
CreuSAT

Using Rust and CREUSOT to create
the world’s fastest deductively

verified SAT solver

Sarek Høverstad Skotåm

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2022

CreuSAT

Using Rust and CREUSOT to create
the world’s fastest deductively

verified SAT solver

Sarek Høverstad Skotåm

© 2022 Sarek Høverstad Skotåm

CreuSAT

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

This thesis describes CreuSAT, a formally verified SAT solver written in
Rust. In addition to implementing the core conflict-driven clause learning
(CDCL) algorithm, we also implement a series of crucial optimizations. The
most important of these is the two watched literals scheme with blocking
literals and circular search, the variable move-to-front (VMTF) decision
heuristic, clause deletion, phase saving, and moving average based restarts.
The resulting solver is the first deductively verified solver which is able to
consistently solve problems from the SAT competition. This is done while
maintaining a relatively small code base, amounting to around 4 thousand
lines of proof code and program code combined, with a low proof overhead
of around three lines of proof code per line of program code.

In addition to presenting CreuSAT, we also present two other verified SAT
solvers. The first of these is called Friday, and represents what we consider
to be the minimal verified SAT solver. The second of these is called Robin-
son, and is a SAT solver based on the Davis–Putnam–Logemann–Loveland
(DPLL) algorithm. We present Friday and Robinson mostly for pedago-
gical reasons, though it should be noted that Robinson is, to the best of our
knowledge, the fastest verified DPLL SAT solver presented in literature.

To prove the correctness of our solvers, we use the deductive verification
tool CREUSOT, which is based on the WHY3 software verification platform.
CREUSOT leverages the guarantees given by the Rust type system to
efficiently translate the program code to a functional program. This results
in verification conditions which require little CPU time to prove, and we
demonstrate improvements in verification time when compared to other
verified solvers.

Our solvers represent the first major usage of CREUSOT, and the largest
published verification effort of Rust code to date. They further mark the
first time the direct verification of an imperative program has been able to
produce a verified SAT solver capable of solving problems of recent SAT
competitions.

Acknowledgements

This thesis has its origin in the fortunate event that my initial thesis topic
had been solved by someone else. In part due to chance, and in part due
to interest, I ended up reaching out to Xavier Denis, after watching his talk
at RustVerify 2021. If I had known the degree to which formal verification
is a masochistic endeavor back then, I am not sure I would have sent the
initial mail, though I am glad I did. It has been a great deal of fun, and
I would like to express my gratitude to Xavier Denis, both for suggesting
proving a SAT solver in the first place, and for all the hours spent either on
fixing CREUSOT, listening to me talk about SAT solving, reading drafts of
this thesis, or on teaching me about various topics.

I would also like to thank my supervisor, Martin Steffen, for having
confidence in me and my ideas, as well as for his feedback on my writing.

Before commencing the work on the thesis, I decided to terminate my
tenancy and go abroad. I would in that regard like to thank those I’ve
met on my travels, and especially those who have shown me hospitality. I
would also like to thank Thomas Hylland Eriksen, Kari Spjeldnæs, and of
course Doffen, for my stay in their house. A great share of the main ideas
came to be during those months.

Furthermore, to all my friends and foes at the Department of Informatics:
thanks. I appreciate all the people who do their tiny bit, be it by being TAs,
by being active in one of the student organizations, or just by being curious
and engaged in some subject or some topic. In that regard, the cream of
the crop: the people in and around the MAPS student organization, and of
course, the youngest "old" man I know: Per Magne Kirkhus.

Finally, I would like to thank you, for reading my thesis. I hope you find
some of the same joy in reading it as I have had in making it.

Sarek

Contents

1 Introduction 1

I Background and the verification of a minimal solver 7

2 Background 9
2.1 Rust . 9
2.2 SAT and SAT solvers . 17

2.2.1 SAT . 17
2.2.2 CNF . 18
2.2.3 Algorithms for solving SAT 18

2.3 Proof of code and CREUSOT 19

3 Verification of a minimal solver 29
3.1 The algorithm . 29
3.2 The proof idea . 30
3.3 Implementation of Friday . 30
3.4 Proof of Friday . 32

II Verification of a DPLL solver 39

4 Verification of the DPLL algorithm 41
4.1 The DPLL algorithm . 41
4.2 The main ideas of the proof 42
4.3 Proof of Robinson . 43

III Verification of a CDCL solver 53

5 Verification of the CDCL algorithm 55
5.1 The CDCL algorithm . 56

5.1.1 Overview . 56
5.1.2 Interlude: resolution and the Davis Putnam procedure 58
5.1.3 Introduction to the trail 59
5.1.4 The conflict analysis algorithm 60

5.2 The main ideas of the proof 62

i

5.2.1 The suboptimality of the cut of the implication graph 62
5.2.2 CDCL as an extension of DP 62

5.3 Proof of CreuSAT . 64
5.3.1 Furthering our understanding of the trail 64
5.3.2 Facilitating clause learning 67
5.3.3 Proving the clause learning 69
5.3.4 Backtracking the trail 71

5.4 Optimizations . 71
5.4.1 Two watched literals 71
5.4.2 Variable move-to-front 75
5.4.3 Phase saving . 77
5.4.4 Clause database simplification 78
5.4.5 Clause deletion . 78
5.4.6 Search restart . 79

5.5 The top level contracts . 80

IV Evaluation and the road ahead 85

6 Evaluation 87
6.1 Setup . 87
6.2 Evaluation of Robinson . 88
6.3 Evaluation of CreuSAT . 90
6.4 Discussion of results . 93

7 Conclusion 97
7.1 Summary of Contributions . 97
7.2 Discussion of CREUSOT . 97
7.3 Related work and conclusion 98
7.4 Future work . 100

7.4.1 Extending Robinson 100
7.4.2 Improving CreuSAT . 101

ii

List of Figures

2.1 Illustration of the process from Rust code to proven program 20
2.2 The incr function loaded in the WHY3 IDE 21
2.3 The incr function in the WHY3 IDE after running a split . . 21
2.4 The incr function in the WHY3 IDE with proven safety . . . 22
2.5 The incr function with full proven correctness in the WHY3

IDE . 23

iii

List of Tables

6.1 Results of running the solvers on random 3SAT benchmarks 89
6.2 Results of running the solvers on pigeonhole problems . . . 89
6.3 Results of running the solvers on the SAT Race 2015 problems 92
6.4 Results of running the solvers on the SAT Race 2015

problems with the manthey_Dimacs* problems removed . . 92

v

Chapter 1

Introduction

When writing a computer program, it is desired that the program is safe
— that it does not crash or contain vulnerabilities, and that it is correct
— that it does what is intended. To achieve this goal, various techniques
are employed. Examples of such techniques include code reviews, testing,
systematic fuzzing, or model checking. None of these can guarantee the
correctness of the software, and thus, our software still has bugs. Another
option is to utilize formal verification techniques to prove the correctness
of the program with regards to some specification. Such techniques can
range from the type checking process of various programming languages,
which statically proves that the program is type correct, to more elaborate
processes, such as deductive program verification, which can statically prove
functional correctness of the program.

An example of a type system which can statically ensure a high level of
guarantees, is the type system of the Rust programming language. It
goes further than for instance Java and C, and can guarantee properties
such as memory safety and thread safety. That being said, while the Rust
programming language can guarantee a high degree of safety, it can not
provide all possible safety guarantees, nor guarantees of correctness. To
ensure this, we have to use an auxiliary tool. One such tool is the CREUSOT

[17] deductive verification tool, which grants the user the ability to prove
further safety properties, such as that all array accesses are within bounds,
and full correctness guarantees, such that a sorting function correctly sorts
the given vector.

These guarantees do, however, not come for free, and achieving guarantees
of correctness requires the programmer to annotate the code with contracts
which specify the desired program behaviour. To do this, the programmer
uses the PEARLITE Behavioral Interface Specification Language [23], and uses
satisfiability modulo theories (SMT) solvers to discharge the generated
verification conditions (VCs). Whereas previous efforts to verify code in
imperative programming languages have had to rely on specialized logics
such as separation logic [47] or dynamic frames [53], CREUSOT is able to
verify Rust code by using the simpler logic of WHY3 [19]. To achieve this,

1

CREUSOT leverages the fact that the safe subset of Rust can be efficiently
translated to a functional programming language, by utilizing the prophetic
encoding of mutable pointers of Matsushita et al. [38].

This approach has thus far shown promising results [39], but the viability
of CREUSOT for a larger project has yet to be determined. To remedy this,
we use CREUSOT to verify programs which solve the Boolean satisfiability
problem, also known as SAT solvers. A SAT solver takes as input a Boolean
formula in conjunctive normal form (CNF), and determines whether there
exists an assignment which satisfies the given formula. The code base of a
modern SAT solver can be in the range of tens of thousands of lines of code,
and are highly optimized programs where proving safety and correctness
is non-trivial. Furthermore, as these solvers are used for problems such as
verifying the design of integrated circuits, or to serve as a back-end for a
model checker, it is also critical that they produce the correct result.

Ensuring correctness while maintaining a solver of high performance is far
from easy, and solvers are regularly found to produce the wrong answer1.
As verifying the solvers themselves has in general been considered to be
too difficult, the solvers are instead required to provide a proof that their
result is correct. In the case the formula is satisfiable, the solvers are
required to produce a satisfying model, and in the case the formula is
unsatisfiable, they have to produce a proof of unsatisfiability. SAT is in the
class NP, and UNSAT is thus in the class coNP. This means that generating
and checking the certificates is not a trivial task, often taking longer than
solving the problem itself [24].

The non-triviality of proof checking, combined with the fact that the
checkers may also be faulty, means that having a solver which is
guaranteed to produce the correct answer is of interest. Indeed, some
attempts at making verified solvers have been conducted, either in a
verification enabled language, or by using a proof assistant and its code
generation feature to create a solver which is correct by construction.
Examples of the latter include the IsaSAT [21] solver, which is written in
the Isabelle Proof Assistant [45], Lescuyer and Conchon’s solver in Coq
[32], or the versat [48] solver, which is written in the GURU programming
language.

Of the verified solvers, IsaSAT is the only one which has been able to
solve a significant amount of problems from the SAT competition, with
performance not too far from the well-known MiniSat solver of Eén
and Sörensson [18]2. This is an impressive feat, taking many years of
collaborative effort to achieve. The resulting solver requires over 150

1See for example Sat Competition 2020, where 4 solvers competing in the parallel track
were disqualified for producing the wrong result, or Sat Competition 2018, where 3 solvers
competing in the parallel track were disqualified, among them the two best solvers of 2018.
As a matter of fact, working on this thesis exposed that the solver MicroSat produces the
wrong result on at least 100 instances from the Sat Race 2015. See this GitHub Issue for
details.

2See Section 6 - Evaluation for benchmarks of IsaSAT and MiniSat.

2

https://satcompetition.github.io/2020/results.html
https://satcompetition.github.io/2018/results.html
https://github.com/marijnheule/microsat/issues/8

thousand lines of proof script, and is considered hard to extend, even for
experts [20].

This seems to be contrary to solvers which are written in an imperative
language. Take for instance the unverified solver MiniSat, which is
the ancestor of many of the solvers which have won medals at the
Sat Competition. There has also been MiniSat hack tracks at the Sat
Competition, which later were replaced by the Glucose [3] hack track.
Glucose is itself a MiniSat hack, and has won numerous medals at the Sat
Competition. Judging by the amount of solvers which are extensions of
MiniSat, and the success of for instance Glucose, we believe that MiniSat
achieved its goal of becoming an extensible SAT solver. Though verifying
such a solver may reduce its readability and extensibility, it seems likely
that one will end up with a solver which is more readable and more
extensible than those based on proof assistants and code generation.

