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Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor at the University of Oslo. The research presented here was
conducted at the Institute of Theoretical Astrophysics (ITA), at the University
of Oslo, under the supervision of associate professor Sijing Shen and professor
David F. Mota.

The aim of this thesis was to develop a numerical scheme for galaxy simu-
lations that can properly model magnetic fields, which remain one of the most
often neglected parts. This likely stems from the complexity and technical
difficulties associated with them. The numerical framework of smoothed-particle
hydrodynamics(SPH) is particularly ideal in simulations of galaxy formation due
to its inherent conservative and adaptive properties. This thesis is a collection
of three papers, that go through the development of the SPMHD method and
its application to the magnetized core-collapse, magneto-rotational instability
and galaxy formation. The introductory chapters will serve to provide both a
motive and a comprehensive background to the numerical method and physics
involved in the three papers.

In Chapter 1, I will provide the purpose and a general introduction to the areas
covering my work.

In Chapter 2, I will go through the details of the SPH method, presenting it in
a more generalized manner to understand the assumptions and advantages/dis-
advantages of the method and to more clearly introduce the possible avenues of
improvements that exist.

In Chapter 3, 1T will go through the details of the magneto-hydrodynamic
implementation within SPH. Discussing the challenges of numerical magneto-
hydrodynamics and the different ways that we can overcome these.

In Chapter 4, I will present an introduction to numerical simulations of
galaxies, which include the different kind of physics needed to model galaxies and
how these are implemented in modern numerical codes. The topic of magnetic
fields in galaxies are covered in detail in paper 3 in this thesis and thus omitted
from this introduction section.

In Chapter 5, I will summarise the main research results and discuss the

future work to be done in the field of numerical methods, dynamo theory and
galaxy formation.
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Chapter 1
Introduction

Figure 1.1: All-sky view of the magnetic field and total intensity of synchrotron
emission measured by the Planck satellite, displaying the structure and strength
of the magnetic field within the Milky Way. Here the colors from blue to orange
represent the total intensity. The orientation of the projected magnetic field is
indicated by the "drapery" feature shown in the figure. This figure is from the
(Planck Collaboration et al., 2016).

Magnetic fields are a ubiquitous part of our universe and play an important
role in a wide array of different astrophysical systems. They govern the many
interesting phenomena of our Sun and determine the dynamic behavior of its
birth and death in the star formation process. Magnetic fields are also critical
in the launching of astrophysical jets, the transport of angular momentum in
disks, and the merging process of compact stars, to just name a few. In recent
years magnetic fields have also become a big subject of interest in regard to
galaxy formation. Observation has shown that many galaxies exhibit strong
magnetic fields, with strengths from around several G for the Milky Way and
nearby galaxies (Opher et al., 2009; Fletcher, 2010; Burlaga et al., 2013; Beck,
2015) up to several mG in starburst galaxies (Chyzy and Beck, 2004; Heesen
et al., 2011; Adebahr et al., 2013; Robishaw et al., 2008). The magnetic energy
in these galaxies are found to be close to equipartition with the thermal and
turbulent energies (Boulares and Cox, 1990; Beck et al., 1996; Taylor et al.,
2009), meaning that they are strong enough to dynamically affect the galaxy.
Furthermore, it has been observed that the morphology of the magnetic field
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1. Introduction

within disk galaxies exhibits a large-scale spiral structure (Beck and Wielebinski,
2013). In disk galaxies with a strong density wave structure, the magnetic
field tightly coincides with the optical spiral arms, as in M51 and M8&83 with
a strength of around 20 — 30uG (Fletcher et al., 2011; Frick et al., 2016).For
galaxies with weaker density structure, the magnetic field can instead form
large-scale magnetic arms not coinciding with the optical spiral arms, like in
NGC6946 (Beck, 2007).

The strong magnetic fields observed can contribute a significant non-thermal
pressure component to the galaxy, which can suppress star-formation rates and
heavily affect the structure of the interstellar medium (Pakmor and Springel,
2013; Birnboim et al., 2015). Within the ISM the magnetic field also plays
an important role in the dynamics of molecular clouds, where strong fields
can lead to more massive but fewer cloud cores (Vazquez-Semadeni et al.,
2005; Price and Bate, 2008). Another interesting aspect of magnetic fields
within galaxies is that they can suppress the development of fluid instabili-
ties (Jun et al., 1995; McCourt et al., 2015). This can allow for cold gas to
survive longer within the predominately hot galactic outflows, which could
provide a possible explanation for the observational significant component of
cold molecular gas seen in galactic outflows (Chen et al., 2010; Cicone et al.,
2014; Leroy et al., 2015; Martini et al., 2018). The strength and structure of
magnetic fields in galaxies also determine the transport of cosmic rays (CRs),
which together with magnetic fields can efficiently drive galactic outflows (Uh-
lig et al., 2012; Booth et al., 2013; Pakmor et al., 2016a; Butsky and Quinn, 2018).

Due to astronomy being an observational science, an important approach
to testing astrophysical theories is through the use of numerical simulations.
This gives us a ’virtual’ lab to understand how the system will react to a
range set of conditions and assumptions. It also allows us to predict the future
evolution of physical systems. Due to the limitation of computation, we cannot
model the motion of individual atoms. Instead, we require approximations and
discretization of the physical system to be able to model the system within the
limitations of computation. Within the macroscopic theory of fluids, a fluid can
be described as a continuum medium with macroscopic properties that vary
with position. Then whether you want to simulate gas, liquids, solids, dark
matter, or et cetera, a system of equations is required that describes how these
macroscopic properties will change in time. For an adiabatic inviscid fluid, the
hydrodynamic system can simply be described by the famous Euler equations.
This system of equations will involve both spatial and temporal derivatives that
need to be solved, to do this we need to discretize the system in question. Maybe
the most natural way to spatially discretize the fluid is by simply dividing up
the system volume into a regular spatial grid, where each grid cell (resolution
element) contains a volume average value of the macroscopic property. Then the
derivatives can be computed using developed finite difference/volume schemes.
However, in astrophysical fluids, we are often working on density scales that
vary over many orders of magnitude and require us to resolve physical processes
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over a wide range of spatial scales. This makes adaptivity of the resolution
a crucial component for any numerical scheme trying to model galaxies. The
adaptive mesh refinement (AMR) can be seen as an extension of the regular
spatial grid method, which adds additional levels of refinement to the grid where
it is desired (Berger and Oliger, 1984; Klein, 1999; Teyssier, 2002). Another
option to the fixed /Eulerian grid method is to instead use a Lagrangian grid
method, where the grid deforms according to the fluid flow (Pen, 1998; Springel,
2010). We can also instead of discretizing the fluid with respect to volume,
discretize the fluid with respect to mass. This results in a method where the
fluid properties are carried by a set of moving interpolation points (referred to
as particles) that follow the underlying fluid motion. Derivatives are given by
interpolation schemes over the neighbouring particles (particle method) (Gingold
and Monaghan, 1977; Lucy, 1977) or via interpolation from an overlaid grid
(particle-in-cell method) (Dawson, 1983).






Chapter 2
Smoothed particle hydrodynamics
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Figure 2.1: A visual representation of how a continuous fluid is modeled with
smoothed particle hydrodynamics, where the fluid is completely described by a
finite amount of interpolation points/particles. The figure shows the development
of the Kelvin-Helmholtz instability.

