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Chapter 1

Introduction
This dissertation introduces two well-known concepts from multivariate statistics
to the field of functional data analysis: power variations and copulas. Although
these techniques are applied in different situations, both can be classified as
nonlinear methods.

Functional data analysis comprises methods for the statistical analysis of data
that can be considered as discretely or fully observed random curves, surfaces,
or related smooth objects. Numerous applications can be found in areas such as
finance, economics, meteorology, biomechanics, psychology or neurophysiology
(cf. [89]), where functional data analysis has proven to be an invaluable approach
to reveal smooth features from inherently infinite-dimensional data. In that
regard, the realm of functional data differs fundamentally from the field of
multivariate statistics and entails many new mathematical challenges.

In the simplest situation, we assume to observe i.i.d. copies X1, ..., Xn of
a second-order random variable X taking values in a separable Hilbert space
H such that E[‖X‖2

H ] < ∞. The emblematic problem is to make inferences
on the mean m := E[X] and the covariance operator C := E[X⊗2], where
h⊗2 = 〈h, ·〉Hh denotes the usual tensor product. Often, X = (Xt)t∈[0,T ] is
a real-valued stochastic process such that E[X2

t ] < ∞ for all t ∈ [0, T ] and is
considered as an element in the Lebesgue space L2([0, T ]) of (equivalence classes
of) square-integrable functions f : [0, T ] → R for some T > 0. In this case, the
covariance operator can be expressed by an integral operator

Cf(t) =
∫ T

0
c(t, s)f(s)ds t ∈ [0, T ],

where c(t, s) = cov(X(t), X(s)) is the covariance kernel of X. Finding ways to
estimate C (or equivalently, the kernel c) is of the utmost importance as this
allows for the well-known functional principal component analysis, arguably the
cornerstone of the theory and a key method to make infinite-dimensional data
tractable. The idea is to make use of the fact that the nuclearity of C yields an
eigendecomposition of the form

C =
∞∑

j=1
λje⊗2

j ,

where λj ≥ 0 are the positive eigenvalues of C in decreasing order and (ej)j∈N is
the corresponding orthonormal system of eigenvectors. If c is continuous, this
decomposition can also be expressed on the level of the covariance kernel for
s, t ∈ [0, T ] by

c(s, t) =
∞∑

j=1
λjej(s)ej(t)

1



1. Introduction

where the convergence holds uniformly in [0, T ]2. This is commonly known as
Mercer’s Lemma, cf. [26, Lemma 1.3]. The derivation of these eigenelements
yields an optimal linear approximation of the infinite-dimensional random
variable X by virtue of the fundamental Karhunen-Loève expansion (cf. [26,
Theorem 1.5]). More precisely, the family (Zn)n∈N := (〈X, en〉)n∈N of real-valued
random variables is by definition pairwise uncorrelated with mean zero, variance
E
[
Z2

n

]
= λn, and for all t ∈ [0, T ] we have with respect to the L2(Ω)-distance

for large N that

XN
t − mt :=

N∑
i=1

Znen(t) ≈
∞∑

i=1
Znen(t) = Xt − mt.

The convergence of the random series on the right hand-side holds uniformly
on [0, T ] with respect to the L2(Ω)-norm. This allows us to approximate the
infinite-dimensional random variable X with just a finite number of random
sources Z1, ..., ZN for N ∈ N by the best N -dimensional linear approximation in
terms of the mean squared error. That is, for any orthonormal system (fn)n∈N

and X̄N
t =

∑N
n=1〈X, fn〉fn(t) we have

E

[
‖X − XN ‖2

L2([0,T ])

]
≤ E

[
‖X − X̄N ‖2

L2([0,T ])

]
.

It is clear that the success of this procedure hinges on the quality of the
estimator for the covariance C. In the simple i.i.d. setting with fully observed
curves, it is not hard to prove that the empirical mean m̂n := 1

n

∑n
i=1 Xi and

empirical Covariance Ĉn := 1
n

∑n
i=1(Xi − m̂n)⊗2 form consistent estimators of

m and C respectively. The empirical covariance has finite rank n and has at
most n positive eigenvalues λ̂1,n, ..., λ̂n,n, which we can derive from Ĉn together
with the corresponding eigenfunctions ê1,n, ..., ên,n. These values and functions
are consistent estimators of the first n eigenvalues λ1, ..., λn and eigenvectors
e1, ..., en of C (cf. Lemma 4.2 and Theorem 4.4 in [26]).

In that regard, Many authors consider the works of Karhunen [76] and
Grenander [59] as a potential starting point of the field. Since then, the literature
on the statistical theory for functional data has evolved considerably and includes
in addition to functional principal component analysis (cf. [45], [92], [94], [61])
techniques such as functional linear regression (see [29],[28], [60]), the analysis
of functional time series (cf. [26], [86]) and corresponding methods for sparsely
sampled functional data (cf. [98], [99], [84], [62]). Multiple textbooks on the
topic such as [90], [67], [49] or [66] have appeared as well. These techniques are
remarkable in the sense that they can extract major information from infinite-
dimensional objects parsimoniously. However, the majority of available methods
is inherently linear and assumes simple or weak forms of dependence between the
functional data. Indeed, the functional principal component analysis described
in the basic case above accounts for linear dependence patterns (covariance) and
relies on the often unrealistic i.i.d. assumption on the random curves. According
to the survey [96], the predominant focus on linear models might be due to
“the complexity of functional data analysis, which blends stochastic process
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theory, functional analysis, smoothing and multivariate techniques” [96, p.24].
At the same time, they argue that as “more and more functional data are being
generated, it has emerged that many such data have inherent nonlinear features
that make linear methods less effective” [96, p.4].

As an example in which the success of a statistical method for functional data
might be prone to neglecting nonlinear patterns, we can consider the evolution
of forward curves in infinite-dimensional term structure models. Term structure
models relate the time to maturity x of a financial derivative ft(x) (e.g. forward
interest rates) at time t to their empirical and theoretical characteristics and
naturally appear in numerous financial contexts. The curve x �→ ft(x) is usually
called the forward curve and can be thought of taking values in a function space
or a space of equivalence classes of functions such as L2([0, T ]). Apart from
the classical fixed-income literature (e.g. [53], [31]), forward curves play an
important role in markets for variance swaps ([27]), stock markets ([93], [75],
[30]) as well as new markets, like the modern intraday or forward markets for
energy or weather derivatives (e.g. [13], [14]), where price variation is crucially
driven by changes in weather and renewable power production. Based on data
from contracts with different maturities that were traded on a particular day,
forward curves are usually smoothed either by a parametric method like the
classical Nelson-Siegel model or a nonparametric method, such as splines (see
[55] for an overview). Recently, kernel-ridge regression was found to perform
very well for this purpose in [51]. In that way, one obtains a functional time
series of daily observations, which, at least in the nonparametric case, can readily
be analysed by methods from functional data analysis. Indeed, an important
question is how many factors are essentially driving the evolution of forward
curves, and often a principal component analysis is conducted on this time
series in order to obtain an answer to this (cf. [31, Section 1.7], [55, Section
3.4]). However, various aspects make an ad hoc usage of (functional) principal
component analysis questionable in that regard.

One example is the sensitivity to heavy tails and the difficulty to describe
complex patterns of tail dependence, which may be ignored by the decorrelation
procedure induced by the Karhunen-Loève expansion. Like in many financial
contexts there is, however, evidence for exactly these features along the
maturities on interest rate forward curves (see e.g. [74]). Arguably, complex
tail dependencies and varying tail patterns of the distributions of points along
random curves can barely be covered by just a few components of a linear
decomposition. As [25, p.1] points out, the “chance of having outliers or other
types of imperfections in the data increases both with the number of observations
and their dimension”, such issues are particularly delicate in functional data
analysis. This has motivated research on robust versions of the functional
principal component analysis such as [82], [57], [5], [78], [25] or [101].

A valuable tool which is tailor-made to meet these challenges but has obtained
little attention in the context of functional data are copulas. In a nutshell,
the theory of copulas allows one to decouple the dependence pattern of a
multivariate distribution from its marginal distributions and in that way describes
multivariate statistical dependence in a fairly general sense. More precisely, a

3



1. Introduction

copula is a multivariate cumulative distribution function C : Rd → [0, 1] with
uniform marginal distributions Ci(u) = u for u ∈ [0, 1] and for any multivariate
distribution function F : Rd → [0, 1] with univariate marginals F1, ..., Fd, we can
find a copula C such that

C(F1(x1), ..., Fd(xd)) = F (x1, ..., xd) ∀x1, ..., xd ∈ R. (1.1)

Vice versa, for any copula and any collection of marginals (1.1) returns a
multivariate distribution function with univariate marginals F1, ..., Fd. This is
the assertion of Sklar’s theorem (cf. [85, Theorem 2.10.9]). By this means, it
lays the path for various parametric, semiparametric, or entirely nonparametric
statistical methods. Nevertheless, to the best of the author’s knowledge, the only
paper that considered copulas in a functional analytic context is [63]. There the
authors introduce copulas as a countable family of consistent multivariate copulas,
which are used to model the dependence structure between basis coefficients of
random variables in Hilbert spaces. Equivalently, the authors mention that the
copula can be expressed as a probability measure C on the product space RN,
where the finite-dimensional distributions corresponding to this measure resemble
the distributions for the basis components. This probabilistic view is also the one
that we will take throughout the first half of this work. Importantly, the authors
of [63] observe that the second part of Sklar’s theorem which allows constructing
a probability distribution from a copula and a family of marginals just returns
a cylindrical probability measure. This is crucial for the applicability of the
method and, arguably, the bottleneck for applying copula theory in function
spaces. We will refer to this as the construction problem in our work.

In view of potential statistical applications, it might also be useful to go
beyond the framework of basis copulas in Hilbert spaces from [63]. Indeed,
a further problem which reflects the nonlinear nature of copulas is their
inconsistency under linear transformations. In contrast to the covariance, copulas
are not independent under the change of the orthonormal basis that is used to
expand the infinite-dimensional random variable. Indeed, two L2[0, T ]-valued
random variables X1 and X2 could have the same underlying copula in the sense
of [63] for one basis (e.g. Fourier), but not for another basis (e.g., Haar wavelets).
This is not an infinite-dimensional phenomenon and can happen already for basis
changes in R2 (see Example I.3.7 in Paper I). This is bad news, as we usually
do not have a priori a natural candidate for such a basis at hand (such as the
eigenvector basis of the covariance) and we mostly sample data on a discrete grid
of points on the curve, rather than in the form of basis coefficients. This makes
any attempt to find a model-agnostic way for dimension reduction in the spirit
of the Karhunen-Loève expansion difficult on the level of such basis copulas. It
is also not very satisfactory from the point of view of modelling. A striking
feature of copulas in finite dimensions is that they allow modelling marginals
and dependence structure of a distribution separately. However, in many cases,
we could be interested in modelling the dependence between all multivariate
evaluations X(t1), ..., X(td) of a stochastic process X. In the context of forward
curves we might want to model the tail dependence of contracts with various
maturities. In this case, copulas which model the dependence between basis
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coefficients cannot always be an adequate tool, since they entail information on
the dependence structure of these multivariate distributions only in combination
with the marginals of the basis coefficients. This is a strong motivation to
continue the research started in [63] and to generalise their framework to allow
for a more flexible notion of marginals. We develop this in the first part of this
dissertation, in which we also show different solutions to the construction problem
in various cases and derive a general theory of copulas in infinite-dimensional
settings, which is suitable for applications in functional data analysis.

Another pitfall regarding nonlinear structures in the data may lie in their
temporal dependence, as Xi and Xi−1 for i = 1, ..., n could be sampled closely
after each other, and their dependence might not be adequately expressed by
a time-invariant (cross-)covariance pattern, but, for instance, show patterns
of tail dependence. There are various attempts to model serial dependence in
functional time series, such as [26], [64] or [86]. Recent research in functional
data analysis evolved around the generalisation of ARCH and GARCH models
(see [65],[4],[32], [77] or [91]), which account for heteroskedasticity. These models
aim to analyse discrete functional time series, which, for instance, arise as (daily)
partitions of a real-valued continuous-time stochastic process and eventually
make an assumption of stationarity. They are, moreover, not tailor-made
for conducting statistical analyses of the characteristics of infinite-dimensional
stochastic processes in continuous time. For instance, we could have a particular
interest in the spatio-temporal regularity of such processes which can just
be accessed by the proximity of the data in time and space (where “space”
means time-to-maturity in the context of forward curves). A reason for this is
that entirely nonparametric methods for spatio-temporal data analyses quickly
become infeasible. Some research in this direction can nevertheless be found
for independent samples of spatio-temporal data such as [83]. Keeping in mind
daily observations of forward curves, it is questionable at which time points we
should split the data set to obtain a time series of spatio-temporal observations,
which lets this heavy machine appear rather brute in this context.

Fortunately, for various spatio-temporal stochastic processes, including
forward curves, the underlying theory (e.g. in finance, physics or biology)
allows us to sharpen the setting drastically and, in that way, enables us to
analyse the data efficiently and adequately. Quite often, it is reasonable to
assume the data X0 = Y0, X1 = YΔn

, X2 = Y2Δn
..., Xn = YT , Δn = 1

n , to be
discrete observations of a solution (Yt)t∈[0,1] of a stochastic partial differential
equation of the form

dYt = (AYt + αt) dt + σtdWt, t ∈ [0, 1]. (1.2)

Here, A (often a differential operator) is the generator of a strongly continuous
semigroup (S(t))t≥0 on H and W is a cylindrical Wiener process potentially
on another separable Hilbert space U . Moreover, α = (αt)t∈[0,1] is an almost
surely Bochner-integrable adapted stochastic process with values in H and
σ = (σt)t∈[0,1] is a Hilbert-Schmidt operator-valued process that is stochastically
integrable with respect to W (cf. for instance Chapter 2.5 in [81] for the definition
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1. Introduction

of the stochastic integral in this context). A fairly weak and hence general concept
of a solution to such an equation is the mild solution of the form

Xt = S(t)Y0 +
∫ t

0
S(t − s)αsds +

∫ t

0
S(t − s)σsdWs, t ∈ [0, 1], (1.3)

(cf. one of the standard textbooks [43], [88] or [56]). In [42] processes of this form
were coined mild Itô processes. Under the assumption of the absence of arbitrage
opportunities (and disregarding the possibility of jumps) forward rates could
also be modelled as a Volterra process of the form (1.3) and the corresponding
stochastic partial differential equation is known as the Heath-Jarrow-Morton-
Musiela equation (cf. [53] or [14]). For instance, in [53] the Hilbert space H is a
space of absolutely continuous functions f : R+ → R (forward curves), A = d

dx
is just the derivative operator and the semigroup (S(t))t∈[0,T ] is the semigroup
of left-shifts, such that S(t)f(x) = f(x + t) for x, t ≥ 0 and f ∈ H. Furthermore,
due to arbitrage arguments, under the risk-neutral probability measure, the
drift is determined by the volatility σ (cf. [53, Lemma 4.3.3]). Hence, under
the risk-neutral measure, the Hilbert-Schmidt operator-valued volatility process
characterises the entire evolution of forward curves and is hence pivotal for
further analysis of the term structure. This alone makes the volatility process
more useful than the process (Ct)t∈[0,T ] of covariance operators.

The volatility might, moreover, be advantageous to approach the elemental
task of dimension reduction in this context. Let us assume that we have
daily observations of the forward curves fiΔn

, i = 1, ..., n, where time could
be measured in years (i.e. n = 365). As already mentioned before, the
usual procedure is then to take finitely many points on these curves and to
conduct a principal component analysis based on this time series of multivariate
data to derive the major modes of variation in this model. A straightforward
generalisation of this would be to treat these curves as functions and conduct a
functional principal component analysis just as described before. Apart from
nonlinear tail dependencies within the points of the curves, there are further
problems with this approach. First, at least some structural assumptions must
be made about the underlying forward curve process, such as stationarity or
independence after differencing (see [31, Section 1.7]). This would already be a
massive limitation on the form of the volatility from a probabilistic point of view.
Moreover, even if we assume that we have estimated the covariance C of f1,
say, and from that derived the first d eigenelements e1, ..., ed and λ1, ..., λd, the
projection onto the subspace 〈e1, ..., ed〉 would most likely not yield a theoretically
viable model in the sense that it still is the solution to an equation of the form
(1.2). However, this is important for the absence of arbitrage in the context of
forward markets. Besides additional regularity conditions on the coefficients of
the model, we would necessarily have e1, ..., ed ∈ D(A), which already excludes
simple functions such as ei = I[0,1] in the case A = d

dx , H = L2(R). In view of
the investigation of the spatio-temporal regularity of the process (Yt)t∈[0,1] it is
important to notice that this forces (Yt)t∈[0,1] to be a semimartingale, as it must
necessarily be a strong solution to (1.2) (cf. [50, Theorem 1]). In the special case
of forward curves, such restrictions become even more intricate and lie at the
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core of the work on consistency problems for the Heath-Jarrow-Morton-Musiela
equation (cf. [53], [54], [24], [23], [52] [95]). So at least theoretically, basing the
dimension reduction on the covariance operator yields the potential problem that
the estimated eigenvectors exclude the existence of a corresponding consistent
finite-dimensional model. However, we do not necessarily have to pursue the
goal of reducing the dimension of the state space of the forward curves, but
rather to make out the number of random drivers and their precise form. This
is exactly the information that is encoded by the volatility term structure.

So in comparison to the role of the covariance in the basic i.i.d. setting of
functional data analysis, in this framework the role of the central second-order
object is taken by the volatility σ, or rather the integrated volatility∫ t

0
Σsds :=

∫ t

0
σsσ∗

sds t ∈ [0, 1],

where σ∗
s is the adjoint of σs in H. In fact, this process can tell us exactly the

number of random drivers that are effectively needed to describe the term
structure evolution. The reduction of the dimensionality of the noise, by
exchanging the volatility in (1.2) by a projected volatility σd

s :=
∑d

i=1〈σs(·), ei〉ei

for the leading eigenvectors e1, ..., ed of the integrated volatility at t = 1, say,
avoids any consistency problem, while still providing a reasonable approximation
of the process. More importantly, we might obtain valuable insights into the
term structure of volatility itself by conducting statistical inference on the
integrated volatility. To this end, we will develop a general asymptotic theory
for power variations in this infinite-dimensional context in the second part of
this dissertation.

If A = 0, the semigroup is constant and corresponds simply to the identity
operator IH on H. In that case, the theory of stochastic processes from finite
dimensions suggests to base estimation of the integrated volatility on the infinite-
dimensional realised quadratic covariation

RV n
1 :=

n∑
i=1

(YiΔn
− Y(i−1)Δn

)⊗2. (1.4)

Indeed, in finite dimensions the theory of volatility estimation based on the
realised quadratic covariation or related measures of volatility is rich and we
provide a glimpse of it later in this chapter. Important contributions are among
many others [70], [71], [7] [100], [10] or [73]. We also refer to the textbooks
[72] and [1]. In infinite-dimensional settings like ours, the situation changes
significantly. If the semigroup is not uniformly continuous, which is the case
for the forward curve evolution, the realised covariation may fail to estimate
the integrated volatility. The reason is that in that case, Y is in general
not an H-valued semimartingale, which is a purely infinite-dimensional issue.
Therefore, the sequence of increments Δn

i Y := YiΔn
− Y(i−1)Δn

no longer forms
an array of martingale differences. To overcome the lack of semimartingality,
the research on volatility estimation for Volterra processes, such as [38], [9], [8],
[39], [37] and [58, 87] and the growing literature on volatility estimation for

7



1. Introduction

pointwise evalutations of the solution to the second-order stochastic partial
differential equation such as [21] or [34] use particular weighting schemes,
which account for the lower regularity of the corresponding process. Such an
approach does not seem feasible for analysing volatility in our infinite-dimensional
operator-setting. The reason is that already with regard to the weak operator
topology we would run into problems, as for some functionals 〈·, h〉, the process
〈Yt, h〉 is indeed a semimartingale and the associated (one-dimensional) realised
variation

∑n
i=1〈Δn

i Y, h〉2
H = 〈RV nh, h〉H a consistent estimator for

∫ t

0 〈Σsh, h〉ds.
However, for other functionals g, 〈RV ng, g〉H can diverge. Luckily, since we
are dealing with functional data which are assumed to be smoothed curves, we
can adjust these functional observations in a way which recovers the martingale
difference property. Instead of the increments Δn

i Y , we will analyse the variation
induced by the semigroup adjusted increments

Δ̃n
i Y := YiΔn

− S(Δn)Y(i−1)Δn
.

For the example of forward curves, this adjustment comes in quite handy, as the
semigroup S is just the left-shift semigroup, such that S(Δn)f(x) = f(x + Δn).
In the second part of this work, we therefore develop an asymptotic theory for
the estimation of the integrated volatility via the semigroup adjusted realised
covariation (SARCV)

SARCV n
1 :=

n∑
i=1

Δ̃n
i Y ⊗2. (1.5)

In fact, we develop a more general theory based on semigroup adjusted increments,
since a crucial role in establishing a feasible asymptotic distribution theory
for SARCV is taken by semigroup adjusted realised multipower variations
(SAMPV ) given by

SAMPV n
1 (m1, ..., mk) :=

n∑
i=1

k⊗
j=1

Δ̃n
i+j−1Y ⊗mj . (1.6)

We refer to Paper IV for a technical definition of the general tensor-power
notation.

We structure this dissertation into two parts. After this introduction, we
recall the relevant definitions and results for copulas and power variations in
finite dimensions and give an overview on the motivation and challenges for their
generalisation to infinite dimensions. After that we provide a summary of the
four articles I, II, III and IV, which are provided in the subsequent part of this
dissertation. The first two of these articles (I and II) are about copula theory
and the last two articles (III and IV) are concerning power variations.

1.1 Copulas

In this section we will introduce the notion of copulas in the classical finite-
dimensional context and briefly discuss the motivation and challenges for its
generalisation to infinite dimensions.
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Copulas

The theory of copulas is a widely used instrument in the toolbox of
multivariate statistics. It allows to decompose the distribution of a multivariate
random vector X = (X1, ..., Xd) with values in Rd, d ∈ N, into the distributions of
its marginal one-dimensional components X1, ..., Xd and its dependence structure,
in terms of a copula. Technically speaking, a copula is the cumulative distribution
function C of a multivariate random vector (U1, ..., Ud) with uniform marginal
distributions U1, ..., Ud ∼ Unif(0, 1). That is, for all uj ∈ [0, 1] and j = 1, ..., d
we have

Cj(uj) := C(1, ..., 1, uj , 1, ..., 1) = uj .

Equivalently, each copula C can be uniquely identified with a probability measure
μC , which corresponds to the cumulative distribution function C. The capability
of copulas to describe statistical dependence of a multivariate distribution is due
to the fundamental Theorem of Sklar ([85, Theorem 2.10.9]):

Theorem 1.1.1 (Sklar’s Theorem in finite dimensions). Let d ∈ N and F : Rd →
[0, 1] be a d-dimensional cumulative distribution function on Rd with marginal
one-dimensional cumulative distribution functions Fj for each j = 1, ..., d. Then
there exists a copula C on Rd, such that for all x1, ..., xd ∈ R it is

F (x1, ..., xd) = C (F1(x1), ..., Fd(xd)) . (1.7)

If the marginals Fj are continuous for each j = 1, ..., d, C is unique. If in
contrast C is a copula in Rd and Fj are one-dimensional cumulative distribution
functions for each j = 1, ..., d, then F defined by (1.7) is a cumulative distribution
function on Rd with marginals Fj for each j = 1, ..., d.

For a univariate cumulative distribution function F let F [−1] denote the
quantile function given by

F [−1](u) := inf {x ∈ (−∞, ∞) : F (x) ≥ u} .

If for a d-dimensional cumulative distribution function F the marginals F1, ..., Fd

are continuous, then F
[−1]
i (F (x)) = x for x ∈ R and hence the unique copula

induced by Sklar’s theorem is given by

C(u1, ..., ud) = F (F [−1]
1 (u1), ..., F

[−1]
d (ud)) u1, ..., ud ∈ [0, 1]. (1.8)

An important example of copulas, which are constructed by the inversion
formula (1.8) are copulas underlying a multivariate Gaussian distribution
Y = (Y1, ..., Yd) ∼ N(μ, Σ), where μ and Σ are the mean and the covariance
matrix of Y . As copulas are invariant under strictly increasing transformations
(cf. [85, Theorem 2.4.3]), we can always set μ = 0 and Σ = P , where P is the
correlation matrix of Y . Gaussian copulas are widely used and distributions
X = (X1, ..., Xd), which have an underlying Gaussian copula, were coined
nonparanormal distributions in [80]. The appeal of these specific copulas is that
one can profit from the simplicity and flexibility of the dependence structure of
multivariate Gaussian distributions while still having the possibility to capture

9



1. Introduction

features such as heavy tails via the marginals. This is also promising if we have
in mind generalisations to functional data analysis. In fact, in order to estimate
the Gaussian copula underlying a nonparanormal distribution, we just have to
derive its latent correlation matrix P , which is suitable for the generalisation to
the level of covariance operators in Hilbert spaces.

Let us describe how one can derive P in the case that d = 2. This can
be done in a very sound way, namely by estimating Kendall’s tau correlation
coefficient τ . Let X = (X1, Xd) be a nonparanormal distribution with underlying
Gaussian copula C, induced by a bivariate Gaussian random vector (Y1, Y2) with
correlation matrix P . The copula C has exactly one parameter P1,2 that has to
be derived from observations of X. Although C is latent, this can be done in
a theoretically sound way by appealing to the concept of rank correlation, in
particular, Kendall’s tau. For two real-valued random variables Z1, Z2 Kendalls
tau rank correlation coefficient is defined as

τZ1,Z2 := E
[
sign(Z1 − Z̃1)sign(Z2 − Z̃2)

]
,

where (Z̃1, Z̃2) is an independent copy of (Z1, Z2). If we now assume that we
have 2n independent copies X1, ..., X2n of the nonparanormal random variable
X, τX1,X2 can be consistently estimated by its empirical counterpart

τ̂X1,X2 =
2
n

n∑
k=1

sign(X2k
1 − X2k−1

1 )sign(X2k
2 − X2k−1

2 ).

One can then exploit the relation

P1,2 = sin(
π

2
τX1,X2). (1.9)

(cf. [48, Theorem 3.1]) and estimate P1,2 consistently by the corresponding
plug-in estimator.

Like Kendall’s tau, many important statistical concepts that are used to
describe the distribution of a multivariate distribution are exclusive properties
of the underlying copula of a multivariate distribution. One example are the
coefficients λX1,X2

u and λX1,X2
l of upper and lower tail dependence of a bivariate

random variable (X1, X2) defined on a probability space (Ω, F ,P) and having
continuous cumulative marginal distribution functions FX1 and FX2 . These
coefficients are defined by

λX1,X2
u := lim

q↑1
P

[
X1 > F

[−1]
X1

(q)|X2 > F
[−1]
X2

(q)
]

and
λX1,X2

l := lim
q↓0

P

[
X1 ≤ F

[−1]
X1

(q)|X2 ≤ F
[−1]
X2

(q)
]

provided that the limits exist in [0, 1]. If λX1,X2
u > 0 one says that X1 and

X2 are upper tail dependent and if λX1,X2
l > 0 one says that X1 and X2 are

lower tail dependent. The upper tail dependence is the limit for q → ∞ of the

10



Copulas

probability that X1 is in the q-Quantile of the distribution of X1 conditional on
the event that X2 is in the q-quantile of its distribution. If this limit is positive,
extremely large values of X1 (in size of its distribution) are more likely to entail
extremely large values of X2 (in size of its distribution) and vice versa. The
analogous reasoning holds for lower tail dependence. In terms of the (unique)
underlying copula C of X1 and X2 we have

λX1,X2
u := lim

q↑1

1 − C(q, q)
1 − q

and

λX1,X2
l := lim

q↓0

C(q, q)
q

(cf. [85, Theorem 5.4.2]). Tail dependence can be found empirically in many
financial contexts. This led to criticism of the usage of Gaussian copulas, since
they necessarily induce a tail coefficient of 0, i.e. tail independence. A very
flexible class of copulas, which is able to account for tail dependence and at
the same time does not lose the appealing feature that multivariate dependence
patterns are largely captured by a covariance matrix are elliptical copulas. A
popular example of this class are t-copulas, i.e. copulas underlying a multivariate
t-distribution. Recall that a multivariate centred t-distribution with ν > 0
degrees of freedom and strictly positive definite scatter matrix Σ is given by the
density

ftΣ,ν
(x1, ..., xd) =

Γ( ν+d
2 )

Γ( ν
2 )
√

(πν)ddet(Σ)

(
1 +

(x1, ..., xd)Σ−1(x1, ..., xd)′

ν

)− ν+d
2

.

Equivalently, one can introduce this as a multivariate normal variance mixture,
i.e. a random vector Y = (Y1, ..., Yd) is t-distributed with parameters ν and Σ, if
there is a standard multivariate normal distribution Z = (Z1, ..., Zd) such that

Y = SZ

where S is a univariate positive random variable, independent of Z, such that
ν

S2 ∼ χ2
ν is chi-squared distributed with ν > 0 degrees of freedom. Let us again

consider the bivariate case X = (X1, X2), where X1 and X2 have continuous
cumulative distribution functions and an underlying t-copula with ν degrees
of freedom and scatter matrix Σ. Again, due to invariance under monotone
transformations, we can assume Σ1,1 = Σ2,2 = 1 and the only parameters left
to derive are Σi,j and ν > 0. Luckily, relation 1.9 still holds for the coefficient
Σ1,2 (instead of P1,2) and yields a straightforward way to estimate the scatter
matrix. Moreover, it is well known that the multivariate t-distribution yields
tail dependence between the coefficients. Precisely, we have

λX1,X2 := λX1,X2
u = λX1,X2

l = 2Ftν+1

(
−

√
ν + 1

1 − Σ1,2
1 + Σ1,2

)
11



1. Introduction

where Ftν is the distribution function of the univariate t-distribution with ν
degrees of freedom (cf. [46, Proposition 1]). So X1 and X2 can have arbitrarily
low or high tail dependence, as λX1,X2 approach 0 for ν → ∞ and becomes 1
for Σ1,2 = 1. The parameter ν might be estimated by a maximum likelihood
procedure, while holding Σ, which could be derived by Kendall’s tau, fixed (see
[46, Section 4]).

Copulas for Functional Data: Motivation and Challenges

Copulas in infinite dimensions appeared in various contexts in the literature.
Most notably, they are used to model the temporal dependence of Markov
processes in [44], [79], [69], [68], [20] and [33]. In fact, copulas yield an elegant
alternative characterisation of the Markov property (cf. [85, Theorem 6.4.3]).
Infinite-dimensional Gaussian copulas as copulas of stochastic processes appeared
in a Machine-Learning context in [97]. In stark contrast to the setting of [63]
and the framework in which we operate in this dissertation, these earlier works
do not directly link copulas to a topological structure of the space, in which the
corresponding stochastic processes takes its values. In that regard, they are not
tailor-made for usage in functional data analysis and leave the natural concept
of copulas still absent from its toolbox. The attempt to change this goes along
with some mathematical challenges but might open up a few valuable statistical
methods as well.

Let us subsume the main motivational points for establishing the theory.

• Nonlinear dependence patterns: As remarked in the introduction, the
classical functional principal component analysis takes into account linear
dependence patterns and largely ignores more subtle aspects such as tail
dependence. Copulas are capable of describing the dependence structure of
multivariate random variables regardless of the existence of moments and
various copula models, such as the t-copula, can model tail-dependence
very targeted.