That being said, the creation of a verified solver by targeting an imperative
language directly has yet to yield a solver which performs as well as even
the lowest performing SAT solvers based on using a proof assistant and
proof generation. Whether this is due to some inherent limitation of this
approach will be seen during the course of this thesis. As such a solver
has yet to exist, eventual advantages, such as being extensible, or having a
small code base, also remain to be seen.

We thus present the thesis statement, which we will explore during the
course of this document:

• To investigate whether it is possible to create a formally verified
SAT solver with comparative performance to those based on proof
assistants, while targeting an imperative implementation directly.

This thesis

This thesis introduces and describes CreuSAT, a formally verified SAT
solver which is written in Rust, and verified with CREUSOT. CreuSAT
is verified to be correct: if the solver returns SAT, the solver returns
a satisfying assignment, and if the solver returns UNSAT, there is no
assignment which satisfies the formula. CreuSAT is also verified to be
safe: there is no possibility of a panic during runtime. The source code for
CreuSAT can be found at github.com/sarsko/CreuSAT, and, though this
thesis is a self-contained document, it is recommended to read the thesis in
conjunction with the source code.

CreuSAT is a conflict-driven clause learning (CDCL) SAT solver. In
addition to implementing and proving clause analysis and clause learning,
we also implement and prove a series of optimizations. The most
important of these is the two watched literal (2WL) scheme [42] with
blocking literals and cirular search, and the variable move-to-front (VMTF)
decision heuristic [10]. We also implement clause deletion, phase saving,
backtracking to asserting level, and exponential moving averages based

3

https://github.com/sarsko/CreuSAT

restarts.

This thesis also describes Friday and Robinson, two other formally verified
SAT solvers, both of which are also written in Rust, and verified with
CREUSOT. These are proven to be safe, sound, and complete. Friday is
a naive, functional solver of less than 200 lines, mostly acting as a stepping
stone up to Robinson. Robinson is, to the best of our knowledge, the fastest
Davis-Putnam-Logemann–Loveland (DPLL)-based formally verified SAT
solver, both in terms of execution speed, and in terms of how long it takes
to prove its correctness.

The reason for presenting Robinson and Friday in addition to CreuSAT is
threefold. We do it in part for pedagogical reasons: we had to implement
Robinson and Friday to be able to implement CreuSAT, and it is likely
others will require the same. Second: we believe Robinson is a substantial
contribution both to the area of verified SAT solvers, and to the area
of formally verified Rust code, and would like for its ideas to not get
lost. Robinson was, to the best of our knowledge, the largest deductively
verified piece of Rust code at its creation, and is today only beaten by
CreuSAT. The last reason is that we would like to aid in the learning of
CREUSOT, which we believe the simpler solvers are much better suited for
than CreuSAT.

The full benchmarks of CreuSAT, Robinson, and a selection of other solvers,
some of which are formally verified, some of which are not, are available
in Chapter 6 – Evaluation. We demonstrate that CreuSAT is able to solve
a substantial amount of problems from recent SAT competitions, being the
first deductively verified solver to ever do so. That being said, there is
still some work to be done to become competitive with the state-of-the-art.
Considering that the sheer amount of years of work that has went into the
best solvers, this is to be expected.

As mentioned, CreuSAT is, to the best of our knowledge, the largest piece
of Rust code which is verified to be correct. It is the first major use case
of CREUSOT, and we argue that it is a strong first showing. In Section 6
– Evaluation, we compare and discuss the verification effort required to
achieve various results. We demonstrate that CREUSOT is able to offer
significant improvements in verification time when compared to other
verification efforts.

Thesis structure

The thesis is divided into 4 parts. In the first part, we will cover the
necessary background material. First, we will briefly cover the Rust
programming language, then we will introduce the art of SAT solving, and
finally we will look at CREUSOT. We will end this first part by verifying
the solver which we call Friday, to reinforce the ideas of the background
chapter, and to ease the transition to more complex solvers.

In the second part, we will present Robinson, the DPLL-based solver. We

4

will cover the main ideas of the proof, with a focus on the proof of unit
propagation. This part also exists to explain lemma functions, and the act of
building up a proof context. In the third part, we will present CreuSAT, the
CDCL-solver. For this part, we will assume familiarity with the previous
parts, and will spend most of our effort on the core ideas of the proof,
and the concrete implementation. In the fourth and last part, we will
do a thorough benchmark of Robinson and CreuSAT, a collection of other
verified solvers, as well as a selection of unverified solvers. Afterwards, we
will discuss the results, CREUSOT, and look at the future of CreuSAT.

5

Part I

Background and the
verification of a minimal solver

Chapter 2

Background

In this chapter we will present some of the background knowledge which
is needed to understand the rest of the thesis. We have structured the thesis
such that most concepts are introduced just before they are needed. That
being said, there are some preliminaries which should be covered, either
because they do not fit anywhere else, or because they serve as a foundation
which we will later build upon.

We do not believe that Rust, SAT solving, nor CREUSOT can be considered
common knowledge, and do thus not assume much in terms of prior know-
ledge of these concepts. Though we do explain borrows, being familiar
with imperative programming and pointers/references, for instance by
having previous experience with programming in C or C++, will be advant-
ageous. Explaining these concepts in any thorough manner would simply
be too big a task. That being said, much of the thesis and the associated
code should be perfectly understandable in the case that the reader does
not know these concepts.

If the reader is familiar with Rust, the section about Rust can safely be
skipped. We will not be using any of the features of Rust which could be
considered more advanced. This is in part due to them not being supported
by CREUSOT, and in part due to the desire of reducing the complexity of the
proof work.

2.1 Rust

In this section, we will look at the Rust programming language. We do
not have space to teach Rust fully, so the intention of this section is to
give a brief overview of the language, and to give an introduction to the
constructs which are used throughout the thesis and the associated code
base.

We start this section by giving a summary of the Rust programming
language, after which we cover the syntax of the language. Rust does
not differ significantly from other C-like languages in its syntax, so if

9

you already know a C-like language, then most concepts should be
understandable from their context. To make this understanding easier, and
in the case that the reader is not too familiar with a C-like language, we
provide a brief introduction to the concepts which we use to implement
our solvers.

Summary

Rust is a systems programming language developed by Mozilla which was
released in 2015. It has a strong focus on safety, guaranteeing memory-
safety and thread-safety through its rich type system. It does not have a
garbage collector, and solves the management of memory through its type
system and concept of ownership. The language is multi-paradigm and
performant, offering features often found in functional languages as zero-
cost abstractions.

It is syntactically similar to C and C++, though it also bears resemblance to
the ML family of languages, offering features like type inference, pattern
matching, algebraic data types and closures. Rust uses the call-by-value
evaluation strategy, and does also offers safe pointer types, called references.
Shared references, which give read-only access to the referenced value, are
denoted by the by the &-prefix, and mutable references, which give read-
and write access to the referenced value, are denoted by the mut &-prefix.
In C and C++, all references are mutable, whereas in Rust, there can at most
be a single mutable reference at a time, or multiple immutable references.

This restriction is enforced by the borrow checker at compile time, which
in addition to enforcing this so-called aliasing XOR mutability, also ensures
that the references point to a piece of memory which can be accessed by
the program, and which has not been freed. This is done through lifetimes,
which must hold for the duration of the reference — ensuring freedom
from use after free errors. Lifetimes are for the most part inferred, but
do sometimes have to be annotated through the '-prefix. There exists one
reserved lifetime: 'static, which indicates that the data lives for the entire
lifetime of the program.

Syntax

Variables and functions

Variables are declared by using let, as in:

let variable = true;

By default, variables are immutable — we cannot change the value of a
variable after it is declared. The following is thus illegal, and will result
in a compilation error:

let variable = true;
variable = false;

10

To be able to change a variables value after declaration, we have to declare
it as mutable, by using the mut keyword. Thus, the following code is
perfectly legal:

let mut variable = true;
variable = false;

All variables in Rust carry a type. Rust types are for the most part inferred,
but can also be explicitly annotated. This is done by adding a colon after
the variable name, as in:

let variable: usize = 0;

The code above declares a variable of type usize. usize is an unsigned
integer, and its size is the amount of bits needed to reference any location
in memory. This means that on 64-bit platforms, a usize is 64 bits, and on
32-bit platforms, it is 32 bits. Other integer types include the u8, u16, u32,
u64, and u128 for the unsigned integers of 8, 16, 32, 64 and 128 bits, and
correspondingly there is i8, i16, i32, i64, and i128 for signed integers of
8, 16, 32, 64 and 128 bits.

Functions in Rust can be declared with the fn keyword, as such:

fn equals(a: bool, b: bool) -> bool {
return a == b;

}

Note that we could also omit the return keyword and the ; at the end of
the last line of the function to get an equal, but more succinct function:

fn equals(a: bool, b: bool) -> bool {
a == b

}

All functions must declare the type of their return value, as we have done
above with the -> bool annotation. Note also that we have to declare the
type of all parameters to a function.

Composite data types

There are a few composite data types in Rust. We start with the tuple:

let tuple: (i32, f64, u8) = (123, 3.14, 1);
let a = tuple.0; // I'm the 32 bit signed integer 123
let b = tuple.1; // I'm the double precision float 3.14
let c = tuple.2; // I'm the 8 bit unsigned integer 1

A composite data type which is quite similar to the tuple is the struct:

struct MyStruct {
a: i32,
b: f64,
c: u8,

}

11

let my_struct = MyStruct {a: 123, b: 3.14, c: 1};
let a = my_struct.a; // I'm the 32 bit signed integer 123
let b = my_struct.b; // I'm the double precision float 3.14
let c = my_struct.c; // I'm the 8 bit unsigned integer 1

Both the struct and the tuple are fixed length, and consists of a series of
typed fields. Their main difference is syntactical, and a struct can be viewed
as a tuple where all the fields are named.

Continuing, we have the array, which is a fixed length sequence of values,
where every value must be of the same type. Arrays in Rust are always
allocated on the stack. They are 0-indexed and can be indexed using []:

let a = [1, 2, 3, 4, 5];
let three = a[2];

A construct which is quite similar to the array is the vector:

let mut v = Vec::new(); // v = []
v.push(123); // v = [123]
v.push(321); // v = [123, 321]
v.insert(0, 1000); // v = [1000, 123, 321]
v.swap(0, 2); // v = [321, 123, 1000]
let a = v[0]; // v = [321, 123, 1000], a = 321
v.remove(1); // v = [321, 1000], a = 321
let b = v.pop(); // v = [321], a = 321, b = Some(1000)

The vector is a heap-allocated sequence of values, where every value must
be of the same type. Whereas arrays are of fixed length, vectors can change
length, through for instance push, insert, pop, or remove. Vectors are
efficient and very practical, and will be used extensively in our solvers.

Enums, generics and matching

The reader may have noticed that we write in the comments that b is equal
to Some(1000), and not 1000, as one might expect. This is Rust’s way of
handling nullability. When calling pop, it may be that the vector was empty,
which would mean that there would be no element for pop to return. In
some languages this would be solved by for instance assigning NULL to b,
or by having pop on an empty vector cause an error. Assigning NULL is
not possible in Rust, as, with the exception of what is called raw pointers,
which we do not use, types are not nullable. We thus get an Option<i32>,
to represent that we either got our desired value, or that we got nothing.
Option is defined as follows:

pub enum Option<T> {
None,
Some(T),

}

The definition of Option begs a few questions: what is an enum, what is
this <T> syntax, and how does one get the value out of an Option?