Any numerical method brings forth both advantages and disadvantages
depending on the system that you want to study. It is crucial that this is
taken into account when one is evaluating the quality of numerical methods.
Smoothed-particle hydrodynamics (SPH) is perhaps one of the most simple and
elegant numerical methods that one can derive. Given solely a density estimate
for an arbitrary distribution of mass particles representing the fluid, the equations
of hydrodynamics can be constructed from the least-action principle (Price and
Monaghan, 2004b). The Lagrangian properties present in the derivation ensure
that the equations of motion obey the symmetries and conservation properties
of the system (energy, momentum, and entropy). The Lagrangian nature means
that the method is fully Galilean invariant. The mass particles represent the
resolution elements of the method, this makes the resolution adaptive by nature
and concentrates the resolution in high-density regions while spending less
computational effort in empty regions of the simulation. No global boundary
needs to be set up in systems involving free boundaries and SPH couple naturally
to gravitational N-body codes. All of these strengths make the method ideal
for many astrophysical systems. However, as with any numerical method, there
are also weaknesses. In some systems, the resolution adaptivity with density
is undesirable if the point of interest occurs in the lower density regions of
the system, for example in the low-density mass transfer of two close binaries
(Church et al., 2009). There are also some challenges in handling discontinuities
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2. Smoothed particle hydrodynamics

in SPH, which is something that every numerical scheme needs to consider. In
finite-volume grid schemes, we have discontinuities in fluid variables between
neighboring cells, which are handled by limiting the flux across the boundaries.
In SPH there is an assumption that fluid variables vary smoothly along with any
pair of particles, meaning that the variables are assumed to be differentiable.
This means that there is a loss of information whenever the fluid properties
become discontinuous, reducing the accuracy of the method. To remain accurate
fluid properties need to be smoothed out on the scale of the resolution length
to adhere to this condition. This is done most often through dissipation terms
in SPH. The key issue in using dissipation terms to handle discontinuities is
that it can be hard to avoid excessive dissipation of gradients that are not
purely discontinuous. Due to the lack of consistent surfaces, SPH is limited
in its application of many flux-conserving methods developed for grid codes
(Evans and Hawley, 1988; Gardiner and Stone, 2005). Finally, the accuracy
of the SPH method is highly tied to how the particles are distributed within
the interpolation region of each particle. If the distribution is very asymmetric
the accuracy of the method will be reduced. Many of these disadvantages have
been tackled in recent years leading to more and more robust methods for SPH
(Wadsley et al., 2017; Price et al., 2018).

One of the main topics of this thesis regards the development of a new SPMHD
method that tries to improve on the traditional SPH method. It thus becomes
interesting to explore what the consequences are when we modify the traditional
SPH method. In this chapter, I will attempt to introduce the equations of
SPH in a more generalized matter. This is to highlight the assumptions and
advantages/disadvantages of the method and to more clearly introduce the
possible avenues of improvements that exist. The chapter is outlined as follows:
In Section 2.1 we present the equations that lay the foundation of the SPH
method; Section 2.2 we discuss the function of the smoothing kernel in SPH;
Section 2.2 we derive the SPH equations from the Euler equations and show the
conservative properties of the method; Section 2.4 we discuss thermodynamic
consistency in SPH; Section 2.5 second-order gradients in SPH; Section 2.6
derivation of the generalized SPH equation from the variational principal; Section
2.7 we present the shock/discontinuity capture methods used in SPH; Section
2.8 we present the timestepping algorithm used in the Gasoline2 code used
for all our simulations; And finally Section 2.9 we discuss the differences and
similarities to the moving mesh and SPH-ALE methods.

2.1 Foundation of SPH

Within the macroscopic theory of fluids we can describe a fluid as a continuous
field with variable values at set coordinates.

A(r) = /V AG)S(r — )V, (2.1)



Foundation of SPH

We want to discretize our continuous fluid into a finite number of interpolation
points. In SPH we discretize the fluid into mass elements called particles, with a
given volume/weight (dV = V4). In addition, we want to be able to interpolate
the field values in between these particles, giving information about the field at
all points. In order to do so we can approximate the delta function in the above
integral with an interpolation/smoothing kernel with the following properties:

%i_)r% W(r,h) =4(r), (2.2)

/ W, h)dr = 1. (2.3)
\%

Here h is the smoothing length, which describes the characteristic length of the
interpolation. These are the essential properties required by the smoothing kernel
for approximating the delta function in Eq.2.1. However, when interpolating
physical fields (such as density) three additional properties are desirable. The
first is that the smoothing kernel is differentiable and the other two are positivity
and symmetry:

Wi(r,h) >0, (2.4)

W (r, k) = W(—r,h). (2.5)

We can then approximate the integral (Eq.2.1) and expand A(r’) about r to give
us (Benz, 1990; Monaghan, 1992):

A(r) = /VA(T')W(T RV = A(r) /V W — 1, B)dV".

+ VOVPA(r) / oro6rPW (r — ', h)dV’ + O(h?). (2.6)
14

The odd error terms vanish due to the symmetry of the kernel. The second-order
error of the interpolant could potentially be removed as well by reconstructing
the kernel (Monaghan, 1985). However, these kernels do not ensure the positivity
constraint (Eq.2.4) and could lead to negative densities. These errors are often
of less concern compared to the errors that arise from the discretization as we
will see. Discretizing the above equation (dV = V},) gives:

A(r) = Y VR A(re)W (r —ry, h). (2.7)
b

This interpolant forms the foundation of all SPH formalisms. The errors of the
discretized interpolant can be shown by expanding A; in the above equation in
a Taylor series around 7r:

Aa ~ Z ‘/bAbWab - Aa Z ‘/bWab + VCMACL : Z %(Tb - T’a)aWab
b b b

1
+ §V§7Aa Y Vi = 1a)P (ry = 10) Wap + O(R?). (2.8)
b



2. Smoothed particle hydrodynamics

As we can see from the errors, the accuracy of the interpolate will depend
heavily on the given particle distribution, the chosen volume element, and
the smoothing kernel. The leading order error Ey = >, V;,W,;, =~ 1 describes
the accuracy of the volume partitioning, or in other words how well the nor-
malization of the discrete sum captures the normalization of the continuous

integral ([, WdV' =1). A potential fix to this error is to simply normalize the
Wab
Zb Ve Was

to using this sort of normalization when it comes to the hydrodynamic equations
which we will discuss further in Section 2.3.

smoothing kernel (Wyp new = ), however, there are potential downsides

A simple gradient estimate in SPH can be found by taking the spatial derivative
of our expression Eq.2.7:

VA(r) = /V VAW (r — ' B)dV". (2.9)

If we assume that the kernel is differentiable we can rewrite this equation using
integration by parts:

VA(r) = /V VAW (r — o, h)dV’

_ / VAW (r -+, B)] V' — / AW )YW (r — o B)dV’
1% 1%

= / [A(r" YW (r — 7', h)] - dS’ +/ A" YNYW (r —r' h)dV". (2.10)
s v

The surface term that appears in the above term will in general vanish where
the field A is differentiable. Assuming that A is differentiable we can write the
gradient as:

VA(r) =Y VyA(ry) VW (r — 1y, h). (2.11)
b

The errors for the discretized gradient estimate will then be:

vaAa ~ Z ‘/bAbvaWab = Aa Z ‘/bvaWab + vaAa . Z ‘/b(rb - Ta)avaWab
b b b

1
+ §V%7Aa Y Vil = 1a)? (1 — 10) Vo Wap + O(R?). (2.12)
b

We can see that we have similar errors as for the regular interpolant function.
We will talk more about how we can construct new gradient operators for our
equations in Section 2.3.

From this point on differences between SPH methods will usually arise de-

pending on the desired qualities. We will begin by looking at the choice of the
smoothing kernel and smoothing length.
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Smoothing Kernel

2.2 Smoothing Kernel

Smoothing Kernel
W(r,h)

Figure 2.2: Tlustration of the C4 Wendland kernel in 2D. The 3D projection
shows how the smoothing kernel weight declines with radius. H represents the
compact support length of the kernel and is usually taken to be some multiple
of the smoothing length (H = nh). r;; is the distance between the particle in
the centre (i) and its neighbor (j).

As we saw in the above section the smoothing kernel is one of the key factors
determining the accuracy of the SPH method. Apart from the conditions stated
in the previous section, the smoothing kernel is often assumed to be a spherically
symmetric function:

W(x,h) =W(y,h) =W (z,h) (2.13)

While spherical symmetry is not a requirement it is often desirable as asymmetric
kernel functions are prone to suffer inconsistencies and angular momentum issues.
We can write a symmetric kernel in the form of:

W(r,h) = %f(q) (2.14)

Here o is the normalization factor following Eq.2.3 and v is the spatial dimension
and ¢ = r/h. The Gaussian fits this description along with the other conditions.
However, as the interpolation spans the entire volume, it is an unpractical kernel
function for numerical simulations (cost goes as O(N?)). As contributions from
neighboring particles fall off quickly on the scale of the smoothing length, it is
suitable to introduce truncated kernels, which go to zero at a finite radius (the
compact radius H).