• Control over local distributional properties: The functional princi-
pal component analysis enables us to approximate random curves just by
a few univariate random sources. However, one arguably loses control over
local properties of the law of the random curves, such as the distribution
of a stochastic process evaluated at a certain point. As Sklar’s theorem
allows us to model marginals and dependence structure separately, copulas
naturally overcome this issue and allow us to include statistical information
such as heavy tails freely along the random curve.

• Probabilistic insights: The question, if a cylindrical random variable is
an actual random variable in a function space is fundamental in probability
theory. Approaching this from the point of view of copula theory makes
it possible to find answers to this question by digesting the interplay of
marginals and the dependence structure of stochastic processes.
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Let us repeat as well the major challenges that one faces regarding copula theory
in function spaces:

• Notion of marginals: Yet, it is unclear what a proper notion of marginals
should be. For instance in the Banach space C[0, 1] of continuous functions
f : [0, 1] → R, it would be an immediate generalisation of the framework
in [63] to define marginals as the distributions of basis coefficients for some
Schauder basis (see Paper I for this concept). On the other hand, an
equally appropriate choice could be to treat all the evaluations X(t) for
t ∈ [0, 1] as marginals of a random curve X with values in C[0, 1]. We
need to provide a flexible notion of marginals that unifies all concepts of
infinite-dimensional copulas and is adaptable to any practical situation.

• Construction problem: In general, the copula construction induced
by the second part of Sklar’s theorem results in a cylindrical probability
measure in function spaces. For example, we show later that the path
copula corresponding to a Brownian motion cannot induce a probability
measure on the Banach space C[0, 1]. Constructing random curves in the
spirit of Sklar’s theorem in such situations requires therefore practical
criteria to decide whether a respective construction induces a probability
measure in the function space we targeted.

• Estimation and Approximation: The appeal of functional data
analysis stems partially from the fact, that we can make inferences on the
law of random curves by pooling information from neighbouring points.
Hence, in addition to the probabilistic approximation of copulas and
marginals of a random curve, also analytic approximations have to be taken
into account. For instance, we later want to generalise the nonparanormal
distributions from multivariate statistics to “nonparanormal processes”, i.e.
we like to approximate a random variable with values in L1[0, 1], say, and
assume an underlying Gaussian copula (i.e. the copula corresponding to a
square-integrable Gaussian process). We might then be able to approximate
the marginals of such a nonparanormal process and also the covariance
operator of the latent Gaussian process. Is there a metric that allows us
to measure the convergence of this approximation procedure by measuring
the convergence of the marginals and the latent covariance separately? In
fact, copulas share a natural link to the so-called Wasserstein distance
between probability measures (cf. for instance [2]). We will spend some
time in Paper I to exploit this connection in order to obtain consistency
and approximation results for copula constructions.

1.2 Power Variations

Throughout this section, let (Ω, F , Ft,P) be a filtered probability space, on which
the stochastic processes in this section are defined, if not stated differently. Fix
T > 0. We assume to have observations YiΔn

, i = 0, 1, ..., �T/n�, Δn = 1
n , of a
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1. Introduction

d-dimensional continuous Itô-semimartingale

Yt = Y0 +
∫ t

0
αsds +

∫ t

0
σsdWs,

where α = (αt)t∈[0,T ] is an adapted Rd valued, almost surely integrable stochastic
process, W = (Wt)t∈[0,T ] is an Rd′

-valued standard Brownian motion for some
d′ ∈ N and σ = (σt)t∈[0,T ] is a predictable Rd×d′

-valued, almost surely square-
integrable stochastic process.

The goal is then to make inferences on the integrated volatility∫ t

0
Σsds :=

∫ t

0
σsσ


s ds t ∈ [0, T ],

where σ
 is the tranposed of the matrix σs. Interest in inferential methods for
integrated volatility comes primarily from financial econometrics. One reason is,
for instance, that if we assume α and σ to be independent of the driving Wiener
process, we find that the process (Yt)t∈[0,T ] is conditionally Gaussian and the
integrated volatility corresponds to the conditional covariance of the increments,
i.e.

Yt2 − Yt1 |α, σ ∼ N(
∫ t2

t1

αsds,

∫ t2

t1

σsσ

s ds).

This fact was exploited, for instance in [3] in order to integrate high-frequency
data into the process of volatility forecasting.

Due to its convenient form and since it is consistent with the notation in
infinite-dimensional Hilbert spaces that are investigated in the papers III and
IV, we will use for two vectors x = (x1, ..., xd)
 and y = (y1, ..., yd)
 the tensor
notation

x ⊗ y := xy
 = (xiyj)i,j=1,...,d ∈ Rd×d.

This can also be identified with the linear operator x ⊗ y(v) = 〈x, v〉y. If x = y
we write x⊗2 := x ⊗ x. The tensor notation easily carries over to more general
Hilbert spaces, H and G (for instance the space of d × d matrices) for which the
tensor product is defined in the same way as a linear operator from H into G by

h ⊗ g := 〈h, ·〉Hg. (1.10)

In that way, it is possible to define for instance the tensor (x ⊗ y) ⊗ (v ⊗ w),
which can be identified as a linear operator from Rd×d into itself or as an element
in Rd×d×d×d.

The general theory of stochastic calculus tells us that the sum of squared
returns or the realised variation

RV n
t :=

�t/n�∑
i=1

(YiΔn
− Y(i−1)Δn

)⊗2 (1.11)
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converges to
∫ t

0 Σsds uniformly on compacts in probability (u.c.p.), that is, for
all ε > 0

lim
n→∞P[ sup

t∈[0,T ]
‖RV n

t −
∫ t

0
Σsds‖d > ε] = 0.

This convergence can be considered to take place in the Skorohod space
D([0, T ],Rd×d) of right-continuous functions with left limits (càdlàg) equipped
with the sup-norm. This norm makes D([0, T ],Rd×d) a Banach space, but it is
not separable. We therefore recall, that we can equip D([0, T ], E), where for
the moment E is an abstract Polish (i.e. seperable and completely metrisable)
space, with another metric d, that makes it separable and complete. The
precise definition of this metric is slightly technical and not important in this
dissertation. We will henceforth call the topology induced by this metric the
Skorohod topology. It is however important to record that the Polish structure
of the Skorohod space under this metric is paid with the price of some unusual
properties. For example, for two sequences of processes Xn, Yn ∈ D([0, T ], E)
such that d(Xn, X) → 0 and d(Yn, Y ) → 0 for some X, Y ∈ D([0, T ], E) we do
not necessarily have d(Xn + Yn, X + Y ) → 0. Moreover, point evaluations are
not continuous, that is, we can have d(Xn, X) → 0, but not Xn(t) → X(t) for
some t ∈ [0, T ]. We refer to [22] for a detailed account on the Skorohod space.

To introduce an asymptotic distribution theory for the estimation of the
integrated volatility, the concept of stable convergence in law is important. A
sequence of random variables (Xn)n∈N defined on (Ω, F ,P) and with values
in a Polish space E converges stably in law to a random variable X defined
on an extension (Ω̃, F̃ , P̃) of (Ω, F ,P) with values in E, if for all bounded
continuous f : E → R and all bounded random variables Y on (Ω, F) we have
E[Y f(Xn)] → Ẽ[Y f(X)] as n → ∞, where Ẽ denotes the expectation with
respect to P̃.

Under the condition that almost surely∫ T

0
‖αs‖2 + ‖σs‖4ds < ∞,

one also has a functional stable central limit theorem (cf. [72, Theorem 5.4.2]).
That is, the the convergence(

Δ− 1
2

n

(
RV n

t −
∫ t

0
Σsds

))
t∈[0,T ]

→ (N(0, Γt))t∈[0,T ]

holds stably in law with respect to the Skorohod topology. Here (N(0, Γt))t∈[0,T ]
is a continuous mixed Gaussian process defined on an extension (Ω̃, F̃ , F̃t, P̃) of
(Ω, F , Ft,P) and with values in Rd×d and with random covariance Γt, which can
be precisely described and is determined by the volatility σ. We refer to [6] for
a precise formula of this covariance (or to the more general case in paper IV,
which makes use of the tensor notation).

In comparison to the common convergence in distribution, the stronger stable
convergence of processes is more pleasant in this setting, in view of the unknown
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covariance Γt, which must be estimated from the data as well, since otherwise
the central limit theorem is not feasible. Among other things, stable convergence
guarantees that if we have a consistent estimator Γ̂n

t such that Γ̂n
t → Γt u.c.p.,

we obtain the joint convergence(
Δ− 1

2
n (RV n

t −
∫ t

0
Σsds), Γ̂n

t

)
t∈[0,T ]

→
(

N (0, Γt), Γt), Γ̂n
t

)
t∈[0,T ]

,

stably as a process, leading to feasible central limit theorems. In matrix notation,
for i, j ∈ {1, ..., d} and all t ∈ [0, T ], this means that in distribution and
conditional on {(Γt)i,j �= 0} ∈ F ,

Δ− 1
2

n

(
(RV n

t )i,j −
∫ t

0 (Σs)i,jds
)

(Γ̂n
t )i,j

→ N (0, 1),

which allows one to form confidence intervals and conduct hypothesis tests.
In fact, the unknown asymptotic variance Γt can be conveniently estimated

from the data by appealing to multipower variations. For m1, ..., mk, k ∈ N we
define the multipower variation MPV (m1, ..., mk) as

MPV n
t (m1, ..., mk)

:=
�t/n�−k+1∑

i=1
(YiΔn

− Y(i−1)Δn
)⊗m1 ⊗ ... ⊗ (Y(i+k−1)Δn

− Y(i+k−2)Δn
)⊗mk

If k = 1, these are simply called power variations. We give the following law of
large numbers for multipower variations, which are special cases of Theorems
3.4.1 and 8.4.1 in [72].

Theorem 1.2.1. For a postive semidefinite symmetric d × d-matrix Σ, we define
the matrix ρΣ(m), as the m’th tensor moment of an Rd-valued random variable
U ∼ N (0, Σ), i.e., ρΣ(m) = E[U⊗m].

(i) (power variations) Let m ≥ 2 be a natural number. If

P

[∫ T

0
‖αs‖ 2m

2+m ds +
∫ T

0
‖σs‖mds < ∞

]
= 1, (1.12)

the following law of large numbers holds:

Δ1− m
2

n MPV n(m) u.c.p.−→
(∫ t

0
ρΣs

(m)ds

)
t∈[0,T ]

.

(ii) (multipower variations) Let α be locally bounded, σ is a cádlág process and
m, m1, m2, . . . , mk be natural numbers such that m1 + ... + mk = m. Then

Δ1− m
2

n MPV n
t (m1, ..., mk) u.c.p.−→

∫ t

0

k⊗
j=1

ρΣs
(mj)ds, (1.13)
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Note that ρΣ(m) = 0, if m is odd.
By this law of large numbers, one can argue that a consistent estimator for

the asymptotic variance Γt is given by

Γ̂n
t = MPV n

t (4) − MPV n
t (2, 2)

(see for instance [6] or paper IV for a precise derivation of this).
We might also want to have confidence in this estimator, or integrated

functions of the volatility estimated via this law of large numbers, which is why
we also recall the corresponding central limit theorem, which is an immediate
implication of the central limit theorem 11.2.1 in [72].

Theorem 1.2.2. Let m = m1 + ... + mk and mi even. For a positive
semidefinite symmetric Σ ∈ Rd×d, we define a sequence (Ui)i∈N of independent
random variables Ui ∼ N (0, Σ) and the σ-fields G = σ(U1, ..., Uk−1) and
G′ = σ(U1, ..., Uk). We define

Γt(m1, ..., mk) :=
∫ t

0
RΣs(m1, ..., mk)ds,

where

RΣ(m1, ..., mk)

= E

⎡⎢⎣
⎛⎝k−1∑

j=0
E

[
k⊗

i=1
U⊗mi

k−j+(i−1)|G
′
]

− E

[
k⊗

i=1
U⊗mi

k−j+(i−1)|G
]⎞⎠⊗2

⎤⎥⎦
= E

⎡⎢⎣
⎛⎝k−1∑

j=0
E

[
k⊗

i=1
U⊗mi

k−j+(i−1)|G
′
]⎞⎠⊗2

−

⎛⎝k−1∑
j=0

E

[
k⊗

i=1
U⊗mi

k−j+(i−1)|G
]⎞⎠⊗2

⎤⎥⎦
Let α be locally bounded and and σ itself an continuous Itô-process on Rd×d of
the form

σt = σ0 +
∫ t

0
α̃sds +

∫ t

0
σ̃sdW̃s,

where α̃ is progressively measurable and σ̃ is cádlág and stochastically integrable
with respect to the Wiener process W̃ . Then the convergence

Δ
1−m

2
n

⎛⎝MPV n
t (m1, ..., mk) −

∫ t

0

k⊗
j=1

ρΣs
(mj)ds

⎞⎠
t∈[0,T ]

→ (N ((0, Γt(m1, ..., mk)))t∈[0,T ] .

holds stably in law with respect to the Skorohod topology as n → ∞, where the
limiting process on the right is conditionally on F a continuous centered Gaussian
process with independent increments defined on an extension (Ω̃, F̃ , F̃t, P̃) of
(Ω, F , Ft,P).
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Power Variations for Functional Data: Motivation and Challenges

Although a lot of data and processes, ranging from term structure models in
mathematical finance to physical applications, stem from infinite-dimensional
evolution equations, the theory on infill-asymptotics in the sense of the
asymptotics for power variations as discussed above seems to be sparse and often
specific. In general, “statistical inference for SPDEs is in its developing stage
with many fundamental problems still open” as witnessed in the survey paper
[35, p.1]. Most articles deal with second-order parabolic SPDEs and exploit
the spectral decompositions of the corresponding differential operator. Some
works such as [21] and [34] manage to derive an asymptotic theory, which is
fully applicable on the basis of observations of a spatio-temporal process at a
fixed finite number of spatial points. Our goals are somewhat complementary to
these works in the sense that we want to make inferences on smooth features
underlying the spatio-temporal data and therefore necessarily assume to be in
the luckier situation of (at least locally) densely observed curves. We list our
major aims and motivational points here to put our developments in perspective:

• Dimension Reduction: As already argued before, the integrated
volatility is an adequate object from which to reveal the effective number
of random drivers needed to describe the stochastic evolution of stochastic
partial differential equations. Extracting the eigenelements of the integrated
volatility can yield valuable insights into the term structure of volatility
itself, which is key for pricing bonds or energy derivatives or capturing the
risk induced from the variation of interest rates.

• Robustness: The estimation of volatility does not impose any moment
assumption on the process or the volatility method. This is very appealing
in view of the active research in robust estimation methods for functional
data analysis.

• Shape information: Our method naturally takes into account informa-
tion about slope (or curvature if well defined) indicated by the data. One
can see this intuitively, as the semigroup adjusted increments are dependent
on the differential operator governing the equation. Taking shape informa-
tion into account when modelling forward curve evolutions was proposed,
for example in [36], where a second-order stochastic partial differential
equation for the evolution of forward interest rates was suggested. Unlike
the setting of [36], we explicitly want to include the no-arbitrage frame-
work of the Heath-Jarrow-Morton-Musiela equation into our statistical
considerations. Functional data analysis is the perfect statistical tool to
develop such methods.

(iv) Hilbertian Volatility Models: Our method connects high-frequency
estimation of volatility to the recent literature on infinite-dimensional
volatility models. In these models, the volatility is itself a mild Itô process
in a Hilbert space and they are originally designed to describe nontrivial
patterns in the time-varying volatility term structure, mostly in connection
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to the energy market (see [15], [19],[18], [40], [41]). So far, there is no
approach to estimate the parameters (which are in general operators) of
such models. Our contribution in this work has the potential to make such
models feasible and hence pave their way to applicability.

There are some characteristic differences between the finite-dimensional theory
and the theory established for high-frequency estimation of stochastic partial
differential equations so far:

• No Semimartingality: If Y is a mild Itô process of the form (1.3), it
is in general not a semimartingale, and the standard quadratic variation
estimator could diverge. This is essentially dependent on the regularity
of the semigroup on the range of the volatility and leads us to the task
of developing an asymptotic theory for the semigroup adjusted realised
covariation as defined earlier in (1.5). This turns out to be a consistent
estimator of the integrated volatility and can, thus, be seen as a legitimate
generalisation of the quadratic variation from finite dimensions. However,
its convergence rate hinges again on the interplay of the semigroup and
the volatility, and the asymptotic theory that we build up here has to take
into account cases of potentially low regularity.

• Asymptotic Behaviour of Realised Covariation: Since we want to
establish a general theory for estimation of the integrated volatility operator
in an operator norm, we cannot hope to find a weighting scheme as in
[21] or [34] for the realised variation, which is independent of the volatility.
The problem is that the realised variation might diverge already in the
weak operator topology, while it does converge when it is projected onto
very regular functionals. Nevertheless, the convergence of the realised
covariation, if it takes place, is valuable, since we do not have to rely on
(locally) dense data in space. We should therefore also consider cases, in
which the quadratic variation can be used as an estimator for the integrated
volatility.

• Discrete Approximations Full observations of curves are in most cases
not realistic to hope for. This is arguably an intricate problem, since we
are forced to apply the semigroup on partially observed curves in order
to reconstruct the semigroup adjusted increments. We should therefore
discuss on how to estimate infinite-dimensional operators in fully discrete
frameworks. Luckily, this can be done quite handy for forward rates and
the Heath-Jarrow-Morton-Musiela equation, as the operators belonging to
the semigroup are just left-shifts.

1.3 Overview of Articles

This section provides an overview of the subsequent articles.
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1. Introduction

1.3.1 Copula Measures and Sklar’s Theorem in Arbitrary
Dimensions

This work corresponds to the research article [12], in which we develop a unified
framework for copulas in infinite dimensions. In the most general sense, for an
arbitrary index set I, we define copulas on the product space RI as a probability
measure C (a copula measure) on ⊗i∈IB(R), such that its marginals Ci = C◦π−1

i ,
where πi(f) = f(i) is the canonical projection onto the ith component of elements
f ∈ RI , are uniformly distributed on [0, 1] for each i ∈ I. In the product space
setting, we can prove Sklar’s theorem in the same generality as it can be done in
finite dimensions.

We will introduce the general notion of marginals in a topological vector
space V over R equipped with a σ-algebra V as the pushforward measures
μm = μ ◦ m−1 for elements m of a measurable and linearly independent subset
M of the algebraic dual Hom(V,R), which separates the points of V . We can
then define a copula corresponding to a probability measure μ on V as a copula
on the product space RM via the embedding

V � v �→ (m (v))m∈M ∈ RM . (1.14)

In that way, Sklar’s theorem for product spaces always guarantees that there
is a (not necessarily unique) copula underlying a probability distribution on
V . However, as the embedding (1.14) is almost never a surjection from V
into RM , we cannot guarantee that any choice for a copula C on RM and
marginals (μm)m∈M correspond to a probability measure on V . This is the
construction problem. In the case that V = H is a reproducing kernel Hilbert
space of functions f : [0, 1] → R, say, such that the evaluation functionals
δxf = f(x) for x ∈ [0, 1] are continuous, both the framework of [63] such that
M = {〈en, ·〉 : n ∈ N} for an orthonormal basis (en)n∈N of H as well as the
choice M = {δx : x ∈ [0, 1]} can be reasonable.

We will provide practical solutions to the construction problem for a few
function spaces (and marginal-specifications), such as the Lebesgue spaces
Lp([0, T ]), the space of continuous functions C[0, T ] or sequence spaces lp.
Afterwards we elaborate approximation methods for copula models, mainly
designed for the spaces Lp([0, T ]) and lp. This is done by measuring the distance
of probability measures in the Wassertstein metric

d(ν1, ν2) =: Wp(ν1, ν2) := inf
ρ<ν2

ν1

(∫
E×E

‖x − y‖p
Eρ(dxdy)

) 1
p

,

where ρ <ν2

ν1 indicates that ρ is a coupling of ν1 and ν2, i.e. ρ is a probability
measure on E × E that has marginal distributions ν1 and ν2. We will outline a
few useful connections of copulas and the Wasserstein distance, and then exploit
these to derive a robustness inequality. We will use this inequality to derive
practical approximation and estimation results for some copula models, such as
elliptical copulas and a generalisation of the nonparanormal distribution to the
functional data framework.
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1.3.2 A Topological Proof of Sklar’s Theorem in Arbitrary
Dimensions

This short work corresponds to the research article [11] and shows the
compactness of copula measures as measures in product spaces and outlines some
implications of this fortunate circumstance. Among other things, we give an
alternative way of proving Sklar’s theorem on product spaces RI with arbitrary
index set I by generalising the proof for Sklar’s theorem in finite dimensions
from [47]. The basic steps of this are as follows: First, we show the set of copula
measures is compact with respect to the topology of convergence of the finite-
dimensional distributions. Then we prove the second part of Sklar’s theorem
(that every copula measure can be merged with any family of marginals to a
probability measure). After this we show that the operation of merging a copula
measure with marginals is a continuous mapping and use the compactness of
the set of copulas to conclude that this map has closed image. The second part
of Sklar’s theorem follows by arguing that this image is also dense in the space
of probability measures.

1.3.3 A Weak Law of Large Numbers for Realised Covariation in a
Hilbert Space Setting

This work corresponds to the research article [17] and introduces a new estimator
for the integrated volatility operator in the setting of mild Itô processes of the
form (1.3). Namely, we prove uniform convergence in probability of the semigroup
adjusted realised covariation SARCV, defined in (1.5), to the integrated volatility.
Under additional regularity conditions, we will describe the exact speed of
the convergence of this estimator, which turns out to be different to the
O(

√
Δn)-rate that is guaranteed in finite dimensions under mild conditions.

Here Δn = 1/n is the distance between the data points in time. Rather, the
rate is determined by the continuity property of the semigroup (S(t))t≥0 on
the range of the volatility, and becomes O(

√
Δn + bn(T )) under the assumption

E

[
sups∈[0,T ] ‖σs‖4

LHS(U,H)

]
< ∞, where

bn(T ) :=

(∫ T

0
sup

x∈[0,T ]
E
[
‖(I − S(x))σs‖2

op
]

ds

) 1
2

.

It is important to note, that in this article, we assumed the driving Wiener
process to be a Q-Wiener process. At least in distribution there is equivalence
between these two concepts, due to the martingale representation theorems (cf.
[56, Section 2.2.5]). Thus, the results in this article also hold for the framework
we introduced in the introduction.

We will elaborate on the magnitude of bn(T ) for various examples, such as
uniformly continuous semigroups and the semigroup of left-shifts in the context
of forward curves. We also consider applications to some stochastic volatility
models in Hilbert spaces.
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1.3.4 A Feasible Central Limit Theorem for Realised Covariation
of SPDEs in the Context of Functional Data

This work corresponds to the research article [16] and comprises the generalisation
of the asymptotic theory in Section 1.2 for mild Itô processes of the form (1.3).

The most important contribution in this work is the proof of a feasible central
limit theorem for the SARCV as introduced in (1.5). To this end, we will first
establish the central limit theorem(

Δ− 1
2

n

(
SARCV n

t −
∫ t

0
Σsds

))
t∈[0,1]

L−s=⇒ (N (0, Γt))t∈[0,1] , (1.15)

where L−s=⇒ stands for the stable convergence in law as a process in the Skorokhod
space D([0, T ], H). (N (0, Γt))t∈[0,1] is a multivariate continuous mixed Gaussian
process defined on an extension of the initial probability space and with values in
H, the space of Hilbert-Schmidt operators on H, and with a covariance operator
Γt, called the asymptotic variance.

To this end, it will be important to reconsider the findings in [17], which
suggest that the rate of convergence of the SARCV can in general be slower
than the O(

√
Δn) speed that we obtain for semimartingales and the realised

covariation in finite dimensions. We formulate sharp regularity conditions on
the continuity of the semigroup on the range of the volatility, which account
for this problem and allow us to prove (1.15). Putting much stronger regularity
conditions on the semigroup and the volatility in this regard, we also show in
which situations the standard realised covariation (1.4) yields a consistent and
asymptotically normal estimator.

The asymptotic variance Γt is unknown, which makes the central limit
theorem (1.15) infeasible for applications. To obtain a feasible central limit
theorem, we introduce an estimator for the asymptotic variance based on the
SAMPV as defined in (1.6). More precisely, we derive the following limit theorem,
which holds uniformly on compacts in probability:(

Δ−1
n (SAMPV n

t (4) − SAMPV n
t (2, 2))

)
t∈[0,1] → (Γt)t∈[0,1] as n → ∞.

(1.16)
Rather than just proving (1.16), we provide general laws of large numbers and
central limit theorems for the SAMPV.

We will also outline how our results can be applied in fully discrete settings
if the semigroup is either the identity or the semigroup of left-shifts, which is
the important case for the analysis of forward curves.
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Abstract

Although copulas are used and defined for various infinite-dimensional
objects (e.g. Gaussian processes and Markov processes), there is no
prevalent notion of a copula that unifies these concepts. We propose a
unified functional analytic framework, show how Sklar’s theorem can be
applied in certain examples of Banach spaces and provide a semiparametric
estimation procedure for second order stochastic processes with underlying
Gaussian copula.
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I.1 Introduction

The investigation of linear and nonlinear dependence structures between the
elements in an arbitrary family of random objects is inherent in many problems,
ranging from modelling dependence within Markov processes (see e.g. [15],[28],
[23]), Gaussian processes, and general processes with continuous marginals (see
e.g. [45]), to the modelling of dependence between semimartingale processes (see
e.g. [25],[5]) or the components of a random measure (see e.g. [38]). One of the
most powerful tools, which captures the whole structure of statistical dependence
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for a finite collection of real-valued random variables, are copulas. The theory
for copulas is rather well-developed for the finite-dimensional case (see [34] for
an introduction to the topic). In this paper, we develop a general theory of
copulas in infinite-dimensional vector spaces and point out its capability to
approximate and estimate the laws of certain second-order stochastic processes
in a semiparametric (metaelliptical) framework.

Copulas are cumulative distribution functions with uniform marginals, which
can generally be interpreted as the dependence structure separated from the
laws of the marginals by virtue of Sklar’s theorem. The first part of this theorem
states that each multivariate Borel distribution possesses an underlying copula
(representing its dependence structure), whereas the second part enables us
to merge any copula with a freely chosen family of one-dimensional marginals
to a multivariate Borel measure (with the copula measure as the specified
dependence structure). It is straightforward to extend this result to laws on
infinite-dimensional product spaces by replacing the notion with copulas as
cumulative distribution functions by copula measures as we point out in Section
I.2.

Nevertheless, as we also set an eye towards applications, that is, numerical
approximations or (functional) data analysis, it is relevant to have sufficient
knowledge about various properties like integrability or regularity of the
corresponding stochastic processes. Thus it is inevitable to consider the
framework for measures in (topological) function spaces.

Unfortunately, the advent of copulas in function spaces is subject to some
nontrivial difficulties compared to the finite-dimensional setting: first of all, it is
not immediately clear what marginals are in an infinite-dimensional vector space.
If X is a random variable in a Hilbert space H, projections onto an orthonormal
basis (〈X, en〉H)n∈N are reasonable candidates. This case was treated in [20].
Nevertheless, if, in addition, the space considered is a reproducing kernel Hilbert
space of functions, say over [0, 1], an equally natural option for marginals are
function evaluations (X(t))t∈[0,1]. This motivates the introduction of a flexible
framework, which is needed but does not yet exist. We, therefore, propose a
general concept of marginals for measurable vector spaces.

Another critical point in the infinite-dimensional setting is that even if we
fix a certain notion for marginals and then construct a measure with some
given dependence structure (i.e. a copula) and marginals via Sklar’s theorem,
this measure is not necessarily a Borel measure on the desired function space,
but may rather be just a cylindrical premeasure. Proving whether a cylindrical
premeasure corresponds to a proper probability measure is a considerably difficult
task. This technical complication was already encountered in [20] and we will
refer to it as the construction problem, in the context of applying the second part
of Sklar’s theorem. In applications, we further wish to be flexible in the choice
of copulas and marginals and hence want to avoid to be overly restrictive by
stating complicated conditions on the mutual behaviour of dependence structure
and one-dimensional distributions. Otherwise useful criteria, for instance, those
based on compactness arguments (e.g. Theorem 6.2 in [10]), may turn out to
be cumbersome to translate into feasible criteria to overcome the construction
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problem. Nevertheless, there are several important situations in which one
can find a satisfying framework to work with. One part of our work describes
respective constructions, namely in the space of continuous functions C(T ),
in Hölder spaces, in the Lebesgue spaces Lp(T ), and in the sequence spaces
lp. For the latter two cases, simple moment criteria on the marginals prove to
be sufficient (and sometimes even necessary), which makes them attractive in
practice.

The latter is good news, as these are presumably one of the most appealing
cases for applications. Even better, in some important situations, it is
possible to approximate infinite dimensional copula models in Lp(T ) for T
compact and to measure the distance of this approximation feasibly. We can
conveniently bound the Lp(T ) distance of two random variables from above by the
Wasserstein distance of their one-dimensional marginals and the Lq(T )-distance
of the corresponding underlying copula processes (i.e. processes that have the
corresponding copulas as their laws) for any q ≥ 1, under suitable smoothness
and tail assumptions on the marginals of one of the variables. Namely, for all
q ≥ 1, one can find ρ and K such that

‖X − Y ‖p
Lp(Ω×T ) ≤ ‖Wp(FX· , FY·)‖Lp(T ) + K‖UX − UY ‖ρ

Lq(Ω×T ), (I.1)

where UX , UY are the underlying copula processes and FXt
and FYt

for t ∈ T are
the marginal cumulative distribution functions of the stochastic processes X and
Y . Moreover, we demonstrate how to apply this bound in order to approximate
(heavy-tailed and tail-dependent) stochastic processes with underlying elliptical
copula and regularly varying marginals. We finally show how to estimate the
laws of nonparanormal stochastic processes (wording in line with [29]) in the
presence of functional data. We derive convergence rates for a law of large
numbers in Wasserstein space by inequality (I.1) for these processes, which are
assumed to have an underlying Gaussian copula but no parametric restriction
on the marginals.

The paper is organised as follows. We describe the basic framework of copulas
in product spaces and prove Sklar’s theorem in Section I.2. Section I.3 is devoted
to copula constructions in function spaces, where in Subsection I.3.1 we introduce
a general framework for marginals in measurable vector spaces and describe the
abstract construction problem. Subsection I.3.2 presents criteria to overcome
the latter in various function spaces. Finally, Section I.4 provides distance
estimates for the copula construction, where we recall the connection of copulas
to Wasserstein spaces in Subsection I.4.1 and derive an estimate of the Lp(T )
distance of two processes in terms of the difference of the underlying copula and
the one-dimensional Wasserstein distances of their marginals in Subsection I.4.2.
Section I.4.3 demonstrates the applicability of this inequality to the estimation
of nonparanormal stochastic processes. We give our conclusions and outlook in
Section I.5.
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Notation

For any measure μ on a measurable space (B, B) and a measurable function
f : (B, B) → (A, A) into another measurable space (A, A) we denote by f∗μ the
pushforward measure with respect to f given by f∗μ(S) := μ(f−1(S)) for all
S ∈ A. If B = RI , where I is an arbitrary index set, and B = ⊗i∈IB(R), we
use the shorter notations πJ∗μ =: μJ for a subset J ⊆ I and π{i}∗μ =: μi for
an element i ∈ I, where πJ denotes the projection on RJ . If J ⊂ I is finite, we
denote the corresponding finite-dimensional cumulative distribution functions
by FμJ

or Fμi respectively. We will frequently refer to the one-dimensional
distributions μi, i ∈ I and equivalently Fμi , i ∈ I as marginals of the measure
μ. Throughout the paper all random variables are considered on a complete
probability space (Ω, F ,P) and we write L0(Ω, F ; A, A) =: L0(Ω; A) for the
measurable functions f : (Ω, F) → (A, A), i.e., A-valued random variables.