12

The answer to the first question is that an enum is a construct to represent
a type which can be one of a set of variants. This is similar to enums in C,
but whereas in C enums are simply a mapping from a name to an integer,
in Rust they can also carry arbitrary data, as we see for the Some(T) case
above. The T indicates that Option is generic — it can take any type. This
means that we can have Some(1000), Some(true), and Some(-123) without
having multiple implementations for Option.

As a matter of fact, we have already seen an instance of a generic type: the
vector. This allows a single vector implementation to be used to create
vectors of i32s, bools, Option<MyStruct>s, or whatever else we would
like to store in a vector. During compilation, the Rust compiler will look
for all the usages of Vec, and all other generic types for that matter, and
monomorphize them. This means that if you for instance have Vec<i32>,
Vec<bool> and Vec<MyStruct> in your source code, the generated code
will have three vector implementations, one for each. These are optimized
for their concrete type, and generics thus enable us to write a single
implementation, and have the runtime performance as if we wrote one
implementation for each type.

Finally, to the question of how to retrieve the value from the Option. To do
this, we can use a match statement, for instance by writing the following:

let b_val = match b {
Some(val) => val,
None => 0,

};

Or by doing it directly, without assigning to b first:

let b = match v.pop() {
Some(val) => val,
None => 0,

};

Match statements are similar to if-statements in that they allow our code to
do different things depending on a value. They do however offer a feature
which is not offered by if-statements in that match statements are exhaustive
— we have to account for all possible values. As such, the following code
will fail to compile, due to us not handling the None case:

let b = match v.pop() {
Some(val) => val,

};

In the case of Option, there are only two possible variants, but other types
may have more variants. For instance, if we were to match on an i32, we
would have to account for 232 ´ 1 distinct values. To make it so that we
do not have to write 232 ´ 1 different arms to our match statements, we
have some options. One such option is to match on ranges of values with
the from..=to syntax. Another option is to give anything which is not a

13

pattern, and which is a valid variable name. This will match and bind to
the given name. For example, the following code will bind whatever a is to
to the variable b:

match a {
b => println!("This will always happen"),

}

In the code above, we do not use the b variable. In this cases it is better to
use use the _ wildcard pattern, which will not bind the matched value to a
variable.

We can also group matches together by the usage of |, which corresponds
to "or". As an example, a function which matches on a u32, and prints
depending on its value:

fn match_and_print(a: u32) {
match a {

0 => println!("Zero"),
1 | 2 => println!("Either one or two"),
3..=10 => println!("Between three and ten"),
_ => println!("The number is over ten"),

}
}

There are some more possibilities with matches which we will not use, and
thus will not cover. We end with the introduction of guards, which is simply
a further if condition after a pattern. We can make a function which checks
if a given number is even or odd as follows:

fn even_or_odd(a: i32) {
match a {

b if a % 2 == 0 => println!("{} is even", b),
b if a % 2 == 1 => println!("{} is odd", b),
_ => println!("This is unreachable"),

}
}

Ownership and borrows

We will now look at the concept of ownership, and the moving of values,
before looking at borrows. As an example of ownership and moving, take
the following code:

fn take_ownership(mut v: Vec<i32>) {
// I now own v
v.push(4);

} // v is dropped here

fn main() {
let mut v = vec![1, 2, 3];

14

take_ownership(v); // v is moved here
}

The main function instantiates the v vector, before giving it away to the
take_ownership function. take_ownership is then free to do whatever it
wants to the v vector, and could for instance give it away further. At the
end of take_ownership, v goes out of scope, and is thus dropped, which
means that the backing memory for the vector is deallocated.

This means that the following code is illegal, and will not compile:

fn take_ownership(mut v: Vec<i32>) {}

fn main() {
let mut v = vec![1, 2, 3];
take_ownership(v); // v is moved here
take_ownership(v); // This is illegal

}

If we would like to keep using v in main after calling take_ownership, we
would have to pass a borrow to v, as in:

fn take_borrow(v: &mut Vec<i32>) {
v.push(123);

} // The borrow is given back here

fn main() {
let mut v = vec![1, 2, 3];
take_borrow(&mut v); // v is borrowed here
take_borrow(&mut v); // v is borrowed again here
println!("{:?}", v); // [1, 2, 3, 123, 123]

}

Borrows can either be mutable, as in the example above, or immutable,
which is denoted with & instead of & mut. To access the value of the borrow,
we have to dereference it, by the usage of the * operator. The reader might
notice that there are no occurrences of * in the code above. This is because
the Rust compiler inserts this for us, by a process of auto-dereferencing.

If a function takes an immutable borrow, also known as a shared borrow,
the type system ensures that no mutable borrows exists, and if a function
takes a mutable borrow, then it is ensured that no other borrows exist. This
means that the following will fail to compile, as we are giving a mutable
borrow to a part of a shared borrow:

fn take_borrows(num: &mut i32, v: &Vec<i32>) {}

fn main() {
let mut v = vec![1, 2, 3];
take_borrows(&mut v[0], &v);

}

15

Copy semantics and traits

When passing integers, floats, bools, and other primitive types to functions,
it would not be ergonomic, nor efficient, if our only two options were to
either pass them by reference, or have them moved. Fortunately, this is
not the case, as these are subject to copy semantics, which means that the
following is allowed:

fn add(mut a: i32, b: i32) {
a += b;

}

fn main() {
let a = 21;
add(a, 34);
add(a, a); // We can even use it twice

}

Since i32s are subject to copy semantics, we can keep using a after the call
to add. As we saw when discussing ownership and borrows, this is not
the case for vectors, which are subject to move semantics. This is because
vectors cannot be duplicated simply by copying bits, which is the criterion
for a type to enable copy semantics. If we were to copy all the bits that
make up the vector, we would, in addition to duplicating the values of the
vector, also duplicate the responsibility of managing the backing memory,
which would lead to a double free. Vectors and other types with backing
memory do thus not allow copying, but can be cloned by calling .clone().

Types have move semantics by default, and do not enable cloning. Copy
semantics and cloning can be enabled for a construct by implementing the
Copy and Clone trait. A trait is a collection of methods defined for a type,
and traits are thus similar to interfaces in Java, abstract classes in C++, or the
typeclasses of Haskell. Traits are used to implement ad-hoc polymorphism,
and, as our solver will be entirely monomorphic, we will for the most part
see them when we implement traits for internal types which satisfy external
traits.

To implement the Clone and Copy traits, we can do the following:

struct S;

impl Copy for S {}

impl Clone for S {
fn clone(&self) -> S {

*self
}

}

Traits such as Copy and Clone are usually not implemented manually, and
are rather derived, which means that their implementation is automatically

16

generated by the Rust compiler:

#[derive(Copy, Clone)]
struct S;

As another example of traits, the traits for the enum AssignedState:

#[derive(Copy, Eq)]
pub enum AssignedState {

Unset,
Pos,
Neg,

}

impl PartialEq for AssignedState {
fn eq(&self, other: &Self) -> bool {

return match (self, other) {
(AssignedState::Unset, AssignedState::Unset) => true,
(AssignedState::Pos, AssignedState::Pos) => true,
(AssignedState::Neg, AssignedState::Neg) => true,
_ => false,

};
}

}

Here we see three traits — Copy, Eq and PartialEq, where the first two are
derived. We implement PartialEq as one might expect: instances of the
same variant are considered equal, all other combinations are considered
not equal. This enables us to compare AssignedStates with == and !=.
With PartialEq implemented, we can derive Eq, which has no extra
methods. It simply takes a type implementing PartialEq, and assures
reflexivity, symmetry and transitivity.

2.2 SAT and SAT solvers

2.2.1 SAT

The Boolean satisfiability problem (SAT) is the problem of deciding whether
a Boolean formula is satisfiable — whether all variables of the formula can
be replaced with true or false such the entirety of the formula evaluates to
true. SAT is the first problem to be proven NP-complete, and is considered
the canonical NP-complete problem [14]. As it is NP-complete, all other
problems in NP can be reduced to it in polynomial time. We can thus
make an efficient SAT solver, and use it to solve all other problems in NP.
Examples of areas where this is useful include electronic design automation
(EDA) and bounded model checking (BMC).

There exists no known efficient algorithm for solving SAT. That being said,
through the discovery of new algorithms and techniques, combined with
the general improvement in hardware over the period, SAT solvers have

17

become capable of solving large industrial problems. Since 2002 there has
been held yearly SAT solving competitions. These include a selection of
problems from various domains, and people submit solvers in an attempt
to solve as many problems as possible within the given time and memory
limit.

2.2.2 CNF

The standard input format for SAT solvers is called conjunctive normal form
(CNF). A formula is in CNF if it is a conjunction of clauses where each clause
is a disjunction of literals — an AND of ORs. For instance:

pa_ b_ cq ^ p a_ b_ cq ^ pa_ b_ cq

is a formula in CNF-form of three clauses with three literals each, whereas

pa^ b_ cq ^ pc_ aq ^ pc_ bq

is not — the latter has ^ in the first clause. All Boolean formulas can be
transformed to be in CNF-form. An example of an algorithm which does
this is the Tseitin transformation [55], which runs in linear time with regards
to the input formula.

The Center for Discrete Mathematics and Theoretical Computer Science
(DIMACS) has developed a standard for formulas in CNF form to be used
for SAT-solvers, known as DIMACS CNF.

It is very simple:

• Lines starting with c are comments

• The line starting with p indicates problem type, number of clauses
and number of variables.

• Clauses are indicated by a series of integers, terminated by a 0. The
--prefix indicates the negation of a variable.

Note that a clause may span multiple lines. The first formula above can be
encoded as:

c This is a comment line
p cnf 3 3
1 2 3 0
-1 2 3 0
1 -2
-3
0

2.2.3 Algorithms for solving SAT

During the course of this thesis, we will look at and verify various
algorithms for solving SAT. Instead of presenting them here, we present
them right before we discuss their ideas and how we implement and prove

18

them. It should be noted that there exists more algorithms for solving SAT
than are presented in this thesis, and that there exists both complete and
incomplete algorithms for solving SAT. All the algorithms presented in this
thesis are complete algorithms, and they form what can be considered the
"chain" of state-of-the-art algorithms from the start of computing to today.

2.3 Proof of code and CREUSOT

When developing a computer program, it is desired that the program is
correct — that it does what it is intended to do. To ensure the correctness of
programs, various techniques are employed, ranging from testing, which
can increase our confidence in the correctness of programs, to full proven
correctness1, which allows us to guarantee that the program is correct with
regards to some specification.

There exists various approaches to program verification, with various
strengths and weaknesses. Most of the existing work in proving SAT
solvers has been done by utilizing what is called proof assistants or interactive
theorem provers. Examples of interactive theorem provers include Coq [12],
Isabelle [45], PVS [50], and Agda [46]. Some interactive theorem provers
allow for the generation of code which is correct by construction. This means
that if we for instance have proven a specification of a SAT solver, then we
can use the code generation function to generate a functionally correct SAT
solver. Another approach is to start with a program implementation, and
then prove that the implementation satisfies some specification. This is the
approach taken by the tool which we are going to use, CREUSOT, which is
what is called a deductive verification tool.