W(r,h) =0 |r| > H =nh (2.15)

This H is often taken to be some multiple of the smoothing length h. This
reduces the cost of our SPH calculation O(Ny,cign V), where Nye;gp is the number
of neighbors within the compact radius. The standard truncated kernels used for
SPH have for a very long time been within the B-spline family (Schoenberg, 1946),
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2. Smoothed particle hydrodynamics

with the cubic kernel often being represented as the standard SPH kernel (since
Monaghan and Lattanzio (1985)). The kernel bias/errors at a given neighbor
number are strongly linked to the Fourier transform of the kernel. Because
the Fourier transform of B-spline kernels falls rapidly with wave number they
quickly become suitable for interpolation at low neighbor numbers. At higher
wavenumbers, the Fourier transform of the B-spline kernel oscillates around zero
with an amplitude that becomes smaller and smaller. Negative modes within
the Fourier transform have however been shown to be quite problematic when
increasing the number of neighbors above a certain critical value (Dehnen and
Aly, 2012). Above this critical value, the so-called pairing instability can occur,
in which particles start to merge, consequentially degrading the resolution of
the simulation (Thomas and Couchman, 1992; Morris, 1996; Berve et al., 2004;
Price, 2012; Dehnen and Aly, 2012). This will depend on the kernel, but for the
cubic kernel it lies in the region of N,cign = 50. Depending on the wavenumber
of these negative modes and the size of their region will determine the sensitivity
to the pairing instability. A family of kernel functions that ensure a positive
Fourier transform is the Wendland kernels (Wendland, 1995). The family of
Wendland kernel functions for 3D is defined as:

W(r) = Corran(r) dup=I(l—1)} (2.16)

with (.)4 = max(0,.) and linear operator

110 = [ " i (s)ds (2.17)

The resulting kernel turn out to have a polynomial representation within » = 0,1
while going to zero outside of this region. The second order Wendland kernel
¢4.2 (known as the Wendland C4 kernel) can be written as:

1—¢)5(1+6(1- B(1-q)?) f 2
W, = 2 JA-PA+60-g+ 31 -q) for0<g<2, (2.18)
h3 10 for g > 2
qg=r1/h
Its gradient then becomes:
1—¢)°(1+5(1— for 0 2
VW = L5 (1=¢)°(1+5(1—q)) for0<qg<2, (2.19)
h 0 for g > 2

Higher-order kernels have smoother derivatives, which in combination with
higher neighbor numbers act to decrease the sensitivity to particle disorder. The
trade-off of using a higher-order kernel is often that it becomes less accurate than
its lower-order counterpart at low neighbor numbers(Monaghan, 1992; Rosswog,
2015). The Wendland kernel produces a general over-bias in its estimation,
which become more prominent at low neighbor numbers, as the bias is due to
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Hydrodynamic equations

self contribution (at Npeign = 200 this is negligible). To improve the estimate
we correct for the self contribution(Dehnen and Aly, 2012)1:

Wab - Wab - GW(O, ha) (2.20)

Nnei
€ = 0.01342(— %)™

Which gives a very nice estimate over a wide range of N,,¢i4n values. This is the
default smoothing kernel of the Gasoline2 code (Wadsley et al., 2017) and the
one we have used in all papers included within this thesis.

Another interesting family of kernels is the sinc kernels (Cabezén et al.,
2008). These are susceptible to the pairing instability but can be avoided by
choosing a high enough kernel index for the chosen number of neighbors. What
makes these kernels interesting is the property of kernel separability, defined as:

Wg(?‘, h) = Wl (:c, h)Wl (y, h)Wl (Z, h)

Separability of the kernel guarantees consistency in a simulation involving planar
symmetry, giving identical results regardless of running the simulation in 3D,
2D, or 1D (given that the resolution is the same). This is a property that the
Gaussian kernel holds, but which is not withheld by truncated kernel functions.
The sinc kernel can however be shown to approach separability as n — oo
(Cabezén et al., 2017). And is much closer to fulfilling this property than other
kernel families such as the Wendland kernels, where increasing the order does
not help in improving this property. The consequences of this property are
something that has not been readily researched by the SPH community and is

something that would be worth exploring more about in the future 2.

2.3 Hydrodynamic equations

The Euler equations represent the conservation laws for mass, momentum and
energy for hydrodynamics and forms a system of partial hyperbolic differential
equations. In compact form this is often written as:

%—?—V-(F—vf®U)=0 (2.21)

Here U represents the conserved variables U = [p, pv, pu + pv? /2|, F represent
the flux of these variables F = [pv, pv ® v + P, (P + pu + pv?/2)v] in a frame of

Le will depend on the kernel and Nyeigh, we have taken the simple power-law given by

Dehnen and Aly (2012) for the Wendland C4 kernel

2This is a nice property to introduce asymmetry within the kernel to improve linear
errors. Wia(r,h) = Wi(x, he)Wi(y, hy)Wi(z,h,) replacing the smoothing length with a
vector. Previous implementations of asymmetric kernels simply modify: ¢ = r/h =
\/mQ/hg +y2/hZ 4 22 /hZ which can be seen as the semimajor axes of the smoothing ellipsoid

centered on position r (Shapiro et al., 1996).
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2. Smoothed particle hydrodynamics

reference moving with the velocity v¢. The integral of U over the volume gives
us the conserved quantities of mass, momentum, and energy. As SPH represents
a fully Lagrangian method, the velocity of the frame of reference is equal to
the fluid velocity (ve = v). This allows us to express the Euler equation in a
Lagrangian form, evolving the primitive variables(p, v, u):

dp
oF_ ) 2.22
i (2.22)
dv VP
2r _ Y7 2.23
du P
I VS 2.24

From here on out we need to construct a time-stepping algorithm to integrate
the equation in time (Section 2.8) and a way to discretize the spatial gradients
within SPH. We already saw a simple way to construct gradients for SPH in

Section 2.1:
dv,

dt

1
- > VeB VW (ry — 14, h) (2.25)
R

However, it is simple to see that this sort of discretization can lead to non-
conservation in momentum. The force between a particle-pair should be
symmetric to conform to Newtons third law:

dv, Lo, dv,

:acPc a_ma_Pa a — Teyllc)) =
o o VaVe (P.VW (1o — 7, ha) VWi (rqg —re,he)) =0

(2.26)
Taking into account the errors of the gradient estimate in Eq.2.12 it is easy to
see that this condition is never ensured (even in the case of constant pressure!).
This can quickly lead to severe momentum errors when the particle distribution
becomes disordered. To ensure that this condition is fulfilled we require a
symmetric gradient estimate. Luckily, in numerical methods we do have a
certain degree of freedom when determining the gradients, as long as they
converge towards the same in the continuity limit. As a simple example we can
take the gradient estimate:

Mg

VA=VA- AV1 (2.27)

If we then apply the standard SPH gradient to this equation we obtain a new
gradient estimate:

mp
VAR " (Ap — Ag) Vo Was, (2.28)

This new gradient estimate simply removes the zeroth order error from the
gradient estimate (see Eq.2.12). As we can imagine there are an infinite number
of ways to construct new gradient operators following this construction. However,
if we want our equations to follow the physical conservation laws certain rules must
apply. To ensure the conservation of momentum we require a symmetric gradient

12
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operator for the momentum equation, the standard type can be constructed
following (Price et al., 2012):

VA ¢ A _ ¢b ¢a
; [¢2v¢+ v (M ~ 2,; v ( “ga T ¢b> VaWap, - (2:29)

Here ¢ can be any arbitrary, differentiable scalar quantity. This equation is,
however, not yet fully symmetric in the case of variable smoothing lengths for
individual particles. To fully symmetrize the equation, there are several options
available to us. Two straightforward ways to resolve this is to either use an
average smoothing length between the two interacting particle hqp = (hg + hy) /2
or use an averaged kernel (W,;, = (W, 4+ W3)/2). Another option is to use h, for
the first gradient term (Aa%VaWab(ha)) and hy, for the second gradient term

(Abﬁ—ZVaWab(hb)) in Eq.2.29. This final way is how the SPH equations arise
naturally from the Euler-Lagrange equations, which we will touch on briefly in
Section 2.6. But in Gasoline2 we use the symmetric kernel gradient estimate:

V_A — My (A ¢b +Ab¢a
P b PaPb ¢a ¢

) Vo Wap, (2.30)

Applying this to Eq.2.26 we can easily see that this fulfills the condition. As the
force is symmetric and always along the particle-pair the angular momentum
can be shown to be conserved aswell(Price, 2004):

&S mav, = > m. ( . d&)
== Z Z alllh ( ¢— + Pb Za) X (T‘a — Tb)Fab

b PaPb

= —szamb ( ¢—+P 2:>Ta X rpFap =0 (2.31)

b PaPb

Here F,p7qp = VW,p. The final expression here becomes zero because the double
summation is antisymmetric in a and b.

