeiqxO(x)O(0) =
∑
n

Cn(q)On(0). (2.64)

We can then write the product of the Jµ(x) in the high energy limit as

T{Jµ(x)Jν(y)} =
∑
n

Cn(x− y)Oµν
n (x). (2.65)

From this there are a bit of tedious calculations that are also outlined in section 32.4
in Schwartz [2]. These calculations eventually lead to an expression for T µν as

T µν =
∑
q

Q2
q

{(
−gµν + qµqν

q2

) ∞∑
n=2,4,···

ωnAn
q

+
4

Q2ω2

(
pµ − p · q

q2
qµ
)
·
(
pν − p · q

q2
qν
) ∞∑

n=2,4,···

ωnAn
q

}
, (2.66)

where An
q are complex functions of Q. From this we can again recognize structure

functions that we now call T1 and T2 as

T1 =
ω

2
T2 =

∑
q

Q2
q

( ∑
n=2,4,···

ωnAn
q

)
. (2.67)

These structure functions are often related to the dimensionless form factors of the
partonic cross section through W1 = 2ImT1 and W2 =

4x
Q2 ImT2. From this we can finally
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find an operator definition of the PDFs through the relation W1 = 2π
∑

qQ
2
qfq(x). This

gives
fq(x) =

1

π

∑
n=2,4,···

x−nImAn
q . (2.68)

This relation gives us an operator definition of the PDFs in the DIS scheme, and
can therefore use factorization and write the PDFs separately from the partonic cross
section. For the Drell-Yan case, factorization will lead to us being able to write a cross
section of the from pp→ ll̄ as

σ =
∑
ab

∫
dxa

∫
dxbfa(xa)fb(xb)σab, (2.69)

where we sum over the partons a and b. This will be discussed more in the next chapter.
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Chapter 3

Beyond the standard model

Although the standard model has been extremely successful in describing the high
energy interactions between the fundamental particles, there are still problems that
the model cannot explain, such as how to include gravity and the concepts of dark
matter and dark energy. Physicists often attempt to solve these problems by adding
new theories on top of the existing model. In this chapter, we will consider one of these
expansions, namely supersymmetry.

We will begin with a brief overview of this new extension to the standard model,
listing the new particles included in this theory and providing the vertex rules for some
of these. Then, when we have the necessary Feynman rules, we will consider a Drell-
Yan cross section for proton-proton collision that produces a slepton pair, which are
the supersymmetric partners of the leptons. We will discuss the kinematics of such a
collision before deriving the leading order contribution to the cross section. Finally, we
will note how to expand this to higher order in perturbation theory and then recite the
next-to-leading order result for the cross section given in the article by Bozzi, Giuseppe
and Fuks [20].

3.1 Supersymmetry
The model of supersymmetry arises from a symmetry that turns fermions into bosons
and bosons into fermions. This model was developed from trying to combine the
Poincaré symmetry of special relativity with the local gauge symmetry of QFT into
one big symmetry. This extension to include fermion-boson symmetry was named the
super-Poincaré algebra [21].

The consequence of fermions now being able to be turned into bosons and vice versa
gave rise to a plethora of new particles. In this thesis we will consider the minimal
supersymmetric standard model (MSSM) [22] that connects each of the particles of the
standard model with its own supersymmetric partner. The complete set of particles in
the theory are listed in table 3.1. This table shows how the spin-1

2
fermions are mapped

to scalar superpartners while the spin-1 bosons and scalar Higgs boson are mapped to
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spin-1
2

superpartners.

Particle Symbol Spin Superpartner Symbol Spin
Quarks q 1

2
Squarks q̃ 0

Leptons l 1
2

Sleptons l̃ 0
WSU(2) W± 1 Wino W̃± 1

2

BU(1) B 1 Bino B̃ 1
2

Gluon g 1 Gluino g̃ 1
2

Higgs hu, hd 0 Higgsinos h̃u, h̃d
1
2

Table 3.1: List of the original particles of the standard model together with their
superpartner from the MSSM.

In the table above, the W bosons are the gauge fields of SU(2) and the B boson
is the gauge field of U(1). The physical gauge bosons, W±, Z and the photon, γ,
are linear combinations of these. This mixing of bosons is a fundamental part of the
electroweak theory and is treated in detail by Weinberg’s work in [23]. An additional
thing to note from this is the existence of two Higgs boson SU(2) doublets and two
Higgsino doublets. This is caused by a gauge anomaly arising with only one Higgsino
doublet. Additionally, in the MSSM theory the up type quark and the down type quark
no longer coupled to the same Higgs field. So, to make both the up and the down type
quark massive, two Higgs fields needs to be introduced in the theory. In the standard
model, the bino and wino bosons mix, but now the two Higgsino fields will also mix.

This new MSSM theory adds many new parameters to the standard model and
in the unconstrained version of MSSM, there are over 100 new parameters. With all
of these parameters, any complete phenomenological analysis of the parameter space
is next to impossible. Instead, considering the three assumptions of no new source
of CP-violation, no flavour changing neutral currents and first- and second-generation
universality, the amount of new parameters compared to the standard model can be
reduced to 19. This model is called the phenomenological MSSM [24], and it includes
all the new particle masses, the ratio of the vacuum expectation value of the two higgs
doublets, and three third generation trilinear couplings.