Deductive program verification is the act of verifying all possible program
behaviors through a process of logical inference. In the early days of
computing, it was done as pen-and-paper proofs, as with Alan Turing’s
1949 paper Checking a large routine [41], or with Hoare’s 1971 paper Proof of
program: FIND [26], but the process has since been mechanized. The ideas
are however the same: we express the correctness of the program as a set
of mathematical expressions, and then prove those. The specifications may
appear alongside the program code, or exist externally, and the proof may
be done either manually, or through the usage of either automated provers
or interactive provers.

Some languages, such as Ada [5], Eiffel [40], or Dafny [31], support
verification as a core part of the language, whereas other languages have
support for program verification through external tooling. Examples of
the latter include the Java Modelling Language (JML) [30] for Java, the
ANSI/ISO C Specification Language (ACSL) [7] for C, or CREUSOT, which
offers the PEARLITE specification language for verification of Rust code.

1Strictly speaking, there is no such thing as "full proven correctness", since, at some
point, we have to trust some abstraction, be it the correctness of the CPU, a compiler, the
Coq kernel, the SMT solvers used to verify the proof, that the used RAM is not faulty etc.
We thus prove full correctness with regards to a model of the system and the environment.

19

These annotations occur intertwined with the program code, and the proofs
are for the most part done automatically, though one can use manual tactics
if one desires.

CREUSOT

CREUSOT is a deductive verification tool for Rust which is currently under
development. It is based on the WHY3 [19] platform for deductive program
verification.

The process is visualized in Figure 2.1.

Annotated
Rust code Creusot

Why3

WhyML logic

SMT solvers

Z3

CVC4

Alt-Ergo

...

Figure 2.1: Illustration of the process from Rust code to proven program

At a high level, CREUSOT works by taking Rust code annotated with
contract expressions, which is then parsed and converted into MLCFG, a
call flow graph for WhyML. The MLCFG is then fed to WHY3, where a
structured program is reconstructed. One can then deploy SMT-solvers
such as Z3 [43], CVC4 [6], and Alt-Ergo [13] to prove the goals derived
from the CREUSOT contracts.

When doing proofs, we use the WHY3 IDE. The WHY3 IDE allows us to see
the proof context and the corresponding goal, the generated verification
conditions (VCs), as well as automatic and manual discharging of various
transformations. All the proofs presented in this thesis pass when running
the default "Auto level 3" strategy, which runs the installed solvers until
they timeout, then deploy various transformations such as "split" and the
"inline_" transformations, before it increases the timeout limit and tries
running the solvers again. Auto level 3 stops whenever a solution is
reached, or the solvers timeout on the maximum timeout limit.

As an illustration of how a proof in CREUSOT is conducted, let us prove the
incr function, which we define as follows:

fn incr(x: &mut u32) { *x += 1 }

We use CREUSOT to generate the corresponding MLCFG and load the
MLCFG in the WHY3 IDE. The resulting WHY3 IDE session can be seen
in Figure 2.2.

20

Figure 2.2: The incr function loaded in the WHY3 IDE

If we run the "split" strategy, and look at the generated VC and the
corresponding "Task" panel, we see that what we have to prove to ensure
safety of this function, is that the addition does not overflow. We see the
resulting WHY3 IDE session in Figure 2.3.

Figure 2.3: The incr function in the WHY3 IDE after running a split

There are two ways to make this VC pass. The first is to add a runtime
check on whether x is the maximum value for an u32 inside of the incr
function. The second way is to add a #[requires()] contract to the
function, which requires the caller to ensure that x is less than u32::MAX
(constant corresponding to 232´ 1) when calling incr. As part of the reason
for doing program proofs is to remove runtime checks, we choose the
latter, and add #[requires(*x < u32::MAX)] as a contract to incr. The
resulting WHY3 IDE session after splitting and running Alt-Ergo can be
seen in Figure 2.4.

In Figure 2.4 we can see that the task context has been updated with the line

21

Figure 2.4: The incr function in the WHY3 IDE with proven safety

Requires : uint32’int (* x) <’ 4294967295, which is the translated
version of #[requires(*x < u32::MAX)] . Due to this requirement being
added, Alt-Ergo is able to prove that our goal holds.

Having proven safety, we can look at proving functional correctness. What
we want to state is that the value of x when the function returns is equal to
the value at the function entry plus one. To do this, we add the following
contract: #[ensures(^x == *x + 1u32)] . ^ is what is called the final
operator, corresponding to the value of a mutable borrow at the end of
the borrow, which for incr is when the function returns2. The * operator
is the regular dereference operator of Rust, which gets the value of x on
function entry. The ensures contract can thus be read as "ensures that the
final value of x is equal to the initial value of x plus 1". The resulting WHY3
IDE session after splitting and running Alt-Ergo can be seen in Figure 2.5.

Much of the strength of CREUSOT comes from it being able to leverage
the WHY3 verification platform, which is a verification platform for the
functional language WhyML. WHY3 offers a slew of transformations,
where the most important ones are the "split" and "inline_" transformations,
as well as integration with multiple SMT solvers. The reason why CREUSOT

can leverage WHY3 is due to it being able to efficiently translate Rust
code to WhyML. This is enabled by the insight that the safe subset of
Rust, without what is called interior mutability, behaves like a functional
language. This is due to the type system enforcing the aforementioned
aliasing XOR mutability, which ensures that there can not be more than one
mutable reference to a value at a given point. Thus, all mutating operations
can safely be modelled as the assignment of a new variable.

2All the code shown in the thesis will have end of borrow corresponding to function
exit. It is however possible to have borrows which end during the lifetime of the function,
for instance when iterating over a data structure by taking mutable borrows to its elements.

22

Figure 2.5: The incr function with full proven correctness in the WHY3 IDE

PEARLITE

CREUSOT’s language for writing specifications is called PEARLITE. It is very
similar to Rust, and does in addition to many of the constructs found in
Rust, offer some logical operations and connectives. We have already seen
parts of it in the example above, and will now explain it in detail.

A function can be marked with #[predicate] or #[logic] , and then
invoke the pearlite! macro to gain access to PEARLITE’s features.
PEARLITE allows access to the constructs found elsewhere in the program,
but not mutability or functions with side effects. It is type checked, but not
borrow checked, as the idea of ownership does not make sense in a logical
context.

The additional annotations offered by PEARLITE:

• #[requires()] and #[ensures()] to define preconditions and post-
conditions for functions.

• #[invariant()] to annotate invariants which hold for a loop.

• #[variant(EXPR)] where EXPR implements the WellFounded trait to
prove termination of functions.

• #[trusted] to indicate that a piece of code should not be checked by
CREUSOT. This is useful in the case of unsupported features, or for
establishing properties CREUSOT cannot reason about. trusted can
also be used as a temporary annotation while doing the proof work.

The additional constructs offered:

23

• @ to gain access to the model of an object. See below for a thorough
explanation.

• forall and exists to gain access to the quantifiers of first order logic.

• ==> for logical implication.

• ^ to gain access to the final value of a mutable borrow.

• result for the return value of a function.

The totality of macros offered:

• pearlite! to gain access to the extended syntax of PEARLITE.

• proof_assert! to provide a proof assertion which must hold at a
given point in the program. This is used either to guide the solvers,
or during development, similar to regular assertions or the println!
macro. Note that a proof_assert! block must evaluate to a bool.

• #[maintains()] which gets rewritten to the corresponding #[requires()]
and #[ensures()] contract. The mut keyword is used to in-
dicate that a * should be inserted in the precondition, and
a ^ should be inserted in the postcondition. For instance:
#[maintains((mut self).invariant())] becomes
#[requires((* self).invariant())] and
#[ensures((^ self).invariant())] .

Models

When writing specifications, it is often useful to abstract away implement-
ation details. To do this, we use the model operator, denoted @, which is
syntactic sugar for the Model trait. The Model trait is defined as follows:

pub trait Model {
type ModelTy;
#[logic]
fn model(self) -> Self::ModelTy;

}

A model is simply a mapping from a Rust type to a logical type.

As a motivating example, take the compare function:

fn compare(a: u32, b: usize) -> bool {
(a as usize) < b

}

Proving safety for this function would entail proving that a u32 can
be safely casted to a usize, which it can. If we wanted to prove
functional correctness as well, we would essentially have to redo the
type cast in our #[ensures()) statements, writing contracts such as
#[ensures(result == (a as usize) < b)] . Casting a value to a concrete
representation does not really make sense in the logic — what we want

24

to reason about is the values of a and b in relation to each other, not their
types. We therefore have the option to "cast" all integers to a mathematical
integer, denoted Int. This results in the postcondition of the above function
being #[ensures(result == (@a < @b))] .

We look at how the process works by looking at the Model of u8:

impl Model for u8 {
type ModelTy = Int;
#[logic]
fn model(self) -> Self::ModelTy {

Int::from(self)
}

}

It states that the ModelTy(pe) of u8 is Int, and that to transform a u8 to
an Int, the Int::from() function has to be called on the self parameter.
Int::from() for u8 is defined as:

impl From<u8> for Int {
#[logic]
#[trusted]
#[creusot::builtins = "prelude.UInt8.to_int"]
fn from(_: u8) -> Self {

absurd
}

}

As we can see, from simply returns absurd, which denotes an unreachable
piece of code. What is really happening is that it gets translated to
prelude.UInt8.to_int, which is a WhyML function which transforms a
UInt8 to an Int. This also highlights a point where we need to use trusted
— there is no way for Creusot to reason about prelude.UInt8.to_int so
the transformation has to be proven in some other tool, for instance Coq.
This process ensures that both signed and unsigned integers of different
sizes can be compared by doing comparisons on their model, Int.

The other WhyML type which we will use pervasively, is the Seq<T> type,
where T is a Rust type. Seq<T> is the model for vectors, arrays and slices.
As an example, a sneak peek of our model for Formula. We define Formula
as a struct with two fields:

pub struct Formula {
pub clauses: Vec<Clause>,
pub num_vars: usize,

}

And model it as a tuple consisting of a Seq<Clause> and an Int:

impl Model for Formula {
type ModelTy = (Seq<Clause>, Int);
#[logic]

25

fn model(self) -> Self::ModelTy {
(self.clauses.model(), self.num_vars.model())

}
}

The reason we do this, in addition to the aforementioned comparison
between integers, is that defining and working on models allows us to
access WhyML functions on our constructs. This is especially useful when
talking about what one might call "hypotheticals" — what happens if
one were to do some change to the value. An example of a function
which allows us to do that, is the .set(index, value) on sequences. It
allows us to construct a "hypothetical" sequence, which is like the original
sequence, except we have set the value at index to the value given by the
value parameter. Another such function which we will be using, is the
.push(value) function to talk about a sequence if we were to push some
value to it.

Ending notes and a proven selection sort

We have now covered all the parts which are needed to understand the
rest of the thesis. Though PEARLITE is not a very large language, building
up intuitions for how to use it, and how a proof is conducted, is no trivial
task. As it is with programming, most of these intuitions are best learned
through practice. To aid in this, we end the chapter with a proof of a generic
version of selection sort, and show in the next chapter our proof of the
minimal solver Friday. A final note is that there is one assumption which
all proofs in CREUSOT make: that there is sufficient memory. We do not
know beforehand how much memory the target machine has, and thus, if
Rust allows the allocation, we allow the allocation.

Example: selection sort

As a somewhat complete example, we prove safety and functional
correctness of a generic selection sort. We choose selection sort as the
algorithm is both quite simple and fairly well known, and it lets us focus
on just showing the features of CREUSOT. It shows all features except
for exists, requires and proof_assert!. The code is based on the one
found on Rosetta Code, which is an online repository of implementations
of common algorithms in various programming languages. It was proven
by me and then refactored to use partition() by Xavier Denis.