To ensure the conservation of energy the gradient operator chosen for the
momentum equation must form a conjugate pair with the operator chosen for the
energy equation (Cummins and Rudman, 1999). The conjugate operator(anti-
symmetric operator) of this is given by(Price et al., 2012):

VA 1 N P -
p gbp[ (04) = AV¢]~Zpapb¢ (Ap — Aa) VaWap, (2.32)

Applying these operators to the Euler equations and we get:

dp mb (ﬁb
_l = Pa g a)’ aVVab, .
‘ P s o ( v ) V W b (2 33)
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2. Smoothed particle hydrodynamics

dv ¢b Qba) =
@w_ P, 4 P2\ T W, 2.34
dt Padh ( “bo 9 ’ (2.34)
du P,

du Lo Moo 0y W, (2.35)

dt_pa b PbQSa

giving us a numerical scheme for hydrodynamics that spatially conserves
both momentum and energy exactly, leaving the error in conservation mainly
dependent on the time integration scheme.

2.4 Thermodynamic consistency

Two additional important conservation properties for our hydrodynamic scheme
still remain. The first relates to thermodynamic consistency or in other words
entropy conservation:

dSq  du, Py dp,

“dt T dt p2 dt

=0. (2.36)

Looking at the derived Euler equations in the previous section, we can see that
we fulfill this property. The final property that we want to conserve is the
mass/effective volume within our numerical scheme. This is determined by the
accuracy of the continuity equation, which in our case (Eq.2.33) has both spatial
and temporal errors affecting its evolution. In SPH there is, however, another
way to get the density that exactly conserves the mass/effective volume. This
can be done through the core SPH interpolant that we introduced in Eq.2.7
using f = p. Here, we will derive a more general form of the density estimate
and take a look at the advantages and disadvantages comparing to Eq.2.33. We
start by setting the volume element accordingly:?:
my

Vi, = —. 2.37
’ Pb ( )

Instead of setting f = p in the SPH interpolate (Eq.2.7) we instead use f = 2

where 7 is any arbitrary scalar function (as ¢ from previous section). We then
get the following density estimate:

N
= Z Vbe&Wab = Z mb@Wab. (2.38)
b Mo b b

This represents a more generalized form of the traditional density estimate
(n = 1) and represents an integral form of the continuity equation. As we are no

3Tt is important to note that this can simply be seen as defining a new density
Pb,new = Pb, Old;’—b so that we still have Vi, = my/pp, new in the Euler equations that we
derived before and will remain unchanged as there are no direct derivatives taken on V;. But
when looking at the density estimate and its time derivative it does provide a nice illustration

to write it like this.
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Thermodynamic consistency

longer evolvmg Lo in time it is useful to take a look at the time derivative of
the density estlmate to see how well the condition of thermodynamic consistency
is withheld (Eq.2.36):

N
dpa = L Z mbn—avab : Wab + ‘ (239)
Q

dt a7y Ul Qa

N . .
€a = Zmb <n_a - @) n_aWaba (240)
b

Na Ul Ul
6)h 77a 8Wab
Q,=1-— 2.41
8:0@ 77b Ohyq ( )

Here (2, is the so-called grad-h term, which takes into account the contribution
of varying the smoothing length(Monaghan, 2002; Springel and Hernquist, 2002).
The € is an additional term that arises when using non-constant 7 values(Read
and Hayfield, 2012). Thermodynamic inconsistency can be written as an error
term (writing <5 d““ in terms of Eq.2.24 and rearranging Eq.2.36):

_ Tupz dSa _ dpa
ES— Pa dt dt —|— V Va. (2.42)

Which is just the difference between the two terms in the continuity equation.
Inserting the estimate from the time derivative of the density (Eq.2.39) and the
gradient estimate of the divergence (Eq.2.33) and we get:

N
]_ a a
Es=4a" Zmbn_vab VaWap +

my Op
— Pa — —Vab * VaW, 2.43
. s b Q, Y Z & b* b ( )

bea

For the traditional SPH equations were we have n =1 ¢ = 0, we can make this
error term equal to zero if ¢ = p and we add the grad-h term 5~ to the gradient
estimate (both the symmetric and anti-symmetric Eq.2.30 and Eq.2.32). This
forms a fully spatially conservative method with mass, energy, momentum and
entropy exactly conserved (up to time-step error). This is the same form derived
by the least-action principle and the Euler-Lagrange equations using the density
estimate with 7 = 1. A slight caveat here is that we have assumed that the fluid
variables are differentiable in the gradient estimate V - v, in cases where the
fluid variables are discontinuous or at open boundaries we have an additional
error term related to the surface integral described in Eq.2.10. This is because,
compared to the gradient estimate, this surface term is implicitly included in
the density estimate.

While traditional SPH provides astounding conservative properties, there
are significant drawbacks to this method. The main issue lies in the artificial
surface tension that arises near strong density gradients. This artificial surface
tension force inhibits fluid mixing and suppresses hydrodynamic instabilities
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2. Smoothed particle hydrodynamics

(Agertz et al., 2007). This is mainly caused by the leading order errors of SPH
generated by the uneven particle distribution around strong density gradients
(Read and Hayfield, 2012) and discontinuities in the internal energy (Price,
2008). To see why traditional SPH has such issues here, we can take a look at
the zeroth-order errors of our symmetric gradient estimate:

_ ¢a ¢b k594
E, = zb: (% (ba) VoW ab, (2.44)

For traditional SPH we have ¢ = p which means that the error will be explicitly
dependent on the density gradient together with the "unevenness" of the particle
distribution. A huge improvement to this error would be to instead use ¢ =1
which would make the error explicitly independent of the density gradient.

This is what is done within the Gasoline2 code and was seen to provide
significant improvements in problems involving strong density gradients and
fluid instabilities (Wadsley et al., 2017). Another option to combat the pairing
instability is to add thermal conduction near strong density gradients to smooth
out the thermal energy and the particle distribution within the kernel (Price,
2008). This can be an effective method but can often lead to excessive diffusion
(especially with low resolution) and can lead to suppression of fluid instabilities
solely due to the diffusion. There is however a trade-off in using ¢ = 1 as we
no longer fulfill the condition of thermodynamic consistency together with the
regular density estimate n = 1. A potential improvement would be to instead
use 1 = p for the density estimate. Interestingly this leaves us with an implicit
equation for density instead ), %Wab = 1, which we can see is the partition
of unit condition that we discussed in Section 2.1. Using this for the density
estimate would likely lead to better accuracy, however, this would require either
an iteration scheme or a fully implicit method from matrix inversion*. These
solutions methods are both too costly to consider for practical reasons and might
not even lead to convergent solutions®. Another issue with using a different
density estimate than n = 1 is the emergence of the other error term e in
Eq.2.40, which would require careful consideration to evaluate its impact. As
such, in Gasoline2 we keep the n = 1 density estimate. To improve the entropy
conservation a linear correction term can be derived(Wadsley et al., 2017). We
can derive this from Eq.2.43 by expanding v, about 7,

1 a
ES = (V * Vg Zmbn—rab : VWa,b + O(h2)>
b

Qa b
Pa mp Op 2
+-— V-, g — —7ra  VWau +O(h 2.45
Qa < Pb ¢a b ’ ( )) ( )

4In addition this has the additional requirement of needing a positive solution as we cannot
allow of negative densities.

5Though for educational purposes it might be an interesting project to consider for future
work.
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Second-order gradients

A first order correction would then simply be:

mp Na
Zb Pa o b Tab - VWab (246)

Yy Bk G ray - VW,

fa =

Here VW, is the choice of kernel used for the gradient estimate(for example
regular VW, or averaged VW,y,). This correction term can be added in together
with the grad-h term €2,. While second and higher-order errors still remain,
we have observed no systematic effect caused by this error. An important
constraint to consider for the correction term is how they couple to other
non-hydrodynamic forces such as gravity. The correction terms can be seen
to effectively alter the adiabatic index to improve the conservation of entropy
for the hydrodynamic equations, however, if the correction terms become small
enough these can cause rapid gravitational collapse when coupled with gravity
(due to the effective adiabatic index going below 7 < 4/3 together with the
energy-conserving property of SPH). While this is highly unusual it can occur
given a bad particle distribution. As such, we limit the correction term to not
go below 5/6.