In this thesis we will focus on the sleptons, and how they couple to the particles
from the standard model. Specifically we will consider the couplings of these sleptons
to the Z0 boson and the photon, which are what we need later when we are going to
calculate the leading order contribution to slepton pair production. A discussion on
the Lagrangian of the MSSM and an overview the Feynman rules of the model can be
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found in [25]. The verticies of note for us are

pj

pi

γµ

l̃?j

l̃i

= ieδij(pi + pj)
µ, (3.1)

and

pj

pi

Z0
µ

l̃?jα

l̃iβ

=
ig

cos(θW )
Zαβ

li
(pi + pj)

µ, (3.2)

where θW is the Weinberg angle which is the mixing angle between the photon and the
Z0 boson, g = e

2sin(θW )
is the weak charge and

Zαβ
li

=
1

2
(Li

1αL
i
1β − 2sin2θW δ

αβ). (3.3)

Here α and β are the mass states while

Li =

(
cosθi sinθi
−sinθi cosθi

)
, (3.4)

is the lepton mixing matrix giving the mixing between the slepton gauge interaction
states and their mass eigenstates. Here i = ẽ, µ̃, τ̃ , where for the selectron and smuon,
the mass states and the interaction states are the same so there is no mixing, and
therefore θẽ,µ̃ = 0. These Feynman rules with slepton mixing conventions can be found
in [26].

The slepton-photon and the slepton-Z0 vertices are the two vertices needed to cal-
culate the matrix element to leading order later in this chapter. From this calculation
we will see that the cross section will depend on the masses of the sleptons and for
the stau case, the cross section will also depend on the mixing angle that mixes the
interaction states with the physical mass states of the stau particle. From this discus-
sion we have all the pieces necessary for calculating the Drell-Yan process of pp→ l̃il̃i,
which we will do in the next section.
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3.2 Slepton pair production at LHC
In this section we will discuss the calculation of slepton pair production using the
Feynman rules from the previous section. We can then use the factorization theorem
in QCD to write our unpolarized cross section as

σ =
∑
a,b

∫
dM2

∫ 1

0

dxa

∫ 1

0

dxbfa(xa, µ
2
F )fb(xb, µ

2
F )
dσ̂ab(z,M

2, αs(µR))

dM2
. (3.5)

Here, µF is introduced as a factorization scale, µR is a renormalization scale that
determines the value of αs, and the sum runs over the partons in the proton. The
invariant mass of the slepton pair is defined as M2 = zxaxbS = zs with s being the
partonic center-of-mass energy; this definition can then be used to define the differential
cross section in terms of z as

dσ̂

dM2
=
dσ̂

dz

dz

dM2
=
dσ̂

dz

1

s
. (3.6)

The partonic hard scattering cross section can then be calculated in perturbative QCD
theory as

dσ̂ab
dz

=
∞∑
n=0

(
αs(µR)

π

)n
dσ

(n)
ab

dz
, (3.7)

where σ(n) is the n-th order coefficient. In this thesis we will focus on the LO (n = 0)
coefficient, and the results of the NLO (n = 1) coefficient will also be stated.

3.2.1 Kinematics of the cross section
Here we will consider the kinematics of our process, and to leading order, this simplifies
to a 2 → 2 scattering. With this we can do several simplifications to the kinematics
side of the equation by the use of momentum conservation and explicitly performing
the phase space integral.

In general, a scattering process can be written as

dσ =
1

(2E1)(2E2)|~v1 − ~v2|
|M|2(2π)4δ4(Σpµi − Σpµf )×

∏
final states j

d3pj
(2π)3

1

2Epj

, (3.8)

with
dΠLIPS = (2π)4δ4(Σpµi − Σpµf )×

∏
final states j

d3pj
(2π)3

1

2Epj

, (3.9)

being referred to the Lorentz-invariant phase space. In this equation, |M|2 encodes all
the interactions between the particles, and everything else deals with the kinematics
of the scattering. Additionally, anything with a subscript 1 or 2 indicates the two
incoming particles.
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For our specific 2 → 2 process of qq̄ → l̃il̃
?
j , it is beneficial to consider the center-of-

mass (CM) frame where we have that ~p1 = −~p2 and ~p3 = −~p4. We can also relate the
energies as E1+E2 = E3+E4 = ECM, with ECM being the total energy of the collision
in the CM frame. This center-of-mass energy is often written as ECM =

√
S, and we

will use this convention from here. Then the phase space becomes

dΠLIPS = (2π)4δ4(Σp)
d3p3
(2π)3

1

2E3

d3p4
(2π)3

1

2E4

, (3.10)

where Σp = Σpi −Σpf . We can then integrate over ~p4 by the use of the delta function
to get

dΠLIPS =
1

16π2
dΩ

∫
dpf

p2f
E3

1

E4

δ(E3 + E4 −
√
S), (3.11)

with pf = |~p3| = |~p4|, E3 =
√
m2

3 + p2f and E4 =
√
m2

4 + p2f . To continue on from
here, one can do a change of variables in the remaining delta function from pf to
x(pf ) = E3(pf ) + E4(pf ) −

√
S. By doing this calculation after inserting the Jacobi

determinant, one finds that the phase space becomes

dΠLIPS =
1

16π2
dΩ

pf√
S
θ(
√
S −m3 −m4), (3.12)

where θ(· · · ) is the Heaviside function which is defined as θ(x) = 1 if x > 0 and 0
otherwise. We can also use that

|~v1 − ~v2| =
∣∣∣∣ |~p1|E1

+
|~p2
E2

∣∣∣∣ = pi

√
S

E1E2

, (3.13)

with pi = |~p1| = |~p2|.
If we then insert both (3.12) and (3.13) into the general equation for the scattering

process given in (3.8), we get a relation for the differential scattering in the center-of-
mass frame as (

dσ

dΩ

)
CM

=
1

64π2S

pf
pi
|M|2θ(

√
S −m3 −m4), (3.14)

where the CM subscript reminds us that this is only valid if we work in the center-of-
mass frame.