#[predicate]
fn sorted_range<T: Ord>(s: Seq<T>, l: Int, u: Int) -> bool {

pearlite! {
forall<i: Int, j: Int> l <= i && i < j && j < u ==>

s[i] <= s[j]
}

}

26

http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort#Rust

#[predicate]
fn sorted<T: Ord>(s: Seq<T>) -> bool {

pearlite! {
sorted_range(s, 0, s.len())

}
}

#[predicate]
fn partition<T: Ord>(v: Seq<T>, i: Int) -> bool {

pearlite! { forall<k1: Int, k2: Int>
0 <= k1 && k1 < i && i <= k2 && k2 < v.len() ==>

v[k1] <= v[k2]
}

}

#[ensures(sorted(@^v))]
#[ensures((@^v).permutation_of(@v))]
fn selection_sort<T: Ord>(v: &mut Vec<T>) {

let mut i: usize = 0;
let old_v = Ghost::record(&v);
#[invariant(proph_const, ^v == ^@old_v)]
#[invariant(permutation, (@v).permutation_of(@*@old_v))]
#[invariant(i_bound, @i <= (@v).len())]
#[invariant(sorted, sorted_range(@v, 0, @i))]
#[invariant(partition, partition(@v, @i))]
while i < v.len() {

let mut min = i;
let mut j = i + 1;
#[invariant(min_is_min, forall<k: Int> @i <= k && k < @j ==>

(@v)[@min] <= (@v)[k])]
#[invariant(j_bound, @i <= @j && @j <= (@v).len())]
#[invariant(min_bound, @i <= @min && @min < @j)]
while j < v.len() {

if v[j].lt(&v[min]) {
min = j;

}
j += 1;

}
v.swap(i, min);
i += 1;

}
}

We first define three predicate functions: sorted_range, sorted and
partition. sorted_range is used to assert that the given Sequence(Seq)
is sorted in the range from the lower bound, given by the parameter l of
type Int, to the upper bound, which is given by the parameter u of type
Int. sorted is simply a wrapper stating that the range from the start of

27

the Seq to the end of the Seq is sorted. partition is an encoding of the
Selection Sort invariant: that all elements in the first partition are smaller
than all elements in the second partition, and vice versa.

A couple of things warrant further explanation: the <T: Ord> syntax, and
the fact that we are operating over Seq and Int, neither of which are regular
Rust types. The <T: Ord> is what is called a trait bound: this function
accepts any type T which satisfies the Ord trait – the type forms a total
order. The reason for using Seq and Int is that we are operating in the
logic. If we look at the places where the predicates are used, for instance in
#[invariant(partition, partition(@v, @i))] , we see that we use the
@-operator to access the models of v and i. The model of Vec is Seq, and the
model of usize is Int.

Moving on to the main selection_sort function, there are a couple
things to note. The first is that the function does not have any require
statements, meaning that no preconditions have to hold. In other words:
if the Rust compiler allows you to call selection_sort on your vector,
then your vector will become sorted, as ensured by the two ensures-
statements. The other things to note is the usage of ^, and the statement
let old_v = Ghost::record(&v);.

The ^ operator is, as mentioned, the prophetic operator final, which
gives us access to the value of a mutable borrow at the end of its
lifetime. In this case, this is the end of the call to the selection_sort
function. The usage of let old_v = Ghost::record(&v); is due to a
limitation in CREUSOT/WHY3. We need to maintain a ghost version
of the vector, and then use the two invariants ^v == ^@old_v and
(@v).permutation_of(@*@old_v) to maintain that the code version and
the ghost version contain the same elements, and that they are equal at
the end of the borrow.

28

Chapter 3

Verification of a minimal solver

We conclude the first part by implementing and proving a minimal solver,
which we call Friday. The purpose of this is to connect the components
of the background chapter, as well as to ease the transition into Robinson
and CreuSAT. We also believe that a solver of this calibre could be useful
for those interested in learning Creusot, for instance by removing the
annotations and redoing them, or by extending the solver to mutate the
partial assignment instead of returning a mutated clone.

Friday, Robinson and CreuSAT have the same core representation for
literals, clauses, the formula and the partial assignment. CreuSAT augment
the existing data structures, and has further auxiliary data structures, in
addition to further invariants on the existing data structures. We will
explain all parts of Friday in detail, but will later omit explaining most of
the concrete implementation, rather giving a higher level overview of the
ideas of the proof.

3.1 The algorithm

As this is our starting point, the solver is not very complex. It simply tries
all possible assignments, and if it ever reaches a satisfiable assignment, it
returns true. If none of the assignments are satisfiable, that means the
formula is not satisfiable, and we return false.

In Rust-like pseudocode:

fn solve(f: &Formula, pa: Pasn) -> bool {
if pa.complete() { return f.eval(&pa.assign); }
solve(f, set_next(&pa, true)) || solve(f, set_next(&pa, false))

}

29

3.2 The proof idea

What we have to prove is that if the formula is satisfiable, then we state
that it is satisfiable, and if it is not satisfiable, then we state that it is not
satisfiable. To prove this, we have to establish:

1. That we return that the formula is satisfiable if we find an assignment
which satisfies it.

2. That we try all possible assignments.

3.3 Implementation of Friday

As we remember from Section 2.2 - SAT and SAT solvers, a SAT solver takes
as input a Boolean formula in CNF form, and returns whether the formula
is satisfiable or not. A formula consists of a series of clauses, each of which
consists of 0 or more literals. We start with deciding on a representation for
literals:

struct Lit { idx: usize, polarity: bool }

A Lit consists of an idx, which identifies which literal it is, and a polarity,
which identifies whether the literal is positive or negative. We allow idx to
be 0, which means that, since CNF is 1-indexed, we subtract 1 as a part
of the parser, and add 1 when printing the result. Note also that we have
chosen a somewhat inefficient representation: we could have represented
both index and polarity in 64 bits, for instance by keeping the encoding
from the CNF. We have chosen not to do this, to make our solvers easier to
reason about.

We continue, with our representation for clauses:

struct Clause(Vec<Lit>);

A Clause is simply a vector of literals. We could again have been more
efficient: efficient SAT solvers want to avoid cache misses, and therefore
store data which is often accessed together with the clause before the
clause, as a clause header. This is something which we will do later. The
other thing which efficient solvers do, is to not store a vector of clauses,
which again is a vector of literals, but to have the clauses be a linear buffer
with clause headers followed by literals, and then keep track of the clause
boundaries as a part of this structure. These changes would remove the
need of following pointers, and also improve cache locality, so it would
be faster, but it would make our code harder to reason about, so we again
choose a simple representation.

Our representation for the formula:

struct Formula { clauses: Vec<Clause>, num_vars: usize }

The num_vars variable states how many variables we have in our input
formula, and clauses is a vector of the clauses which make up the input

30

formula.

Furthermore, we need a representation of the current assignment:

#[derive(Clone)]
struct Assignments(Vec<bool>);

Assignments is simply a vector of Booleans, indicating whether a variable is
assigned to true or false. We will later make the assignment vector ternary,
to introduce the option of no assignment yet. For now we ensure this with
our last construct, and the only construct which is not present for Robinson
and CreuSAT, the pasn, short for partial assignment:

#[derive(Clone)]
struct Pasn { assign: Assignments, ix: usize }

It contains our current assignment, and uses ix to keep track of how far
along we are in assigning to it. This is of course an optimization — we
could have made Assignments ternary, and then traversed it until we found
an index which was not set. This would not be any simpler, and would as
well be even slower, so we decided to make the Pasn struct. In CreuSAT we
will have another construct which contains the current assignments, the
Trail.

Finally, we present the solver, in its entirety:

impl Clause {
fn eval(&self, a: &Assignments) -> bool {

let mut i: usize = 0;
let clause_len = self.0.len();
while i < clause_len {

if a.0[self.0[i].var] == self.0[i].value {
return true;

}
i += 1;

}
false

}
}

impl Formula {
fn eval(&self, a: &Assignments) -> bool {

let mut i: usize = 0;
while i < self.clauses.len() {

if !self.clauses[i].eval(a) { return false; }
i += 1;

}
true

}
}

31

fn set_next(pa: &Pasn, b: bool) -> Pasn {
let mut new_pa = pa.clone();
new_pa.assign.0[pa.ix] = b;
new_pa.ix += 1;
new_pa

}

fn solve(f: &Formula, pa: Pasn) -> bool {
if pa.ix == pa.assign.0.len() { return f.eval(&pa.assign); }
solve(f, set_next(&pa, true)) || solve(f, set_next(&pa, false))

}

pub fn solver(f: &Formula) -> bool {
solve(f, Pasn { assign: Assignments(

vec::from_elem(false, f.num_vars)), ix: 0 })
}

Starting at the bottom, we find our entry point, solver, which simply
instantiates a partial assignment and calls solve. In solve we check if our
assignment is complete, and if it is, then we return the valuation of the
formula under the current assignment. If we are not complete, then we call
solve with the current index set to 0, and if that returned false, then we
try setting the current index to 1.

The set_next function consists of cloning before setting the current index
to the provided value and incrementing the index. eval for Formula and
eval for Clause both correspond to the intuitive notion of satisfiability:
a formula is SAT if all its clauses are SAT, and is UNSAT if at least one
clause is UNSAT. A clause is SAT if at least one literal is SAT, otherwise it
is UNSAT. As we always call this on a complete assignment, we don’t have
to account for the undecided case.

3.4 Proof of Friday

The first part of verifying a program with Creusot consists of proving
safety, which means that we have to prove that our array indexes are in
bounds, and that our arithmetic operations do not over- or underflow. This
is achievable by adding loop invariants on our loops, as well as requiring
that pa.ix is less than usize::MAX on the entry of set(), which we do by
requiring that pa.ix is less than the length of the assignment contained in
the partial assignment. The proof of the safety properties can be seen in the
final code.

With safety proven, we introduce the invariants of the data structures. We
go in the same order as before, starting with the invariant for Lit:

impl Lit {
#[predicate]
fn var_in_range(self, n: Int) -> bool {

32

pearlite! {
@self.var < n

}
}

}

The invariant we have on Lit, var_in_range, simply states that the index
is less than some n. The n which we are going to be invariant with regards
to is f.num_vars. In other words, it is used to state that the index of a literal
is in the range [0, f.num_vars).

Perhaps not shockingly, the invariant for the Clause states that all its literals
satisfy their invariant:

impl Clause {
#[predicate]
fn vars_in_range(self, n: Int) -> bool {

pearlite! {
forall<i: Int> 0 <= i && i < (@self.0).len() ==>

(@self.0)[i].var_in_range(n)
}

}
}

And the invariant for Formula states that all the clauses satisfy their
invariant:

impl Formula {
#[predicate]
fn invariant(self) -> bool {

pearlite! {
forall<i: Int> 0 <= i && i < (@self.clauses).len() ==>

(@self.clauses)[i].vars_in_range(@self.num_vars)
}

}
}

In the coming solvers we will have invariants which are a fair amount
larger, but the general structure of them largely remains.