I.2 Copulas and Sklar’s Theorem in Infinite Dimensions

Following the natural interpretation of copulas as measures in finite dimensions
(see Appendix I.A for a short treatment of copulas in finite dimensions), we
suggest defining the concept in the same line also in infinite dimensions:

Definition I.2.1. A copula measure (or simply copula) on RI is a probability
measure C on ⊗i∈IB(R), such that its marginals Ci are uniformly distributed
on [0, 1].

For finite-dimensional index sets I the notions of measures and cumulative
distribution functions have a one-to-one correspondence, which is the reason
why in this case a copula measure C can be uniquely identified with the
copula FC in the classical sense of Definition I.A.2. For the same reason the
finite-dimensional distributions CJ of an infinite-dimensional copula measure C,
correspond uniquely to the copula FCJ

in the familiar sense of copulas in finite
dimensions.

We also introduce the important notion of copula processes.

Definition I.2.2. We call a random variable U ∈ L0(Ω;RI) with uniform
marginals on [0, 1] a copula process. That is, the law of a copula process is
a copula measure.

Since for each copula, we can find a probability space, and a copula process
with law C on it, the notion of copulas has a one-to-one correspondence with
the one of copula processes.

As in finite dimensions, the most important result for the use of copulas is
Sklar’s theorem:

Theorem I.2.3 (Sklar’s theorem). Let I be an index set and μ be a probability
measure on ⊗i∈IB(R) with marginal one-dimensional distributions μi, i ∈ I.
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There exists a copula measure C, such that for each finite subset J ⊆ I, we have

FCJ

((
Fμj (xj)

)
j∈J

)
= FμJ

(
(xj)j∈J

)
(I.2)

for all (xj)j∈J ∈ RJ . Moreover, C is unique if Fμi
is continuous for each i ∈ I.

Vice versa, let C be a copula measure on RI and let (μi)i∈I be a collection of
(one-dimensional) Borel probability measures over R. Then there exists a unique
probability measure μ on ⊗i∈IB(R), such that (I.2) holds.

In the following proof and the rest of the paper, we often use for a one-
dimensional Borel measure μi on R the notation F

[−1]
μi for the quantile functions

F [−1]
μi

(u) := inf {x ∈ (−∞, ∞) : Fμi(x) ≥ u} , (I.3)

Proof. To prove the first part, let (Xi)i∈I be a random vector having μ as its
law. Let U be a standard uniformly distributed real-valued random variable
on the same probability space, such that U is independent of (Xi)i∈I . For a
one-dimensional distribution function we denote its left-limit by Fμi

(x−) :=
limy↑x Fμi

(y). Define the distributional transform process (Ui)i∈I by

Ui := Fμi(Xi−) + U (Fμi(Xi) − Fμi(Xi−))

and C to be the law of (Ui)i∈I . Since each Ui is uniformly distributed on
[0, 1] and the finite-dimensional laws CJ fulfill (I.2) by Theorem I.A.4, C is the
copula measure we looked for. Observe that in case of continuous marginals all
finite-dimensional marginals of C must be uniquely determined by the unique
copulas of the finite-dimensional laws of μ induced by Sklar’s theorem in finite
dimensions.

To prove the other direction of Sklar’s theorem, observe that, since F
[−1]
μi :

[0, 1] → R is measurable for every i ∈ I we have that (F [−1]
μi )i∈I is a measurable

map from the product space ([0, 1]I , ⊗i∈IB([0, 1]), C) to (RI , ⊗i∈IB(R)). The
measure μ on ⊗i∈IB(R) given by the corresponding pushforward measure

μ := ((F [−1]
μi

)i∈I)∗C (I.4)

has the desired properties. To see this, we just have to verify that μ has the
finite-dimensional distributions induced by (I.2). Observe that, for all i ∈ I, by
the monotonicity of the cumulative distribution functions we have that, for all
x ∈ (−∞, ∞),{

u ∈ [0, 1] : F [−1]
μi

(u) ≤ x
}

⊇ {u ∈ [0, 1] : u < Fμi(x)} = [0, Fμi(x))

and {
u ∈ [0, 1] : F [−1]

μi
(u) ≤ x

}
⊆ {u ∈ [0, 1] : u ≤ Fμi(x)} = [0, Fμi(x)].

Thus, for J ⊂ I finite, we have for all (xj)j∈J ∈ RJ that(
[0, Fμj (xj)]

)
j∈J

\
({

u ∈ [0, 1] : F [−1]
μj

(u) ≤ xj

})
j∈J

⊆
({

Fμj (xj)
})

j∈J
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is a CJ null set. Therefore we obtain

CJ

(((
F [−1]

μj

)−1
(−∞, xj ]

)
j∈J

)
=CJ

(({
u ∈ [0, 1] : F [−1]

μj
(u) ≤ xj

})
j∈J

)
=CJ

((
[0, Fμj (xj)]

)
j∈J

)
=FCJ

(
Fμj ((xj))j∈J

)
.

This concludes the proof. �

Remark I.2.4. If I is a finite set, Theorem I.2.3 coincides with Sklar’s theorem
I.A.3 in finite dimensions by identifying the copula measure uniquely with its
corresponding cumulative distribution function.
Remark I.2.5. From the proof above it follows that for a copula measure C
on RI and a collection of marginals (μi)i∈I , the pushforward measure in (I.4)
represents a probability measure μ on RI having this underlying copula and
marginals.

The following examples review some existing concepts of copulas, which can
be embedded into our framework:

Example I.2.6. (Complete dependence and independence copulas) The com-
plete dependence copula measure on RI is the law corresponding to the con-
sistent family of finite-dimensional cumulative distribution functions given by
MJ ((uj)j∈J ) = minj∈J uj . Observe, that its finite-dimensional distribution func-
tions are Fréchet-Hoeffding upper bounds for the corresponding finite-dimensional
copulas, that is, for all J ⊂ I finite and any copula C on RI we have

FCJ

(
(uj)j∈J

)
≤ MJ

(
(uj)j∈J

)
∀(uj)j∈J ∈ [0, 1]J .

The independence copula measure on RI is the law of the consistent family
of finite-dimensional cumulative distribution functions given by ΠJ((uj)j∈J) =
Πj∈Juj .

Example I.2.7. (Inversion method and Gaussian copulas) Given a law μ with
continuous marginals Fμi

, i ∈ I, the underlying copula measure C induced by
Sklar’s theorem I.2.3 is given by its finite-dimensional cumulative distribution
functions for each finite J ⊆ I via

FCJ

(
(uj)j∈J

)
:= FμJ

((
F [−1]

μj
(uj)

)
j∈J

)
∀(uj)j∈J ∈ [0, 1]J . (I.5)

This method is known as the inversion method (see e.g. [34]). In this way, we can
derive, for instance, the copula measures that are underlying a Gaussian process
(that is, each μJ is Gaussian), which are called Gaussian copulas. Infinite-
dimensional Gaussian copulas were applied already for example in [45] in a
machine learning context.
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Example I.2.8. (Archimedean copulas): Let I be an infinite dimensional index
set. A continuous function ψ : [0, ∞) → [0, 1] is called an Archimedean
generator, if ψ(0) = 1 and limx→∞ ψ(x) = 0 and ψ is strictly decreasing on
[0, inf{x ≥ 0 : ψ(x) = 0}). In this case ψ is said to generate an Archmimedean
copula measure C, if

FCJ

(
(uj)j∈J

)
:= ψ

⎛⎝∑
j∈J

ψ−1 (uj)

⎞⎠
for each finite J ⊂ I, with the convention ψ−1(0) = inf{x ≥ 0 : ψ(x) = 0}
(cf. chapter 2 in [32]). In the case of a finite index set I, say with cardinality
2 ≤ d < ∞, by [32, Theorem 2.2] we know that ψ generates an Archimedean
copula if and only if it is d-monotone, that is, it has derivatives of up to
order d on (0, ∞) and (−1)kf (k)(x) ≥ 0 for all k = 0, ..., d − 2 and x ∈ (0, ∞)
and (−1)d−2f (d−2) is nonincreasing and convex on (0, ∞). This is translated
to the infinite dimensional case by replacing condition of d-monotonicity by
the condition that ψ is completely monotone, i.e. ψ has derivatives of all
orders on (0, ∞) and (−1)kf (k)(x) ≥ 0 for all k ∈ N and x ∈ (0, ∞). In
fact, [32, Proposition 2.4] yields that if I has infinite cardinality, ψ generates
an Archimedean copula measure, if and only if it is completely monotone.
A prototypical example is the Clayton copula measure, with the generator
ψθ(x) := max((1 + θx)− 1

θ , 0) for a parameter θ ∈ R \ {0} (as a limit from both
sides, the case θ = 0 also has an interpretation as the independence copula).
While in finite dimensions ψθ generates an Archimedean copula for some θ < 0,
this possibility is completely ruled out in infinite dimensions, i.e. if I is infinite,
ψθ generates an Archimedean copula if and only if θ is nonnegative (cf. Example
3 in [32]). It is also worth noting that by definition, these probability measures
are exchangeable and it was shown in [13] that Archimedean copulas in infinite
dimensions can be related to Dirichlet distributions.

In addition, our framework accommodates also Markov copulas, introduced
in [15] and developed also, e.g., in [28], [24], [23], and [4], copulas for time series
introduced in [12] and copulas in Hilbert spaces from [20].

I.3 Copulas in Topological Vector Spaces

In this section, we formulate a unified setting for the notion of copulas in the
framework of vector spaces.

I.3.1 Marginals in Vector Spaces

Let V be a vector space over R and V a σ-algebra over this space. Recall that
the algebraic dual of V is defined as the vector space

Hom(V,R) := {ϕ : V → R : ϕ is linear} .
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Definition I.3.1 (M -Marginals). Let X be a random variable on V . Let M be
a linearly independent subspace of measurable functions in Hom(V,R) that
separates the points of V (i.e. for all v, w ∈ V there is an m ∈ M such that
m(v) �= m(w)). Then we call the random variables (m(X) : m ∈ M) the
M -marginals of X.

Observe that by the definition above, we can embed the vector space
framework into the framework of product spaces, by the embedding

V � v �→ (m (v))m∈M ∈ RM , (I.6)

which is necessary for the application of our copula theory.
Some choices of M which are of practical importance are given in the sequel.

Example I.3.2 (Marginals in finite dimensions). In the finite-dimensional case,
that is V = Rd for some d ∈ N, M is necessarily of the form

M = {〈e1, ·〉, ..., 〈ed, ·〉} (I.7)

for a basis e1, ..., ed of Rd and where 〈·, ·〉 denotes an inner product on Rd. In
terms of finite-dimensional copula theory, the natural choice is the standard
basis e1 = (1, 0...., 0), ... , ed = (0, ..., 0, 1).

Example I.3.3 (Product space). It is possible to embed the product space setting
from Section I.2 into the framework of measurable vector spaces: the product
space V = RI for some index set I becomes a measurable vector space, if we
equip it with the product σ-algebra ⊗i∈IB(R). The projections (or evaluation
functionals) πj((vi)i∈I) := vj for j ∈ I are measurable (even continuous) by
definition, linearly independent and separate the points. Thus, we can take

M = {πi : i ∈ I} . (I.8)

Observe that we can do this with every space of functions, in which the evaluations
are linearly independent. For instance, we can take the space of p-integrable
functions over a subset T of Rd, d ∈ N

Lp(T ) := Lp(T, A, μ;R)

=
{

f : T → R : f is measurable and ‖f‖Lp(T ) := (
∫

T

f(t)pμ(dt))
1
p < ∞

}
(I.9)

for some natural number p and a measure space (T, A, μ). Observe that in
this setting we work in a space of functions, rather than of equivalence classes.
The reason is that point evaluations are not well defined in Banach spaces of
equivalence classes. This serves also as motivation for Subsection I.3.2.1 where
we construct copulas under these circumstances.

Example I.3.4 (Path marginals for Banach spaces of functions). Let V be a
separable Banach space of real-valued functions on a set T such that the

40



Copulas in Topological Vector Spaces

evaluation functionals δtf := f(t) (or projections in terms of product spaces) are
continuous and V = B(V ) is the Borel σ-algebra with respect to the corresponding
norm topology. In most of these settings, the subset

M = {δt : t ∈ T} (I.10)

of evaluations is linearly independent and, due to continuity, it consists of
measurable functionals. Important examples in this framework are the continuous
functions V = C(T ) and V = BK , where BK is a reproducing kernel Banach or
Hilbert space in the sense of [46] or [3].

Example I.3.5. (Basis marginals) If V is a Banach space that possesses a
Schauder basis (cf. Definition I.3.19) we can take

M = {fn : n ∈ N} . (I.11)

where (fn)n∈N is the sequence of coefficient functionals of the Schauder basis.
Examples of Banach spaces that possess such a basis are C([0, 1]), Lp([0, 1]),
the sequence spaces lp and, as a special case, all separable Hilbert spaces with
orthonormal bases as Schauder bases. Note that in the latter case we are
effectively in the setting of consistent copulas from [20].

Remark I.3.6 (Marginals for nonlinear subspaces). Note, that if we are just
interested in defining random variables on particular subsets of a vector space
V , the set M must not necessarily be separating for all elements of V . One
example is the construction of random probability measures, as a certain subset
of random variables in the Banach space of signed measures on the real line. In
this case, it suffices to take

M = {F·(t) : Fμ(t) = μ(−∞, t], t ∈ R} , (I.12)

that is, we identify a random probability measure with the corresponding random
cumulative distribution function.

We will refer to the choice of marginals in Examples I.3.3 and I.3.4 as path
marginals and the corresponding copulas in this framework as path copulas. In
contrast, the corresponding constructions in Example I.3.5 will be referred to as
basis marginals and basis copulas.

Already in finite dimensions, due to different basis specifications, there is not
just one choice for M . Unfortunately, copulas are not invariant under change of
the notion of marginals, as shown by the following example:

Example I.3.7. Suppose (X1, X2) and (Y1, Y2) are two bivariate real random
variables on the same probability space, such CX1,X2(u, v) = CY1,Y2(u, v) = uv
is the independence copula. Assume, moreover, that X1 ∼ N(0, 1) and
X2, Y1, Y2 ∼ U(0, 1). By Proposition 3.4.1 in [12] we know that

CX2,X1+X2(u, v) =
∫ u

0

d

dx1

CX1,X2

(
w, FX1

(
F

[−1]
X1+X2

(v) − F
[−1]
X2

(w)
))

dw.
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One can easily show that FX1+X2( 1
2 ) = 1

2 and FY1+Y2(1) = 1
2 . Thus, choosing

v = 1
2 and u = 1

2 and since the independence copula is simply the product of
the one-dimensional uniform distributions, the distribution functions of Y2 and
X2 are the identity on [0, 1] and FX1( 1

2 ) < 7
10 , we have

CX2,X1+X2(
1
2

,
1
2

) =
∫ 1

2

0
FX1(

1
2

− w)dw <
7
20

<
3
8

=
1
2

F
[−1]
Y1+Y2

(
1
2

) −
( 1

2 )2

2

=CY2,Y1+Y2(
1
2

,
1
2

).

Therefore (X1, X2) and (Y1, Y2) do not share the same copula with respect to
{(0, 1), (1, 1)}-marginals, but with respect to {(1, 0), (0, 1)}-marginals they do.

If we want to construct a measure on a vector space V by virtue of the second
part of Sklar’s theorem the naive procedure reads now as follows:

Construction 1.

(i) Choose some set M which satisfies the conditions of Definition I.3.1.

(ii) Choose a copula C on RM (or a copula process (Um)m∈M ) and one-
dimensional distributions (μm)m∈M and merge them with Sklar’s theorem
to a law μ (or a process) on ⊗m∈M B(R).

(iii) (Construction Problem) Check if μ can be identified with a measure on V
via the embedding (I.6).

As anticipated in the introduction, the third point will not necessarily carry
an affirmative answer. The choice of marginals and dependence structure in (ii)
must be based on criteria that guarantee a solution to (iii), which is hereafter
referred to as the construction problem for copulas in function spaces.

Consider now the following framework (which covers all mentioned examples):
V is a topological vector space, V = B(V ) the corresponding Borel σ-algebra
and M a subset of the dual that satisfies the conditions of Definition I.3.1. In
addition, assume that each m ∈ M is continuous, that is,

M ⊂ V ∗,

where V ∗ denotes the topological dual of V , given by

V ∗ := {v∗ : V → R : v∗ is linear and continuous} .

Then Construction 1 induced by Sklar’s theorem effectively culminates in the
construction of a cylindrical premeasure on that vector space (see for instance
[10] or [40] for a treatment of cylindrical measure theory). In the case that V
is even a separable Banach space and M ⊂ V ∗, we however have the following
useful criterion for our setting:
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Lemma I.3.8. Let V be a separable Banach space. Assume that M is a
fundamental set with respect to the weak∗-topology, that is, its linear span is
dense. If the probability measure defined in Construction 1 is the law of a process
X := (Xm)m∈M , such that X is almost surely in the range of the embedding
(I.6), then it is the image of a Borel measurable random variable X̃ in V under
this embedding.

Proof. If (Xm)m∈M is almost surely in the range of the embedding, there is an
Ω̃ ⊆ Ω with full measure and a random variable X̃ such that m(X̃(ω)) = Xm(ω)
for all ω ∈ Ω̃. Since M is a fundamental set, we have that for all v∗ ∈ V ∗ there is
a sequence (

∑Nn

i=1 λn
i mn

i )n∈N in lin(M) such that
∑Nn

i=1 λn
i mn

i → v∗ with respect
to the weak∗-topology. Thus

v∗(X̃) = lim
n→∞

Nn∑
i=1

λn
i mn

i (X̃) a.s.

is measurable, since linear combinations and limits of measurable functions are
measurable. We conclude that X̃ is a weakly measurable random variable on
a separable Banach space and hence, by the Pettis theorem [36, Theorem 1.1]
strongly measurable, that is, measurable with respect to the Borel σ-algebra. �

Remark I.3.9. Due to the existence of Hamel bases on V ∗ and the Hahn-Banach
theorem (cf. Corollary 5.80 in [2]), the existence of a set M that satisfy the
conditions in Definition I.3.1 is always guaranteed in locally convex Hausdorff
spaces.

We will concentrate in the next sections on special cases of path- and basis
constructions, which are adequate to solve the construction problem (for instance
by Lemma I.3.8), which is why they are foremost of practical importance.

I.3.2 Solutions to the Construction Problem

I.3.2.1 Path Copulas for p-Integrable Stochastic Processes

We describe in this section how the copula construction induced by Sklar’s
theorem I.2.3 works for the function space Lp(T, B(T ), μ;R) =: Lp(T ) for p ∈ N,
a measurable set T ⊂ Rd with d ∈ N and a σ-finite measure μ. As mentioned in
Example I.8, we take M = {δt : t ∈ T}-marginals, that is, we identify a function
f ∈ Lp(T ) by all its function values (f(t))t∈T . Moreover, we denote by [f ] the
corresponding equivalence class of almost everywhere coinciding functions with
f , which forms an element in the Banach space of equivalence classes Lp(T ).

For a stochastic process X = (Xt)t∈T we say that it is measurable, if the
mapping (t, ω) �→ Xt(ω) is B(T ) ⊗ A/B(R)-measurable.

Lemma I.3.10. Let X = (Xt)t∈T be a measurable stochastic process.

(a) Assume X = (Xt)t∈T is a stochastic process with sample path’s in Lp(T )
almost surely. Then there is a Borel measurable random variable Y in
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Lp(T ) (with respect to the pseudometric induced by ‖ · ‖Lp(T )), such that
Y = X almost surely.

(b) Let X be measurable. Then there is a Borel measurable random variable
Y in Lp(T ), such that Y = X almost surely and Y ∈ Lp(Ω; Lp(T )) if and
only if ∫

T

E [|Xt|p] μ(dt) < ∞.

Proof. We will verify that [X] is a Borel measurable random variable on the
Banach space Lp(T ). In that case we have that since O ∈ B(Lp(T )) is open if
and only if [O] ∈ B(Lp(T )) is open, thus X is A/B(Lp(T ))-measurable if and
only if [X] is A/B(Lp(T ))-measurable. By Pettis theorem [36, Theorem 1.1]
we have that [X] is measurable, if and only if

∫
T

X(t)y(t)dt is measurable for
all y ∈ Lq(T ) with q = p

p−1 if p ≥ 2 and for all y ∈ L∞(T ) if p = 1. Due to
measurability of the process X, these integrals are indeed measurable. This
shows (a).

To show (b), observe that by Fubini’s theorem we have

E

[∫
T

|Xt|pμ(dt)
]

=
∫

T

E [|Xt|p] μ(dt)

whenever one of the terms in this equation is finite. Using (a), this shows the
assertion. �

Lemma I.3.10 yields the following simple construction of random variables
X such that [X] ∈ Lp(Ω; Lp(T )):

Construction 2.

(i) Specify a measurable copula process U = (Ut)t∈T .

(ii) define marginals (Ft)t∈T , with corresponding pth moments (mp
t )t∈T , such

that (t, x) �→ Ft(x) is jointly measurable and∫
T

mp
t μ(dt) < ∞. (I.13)

(iii) construct the new process X with underlying copula process U and
marginals (Ft)t∈T via Sklar’s theorem I.2.3, that is,

Xt = F
[−1]
t (Ut) ∀t ∈ T.

This process has values in Lp(T ) almost surely and by Lemma (I.3.10),
[X] is therefore an element in Lp(Ω; Lp(T )).

Notice that the interpretability of the underlying path copula of X is
complicated if transferred to the equivalence class [X]. Indeed path copulas
specify dependence between point evaluations of the random function, which
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are not well defined anymore for equivalence classes. If one wants to specify
dependence between equivalence classes, one should approach this by considering
the notion of basis marginals, as described in Subsection I.3.2.3.

From a measure theoretical point of view, Banach spaces in which evaluation
functionals are well defined and continuous are favourable and we will discuss
this in the sense of spaces of continuous functions in the next subsection.

I.3.2.2 Path Copulas for Continuous Processes

Let T be a topological vector space. We want to establish a ‘Sklar-like’ theorem
in the space of real continuous functions C(T ) := C(T ;R). If T is a compact
metrizable Hausdorff space, we equip it with the norm ‖f‖∞ := supt∈T |f(t)|,
making C(T ) a separable Banach space (cf. [2, Theorem 9.14]).

Recall that a process X = (Xt)t∈T with marginals (Ft)t∈T is continuous in
distribution, if for all t ∈ T

lim
s→t

Fs(x0) = Ft(x0) for all continuity points x0 of Ft. (I.14)

If we assume that all the marginals Ft, t ∈ T are continuous (in x), (I.14)
simplifies to the condition that

(t, x) �→ Ft(x) is continuous in both variables separately

In the latter case we have even joint continuity:

Lemma I.3.11. Assume that the marginals Ft, t ∈ T of an almost surely
continuous process X = (Xt)t∈T are continuous. Then

(t, x) �→ Ft(x) is jointly continuous. (I.15)

If the marginals are strictly increasing between the points F
[−1]
t (0+) and F

[−1]
t (1)

in x we have that

(t, x) �→ F
[−1]
t (x) is jointly continuous. (I.16)

Proof. Due to Lemma 21.2 from [43] we have that t �→ F
[−1]
t is pointwise

continuous. The proof follows analogously to the arguments of the proof of
Proposition 1 in [27]:

Let (t0, x0) ∈ T × R. Then for all ε > 0 there are δ > 0 and neighbourhoods
U1, U2 of t0 in T such that

|Ft0(x) − Ft0(x0)| ≤ ε

2
if |x − x0| ≤ δ (I.17)

|Ft(x0 + δ) − Ft0(x0 + δ)| ≤ ε

2
if t ∈ U1 (I.18)

|Ft(x0 − δ) − Ft0(x0 − δ)| ≤ ε

2
if t ∈ U2. (I.19)
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Define U0 := U1 ∩ U2 and let (t, x) ∈ T × R such that t ∈ U0 and |x − x0| < η.
Then due to monotonicity in x we have

Ft(x) − Ft0(x0) ≤Ft(x + δ) − Ft0(x0)
=Ft(x0 + δ) − Ft0(x0 + δ) + Ft0(x0 + δ) − Ft0(x0) (I.20)

and

Ft(x) − Ft0(x0) ≥Ft(x − δ) − Ft0(x0)
=Ft(x0 − δ) − Ft0(x0 − δ) + Ft0(x0 − δ) − Ft0(x0). (I.21)

Combining (I.17) with (I.20) and (I.21) we obtain

|Ft(x) − Ft0(x0)| ≤ ε (I.22)

and thus, joint continuity in (t0, x0). �

Since processes with continuous sample paths are continuous in distribution,
(I.14) (resp. (I.15)) forms a necessary condition on the marginals.

Theorem I.3.12. Let X = (Xt)t∈T be a stochastic process with sample paths that
belong almost surely to C(T ) and such that it has continuous marginals Ft for
all t ∈ T . Then U = (Ut)t∈T defined by

t �→ Ut := Ft(Xt) (I.23)

is a copula process for X and almost surely continuous on T . Vice versa, if
U is a copula process that is almost surely continuous on T and Ft, t ∈ T are
strictly increasing marginals between the points F

[−1]
t (0+) := limx↓0 F

[−1]
t (x) and

F
[−1]
t (1), which are continuous in distribution, then Y = (Yt)t∈T defined by

Yt = F
[−1]
t (Ut) (I.24)

is a random variable, which is almost surely in C(T ) with marginals Ft and
underlying copula process U . Moreover, if T is a compact metrisable Hausdorff
space, Y is measurable with respect to the Borel σ-algebra on the separable Banach
space C(T ).

Proof. Observe, that since we are in the case of continuous marginals, the process
(Ut)t∈T defined by Ut = Ft(Xt) for all t ∈ T is a copula process underlying X.
Its continuity follows by Lemma I.3.11 and the continuity of s �→ Xs.

To show the second part, observe that (t, x) �→ F
[−1]
t (x) is continuous in

x, since the marginals Ft, t ∈ T are strictly increasing between F
[−1]
t (0+) and

F
[−1]
t (1). Hence Y is a random variable with values in C(T ) almost surely by

Lemma I.3.11 and the continuity of s �→ Us.
Its Borel measurability in the case that T is a compact metrisable Hausdorff

space follows from Lemma I.3.8, as the point evaluations form a fundamental
set with respect to the weak∗-topology on the dual of C(T ). �
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Remark I.3.13. In the framework of stochastic processes, the initial value X0
is often chosen to be deterministic. Therefore it has neither a continuous nor
strictly increasing distribution in the initial value. Possibly, for some processes,
we still manage to define a continuous underlying copula (if the copula process
has a limit from above in 0 which is uniformly distributed), but since this might
be hard to check in general, it is reasonable to start the process a little bit
later than in the origin. In fact, in some cases (like for the Brownian motion in
Example I.3.14 below), it is possible to prove the nonexistence of a continuous
version of the copula process on the whole real line.

Example I.3.14. For some t0 > 0 let Xt = Bt for t ∈ [t0, ∞) be a standard
Brownian motion with sample paths in C(R+).

Ut = Ft(B(t)) =
1√
2πt

∫ B(t)

−∞
e− x2

2t dx.

We note that the copula of a Brownian motion was investigated for instance in
[41] in the framework of Markov copulas.

To see that we cannot find a continuous copula process for the Brownian
motion starting in 0, we can argue as follows: As F1 is a homeomorphism, we
have that any version of Ft(Bt) = F1(Bt/

√
t) is again of the form Ft(B̃t) for a

continuous version (B̃t)t≥0 of the Brownian motion (Bt)t≥0. So in order to find a
continuous modification of the process (Ft(Bt))t≥0, the limit limt→0 Ft(Bt) must
exist almost surely and be uniformly distributed. But we have that a Brownian
motion is almost surely not 1/2-Hölder continuous in 0. In fact, for all K > 0
we have by applying Blumenthal’s 0-1-law (cf. Example 21.16 in [26])

P

[
inf{t > 0 :

Bt√
t

≥ K} = 0
]

= 1

and therefore also

P

[
inf{t > 0 :

Bt√
t

≤ −K} = 0
]

= 1

Thus,

lim sup
t→0

Bt√
t

= ∞, lim inf
t→0

Bt√
t

= −∞.

But this implies that almost surely

lim sup
t→0

Ft(Bt) = lim sup
t→0

F1(
Bt√

t
) = 1, lim inf

t→0
Ft(Bt) = lim inf

t→0
F1(

Bt√
t
) = 0,

which means that (Ft(Bt))t≥0 cannot be continuous in 0.

We now move our attention to the regularity of paths induced by the copula
construction. Therefore let now T = I1 × ... × Id be an interval in Rd for some
d ∈ N. Recall that for a constant γ > 0 a function f : T → R is called locally
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γ-Hölder continuous, if for each t ∈ T there is a neighbourhood N(t) of t in T
and a constant Kt > 0, such that for all s, r ∈ N(t) we have

|f(s) − f(r)| ≤ Kt|s − r|γ .

For a nonnegative integer k, γ ∈ (0, 1] and m ∈ N, we introduce the Hölder spaces
Ck,γ(T ;Rm) to be the space of functions f : T → Rm which are continuously
differentiable up to order k and the kth derivative is locally γ-Hölder continuous.

Recall the following fact about locally Hölder continuous functions:

Lemma I.3.15. Let I1, ..., Im be intervals and f = (f1, ..., fm) ∈ Ck,γ(T ;Rm)
and g ∈ Cl,η(I1 × ... × Im;R) such that f(T ) ⊂ I1 × ... × Im. Then

g ◦ f ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C0,γη(T ;R) k = l = 0
Ck,γ(T ;R) k > l

Cl,η(T ;R) l > k

Ck,min(γ,η)(T ;R) l = k ≥ 1.

Proof. This is a special case of Theorem 4.3 in [30]. �

As a consequence of Lemma I.3.15 we obtain the following immediately:

Corollary I.3.16. Let X ∈ Ck,γ(T ;R) almost surely such that (t, x) �→ FXt(x) ∈
Cl,δ(T × R;R). Let U denote the associated copula process given by Ut =
Ft(Xt), t ∈ T . Then almost surely

U ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C0,γη(T ;R) k = l = 0
Ck,γ(T ;R) k > l

Cl,η(T ;R) l > k

Ck,min(γ,η)(T ;R) l = k ≥ 1.

For a copula process U ∈ Ck,γ(T ;R) almost surely and marginal cumulative
distribution functions (Gt)t∈T , such that (t, u) �→ G

[−1]
t (u) ∈ Cl,δ(T × (0, 1);R),

Y denotes the process given by Yt = G
[−1]
t (Ut). Then we have almost surely that

Y ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C0,γη(T ;R) k = l = 0
Ck,γ(T ;R) k > l

Cl,η(T ;R) l > k

Ck,min(γ,η)(T ;R) l = k ≥ 1.