An interesting prospect for future study would be to use 1, = ps0 and
My = pPp,0, which would lead to a near-consistent thermodynamic relation to-
gether with ¢ = p/p o, where po = >, myW,, represents the classic density
estimate with n = 1. This would in theory lead to better volume partitioning
while also leading to similar improvements in the gradient estimate near density
gradients. This would be similar to the method proposed by Garcia-Senz et al.
(2021).

2.5 Second-order gradients

Due to the compact support of the kernel, second order spatial derivatives prove
to be very noisy and sensitive to particle disorder. A better estimate for the
second derivative can be gained by using the integral approximation:

V2A —2Zm _A”“” VQW“” (2.47)

Tab

This is the formalism that has been commonly used for isotropic heat conduction
in SPH (Brookshaw, 1985; Cleary and Monaghan, 1999; Jubelgas et al., 2004).
Equation 2.47 can also be generalized for vector quantities as shown by Espanol
and Revenga (2003). However, this method together with the direct second
derivative method has shown to be unstable when applied to anisotropic heat
conduction. This is because these methods do not ensure increasing entropy
during transport. A stable and more accurate approach for anisotropic heat
conduction was found by Biriukov and Price (2019). In this new method, the
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2. Smoothed particle hydrodynamics

second derivative is gained by applying two first derivatives with alternating
symmetric/anti-symmetric gradient operator. While there is an increased cost
to this method (two neighbor loops), it is subject to a less stringent timestep
criterion (3-8 times larger).

2.6 Variational principle

In the previous sections, we have derived the SPH equation from kernel
interpolation theory and the Euler equations. Another popular derivation is
often given in terms of the variational principle. Here the starting point is instead
the density estimate, which alone can derive the equations of motions and energy
within SPH. It is instructive to see how only determining the density leads to a
fully conservative method. For some additional "freshness" we will do so for the
more general form of the density estimate and show why deviating from n =1
complicates the matter. Similar to assumptions done before, derivation using the
variational principle assumes that the Lagrangian is differentiable (the action
goes to zero at the surface of the integration volume) and does not account for
the discreetness in time. The equations of motion of a system can be derived
from the principle of least action by minimizing the action:

S = / Ldt (2.48)

The discrete version of the Lagrangian is given by (Eckart, 1960; Salmon, 1988;

Morrison, 1998):
1
L= Eb mp (51)5 - ub> (2.49)

Minimizing the action:
08 = /6Ldt =0 (2.50)

0L = myv, - 0V, — g mb—5pb (2.51)
dpp
b

The perturbation in both dv and dp is with respect to a small change in the
particle coordinates dr. We can express the change in density with coordinates in
a form similar to the time derivative of the density estimate given in Eq.2.39-2.41.

- 1 My 561)
opp = Q_b zc:mcﬁvbwbc(&“b (57“0) + Q_b (2.52)
dep = Z mc (5log () — 6108(1c)) Whe (2.53)

The function that arises from de quickly become difficult to properly solve. For
example, take n = p and we can see that we get an implicit function that needs
to be solved, as a small positional perturbation for a particle will effectively
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Shocks and fluid discontinuities

change the density of all particles. Thus, we neglect the e term, providing a
Lagrangian solution where 7 is assumed to be independent of Jr. We continue
the derivation by putting in the change of thermal energy at constant entropy
(Oup/0pp = p%) and integrating by parts Eq.2.50, giving the equation of motion:

dCL p a P
; Z—Z < I Wap(ha) + N m’vwab(hb)) (2.54)

The internal energy equation is simply given by looking at the conservation of
energy similar as in Section 2.3.

2.7 Shocks and fluid discontinuities

As we have seen in the previous sections the Euler equations represent an
adiabatic reversible model of fluids, where entropy is tightly conserved. However,
in real fluids, there are irreversible processes that increase the entropy of the
fluid. The main one being shocks, where the fluid variables change. Shocks are
not actually discontinuous in nature, they vary smoothly over the mean free path
of the fluid, where particles collide and randomize their velocities, generating
heat and entropy. We are, however, working with a macroscopic theory, at a
much larger scale than the mean-free path. As we cannot resolve this process,
we need a sub-resolution model to capture the entropy generated by this process.

In SPH shocks have been predominately handled by applying artificial vis-
cosity(Von Neumann and Richtmyer, 1950; Richtmyer and Morton, 1967), which
smooths the discontinuous shock front on the scale of the smoothing length.
This is similar to what is done in nature but at an albeit much larger scale. The
most popular artificial viscosity formulations used for SPH was formulated by
Monaghan and Gingold (1983), which adds an extra term to the equations of
motion and the internal energy equation:

dv,

%d' = Z mbHabVaWab, (2.55)
188 b

dt diss N Zmb (

_a% (Usig,a + Usig,b) Uab + B,Uib

) Vab - vaWaba (256)

I, = 2.57
: (a+ ) (237
l(h‘a_'_hb)(Vab'rab)
fab = P2+ 001 (g +y)? 107 Vab Tap <0, (2.58)
otherwise,

The non-linear term comes from the Von-Neumann Richtmyer method and
the linear term was added to handle post-shock oscillations. First-order
accuracy at shocks is a necessary condition for eliminating post-shock oscillations
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and follows from Godunov’s theorem: [Linear numerical schemes for solving
partial differential equations that do not generate new extrema (i.e., preserve
monotonicity), can be at most first-order accurate. (Godunov and Bohachevsky,
1959)]. As the resolution is increased this viscosity acts on a smaller scale and
becomes more accurate. However, applying the linear viscosity term everywhere
can ruin the convergence of the method in smooth flows, far away from the shocks
and discontinuities where we actually need it. To handle this issue, artificial
switches have been developed that shut down the linear term away from shocks
and activate it near shocks. Modern switches are based on the work by Morris
and Monaghan (1997), where « is set individually per particle and is increased
in regions undergoing compression(V - v) while decaying otherwise.

Cullen and Dehnen (2010) improved on the Morris-Monaghan switch by
recognizing that the time derivative of the divergence(d(V - v)/dt) was better
suited for shock detection, as it could better distinguish between shocks and
converging flows. This is often combined with the Balsara limiter (Balsara, 1995),
which reduces dissipation in the presence of shearing flows:

V-l
Vo] + |V x v

fbalsa'ra - (259)

However, using the Balsara limiter has been found to lead to different shock
properties in rotating systems. To avoid this a trace-free shear tensor can be
used instead, as it is zero for pure rotation but still detects shear. An issue
with these switches is that they are based on the divergence of the velocity, this
means that even in uniform compression viscosity will be partly active. An
improvement to this was presented in the Gasoline2 code paper (Wadsley et al.,
2017), where the shock indicator was instead based on the velocity gradient in
the direction of the pressure gradient:

VP =(y=1))_ myuy VoW (rap, ha) (2.60)
b
dv
& vP
=gt = — (2.61)
) VP
dv

To avoid miss-activation during a uniform collapse, one-third of the divergence is
removed from the shock indicator, ensuring that the n direction is the dominant
part of the local compression. This is the gradient-based shock detector:

3 dv 1

This shock indicator provides a more accurate estimate than the V - v indicator.
An even more accurate estimate can be made by actually using the same %

as in the equation of motion, but this would require an additional loop over
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the neighbors, increasing the cost of the method. The linear term « is updated
according to (same as the Cullen Dehnen method):

Ag
Qloc,a = amaxma where (264)
dD
A, = 2h§§amag;(—%, 0) (2.65)

The max is taken to be a,q, = 2 and whenever «, is less than oy, , it is set to
Qg = Qoe,q, Otherwise it decays following:

doy,

el (Coc,a — a)/Ta (2.66)
ha
oM 2.
T 0.21}519,& ( 67)

A similar limiter to the trace-free shear tensor is used for &:

fa = (1 _QR“>4 (2.68)

Dy

R, = 2.69
>y My Wr (269)

Here T, = %(Vag + Vsa) and the weighting W is chosen to be:
Wk =1— (Lab)4 (2.70)

2hg

This gradient-based shock detection is very effective in reducing the viscosity
away from shocks and is easily modified for additional physics such as MHD.