With the invariants out of the way, we can start focusing on proving the
semantics of our solver. For that we need a notion of satisfiability. We
present sat for Lit, Clause and Formula, none of which should contain
any surprises:

impl Lit {
#[predicate]
fn sat(self, a: Assignments) -> bool {

pearlite! { (@a.0)[@self.var] == self.value }
}

}

33

impl Clause {
#[predicate]
fn sat(self, a: Assignments) -> bool {

pearlite! {
exists<i: Int> 0 <= i && i < (@self.0).len() &&

(@self.0)[i].sat(a)
}

}
}

impl Formula {
#[predicate]
fn sat(self, a: Assignments) -> bool {

pearlite! {
forall<i: Int> 0 <= i && i < (@self.clauses).len() ==>

(@self.clauses)[i].sat(a)
}

}
}

We also present the compatible predicate. It states that the Assignments
which is given as the self parameter is compatible with the Pasn which is
given as the pa parameter. This means that they have the same assignment
for all assignments up to pa.ix, or more intuitively, that self extends pa.
We define it as follows:

impl Assignments {
#[predicate]
fn compatible(self, pa: Pasn) -> bool {

pearlite! {
(@pa.assign.0).len() == (@self.0).len() &&

forall<i: Int> 0 <= i && i < @pa.ix ==>
(@pa.assign.0)[i] == (@self.0)[i]

}
}

}

We are now ready to prove the implementation of set_next. The proven
version is as follows:

#[requires(@pa.ix < (@pa.assign.0).len())]
#[requires((@pa.assign.0).len() <= @usize::MAX)]
#[ensures(result.assign.compatible(*pa))]
#[ensures((@result.assign.0)[@pa.ix] == b)]
#[ensures(@result.ix == @pa.ix + 1)]
fn set_next(pa: &Pasn, b: bool) -> Pasn {

let mut new_pa = pa.clone();
new_pa.assign.0[pa.ix] = b;
new_pa.ix += 1;
new_pa

34

}

We require that the pa.ix is in bounds, and that the length of the
assignment vector is less than 264 ´ 1. This latter requirement is purely pro
forma: it is not possible to construct a Rust vector with a length remotely
close to 264 ´ 1. This is in general a limitation with all of the solvers: we do
not know how much memory the target computer has, and may run out
of memory. This will result in the program crashing, but will not yield the
wrong result.

As long as the set_next function is called with these requirements met,
it will ensure that the resulting assignment is compatible with the given
assignment. It will also ensure that the provided Boolean, b, is assigned
at the index pa.ix, and that the returned Pasn will have had its ix
incremented.

We can now look at the proof of the eval functions. We start with eval for
Clause:

impl Clause {
#[requires(self.vars_in_range((@a.0).len()))]
#[ensures(result == self.sat(*a))]
fn eval(&self, a: &Assignments) -> bool {

let mut i: usize = 0;
let clause_len = self.0.len();
#[invariant(prev_not_sat, forall<j: Int>

0 <= j && j < @i ==> !(@self.0)[j] .sat(*a))]
#[invariant(loop_invariant, @i <= @clause_len)]
while i < clause_len {

if a.0[self.0[i].var] == self.0[i].value {
return true;

}
i += 1;

}
false

}
}

It requires that the clause invariant is satisfied with regards to the length
of the assignment, and ensures that the result is a correct evaluation of the
clause under the given assignment. If we look in the function body, we see
that we have added two invariants. The top one of these, prev_not_sat,
states that the literal at all previous indexes has been unsatisfied under the
assignment.

The definition of eval for Formula:

impl Formula {
#[requires(self.invariant())]
#[requires((@a.0).len() == @self.num_vars)]
#[ensures(result == self.sat(*a))]

35

fn eval(&self, a: &Assignments) -> bool {
let mut i: usize = 0;
#[invariant(prev_sat, forall<j: Int>

0 <= j && j < @i ==> (@self.clauses)[j] .sat(*a))]
while i < self.clauses.len() {

if !self.clauses[i].eval(a) { return false; }
i += 1;

}
true

}
}

It requires that the given formula satisfies the formula invariant, and that
the assignment is of the correct length. It ensures that the result is a
correct evaluation of the formula under the given assignment. Looking
at the function body, we see that it is very similar to eval for clause.
The invariants are almost the same, but now we have prev_sat instead
of prev_not_sat. prev_sat maintains the invariant that the clause at all
previous indexes has been satisfied under the given assignment.

We continue, with the penultimate function, solve:

#[variant(@f.num_vars - @pa.ix)]
#[requires(pa.invariant(@f.num_vars))]
#[requires(f.invariant())]
#[ensures(!result ==

forall<a: Assignments> a.compatible(pa) ==> !f.sat(a))]
fn solve(f: &Formula, pa: Pasn) -> bool {

if pa.ix == pa.assign.0.len() { return f.eval(&pa.assign); }
solve(f, set_next(&pa, true)) || solve(f, set_next(&pa, false))

}

solve requires that its parameters satisfy their invariants. We further
see the variant which ensures that the function terminates. We do this
by proving that the difference between f.num_vars and the index of the
Pasn decreases for each recursive call. solve ensures that if there exists
a satisfying assignment of the formula in any extension of the partial
assignment, then it will return true, otherwise, it will return false.

Finally, we have the entry point of the solver.

#[requires(f.invariant())]
#[ensures(!result ==> forall<a: Assignments>

(@a.0).len() == @f.num_vars ==> !f.sat(a))]
#[ensures(result ==> exists<a: Assignments> f.sat(a))]
pub fn solver(f: &Formula) -> bool {

solve(f, Pasn { assign: Assignments(
vec![false; f.num_vars]), ix: 0 })

}

Note that Friday requires that the formula satisfies its invariant on entry.

36

To remove this requirement, we would have to add code which checks and
establishes the variant on function entry. We omit this, as it is not a core
part of the algorithm. Do note that we do check and establish the invariant
on entry for Robinson and CreuSAT, so these offer an entry point with any
requirements.

solver ensures that if it returns false, then there does not exist any
assignment of the correct length which satisfies the formula, and that if
it returns true, then there exists a satisfying assignment.

37

Part II

Verification of a
DPLL solver

Chapter 4

Verification of the DPLL
algorithm

In this chapter we present the implementation and verification of a DPLL
SAT solver, which we call Robinson. We believe that before CreuSAT, this
was the largest piece of deductively verified Rust code, and it is, to the best
of our knowledge, the fastest fully verified implementation of the DPLL
algorithm. We believe that it may be interesting for those who want to try
to prove SAT solvers with CREUSOT. Compared to CreuSAT, it is smaller,
easier to understand, and proves much faster, and it does in addition have
more possible optimizations which should not be too hard to implement.
We have not implemented pure literal elimination, nor done much work
in efficiently identifying unit clauses, which, together with doing changes
to the decision mechanism, as well as potentially integrating the trail
and backtracking mechanism of CreuSAT, should be both interesting and
challenging to do.

We implement the solver using efficient data structures, using built in Rust-
vectors and machine integers.

4.1 The DPLL algorithm

There are many possible improvements to Friday. A somewhat obvious
improvement is to not write a functional solver in an imperative language,
and to use for instance mutable vectors instead of cloning vectors every
time we set a value. A perhaps less obvious improvement is algorithmic,
and is to implement a technique called unit propagation (UP), also known
as Boolean Constraint propagation (BCP). It is based on the observation that
if we ever have a situation where a clause only has one unassigned literal,
and we falsify this literal, the clause becomes falsified, which results in the
formula becoming falsified. We therefore have to make this literal evaluate
to true to make the clause evaluate to true, and thus keep the potential
for the formula to evaluate to true. In other words: as we have a "forced"

41

assignment, there is no point in trying both assignments, and we can "shave
off" parts of the search tree.

The other algorithmic improvement we can implement, is a technique
which is called pure literal elimination. It is very simple: if a variable
occurs with only a single polarity in the formula, meaning that it is always
positive, or that it is always negative, then we can assign its variable to that
polarity, and simplify. In simplification, we remove all the clauses which
contains the literal, as they have now become satisfied.

Pure literal elimination and unit propagation combined with search
form the foundation of the Davis-Putnam-Logemann–Loveland (DPLL)
algorithm [15]. DPLL was discovered in 1961, and remained as the state-of-
the-art until the introduction of the conflict-driven clause learning (CDCL)
algorithm, which is the subject of the next chapter. The CDCL algorithm is
often viewed as an extension of DPLL, and ideas from DPLL are present in
the current state-of-the-art.

The algorithm in Rust-like pseudocode:

fn dpll(clauses: &mut Clauses) -> bool {
if consistent(clauses) { true }
if contains_empty(clauses) { false }
for clause in clauses {

if clause.len() == 1 {
clauses = unit_propagate(clause[0]);

}
}
for literal in clauses {

if occurs_pure(literal) {
clauses = pure_literal_assign(literal);

}
}
let literal = choose_literal();
let clauses2 = clauses.clone();
dpll(clauses.push(literal)) || dpll(clauses2.push(-literal))

}

4.2 The main ideas of the proof

Before looking at the details of the proof, we give a high level overview of
the core idea, and what we want to do. We are essentially augmenting
Friday with mutable vectors and unit propagation. Adding mutable
vectors adds a fair amount of tedium, and, though it might be useful to
look at for those who want to learn CREUSOT, we will not discuss it, and
rather focus on the proof of unit propagation. To prove unit propagation,
we have to convince the SMT solvers that when we have a unit clause, then
we do not have to try both polarities for the unit literal. We will do this by
using lemma functions to build up a proof context which convinces the SMT

42

solvers.

The gist of the proof is as follows:

1. If we have a formula which is not satisfiable from any extension of
the current assignment, then it does not, by definition, matter which
polarity we choose for any of the unset literals.

2. If we have a clause which is unit, and we satisfy the unit literal, then
the clause becomes satisfied. If we don’t satisfy the unit literal, the
clause becomes unsatisfied.

• Sublemma: A formula cannot be satisfied by any extension of an
assignment which falsified it.

3. Therefore: either our choice did not matter, or it was the only choice
which maintained eventual satisfiability of the formula with regards
to the assignment.

A thing to note before we present the proof, is that the current proof of
Robinson, as it is in the repository, does not require any lemmas. This
is in part due to improvements to the code since the initial version, and
in part due to improvements to CREUSOT. Having lemmas which are
needed when developing a proof, but then later can be removed, has been
a common occurrence. Initially, when figuring out the proof, one has many
lemmas, proof assertions, and long contracts. Once the initial proof is done,
a better understanding of what is needed is established, and both the code
and the proof can be simplified. This simplification usually leads to proofs
passing much faster, and to some lemmas being unneeded.

The presented proof is thus intended to provide intuitions into how an
initial proof is created, rather than to present the most up to date version of
Robinson. We are also of the belief that most proofs in most tools will need
similar lemmas, at least initially.

4.3 Proof of Robinson

Robinson is a significant step up from Friday in terms of performance, total
size, and in how much effort it took to develop, yet it is not conceptually
significantly more complex than Friday. We are still search-based, so we
can keep our definitions of satisfiability and unsatisfiability, and have to
prove that unit propagation is a valid optimization. A note about the
implementation is that we are using a vector of u8s to manually encode
Option<bool>, as this seemed to be either marginally faster or the same
speed, and it allows us to easily implement a technique which is called
phase saving for CreuSAT. We have abstracted away false (0) behind
neg(), true (1) behind pos(), and unset (everything greater than 1) behind
unset(). In the code, we use the type alias AssignedState, but in the
lemmas below we use u8 to save on space.