By virtue of the previous Corollary I.3.16 we can determine the regularity of
a copula process underlying a fractional Brownian motion:

Example I.3.17. Assume that (Ut)t∈(t0,∞) is a copula process underlying a
fractional Brownian motion (BH

t )t∈[t0,∞) for some t0 > 0 with Hurst parameter
H ∈ (0, 1), that is, a centered Gaussian process with covariance function

E[BH
t BH

s ] =
1
2
(
t2H + s2H + |t − s|2H

)
.
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The process (Ut)t∈(t0,∞) has locally H-Hölder continuous paths. To see this, we
just have to verify the local H-Hölder continuity of (t, x) �→ ΦH

t (x) as stated in the
Corollary I.3.16, where we denoted by ΦH

t the cumulative distribution functions
of BH

t . We can estimate for s, t ∈ [t0, ∞) (with the constant c = 1/
√

2π)

|ΦH
t (y) − ΦH

s (y)| =
∣∣∣ΦH

1

( y

tH

)
− ΦH

1

( y

sH

)∣∣∣ =

∣∣∣∣∣
∫ max( y

tH , y

sH )

min( y

tH , y

sH )

e− z2
2

√
2π

dz

∣∣∣∣∣
≤c|y||t−H − s−H |

≤|y| c

min(tH , sH)2 |t − s|H

≤c|y|
t2H
0

|t − s|H .

Analogously, for x, y ∈ R we get

|ΦH
t (x) − ΦH

t (y)| =
∣∣∣ΦH

1

( x

tH

)
− ΦH

1

( y

tH

)∣∣∣ =

∣∣∣∣∣
∫ max( y

tH , x

tH )

min( y

tH , x

tH )

e− z2
2

√
2π

dz

∣∣∣∣∣
≤c|x − y||t−H |
≤c|x − y||t−H

0 |.

By the triangle inequality, we obtain the joint Hölder continuity

|ΦH
t (x) − ΦH

s (y)| = |ΦH
t (x) − ΦH

t (y)| + |ΦH
t (y) − ΦH

s (y)|

≤ c max
(

|t−H
0 |, |y|

t2H
0

)(
|x − y| + |t − s|H

)
.

Example I.3.18 (Exponential Marginals and fBM copula). Several modelling
situations (e.g., when modelling stochastic volatility, interest rates, etc. in
financial mathematics) necessitate positive stochastic processes. It is simple to
see that copula constructions might lead to good interpretable and alternative
methods to model such processes since we are free to put any continuous family
of marginals onto a Gaussian process (this was for example suggested in [45]).

As a simple example, take exponential marginals of the form

Gt(x) := Ix>0

(
1 − e− x

tH

)
, t ∈ [t0, ∞), x ∈ R

for some t0 > 0, a (Hurst-)parameter H = (0, 1) corresponding to the copula
process (Ut)t∈T of a fractional Brownian motion BH (we take the parameter

1
tH for the marginals to keep the same variance as the underlying fractional
Brownian motion). By the smoothness of

G−1
t (y) = − log(1 − y)th
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we obtain that the transformed fractional Brownian motion

Yt := G−1
t

(
ΦH

t (BH
t )
)

:= − log

⎛⎝1 −
∫ BH

t

−∞

e− z2
2t2H

√
2πtH

dz

⎞⎠ tH

= − log

⎛⎝∫ ∞

BH
t

e− z2
2t2H

√
2πtH

dz

⎞⎠ tH

has underlying Gaussian copula U , is γ-Hölder continuous for all γ < H and has
exponential marginals (with parameters 1

tH ).
In [19] it is argued empirically for lognormal marginals with a fractional

Brownian motion copula for the stochastic volatility of asset prices. Our example
shows that one can easily modify the marginals (to exponential, say, as in our
example here), or other positively supported distributions, in so-called rough
volatility models of asset prices. Moreover, the flexibility in the copula framework
allows also to go beyond the specific dependency yielded by the copula induced
by fractional Brownian motion.

I.3.2.3 Construction on Schauder Bases

In this section, we will characterise copula-constructed processes for random
variables in Banach spaces with a Schauder basis. This includes Lp([0, 1])-spaces
(with the Haar wavelets as Schauder basis), C([0, 1]) (with the original Schauder
basis), lp-sequence spaces, and therefore in particular, all separable Hilbert
spaces (with an orthonormal basis as Schauder basis). For a detailed account of
the theory of bases in Banach spaces, we refer to [21].

Definition I.3.19. A sequence (en)n∈N ⊆ V of linearly independent vectors is
called a basis of a locally convex Hausdorff space V , if for all v ∈ V there is a
unique sequence an(v), such that

v =
∑
n∈N

an(v)en,

where the series converges with respect to the locally convex topology on V .
A basis of V ∗ is called weak∗-basis of V ∗, if it is a basis with respect to the
weak∗-topology. If V is a Banach space and v �→ an(v) is continuous with
respect to the norm topology for all n ∈ N, we call (en)n∈N ⊆ V a Schauder
basis.

The continuity of the function (an)n∈N is automatically satisfied if V is a
separable Banach space (see Theorem 3.1. in [42]). Note, that every Banach
space that possesses a basis is separable. However, for a separable Banach space,
the existence of a basis cannot be guaranteed, due to the counterexample by
Enflo in [16]. For a Banach space with Schauder basis we can verify, that the
corresponding coefficient functions are always contained in the topological dual:
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Lemma I.3.20. Let V be a Banach space with Schauder basis (en)n∈N and
coefficient functions (an)n∈N. Then {an : n ∈ N} ⊂ V ∗ and for m, n ∈ N

we have

an(em) =

{
0 m �= n

1 m = n.

Proof. Linearity of the coefficients is clear due to uniqueness of the representation.
Moreover for the same reason, an(en) = 1 and am(en) = 0 gives a valid series
representation of en for all n ∈ N and by uniqueness of this, the assertion
follows. �

That the coefficient functionals are linearly independent and separate the
points is a consequence of the following theorem:

Theorem I.3.21. Let V be a Banach space. A sequence (an)n∈N is a weak∗

Schauder basis of V ∗ if and only if there exists a Schauder basis (en)n∈N of
V that has (an)n∈N as its coefficient functionals. The coefficient functionals
for the basis (an)n∈N are then given by the bidual elements (ιen)n∈N, where
ιv(v∗) = v∗(v).

Proof. See Theorem 14.1. in [42]. �

Observe that for a Banach space with Schauder basis, the corresponding set

M = {an : n ∈ N}

of coefficient, marginals satisfy all the conditions of Definition I.3.1. Embedding
(I.6) reads now

v �→ (an(v))n∈N. (I.25)

Theorem I.3.22. Let V be a Banach space with Schauder basis (en)n∈N and
coefficient functions (an)n∈N. The following are equivalent

(i) A sequence (an)n∈N is in the range of the embedding (I.25);

(ii)
∑∞

n=1 anen ∈ V is a convergent series in the norm topology;

(iii) supN∈N ‖
∑N

n=1 anen‖ < ∞.

Proof. See Theorem 4.13 in [21]. �

Thus, for the checkup of the Construction 1 we have the following:

Corollary I.3.23. Let V be a Banach space with Schauder basis (en)n∈N and
(Xn)n∈N be a stochastic process. Then the following are equivalent:

(i) X =
∑∞

n=1 Xnen is a Borel measurable random variable in V ;

(ii) supN∈N ‖
∑N

n=1 Xnen‖ < ∞ P − almost surely.

Proof. This follows directly from Theorem I.3.22 and Lemma I.3.8. �
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Let us now describe how we can construct a Banach space probability measure
with predescribed dependence structure and marginals for the basis components:

Construction 3.

(i) V a Banach space with Schauder basis (en)n∈N ⊆ V ;

(ii) Choose a copula measure C on RN (which models the dependency between
basis elements) and marginals (μn)n∈N. Merge them to a law of a random
sequence (Xn)n∈N taking values in RN via Sklar’s theorem I.2.3.

(iii) Define X :=
∑

n∈N
Xnen.

(iv) Check if this sum converges in V almost surely (corresponding to Corollary
I.3.23).

For the verification of (iv) we obtain conditions on the moments of the
marginals.

Corollary I.3.24. Let X be given as in Construction 3(iii). Then X ∈
L1(Ω; V, B(V )) if the marginals have finite first moment and

∞∑
n=1

E[|Xn|] < ∞. (I.26)

Proof. This follows immediately by using Corollary I.3.23 and the triangular
inequality. �

In the case of sequence spaces, we obtain even sufficient and necessary
conditions to construct laws with finite moments of a certain order. Denote

lp :=

⎧⎨⎩(xn)n∈N ⊂ RN : ‖(xn)n∈N‖p :=

( ∞∑
n=1

|xn|p
) 1

p

< ∞

⎫⎬⎭
for some p ∈ [1, ∞).

Corollary I.3.25. Let V = lp and X be given as in Construction 3(iii). Then
X ∈ Lp(Ω; lp, B(lp)) if and only if the marginals have finite pth moment and

∞∑
n=1

E[|Xn|p] < ∞. (I.27)

Proof. The standard basis (δn)n∈N is the sequence which has components equal
to zero everywhere, except on the n’th entry, where it is 1. This defines a
Schauder basis on lp with coefficient functionals δ∗

i given by δ∗
i ((xn)n∈N) = xi,

since

(xn)n∈N =
∞∑

i=1
xiδi =

∞∑
i=1

δ∗
i ((xn)n∈N)δi.
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Thus,

sup
N∈N

∥∥∥∥∥
N∑

n=1
Xnδn

∥∥∥∥∥
p

p

= sup
N∈N

N∑
n=1

|Xn|p =
∞∑

n=1
|Xn|p.

This implies

E[‖X‖p
p] =

∞∑
n=1

E[|Xn|p] < ∞.

The assertion follows. �

Remark I.3.26. Observe that Corollary I.3.25 generalises Corollary 4.3 in [20],
where the case of separable Hilbert spaces, that is, p = 2, was considered and
the notion of a Schauder basis is reduced to the concept of orthonormal bases.

The results derived above just impose conditions on the marginals, which
makes them useful from a practical viewpoint. Still, the concept of copulas for
random variables in the space Lp(Ω; lp), or equivalent for laws in the Wasserstein
space Wp(lp) (see (I.28) below) is characterized completely by Corollary I.3.25.
We will obtain another characterization of copulas as underlying solutions to
certain restricted optimization problems in these Wasserstein spaces in the next
section.

I.4 Approximation and Estimation

The previous section suggested that copula theory is well suited for the spaces
Lp(T ) := Lp(T, B(T ), μ;R) for a finite Borel measure μ and T ⊂ Rd a compact
interval and the sequence spaces lp, due to simple moment criteria to overcome
the construction problem. In this section, we will provide distance estimates
of random variables in these spaces in terms of their copula and marginals
separately.

Hereafter we shorten the notation as follows: For a random variable X with
values in E (where E equals lp or Lp(T ) respectively) we denote the operators

FX(x)n := FXn(xn), n ∈ N (FX(f)(t) := FXt(f(t)), t ∈ T resp.)

and

F
[−1]
X (x)n := F

[−1]
Xn

(xn), n ∈ N (F [−1]
X (f)(t) := F

[−1]
Xt

(f(t)), t ∈ T resp.)

for all x ∈ lp (and f ∈ Lp(T ) respectively). Moreover, we use the notation
UX for the underlying copula process of X. We will for convenience switch
between the spaces Lp(T ) and Lp(T ) whenever there is no confusion. If we say
that an [X] ∈ Lp(T ) has underlying copula process U ∈ Lp(T ), we mean that
there is a representative X ∈ Lp(T ) of the corresponding element, that has this
path copula. We will also drop equivalence class notation from time to time,
to ease the writing (especially, when we work with Wasserstein spaces in the
next section) and just refer to the representative X, no matter if we mean the
equivalence class or the actual stochastic process.
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I.4.1 Copulas and Wasserstein Spaces

In this subsection, we characterise copulas for measures in Wasserstein spaces.
For two laws ν1 and ν2 on E we write ρ <ν2

ν1 for a law ρ on E × E that has
marginal distributions ν1 and ν2, that is, ρ is a coupling of ν1 and ν2. Recall
that the p-Wasserstein space over a separable Banach space E is a complete
separable metric space (see e.g. [44]) given by

Wp(E) :=
{

ν : ν is a Borel law on E,

∫
E

‖x‖p
Eν(dx) < ∞

}
(I.28)

equipped with the metric (in the case that we interpret E = Lp(T ) instead of
E = Lp(T ))

d(ν1, ν2) =: Wp(ν1, ν2) := inf
ρ<ν2

ν1

(∫
E×E

‖x − y‖p
Eρ(dxdy)

) 1
p

.

If there are two random variables X ∼ ν1 and Y ∼ ν2, we also say that (X, Y )
is a coupling and write Wp(ν1, ν2) = Wp(X, Y ). If E = R, we have the following
closed form of the Wasserstein distance (see e.g. Theorem 3.1.2 in [37]):

Wp
p(X, Y ) =

∫
[0,1]

|F [−1]
X (u) − F

[−1]
Y (u)|pdu. (I.29)

The next theorem is an immediate implication of the results in [37]. As the
argument was not written down in infinite dimensions and the notion of copulas
was not used directly, we provide a proof in Appendix I.B for convenience.

Theorem I.4.1. Let X, Y be random variables in lp (in Lp(T ) respectively) for
some p ∈ N. Then the following are equivalent:

(i) X and Y share the same underlying basis copula (path copula respectively)
C;

(ii) (F [−1]
X (U), F

[−1]
Y (U)) is an optimal coupling of X and Y , where U ∼ C;

(iii) The Wasserstein distance between X and Y is given by

Wp
p(X, Y ) =

∑
n∈N

Wp
p(Xn, Yn)

(respectively Wp
p(X, Y ) =

∫
T

Wp
p(Xt, Yt)μ(dt)).

In particular, if one of the above holds we have∑
n∈N

Wp
p(Xn, Yn) = ‖F

[−1]
X (U) − F

[−1]
Y (U)‖p

Lp(Ω;lp)

(respectively
∫

T

Wp
p(Xt, Yt)μ(dt) = ‖F

[−1]
X (U) − F

[−1]
Y (U)‖p

Lp(Ω;Lp(T ))).
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Remark I.4.2. Observe that the implications (ii) ⇒ (i) and (iii) ⇒ (i)
in Theorem I.4.1 must be interpreted in the sense that there is always a
representative of the equivalence classes that possesses the same path copula.

Remark I.4.3. The assertion of Theorem I.4.1 does not hold for the q-Wasserstein
distance over lp (Lp(T ) respectively) if q �= p, as it was shown in [1] for the
finite-dimensional case.

Remark I.4.4. Theorem I.4.1 is useful because the one-dimensional Wasserstein
distance has a closed form given by (I.29). This expression can oftentimes be
estimated rather well from above (see for instance chapter 4.7 in [35] for a
discussion of the convergence of empirical measures).

Remark I.4.5. The copula construction effectively solves the following optimiza-
tion problem for E = lp or E = Lp(T ) respectively:

(P ) =

{
minν∈Wp(E) Wp(ν0, ν)
s.t. ν has marginals (νn)n∈N (respectively (νt)t∈T )

for any family of marginals (νn)n∈N (respectively (νt)t∈T ), and the optimal
value is given by ν = ((F [−1]

νn )n∈N)∗C (respectively ν = ((F [−1]
νt )t∈T )∗C) for the

underlying copula measure C of ν0.

Moreover, Theorem I.4.1 implies the following.

Corollary I.4.6. Let X, Y be stochastic processes with values in L2(T ). If (en)n∈N

is an orthonormal basis in L2(T ), then the following are equivalent:

(a)
∫

T
W2

2(Xt, Yt)dt =
∑∞

n=1 W
2
2(〈X, en〉L2(T ), 〈Y, en〉L2(T ))

(b) X and Y have the same basis copula if and only if X and Y have the same
path copula.

I.4.2 A Robustness Inequality in Lp(T )

In order to derive a distance estimate between random variables in Lp(T ) for
a finite Borel measure μ and T ⊂ Rd compact, based on the copula and the
marginals separately, we impose a smoothness and tail-assumption on marginals
of the distribution function.

Assumption 1. For all t, the marginals Ft are continuously differentiable and
strictly increasing on (F [−1]

t (0+), F
[−1]
t (1)). Moreover, assume that for the

corresponding densities ft there is a measurable

g : T × R → R, g(t, x) =: gt(x)

such that each gt is ultimately monotone (see, e.g. [6]), that is, restricted on
(mt + xt

0, ∞) and restricted on (−∞, mt − xt
0) it is monotone for some xt

0 ∈ R+,
mt ∈ R, with gt bounded away from 0 on [mt − xt

0, mt + xt
0] by some λ > 0
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(independent of t) and ft(x) ≥ gt(x) > 0 for all x ∈ (F [−1]
Yt

(0), F
[−1]
Yt

(1)) and for
all t ∈ T , and there is an 0 < β ≤ 1 such that∫

T

∫
R

ft(x)
gβ

t (x)
dxdt < ∞. (I.30)

Remark I.4.7. If a density function (x, t) �→ ft(x) is continuous and ultimately
monotone, that is, there are xt

0 > 0, mt ∈ R such that ft is monotone on
[mt − xt

0, mt + xt
0]c, the best candidate for the choice of g in Assumption 1 is ft

itself.
Observe that Assumption 1 is satisfied for Gaussian marginals:

Example I.4.8. Assume that Y = W is a zero mean continuous Gaussian process.
Clearly, the densities ft of Wt are ultimately monotone and and we can choose
xt

0 = 0 and gt = ft. Then Condition I.30 holds, as for all β ∈ (0, 1)

∫
T

∫
R

f1−β
t (x)dxdt =

∫
T

E[e
β

W 2
t

2σ2
t ]

(
√

2πσt)−β
dt =(

√
2π)β

∫
T

σβ
t dtE[eβ Z2

2 ]

=
(
√

2π)β

√
1 − β

∫
T

σβ
t dt,

where Z is a standard normally distributed random variable. Thus, since t �→ σβ
t

is continuous, it is integrable over T and Assumption 1 holds.

Another example, for which Assumption 1 holds, is the following class of
heavy-tailed marginals.

Example I.4.9. (Regularly varying marginals) A measurable function h :
[z0, ∞) → (0, ∞) for some z0 > 0 is regularly varying with tail index α ∈ R, if

lim
x→∞

h(tx)
h(x)

= tα ∀t > 0

We write h ∈ R(α). If α = 0, h is called slowly varying. A one-dimensional law
given by its cumulative distribution function F is said to have regularly varying
tails, if the survival function F̄ := 1 − F is regularly varying and for convenience,
supported on some corresponding interval [z0, ∞) ⊂ (0, ∞).

Let Y be a càdlàg stochastic process, such that its marginals (Ft)t∈T are
continuously differentiable, strictly increasing and supported on [z0, ∞) for some
z0 > 0 and regularly varying with tail index −αt for αt > 0 where we assume
that t �→ αt is continuous. Moreover, assume that the densities ft are ultimately
monotone on [z0, yt

0]c for some yt
0 ≥ z0, ft(z0) > 0 and jointly continuous in

x and t. This enables us to use the monotone density theorem (cf. Theorem
1.7.2 in [6]) to conclude that ft ∈ R(−(αt + 1)). Hence, there are slowly varying
functions lt : [z0, ∞) → (0, ∞) such that

ft(x) = x−(1+αt)lt(x).
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For convenience, let us assume that (t, x) �→ lt(x) is bounded. By choosing
β < mint∈T

αt

1+αt
we obtain

l1−β
t (x)x−(1−β)(1+αt) ∈ R(−(1 − β)(1 + αt))

such that −(1 − β)(1 + αt) < −1 and by Karamata’s theorem (cf. Proposition
1.5.10 in [6]) we can find xt

0 > yt
0 and some δ > 0 such that∫ ∞

xt
0

ft(x)
fβ

t (x)
dx =

∫ ∞

xt
0

f1−β
t (x)dx =

∫ ∞

xt
0

l1−β
t (x)x−(1−β)(1+αt)dx

≤(1 + δ)l1−β
t (xt

0)(xt
0)−(1−β)(1+αt)+1 < ∞.

Assume moreover that we can choose t �→ xt
0 to be continuous (this is possible

for instance if all lt’s are supported on a compact domain) and hence, since
ft(x) > 0 for all x ∈ [z0, ∞) we have for

λ := min
t∈T

min
x∈[z0,xt

0]
ft(x) > 0

that each ft is bounded away from 0 on [z0, xt
0] by this λ > 0. Moreover, it holds∫

T

∫ ∞

xt
0

ft(x)
fβ

t (x)
dxdt ≤

∫
T

(1 + δ)l1−β
t (xt

0)(xt
0)−(1−β)(1+αt)+1dt < ∞

by the continuity of t �→ xt
0. Thus, (I.30) in Assumption 1 is valid with

gt(x) :=

⎧⎪⎨⎪⎩
0 x < z0

λ z0 ≤ x < xt
0

ft(x) x ≥ xt
0.

(I.31)

The next Theorem gives an idea about the robustness of the copula
construction. The proof can be found in Appendix I.B.

Theorem I.4.10. Let X = (F [−1]
Xt

(UX
t ))t∈T and Y = (F [−1]

Yt
(UY

t ))t∈T be càdlàg
stochastic processes, such that [X] ∈ Lp(Ω×T ) for some p ≥ 1, [Y ] ∈ Lp+ε(Ω×T )
for some ε > 0 and let the marginals FY of Y satisfy Assumption 1. Then for all
q ≥ 1 there are constants K := K(β, q, p, ε, FY ) and ρ := ρ(β, q, p, ε) such that

‖X − Y ‖Lp(Ω×T ) ≤ ‖Wp(FX· , FY·)‖Lp(T ) + K‖UX − UY ‖ρ
Lq(Ω×T ) (I.32)

and

Wp(X, Y ) ≤ ‖Wp(FX· , FY·)‖Lp(T ) + KWq(UX , UY )ρ. (I.33)

The constants are given explicitly by

ρ :=
εqβ

p(p + ε)(q + β) − pqβ
(I.34)
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and

K :=
(

λ−β

∫
T

I(0,∞)(xt
0)dt + 2‖g−β

t (Yt)‖L1(Ω×T )

) ρ
β

(2‖Y ‖Lp+ε(Ω×T ))(1−ρ).

(I.35)

Remark I.4.11. Although the marginals of Y must fulfil Assumption 1, the
marginals of X can be chosen more freely and neither have to be absolutely
continuous nor must satisfy a tail condition. For instance, this allows
approximating a smooth law of Y with discrete marginal measures (e.g. empirical
measures).

The following Theorem is useful if the copula processes stem from other
processes, like Gaussian or elliptical copulas. Its proof can be found in Appendix
I.B.

Theorem I.4.12. Let FỸ , FX̃ be marginals with finite qth moment for q ≥ 1
and define X̃ := F

[−1]
X̃

(UX) and Ỹ := F
[−1]
Ỹ

(UY ). Assume FỸt
is absolutely

continuous, strictly increasing, and the corresponding density function is bounded,
that is,

‖fỸ ‖∞ := sup
t∈T,x∈R

|fỸt
(x)| < ∞.

Then

‖UX − UY ‖Lq(T ×Ω) ≤‖fỸ ‖∞

(
‖X̃ − Ỹ ‖Lq(T ×Ω) + ‖Wq

q(FX̃· , FỸ·)‖
1
q

L1(T )

)
and

Wq(UX , UY ) ≤‖fỸ ‖∞

(
Wq(X̃, Ỹ ) + ‖Wq

q(FX̃· , FỸ·)‖
1
q

L1(T )

)
.

In particular,

‖UX − UY ‖Lq(T ×Ω) ≤2‖fỸ ‖∞‖X̃ − Ỹ ‖Lq(T ×Ω)

and

Wq(UX , UY ) ≤2‖fỸ ‖∞Wq(X̃, Ỹ ).

Example I.4.13. Assume that UY is an elliptical copula corresponding to an
elliptical random variable Ỹ in L2(T ), that is,

Ỹ = SV (I.36)

for some positive, real-valued random variable S with finite second moment
and a Gaussian process V ∼ N (0, C), independent of S (see [7] for the exact
description and the relation to finite-dimensional elliptical distributions). First,
observe that without loss of generality we can assume Vt ∼ N (0, 1) since the
process ( Ỹt

E[|Ỹt|2] )t∈T has by Lemma I.B.1 the same copula as Ỹ . If S has a finite
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inverse moment, then Ỹt has for each t a bounded density, since by the formula
for the density of two independent products, we get

fỸt
(z) =

∫ ∞

−∞
fS(x)fVt

(
z

x
)

1
|x|dx ≤ 1√

2π

∫ ∞

0

fS(x)
x

dx =
E[S−1]√

2π
.

Hence, for any other copula process U X̃ corresponding to another process X̃ in
L2(Ω × T ), we have by Theorem I.4.12 that

‖U Ỹ − U X̃‖L2(Ω×T ) ≤
√

2
π
E[S−1]‖Ỹ − X̃‖L2(Ω×T ).

Copulas may be suitable to capture tail behaviour in functional data. This
can be seen by the following example, combining the last ones.

Example I.4.14 (Approximating Pareto marginals on an elliptical copula).
Assume that a process Y given by Yt := F

[−1]
t (Ut) where U is a copula process

corresponding to an elliptical process Ỹ given by (I.36) and the marginals FY

are regularly varying as in Example I.4.9. More specifically we can take FY to
follow Pareto marginals, that is,

lt(x) =

{
αtx

αt
min x ≥ xmin

0 x ≤ xmin

for some constant xmin > 0, such that ft are the densities of a Pareto distribution
Par(xmin, αt), where t �→ αt is assumed to be continuous. Assume now αt > 2+γ
for some γ > 0. Then Y takes values in L2(T ).

Consider a situation in which we can approximate the marginal function
FY by another marginal function Fn (for example by empirical cumulative
distribution functions). The underlying elliptical process is in the L2(T )-norm
best approximated over all processes with n dimensional spectral decomposition
by the projection

Ỹ n =
n∑

i=1
Ziei

of the first n principal components in the corresponding Karhunen–Loève
expansion

Ỹ =
∞∑

i=1
Ziei.

Here (ei)i∈N is an orthonormal basis of eigenvectors of the covariance operator
of Ỹ , where the corresponding eigenvalues (λi)i∈N are ordered decreasingly (see
for instance Theorem (1.5) in [9] for a proof and [7] more optimality properties
of the principal components for elliptical processes). Then

‖Ỹn − Ỹ ‖2
L2(Ω×T ) =

∞∑
i=n+1

λi. (I.37)
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Assume that Un is the path copula process underlying Ỹ n. Let us investigate
how well Y n = F

[−1]
n (Un) approximates Y . We can choose p = 1, ε = 1, q = 2,

β = 2
3 and hence ρ = 1

3 , mt = xmin (using the notation of Theorem I.4.10) and
xt

0 = 0. Thus, by (I.32)

E[‖Y − Y n‖L1(T )] ≤‖W1(FY· , Fn·)‖L1(T ) + K‖UY − Un‖
1
3
L2(Ω×T ). (I.38)

Since in this case

E

[
f

− 2
3

t (Yt)
]

=
∫ ∞

xmin

(
x−(αt+1)αtx

αt
min

) 1
3

dx =
3α

1
3
t

αt − 2
x

2
3
min ≤ 3

γ
α

1
3
t x

2
3
min

and

‖Y ‖p+ε
Lp+ε(Ω×T ) =

∫
T

E[Y 2
t ]dt =

∫
T

αtx
2
min

αt − 2
dt ≤ x2

min

γ

∫
T

αtdt

we get by (I.35)

K =
(

6
γ

x
2
3
min

∫
T

α
1
3
t dt

) 1
2
(

2
γ

x2
min

∫
T

αtdt

) 2
3

. (I.39)

Thus, using also Example I.4.13 and combining (I.37), (I.38) and (I.39) we obtain

‖Y − Y n‖L1(T ×Ω)

≤‖W1(FY· , Fn·)‖L1(T ) + K

(√
2
π
E[S−1]

) 1
3
( ∞∑

i=n+1
λi

) 1
6

and therefore, the convergence rate is 1
3 of the convergence rate of the principal

components and the rate of convergence induced by the Wasserstein distance of
the marginals, which depends on the respective approximation technique for the
marginals.

I.4.3 Semiparametric Estimation of Nonparanormal Processes

We show how a consistent estimator for the copula model can be derived under
the assumption that the unknown law of a stochastic process X = (Xt)t∈T with
values in L2+ε(T ) for some ε > 0 has an underlying Gaussian copula process UX .
No parametric model on the marginals is assumed (in finite dimensions, this was
termed nonparanormal in [29]). Although UX corresponds to a Gaussian process
Y ∼ N (0, C) for some covariance operator C, the latter is not unique, since
we can still impose different Gaussian marginals without changing the copula.
Therefore, we fix in this section the unique choice C such that Yt ∼ N (0, 1).
Assume throughout that we have n i.i.d copies

X1, ..., Xn

of X.
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I.4.3.1 Estimation of the Underlying Rank Correlation

We first estimate the underlying covariance such that

C =
∞∑

j=1
λje⊗2

j ,

where (λj)j∈N denote the eigenvalues of C in decreasing order and (ej)j∈N the
corresponding eigenvectors. We follow the well known approach from finite
dimensions by inferring on the rank correlation structure. Define Kendalls τ
rank correlation function by

τ(s, t) = E[sign(X(s) − X̃(s))sign(X(t) − X̃(t))]

for an independent copy X̃ of X. In particular τ is the covariance kernel of the
centered process

sign(X − X̃) = (sign(X(t) − X̃(t)))t∈T

in Lp(T ). As sign(X2 − X1), sign(X4 − X3), ..., sign(Xn − Xn−1) are i.i.d.
samples of sign(X − X̃) (assuming w.l.o.g. n to be even), we obtain that the
empirical covariance function

τ̂n(s, t) =
2
n

n/2∑
i=1

sign(X2i(s) − X2i−1(s))sign(X2i(t) − X2i−1(t)) (I.40)

is a consistent and asymptotically normal estimator of τ (see e.g. [22]).
The covariance function c of the underlying Gaussian process corresponds

one-to-one to Kendalls τ (see for instance Theorem 3.1 in [17]) via the relation

c(s, t) = sin(
π

2
τ(s, t)). (I.41)

We define the plug-in estimator of the covariance kernel

ĉn(s, t) = sin(
π

2
τ̂n(s, t)). (I.42)

Observe that for any kernel c the integral operator

Tcf(t) :=
∫

T

c(t, s)f(s)ds f ∈ L2(T ), t ∈ T

is of special interest, since we have Tc = C for the corresponding covariance
operator. Let (λ̃jn)n∈N and (ejn)n∈N be the spectral decomposition of Tĉn

.
The operator Tĉn

might not be positive definite, which is why we define
λjn = min(0, λ̃jn) for j, n ∈ N and set

Ĉn :=
∞∑

j=1
λjne⊗2

jn .

The following law of large numbers is proved in Appendix I.B.
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Theorem I.4.15. We have

E[‖C − Ĉn‖2
HS] ≤ π2μ(T )2

n

and almost surely

lim sup
n→∞

√
n
2

log n
2

‖C − Ĉn‖HS ≤ 2π.

Remark I.4.16. Observe that the moment condition X ∈ Lp+ε(T ) is not needed
for Theorem I.4.15 to be valid.