In this equation, the Heaviside function acts as a cutoff so that any processes where
the incoming particles do not have enough energy to create the two outgoing particles
are cancelled out. We are going to include this as a limit on the invariant mass where
this invariant mass is defined in the CM frame as

M2 = (p3 + p4)
2 = m2

3 +m2
4 + 2E3E4 + 2|~p3||~p4|. (3.15)

Therefore M2 > (m3 +m4)
2, and if not then we set σ = 0.

In the next part we will focus on the interaction matrix M to find the full cross
section. In addition, in the high energy limit of our calculation, we can consider the
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incoming quarks as massless so that m1 = m2 = 0. This then gives pi = E1 = E2 =√
S/4. With this, the cross section simplifies to(

dσ

dΩ

)
CM

=
pf

16π2S
3
2

|M|2. (3.16)

3.2.2 Calculation of the LO Drell-Yan cross section
The partonic Feynman diagram of interest when computing the matrix element of
our collision is given as the reaction qq̄ → l̃il̃j at leading order. The diagram can be
represented as

γ, Z0

q̄

q l̃i

l̃j

with either a photon or a Z0 boson as the virtual particle.
From this we can see that the matrix element will be a sum of the two contributions

as
iM = iMγ + iMZ0 , (3.17)

and the squared matrix element will consist of three terms as

|M|2 = |Mγ|2 + 2MγM?
Z0 + |MZ0|2. (3.18)

Here, the first term is the squared photon contribution, the second is the photon-Z0

interference, while the last is the squared Z0 contribution.
Then by looking at each graph separately, we get for the photon contribution that

iMγ = v̄(p2)(−iQqγ
µ)u(p1)

−i
[
gµν − (1− ξ)kµkν

k2

]
k2

(−iQlδ
ij(pi + pj)

ν), (3.19)

where kµ = pµ1 +p
µ
2 and k2 = Q2 = s as the partonic center-of-mass energy, and Qq and

Ql being the charge of the quark and sleptons. According to gauge invariance, the kµkν
k2

term should not contribute. If we use the equations of motions /p1u(p1) = mu(p1) and
v̄(p2) /p2 = −mv̄(p2) and then compute the expression v̄(p2)γ

µu(p1)kµ, this will indeed
cancel out and not contribute. Then we get

Mγ =
e2

s
δijeqelv̄(p2)γ

µu(p1)(pi + pj)µ, (3.20)

and the conjugate amplitude as

M†
γ =

e2

s
δijeqel(pi + pj)µū(p1)γ

µv(p2). (3.21)
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These spinors, u and v have a spin dependence which we need to average over, using
the spin sum rule of ∑

s

u(p1)ū(p1) = ( /p1 +mq1), (3.22)

and ∑
s

v(p2)v̄(p2) = ( /p2 +mq1). (3.23)

We will also be working in the high energy limit where we can treat the incoming
quarks as massless, so mq = 0.

With all of this, when calculating the squared matrix element, we will end up with
a trace over gamma matrices. We will therefore need to make use the trace identities
of

Tr(γαγβγργσ) = 4(gαβgρσ − gαρgβσ + gασgβρ), (3.24)

and
Tr(γαγβ) = 4gαβ, (3.25)

together with the fact that the trace of any odd number of these gamma matrices is
zero. In addition, we need to average over each of the polarizations of the incoming
quark and anti-quark pair. Thus we have to add a factor of 1

4
to the squared matrix

element which becomes

1

4

∑
spins

|Mγ|2 =
e4

4s2
δije2qe

2
l Tr( /p1γµ /p2γν)(pi + pj)µ(pi + pj)ν . (3.26)

This gives

1

4

∑
spins

|Mγ|2 =
e4

s2
δije2qe

2
l (p

µ
1p

ν
2 + pν1p

µ
2 − p12g

µν)(pi + pj)µ(pi + pj)ν , (3.27)

where p12 ≡ p1 · p2 = pµ1p2µ
The next steps in the calculations are to contract the momenta with each other.

This can be simplified further by introducing the Mandelstam variables [27]. These
variables can be related to the energies and momenta in the center-of-mass frame.
With this, one can insert the matrix element into our expression for the differential
cross section to integrate over the solid angles Ω. Finally, the cross section can be made
differential in the partonic Bjorken z by adding it as a delta function. However, as we
will see later, for the leading order contribution this will just be equivalent of setting
z = 1. These calculations are a bit extensive, but lead to(

dσ0
qq

dz

)
γ,CM

=
α2πβ3

9M2
e2qe

2
l δ

ijδ(1− z), (3.28)
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as the partonic center-of-mass result, which agrees with the squared photon contribu-
tion from [20]. Here we have factorized the slepton mass terms in

β =

√
1 +

m4
i

M4
+
m4

j

M4
− 2

(
m2

i

M2
+
m2

j

M2
+
m2

im
2
j

M4

)
, (3.29)

and M2 = s as the partonic center-of-mass energy. From here we will only consider
the center-of-mass frame, so the subscript CM will now be implicit.