Something else which should be noted is that some of our lemmas have

43

the postfix _inner. This is our naming convention for functions which
take models of as parameters. As an example, take the definition of
unsatisfiability for the formula:

impl Formula {
#[predicate]
pub fn eventually_sat(self, a: Assignments) -> bool {

pearlite! { self.eventually_sat_inner(@a) }
}

#[predicate]
pub fn eventually_sat_inner(self, a: Seq<u8>) -> bool {

pearlite! {
exists<a2 : Seq<u8>> a2.len() == @self.num_vars
&& compatible_inner(a, a2)
&& self.sat_inner(a2)

}
}

}

eventually_sat() is just a thin wrapper that calls eventually_sat_inner()
with the model of the provided assignment. We have to have an _inner
function, as we will at some points only have an Seq<u8>, and not an
Assignment, and there is no way to go from the model of a construct back
to the original construct. As we will see below, we have a decent amount
of functions which work on the model of Assignments and which want to
access various predicates on Assignments. This leads to the _inner pattern
becoming quite pervasive, and most predicates which are not _inner are
wrappers of an _inner function. We will therefore use these interchange-
ably in discussion.

With that out out the way, let us continue with the proof. In the actual
development, the process went back and forth between writing code
and developing lemmas. We started with an implementation of unit
propagation, which we then massaged into a version which passed with
unproven lemmas. As the lemmas are proved, and their preconditions
are added, further insight is gained, and the program code changes
accordingly.

We shortcut this process, and present the final version of the code, before
the lemmas were removed. We then step through it and explain what is
happening. The entirety of unit_prop_once is as follows:

#[maintains((mut self).invariant(*f))]
#[requires(f.invariant())]
#[requires(0 <= @i && @i < (@f.clauses).len())]
#[ensures((*self).compatible(^self))]
#[ensures(f.eventually_sat_complete(*self)

== f.eventually_sat_complete(^self))]
#[ensures(match result {

44

ClauseState::Sat => (@f.clauses)[@i] .sat(^self) && @self == @^self,
ClauseState::Unsat => (@f.clauses)[@i].unsat(^self) && @self == @^self,
ClauseState::Unit => (@f.clauses)[@i].unit(*self) && !self.complete(),
ClauseState::Unknown => @self == @^self && !(^self).complete(),

})]
#[ensures((self).complete() ==> *self == ^self

&& ((result == ClauseState::Unsat) || (result == ClauseState::Sat)))]
pub fn unit_prop_once(&mut self, i: usize, f: &Formula) -> ClauseState {

let clause = &f.clauses[i];
let _old_a = ghost!(self);
match clause.check_if_unit(self, f) {

ClauseState::Unit => {
let lit = clause.get_unit(self, f);

proof_assert!(lemma_unit_wrong_polarity_unsat_formula(
*clause, *f, @self, lit.index_logic(),
bool_to_assignedstate(lit.polarity));

true);
proof_assert!(lemma_unit_forces(

*f, @self, lit.index_logic(),
bool_to_assignedstate(lit.polariy));

true);

if lit.polarity {
self.0[lit.index()] = 1;

} else {
self.0[lit.index()] = 0;

}

proof_assert!(lemma_extension_sat_base_sat(
*f, @_old_a.inner(), lit.index_logic(),
bool_to_assignedstate(lit.polarity));

true);
proof_assert!(lemma_extensions_unsat_base_unsat(

@_old_a.inner(), lit.index_logic(), *f);
true);

proof_assert!(^self == ^_old_a.inner());
return ClauseState::Unit;

}
o => return o,

}
}

The code may initially seem daunting, but there is not all that much going
on. If the call to clause.check_if_unit returns that the clause is not unit,
we simply return this valuation. In the case that the clause on the given
index is a unit clause, then we get the unit literal, satisfy it and return

45

ClauseState::Unit. Interspersed are four calls to lemmas, which we will
now explain.

The first lemma which gets invoked, is lemma_unit_wrong_polarity_unsat_formula.
It is defined as follows:

#[logic]
#[requires(f.invariant())]
#[requires(@f.num_vars == a.len())]
#[requires(0 <= ix && ix < a.len() && unset(a[ix]))]
#[requires(!unset(v))]
#[requires(c.unit_inner(a))]
#[requires(c.in_formula(f))]
#[requires(c.invariant(a.len()))]
#[requires(exists<j: Int> 0 <= j && j < (@c).len()

&& (@c)[j] .index_logic() == ix
&& bool_to_assignedstate(((@c)[j].polarity)) == v)]

#[requires(forall<j: Int> 0 <= j && j < (@c).len() &&
!((@c)[j] .index_logic() == ix) ==> (@c)[j].unsat_inner(a))]

#[ensures(!f.eventually_sat_complete_inner(a.set(ix, flip_v(v))))]
#[ensures(f.unsat_inner(a.set(ix, flip_v(v))))]
pub fn lemma_unit_wrong_polarity_unsat_formula(

c: Clause, f: Formula, a: Seq<u8>, ix: Int, v: u8) {
lemma_correct_polarity_makes_clause_sat(c, a, ix, v);
lemma_incorrect_polarity_makes_clause_unsat(c, a, ix, v);
lemma_not_sat_clause_implies_unsat_formula(f, c, a.set(ix, flip_v(v)));
lemma_unsat_implies_not_eventually_sat(f, a.set(ix, flip_v(v)));

}

lemma_unit_wrong_polarity_unsat_formula essentially states that if we
have a unit clause c, and we have the index of the unset literal, ix, and that
index has the polarity v, then we are guaranteed to get a formula which is
both unsat, and not eventually_sat_complete. To prove this, it builds up
an internal proof context consisting of four lemmas.

We will now present the four lemmas in the order they appear. A thing to
note is that that they ensure a bit more than strictly is needed, as they were
used as lemmas elsewhere as well.

Building up a proof context with lemmas is conceptually fairly straight
forward. Before invoking the lemma, we have a collection of predicates
which hold. If we manage to satisfy all the preconditions of the lemma
when invoking it, we "gain" its postconditions as well. Take for instance
lemma_correct_polarity_makes_clause_sat:

#[logic]
#[requires(0 <= ix && ix < a.len())]
#[requires(exists<j: Int> 0 <= j && j < (@c).len()

&& @(@c)[j] .idx == ix
&& bool_to_assignedstate((@c)[j].polarity) == v)]

#[ensures(c.sat_inner(a.set(ix, v)))]

46

pub fn lemma_correct_polarity_makes_clause_sat(
c: Clause, a: Seq<u8>, ix: Int, v: u8) {}

As long as the two preconditions hold, then c.sat_inner(a.set(ix, v))
can be added to the proof context as well. As we can see above, the two pre-
conditions are contained in the preconditions of lemma_unit_wrong_polarity_unsat_formula,
and thus we now have the previous proof context with c.sat_inner(a.set(ix, v))
added.

The next lemma is lemma_incorrect_polarity_makes_clause_unsat:

#[logic]
#[requires(c.invariant(a.len()))]
#[requires(!unset(v))]
#[requires(0 <= ix && ix < a.len() && unset(a[ix]))]
#[requires(exists<j: Int> 0 <= j && j < (@c).len()

&& @(@c)[j] .idx == ix && (@c)[j].sat_inner(a))]
#[requires(forall<j: Int> 0 <= j && j < (@c).len()

&& !(@(@c)[j] .idx == ix) ==> (@c)[j].unsat_inner(a))]
#[ensures(forall<j: Int> 0 <= j && j < (@c).len() ==>

!unset((a.set(ix, v))[@(@c)[j] .idx]))]
#[ensures(!(unset(a.set(ix, flip_v(v))[ix])))]
#[ensures(c.unsat_inner(a.set(ix, flip_v(v))))]
#[ensures(!c.sat_inner(a.set(ix, flip_v(v))))]
pub fn lemma_incorrect_polarity_makes_clause_unsat(

c: Clause, a: Seq<u8>, ix: Int, v: u8) {}

We again satisfy all its preconditions, and thus "gain" the four postcondi-
tions.

Continuing, we have lemma_not_sat_clause_implies_unsat_formula:

#[logic]
#[requires(c.unsat_inner(a))]
#[requires(c.in_formula(f))]
#[ensures(f.unsat_inner(a))]
pub fn lemma_not_sat_clause_implies_unsat_formula(

f: Formula, c: Clause, a: Seq<u8>) {}

The observant reader will notice that we have c.unsat_inner(a.set(ix, flip_v(v))
from the previous lemma, and, as we invoked the lemma with
a.set(ix, flip_v(v)), we now gain f.unsat_inner(a)).

Finally, we have the final lemma, which takes us from f.unsat_inner(a)
to !f.eventually_sat_complete_inner(a).

#[logic]
#[requires(f.invariant())]
#[requires(assignments_invariant(a, f))]
#[requires(f.unsat_inner(a))]
#[ensures(!f.eventually_sat_complete_inner(a))]
pub fn lemma_unsat_implies_not_eventually_sat(f: Formula, a: Seq<u8>) {}

47

We thus have a complete chain of lemmas from the preconditions
of lemma_unit_wrong_polarity_unsat_formula to the two postcondi-
tions: !f.eventually_sat_complete_inner(a.set(ix, flip_v(v))) and
f.unsat_inner(a.set(ix, flip_v(v))).

The second lemma which gets invoked in the body of unit_prop_once, is
lemma_unit_forces:

#[logic]
#[requires(f.invariant())]
#[requires(@f.num_vars == a.len())]
#[requires(0 <= ix && ix < a.len() && unset(a[ix]))]
#[requires(!unset(v))]
#[requires(f.eventually_sat_complete_inner(a))]
#[requires(!f.eventually_sat_complete_inner(a.set(ix, flip_v(v))))]
#[ensures(f.eventually_sat_complete_inner(a.set(ix, v)))]
pub fn lemma_unit_forces(

c: Clause, f: Formula, a: Seq<u8>, ix: Int, v: u8) {
lemma_unsat_implies_not_eventually_sat(f, a);

}

The two preconditions which are important, are
f.eventually_sat_complete_inner(a) and
!f.eventually_sat_complete_inner(a.set(ix, flip_v(v))). The latter
of these is, as we just saw, ensured by lemma_unit_wrong_polarity_unsat_formula.
f.eventually_sat_complete_inner(a) is only satisfied for formulas
which are eventually sat complete. lemma_unit_forces thus ensures that if
we have a formula which is eventually sat complete, then setting v on ix,
corresponding to satisfying the unit clause, will maintain this property.

Continuing through the body of unit_prop_once, we do the assign-
ment, and thus satisfy the unit clause, before invoking the final two
lemmas. We used lemma_unit_wrong_polarity_unsat_formula and
lemma_unit_forces to prove

f.eventually_sat_complete(*self) ==> f.eventually_sat_complete(^self)

and we are now invoking lemma_extension_sat_base_sat and
lemma_extensions_unsat_base_unsat to prove

f.eventually_sat_complete(^self) ==> f.eventually_sat_complete(*self)

We define lemma_extension_sat_base_sat as follows

#[logic]
#[requires(0 <= ix && ix < a.len() && unset(a[ix]))]
#[requires(f.eventually_sat_complete_inner(a.set(ix, v)))]
#[ensures(f.eventually_sat_complete_inner(a))]
pub fn lemma_extension_sat_base_sat(

f: Formula, a: Seq<u8>, ix: Int, v: u8) {}

and lemma_extensions_unsat_base_unsat as follows:

48

#[logic]
#[requires(0 <= ix && ix < a.len() && unset(a[ix]))]
#[requires(!f.eventually_sat_complete_inner(a.set(ix, neg())))]
#[requires(!f.eventually_sat_complete_inner(a.set(ix, pos())))]
#[ensures(!f.eventually_sat_complete_inner(a))]
pub fn lemma_extensions_unsat_base_unsat(

a: Seq<u8>, ix: Int, f: Formula) {}

lemma_extensions_unsat_base_unsat might initially seem a bit strange, as
we are requiring both

!f.eventually_sat_complete_inner(a.set(ix, neg()))

and

!f.eventually_sat_complete_inner(a.set(ix, pos()))

The thing to remember here is that we have

!f.eventually_sat_complete_inner(a.set(ix, flip_v(v)))

from lemma_unit_wrong_polarity_unsat_formula. As the current assign-
ment is equal to a.set(ix, v), we will be able to ensure both precondi-
tions, given that the formula was !f.eventually_sat_complete_inner(a)
before.