I.4.3.2 Consistent Estimation of Nonparanormal Processes

In the result above, we showed that Ĉn approximates C in Hilbert-Schmidt norm.
We now derive convergence rates of the whole estimated copula model in the
Wasserstein-distance. Therefore, we introduce

Assumption 2. The eigenspaces of C are one dimensional.

Define the empirical eigenvectors (ejn)j∈N and in decreasing order (λjn)j∈N

as the eigenelements of the estimator, that is, Ĉn =
∑∞

j=1 λjne⊗2
jn . Under

Assumption 2 we can introduce the auxiliary operators

Q̂n =
∞∑

j=1

1
j2bj

e⊗2
jn , Q =

∞∑
j=1

1
j2bj

e⊗2
j

where for j ≥ 2 we set bj > min((λj − λj−1)−1, (λj+1 − λj)−1) and b1 >

(λ2 − λ1)−1. Observe that Q̂n and Q are positive semidefinite symmetric trace-
class operators, which commute with Ĉn and C respectively. Therefore also
Q̂2

nĈn = Q̂nĈnQ̂n and Q2C = QCQ are positive semidefinite symmetric trace-
class operators. Set Zn

j := 〈ejn, F
[−1]
N (0,Q̂2

nĈn)(FX(X))〉L2(T ) and

Ŷ n :=
∞∑

j=1
Zn

j ejn ∼ N (0, Q̂2
nĈn)

and let F n be an arbitrary approximation of the marginals FX of X (just
satisfying the second moment condition of Lemma I.3.10). Now we can define
a semiparametric estimator for (the law of) X by the (law of the) process X̂n

given by
X̂n

t := (F n
t )[−1](FN (0,Q̂2

nĈn)(Ŷ
n

t )). (I.43)

Remark I.4.17. If one wants to write down the estimator in practice, we must
impose upper bounds on the differences of the neighbouring eigenvalues, that is,
we assume to know suitable bj ’s.

The proof of the following Theorem can be found in Appendix I.B.
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Theorem I.4.18. Let X = (Xt)t∈T ∈ L2+ε(Ω × T ) be a stochastic process with
underlying Gaussian copula process UX . We assume that Assumption 1 holds
for the marginals of X and 2 holds for the underlying Gaussian copula. Then
there are constants 0 < L, κ < ∞ such that

E[W1(X, X̂n)] ≤ ‖E[W1(FX· , F n
· )]‖L1(T ) + LE[‖C − Ĉn‖κ

op] (I.44)

where
κ :=

εβ

(1 + ε)(2 + β) − 2β

and
L := K(sup

s∈T

1√
q(s, s)

π
√

π

3
(2‖C‖

1
2
op +

1√
2

))ρ

for K and ρ as given in Theorem I.4.10 with p = 1, q = 2 and q is the covariance
kernel corresponding to the covariance operator QC. In particular, by virtue of
Theorem I.4.15 we obtain

E[W1(X, X̂n)] = O(‖E[W1(FX· , F n
· )]‖L1(T ) + n− κ

2 ) (I.45)

Remark I.4.19. Observe that κ → 1
2 as β → 1 and ε → ∞. Thus, the best

convergence rate that can be deduced from the previous theorem is n− 1
4 .

Example I.4.20. We could take empirical marginal distribution functions F n,
that is,

F n
t (x) =

1
n

n∑
i=1

1Xi(t)≤x, x ∈ R.

By [18, Theorem 1] there exists a constant K2 (independent of t) such that

E[‖W1(FX· , FX̂n·
)‖L1(T )] =

∫
T

E[W1(FXt , FX̂n
t

)]dt ≤ K2

∫
T

E[|Xt|2+ε]dtn− 1
2 .

Since X is càdlàg we have
∫

T
E[|Xt|2+ε]dt < ∞. Thus, Theorem I.4.18 yields

E[W1(X, X̂n)] = O(n− κ
2 ). (I.46)

I.5 Conclusion and Outlook

We introduced a general functional analytic theory for copulas in infinite
dimensions and we characterised the main mathematical challenge (the
construction problem) compared to the finite-dimensional case. Additionally
we pointed out the potential of the framework to serve as a semiparametric
alternative in functional data analysis.

The proof of the consistency of the estimator for Gaussian copula models
(Theorem I.4.18) is independent of the precise structure of the estimator for
Kendalls τ correlation function and better convergence rates can potentially be
realised by different estimators. It is also not clear if the rate n−κ/2 induced by
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Theorem I.4.18 is optimal in some cases, for instance in the framework described
in Example I.4.20.

Another step is to investigate whether the method described in this subsection
transfers to processes with general underlying elliptical copulas in the sense of
Example I.4.13. Some more effort is needed to find that out, in particular, in
order to find feasible ways to make inference on S (which is not equal to 1, as in
the Gaussian case).

These are appealing strands that are left for future research.
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Appendix I.A Copulas in Finite Dimensions

We begin with the definition of finite-dimensional cumulative distribution
functions.

Definition I.A.1. Let J be a finite set. A function F : (−∞, ∞)J → [0, 1] is a
cumulative distribution function on RJ , if

(a) limxj→∞,j∈J F ((xj)j∈J) = 1;

(b) For each j0 ∈ J limxj0 →−∞ F ((xj)j∈J) = 0;

(c) For each i ∈ J the function t → F ((xj)j∈J\{i}, (t)j=i) is right-continuous
for each (xj)j∈J\{i} ∈ RJ\{i};

(d) The F -volume of a multivariate interval [a, b] := ×j∈J [aj , bj ]

VF ([a, b]) :=
∑

v∈
∏

j∈J
{aj ,bj}

sign(v)F (v) (I.47)

is nonnegative, that is, VF ([a, b]) ≥ 0 for all [a, b] :=
∏

j∈J [aj , bj ] ⊂ RJ .
(Recall that the function sign :

∏
j∈J{aj , bj} → {−1, 1} is given by

sign(v) = (−1)N(v), where N(v) = #{j ∈ J : vj = aj}.)

Definition I.A.2. Let J be an arbitrary finite set. A copula on RJ is a cumulative
distribution function C : [0, 1]J → [0, 1] with uniform marginal distributions, i.e.
for all u ∈ [0, 1] we have

C((1)j∈J\{i}, (u)j=i) = u.

Equivalently, each copula C can be uniquely identified with a probability
measure μC , with cumulative distribution function C.

For the theory of copulas, the most important result is Sklar’s Theorem:

67



I. Copula Measures and Sklar’s Theorem in Arbitrary Dimensions

Theorem I.A.3 (Sklar’s Theorem in finite dimensions). Let J be an arbitrary
finite set. Let F be a cumulative distribution function on RJ with marginal
one-dimensional cumulative distribution functions Fj for each j ∈ J . Then there
exists a copula C on RJ , such that for all (xj)j∈J ∈ (−∞, ∞)J we have

F ((xj)j∈J) = C((Fj((xj))j∈J). (I.48)

If the marginals Fj are continuous for each j ∈ J , C is unique. If conversely C
is a copula on RJ and Fj are one-dimensional cumulative distribution functions
for each j ∈ J , then F defined by (I.48) is a cumulative distribution function on
RJ with marginals Fj for each j ∈ J .

Proof. See for example Nelsen [34]. �

We use the construction of copulas by distributional transforms. The proof
of the next Theorem can be found in for instance in [33] and in [39].

Theorem I.A.4. Let J be a finite set, F = FJ be a cumulative distribution
function on RJ with marginals Fj , j ∈ J . Let X = (Xj)j∈J be a random vector
with law F . Let U be uniformly distributed on [0, 1] and independent of X. Then
a copula of F is given by the cumulative distribution function corresponding to
the random vector (U1, ..., Ud), defined by

Ui = Fi(Xi−) + U(Fi(Xi) − Fi(Xi−)). (I.49)

Appendix I.B Proofs of Section I.4

In [14] the authors used the notion that two laws μ and ν on (RI , ⊗i∈IB(R))
have the same dependence structure, if there exist two stochastic processes
X = (Xi)i∈I and Y = (Yi)i∈I , such that X ∼ μ and Y ∼ ν on the same
probability space (Ω, F ,P) and Xi and Yi are similarly ordered (Xi

s.o.∼ Yi) for
all i ∈ I, that is,

(Xi(ω) − Xi(ω′)) (Yi(ω) − Yi(ω′)) ≥ 0 P ⊗ P a.s..

In finite dimensions this notion is equivalent to the existence of a common
underlying copula by virtue of Sklar’s Theorem I.A.3. This is also valid in
infinite dimensions, as we show next.

Lemma I.B.1. Two probability measures μ and ν on ⊗i∈IB(R) have a common
underlying copula measure in the sense of (I.2) if and only if Xi

s.o.∼ Yi for all
i ∈ I.

Proof. Let μ and ν have the same underlying copula measure C and let U ∼ C
be a corresponding copula process. Define with the notion introduced in
(I.3) the random variables X := (F [−1]

μi (Ui))i∈I and Y = (F [−1]
νi (Ui))i∈I . By

construction and analogously to the proof of Sklar’s Theorem I.2.3, we obtain
X ∼ ((F [−1]

μi )i∈I)∗C = μ and Y ∼ ((F [−1]
νi )i∈I)∗C = ν. Since the quantile
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transforms F
[−1]
μi and F

[−1]
νi are nondecreasing functions, we obtain that Xi

s.o.∼ Yi

for all i ∈ I.
Vice versa, let X ∼ μ and Y ∼ ν be two random variables such that Xi

s.o.∼ Yi

for all i ∈ I. Then by Proposition 2.1 in [14] for each i ∈ I there exist a uniformly
distributed random variable Ui such that Xi = F

[−1]
μi (Ui) and Yi = F

[−1]
νi (Ui)

(observe that the proof of this assertion does not need second moments, as stated
in Remark 1 in [14]). If C is the law of U = (Ui)i∈I , we obtain μ = ((F [−1]

μi )i∈I)∗C

and ν = ((F [−1]
νi )i∈I)∗C. This shows, that X and Y have the same underlying

copula measure C. �

Proof of Theorem I.4.1. Since the proof for the Lp(T ) case is analogous, we
will just show the assertion for lp valued random variables X and Y .

Assume (i) holds. By Corollary I.3.25 we have that F
[−1]
X (U) and F

[−1]
Y (U)

are measurable random variables taking values in lp for a copula process U ∼ C.
Moreover, they are a coupling, as consequence of Sklar’s Theorem I.2.3. To show
optimality, observe first that for X ∼ ν1 and Y ∼ ν2 we have

Wp
p(X, Y ) = inf

ρ<ν1
ν2

∫
lp×lp

‖x − y‖p
pρ(dx, dy)

= inf
ρ<ν1

ν2

∫
lp×lp

∞∑
i=1

|xi − yi|pρ(dx, dy)

≥
∞∑

i=1
inf

ρ<ν1
ν2

∫
lp×lp

|xi − yi|pρ(dx, dy) (I.50)

=
∞∑

i=1
inf

ρi<
ν1

i

ν2
i

∫
R×R

|xi − yi|pρi(dxi, dyi)

=
∞∑

i=1
Wp

p(ν1
i , ν2

i ) =
∞∑

i=1
Wp

p(Xi, Yi).

This general lower bound on the Wasserstein distance is actually achieved in our
case since, by (I.29), we obtain

∞∑
i=1

Wp
p(Xi, Yi) =

∞∑
i=1

∫
[0,1]

|F [−1]
Xi

(ui) − F
[−1]
Yi

(ui)|pdui

=
∫

[0,1]N
‖(F [−1]

X (u) − F
[−1]
Y (u))‖p

pC(du)

=‖F
[−1]
X (U) − F

[−1]
Y (U)‖p

Lp(Ω;lp)

≥Wp
p(X, Y ).

This shows (i) ⇔ (ii) and (i) ⇒ (iii). Since (ii) ⇒ (i) is trivial, it is therefore
sufficient to show (iii) ⇒ (i). Since equality in (I.50) can just hold, if there is
an optimal coupling (X, Y ), such that Wp

p (Xi, Yi) = E[|Xi − Yi|p], we have that
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(Xi, Yi) must also be an optimal coupling for all i ∈ N. By Proposition 2.1 in
[39] we obtain that for all i ∈ N we have that Xi

s.o.∼ Yi. This implies (i) due to
Lemma I.B.1. �

Proof of Theorem I.4.10. By the triangle inequality we have

E

[
‖X − Y ‖p

Lp(T )

] 1
p

≤E

[
‖X − F

[−1]
Y (UX)‖p

Lp(T )

] 1
p + E

[
‖F

[−1]
Y (UX) − Y ‖p

Lp(T )

] 1
p (I.51)

and since the Lp-distance majorizes the Wasserstein-distance

Wp(X, Y ) ≤ E

[
‖X − F

[−1]
Y (UX)‖p

Lp(T )

] 1
p + Wp(F [−1]

Y (UX), Y ). (I.52)

From Theorem I.4.1 we know that (X, F
[−1]
Y (UX)) is an optimal coupling and

E

[
‖X − F

[−1]
Y (UX)‖p

Lp(T )

] 1
p = ‖Wp(FX· , FY·)‖Lp(T ). (I.53)

Let us now estimate the second summands. We will first show the assertion
for the Lp-distance. Set δ := 1 + p(q+β)−qβ

(q+β)ε > 1, such that
δ− qβ

(q+β)p

δ−1 = 1 + ε
p .

Then we can estimate for γ = δ
δ−1 using Hölder’s inequality

E

[
‖F

[−1]
Y (UX) − Y ‖p

Lp(T )

]
=
∫

T

E

[
|F [−1]

Yt
(UX

t ) − Yt|p
]

dt

=
∫

T

E

[
|F [−1]

Yt
1(UX

t ) − Yt|
qβ

(q+β)δ |F [−1]
Yt

(UX
t ) − Yt|p− qβ

(q+β)δ

]
dt

≤(
∫

T

E

[
|F [−1]

Yt
(UX

t ) − Yt|
qβ

(q+β)
]

dt)
1
δ (
∫

T

E

[
|F [−1]

Yt
(UX

t ) − Yt|γ(p− qβ
(q+β)δ

)
]

dt)
1
γ .

(I.54)

Now observe that since Yt and F
[−1]
Yt

(UX
t ) share the same distribution and

by the elementary inequality |x + y|r ≤ 2r−1(|x|r + |y|r) for r ≥ 1 we have∫
T

E

[
|FYt

(UX
t ) − Yt|γ(p− qβ

(q+β)δ
)
]

dt =
∫

T

E

[
|FYt

(UX
t ) − Yt|p

δ− qβ
(q+β)p
δ−1

]
dt

=
∫

T

E
[
|FYt

(UX
t ) − Yt|p+ε

]
dt

≤2p+ε−1
∫

T

E
[
|FYt(UX

t )|p+ε + |Yt|p+ε
]

dt

=2p+ε

∫
T

E
[
|Yt|p+ε

]
dt
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=(2‖Y ‖Lp+ε(Ω×T ))p+ε (I.55)

This shows that
∫

T
E[|FYt

(UX
t ) − Yt|γ(p− qβ

(q+β)δ
)]dt < ∞, since Y is assumed to

have finite moments up to p + ε.
Now observe that

P
[
(UX

t , UY
t ) ∈ (0, 1)

]
=1 − P

[
UX

t ∈ {0, 1} or UY
t ∈ {0, 1}

]
≥1 − (P

[
UX

t ∈ {0, 1}
]

+ P
[
UY

t ∈ {0, 1}
]
) = 1 − 0 = 1 (I.56)

Moreover, by Assumption 1 we further have 0 < fYt(F
[−1]
Yt

(ζ)) for ζ ∈ (0, 1).
Hence, since by (I.56)

[min(UX
t , UY

t ), max(UX
t , UY

t )] ⊂ (0, 1)

almost surely, we obtain by the inverse function theorem for ζ ∈
[min(UX

t , UY
t ), max(UX

t , UY
t )]

d

dx
F

[−1]
Yt

(ζ)) =
(
f−1

Yt
(FYt

(ζ))
)−1

.

Appealing to the mean value theorem and once more Hölder’s inequality
(‖fg‖L1(T ) ≤ ‖f‖

L
r

r−1 (T )‖g‖Lr(T ) with r = (q+β)
β ) we obtain∫

T

E

[
|F [−1]

Yt
(UX

t ) − Yt|
qβ

(q+β)
]

dt

≤
∫

T

E

⎡⎢⎣
⎛⎝ sup

ζ∈[min(UX
t ,UY

t ),max(UX
t ,UY

t )]

(
fYt

(
F

[−1]
Yt

(ζ)
))−1

|UX
t − UY

t |

⎞⎠
qβ

(q+β)
⎤⎥⎦ dt

≤
(∫

T

E

[
sup

ζ∈[min(UX
t ,UY

t ),max(UX
t ,UY

t )]

(
fYt

(
F

[−1]
Yt

(ζ)
))−β

]
dt

) q
β+q

×
(∫

T

E
[
|UX

t − UY
t |q

]
dt

) β
β+q

. (I.57)

We now show that the first factor is finite. Denote the random variables

Z := max
ζ∈[min(UX

t ,UY
t ),max(UX

t ,UY
t )]

(
fYt

(
F

[−1]
Yt

(ζ)
))−β

ζ∗ = arg max
ζ∈[min(UX

t ,UY
t ),max(UX

t ,UY
t )]

(
fYt

(
F

[−1]
Yt

(ζ)
))−β

and choose xt
0 according to Assumption 1 such that gt is ultimately monotone on

[−xt
0, xt

0]c, where without loss of generality mt = 0. We can argue by continuity
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and monotonicity of cumulative distribution and quantile functions as well as
Assumption 1 that

E

[
Iζ∗∈(FYt (−xt

0),FYt (xt
0))Z

]
≤ sup

ζ∈(FYt (−xt
0),FYt (xt

0))

(
fYt

(
F

[−1]
Yt

(ζ)
))−β

≤ sup
ζ∈(FYt (−xt

0),FYt (xt
0))

(
gt

(
F

[−1]
Yt

(ζ)
))−β

≤I(0,∞)(xt
0)λ−β (I.58)

Without loss of generality we can assume g to be symmetric in the tails, that is,
g(x) = g(−x) for x ≥ x0. For ζ∗ /∈ [FYt

(−xt
0), FYt

(xt
0)] we have by definition[

min(UX
t , UY

t ), max(UX
t , UY

t )
]

�⊂
[
FYt

(−xt
0), FYt

(xt
0)
]

and thus, we must have either UX
t ∈ [FYt(−xt

0), FYt(xt
0)]c or UY

t ∈
[FYt(−xt

0), FYt(xt
0)]c. Hence, by Assumption 1 as well as the monotonicity

and the symmetry of g, we have

Iζ∗ /∈[FYt (−xt
0),FYt (xt

0)]Z

≤Iζ∗ /∈[FYt (−xt
0),FYt (xt

0)] max
ζ∈[min(UX

t ,UY
t ),max(UX

t ,UY
t )]

(
gt

(
F

[−1]
Yt

(ζ)
))−β

≤ max
((

g
(

F
[−1]
Yt

(
UY

t

)))−β

,
(

g
(

F
[−1]
Yt

(
UX

t

)))−β
)

(I.59)

Therefore, for any uniformly distributed U on [0, 1] we obtain

E

[
Iζ∗ /∈[FYt (−xt

0),FYt (xt
0)]Z

]
≤E

[
max

((
gt

(
F

[−1]
Yt

(
UX

t

)))−β

,
(

gt

(
F

[−1]
Yt

(
UY

t

)))−β
)]

≤2E
[(

gt

(
F

[−1]
Yt

(U)
))−β

]
=2E

[
(gt(Yt))−β

]
. (I.60)

Thus, (I.58) and (I.60) imply(∫
T

E

[
sup

ζ∈[min(UX
t ,UY

t ),max(UX
t ,UY

t )]

(
fYt

(
F

[−1]
Yt

(ζ)
))−β

]
dt

) q
β+q

≤
(

λ−β

∫
T

I(0,∞)(xt
0)dt + 2

∫
T

E

[
(gt(Yt))−β

]
dt

) q
β+q

(I.61)

Combining (I.54), (I.55), (I.57) and (I.61) we obtain

E

[
‖F

[−1]
Y (UX) − Y ‖p

Lp(T )

]
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≤
(

λ−β

∫
T

I(0,∞)(xt
0)dt + 2‖ (gt(Yt))−β ‖L1(Ω×T )

) q
δβ+δq

×
(
2‖Y ‖Lp+ε(Ω×T )

) p+ε
γ ‖UX − UY ‖

qβ
δβ+δq

Lq(Ω×T )

=Kp‖UX − UY ‖
εqβ

(p+ε)(q+β)−qβ

Lq(Ω×T ) .

This shows (I.32). To obtain (I.33) we just have to recognize that

Wp(F [−1]
Y (UX) − Y ) ≤ inf

U∼UX ,V ∼UY

‖F
[−1]
Y (U) − F

[−1]
Y (V )‖Lp(Ω×T ).

The expression under the infimum can be estimated in complete analogy to the

distance E

[
‖F

[−1]
Y (UX) − Y ‖p

Lp(T )

] 1
p and hence, the proof is complete. �

Proof of Theorem I.4.12. Using the triangle inequality, we obtain

‖UY − UX‖Lq(T ×Ω) ≤ ‖UY − FỸ (X̃)‖Lq(T ×Ω) + ‖FỸ (X̃) − UX‖Lq(T ×Ω)

=: (1) + (2)

Then for the first summand we have by the mean value inequality

(1)q = ‖FỸ (Ỹ ) − FỸ (X̃)‖q
Lq(T ×Ω) =

∫
T

E[|FỸt
(Ỹt) − FỸt

(X̃t)|q]dt

≤‖fỸ ‖q
∞

∫
T

E[|Ỹt − X̃t|q]dt

=‖fỸ ‖q
∞‖Ỹ − X̃‖q

Lq(T ×Ω) (I.62)

For the second summand we have again by the mean value theorem

(2)q =‖FỸ (F [−1]
X̃

(UX
t )) − UX‖q

Lq(T ×Ω)

=
∫

T

∫ 1

0
|FỸt

(F [−1]
X̃t

(u)) − u|qdudt

=
∫

T

∫ 1

0
|FỸt

(F [−1]
X̃t

(u)) − FỸt
(F [−1]

Ỹt
(u))|qdudt

≤‖fỸ ‖q
∞

∫
T

∫ 1

0
|F [−1]

X̃t
(u) − F

[−1]
Ỹt

(u)|qdudt

=‖fỸ ‖q
∞‖Wq

q(FX̃· , FỸ·)‖L1(T ).

Moreover, since ‖Wq
q(FX̃t

, FỸt
)‖L1(T ) = Wq

q(X̃, FỸ (UX)), which by Remark 4.5
can be estimated as,

Wq
q(X̃, FỸ (UX))

≤Wq
q(X̃, FỸ (UY )) = Wq

q(X̃, Ỹ ) ≤ E[‖X̃ − Ỹ ‖q
Lq(T )] = ‖X̃ − Ỹ ‖q

Lq(T ×Ω),
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also the second assertion follows. The inequality in terms of the Wasserstein-
distance follows also immediately, since

Wq(UY , UX) ≤ Wq(UY , FỸ (X̃)) + ‖FỸ (X̃) − UX‖Lq(T ×Ω).

The first summand is

Wq(UY , FỸ (X̃)) = inf
x∼X,y∼Y

‖FỸ (y) − FỸ (x)‖Lq(Ω×T

and the expression under the infimum can be analogously estimated as (1). �

Proof of Theorem I.4.15. We can use von Neumann’s Trace inequality (see
e.g. [11] for a proof in the Hilbert-space case) and get for any positive semidefinite
trace-class operator B =

∑∞
j=1 μjf⊗2

j that (since μj ≥ 0)

‖Tĉn
− Ĉn‖2

HS =
∞∑

j=1,λ̃jn<0

λ̃2
jn ≤

∞∑
j=1,λ̃jn<0

λ̃2
jn + μ2

j − 2λ̃jnμj

≤‖Tĉn
‖2

HS + ‖B‖2
HS − 2〈Tĉn

, B〉HS

=‖Tĉn
− B‖2

HS.

Therefore we have

‖C̃ − Ĉn‖HS ≤ ‖C̃ − Tĉn
‖HS + ‖Tĉn

− Ĉn‖HS ≤2‖C̃ − Tĉn
‖HS

=2‖c̃ − ĉn‖L2(T 2).

By the mean value theorem we get

‖c̃ − ĉn‖2
L2(T 2) =

∫
T 2

(c̃(t, s) − ĉn(t, s))2dsdt

=
∫

T 2
(sin(

π

2
τ(t, s)) − sin(

π

2
τ̂n(t, s)))2dsdt

≤
∫

T 2

π2

4
(τ(t, s) − τ̂n(t, s))2dsdt

Therefore

‖C̃ − Ĉn‖2
HS ≤ π2‖τ − τ̂n‖2

L2(T 2) = π2‖Tτ − Tτ̂n‖2
HS.

Since Tτ̂n
is bounded in the Hilbert-Schmidt norm, has Tτ as its mean and

E[‖Tτ̂n
− Tτ ‖2] ≤ 2, we can conclude from Corollary 2.1 in [9] that almost surely

lim sup
n→∞

√
n
2

log n
2

‖Tc − Tĉn
‖HS ≤ π lim sup

n→∞

√
n
2

log n
2

‖Tτ − Tτ̂n
‖HS ≤ 2π.

Moreover, as sign(X − X̃) is bounded by 1 and has therefore all moments,
[22, Theorem 2.5] yields

E[‖C̃ − Ĉn‖2
HS] ≤ π2E[‖Tτ − Tτ̂n‖2

nuc] ≤π2

n
E

[∥∥sign(X − X̃)
∥∥4

L2(T )

]
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≤π2μ(T )2

n
.

�

Proof of Theorem I.4.18. Observe that the copula process underlying X̂n is
Un, which is given by Un := FN (0,Q̂2

nĈn)(Ŷ
n). Since Assumption 1 is valid for

the marginals of X we find K and ρ by Theorem I.4.10 such that

W1(X, X̂m
n ) ≤ ‖W1(FX· , F(X̂n)·)‖L1(T ) + KW2(UX , Un)ρ. (I.63)

Recall that we denoted Y = F
[−1]
N (0,Q2C)(FX(X)), where C arises from the kernel

c(s, t). Q2C has a corresponding covariance kernel q, such that s �→ q(s, s) is
continuous and strictly positive and for all j′ ∈ N we have

q(s, s) =
∞∑

j=1

λj

b2
jj4 ej(s)2 ≥ λj′

b2
j′(j′)4 ej′(s)2.

Since by assumption c̃(s, s) =
∑∞

j=1 λjej(s)2 = 1√
2π

for all s ∈ T , there always
exists some j′ ∈ N such that λj′ej′(s)2 > 0. Hence, for the density function fY

of Y we obtain ‖fY ‖∞ = sups∈T (2πq(s, s))− 1
2 < ∞. By Theorem I.4.12 we have

W2(UX , Un) ≤ 2 sup
s∈T

1√
2πq(s, s)

W2(Y, Ŷ n). (I.64)

The 2-Wasserstein-distance between two centered Gaussians corresponds to the
Procrustes distance of their covariances (see [31]), such that

W2(Y, Ŷ n) = inf
Uunitary

‖(Q2C)
1
2 − U(Q̂2Ĉn)

1
2 ‖HS ≤ ‖(Q2C)

1
2 − (Q̂2Ĉn)

1
2 ‖HS.

Now observe that the square-roots of the covariance operators of Y and Ŷ n are,
due to commutativity, given by

(Q2C)
1
2 = QC

1
2 , (Q̂2Ĉn)

1
2 = Q̂Ĉ

1
2
n .

Therefore we can estimate

W2(Y, Ŷ n) ≤ ‖(Q − Q̂)C
1
2 ‖HS + ‖Q̂(C

1
2 − Ĉn)

1
2 )‖HS.

Define e′
jn := sign(〈ejn, en〉)ej . Then we have Q =

∑∞
j=1

1
j2bj

(e′
jn)⊗2 and the

first summand can be estimated as

‖(Q − Q̂)C
1
2 ‖HS ≤‖(Q − Q̂)‖HS‖C

1
2 ‖op

≤(
∞∑

j=1

1
j2bj

‖e⊗2
jn − (e′

jn)⊗2‖HS)‖C
1
2 ‖op.
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Since

‖e⊗2
jn − (e′

jn)⊗2‖HS ≤‖ejn ⊗ (ejn − e′
jn)‖HS + ‖(ejn − e′

jn) ⊗ e′
jn‖HS

≤‖ejn − e′
jn‖L2(T )

we obtain by Lemma 4.3 in [9] that

‖(Q − Q̂)C
1
2 ‖HS ≤(

∞∑
j=1

1
j2bj

‖ejn − e′
jn‖L2(T ))‖C

1
2 ‖op

≤‖C − Ĉn‖op(
∞∑

j=1

2
√

2
j2 )‖C

1
2 ‖op. (I.65)

For the second summand we obtain by [8, Lemma 2.5.1]

‖Q̂(C
1
2 − Ĉn)

1
2 ‖HS ≤ ‖Q̂‖HS‖C

1
2 − Ĉ

1
2
n ‖op ≤ ‖Q‖HS‖C − Ĉn‖

1
2op. (I.66)

Combining (I.64), (I.65) and (I.66) and since ‖Q‖HS ≤
∑∞

j=1
1
j2 = π

6 we obtain

W2(UX , Un) ≤2 sup
s∈T

1√
2πq(s, s)

((
∞∑

j=1

2
√

2
j2 )‖C

1
2 ‖op + ‖Q‖HS)‖C − Ĉn‖

1
2op

≤ sup
s∈T

1√
q(s, s)

π
√

π

3
(2‖C‖

1
2
op +

1√
2

)‖C − Ĉn‖
1
2op.

This yields the assertion. �
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IIAbstract

Copulas are appealing tools in multivariate probability theory and statistics.
Nevertheless, the transfer of this concept to infinite dimensions entails
some nontrivial topological and functional analytic issues, making a deeper
theoretical understanding indispensable toward applications. In this short
work, we transfer the well known property of compactness of the set of
copulas in finite dimensions to the infinite-dimensional framework. As
an application, we prove Sklar’s theorem in infinite dimensions via a
topological argument and the notion of inverse systems.
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II.1 Introduction

Copulas are widely used and well-known concepts in the realm of statistics and
probability theory. This is not least due to the advantages that go along with
their often intuitive and flexible handling. To some extent, such practicality is
lost in infinite dimensions, as consistency problems may occur and constructions
via copulas in topological vector spaces culminate in general in cylindrical, rather
than actual probability measures (cf. [10] and [2]). Building up a functional
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analytic and topological theory for copulas becomes pivotal in order to make
the copula approach fully applicable to general stochastic processes.

The keystone of the theory is Sklar’s theorem and there is a vast literature
solely focussing on different proofs of this fundamental result. Among others,
there are proofs based on the distributional transform in [12] and [4] and earlier
already in [11], based on mollifiers in [7] or the constructive approach by the
extension of subcopulas, as it was proved for the bivariate case in [14] and for
the general multivariate case in [17] or [3].

The naive transfer of the subcopula-approach to an infinite-dimensional
setting appears to be challenging, since, after the extension of the subcopulas
corresponding to the finite-dimensional laws of an infinite-dimensional distribu-
tion, one would also have to check that this construction meets the necessary
consistency conditions. In contrast, and besides the approach via distributional
transforms (as extended to an infinite-dimensional setting in [2]), a nonconstruc-
tive proof based on topological arguments in [6] is naturally in tune with an
infinite-dimensional setting.