For both the photon-Z0 interference and the squared Z0 contribution, one has to
go through similar calculations. In the end, the leading order partonic coefficient can
be found as

dσ0
qq̄

dz
=
α2πβ3

9M2

(
e2qe

2
l δ

ij +
eqelδ

ij(LZqq +RZqq)Re[LZl̃i l̃j
+RZl̃i l̃j

]

4sin2θW (1− sin2θW )(1−m2
Z/M

2)

+
(L2

Zqq +R2
Zqq)|LZl̃i l̃j

+RZl̃i l̃j
|2

32sin4θW (1− sin2θW )2(1−m2
Z/M

2)2

)
δ(1− z). (3.30)

Here the Z0 couplings are given as

LZqq = 2T 3
q − 2eqsin2θW , RZqq = −2eqsin2θW , (3.31)

and
LZl̃i l̃j

= (2T 3
l − 2elsin2θW )Ll̃

i1L
l̃
j1, RZl̃i l̃j

= −2elsin2θWL
l̃
i2L

l̃
j2, (3.32)

where
Ll̃ =

(
cosθl̃ sinθl̃
−sinθl̃ cosθl̃

)
, (3.33)

is the slepton diagonal mass matrix with θl̃ = 0 for both the selectron and the smuon
as in equation (3.4), and T 3

f is the weak isospin charge of the quarks and sleptons.

3.2.3 NLO results for slepton pair production
Going to next-to-leading order will generate in total ten new graphs that contribute at
this order. These are three QCD loop corrections, three SUSY-QCD loop corrections,
two real gluon emission graphs, and two graphs that have one incoming quark and one
incoming gluon. In this thesis, these graphs will not be computed analytically but we
will numerically evaluate them, so the resulting cross sections will be stated here. The
QCD quark-antiquark corrections are [20]

dσ
(1;QCD)
qq̄

dz
= σ0(M

2)CF

[(
π2

3
− 4

)
δ(1− z) + 4

(
ln(1− z)

1− z

)
+

− 1 + z2

1− z
lnz

− 2(1 + z)ln(1− z) +
2P

(0)
qq (z)

CF

lnM
2

µ2
F

]
, (3.34)
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and the quark-gluon corrections

dσ
(1;QCD)
qg

dz
= σ0(M

2)TF

[(
1

2
− z + z2

)
ln(1− z)2

z
+

1

4
+

3z

2
− 7z2

4
+
P

(0)
qg (z)

TF
lnM

2

µF

]
.

(3.35)
Here the σ0(M2) is the Born cross section given in (3.30) without the delta function
term, CF and TF are the Casimir invariants from (2.27), and P

(0)
qq̄,qg are the DGLAP

splitting functions [15, 16, 17] given as

P
(0)
qq̄ (z) =

CF

2

(
3

2
δ(1− z) +

2

(1− z)+
− (1 + z)

)
, (3.36)

and

Pqg(z) =
TF
2
(z2 + (1− z)2). (3.37)

Lastly, the SUSY-QCD corrections are given from [20] as

dσ
(1;SUSY)
qq̄

dz
=
α2πCFβ

3

36M2

(
fγe

2
qe

2
l δ

ij + fγZ
eqelδ

ijRe[LZl̃i l̃j
+RZl̃i l̃j

]

4sin2θW (1− sin2θW )(1−m2
Z/M

2)

+ fZ
|LZl̃i l̃j

+RZl̃i l̃j
|2

32sin4θW (1− sin2θW )2(1−m2
Z/M

2)2

)
δ(1− z),

(3.38)

where the virtual loop corrections of fγ, fγZ and fZ can be found in appendix B of [20].
We can now find the full partonic cross section to next-to-leading order by inserting

the corrections we have found into (3.7). This results in

dσ̂ab
dz

=
dσ0

qq̄

dz
+
αs

π

[
dσ

(1;QCD)
qq̄

dz
+
dσ

(1;QCD)
qg

dz
+
dσ

(1;SUSY)
qq̄

dz

]
, (3.39)

where we need to sum over the partons a and b before inserting this into the integral
over the fractional momenta xa and xb in (3.5) to get the full cross section for a given
slepton mass. This will be done in the next chapter through a numerical evaluation
and integration.
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Chapter 4

Numerical Calculation of Cross
Sections

In high energy physics calculations, we often are moved to evaluate the same cross
section many times. This is a consequence of trying to fit models to experimental data
generated through experiments at for example LHC and Tevatron, where there are
numerous free parameters that needs fitting. The cross section will therefore have to
be evaluated for all the different parameters to get a good prediction of whether or not
the model fits with the data. This is the main reason as to why a faster and improved
method at calculating these cross sections numerically is needed, as less time will be
spent on searching the parameter space and more time can be spent analysing the data
or further improving the model.

The main focus of the computational part of this thesis is to incorporate VegasFlow
[28] and PDFFlow [29] in the cross section calculation in order to get better opportunities
for parallelisation on both CPUs and GPUs. This is done so that we can achieve a
higher speed up in calculations and then have a better starting point to explore the
large parameter space of the MSSM model.

4.1 Parton distribution functions
Parton distribtuion functions (PDFs) are a big bottleneck when it comes to speeding
up the process of calculating any proton collision cross section. We can see this by
looking at the main function for calculating pair production cross sections given in
equation (3.5). In that equation we see that for every point in the phase space integral
xa and xb, we need to estimate a new value for the PDFs in addition to the calculation
of the hard partonic qq̄ → l̃il̃

?
j process. Normally this has been done by accessing the

LHAPDF [30] library tool to download and make use of global fits to PDF data from
different research groups. When a PDF set have been downloaded, it can be used to
evaluate the value of xfi(x, µ2

F ) for a given value of x, µ2
F , and a specific parton ID,

i, of the process, where µF is the unphysical factorization scale. These parton IDs
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follow from the convention set by the Particle Data Group (PDG) [31] where particles
are given positive numbers while anti-particles are negative numbers. The parton IDs
that appear in the proton are the quarks and gluon given as d, u, s, c, b = 1, 2, 3, 4, 5,
and g = 21 where the top quark does not contribute to the cross section that we are
considering, as it is too heavy.