The major disadvantage of the artificial viscosity is that it is hard to get
a good balance between less dissipation away from shocks and proper shock
capture. The artificial viscosity scheme presented above handles this balance
very well, but additional improvements can likely be made. In finite-volume
schemes, shock capturing is often done by either restricting the magnitude of
the numerical flux across the shock front (TVD schemes) or by limiting the flux
using the exact solution to the Riemann problem (Godunov schemes). Artificial
dissipation can in fact itself be seen as a solution to the inter-particle Riemann
problem (Monaghan, 1997), which correspond to a zeroth-order/constant velocity
reconstruction in finite-volume schemes. Recently Frontiere et al. (2017) and
Rosswog (2020) have presented artificial viscosity methods that take advantage
of higher-order velocity reconstruction and slope limiters, which shows impres-
sive results even with a fixed linear dissipation parameter(a). Godunov-type
schemes using exact Riemann solvers have also been implemented in SPH using
a conservative form of the equations (Inutsuka, 2002; Cha and Whitworth, 2003;
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Puri and Ramachandran, 2014).

As we have discussed in the previous sections(see Section 2.2), the SPH
gradients assume that the fluid variables are differentiable. This means that dis-
continuities within the flow introduce a loss of information within our equations
if left untreated (Price, 2008). For regular hydrodynamics, this includes velocity
and internal energy discontinuities, in which artificial viscosity handles the
velocity part and artificial conduction handles the internal energy part. Applying
diffusion terms to the internal energy can be a sensitive thing, as the natural
tendency of gradients in thermal energy is to spread out, which means that
any gradient diffused will remain diffused. Proper switches are therefore very
important for artificial conduction as well. In Gasoline2 the primary dissipation
for internal energy is through turbulent diffusion, which is based on the local
velocity shear (Wadsley et al., 2008; Shen et al., 2010):

dug, Z (do + dp)(up —ua)(rab VWas) (2.71)

dt cond 3 (Pa + po)r2
where d, is the diffusion coefficient of particle a. This models the unre-
solved turbulent transport terms, which leading order term is the turbulent
diffusion(d, = C|S|h2, C = 0.03). This type of modeling captures an underlying
physical phenomena and resolves the mixing issue in most situations, without
leading to excessive dissipation. However, there are situations especially in
shocks where additional dissipation is required for the thermal energy to produce
more accurate results. Here additional shock based thermal conduction can be
added (Monaghan and Lattanzio, 1985; Price, 2008). However, more aggressive
thermal conduction terms can easily lead to excessive dissipation in simulations
involving gravity.

2.8 Time-stepping

We integrate the SPH equation within this thesis using the Kick-Drift-Kick
method as described in Quinn et al. (1997); Wadsley et al. (2004). The Kick-
Drift-Kick integration scheme uses a fixed global timestep where all particle
quantities are synchronized. The scheme starts by updating the non-positional
particle quantities (velocity, energy, etc.) to the half step (Kick), which is
followed by a full step updating the particle positions (Drift) and then finally by
another half-step (Kick) for the other particle quantities to synchronize them
all. An arbitrary number of sub-steps with factors of two smaller can be used to
integrate gas with different timestep criteria. The basic form of the integrator is
given by (only gravity force calculation):

1
VI =" 4 EVm” (2.72)
ritl = g epta (2.73)
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a"tt = a(r"th) (2.74)
1
o = e 4 §Vta”+1 (2.75)

Without gas, this method is identical to the well-known leap-frog method, which
possesses both a symplectic and time-reversible property. Symplectic integrators
provide much better energy conservation than non-symplectic integrators which
can produce significant long-term energy drift in dynamical systems. The reason
why symplectic integrators provide this benefit is due to the conservation of an
approximated Hamiltonian which represents a slightly perturbed version of the
original Hamiltionian (Engle et al., 2005). In addition to proving better energy
conservation, symplectic integrators also ensure that the phase space volume
together with linear and angular momentum is conserved. The time-reversibility
property simply means that particle quantities can be returned to their initial
value by reversing the direction of the time integration. The scheme deviates
from being strictly symplectic when particles change the number of sub-steps to
adhere to their individual timestep criteria.

The time-step criterions that we apply are:

Ataccel < 0.3\/§ (2.76)
€

h
(1 + a)vsig + /BNMAX

u
erma S 2 . ) S 2.
dtth l 0 51 / du/dt Zf du/dt 0 ( 78)

where the smallest criterion gives the individual timestep for the particle.

dtcourant S 04 (277)

As the time-step constraint is a "local" quantity of the particle, situations
can occur when there are large differences in individual time steps between
nearby particles. This has been shown to cause catastrophic non-conservation in
energy for simulations involving strong shocks. To avoid rapid spatial variations
in the individual time-step the scheme of Saitoh and Makino (2009) is applied,
where a particle time-step dt, is limited to never exceed 4 times the timestep of
any of its neighbors dty,.

dt, < 4dty, (2.79)

2.9 Relation to moving mesh/SPH-ALE

In practice, there are a lot of similarities between SPH and other Lagrangian
methods often grouped as Adaptive-Lagrangian-Eulerian(ALE) methods. This
includes moving-mesh methods(Gressel, 2010; Pakmor et al., 2016b) and
SPH-ALE/Riemann-SPH methods(Vila, 1999; Inutsuka, 2002; Puri and Ra-
machandran, 2014; Avesani et al., 2014; Hopkins, 2015; Oger et al., 2016). The
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two major difference between ALE methods and SPH lies in the partitioning
of the volume and the evolution of conserved quantities instead of primitive
variables. Here the conserved quantities are exchanged between particles through
fluxes over constructed surfaces. In the case of moving mesh, this occurs through
the constructed surfaces of the Voronoi mesh and in SPH-ALE through surfaces
computed from the kernel gradient or some particle weighted function. These
methods rely on Riemann solvers to calculate the fluxes between resolution
elements. These methods are quasi-Lagrangian, which degree highly depends on
the assumption of the interface velocity and reconstruction procedures. One way
is to assume that the interface move with the average velocity of the interface
sharing neighbors. This means that mass flux through the surfaces can occur
and that particle/cell velocities are not fixed to the local fluid velocity. Another
way is to assume that the interface moves with a velocity that effectively cancels
the mass-flux between particles/cells®.

A recent SPH-ALE method that has become popular in astrophysics is the
MFM/MFV method developed by Hopkins (2015), which is a reformulation of
the Lanson and Vila (2008) method to be used in astrophysics. Compared to
moving mesh, the particle volume in MFM is still calculated using the traditional
SPH density estimate, meaning that the particle volumes will overlap. The
difference from SPH mainly lies in the derivation of the equations of motion
from a conserved variable approach. This ensures a partition of unity due
to "volume" being taken into account during flux transfer between neighbors.
While MFM has proclaimed itself to be in many aspects an overall improvement
to the SPH method, it is not that simple, every numerical method will bring
advantages/disadvantages depending on the situation.

Riemann-solvers while attractive do not always bring the advantage that
is claimed, the convergence in the method will still be limited by the width of
the shock front, which for any scheme can only be resolved to within a kernel
width. The method is also affected by the performance of the slope-limiter
used to reconstruct the particle variables at the neighboring surfaces. This can
result in similar or even worse results compared to regular SPH in low-resolution
cases, but with the additional computational cost of the solver (Borrow et al.,
2022). MFM similar to moving mesh code requires an additional procedure to
handle irregular distributions/meshes (reconstruction, splitting, local method
alterations, etc.). It is also a relatively new method for astrophysics, where
numerical conservation, bias, and issues remain fairly unexplored for the method.
One example is in Deng et al. (2019), where the particle-pairing instability was
shown for MFM using the cubic-spline kernel at high neighbor numbers.