In this paper, we will therefore adopt this ansatz. In contrast to the proof in
[2], we prove Sklar’s theorem on the level of probability measures and not on
the level of random variables. The argument carries the steps in [6] over to an
infinite-dimensional setting:

(i) Show that the set of copula measures is compact with respect to the
topology of convergence of the finite-dimensional distributions (Definition
II.4.1 below).

(ii) Prove the second part of Sklar’s theorem (that every copula measure can
be merged with any family of marginals to a probability measure). This
step is straightforward and as in [2].

(iii) Prove that the operation of merging a copula measure with marginals
is a continuous mapping and use the compactness of the set of copulas
to conclude that this map has closed image. The second part of Sklar’s
theorem follows by arguing that this image is also dense in the space of
probability measures.

In finite dimensions, the compactness of copulas is described as "folklore" in [7]
and it implies some useful applications. Some of these results carry over to the
infinite-dimensional setup (cf. Section II.5).

II.2 Short Primer on Topological Inverse Systems

We will frequently use the notation R̄ for the extended real line [−∞, ∞].
For any measure μ on a measurable space (B, B) and a measurable function
f : (B, B) → (A, A) into another measurable space (A, A) we denote by f∗μ
the pushforward measure with respect to f given by f∗μ(S) := μ(f−1(S)) for
all S ∈ A. For I an arbitrary index set, B = R̄I and B = ⊗i∈IB(R̄), we use
the shorter notations πJ∗μ =: μJ for a subset J ⊆ I and π{i}∗μ =: μi for an
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element i ∈ I, where πJ denotes the canonical projection on RJ . If J ⊂ I is
finite, we denote the corresponding finite-dimensional cumulative distribution
functions by FμJ

or Fμi
respectively, where in the latter we used J = {i}. We

use the notation I for the set consisting of all finite subsets of I. Moreover, for
a one-dimensional Borel measure μi on R, we use the notation F

[−1]
μi for the

quantile functions

F [−1]
μi

(u) := inf {x ∈ (−∞, ∞) : Fμi
(x) ≥ u} .

We will refer to the one-dimensional distributions μi, i ∈ I and equivalently
Fμi , i ∈ I as marginals of the measure μ. We denote the set of all probability
measures on (R̄I , ⊗i∈IB(R̄)) by P(R̄I). Moreover, for two topological spaces
X, Y we write X ∼= Y if they are homeomorphic.

The remainder of the section is mainly based on [13]. Let XJ be a set for
each J ∈ I and

(PJ1,J2 : XJ2 → XJ1) for J1 ⊆ J2, with J1, J2 ∈ I

a family of mappings, also called projections, such that

(i) PJ,J = idJ is the identity mapping for all J ∈ I, and

(ii) PJ1,J3 = PJ1,J2 ◦ PJ2,J3 for all J1 ⊆ J2 ⊆ J3 in I.

The system

(XJ , PJ1,J2 , I) :=
(

(XJ)J∈I , ((PJ1,J2 : XJ2 → XJ1) J1⊆J2
J1,J2∈I

)
)

is called an inverse system (over the partially ordered set I). If (XJ , τJ) are
topological spaces for each J ∈ I and (PJ1,J2) are continuous for all J1 ⊆ J2
with J1, J2 ∈ I, we call

(XJ , τJ , PJ1,J2 , J ∈ I) :=
(

(XJ , τJ)J∈I , ((PJ1,J2 : XJ2 → XJ1) J1⊆J2
J1,J2∈I

)
)

a topological inverse system. A topological inverse limit of this inverse system
is a space X together with continuous mappings PJ : X �→ XJ , J ∈ I, such
that PJ1,J2PJ2 = PJ1 for all J1 ⊆ J2 in I (that is, the mappings are compatible)
and the following universal property holds: Whenever there is a topological
space Y , such that there are continuous mappings (ψJ : Y → XJ )J∈I which are
compatible, i.e., PJ1,J2ψJ2 = ψJ1 for all J1 ⊆ J2 in I, then there exists a unique
continuous mapping

Ψ : Y → X, (II.1)

with the property PJΨ = ψJ for all J ∈ I. We have that{
x = (xJ)J∈I ∈

∏
J∈I

XJ : PJ1,J2(πJ2(x)) = πJ1(x) for J1 ⊆ J2

}
⊆
∏
J∈I

XJ

(II.2)
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equipped with the subspace topology with respect to the product topology is
an inverse limit of the topological inverse system, induced by the canonical
projections πJ′((xJ )J∈I) = xJ ′ . Each topological inverse limit is homeomorphic
to this space and therefore to every topological inverse limit (See the proof of
Theorem 1.1.1 in [13]). We write lim← XJ ⊆

∏
J∈I XJ for the inverse limit as

a subset of the product space and we equip it throughout with the induced
subspace topology.

Lemma II.2.1. Let (XJ , τJ , πJ1,J2) be a topological inverse system (over the poset
I) of Hausdorff spaces. Then lim← XJ is a closed subset of

∏
J∈I XJ with

respect to the product topology.

Proof. See [13, Lemma 1.1.2]. �

Lemma II.2.2. Let X be a compact Hausdorff space and (XJ , τJ , πJ1,J2) be a
topological inverse system of compact Hausdorff spaces. Let ψJ : X → XJ , J ∈ I
be a family of compatible surjections and Ψ the induced mapping. Then either
lim← XJ = ∅ or Ψ(X) is dense in lim← XJ .

Proof. See [13, Corollary 1.1.7]. �

II.3 Copulas and Sklar’s Theorem

As they are cumulative distribution functions, copulas in finite dimensions have
a one-to-one correspondence to probability measures. In infinite dimensions, we
will therefore work with the notion of copula measures as introduced in [2].

Definition II.3.1. A copula measure (or simply copula) on R̄I is a probability
measure C ∈ P(R̄I), such that its marginals Ci are uniformly distributed on
[0, 1]. We will denote the space of copula measures on R̄I by C(R̄I).

Sklar’s theorem as stated below was proved in [2] by following the arguments
for the finite-dimensional assertion in [12]. Here we give an alternative proof for
the infinite-dimensional setting using a topological argument as in [6].

Theorem II.3.2 (Sklar’s Theorem). Let μ ∈ P(R̄I) be a probability measure with
marginal one-dimensional distributions μi, i ∈ I. There exists a copula measure
C, such that for each J ∈ I, we have

FCJ

((
Fμj

(xj)
)

j∈J

)
= FμJ

((xj)j∈J) (II.3)

for all (xj)j∈J ∈ R̄J . Moreover, C is unique if Fμi
is continuous for each i ∈ I.

Vice versa, let C be a copula measure on R̄I and let (μi)i∈I be a collection of
(one-dimensional) Borel probability measures over R̄. Then there exists a unique
probability measure μ ∈ P(R̄I), such that (II.3) holds.
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II.4 Topological Properties of Copulas and a Proof of
Sklar’s Theorem

The collection (P(R̄J), J ∈ I), where each P(R̄J ) is considered as a topological
space with the topology of weak convergence, is a topological inverse system
with the projections πJ1,J2(μJ2) = (μJ2)J1 for μJ2 ∈ P(R̄J2) and J1, J2 ∈ I,
J1 ⊆ J2. Moreover, observe that each P(R̄J) is a Hausdorff space, since it
is metrizable by the Prohorov metric (cf. [15, Theorem 4.2.5]). The space
lim← P(R̄J) ⊂

∏
J∈I P(R̄J) of consistent families of probability measures is a

topological inverse limit, equipped with the corresponding inverse limit topology.
The space of probability measures on ⊗i∈IB(R) has via its finite-dimensional
distributions a one-to-one correspondence with this family of consistent finite-
dimensional distributions, and hence there is a natural bijection between
lim← P(R̄J) and P(R̄I).

We equip the space P(R̄I) with the topology of weak convergence of the
finite-dimensional distributions, which we define as follows:

Definition II.4.1. The topology of convergence of the finite-dimensional distribu-
tions on P(R̄I) is defined as the topology such that P(R̄I) ∼= lim← P(R̄J).

P(R̄I) with this topology is by definition a topological inverse limit. Define
also lim← C(R̄J) := lim← P(R̄J) ∩

∏
J∈I C(R̄J). Certainly, we have

C
(
R̄I
) ∼= lim← C

(
R̄J
)

(II.4)

with the corresponding topologies.
The following result contains among other things the topological proof of

Sklar’s theorem II.3.2.

Theorem II.4.2. The following statements hold.

II.4.2.1. P(R̄I) with the topology of weak convergence of the finite-dimensional
distributions is a Hausdorff space

II.4.2.2. The space of copula measures C(R̄I) is compact with respect to the
topology of convergence of finite-dimensional distributions.

II.4.2.3. For a copula measure C on R̄I and (one-dimensional) Borel
probability measures (μi)i∈I over R̄ the push-forward measure

μ := ((F [−1]
μi

)i∈I)∗C (II.5)

satisfies (II.3).

II.4.2.4. If we equip C(R̄I) ×
∏

i∈I P(R̄) with the product topology of weak
convergence on each P(R̄) and the topology of convergence of the finite-
dimensional distributions on C(R̄I) and P(R̄I), then the mapping Φ : C(R̄I) ×∏

i∈I P(R̄) → P(R̄I) given by

Φ(C, (μi)i∈I) := ((F [−1]
μi

)i∈I)∗C
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is continuous and surjective. In particular, Sklar’s theorem holds.

Proof. (II.4.2.1) Since products of Hausdorff spaces are Hausdorff and P(R̄I) is
homeomorphic to a subset of a product of Hausdorff spaces, it is Hausdorff.

(II.4.2.2) We know by [7, Thm. 3.3] that every C(R̄J) is compact with
respect to the topology of weak convergence on P(R̄J). Tychonoff’s Theorem
guarantees also that

∏
J∈I C(R̄J ) is compact with respect to the product topology

on
∏

J∈I P(R̄J ). Therefore, as lim← P(R̄J ) is closed by Lemma II.2.1, we obtain
that C(R̄I) is compact, since it is homeomorphic to an intersection of a closed
and a compact set in the product topology.

(II.4.2.3) This corresponds to the second part of Sklar’s theorem and the
proof can be conducted analogously to the one in [2]. Therefore, it is enough to
see that ([

0, Fμj (xj)
])

j∈J
\
((

F [−1]
μj

)−1
(−∞, x1]

)
j∈J

is a CJ -nullset for all (xj)j∈J ∈ R̄J , J ∈ I, since then we immediately obtain

CJ

(((
F [−1]

μj

)−1
(−∞, x1]

)
j∈J

)
=CJ

((
[0, Fμj

(xj)]
)

j∈J

)
=FCJ

(
Fμj ((xj))j∈J

)
.

(II.4.2.4) Define φJ : C(R̄I) ×
∏

i∈I P(R̄) → P(R̄J) by

φJ(C, (μi)i∈I) := Φ(C, (μi)i∈I)J ,

which is well defined by (II.4.2.3). Since the finite-dimensional distributions of a
law are consistent, (φJ , J ∈ I) forms a compatible family. Define analogously
for J ∈ I also φ̃J : C(R̄J) ×

∏
j∈J P(R̄) → P(R̄J) by

φ̃J(CJ , (μj)j∈J) = (F [−1]
μj

)j∈J)∗CJ .

This is by Sklar’s theorem in finite-dimensions surjective and by [16, Thm. 2]
also continuous. Hence φJ = φ̃JπJ is continuous and surjective, since both,
φ̃J and πJ are. Φ must be the uniquely induced continuous mapping by the
family (φJ , J ∈ I) by the universality property of the inverse limit. Moreover,
since by [15, Corollary 4.2.6] P(R̄) is compact and by (II.4.2.2) also C(R̄I) is
compact, we have that C(R̄I) ×

∏
i∈I P(R̄) is compact by Tychonoff’s theorem.

The continuity of Φ implies therefore that Φ(C(R̄I) ×
∏

i∈I P(R̄)) is compact,
hence closed. Since moreover Lemma II.2.2 implies that Φ(C(R̄I) ×

∏
i∈I P(R̄))

is dense, we obtain that Φ is surjective and therefore also the first part of Sklar’s
theorem holds. The uniqueness of the copulas in the case of continuous marginals
follows immediately by Sklar’s theorem in finite dimensions via the uniqueness
of the finite-dimensional distribution of the corresponding copula measure. �
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II.5 Applications of the Compactness of Copulas in Infinite
Dimensions

Apart from the alternative proof of Sklar’s theorem, the compactness of the
family of copulas has some useful implications.

Observe that P(R̄J ) is a subset of a locally convex Hausdorff space. Indeed,
P(R̄J ) once equipped with the topology of convergence of the finite-dimensional
distributions is topologically embedded in Cb(R̄J)∗ equipped with the weak∗-
topology, where Cb(R̄J)∗ is the topological dual of the space of bounded
continuous functions equipped with the topology induced by the uniform norm.
Thus, with respect to the topology of weak convergence for each J ∈ I, we obtain
that also the inverse limit P(R̄I) ∼= lim← P(R̄J) is topologically embedded in a
locally convex Hausdorff space, as it is isomorphic to a subset of the product∏

J∈I P(R̄J ) ↪→
∏

J∈I Cb(R̄J )∗. Since C(R̄I) ↪→ P(R̄I) is convex, we obtain the
following result by the Krein-Milman theorem [5, Thm.V.8.4], as mentioned for
instance in [8, p.30] for the finite-dimensional case:

Lemma II.5.1. C(R̄I) is the closure of the convex hull of its extremal points with
respect to the topology of weak convergence of finite-dimensional distributions.

As mentioned in [1] this implies for instance that

sup
C∈C(R̄I )

g(C) = sup
C∈ext(C(R̄I ))

g(C)

where ext(C(R̄I)) denotes the set of extremal points of C(R̄I) and g : C(R̄I) �→ R

is a convex function.
The compactness of copulas might also be of interest for proving limit

theorems. In fact, by the compactness of copulas in finite dimensions, we obtain
that every sequence (Cn)n∈N of multivariate copulas (of fixed dimension) has a
convergent subsequence. This was for instance used in [9]. If (Cn)n∈N ⊂ C(R̄I)
is a sequence of copula measures and I is an infinite index set, this also implies
that all finite distributions FCn

J
for J ⊂ I finite have a convergent subsequent

that converges weakly. However, it is not clear if this subsequence can be chosen
uniformly for all finite J ∈ I, i.e. for all finite-dimensional distributions. Thus,
this result is intricate to transfer to the infinite-dimensional setting especially
since the notions of compactness and sequential compactness may not coincide
and one has to appeal to the notion of nets instead of sequences. For countable
index sets, we have at least

Lemma II.5.2. If I is a countable index set, then C(R̄I) is sequentially compact.

Proof. R̄I is a product of polish spaces and hence polish with respect to the
product topology. Thus, the Lévy-Prokhorov metric makes P(R̄I) a metric space,
whose topology coincides with the topology of convergence in distribution with
respect to the product topology on RI , which itself coincides with the topology
of weak convergence of the finite-dimensional distributions. As a compact set in
a metrisable space, C(R̄I) is sequentially compact. �
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With this Lemma it might be easy to prove convergence criteria in some
topological vector spaces. Recall that the p-Wasserstein space Wp(E) over a
separable Banach space E is given by

Wp(E) =
{

ν : ν is a Borel law on E,

∫
E

‖x‖p
Eν(dx) < ∞

}
.

Let E = lp be the sequence space

lp :=

⎧⎨⎩(xn)n∈N ⊂ RN : ‖(xn)n∈N‖p :=

( ∞∑
n=1

|xn|p
) 1

p

< ∞

⎫⎬⎭
for some p ∈ [1, ∞). Recall that for the case p = 2 this class of spaces contains
(by isomorphy) all separable Hilbert spaces.

Define by πi for i ∈ N the projection onto the ith component, i.e.
πi(x1, x2, ....) = xi ∀x ∈ lp. Any μ ∈ Wp(lp) is uniquely specified by the
family μi1,...,id

of finite dimensional distributions given by

μi1,...,id
:= μ ◦ (πi1 , ..., πid

)−1

for any finite subset {i1, ..., id} ⊂ N of the natural numbers. We write mp
μi

for
the pth absolute moment of the univariate measures μi, i ∈ N, i.e.

mp
μi

:=
∫
R

|x|pμi(dx).

Corollary II.5.3. Assume (μn)n∈N ⊂ Wp(lp). If all for all i ∈ N there is a
μ∞

i ∈ Wp(lp) such that
∞∑

i=1
mp

μ∞
i

< ∞,

then there is a subsequence (μnk )k∈N of Borel laws that converges with respect
to the topology of weak convergence of finite dimensional distributions to some
Borel law μ in Wp(lp), such that

μ∞
i = μi ∀i ∈ N. (II.6)

Proof. Recall from section 3.1 in [2] that a basis copula corresponding to a
measure ν ∈ W1(lp) is the copula measure Cν in Rn, such that its finite-
dimensional distributions are given by the copula measures associated with the
finite-dimensional distributions νi1,...,id

. Let (Cn)n∈N denote the sequence of basis
copulas associated with the sequence (μn)n∈N. Then by Lemma II.5.2, there is a
subsequence (Cnk

)k∈N that converges to a copula measure C ∈ C(R̄I) with respect
to the topology of convergence of the finite-dimensional distributions. Theorem
2 in [16] tells us, that for multivariate random variables weak convergence follows
by the convergence of the marginal distributions and the weak convergence of
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the associated copulas. By assumption, this yields the existence of a Borel law
μ in RN such that

μn −→ μ,

(II.6) holds and μ has C as its underlying copula measure. That indeed μ ∈ Wp(lp)
holds follows from Corollary 4 in [2]. �

Remark II.5.4. Certainly, we can identify elements of Banach spaces with a
Schauder basis uniquely with elements in RN. In that way, transferring the
assertion of Corollary II.5.3 to this more general situation is possible for instance
by appealing to Corollary 3 in [2].

Acknowledgements

This research was funded within the project STORM: Stochastics for Time-Space
Risk Models, from the Research Council of Norway (RCN). Project number:
274410.

References

[1] Benes, V. and Stepan, J. “Extremal Solutions in the Marginal Problem”.
In: Advances in Probability Distributions with Given Marginals. Mathe-
matics and Its Applications. Ed. by Dall’Aglio, G., Kotz, S., and Salinetti,
G. Vol. 67. Dordrecht: Springer, 1991.

[2] Benth, F., Di Nunno, G., and Schroers, D. “Copula Measures and Sklar’s
Theorem in Arbitrary Dimensions”. In: Scand. J. Statist. (forthcoming)
(2021).

[3] Carley, H. and Taylor, M. D. “A New Proof of Sklar’s Theorem”. In:
Distributions With Given Marginals and Statistical Modelling. Ed. by
Cuadras, C. M., Fortiana, J., and Rodriguez-Lallena, J. A. Dordrecht:
Springer Netherlands, 2002, pp. 29–34.

[4] Deheuvels, P. “A multivariate Bahadur–Kiefer representation for the
empirical copula process”. In: J. Math. Sci. (N. Y.) Vol. 163 (2009),
pp. 382–398.

[5] Dunford, N. and Schwartz, J. T. Linear operators. Part I. Wiley Classics
Library. General theory, With the assistance of William G. Bade and
Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience
Publication. John Wiley & Sons, Inc., New York, 1988, pp. xiv+858.

[6] Durante, F., Fernández-Sánchez, J., and Sempi, C. “A topological proof of
Sklar’s theorem”. In: Appl. Math. Lett. Vol. 26, no. 9 (2013), pp. 945–948.

[7] Durante, F., Fernández-Sánchez, J., and Sempi, C. “Sklar’s theorem
obtained via regularization techniques”. In: Nonlinear Anal. Vol. 75, no. 2
(2012), pp. 769–774.

85



II. A Topological Proof of Sklar’s Theorem in Arbitrary Dimensions

[8] Durante, F. and Sempi, C. Principles of Copula Theory. London:
CRC/Chapman & Hall, 2015.

[9] Fernández-Sánchez, J., Nelsen, R., and Úbeda-Flores, M. “Multivariate
copulas, quasi-copulas and lattices”. In: Statist. Probab. Lett. Vol. 81,
no. 9 (2011), pp. 1365–1369.

[10] Hausenblas, E. and Riedle, M. “Copulas in Hilbert spaces”. In: Stochastics
vol. 89, no. 1 (2017), pp. 222–239.

[11] Moore, D. S. and Spruill, M. C. “Unified Large-Sample Theory of General
Chi-Squared Statistics for Tests of Fit”. In: Ann. Statist. Vol. 3 (1975),
pp. 599–616.

[12] Rüschendorf, L. “On the distributional transform, Sklar’s theorem, and
the empirical copula process”. In: J. Statist. Plann. Inference vol. 139,
no. 11 (2009), pp. 3921–3927.

[13] Ribes, L. and Zalesskii, P. Profinite groups. Second. Vol. 40. Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern
Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd
Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag,
Berlin, 2010, pp. xvi+464.

[14] Schweizer, B. and Sklar, A. “Operations on distribution functions not
derivable from operations on random variables”. In: Studia Math. Vol. 52
(1974), pp. 43–52.

[15] Schweizer, B. and Sklar, A. Probabilistic Metric Spaces. Dover Publica-
tions, New York, 2005.

[16] Sempi, C. “Convergence of copulas: critical remarks”. In: Rad. Mat.
Vol. 12, no. 2 (2004), pp. 241–249.

[17] Sklar, A. “Random variables, distribution functions, and copulas—a
personal look backward and forward”. In: Distributions with fixed
marginals and related topics. Ed. by Rüschendorf, L., Schweizer, B., and
Taylor, M. D. Vol. Volume 28. Lecture Notes–Monograph Series. Hayward,
CA: Institute of Mathematical Statistics, 1996, pp. 1–14.

86



Paper III

A Weak Law of Large Numbers for
Realised Covariation in a Hilbert
Space Setting

Fred Espen Benth, Dennis Schroers, Almut E. D. Veraart
Published in Stochastic Processes and their Applications, March 2022,
volume 145, pp. 241–268. DOI: 10.1016/j.spa.2021.12.011

III

Abstract

This article generalises the concept of realised covariation to Hilbert-
space-valued stochastic processes. More precisely, based on high-frequency
functional data, we construct an estimator of the trace-class operator-
valued integrated volatility process arising in general mild solutions of
Hilbert space-valued stochastic evolution equations in the sense of [25]. We
prove a weak law of large numbers for this estimator, where the convergence
is uniform on compacts in probability with respect to the Hilbert-Schmidt
norm. In addition, we determine convergence rates for common stochastic
volatility models in Hilbert spaces.
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III.1 Introduction

Stochastic volatility and covariance estimation are of key importance in many
fields. Motivated in particular by financial applications, a lot of research has been
devoted to constructing suitable (co-) volatility estimators and to deriving their
asymptotic limit theory in the setting when discrete, high-frequent observations
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III. Weak Law of Large Numbers for Realised Covariation

are available. Initially, the main interest was in (continuous-time) stochastic
models based on (Itô) semimartingales, where the so-called realised variance
and covariance estimators (and their extensions) proved to be powerful tools.
Relevant articles include the works by [3, 4, 5, 7] and [32], amongst many others,
and the textbooks by [33] and [1].

Subsequently, the theory was extended to cover non-semimartingale models,
see, for instance, [22], [9], [8], [23], [21] and the survey by [41], where the proofs of
the asymptotic theory rely on Malliavin calculus and the famous fourth-moment
theorem, see [37]. The multivariate theory has been studied in [30, 39].

Common to these earlier lines of investigation is the fact that the stochastic
processes considered have finite dimensions. In this article, we extend the concept
of realised covariation to an infinite-dimensional framework.

The estimation of covariance operators is elementary in the field of functional
data analysis and was elaborated mainly for discrete-time series of functional
data (see e.g. [42], [27], [46], [16], [31], [38]). However, spatio-temporal data
that can be considered as functional might also be sampled densely in time, like
forward curves for interest rates or commodities and data from geophysical and
environmental applications.

In this paper, we consider a separable Hilbert space H and study H-valued
stochastic processes Y of the form

Yt = S(t)Y0 +
∫ t

0
S(t − s)αsds +

∫ t

0
S(t − s)σsdWs, t ∈ [0, T ], (III.1)

for some T > 0. Here (S(t))t≥0 is a strongly continuous semigroup, α :=
(αt)t∈[0,T ] a predictable and almost surely integrable H-valued stochastic process,
σ := (σt)t∈[0,T ] is a predictable operator-valued process, Y0 with values in H is
some initial element and W a so called Q-Wiener process on H (see Section III.2
below for details).

Our aim is to construct an estimator for the integrated covariance process(∫ t

0
σsQσ∗

sds

)
t∈[0,T ]

.

More precisely, we denote by

�t/Δn�∑
i=1

(Yti − S(Δn)Yti−1)⊗2, (III.2)

the semigroup-adjusted realised covariation (SARCV) for an equally spaced grid
ti := iΔn for Δn = 1/n, i = 1, . . . , �t/Δn�. We prove uniform convergence in
probability (ucp) with respect to the Hilbert-Schmidt norm of the (SARCV) to
the integrated covariance process. It is in line with the finite-dimensional theory
for continuous semimartingales that, apart from the necessary assumptions for
stochastic integrability, no assumptions have to be imposed on the stochastic
volatility process σ to guarantee the validity of this weak law of large numbers.
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In that sense, the (SARCV) can be regarded as a natural generalisation of the
well known realised quadratic (co-)variation in finite dimensions (which is a
special case) to processes of the form (III.1), which are sometimes coined mild
Itô processes, cf. [24, Section 2].

Nevertheless, our framework certainly differs from common high-frequency
settings mainly due to peculiarities that arise from infinite dimensions. Observe
that the main motivation to consider processes in this form, is that a vast
amount of parabolic stochastic partial differential equations possess only mild
(in opposition to analytically strong) solutions, which are of the form (III.1).
That is, Y is (under weak conditions) the mild solution of a stochastic partial
differential equation

(SPDE) dXt = (AXt + αt)dt + σtdWt, X0 = Y0, t ∈ [0, T ],

where A is the infinitesimal generator of the semigroup (S(t))t≥0 (cf. [25], [40]
or [35]).

In contrast to finite-dimensional stochastic diffusions, this is a priori not an
H-valued semimartingale, but rather an H-valued Volterra process and under
certain conditions on the volatility, the rate of convergence can be affected. For
instance, in the case of a constant deterministic volatility, the rate is O(Δ1/2

n ) in
the semimartingale case, but might be arbitrarily slow in our infinite-dimensional
mild framework, as it is essentially determined by the continuity of the semigroup
on the range of the volatility (see Theorem III.3.2 below and the subsequent
remark). A discussion around different rates of convergence in various cases is
included in Section III.4 of the paper.

Various recent developments related to statistical inference for (parabolic)
SPDEs based on discrete observations in time and space have emerged, see
e.g. [20], [15], [17], [18].

To the best of our knowledge, our paper is the first one considering high-
frequency estimation of (co-) volatility of infinite-dimensional stochastic evolution
equations in an operator setting. This is of interest for various reasons. For
instance, a simple and important application might be the parameter estimation
for H-valued Ornstein-Uhlenbeck process (that is, σs = σ is a constant operator).
Elementary techniques such as functional principal component analysis might
then be considered on the level of volatility. In a multivariate setting, dynamical
dimension reduction was conducted for instance in [2]. Furthermore, it can be
used as a tool for inference of infinite-dimensional stochastic volatility models as
in [13] or [14]. In the special case of a semigroup that is continuous with respect
to the operator norm, the framework also covers the estimation of volatility for
H-valued semimartingales.

We organize the paper as follows: First, we recall the main technical
preliminaries of our framework in Section III.2. In Section III.3, we establish
the weak law of large numbers. In Section III.4, we study the behaviour of the
estimator in special cases of semigroups and volatility. We derive convergence
rates for particular examples of semigroups in Section III.4.1 and stochastic
volatility models in Section III.4.2. Section 5 is devoted to the proofs of our main
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results, while in Section III.6 we discuss our results and methods in relation to
some existing literature and provide some outlook into further developments.

III.2 Notation and Some Preliminary Results

Let (Ω, F , (Ft)t≥0),P) denote a filtered probability space satisfying the usual
conditions. Consider two separable Hilbert spaces U, H with scalar products
denoted by 〈·, ·〉U , 〈·, ·〉H and norms ‖·‖U , ‖·‖H , respectively. We denote L(U, H)
the space of all linear bounded operators K : U → H, and use the shorthand
notation L(U) for L(U, U). Equipped with the operator norm, L(U, H) becomes
a Banach space. The adjoint operator of a K ∈ L(U, H) is denoted by K∗, and
is an element on L(H, U).

Following [40, Appendix A] we use the following notations: An operator
K ∈ L(U, H) is called nuclear or trace class if the following representation holds

Ku =
∑

k

bk〈u, ak〉U , for u ∈ U,

where {ak} ⊂ U and {bk} ⊂ H such that
∑

k ‖ak‖U ‖bk‖H < ∞. The space of
all nuclear operators is denoted by L1(U, H); it is a separable Banach space and
its norm is denoted by

‖K‖1 := inf

{∑
k

‖ak‖U ‖bk‖H : Ku =
∑

k

bk〈u, ak〉U

}
.

We denote by L+
1 (U, H) the class of all symmetric, non-negative-definite nuclear

operators from U to H. We write L1(U) and L+
1 (U) for L1(U, U) and L+

1 (U, U),
respectively.

For x ∈ U and y ∈ H, we define the tensor product x ⊗ y as the linear
operator in L(U, H) defined as x ⊗ y(z) := 〈x, z〉U y for z ∈ U . We note that
x ⊗ y ∈ L1(U, H) and ‖x ⊗ y‖1 = ‖x‖U ‖y‖H , see [40, p. 107].

The operator K ∈ L(U, H) is said to be a Hilbert-Schmidt operator if∑
k

‖Kek‖2
H < ∞,

for any orthonormal basis (ONB) (ek)k∈N of U . The space of all Hilbert-Schmidt
operators is denoted by LHS(U, H). We can introduce an inner product by

〈K, L〉HS :=
∑

k

〈Kek, Lek〉H , for K, L ∈ LHS(U, H).

The induced norm is denoted ‖ · ‖HS. As usual, we write LHS(U) in the case
LHS(U, U).

We have the following convenient result for the space of Hilbert-Schmidt
operators. Although it is well-known, we include the proof of this result for the
convenience of the reader:
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Lemma III.2.1. Let U, V, H be separable Hilbert spaces. Then LHS(U, H) is a
separable Hilbert space. Moreover, if K ∈ LHS(U, V ), L ∈ LHS(V, H), then
LK ∈ LHS(U, H) and

‖LK‖HS ≤ ‖L‖op‖K‖HS ≤ ‖L‖HS‖K‖HS, (III.3)

where the HS-norms are for the spaces in question.