With the given parton IDs we would have to sum over all the partons that can
contribute from the anti-particles and the particles. There is however no difference if
parton a is the particle and parton b is the anti-particle or vice versa; one can cut the
summation in two by instead just summing over the particle IDs and adding a factor
of 2 as

σ = 2
5∑

a=1

∫
dxa

∫
dx−afi(xa, µ

2
F )f−i(x−a, µ

2
F )σ̂a,−a. (4.1)

The traditional way of calculating this numerically is through a given PDF set from
the LHAPDF library and an integration routine, such as the VEGAS algorithm described
in [32]. This is a Monte Carlo based algorithm which leads to the problem discussed
above of multiple calls to the LHAPDF library to get the values needed for the PDFs.

We can now note that for each point in the parameter space, the values of the PDFs
are independent of the other points. This problem then screams to be parallelised where
we can, through a single call to the PDFs, estimate the value of these for multiple x
and µ2

F values at the same time. This is where the PDFFlow and VegasFlow algorithms
comes in. These algorithms build upon the open source TensorFlow program where
GPU compatibility is built into the tool. With these two algorithms, we can use
VegasFlow to generate a tensor array of x values and corresponding µ2

F values. These
values are then taken up by PDFFlow to return the values for xf(x, µ2

F ) for each of the
elements in the tensor array. This way we only need to call the PDF sets once, and
then we have all the needed values in storage to access when the computation of the
hard process is done. We can also add an additional tensor array consisting of the
particle IDs before summing over this dimension in the tensor matrix of xf(x, µ2

F ) so
that the summation is done inside of the integration.

The different PDF sets that can be found in the LHAPDF library are often fitted
to very different data from many specific experiments such as LHC data and anti
proton data. This leads to a lot of consideration of which PDF set is best suited to
the calculations done in this thesis. Since we are focusing on proton collisions at the
LHC, it is natural for us to use up-to-date PDF sets that have also been fitted to data
from the LHC. This is why we use the PDF4LHC15_nlo_mc_pdfas set described in the
PDF4LHC article [33] and the newly released PDF4LHC21_mc_pdfas set [34] fitted to data
from the LHC.
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4.2 Numerical error calculations
When calculating anything numerically, there are always assumptions made that will
lead to numerical uncertainties. In this section we will discuss three of these numerical
uncertainties that arise and how to handle them. The first of these errors is the scale
factor, the second is the PDF error, and the third is the error in the strong coupling
constant.

4.2.1 Factorization and renormalization scale error
The factorization scale, µF , is the scale that is introduced to remove any IR divergences
from the hard scattering process. With this, the PDFs becomes a function of this scale.
Since this is an unphysical scale, it is often set to be the same as the mass, ml̃, of the
slepton pair, µ2

F = ml̃2 . The renormalization scale, µR, is the scale used to determine
the running of the strong coupling constant αs(µ

2
R) at a given energy scale. This is

also an unphysical scale and for simplicity, it is also set to be equal to the slepton mass
which is equal to the factorization scale, µ2

R = µ2
F = ml̃2

By varying these scales, we can notice that the leading order cross section has
a slight dependence on the factorization scale, while the next-to-leading order cross
section has a dependence on the renormalization scale with the factorization scale.
This dependence on the renormalization scale will drop out if we can sum over the
whole perturbation series, but that is a practical impossibility. Instead we normally
say that the higher order contributions introduces an error where the highest and lowest
contribution can be found by setting the scale to be 2µR and µR/2. We can also find
the error from the factorization scale in a similar way by setting the scale to be 2µF

and µF/2. This choice is rather arbitrary, but it gives a good estimate for the error of
the renormalization and factorization scale.

4.2.2 PDF uncertainties
The PDF sets given by the different research groups are a global fit to data from
different particle colliders where the researchers need to do numerous interpolations
and estimations to extrapolate the data of the PDFs to any value of x and µF one
might enter to the function. Because of this, they create several members or replicas
to the same PDF set, from which one can compute numerical errors. This is different
for each PDF set, and it is described in the article that compliments the set in question.

For our PDF sets, we use the description from chapter 6 in both of the PDF4LHC
articles [33, 34]. We use the Monte Carlo set, so we must consider the uncertainty
prescription for this sets. The 0th member is given as the central value, 〈σ〉 ≈ σ(0),
while the rest, σ(k) can be used to calculate the uncertainties. The first way is to
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calculate the standard deviation of the distribution as

δpdfσ =

√√√√ 1

Nmem − 1

Nmem∑
k=1

(σ(k) − 〈σ〉)2, (4.2)

where Nmem = 100 in our case.
Another more commonly used method for the Monte Carlo sets is to find the 68%

confidence level (CL) of the set which corresponds to 1σ of a Gaussian distribution.
This is done by first denoting Fk as the physical observable computed using the k-
th member of the PDF set. We can then order the ibservables in ascending order
with F1 being the smallest and FNmem being the largest. Next we can remove (100 −
68)% = 32% of the replicas with 16% on each side so that we are left with the set
[F0.16Nmem ,F0.84Nmem ]. In our case, with Nmem = 100, we can then find the uncertainty
as the difference between the two extremities of the new set, divided by a factor of 2.
The 68% CL PDF uncertainty is then given as

δpdfσ =
F84 −F16

2
. (4.3)

With these members, there are regions of greater uncertainties specifically for large
x values, where the observables can be calculated to a negative value for a given member
k. For cross sections however, we know from physical constraints that they need to be
positive, so we are required to modify these results. The prescription for doing this
when Fk < 0 for a given replica k is to simply set Fk = 0 in these situations.