6The velocity of the contact discontinuity within the Riemann solution. This interface
velocity is, however, only fulfilled to second-order in the subsequent particle movement (Hopkins,
2015). Potentially leading to some suppression of mass-flux (in shocks for example).
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Chapter 3

Smoothed particle
magneto-hydrodynamics

Figure 3.1: Density rendering and magnetic field structure of the jet formed from
the magnetized cloud collapse. The first figure just shows the density rendering
and then from left to right we visualize the different layers of the magnetic
field structure going outward from the central core. The colors of the field lines
represent the relative strength of the toroidal component of the magnetic field
(blue to red). From this, we can see that the magnetic field structure of the jet
consists of a poloidal dominated central region with a surrounding toroidal field.

Magnetized plasma within the universe can be described by the equations
of magneto-hydrodynamics (MHD). In the ideal limit, the MHD equations is a
result of the coupling between the Euler equations and the Maxwell equations.
The equations of MHD might at first glance look relatively simple to solve.
However, there is a wide range of technical difficulties involved in properly
solving these equations. The first and most famous issue lies in the divergence
constraint or the no-monopole condition:

V.-B=0 (3.1)

Divergence errors are hard to avoid as they occur naturally due to the discretiza-
tion and numerical integration of the MHD equations. Numerical procedures
need to be constructed for the numerical scheme to remain consistent and stable
in the presence of these errors. This includes procedures that decrease the
errors or limit their growth within the simulation. A second technical part of
MHD is the additional complexity of shocks compared to their hydrodynamic
counterpart. This is due to the additional wave types that arise in MHD,
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3. Smoothed particle magneto-hydrodynamics

dependent on the direction of the magnetic field along the shock front. This
gives rise to different resulting shock structures that each need to be handled
correctly by the numerical scheme. Third MHD introduces tension forces, this
is particularly problematic for methods such as SPH. This is because in the
presence of tension the particles tend to clump together, causing a so-called
tensile instability (Phillips and Monaghan, 1985; Morris, 1996; Dyka et al., 1997;
Monaghan, 2000). This is not too hard to understand as the regularization of
SPH particles is tightly connected to the repulsive force between particles and
the "zeroth-order" error, as we touched upon in the previous chapter. A negative
force would remove this regularization force and simply merge particles. This
tensile instability for MHD is in the end caused by the presence of divergence
errors. There are, however, as we will see many ways to remove this instability
from the MHD equations. Fourth: when considering systems with magnetic fields
several additional conserved quantities are introduced (Morrison and Hazeltine,
1984), which needs to be considered by any numerical scheme. Fifth: There is
a large resolution disparity when it comes to simulations of magnetic fields in
galaxies, fluid parameters such as the magnetic Reynolds number are several
magnitudes higher in reality (Remag ~ 10'®) than in numerical simulations
(Remag =~ 10 — 10000). Amplification of the magnetic field through dynamo pro-
cesses can be heavily dependent on these fluid parameters, which for numerical
schemes are determined by their dissipation and resolution. Divergence errors,
gradient operators, and conservation properties also play a role in correctly
capturing dynamo processes in numerical schemes.

Despite all these challenges, MHD has successfully been implemented in a
wide range of codes (Teyssier, 2002; Stone et al., 2008; Pakmor et al., 2011;
Price et al., 2018; Pencil Code Collaboration et al., 2021), which include both
Eulerian and Lagrangian codes. The first MHD implementation within SPH was
included in one of the first papers on the SPH method (Gingold and Monaghan,
1977), which considered magnetic polytropes. This method did however not
conserve either linear or angular momentum. This was improved upon by
Phillips and Monaghan (1985), which formulated the basic SPMHD equations
that modern SPMHD is based upon, these equations conserved both linear and
angular momentum and were applied to simulations of star formation. An issue
with this early implementation was the tensile instability, leading to particle
clumping. Another early SPH MHD implementation relied on a grid to update
the magnetic field, which was then interpolated onto the SPH particles (Habe
et al., 1991; Mac Low, 1999). There were also applications within SPH MHD
that made use of a non-conservative J x B force that ensured that the force was
always perpendicular to the magnetic field (Meglicki et al., 1995; Cerqueira and
de Gouveia Dal Pino, 2001), neglecting the force from any potential monopole
error, which, however, showed poor performance in simulations involving shocks.
The modern SPMHD method hails from the work by Price and Monaghan
(2004a,b, 2005), that developed a conservative SPMHD scheme for varying
smoothing lengths, that effectively prevents the tensile instability from occurring.
In addition, they included improved magnetic shock capturing methods and
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divergence cleaning methods. The divergence-cleaning methods were further
improved upon in the work by Tricco and Price (2012); Tricco et al. (2016)
and improved artificial resistivity switches have been developed (Wurster et al.,
2017). This is the SPMHD scheme that the work of paper 1 was based on and
further developed upon.

The chapter is outlined as follows: In Section 3.1 we go through how the
continuum magnetohydrodynamics equations are derived and what assumptions
are made; Section 3.2 we derive the additional kinetic waves that are generated
in the fluid when subject to a magnetic field; Section 3.3 we show how the
ideal MHD equations are discretized in a general form; Section 3.4 we discuss
the tensile instability in MHD and how to treat it; Section 3.5 we present how
magnetic field discontinuities are treated; Section 3.6 we discuss past efforts to
handling the monopole error and present the method of divergence cleaning;
Section 3.7 goes through the additional conservation variables that exist in
MHD; Section 3.8 we present an introduction to dynamo and mean-field theory.

3.1 Continuum magnetohydrodynamics

The equations of magnetohydrodynamics is the resulting coupling of the Maxwell
equations to that of hydrodynamics. The Maxwell equations are given by:

—0B
V- E=_ (3.3)
€0
E
V x B = Mo <J + 608—> (34)
ot
V.-B=0 (3.5)

Here, B is the magnetic field, E is the electric field, 7 is the charge density, J is
the current density, ug is the permeability of vacuum and ¢ is the permittivity of
vacuum. In the ideal limit the fluid is assumed to be highly ionized (electrically
neutral, ideal conductor), allowing us to neglect the effect of static electric charge
within the fluid. A formulation for the induction equation can be given by taking
a look at Ohm’s law.

J =oF (3.6)

In a fixed frame of reference, the electric field is given by:
E'=E+vxB (3.7)
Adding this to Ohms law we can see that we can express the electric field as:

J
E=-vxB+2Z (3.8)
g
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3. Smoothed particle magneto-hydrodynamics

Taking the curl of the electric field, we can insert it into the Maxwell equations
to obtain the induction equation (infinite conductivity o — 00):

0B

EZVX(’UXB) (39)
Expanding this equation gives':
dB
- =—(V-v) B4+ (B-V)v+ (V-B)v (3.10)

Here (V - v)B evolves the magnetic field through shearing motion, while the
(B - V)v increases the magnetic field when undergoing compression. The final
term (V - B)v represents the monopole current, which is an unphysical term
caused by the numerical divergence error. The current form of the induction
equation is known as the conservative form, which exactly conserves the volume
integral of the magnetic field.

d
— BdV = 11
dt/ V=0 (3.11)

However, this form will evolve the magnetic field due to the monopole currents
that can lead to a build-up of divergence-error and unphysical effects. A much
more important quantity to conserve than the volume integral is the surface
integral of the magnetic flux.

d
— | BdS = 12
o / ds =0 (3.12)

By removing the monopole currents from the induction equation ((V - B)v), the
divergence errors are simply advected with the flow of the fluid, which ensures
that the surface integral is conserved (Janhunen, 2000; Dellar, 2001).