Proof. It is well-known that LHS(U, H) is a separable Hilbert space (see e.g. [40,
Appendix A.2, p. 356]). Indeed, an orthonormal basis is (ei ⊗ fj)i,j∈N where
(ei)i∈N is an orthonormal basis for U and (fj)j∈N for H. Notice that for any
x ∈ U , we have for L ∈ LHS(U, H)

‖Lx‖2
H =

∞∑
i=1

〈Lx, ei〉2
H =

∞∑
i=1

〈x, L∗ei〉2
H ≤ ‖x‖2

H

∞∑
i=1

‖L∗ei‖2
H = ‖x‖2

U ‖L∗‖2
HS,

where (ei)∞
i=1 is an orthonormal basis in U and we applied the Cauchy-Schwarz

inequality. Hence, ‖L‖op ≤ ‖L∗‖HS = ‖L‖HS. It can be seen directly from the
definition of the Hilbert-Schmidt norm that for L ∈ LHS(V, H), K ∈ LHS(U, V ),
it holds

‖LK‖HS ≤ ‖L‖op‖K‖HS ≤ ‖L‖HS‖K‖HS,

and the claimed algebraic structure of Hilbert-Schmidt operators follows. �

III.2.1 Hilbert Space-Valued Stochastic Integrals

Fix T > 0 and assume that 0 ≤ t ≤ T . Let H and U be separable Hilbert spaces
throughout. Recall that a U -valued random variable X is normal with mean
a ∈ U and covariance operator Q ∈ L+

1 (U) if 〈X, f〉U is a real-valued normally
distributed random variable for each f ∈ U , with mean 〈a, f〉 and

E[〈X, f〉U 〈X, g〉U ] = 〈Qf, g〉U ,

for all f, g ∈ U .

Definition III.2.2. A stochastic process (Wt)t≥0 with values in U is called a
Wiener process with covariance operator Q ∈ L+

1 (U), if W0 = 0 almost surely,
W has independent and stationary increments, and for 0 ≤ s ≤ t, we have
Wt − Ws ∼ N(0, (t − s)Q).

Throughout let W denote a Wiener process taking values in U with
covariance operator Q ∈ L+

1 (U). To this operator we can assign the reproducing
kernel Hilbert space U0 := Q

1
2 U equipped with the scalar product 〈h, g〉0 :=

〈Q− 1
2 h, Q− 1

2 g〉H , where Q− 1
2 is the pseudo-inverse of Q

1
2 . The space (U0, 〈·, ·〉0)

forms again a separable Hilbert space (cf. Proposition C.03 in [34]). We define for
T < ∞ the space NW (0, T ; H) as the space of all predictable LHS(U0; H)-valued
processes (σs)s∈[0,T ] such that

P

[∫ T

0
‖σsQ1/2‖2

HSds < ∞
]

= 1. (III.4)
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III. Weak Law of Large Numbers for Realised Covariation

Let σ = (σt)t≥0 denote a stochastic volatility process where σ ∈ NW (0, T ; H)
for some fixed T < ∞. The stochastic integral

Yt :=
∫ t

0
σsdWs

can then be defined as in [34, Chapter 2] and takes values in the Hilbert space
H.

We denote the tensor product of the stochastic integral Y by (Yt)⊗2 = Yt ⊗Yt,
and define the corresponding stochastic variance term as the operator angle
bracket (not to be confused with the inner products introduced above!) given by

〈〈Y 〉〉t =
∫ t

0
σsQσ∗

sds =
∫ t

0
(σsQ1/2)(σsQ1/2)∗ds,

see [40, Theorem 8.7, p. 114].
Remark III.2.3. As in [25, p. 104], we note that (σsQ1/2) ∈ LHS(U, H) and
(σsQ1/2)∗ ∈ LHS(H, U). Hence the process (σsQ1/2)(σsQ1/2)∗ = σsQσ∗

s for
s ∈ [0, T ] takes values in L1(H, H).

Remark III.2.4. The integral
∫ t

0 σsQσ∗
sds is interpreted as a Bochner integral

in the space of Hilbert-Schmidt operators LHS(H). Indeed, σsQσ∗
s is a linear

operator on H, and we have almost surely∫ t

0
‖σsQσ∗

s‖HSds =
∫ t

0
‖σsQ1/2(σsQ1/2)∗‖HSds

≤
∫ t

0
‖σsQ1/2‖2

HSds < ∞,

by appealing to Lemma III.2.1 and the assumption that σ ∈ NW (0, T ; H).
Remark III.2.5. From the existence of a localising sequence of stopping times

τN := {t ∈ [0, T ] :
∫ t

0
‖σsQ

1
2 ‖2

HSds > N},

as described in [34, p.36] such that for the stopped process given by Ymin(t,τN ) =∫ t

0 I[0,τn](s)σsdWs we have

E

[∫ T

0
‖I[0,τn](s)σsQ

1
2 ‖2

HSds

]
< ∞

and appealing to [40, Theorem 8.2, p. 109] we deduce that the process (Mt)t≥0
with

Mt = (Yt)⊗2 − 〈〈Y 〉〉t

is an L1(H)-valued local martingale w.r.t. (Ft)t≥0. Thus, the operator angle
bracket process can be called the quadratic covariation process of Yt, which we
shall do from now on.
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The Weak Law of Large Numbers

We will need the following result, which is a direct corollary of the Hilbert
space version of the Burkholder-Davis-Gundy inequality (cf. [36]).

Lemma III.2.6. Let σ ∈ NW (0, T ; H). Then there is a positive constant C4,
independent of σ or t, such that

E

[
sup
s≤t

∥∥∥∥∫ t

0
σsdWs

∥∥∥∥4

H

]
≤ C4E

[(∫ t

0
‖σsQ

1
2 ‖2

HSds

)2]
.

This finishes our section with preliminary results.

III.3 The Weak Law of Large Numbers

In this section, we show our main result on the law of large numbers for Volterra-
type stochastic integrals in Hilbert space with operator-valued volatility processes.
Consider, for some F0-measurable H-valued Y0,

Yt := S(t)Y0 +
∫ t

0
S(t − s)αsds +

∫ t

0
S(t − s)σsdWs, (III.5)

where W is a Q-Wiener process on the separable Hilbert space U , σ is an element
of NW (0, T ; H), (S(t))t≥0 is a C0-semigroup on H and α is an almost surely
square integrable (in the Bochner sense) predictable process with values in H.
We assume that we observe Y at times ti := iΔn for Δn = 1/n, i = 1, . . . , �t/Δn�
and define the semigroup-adjusted increment

Δ̃i
nY := Yti

− S(Δn)Yti−1 =
∫ ti

ti−1

S(ti − s)αsds +
∫ ti

ti−1

S(ti − s)σsdWs. (III.6)

We define the process of the semigroup-adjusted realised covariation (SARCV)
as

t �→
�t/Δn�∑

i=1
(Δ̃i

nY )⊗2.

The aim is to prove the following weak law of large numbers for the SARCV

�t/Δn�∑
i=1

(Δ̃i
nY )⊗2 ucp→

∫ t

0
σsQσ∗

sds, as n → ∞,

in the ucp-topology, that is, for all ε > 0 and T > 0

lim
n→∞P

⎛⎝ sup
0≤t≤T

∥∥∥∥∥∥
�t/Δn�∑

i=1
(Δ̃i

nY )⊗2 −
∫ t

0
σsQσ∗

sds

∥∥∥∥∥∥
HS

> ε

⎞⎠ = 0. (III.7)
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III. Weak Law of Large Numbers for Realised Covariation

III.3.1 The Main Result

As we use the notation quite frequently, we will write ‖ · ‖ := ‖ · ‖H and
〈·, ·〉 := 〈·, ·〉H in what follows. We will first impose a moment condition to hold
for the drift and volatility processes, which will later be weakened by localization:

Assumption 3. Assume that for T > 0 the following moment conditions hold:

E

[∫ T

0
‖αs‖2

ds

]
+ E

⎡⎣(∫ T

0
‖σsQ

1
2 ‖2

HSds

)2
⎤⎦ ≤ C(T ), (III.8)

for some constant C(T ) > 0.

Remark III.3.1. Using the Cauchy-Schwarz inequality, we can deduce under
Assumption 3

E

[∫ t

0
‖σsQ1/2‖2

HSds

]
≤ E

[(∫ t

0
‖σsQ1/2‖2

HSds

)2] 1
2

≤
√

C(T ) < ∞.

Thus, the integrability condition on (σt)t∈[0,T ] holds for predictable processes
satisfying Assumption 3.

Denote for t ≥ 0
M(t) := sup

x∈[0,t]
‖S(x)‖op, (III.9)

which is finite by the Hille-Yosida bound on the semigroup. In order to prove
the ucp-convergence (III.7) we will first show the following stronger result, which
can be used to derive convergence rates under Assumption 3:

Theorem III.3.2. Assume that Assumption 3 holds for some T > 0. Then there
exist constants L1(T ), L2(T ), L3(T ) > 0 such that

E

⎡⎣ sup
0≤t≤T

∥∥∥∥∥∥
�t/Δn�∑

i=1
(Δ̃i

nY )⊗2 −
∫ t

0
σsQσ∗

sds

∥∥∥∥∥∥
HS

⎤⎦
≤ L1(T )Δ

1
2
n + L2(T )an(T ) + L3(T )bn(T ), (III.10)

where

an(T ) := E

⎡⎣( sup
i=1,...,�T/Δn�+1

∫ min(ti,T )

ti−1

∥∥∥σsQ
1
2

∥∥∥2

HS
ds

)2
⎤⎦

1
4

, (III.11)

bn(T ) :=

(∫ T

0
sup

x∈[0,Δn]
E[‖(I − S(x))σsQ

1
2 ‖2

op]ds

) 1
2

, (III.12)
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The Weak Law of Large Numbers

and

L1(T ) :=M(Δn)2
(

Δ
1
2
n C(T ) + 2C(T )

3
4

)
, (III.13)

L2(T ) :=M(Δn)2C(T )
1
4 (8(1 + C4))

1
2 + an, (III.14)

L3(T ) := (1 + M(Δn)) C(T )
1
4 , (III.15)

where C4 is the universal constant from Lemma III.2.6 and C(T ) is the constant
from Assumption 3. Moreover, an and bn converge to 0 and we have

lim
n→∞E

⎡⎣ sup
0≤t≤T

∥∥∥∥∥∥
�t/Δn�∑

i=1
(Δ̃i

nY )⊗2 −
∫ t

0
σsQσ∗

sds

∥∥∥∥∥∥
HS

⎤⎦ = 0.

Remark III.3.3. The precise forms of L1(T ), L2(T ) and L3(T ) follow by
combining equations (III.38), (III.40) and (III.47) below. One should observe
that their magnitude can shrink with larger values of n.

That (an(T )))n∈N converges to 0, follows from the integrability condition in
Assumption 3 and the implied uniform continuity of the mapping

t �→
∫ t

0

∥∥∥σsQ
1
2

∥∥∥2

HS
ds.

Observe, that in many cases we may assume the volatility to have integrable
fourth moments, i.e. ∫ T

0
E

[∥∥∥σsQ
1
2

∥∥∥4

HS

]
ds < ∞. (III.16)

In this case we have an = O(Δ1/4
n ), as it is easy to see that

an(T ) ≤
(∫ T

0
E

[∥∥∥σsQ
1
2

∥∥∥4

HS

]
ds

) 1
4

Δ
1
4
n .

If we further assume that

E

[
sup

s∈[0,T ]

∥∥∥σsQ
1
2

∥∥∥4

HS

]
< ∞, (III.17)

then we even have an = O(Δ1/2
n ) as

an(T ) ≤
(
E

[
sup

s∈[0,T ]

∥∥∥σsQ
1
2

∥∥∥4

HS

]) 1
4

Δ
1
2
n .

That (bn(T ))n∈N converges to 0 is an implication of Proposition III.5.1 below.
The magnitude of this sequence essentially determines the rate of convergence of
the realised covariation by virtue of inequality (III.10). We will come back to
the magnitude of the bn’s in specific cases in Section III.4.1.
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III. Weak Law of Large Numbers for Realised Covariation

A localisation argument yields the general law of large numbers

Theorem III.3.4. Assume σ ∈ NW (0, T ; H), i.e. it is stochastically integrable,
and the drift α is almost surely square integrable, i.e.

P

[∫ T

0
‖αs‖2ds < ∞

]
= 1.

Then

lim
n→∞P

⎛⎝ sup
0≤s≤t

∥∥∥∥∥∥
�s/Δn�∑

i=1
(Δ̃n

i Y )⊗2 −
∫ s

0
σuQσ∗

udu

∥∥∥∥∥∥
HS

> ε

⎞⎠ = 0, (III.18)

We also emphasize, that the following holds:

Corollary III.3.5. Let (Ȳt)t∈[0,T ] be another process on another separable Hilbert
space H̄ of the form

Ȳt := S̄(t)Ȳ0 +
∫ t

0
S̄(t − s)ᾱsds +

∫ t

0
S̄(t − s)σ̄sdWs, (III.19)

where Ȳ0 is F0-measurable with values in H, σ̄ is an element of NW (0, T ; H̄),
(S̄(t))t≥0 is a C0-semigroup on H̄ and ᾱ is an almost surely square integrable
(in the Bochner sense) predictable process. We have with respect to the Hilbert-
Schmidt norm-topology on LHS(H, H̄)

�t/Δn�∑
i=1

(Yti
− S(Δn)Yti−1) ⊗ (Ȳti

− S̄(Δn)Ȳti−1) ucp→
∫ t

0
σ̄Qsσ∗

sds.

Proof. We define the process Ŷ := (Y, Ȳ )
 on the Hilbert space H × H̄ equipped
with the scalar product

〈(h, h̄)
, (g, ḡ)
〉H×H̄ := 〈h, g〉H + 〈h̄, ḡ〉H̄ .

Moreover, define the strongly continuous semigroup

Ŝ(t) :=
(

S(t − s) 0
0 S̄(t − s)

)
, t ≥ 0

on H × H̄. As

Ŷt =
(

Y0
Ȳ0

)
+
∫ t

0
Ŝ(t − s)

(
αs

ᾱs

)
ds +

∫ t

0
Ŝ(t − s)

(
σs 0
σ̄s 0

)
d

(
Ws

0

)
. (III.20)

Denote by P1 the projection from H × H̄ onto the first component given by
P1(h, h̄)
 = h and by P2 onto H̄ given by P2(h, h̄) := h̄. Both P1 and P2 are
continuous linear projections, and as (III.20) again is a mild Itô process of the
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form (III.1), the law of large numbers in Thm. III.3.4 is valid. This is why we
obtain

�t/Δn�∑
i=1

(Yti − S(Δn)Yti−1) ⊗ (Ȳti − S̄(Δn)Ȳti−1) −
∫ t

0
σ̄sQσ∗

sds

=P2

⎛⎝�t/Δn�∑
i=1

(Ŷti
− Ŝ(Δn)Ŷti−1)⊗2 −

∫ t

0

(
σs 0
σ̄s 0

)(
Q 0
0 0

)(
σs 0
σ̄s 0

)∗
ds

⎞⎠P ∗
1

ucp→ 0.

The Corollary follows. �

III.4 Applications

In this section, we give an overview of potential settings and scenarios for which
we can use the techniques described above to infer volatility.

Stochastic integrals of the form (III.5) arise naturally in correspondence to
mild or strong solutions to stochastic partial differential equations. Take as a
simple example a process given by

(SPDE)

{
dYt = AYtdt + σtdWt, t ≥ 0
Y0 = h0 ∈ H,

(III.21)

where A is the generator of a C0-semigroup (S(t))t≥0 on the separable Hilbert
space H, W is a Q-Wiener process on a separable Hilbert space U for some
positive semidefinite and symmetric trace class operator Q : U → U and
σ ∈ NW (0, T ; H).

There are three components in this model, which need to be estimated in
practice: the covariance operator Q of the Wiener process, the generator A (or
the semigroup (S(t))t≥0 respectively) and the stochastic volatility process σ.

III.4.1 Semigroups

The essence of the convergence result in Theorem III.3.2 is that we can infer on
Q and σ based on observing the path of Y , given that we know the semigroup
(S(t))t≥0. Even more, in this case, Theorem 3.2 allows us to derive rates of
convergence, which are specified by the behaviour of the semigroup on the
volatility. We outline some examples below.

III.4.1.1 Martingale Case

For A = 0 and S(t) = I and for all t ≥ 0, we have the solution

Yt =
∫ t

0
σsdWs,
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III. Weak Law of Large Numbers for Realised Covariation

for the stochastic partial differential equation (III.21). Clearly in this case we
have

bn(T ) = 0.

III.4.1.2 Uniformly Continuous Semigroups

Assume that (S(t))t≥0 is continuous with respect to the operator norm. This is
equivalent to A ∈ L(H) and S(t) = etA.

Lemma III.4.1. Let Assumption 3 hold. If the semigroup (S(t))t≥0 is uniformly
continuous, we have, for bn given in (III.12), that

bn(T ) ≤ Δn‖A‖ope‖A‖opΔnC(T )
1
4 .

Proof. Recall the following fundamental equality from semigroup theory (cf. [26,
Lemma II.1.3]):

(S(x) − I)h =
∫ x

0
AS(s)hds, ∀h ∈ D(A). (III.22)

Using (III.22), we get

sup
x∈[0,Δn]

‖(I − S(x))‖op = sup
x∈[0,Δn]

sup
‖h‖=1

∥∥∥∥∫ x

0
AS(s)hds

∥∥∥∥
≤ sup

x∈[0,Δn]
x‖A‖ope‖A‖opx = Δn‖A‖ope‖A‖opΔn .

It follows that

b2
n(T ) =

∫ T

0
E[ sup

x∈[0,Δn]
‖(I − S(x))σsQ

1
2 ‖2

op]ds

≤ sup
x∈[0,Δn]

‖(I − S(x))‖2
op

∫ T

0
E[‖σsQ

1
2 ‖2

HS]ds

≤Δ2
n‖A‖2

ope2‖A‖opΔnE

⎡⎣(∫ T

0
‖σsQ

1
2 ‖2

HSds

)2
⎤⎦

1
2

,

and the claim follows. �

For uniformly continuous semigroups and if (III.17) holds, we obtain a
convergence speed of the order Δ1/2

n for the convergence of the adjusted realized
covariation to the quadratic covariation in Theorem III.3.2.
Remark III.4.2. Note that, if the semigroup is uniformly continuous and under
Assumption 3, we can get back to a case similar to Section III.4.1.1: As A is
continuous, (Yt)t∈[0,T ] is a strong solution to the SPDE (III.21) and therefore
takes the form

Yt = Y0 +
∫ t

0
AYsds +

∫ t

0
σsdWs.
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As the drift process given by αs = AYs is square-integrable, we can choose the
semigroup equal to the identity and therefore the law of large numbers holds
without any the adjustment, i.e. we have the convergence of the (nonadjusted)
realised covariation

�t/Δn�∑
i=1

(
Yti

− Yti−1

)⊗2 ucp→
∫ t

0
σsQσ∗

sds.

By definition bn(T ) = 0 in this case and if (III.17) holds, the rate of convergence
is O(Δ1/2

n ), similar to the case for the adjusted realised covariation.
Let us turn our attention to a case of practical interest coming from financial

mathematics applied to commodity markets.

III.4.1.3 Forward Contracts in Commodity and Interest Rate Markets:
the Heath-Jarrow-Morton Approach

A case of relevance for our analysis is inference on the volatility for forward prices
in commodity markets as well as for forward rates in fixed-income markets. The
Heath-Jarrow-Morton-Musiela equation (HJMM-equation) describes the term
structure dynamics in both of these settings (see [28] for a detailed motivation
for the use in interest rate modelling and [12] its use in commodity markets) and
is given by

(HJMM)

{
dXt = ( d

dx Xt + αt)dt + σtdWt, t ≥ 0
X0 = h0 ∈ H,

(III.23)

where H is a Hilbert space of functions f : R+ → R (the forward curve space),
(αt)t≥0 is a predictable and almost surely locally Bochner-integrable stochastic
process and σ and W are as before. Conveniently, the states of this forward
curve dynamics are realized on the separable Hilbert space

H = Hβ = {h : R+ → R : h is absolutely continuous and ‖h‖β < ∞} ,
(III.24)

for fixed β > 0, where the inner product is given by

〈h, g〉β = h(0)g(0) +
∫ ∞

0
h′(x)g′(x)eβxdx,

and norm ‖h‖2
β = 〈h, h〉β . This space was introduced and analysed in [28]. As in

[28], one may consider more general scaling functions in the inner product than
the exponential exp(βx). However, for our purposes here this choice suffices.
The suitability of this space is partially due to the following result:

Lemma III.4.3. The differential operator A = d
dx is the generator of the strongly

continuous semigroup (S(t))t≥0 of shifts on Hβ, given by S(t)h(x) = h(x + t),
for h ∈ Hβ, such that

M(Δn) = sup
t≤Δn

‖S(t)‖op ≤ eΔn . (III.25)
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Proof. See for example [28]. For the quasi-contractive property (III.25) compare
[12, Theorem 3.5]. �

The HJMM-equation (III.23) possesses a mild solution (see e.g. [40])

ft = S(t)f0 +
∫ t

0
S(t − s)αsds +

∫ t

0
S(t − s)σsdWs. (III.26)

Since forward prices and rates are often modelled under a risk neutral
probability measure, the drift has in both cases (commodities and interest rates)
a special form. In the case of forward prices in commodity markets, it is zero
under the risk neutral probability, whereas in interest rate theory it is completely
determined by the volatility via the no-arbitrage drift condition

αt =
∑
j∈N

σj
t Σj

t , ∀t ∈ [0, T ], (III.27)

where σj
t =

√
λjσt(ej) and Σj

t =
∫ t

0 σj
sds for some eigenvalues (λj)j∈N and a

corresponding basis of eigenvectors (ej)j∈N of the covariance operator Q of W
(cf. Lemma 4.3.3 in [28]).

Lemma III.4.4. Assume that the volatility process (σt)t∈[0,T ] satisfies (III.17) and
that for each t ∈ [0, 1] the operator σt maps into

H0
β = {h ∈ Hβ : lim

x→∞ h(x) = 0}.

Then the drift given by (III.27) has values in Hβ, is predictable, and has finite
second moments.

Proof. That the drift is well defined follows from Lemma 5.2.1 in [28].
Predictability follows immediately from the predictability of the volatility. We
have by Theorem 5.1.1 from [28] that there is a constant K depending only on
β such that

‖σj
t Σj

t ‖β ≤ K‖σj
t ‖2

β .

Therefore, we get by the triangle inequality that

‖αt‖β ≤K
∑
j∈N

‖σj
t ‖2

β = K‖σtQ
1
2 ‖2

HS.

We obtain the finite second-moment property by (III.17) as

sup
t∈[0,T ]

E[‖αt‖2
β ] ≤ K2 sup

t∈[0,T ]
E[‖σtQ

1
2 ‖4

HS].

Moreover, the Bochner integrability follows, since we have

E

[∫ T

0
‖αt‖βdt

]
≤
∫ T

0
E[‖αt‖2

β ]
1
2 dt ≤ TK sup

t∈[0,T ]
E[‖σtQ

1
2 ‖4

HS]
1
2 < ∞.

The result follows. �
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Remark III.4.5. Since we know the exact form of the semigroup (S(t))t≥0, we
can recover the adjusted increments Δ̃i

nf efficiently from forward curve data by
a simple shifting in the spatial (e.g., time-to-maturity) variable of these curves.
Theorem III.3.2 and more generally Theorem III.3.4 can therefore be applied in
practice to make inference on σ.

The shift semigroup is strongly, but not uniformly, continuous, leaving us
with the question to determine the convergence speed of the estimator established
in Corollary III.10. We close this subsection by deriving a convergence bound
under regularity conditions of the volatility in the space variable (that is time to
maturity).

Observe that by Theorem 4.11 in [12] we know that for all r ∈ [0, T ] there
exist random variables cr with values in R, fr, gr with values in H such that
gr(0) = 0 = fr(0) and pr ∈ L2(R2

+) such that we have

σrQ
1
2 h(x) = crh(0) + 〈gr, h〉β + h(0)fr(x) +

∫ ∞

0
qr(x, z)h′(z)dz,

where qr(x, z) =
∫ x

0 pr(y, z)e
β
2 (z−y)dy. We denote by C1,γ

loc := C1,γ
loc (R+) the

space of continuously differentiable functions with locally γ-Hölder continuous
derivative for γ ∈ (0, 1]. The proof of the following result can be found in Section
III.5.2.

Theorem III.4.6. Assume that fr, qr(·, z) ∈ C1,γ
loc for all z ≥ 0, r ∈ [0, T ] and that

for the corresponding local Hölder constants L1
r(x) of e

β
2 ·f ′

r(·) and L2
r(x, z) of

pr, we have that for all x ∈ [0, 1]

|eβ(x+y)f ′
r(x + y) − eβxf ′

r(x)| ≤ L1
r(x)yγ

and
|p(y + x, z) − p(x, z)| ≤ L2

r(x, z)yγ .

Moreover, we assume that L1
r and L2

r are square integrable in x and in (x, z)
respectively such that for some ζ ∈ (0, T )

L̂ :=

(∫ T

0
E

[(
|f ′

r(ζ)| +
√

8(
e

β+1
2

β
)‖fr‖β +

√
2‖L1

r‖L2(R+)

+‖L2
r‖L2(R2

+) + (1 +
β

2
)‖pr‖L2(R2

+)

)2
]

dr

) 1
2

<∞.

Then for bn(T ) as given in (III.12), we can estimate

bn(T ) ≤ L̂Δmin(γ, 1
2 )

n .

In the next section, we investigate the asymptotic behaviour for different
stochastic volatility models.
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III.4.2 Stochastic Volatility Models

In this section different models for stochastic volatility in Hilbert spaces are
discussed. So far, infinite-dimensional stochastic volatility models are specified
by stochastic partial differential equations on the positive cone of Hilbert-
Schmidt operators (see [13], [14]). We will check therefore, which models satisfy
Assumption 3. Throughout this section, we take H = U for simplicity.

III.4.2.1 Constant Volatility

We start with the simple but important special case of constant volatility, i.e.
σs = I for all s ∈ [0, T ] and we want to make inference on Q. In this case
(III.17) is trivially fulfilled and it is easy to see that C(T ) ≤ T 2Tr(Q)2. The
convergence rate is thus O(Δ1/2

n + bn(T )). The magnitude of bn(T ) is now
completely dependent on the range of the square root of the covariance operator
Q

1
2 . We define

Z̃n(i) :=(Δ̃n
i Y )⊗2 −

∫ ti

ti−1

S(ti − s)QS(ti − s)∗ds

=(Δ̃n
i Y )⊗2 −

∫ Δn

0
S(Δn − s)QS(Δn − s)∗ds. (III.28)

It is interesting to note the following: As the sequence (Z̃n(i))i∈N is a centred i.i.d.
sequence of random variables, we also obtain a convergence result, if T → ∞
and Δn is constant. Namely, the classical law of large numbers in Hilbert spaces,
see e.g. [16, Theorem 2.4], yields

lim
T →∞

1
�T/Δn�

�T/Δn�∑
i=1

Z̃n(i) u.c.p.−→ 0.

If the semigroup is the identity, this again yields a consistent way of estimating
Q, which is analogous to the finite-dimensional case. However, note that, if the
semigroup is not equal to the identity, the long time estimator (III.28) estimates∫Δn

0 S(Δn − s)QS(Δn − s)∗ds, rather than ΔnQ.

III.4.2.2 Barndorff-Nielsen & Shephard (BNS) Model

The volatility is oftentimes given as the unique positive square-root of a process
Σt, e.g.,

σt := Σ
1
2
t , (III.29)

where Σ takes values in the set of positive Hilbert-Schmidt operators on H. This
is for instance the case in the Hilbert space-valued volatility model suggested in
[13], extending the BNS-model introduced in [6] to infinite dimensions. There Σ
is given by the Ornstein-Uhlenbeck dynamics

(BNS)

{
dΣt = BΣtdt + dLt,

Σ0 ∈ LHS(H),
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where B is a positive bounded linear operator on the space of Hilbert-Schmidt
operators LHS(H), L is a square integrable Lévy subordinator on the same
space and Σ0 is also positive definite. B is then the generator of the uniformly
continuous semigroup given by S(t) = exp(Bt) and the equation has a mild
solution given by

Σt = S(t)Σ0 +
∫ t

0
S(t − s)dLs,

which defines a stochastically integrable process in NW (0, T ; H) (see [13]). We
have

sup
s∈[0,T ]

E[‖σs‖4
op] = sup

s∈[0,T ]
E[‖Σ

1
2
s ‖4

op] = sup
s∈[0,T ]

E[‖Σs‖2
HS].

By the Itô isometry, we obtain

sup
t∈[0,T ]

E[‖Σt‖2
HS]

1
2 ≤ sup

t∈[0,T ]

⎛⎝‖S(t)Σ0‖HS + E

[∥∥∥∥∫ t

0
S(t − u)dLu

∥∥∥∥2

HS

] 1
2
⎞⎠

≤ sup
t∈[0,T ]

⎛⎝‖S(t)Σ0‖HS +

(∫ T

0
‖S(t − u)Q

1
2
L‖2

HSdu

) 1
2
⎞⎠

≤e‖B‖opT ‖Σ0‖HS + e‖B‖opT Tr(QL)
1
2 T

1
2 ,

where QL denotes the covariance operator of L. This yields that we can find an
upper bound for the constant C(T ) from Assumption 3 according to

C(T ) ≤T 2 sup
s∈[0,T ]

E

[∥∥∥σsQ
1
2

∥∥∥4

op

]
≤Tr(Q)2T 2

(
e‖B‖opT ‖Σ0‖HS + e‖B‖opT Tr(QL)

1
2 T

1
2

)2
.

Moreover, it is easy to see that (III.16) holds, which is why the rate of convergence
in the law of large numbers Thm. III.3.2 becomes O(bn(T ) + Δ1/4

n ). Now we
can combine this result with the ones from the previous section (for instance
for the term structure models) and obtain explicit expressions for the constants
L1(T ), L2(T ) and L3(T ) from Theorem III.3.2.

It is also possible to derive ucp convergence for rough volatility models, which
we present in the following section.

III.4.2.3 Rough Volatility Models

In [11] pathwise constructions of Volterra processes are established and suggested
for use in stochastic volatility models. In this setting, a process is mostly known
to be Hölder continuous almost surely of some particular order.
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If H is a Banach algebra (like the forward curve space defined by (III.24)),
we can define the volatility process by

σth := exp(Yt)h. (III.30)

This is a direct extension of the volatility models proposed in [29], if we define
the rough process Yt as follows: For ρ > 0 and a locally Bochner integrable
function f : R+ → H define the fractional integral operator Iρ ∈ L(L1

loc(R+, H))
as

Iρ(f)(t) :=
1

Γ(ρ)

∫ t

0
(t − s)ρ−1f(s)ds. (III.31)

For the special case of ρ = 0 we set I0 = idL1
loc

(R+;H). Define a noise term X as
the Gaussian process

X(t) =
∫ t

0
(t − s)ρ−1dW(s). (III.32)

This integral is well defined pathwise via a Sewing Lemma in Banach spaces
(see [11, Prop. 14]), for a process W with sample paths in space of γ-Hölder
continuous functions Cγ([0, T ]; H) on H, such that ρ + γ − 1 > 0. For an initial
condition y ∈ H, an Ornstein-Uhlenbeck process in this framework is considered
to be the solution to the integral equation

Yt = y + Iρ(AY)t + Xt t ∈ [0, T ], (III.33)

where A ∈ L(H). It was shown in [11, Prop. 26] that this pathwise integral
equation possesses a unique solution Y with sample paths in Cα([0, T ]; H) for
0 < α < ρ + γ − 1. This solution is moreover Gaussian and hence, by virtue of
Fernique’s theorem, cf. [40, Theorem 3.31], satisfies (III.16), which is why the
rate of convergence is O(bn(T ) + Δ1/4

n ). More precisely, the cross-covariance
structure is characterized by

QY(t, t′) := E [Yt ⊗ Yt′ ]

=
∫ t

0

∫ t′

0
(t − r)ρ−1Eρ,ρ(A(t − r)ρ)d2QW(r, r′)(t′ − r′)ρ−1Eρ,ρ(A∗(t′ − r′)ρ),

where for B ∈ L(H)

Eα,β(B) :=
∞∑

i=1

Bi

Γ(αi + β)

is the Mittag-Leffler operator and Γ is the Gamma-function. From these analytic
expressions, one can derive again explicit formulas for the constants L1(T ), L2(T )
and L3(T ).