4.2.3 Adding αs uncertainties
Now with the PDF uncertainties in hand, we can turn to the uncertainties in the strong
coupling constant αs. This constant is also determined experimentally while fitting the
same PDF sets, and the central value for αs in the PDF4LHC21 sets are given as

αs(M
2
Z) = 0.1180± 0.0010, (4.4)

at the 68% CL, with MZ , the mass of the Z-boson, being the renormalization scale
used.

The PDF set therefore includes two additional members, where the strong coupling
constant is the upper and lower value respectively. With these members one can
compute the total PDF+αs uncertainty by using the procedure above with the αs

being the central value, then computing the upper and lower prediction for the two αs

values. The PDF replicas using the upper and lower prediction for the αs values are
the two last members of the set, k = 101 and k = 102. Using these PDF replicas and
inserting the new value of αs in the cross section, the αs uncertainty can be found as

δαsσ =
σ(αs = 0.119)− σ(αs = 0.117)

2
, (4.5)
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where δαsσ are the αs uncertainty. This corresponds to an uncertainty of δαs = 0.001
at the 68% CL. After we calculate the two uncertainties, we can add them together
according to the prescription mentioned in [35], so that

δσ =
√

(δpdfσ)2 + (δαsσ)2. (4.6)

For the PDF4LHC15 sets, however, the αs given here is

αs(M
2
Z) = 0.1180± 0.0015. (4.7)

In (4.5) we instead have to use αs(M
2
Z) = 0.1195 and αs(M

2
Z) = 0.1165 respectively,

but otherwise the procedure is still the same for calculating the αs uncertainty and
combining with the PDF uncertainty to get the total uncertainty of the cross section.

4.3 Results of numerical calculations
We are now ready to calculate the cross sections and uncertainties numerically. For
the parameters of the standard model, we use the current values of mW = 80.377 GeV
and mZ = 91.1876 GeV as the masses of the W and Z bosons, and GF = 1.16637 ·
10−5 GeV−2 as the world average value for the Fermi coupling constant, all taken
from the Particle Data Group [36]. We can then use these values to define the other
parameters we need, such as the squared sine of the electroweak angle

sin2θW = 1−
(
mW

mZ

)2

, (4.8)

and the electromagnetic fine structure constant

α =
√
2GFmW sin2θW/π, (4.9)

and the electric charge as
e =

√
4απ. (4.10)

We will also run our calculations at a center of mass energy of
√
S = 13 TeV which

is the same as the energy of the collisions in LHC’s pp-collider. Here, S is used as
the proton center-of-mass energy so that the partonic center-of-mass energy becomes
s = xaxbS.

We can now start to generate results, and firstly we wanted to check the PDFFlow
package by generating results for xfq(x,Q2) for a given Q2 for both the PDF4LHC15 and
PDF4LHC21 sets. These results are shown in figure 4.1 and 4.2. Here we cannot see any
major differences in the two PDF sets. For a more detailed description of the sets see
[33] and [34].
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Figure 4.1: Results for xfq(x,Q2) for both the PDF4LHC15 and the PDF4LHC21 sets with
Q2 = 10 GeV and q = u, d, s, c, ū, d̄, g.

Figure 4.2: Results for xfq(x,Q2) for both the PDF4LHC15 and the PDF4LHC21 sets with
Q2 = 103 GeV and q = u, d, s, c, ū, d̄, g.

After confirming the usage of the parton distribution functions, we can numeri-
cally evaluate the equation (3.5) from the partonic leading- and next-to-leading order
contributions found in chapter 3. Then we can study the cross section dependence
on the mass of the slepton pair and showcase the different uncertainties that we have
calculated. Firstly, we have the scale dependence where we vary the scale µF , µR to
the minimal and maximal values of ml̃/2 to 2ml̃. This is shown in the figures 4.3 and
4.4. Then we explicitly show the mass dependence of ẽLẽ?L and ẽRẽ

?
R. Additionally we

will also show both the PDF uncertainties and αs uncertainties of the selectron cross
section. This will be done both separately and added together according to (4.6).
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Figure 4.3: The mass dependence of the left handed selectron cross section together
with the scale uncertainties where µF = µR = 2ml̃ and µF = µR = ml̃/2. These are
calculated with the PDF4LHC15 set.

Figure 4.4: The mass dependence of the stau1 cross section together with the scale
uncertainties where µF = µR = 2ml̃ and µF = µR = ml̃/2. These are calculated with
the PDF4LHC15 set.

The above figures show the scale uncertainties of the leading order and the next-
to-leading order cross sections. We have included both the left handed selectron pair
production and the stau pair production. From the graphs, we can notice how the
relative scale uncertainty increases as the mass of the slepton pair also increases. Ad-
ditionally, the leading order contribution only picks up a factorization scale uncertainty
as this result is independent of the factorization scale, µR.
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Figure 4.5: The mass dependence of the selectron cross section for both the production
of the left handed and the right handed mass eigenstate.

Figure 4.6: This figure shows the full calculated PDF+αs uncertainties for both the
production of the left handed and the right handed mass eigenstate.