For the equation of motion we have Lorentz Law, given by:

ov

poy =TE+JxB (3.13)

Using the assumptions from before, Lorentz Law can be written as:

ov 1 1 1
- ~ (VxB)x B= VB?+ — (B-V)B 3.14
"ot MOP( ) 2p0p MOP( ) (3.14)

Adding the induction equation and Lorentz law to our set of hydrodynamic
equations, we have the equations for SPMHD:

dv. V-S 1 B? 1
E_T__;v<p+7)+;[<B-V)B+B<V-B>]. (3.15)

! The advection term (v - V)B is included in the Lagrangian derivative
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%:vx(va):(B-V)v—B(v-v), (3.16)

Here S represents the stress tensor and is defined as:

y y B2 o
S = —§i (P + 7) + BB, (3.17)

3.2 MHD kinetic waves

As we mentioned in the introduction, the addition of magnetic fields adds
additional possible kinetic wave modes to the fluid. It is instructive to show
how these wave modes arise by applying simple perturbation theory to the ideal
MHD equations in the previous section. We assume that we have a uniform
density field with a constant magnetic field. We then add a small perturbation
(0p, 6v,dB) to the underlying field (p, v, B). Inserting this into the ideal MHD
equations and considering only linear terms then give:

ddp
_—_r _ _ . 1
5 poV - ov (3.18)
ddv c2Vép 1
=2 + V xdB) x B 3.19
ot Po Mopo( ) 0 (3.19)
0B
% =V X ((51} X Bo) (320)

The perturbations are assumed to have a wave-like solution(e?*"=%) which
gives:

wdp = pok - dv (3.21)
i — 2 (M)k— (By-k)3B | (Bo-B)k (3.2
w HopPo Hopo

Taking the time derivative of wdv and using the above relations then gives:

[w?—(va-k)?]6v = [(2+vF) (k-0v)— (va-6v)(k-va)k—[(va-k)(k-0v)|va (3.23)

Here vyq = \/% is the Alfven speed. Assuming the magnetic field in the

z-direction and wave vector in the y-z plane gives three set of equations:

w? — v k2 0 0 0
0 w? —c2ky —vik?  —clkyk. | dv= (0 (3.24)
0 —2ky k. w? — k2 0

We can see that we have a velocity component in the x-direction, which is
orthogonal to both the wave direction(g, 2) and magnetic field direction(2).
These are transverse waves caused by the magnetic tension that travels along
the magnetic field lines. They have a phase velocity of ]‘:—Z = v4 and are known
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as Alfven waves. The longitudinal components in the y, z plane can be found

from the determinant and solving for ‘,:—j:

w? 1 1 k2
5 = 5(@34—1;3‘) +—§\/(c§ —I-UA) 4620’4]@2 (3.25)

The two modes in the solution of the above equation represent the fast(+)
magnetosonic waves, where pressure and magnetic fluctuations reinforce each
other, and slow(-) magnetosonic waves, where pressure and magnetic fluctuations
oppose each other. Given no magnetic field(vq = 0), we can see that we recover

2
= 2, which are just regular sound waves.

3.3 Discretized magnetohydrodynamics

Following our discussion of SPH in the previous section, we discretize the ideal
MHD equations in a similar way as the Euler equations (see Eq.2.34):

dv mp ( i qﬁa)
= STL 4+ 870 VIW 3.26
Z PaPb ¢ b ( )
dB, . my Pp — _
dt Z b Da [Ba(vab vaWab) Vab(Ba vaWab)}, (327)

Similar to its hydrodynamic counterpart the symmetric operator in the equations
of motions ensure that linear momentum is conserved. However, this is not the
case for the angular momentum conservation, as the force is no longer ensured
to be parallel between particle pairs. This is solely due to the anisotropic force
term (second term in stress tensor) as both the thermal and magnetic pressure
is isotropic. This can be shown clearly by considering the change in angular
momentum from the stress tensor in 2D(x,y) (Price, 2004):

d

E Z(TCL X Ua — Z Z mgmyp [U 035] YabTab + 0-2(? [?Jib - xzb]) Fab
(3.28)
where 02% = - pb (Sflj i” + Szji—:> and Fypfap = VW4 We can see that it is

only fully conserved if the stress is isotropic and proportional to the identity
matrix. The error in angular momentum conservation will depend on the
kernel errors and the force distribution. In the continuum limit, the angular
momentum is conserved exactly. The error is negligible when the magnetic field
is weak and usually remains small in most astrophysical simulations. There are,
however, localized regions that can suffer from more non-conservation in angular
momentum, for example in strong density gradients with significant angular
momentum transport across it. There are potential solutions that can be applied
to remedy this. As shown in Bonet (1999), the kernel gradient can be replaced
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Removing the tensile instability

by a matrix operator to ensure the conservation, however, several other issues
arise with this sort of application(noisy estimate, entropy conservation, etc.).
A very interesting alternative has been presented by Miiller et al. (2015), in
which a spin property is introduced for the particle. This spin parameter holds
the information of the orthogonal forces applied to the particle. The spin can
in this case be seen as an unresolved rotation of the underlying fluid element,
which effectively can interact with the surrounding particles. The spin will thus
add both translational and rotational motion to nearby particles. The work
from Miiller et al. (2015) was done for smoothed dissipative particle dynamics
to resolve the anisotropic force of physical viscosity and would be interesting to
investigate its potential benefits for SPMHD in future work.

The use of the anti-symmetric operator in the induction equation ensures
that the energy is conserved due to magnetic fluctuations. However, the energy
conservation due to density fluctuations will depend on the choice of free
parameters and consistency with the density estimate. This leads to a similar
error dependence as for the entropy:

B2

d B2
Ep = P

P (a + V- U) = 7Es = UaES (329)

Here v, is the Alfven speed and Eg is the entropy error term from Eq.2.43.
From all the test simulations presented in this thesis this spatial error always
remained smaller than the time error for the conservation, which makes sense as
no systematic effect was seen for the entropy conservation as well. A possibility
that could be interesting to investigate is using different gradient estimates
for magnetic and pressure forces, though this could potentially lead to force
inconsistencies between the thermal and magnetic parts.

The discretized MHD equations are still missing a few parts to make it
into a proper scheme, first the stability term against the tensile instability,
second shock-capturing terms, and finally divergence cleaning procedures.

3.4 Removing the tensile instability

As we mentioned in the section introduction, we need to stabilize the equations
of motions from the tensile instability, which is due to the force of the monopole
error. There have been several solutions proposed to combat this issue: Murray
et al. (1996) proposed using different gradient estimates for the isotropic and
anisotropic parts of the stress tensor, using a symmetric term for the isotropic
and anti-symmetric form for the anti-isotropic. This improves the gradient
estimate for the magnetic tension term and ensures that the instability cannot
occur for constant magnetic field configurations. Having less dependence on the
particle configuration reduces the chance of activating the instability. This breaks
momentum conservation and still allows instability to occur. Monaghan (2000)
suggested adding an anti-clumping term to the force equation to prevent particles
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from clumping in the presence of negative stress. Begrve et al. (2001) suggested
simply removing the unphysical force arising from the monopole contribution.

f;ivB,a = _BAé Z pm;b (Ba + Bb) : vaWab- (330)
b a

This basically removes the divergence term (—%V -B). In addition, Bgrve et al.
(2004) showed that the instability only occurs when %BQ > P. This means that
we only need to activate this term within the low beta regime. Following Bgrve
et al. (2004); Turk et al. (2012), the limiter B was introduced:

i 54 mp —
fdivB,a = _Ba Z (Ba + Bb) : VaWab. (331)
b papb
Note that when § = 1, both the induction and momentum equations are

equivalent to the Powell method (Powell et al., 1999). When this term is active,
the linear momentum is no longer conserved. The degree of momentum error
will depend heavily on the divergence errors present, as thus it is still important
to try to reduce the divergence errors as much as possible.

It is important to note that the accuracy of the momentum equation will
depend on the divergence error given by the symmetric operator while the
divergence errors effect on the induction equation is given by the anti-symmetric
operator. Authors that apply a more accurate gradient estimate for their
divergence calculation post-simulation are not representative of the true errors
that actually act in the equations during the simulation.

3.5 Shock capturing terms

To treat discontinuities in SPH we usually apply artificial dissipation terms to
smooth out the fluid variables within the smoothing kernel (see Section 2.7 for
more detail). For the magnetic field we add an artificial resistivity term to our
equations (Price, 2004):

dB
Ediss - nV2B7 (332)
1
n= §OéBUsig,B|I'ab|- (3.33)

Here ap is the artificial resistivity coefficient, which is a dimensionless free
parameter and vg;4 g is the signal speed chosen for the resistivity. Similar
to the viscosity and conduction, switches are introduced to the resistivity
to reduce dissipation away from discontinuities. Tricco and Price (2013),
uses the MHD signal velocity for vy 5 = /2 + v2 and varies ap following
ap = min(he|VB,|/|Ba|,1) to ensure that resistivity is only strong where there
are strong gradients in the magnetic field. Wurster et al. (2017) performed a
study looking at different prescriptions of artificial resistivity, where the best
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performance was seen by the method which simply used a constant ap together
with a signal speed:
Usig,B = |Vab X f'abl- (3.34)

This term ensures that there is no dissipation in constant flows and provides
sufficient diss