III.5 Proofs

In this section, we will present the proofs of our previously stated results.
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III.5.1 Proofs of Results in Section III.3

III.5.1.1 Uniform Continuity of Semigroups on Compact Sets

In order to verify that bn(T ) defined in (III.12) converges to 0 and to prove
Theorem III.3.2, we need to establish some convergence properties of semigroups
on compacts.

The next proposition follows from Dini’s theorem and will be important for
our analysis:

Proposition III.5.1. Let U, H be two separable Hilbert spaces. The following
holds:

(i) If σ is an almost surely compact random linear operator with values in
L(U, H), we get that

sup
x∈[0,Δn]

‖(I − S(x))σ‖op → 0, as n → ∞, (III.34)

where the convergence holds almost surely. If furthermore σ ∈
Lp(Ω; L(U, H)) for some p ∈ [1, ∞), the convergence holds also in Lp(Ω;R).

(ii) Assume that s �→ σsQ
1
2 is a stochastic process of almost surely compact

operators, such that

P

[∫ T

0
‖σs‖p

op ds < ∞
]

= 1,

for p ∈ [1, ∞). Then almost surely∫ T

0
sup

x∈[0,Δn]
‖(I − S(x))σs‖p

opds → 0, as n → ∞. (III.35)

If
∫ T

0 E

[∥∥∥σsQ
1
2

∥∥∥p

op

]
ds < ∞, then∫ T

0
E[ sup

x∈[0,Δn]
‖(I − S(x))σs‖p

op]ds → 0, as n → ∞. (III.36)

Proof. Let B0(1) := {h ∈ H : ‖h‖ = 1} be the unit sphere in H and fix ω ∈ Ω,
such that σ(ω) is compact. Since σ(ω) is compact, C := σ(ω)(B0(1)) is compact
in H. We define the set F (ω) of functionals of the form

fn := sup
x∈[0,Δn]

‖(I − S(x)) · ‖ : C → R.

The functions in F (ω) are continuous, as

| sup
x∈[0,Δn]

‖(I − S(x))h‖ − sup
x∈[0,Δn]

‖(I − S(x))g‖|

≤ sup
x∈[0,Δn]

‖(I − S(x))(h − g)‖

≤ sup
x∈[0,Δ1]

‖(I − S(x))‖H‖h − g‖,
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for all g, h ∈ C. Hence Dini’s theorem (cf. Theorem 7.13 in [44]) yields
(III.34) in the almost sure sense. Since the sequence is uniformly bounded by
(1 + M(T ))‖σ‖op, which has finite pth moment, we obtain Lp(Ω;R)-convergence
by the dominated convergence theorem, and therefore (III.34) holds in the
Lp-sense.

The convergences (III.35) and (III.36) follow now immediately by appealing
to the dominated convergence theorem, as

sup
x∈[0,Δn]

‖(I − S(x))σs‖p
op ≤ M(Δn)p‖σs‖p

op

and supx∈[0,Δn] ‖(I − S(x))σs‖p
op, respectively E

[
supx∈[0,Δn] ‖(I − S(x))σs‖p

op

]
,

converges to 0 by (III.34). �

Recall also the following fact:

Lemma III.5.2. The family (S(t)∗)t≥0 of adjoint operators of the C0-semigroup
(S(t))t≥0 forms again a C0-semigroup on H.

Proof. See Section 5.14 in [26]. �

Now we can proceed with the proof of our main theorem in the next subsection.

III.5.1.2 Elimination of the Drift

The drift process will not affect the asymptotic behaviour of the realised
covariation. This is proved in the next Lemma:

Lemma III.5.3. To prove Theorem III.3.2, we can without loss of generality
assume α ≡ 0 and Y0 ≡ 0.

Proof. That we can assume Y0 ≡ 0 can be seen immediately as

Δ̃i
nY := Yti − S(Δn)Yti−1 =

∫ ti

ti−1

S(ti − s)αsds +
∫ ti

ti−1

S(ti − s)σsdWs

is not dependent on the initial condition. We can then argue for the drift as
follows: We have

E

⎡⎣ sup
0≤t≤T

∥∥∥∥∥∥
�t/Δn�∑

i=1
(Δ̃i

nY )⊗2 −
∫ t

0
σsQσ∗

sds

∥∥∥∥∥∥
HS

⎤⎦
≤E

⎡⎣ sup
0≤t≤T

∥∥∥∥∥∥
�t/Δn�∑

i=1

(∫ ti

ti−1

S(ti − s)αsds

)⊗2
∥∥∥∥∥∥

HS

⎤⎦
+ E

⎡⎣ sup
0≤t≤T

∥∥∥∥∥∥
�t/Δn�∑

i=1

(∫ ti

ti−1

S(ti − s)αsds

)
⊗
(∫ ti

ti−1

S(ti − s)σsdWs

)∥∥∥∥∥∥
HS

⎤⎦
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+ E

⎡⎣ sup
0≤t≤T

∥∥∥∥∥∥
�t/Δn�∑

i=1

(∫ ti

ti−1

S(ti − s)σsdWs

)
⊗
(∫ ti

ti−1

S(ti − s)αsds

)∥∥∥∥∥∥
HS

⎤⎦
+ E

⎡⎣ sup
0≤t≤T

∥∥∥∥∥∥
�t/Δn�∑

i=1

(∫ ti

ti−1

S(ti − s)σsdWs

)⊗2

−
∫ t

0
σsQσ∗

sds

∥∥∥∥∥∥
HS

⎤⎦
≤

�T/Δn�∑
i=1

E

⎡⎣∥∥∥∥∥
∫ ti

ti−1

S(ti − s)αsds

∥∥∥∥∥
2
⎤⎦

+ 2

⎛⎝�T/Δn�∑
i=1

E

⎡⎣∥∥∥∥∥
∫ ti

ti−1

S(ti − s)σsdWs

∥∥∥∥∥
2
⎤⎦⎞⎠

1
2

×

⎛⎝�T/Δn�∑
i=1

E

⎡⎣∥∥∥∥∥
∫ ti

ti−1

S(ti − s)αsds

∥∥∥∥∥
2
⎤⎦⎞⎠

1
2

+ E

⎡⎣ sup
0≤t≤T

∥∥∥∥∥∥
�t/Δn�∑

i=1

(∫ ti

ti−1

S(ti − s)σsdWs

)⊗2

−
∫ t

0
σsQσ∗

sds

∥∥∥∥∥∥
HS

⎤⎦
=(1) + (2) + (3).

In order to prove the assertion, we have to show that (1) and (2) converge to 0
as n → ∞. We find by Bochner’s inequality

E

⎡⎣∥∥∥∥∥
∫ ti

ti−1

S(ti − s)αsds

∥∥∥∥∥
2
⎤⎦ ≤ ΔnM2(Δn)E

[∫ ti

ti−1

‖αs‖2ds

]
,

and by the Itô isometry

E

⎡⎣∥∥∥∥∥
∫ ti

ti−1

S(ti − s)σsdWs

∥∥∥∥∥
2

H

⎤⎦ ≤ M2(Δn)E

[∫ ti

ti−1

‖σsQ
1
2 ‖2

HSds

]
,

where we appealed to the bound (III.9) on the semigroup. Hence, (1) + (2) =
O(Δ

1
2
n ), so the first two terms will not impact the estimation of the covariation

(in the limit). More precisely we have that

(1) + (2) (III.37)

≤ΔnM2(Δn)
∫ T

0
E

[
‖αs‖2

]
ds

+ 2

(
ΔnM2(Δn)

∫ T

0
E

[
‖αs‖2

]
ds

) 1
2
(

M2(Δn)
∫ T

0
E

[∥∥∥σsQ
1
2

∥∥∥2

HS

]
ds

) 1
2
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and therefore, given Assumption 3

(1) + (2) ≤ Δ
1
2
n M(Δn)2

(
Δ

1
2
n C(T ) + 2C(T )

3
4

)
. (III.38)

The Lemma follows. �

III.5.1.3 Proof of Theorem III.3.2

In view of Lemma III.5.3 we assume in this subsection that the process Y
takes the form Yt =

∫ t

0 S(t − s)σsdWs. The operator bracket process for the
semigroup-adjusted increment takes the form

〈〈Δ̃i
nY 〉〉 =

∫ ti

ti−1

S(ti − s)σsQσ∗
sS(ti − s)∗ds. (III.39)

We have

Proposition III.5.4. Let Assumption 3 hold. Then

E

⎡⎣ sup
t∈[0,T ]

∥∥∥∥∥∥
�t/Δn�∑

i=1
(Δ̃n

i Y )⊗2 − 〈〈Δ̃n
i Y 〉〉

∥∥∥∥∥∥
⎤⎦ ≤ M(Δn)2C(T )

1
4 (8(1 + C4))

1
2 an(T ).

(III.40)

Proof. We define

Z̃n(i) := (Δ̃n
i Y )⊗2 − 〈〈Δ̃n

i Y 〉〉 = (Δ̃n
i Y )⊗2 −

∫ ti

ti−1

S(ti − s)σsQσ∗
sS(ti − s)∗ds.

First we show that supt∈[0,T ] ‖
∑�t/Δn�

i=1 Z̃n(i)‖HS has finite second moment. By
the triangle inequality and Lemma III.2.1

sup
t∈[0,T ]

∥∥∥∥∥∥
�t/Δn�∑

i=1
Z̃n(i)

∥∥∥∥∥∥
HS

≤
�T/Δn�∑

i=1
‖Z̃n(i)‖HS

≤
�T/Δn�∑

i=1
‖(Δ̃n

i Y )⊗2‖HS

+
�T/Δn�∑

i=1

∥∥∥∥∥
∫ ti

ti−1

S(ti − s)σsQσ∗
sS(ti − s)∗ds

∥∥∥∥∥
HS

≤
�T/Δn�∑

i=1
‖Δ̃n

i Y ‖2
H + M(Δn)2

∫ T

0

∥∥∥σsQ
1
2

∥∥∥2

HS
ds.

Considering E

[
supt∈[0,T ] ‖

∑�t/Δn�
i=1 Z̃n(i)‖2

HS

]
, we get a finite sum of linear

combinations of the following terms

E

⎡⎣(∫ T

0
‖σsQ

1
2 ‖2

HSds

)2
⎤⎦ = C(T ), (III.41)
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E
[
‖Δ̃n

i Y ‖2‖Δ̃n
j Y ‖2] , (III.42)∫ T

0
E

[
‖Δ̃n

i Y ‖2‖σsQ
1
2 ‖2

HS

]
ds. (III.43)

The expression in (III.41) is finite by the imposed Assumption 3. The term in
(III.42) is finite, since by the Cauchy-Schwarz inequality

E
[
‖Δ̃n

i Y ‖2‖Δ̃n
j Y ‖2]

≤E
[
‖Δ̃n

i Y ‖4] 1
2 E

[
‖Δ̃n

j Y ‖4] 1
2

≤C4E

⎡⎣(∫ ti

ti−1

‖S(ti − s)σsQ
1
2 ‖2

HSds

)2
⎤⎦

1
2

× E

⎡⎣(∫ tj

tj−1

‖S(tj − s)σsQ
1
2 ‖2

HSds

)2
⎤⎦

1
2

≤M(Δn)4E

⎡⎣(∫ ti

ti−1

‖σsQ
1
2 ‖2

HSds

)2
⎤⎦

1
2

E

⎡⎣(∫ tj

tj−1

‖σsQ
1
2 ‖2

HSds

)2
⎤⎦

1
2

(III.44)

≤M(Δn)4C(T ),

where the second inequality followed from Lemma III.2.6. For (III.43), we apply
the Cauchy-Schwarz inequality and argue as for the first two. In conclusion, we
obtain a finite second moment as desired.

Now note that t �→ ψt =
∫ t

ti−1
S(ti − s)σsdWs is a martingale for t ∈ [ti−1, ti].

From [40, Theorem 8.2, p. 109] we deduce that the process (ζt)t∈[ti−1,ti] with

ζt = (ψt)⊗2 − 〈〈ψ〉〉t

is a centred martingale w.r.t. (Ft)t∈[ti−1,ti] and hence

E
[
Z̃n(i)

∣∣Fti−1 ] = E [ζti | Fti−1 ] = 0.

Also, this shows that Mn
m :=

∑m
i=1 Z̃n(i) defines a discrete-time martingale

in LHS(H) and therefore ‖Mn
m‖HS a positive real-valued submartingale with

respect to (Fti
)i=0,.... This is why by Doob’s martingale inequality [43, Corollary

(II.1.6)]

E

⎡⎢⎣ sup
t∈[0,T ]

∥∥∥∥∥∥
�t/Δn�∑

i=1
Z̃n(i)

∥∥∥∥∥∥
2

HS

⎤⎥⎦ =E

[
max

m=1,...,�T/Δn�
‖Mn

m‖2
HS

]

≤4E
[
‖Mn

�T/Δn�‖2
HS

]
=4E

⎡⎢⎣
∥∥∥∥∥∥

�T/Δn�∑
i=1

Z̃n(i)

∥∥∥∥∥∥
2

HS

⎤⎥⎦ . (III.45)
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Moreover, for j < i, as each Z̃n(i) is Fti−1 measurable and as the conditional
expectation commutes with bounded linear operators, and also using the tower
property of conditional expectation

E
[
〈Z̃n(i), Z̃n(j)〉HS

]
=E

[
E
[
〈Z̃n(i), Z̃n(j)〉HS|Fti−1

]]
=E

[
〈E
[
Z̃n(i)|Fti−1

]
, Z̃n(j)〉HS

]
= 0. (III.46)

Combining (III.45) and (III.46) we obtain

E

⎡⎢⎣ sup
t∈[0,T ]

∥∥∥∥∥∥
�t/Δn�∑

i=1
Z̃n(i)

∥∥∥∥∥∥
2

HS

⎤⎥⎦ ≤ 4
�T/Δn�∑

i=1
E
[
‖Z̃n(i)‖2

HS
]

.

Applying the triangle and Bochner inequalities, the basic inequality (a+b)2 ≤
2(a2 + b2) and appealing to (III.44), we find

E
[
‖Z̃n(i)‖2

HS
]

≤ 2E

⎡⎣‖(Δ̃n
i Y )⊗2‖2

HS +

(∫ ti

ti−1

‖S(ti − s)σsQσ∗
sS(ti − s)∗‖HSds

)2
⎤⎦

≤ 2E

⎡⎣‖Δ̃n
i Y ‖4 + M(Δn)4

(∫ ti

ti−1

‖σsQ
1
2 ‖2

HSds

)2
⎤⎦

≤ 2M(Δn)4(C4 + 1)E

⎡⎣(∫ ti

ti−1

‖σsQ
1
2 ‖2

HSds

)2
⎤⎦ .

Summing up, we have

E

⎡⎢⎣ sup
t∈[0,T ]

∥∥∥∥∥∥
�t/Δn�∑

i=1
Z̃n(i)

∥∥∥∥∥∥
2

HS

⎤⎥⎦
≤8(1 + C4)M(Δn)4

�T/Δn�∑
i=1

E

⎡⎣(∫ ti

ti−1

‖σsQ
1
2 ‖2

HSds

)2
⎤⎦

≤8(1 + C4)M(Δn)4E

[∫ T

0

∥∥∥σrQ
1
2

∥∥∥2

HS
dr sup

i=1,...,�T/Δn�

∫ ti

ti−1

∥∥∥σsQ
1
2

∥∥∥2

HS
ds

]

≤8(1 + C4)M(Δn)4E

⎡⎣(∫ T

0

∥∥∥σrQ
1
2

∥∥∥2

HS
dr

)2
⎤⎦

1
2

× E

⎡⎣( sup
i=1,...,�T/Δn�

∫ ti

ti−1

∥∥∥σsQ
1
2

∥∥∥2

HS
ds

)2
⎤⎦

1
2

110



Proofs

≤8(1 + C4)M(Δn)4C(T )
1
2 an(T )2.

Hence, the proposition follows by application of the Cauchy-Schwarz inequality.
�

The Law of large numbers, Theorem III.3.2, follows now from the following
result:

Proposition III.5.5. Suppose that Assumption 3 holds. Then

E

⎡⎣ sup
0≤t≤T

∥∥∥∥∥∥
�t/Δn�∑

i=1
〈〈Δ̃i

nY 〉〉 −
∫ t

0
σsQσ∗

sds

∥∥∥∥∥∥
HS

⎤⎦
≤ (1 + M(Δn)) bn(T )C(T )

1
4 + an(T )2. (III.47)

Proof. Recall the expression for 〈〈Δ̃i
nY 〉〉 in (III.39). By the triangle and Bochner

inequalities, we find,

sup
t∈[0,T ]

∥∥∥∥∥∥
∫ �t/Δn�Δn

0
σsQσ∗

sds −
�t/Δn�∑

i=1

∫ ti

ti−1

S(ti − s)σsQσ∗
sS(ti − s)∗ds

∥∥∥∥∥∥
HS

≤ sup
t∈[0,T ]

�t/Δn�∑
i=1

∫ ti

ti−1

‖σsQσ∗
s − S(ti − s)σsQσ∗

sS(ti − s)∗‖HSds

≤
�T/Δn�∑

i=1

∫ ti

ti−1

‖σsQσ∗
s − S(ti − s)σsQσ∗

sS(ti − s)∗‖HSds.

By Lemma III.2.1 and the Cauchy-Schwarz inequality we obtain

E

⎡⎣ sup
0≤t≤T

∥∥∥∥∥∥
�t/Δn�∑

i=1
〈〈Δ̃i

nY 〉〉 −
∫ t

0
σsQσ∗

sds

∥∥∥∥∥∥
HS

⎤⎦
≤

�T/Δn�∑
i=1

∫ ti

ti−1

E[‖(I − S(ti − s))σsQσ∗
s‖HS]

+ E[‖S(ti − s)σsQσ∗
s (I − S(ti − s)∗)‖HS]ds

+ sup
t∈[0,T ]

∫ t

tn

E[‖σsQσ∗
s‖HS]ds

≤
�T/Δn�∑

i=1

∫ ti

ti−1

E[‖(I − S(ti − s))σsQ
1
2 ‖op‖Q

1
2 σ∗

s‖HS]

+ M(Δn)E[‖σsQ
1
2 ‖HS‖Q

1
2 σ∗

s (I − S(ti − s)∗)‖op]ds

+ sup
t∈[0,T ]

∫ t

tn

E[‖σsQ
1
2 ‖2

HS]ds
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≤ (1 + M(Δn))

(∫ T

0
sup

t≤Δn

E

[∥∥∥(I − S(t))σsQ
1
2

∥∥∥2

op

]
ds

) 1
2

×
(∫ T

0
E

[∥∥∥σsQ
1
2

∥∥∥2

HS

]
ds

) 1
2

+ sup
t∈[0,T ]

E

[(∫ t

tn

‖σsQ
1
2 ‖2

HSds

)2] 1
2

≤ (1 + M(Δn)) bn(T )C(T )
1
4 + an(T )2.

This completes the proof. �

III.5.1.4 Proof of Theorem III.3.4

Proof of Theorem III.3.4. As σ and α are locally square-integrable, we can for
all m ∈ N define the stopping time

τm := inf

{
t ∈ [0, T ] :

∫ T

0

(
‖αs‖2 +

∥∥∥σsQ
1
2

∥∥∥2

HS

)
ds > m

}
.

Define with the notations σ
(m)
t := σt1(0,τm](t) and α

(m)
t := αt1(0,τm](t), such

that

Y
(m)

t :=S(t)Y0 +
∫ min(t,τm)

0
S(t − s)αsds +

∫ min(t,τm)

0
S(t − s)σsdWs

=S(t)Y0 +
∫ t

0
S(t − s)α(m)

s ds +
∫ t

0
S(t − s)σ(m)

s dWs,

where the last equality holds almost surely for all t ∈ [0, T ] (cf. Lemma 2.3.9 in
[34]). We further define

Zn
m := sup

0≤s≤t

∥∥∥∥∥∥
�s/Δn�∑

i=1
(Δ̃i

nY (m))⊗2 −
∫ s

0
σ(m)

u Qσ(m)∗
u du

∥∥∥∥∥∥
HS

,

Zn := sup
0≤s≤t

∥∥∥∥∥∥
�s/Δn�∑

i=1
(Δ̃i

nY )⊗2 −
∫ s

0
σuQσ∗

udu

∥∥∥∥∥∥
HS

.

Since α(m) and σ(m) satisfy Assumption 3 and thus, the conditions of Theorem
III.3.2, we obtain that for all m ∈ N and ε > 0

lim
n→∞P[Zn

m > ε] = 0. (III.48)

We have Zn
m = Zn on Ωm := {τm ≥ t} and hence
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P[Zn > ε] =
∫

Ωm

1(Zn > ε)dP +
∫

Ωc
m

1(Zn > ε)dP

=
∫

Ωm

1(Zn
m > ε)dP +

∫
Ωc

m

1(Zn > ε)dP

≤ P[Zn
m > ε] + P[Ωc

m],

which holds for all n, m ∈ N. Now, by (III.48) we obtain for all m ∈ N that

lim sup
n→∞

P[Zn > ε] ≤ P[Ωc
m].

As Ωm ↑ Ω (due to the local integrability of drift and volatility) and by the
continuity of P from below, P[Ωc

m] converges to 0 as m → ∞ and therefore

lim
n→∞P[Zn > ε] = lim sup

n→∞
P[Zn > ε] = 0.

�

III.5.2 Proof of Theorem III.4.6

Proof of Theorem III.4.6. Since for all h ∈ Hβ one has |h(0)| ≤ ‖h‖β , we have
for ‖h‖β = 1 that

‖(I − S(x))σrQ
1
2 h‖β ≤‖(I − S(x))fr‖β +

∥∥∥∥(I − S(x))
∫ ∞

0
qr(·, z)h′(z)dz

∥∥∥∥
β

=(1) + (2).

The first summand can be estimated as follows: By the mean value theorem,
there is a ζ ∈ (0, 1), such that for x < 1 we have

(1) ≤
(

|fr(x)|2 + 2
∫ ∞

0
((1 − e

β
2 x)f ′

r(y + x))2eβydy

+2
∫ ∞

0
(e

β
2 (x+y)f ′

r(y + x) − e
β
2 yf ′

r(y))2dy

) 1
2

≤ (|f ′
r(ζ)|2x2 + 2‖S(x)fr‖2

β(
2e

β
2

β
)2x2 + 2x2γ‖L1

r‖2
L2(R+))

1
2

≤xγ(|f ′
r(ζ)| +

√
8(

e
β+1

2

β
)‖fr‖β +

√
2‖L1

r‖L2(R+)). (III.49)

Here we used in the second inequality fr(0) = 0 and that L1 is the Hölder constant
of e

β·
2 f ′(·). In the third inequality we used the subadditivity of the squareroot

and that the semigroup is quasi-contractive and satisfies ‖S(x)‖op < e1 = e for
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x ≤ 1 (cf. [12, Lemma 3.5]). We can show, using the Hölder inequality, for all
h ∈ Hβ such that ‖h‖β = 1, that for some ζ ′ ∈ (0, 1)

(2) ≤
∣∣∣∣∫ ∞

0
qr(x, z)h′(z)dz

∣∣∣∣
+

(∫ ∞

0

[
∂y

∫ ∞

0
(qr(y + x, z) − qr(y, z))h′(z)dz

]2
eβydy

) 1
2

=
∣∣∣∣∫ x

0

∫ ∞

0
pr(y, z)e

β
2 (z−y)h′(z)dzdy

∣∣∣∣
+

(∫ ∞

0

[∫ ∞

0

(
e− β

2 xpr(y + x, z) − pr(y, z)
)

e
β
2 (z−y)h′(z)dz

]2
eβydy

) 1
2

=
(∫ x

0

∫ ∞

0
eβ(z−y)h′(z)2dzdy

) 1
2
(∫ x

0

∫ ∞

0
pr(y, z)2dzdy

) 1
2

+

(∫ ∞

0

[∫ ∞

0
(e− β

2 xpr(y + x, z) − pr(y, z))e
β
2 zh′(z)dz

]2
dy

) 1
2

≤
(

x

∫ ∞

0
eβzh′(z)2dz

) 1
2

‖pr(·, ·)‖L2(R2
+)

+
(∫ ∞

0

∫ ∞

0
(e− β

2 xpr(y + x, z) − pr(y, z))2dz‖h‖2
βdy

) 1
2

≤x
1
2 ‖pr‖L2(R2

+) +
(∫ ∞

0

∫ ∞

0
(e− β

2 xpr(y + x, z) − pr(y, z))2dzdy

) 1
2

.

Now we can estimate, for x < 1, using the triangle inequality

(2) ≤x
1
2 ‖pr‖L2(R2

+) +
(∫ ∞

0

∫ ∞

0
(e− β

2 x(pr(y + x, z) − pr(y, z)))2dzdy

) 1
2

+
(∫ ∞

0

∫ ∞

0
(e− β

2 x − 1)2pr(y, z)2dxdz

) 1
2

≤x
1
2 ‖pr‖L2(R2

+) + xγ‖L2
r‖L2(R2

+) + |e− β
2 x − 1|‖pr‖L2(R2

+)

≤
(

x
1
2 ‖pr‖L2(R2

+) + xγ‖L2
r‖L2(R2

+) +
β

2
x‖pr‖L2(R2

+)

)
≤xmin(γ, 1

2 )(‖L2
r‖L2(R2

+) + (1 +
β

2
)‖pr‖L2(R2

+)). (III.50)

Combining (III.49) and (III.50), we obtain, for ‖h‖β = 1,

‖(I − S(x))σrQ
1
2 h‖β

≤ xmin(γ, 1
2 )

[
|f ′

r(ζ)| +
√

8(
e

β+1
2

β
)‖fr‖β +

√
2‖L1

r‖L2(R+)
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+‖L2
r‖L2(R2

+) + (1 +
β

2
)‖pr‖L2(R2

+)

]
.

Now we can conclude that

bn(T )2 ≤
∫ T

0
E[ sup

x∈[0,Δn]
sup

‖h‖β=1
‖(I − S(x))σrQ

1
2 h‖2

β ]dr

≤ x2 min(γ, 1
2 )
∫ T

0
E

[(
|f ′

r(ζ)| +
√

8(
e

β+1
2

β
)‖fr‖β +

√
2‖L1

r‖L2(R+)

+‖L2
r‖L2(R2

+) + (1 +
β

2
)‖pr‖L2(R2

+)

)2
]

dr.

This concludes the proof. �

III.6 Discussion and Outlook

Our paper develops a new asymptotic theory for high-frequency estimation of the
volatility of infinite-dimensional stochastic evolution equations in an operator
setting. We have defined the so-called semigroup-adjusted realised covariation
(SARCV) and derived a weak law of large numbers based on uniform convergence
in probability with respect to the Hilbert-Schmidt norm. Moreover, we have
presented various examples where our new method is applicable.

Many articles on (high-frequency) estimation for stochastic partial differential
equations rely on the so-called spectral approach and assume therefore the
applicability of spectral theorems to the generator A (cf. the survey article
[19]). This makes it difficult to apply these results on differential operators
that do not fall into the symmetric and positive definite scheme, as for instance
A = d

dx in the space of forward curves presented in Section III.4.1.3, a case of
relevance in financial applications that is included in our framework. Moreover,
a lot of the related work assumes the volatility as a parameter of estimation
to be real-valued (cf. the setting in [19]). An exception is the spatio-temporal
volatility estimation in the recent paper by [17] (see also [18] for limit laws
for the power variation of fractional stochastic parabolic equations). Here, the
stochastic integrals are considered in the sense of [45] and the generator is the
Laplacian. In our analysis, we operate in the general Hilbert space framework in
the sense of [25] for stochastic integration and semigroups.

In our framework, we work with high-frequent observations of Hilbert-space
valued random elements, hence we have observations, which are discrete in time
but not necessarily in space. Recent research on inference for parabolic stochastic
partial differential considered observation schemes which allow for discreteness
in time and space, cf. [20], [15], [17], [18]. However, as our approach falls
conveniently into the realm of functional data analysis, we might reconstruct
data in several cases corresponding to well-known techniques for interpolation
or smoothing. Indeed, in practice, a typical situation is that the Hilbert space
consists of real-valued functions (curves) on Rd (or some subspace thereof), but
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we only have access to discrete observations of the curves. We may have data
for Yti

(xj) at locations xj , j = 1, . . . , m, or possibly some aggregation of these
(or, in more generality, a finite set of linear functionals of Yti

). For example, in
commodity forward markets, we have only a finite number of forward contracts
traded at all times, or, like in power forward markets, we have contracts with a
delivery period (see e.g. [10]) and hence observations of the average of Yti over
intervals on R+. In other applications, like observations of temperature and wind
fields in space and time, we may have accessible measurements at geographical
locations where meteorological stations are situated, or, from atmospheric
reanalysis where we have observations in grid cells regularly distributed in
space. From such discrete observations, one must recover the Hilbert-space
elements Yti . This is a fundamental issue in functional data analysis, and several
smoothing techniques have been suggested and studied. We refer to [42] for an
extensive discussion of this. However, smoothing introduces another layer of
approximation, as we do not recover Yti

but some approximate version Y m
ti

, where
the superscript m indicates that we have smoothed based on the m available
observations. The construction of a curve from discrete observations is not a
unique operation as this is an inverse problem. In future research, it will be
interesting to extend our theory to the case when (spatial) smoothing has been
applied to the discrete observations.

In addition, there could be cases, in which we do not know a closed form of the
semigroup, but rather the generator A. One then has to recover the semigroup
adjusted increment in some way. Appealing to finite difference schemes like the
implicit Euler method could be one way, which nevertheless, approximates the
semigroup just strongly. Mathematically, this opens up an interesting numerical
problem, which is left for future research.

Interestingly, when we compare our work to recent developments on high-
frequency estimation for volatility modulated Gaussian processes in finite
dimensions, see e.g. [41] for a survey, it appears that a scaling factor is needed
in the realised (co)variation so that an asymptotic theory for Volterra processes
can be derived. This scaling factor is given by the variogram of the associated so-
called Gaussian core process, and depends on the corresponding kernel function.
However, in our case, due to the semigroup property, we are in a better situation
than for general Volterra equations, since we have (or can reconstruct) the data to
compute the semigroup-adjusted increments. We can then develop our analysis
based on extending the techniques and ideas that are used in the semimartingale
case. In this way, the estimator becomes independent of further assumptions
on the remaining parameters of the equation. However, the price to pay for
this universality is that the convergence speed cannot generally be determined.
The semigroup adjustment of the increments effectively forces the estimator to
converge at most at the same rate as the semigroup converges to the identity
on the range of the volatility as t goes to 0. At first glance, it seems that the
strong continuity of the semigroup suggests that we can obtain convergence just
with respect to the strong topology. This would make it significantly harder
to apply methods from functional data analysis, even for constant volatility
processes. Fortunately, the compactness of the operators σtQ

1
2 for t ∈ [0, T ]
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comes to the rescue and enables us to prove that convergence holds with respect
to the Hilbert-Schmidt norm. In this case, we obtain reasonable convergence
rates for the estimator.
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