Figure 4.7: Here we have vizualised calculated PDF and αs uncertainties separately
for the production of the left handed selectron.
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The figures 4.5, 4.6 and 4.7 shown above have all been calculated using the PDF4LHC15
sets. The figures on the left side represent low slepton masses while the figures on the
right represent higher slepton masses. We can then notice from these that the uncer-
tainties are about an order of magnitude smaller than the cross section calculated. In
addition, the PDF uncertainties that was evaluated from 100 different replicas of the
PDF set are much more even than the αs uncertainties

In figure 4.8 we have calculated the relative difference of left-handed selectron pair
production at leading order and next-to-leading order of our calculations against the
same calculations using PROSPINO [37]. In the NLO contribution, one can note a slight
shift in the results; this is due to us being unable to calculate the SUSY virtual loop
coefficients, fγ, fγ,Z0 , fZ0 . These calculations are normally done through the module
LoopTools [38]. We had difficulties installing this library and making it into a dynamic
style library for sharing between Python and C++, so we have therefore decided to omit
this calculation from the rest of the results. However, since the calculations of the
PDFs is a big bottleneck in numerically evaluating cross sections, we believe we can
still consider speed up at this level of the calculations without the SUSY contributions.
Any extra time needed to calculate the SUSY contributions would be the same whether
or not we include the PDFFlow and VegasFlow modules.

Figure 4.8: The relative difference between our calculations of the left handed selectron
pair production against the same calculations from PROSPINO

Finally, we want to look at the time taken to calculate these parton distribution
functions. For the full calculation of both PDF uncertainties and αs uncertainties,
we will have to calculate the same cross section 103 times in total, once to get the
standard value from member zero, then 100 times in order to generate the full PDF
uncertainty, and lastly two more times to get the αs uncertainty. In figure 4.9 we
show the time taken for each new member of the PDFs that we calculate until we have
finished with all 103 members. The orange line represents the calculation of the cross
section without the use of modules, while the blue line represents the use of PDFFlow
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and VegasFlow where you initialize one PDF set at a time. Comparing these lines, we
see that the use of PDFFlow and VegasFlow almost halves the time spent. In total, we
found that calculating all the uncertainties for a single point in the parameter space
takes around 156.4 seconds. The green line still represents use of the above modules but
instead with the initialization of ten PDF sets at a time for the PDF members between
[1, 100]. Comparing the green line to the results from initializing just one PDF at a
time, we notice that the heavy load of downloading and computing xfq(x,Q2) for each
calculation significantly increases the time spent calculating. This has the potential of
being even more efficient if one can use VegasFlow to integrate over all the ten cross
sections at the same time, either through some sort of parallelization or vectorization.

Figure 4.9: Time comparison between using PDFFlow and VegasFlow in Python against
the classical way of calculating PDFs through LHAPDF in C++.
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Conclusion
The goal of this thesis was to use PDFFlow and VegasFlow in Python to numerically
evaluate cross sections in a way that sped up the calculations compared to the stan-
dard way of calculating these cross sections through the use of LHAPDF in C++. We
have then investigated the construction of the quantum field theory, which led us to
be able to calculate the slepton pair production to leading order. We then explored
the uncertainties and the mass dependence of this cross section before looking at the
amount of time a single point in parameter space took to completely evaluate with
uncertainties.

In order achieve our results, we first looked at how gauge theories are constructed
in chapter 1. In this chapter we discussed Lie groups and how they could be used to
create invariant Lagrangians under symmetries of the given group. We then used these
Lagrangians together with the path integral formalism to derive the Feynman rules of
quantum field theory for the SU(N) symmetry group. Next, we considered in chapter
2 the evolution of the deep inelastic scattering from the classical Coulomb scattering
result. The results of higher energy experiment of this scattering showed point like
constituents that Feynman called partons, and he introduced them in his parton model.
With this model one can predict a theoretical independence on the energy Q2 for a
given Bjorken x. Then, when introducing QCD as an SU(3) symmetry group, we can
confirm Bjorken scaling to leading order and at the same time find the next-to-leading
order corrections which showed there was a weak logarithmic dependence on Q2.

For chapter 3, we turned to new beyond the standard model physics. One of
the many theories that tries to explain phenomenons such as dark matter and dark
energy is the theory of supersymmetry. Here, we gave a brief overview of this theory
while listing up the standard model particles and their supersymmetric partner in the
minimal supersymmetric standard model. We then listed up a couple of Feynman
rules for the sleptons which we needed to calculate the leading order contribution to
slepton pair production. The interaction was then mediated by either a photon or a Z0-
boson. With this we resulted with three terms in the interaction matrix element which
included the squared photon and Z0 contribution, and the photon, Z0 interference
term. Finally, we cited the next to leading order results from [20].

In chapter 4, we discussed how to numerically evaluate the cross sections and how
to deal with uncertainties. We noticed that dealing with parton distribution functions
has always been a big bottleneck in computations. In this thesis we made use of the
program PDFFlow which is a python TensorFlow module wrapped around the LHAPDF
library. We then considered the uncertainties that arise from the unphyscial scale
factors, the PDF uncertainties and the αs uncertainties. In the end, we discussed the
different results we found from our calculations such as the time decrease found from
the use of both of the TensorFlow modules.

Further considerations from this thesis would be to work with the numerically
evaluations in order to parameterize the code such that the amount of time one saves
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for each point in parameter space is increased. We should also continue with working
on GPUs so that we can fully take advantage of the TensorFlow background of the
two modules we used.
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Appendix A

Code repository

The code used in this thesis will be publically available along with the data used in the
Github repository of https://github.com/martimc/MasterWork. Here the Full_xsec.cpp
program calculates the leading order and next-to-leading order contribution in C++
without the use of the VegasFlow or PDFFlow modules

The func_lib programs generates the shared library as a .so file for Ubuntu/LINUX
while the .dylib file is used for mac compilations. Then we can make use of the
above modules in Python which has been implemented in the Xsec_calc.py file. This
program is called by

$ python3 Xsec_calc . py ’ i n p u t _ f i l e ’ ’ ou tput_f i l e ’ ’ s lepton_pair_code ’
As an example one could write

$ python3 Xsec_calc . py ’ sleptons_MSSM24 . dat ’ ’ s e l e c t rons_out . dat ’
’ 100011_−100011 ’

to get the values of left-handed selectron pair production given in the file selectrons_out.dat
The main calculation part of Xsec_calc.py is done in the function

def NLO_integrand ( xarr , n_dim = None , weight = None ) :
M2 = xarr [ : , 1 ] ∗ xarr [ : , 2 ] ∗ s t r u c t . S
z = xarr [ : , 0 ]
n = len ( z . numpy ( ) )
s t r u c t .M2 = npct . as_ctypes (M2. numpy ( ) )
s t r u c t . z = npct . as_ctypes ( z . numpy ( ) )

q2 = t f . f i l l ( t f . shape ( xarr [ : , 0 ] ) , s t r u c t .mu_F∗∗2)
q2 = t f . c a s t ( q2 , t f . f l o a t 6 4 )
pid = t f . c a s t ( [ 1 , 2 , 3 , 4 , 5 ] , dtype=t f . in t32 )
pid_g = t f . ca s t ( [ 2 1 ] , dtype=t f . in t32 )
pid_rev = −1∗pid

pid_array = pid . numpy( )
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s t r u c t . pid = npct . as_ctypes ( pid_array )
imem = s t r u c t .PDF_mem

i f (0<imem and imem < 101 ) :
pdfs_a = pdf . xfxQ2 ( pid , xarr [ : , 1 ] , q2 ) [ imem−1]
pdfs_b = pdf . xfxQ2 ( pid_rev , xarr [ : , 2 ] , q2 ) [ imem−1]
pdfs_g = pdf . xfxQ2 ( pid_g , xarr [ : , 2 ] , q2 ) [ imem−1]

else :
pdfs_a = pdf . xfxQ2 ( pid , xarr [ : , 1 ] , q2 )
pdfs_b = pdf . xfxQ2 ( pid_rev , xarr [ : , 2 ] , q2 )
pdfs_g = pdf . xfxQ2 ( pid_g , xarr [ : , 2 ] , q2 )

i f imem == 101 :
alpha_s = pdf . alphasQ2 ( q2 ) −0.0015

e l i f imem == 102 :
alpha_s = pdf . alphasQ2 ( q2 )+0.0015

else :
alpha_s = pdf . alphasQ2 ( q2 )

s t r u c t . alpha_s = npct . as_ctypes ( alpha_s . numpy ( ) )

s t ruc t_po in te r = ctypes . byre f ( s t r u c t )

s t r u c t . n = ctypes . c_int (n)
Z1_xsec = np . z e r o s ( s t r u c t . n∗5)
LO_xsec = np . z e r o s ( s t r u c t . n∗5)
s t r u c t . Z1_xsec = npct . as_ctypes ( Z1_xsec )
s t r u c t . LO_xsec = npct . as_ctypes (LO_xsec )

c_l ib . LO_cross ( s t ruc t_po in te r )
c_l ib . Z1_cross ( s t ruc t_po in te r )

vec_LO_xsec = t f . ca s t (LO_xsec , t f . f l o a t 6 4 )
tf_LO_xsec = t f . reshape (vec_LO_xsec , shape=(n , 5 ) )

vec_Z1_xsec = t f . c a s t ( Z1_xsec , t f . f l o a t 6 4 )
tf_Z1_xsec = t f . reshape ( vec_Z1_xsec , shape=(n , 5 ) )

C_F = 4.0/3
T_R = 1.0/2
z2 = t f . math . square ( z )
ones = t f . ones (M2. shape , dtype=t f . f l o a t 6 4 )
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qq_term1 = −1 ∗ ( ones + z2 ) / ( ones − z ) ∗ t f . math . l og ( z )
qq_term2 = −2 ∗ ( ones + z ) ∗ t f . math . l og ( ones − z )
qq_term3 = −1 ∗ ( ones + z ) ∗ t f . math . l og (M2 / s t r u c t .mu_F∗∗2)

qg_terms = ( ones / 2 − z + z2 ) ∗ t f . math . l og ( t f . math . square ( ones − z )\\
/ z ) + ones / 4 + 3 ∗ z / 2 − 7 ∗ z2 / 4\\
+ P_qg( z , T_R) / T_R ∗ t f . math . l og (M2 / ( s t r u c t .mu_F∗∗2))

xsec_Z1 = 2∗ t f . reduce_sum ( ( tf_Z1_xsec∗pdfs_a∗pdfs_b ) , ax i s = 1)\\
/( xarr [ : , 1 ] ∗ xarr [ : , 2 ] )

qq_term = 2∗ t f . reduce_sum ( ( tf_LO_xsec∗pdfs_a∗pdfs_b ) , ax i s = 1)\\
∗alpha_s∗C_F/(np . p i ∗ xarr [ : , 1 ] ∗ xarr [ : , 2 ] ) ∗ ( qq_term1+qq_term2+qq_term3 )

qg_term = 2 ∗ ( t f . reduce_sum ( ( tf_LO_xsec∗pdfs_a ) , ax i s = 1)\\
+t f . reduce_sum ( ( tf_LO_xsec∗pdfs_b ) , ax i s = 1))\\
∗pdfs_g∗alpha_s∗T_R/(np . p i ∗ xarr [ : , 1 ] ∗ xarr [ : , 2 ] ) ∗ qg_terms

NLO_res = xsec_Z1 + qq_term + qg_term
return NLO_res

where the functions c_lib.LO_cross() and c_lib.Z1_cross() calls these functions
from the func_lib library.
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