With the invocation of these final two lemmas completed, we do the pro
forma proof assertion of ^self == ^_old_a.inner() to state that the final
version of the assignments is equal to the ghost version of the assignments,
and thus conclude the proof of unit propagation.

The top level specification

We end this chapter with a presentation of the top level specification of
Robinson. It is as follows:

#[ensures(match result {
SatResult::Sat(_assn) => { formula.eventually_sat_no_ass() },
SatResult::Unsat => { !formula.eventually_sat_complete_no_ass() },
_ => true ,

})]

where eventually_sat_no_ass is defined as follows:

impl Formula {
#[predicate]
pub fn eventually_sat_no_ass(self) -> bool {

pearlite! { exists<a2 : Seq<AssignedState>> self.sat_inner(a2) }
}

}

and eventually_sat_complete_no_ass as follows:

49

impl Formula {
#[predicate]
pub fn eventually_sat_complete_no_ass(self) -> bool {

pearlite! {
exists<a2 : Seq<AssignedState>> a2.len() == @self.num_vars
&& complete_inner(a2)
&& self.sat_inner(a2)

}
}

}

The sat_inner predicates are defined as follows:

impl Formula {
#[predicate]
pub fn sat_inner(self, a: Seq<AssignedState>) -> bool {

pearlite! {
forall<i: Int> 0 <= i && i < (@self.clauses).len() ==>

(@self.clauses)[i].sat_inner(a)
}

}
}

impl Clause {
#[predicate]
pub fn sat_inner(self, a: Seq<AssignedState>) -> bool {

pearlite! {
exists<i: Int> 0 <= i && i < (@self).len() &&

(@self)[i].sat_inner(a)
}

}
}

impl Lit {
#[predicate]
pub fn sat_inner(self, a: Seq<AssignedState>) -> bool {

pearlite! {
match self.polarity {

true => (@a[@self.idx] == 1),
false => (@a[@self.idx] == 0),

}
}

}
}

complete_inner is defined as follows:

#[predicate]
pub fn complete_inner(a: Seq<AssignedState>) -> bool {

pearlite! {

50

forall<i: Int> 0 <= i && i < a.len() ==> !unset(a[i])
}

}

Where unset is defined as:

impl Lit {
#[predicate]
pub fn unset(self, a: Assignments) -> bool {

pearlite! { self.unset_inner(@a) }
}

#[predicate]
pub fn unset_inner(self, a: Seq<AssignedState>) -> bool {

pearlite! { @(a)[@self.idx] >= 2 }
}

}

A thing to note about the top level specification is that it does not ensure
completeness, as marked by _ => true . This arm of the match statement
is only hit in the case that establishing the formula invariant fails. This
will happen if the f.num_vars is set to be less than the actual number of
variables which occur in the input formula, which may happen when the
CNF file is incorrectly formatted, or if there is a bug in the parser. The solver
is thus complete with regards to input formulas which have f.num_vars
set to be higher than the actual number of variables. Making it complete
with regards to all formulas would require the trivial change of setting
f.num_vars in the case that it is set too low. We have chosen not to do this,
as we prefer for the solver to take an immutable borrow to the formula.

51

Part III

Verification of a CDCL solver

Chapter 5

Verification of the CDCL
algorithm

In this chapter we present the main contribution of the thesis: the
implementation and verification of CreuSAT, a conflict-driven clause
learning SAT solver. We implement and prove the safety and correctness of
the following features:

• Clause analysis and learning of clauses

• Unit propagation

• Two watched literals with blocking literals

• The variable move-to-front literal selection heuristic

• Phase saving

• Backtracking to asserting level

• Search restart based on exponential moving averages

• Deletion of learned clauses

We implement the solver using efficient data structures, using built in Rust-
vectors and machine integers. As we want to be able to represent literals
with 64 bits, we require that the input formula contains less than 263 - 1
variables. This limit is mostly artificial: if your formula actually has 263 -
1 distinct variables, then you would need exabytes of memory to store it,
in excess of the amount of memory currently available in any computer on
Earth.

Whereas we for Friday and Robinson included a substantial amount of
code, this chapter will be quite sparse in code. We choose instead to focus
on the overarching ideas of proofs of the various components. We thus
believe that this chapter is best read in conjunction with the source code,
which is available at github.com/sarsko/CreuSAT.

55

https://github.com/sarsko/CreuSAT

We choose this way to present our material in part due to space, in part due
to the fact that the concrete proofs contains much tedium, and in part due
to a shift in focus. The previous parts were intended to help the reader in
understanding how program proofs in CREUSOT are conducted, and give
an introduction to SAT solving. This part is intended to help the reader
understand CreuSAT and the ideas behind a program proof of the CDCL
algorithm and some of its optimizations.

Chapter overview

This chapter starts with an introduction to the CDCL algorithm, where we
explain the general concepts with regards to our concrete implementation.
Those who are familiar with CDCL-based SAT solving may notice that we
choose to forego the common explanation of clause analysis as doing a cut
on the implication graph, and only mention it in passing. The reason for
this is largely pedagogical: we have found that merely having the cut-based
understanding is not sufficient to understand the proof, whereas merely
having the resolution-based understanding is. This ties in with the fact
that the implication graph and the 1-UIP cut are largely invisible both in
implementation and in proof, whereas the trail and resolution are center
stage.

Following the introduction to CDCL, we will look at the main ideas of the
proof, giving the mental framework which we have built the proof around.
We will then explain how we prove CreuSAT. We split the explanation into
two parts, Section 5.3 – Proof of CreuSAT, which covers what the core of
the algorithm, and Section 5.4 – Optimizations, which covers the various
optimizations we implement. We explain the core parts in much more
detail, as we are of the belief that a solid understanding of the core of the
algorithm is paramount in understanding the proof. We have found that,
with the exception of two watched literals, most of the optimizations are
not all that hard to implement and prove. In the off-chance that they are,
this usually harks back to a poor understanding of the core of the algorithm,
or the suboptimality of a previous design decision, rather than the intrinsic
complexity of the optimization.

5.1 The CDCL algorithm

5.1.1 Overview

The conflict-driven clause learning SAT solver was discovered by Marques-
Silva and Sakallah in 1996 [37], and has remained as the state-of-the-art
since. It is often viewed as an extension of DPLL, but, as we will discuss in
the coming chapter, it is fundamentally different from DPLL. DPLL is search
based — the notion of unsatisfiability is tied to the complete exploration
of the search space. This is not the case for CDCL, where the notion of
unsatisfiability is tied to learning the empty clause, which, by definition,
there exists no assignment which satisfies.

56

In short, a CDCL solver needs the following "mechanisms":

• Unit propagation mechanism

• Clause analysis and clause learning mechanism

• Decision mechanism

• Backtracking mechanism

To implement these mechanisms, we need our data structures from before,
in addition to a new data structure, which is usually called the trail. It is
implemented as a a stack which keeps track of the assignments we have
made, when we did them, and why we did them. The trail enables us to
backtrack efficiently, and it is also a key part of clause learning. The CDCL
algorithm in Rust-like pseudocode:

fn solve(formula: &mut Formula, t: &mut Trail
) -> Result<SatResult, SatError> {

loop {
loop {

let res = unit_propagate(f, t);
if res != confl { break; }
let clause = clause_analysis(res, f, t)?;
formula.push(clause);
t.backtrack();

}
t.make_decision()?;

}
}

Note that we are (ab)using the ? notation to return the result of the solver.
We have also abstracted away the partial assignment, and have it as a part
of the trail. In solvers with a trail, the partial assignment is simply the
realization of the trail on an empty assignment, and can thus be viewed as
an optimization, rather than a necessity.

unit_propagate is for the most part the same as the one for the DPLL
algorithm, but may now return a reference to a conflict clause — a clause
in the current formula which has become unsatisfied by unit propagation.
We then do clause analysis on this clause, which yields a clause which is
implied by the current clause database. In the case that this clause is empty,
the formula implies the empty clause, and we return that the formula is
unsatisfiable. If the clause is of non-zero length, we add it to the clause
database, and backtrack at least enough for the clause to not be conflicting.
We will later look at how we design the learned clause.

In the case that the call to unit propagation did not yield a conflict, then our
formula does not evaluate to false under the current assignment. We then
try to make a decision. If there are no more decisions to be made, then we
have a complete assignment under which the formula does not evaluate to
false, or, in other words: we have a satisfying assignment. If it is possible to

57

make a decision, we make a decision, and enter the unit propagation loop.
We are free to decide on any of the unassigned variables, and we will later
look at heuristics for making this choice.

The next part of the algorithm we will look at is how we do the clause
analysis mechanism. Clause analysis is done by iteratively doing a process
which is called resolution on clauses from the formula. To efficiently find
the clauses to do resolution on, we use the trail. We will therefore have to
explain the resolution rule, and also get a better understanding of the trail,
before we are able to to look at the conflict analysis algorithm in detail.

5.1.2 Interlude: resolution and the Davis Putnam procedure

One of most important concepts of the modern CDCL SAT solver is the
resolution rule. It forms the foundation of clause learning, which consists of
a series of resolution steps, it can be done as a part of the inprocessing and
preprocessing of the clause database, and it is the technique which both
local clause minimization and recursive clause minimization are based on.

The resolution rule states that given two clauses, C and C1, such that there
exists one, and only one literal l P C and l P C1, then we may create another
clause C2 such that for all l1, l1 P C2, l1 P C _ l1 P C1 and l1 ‰ |l|. We say that
we resolve C and C1 to create the resolvent C2. For example, the clause pa_ bq
can be resolved with pb_ cq to create the clause pa_ cq

Resolution can be shown schematically as:

CY tlu C1 Y tlu
CY C1

Resolution can be traced back to the Davis-Putnam (DP) algorithm of 1960
[16]. We will later explain CDCL as an extension of DP, similar to how we
explained Robinson as an extension of Friday.

DP is very similar to the DPLL algorithm, and contains both unit
propagation and pure literal elimination. In fact, DPLL was introduced
to solve the main problem of DP: memory. Whereas DPLL requires a linear
amount of memory, DP is in the worst case exponential. They are almost
identical, but instead of using search to progress the solver, as is the case for
DPLL, resolution is used instead, by doing what is called the Davis-Putnam
procedure.

We illustrate the DP procedure with an example run on a satisfiable
formula:

{ (a_ b_ c) ^ pb_ cq ^ p b_ dq }

If we try to resolve on a, we get the same formula. If we resolve on b, we
get the following formula:

{ (a_ c_ d) ^ p c_ dq }

We then resolve on c, and get:

58

{ (a_ d) }

At this point we have no more opportunities to do resolution, and our
formula is therefore satisfiable.

An example run on a formula which is unsatisfiable:

{ (a_ b) ^ pa_ bq ^ (a_ c) ^ p a_ cq }

If we resolve on a, we get:

{ (b_ c) ^ pb_ cq ^ p b_ cq ^ p b_ cq }

Further, resolving on b, we get:

{ (c) ^ p cq ^ pc_ cq}

After removing the trivially satisfied clause pc _ cq, and resolving on c,
we get:

{ () }

As we have resolved the empty clause, the formula is unsatisfiable.

5.1.3 Introduction to the trail

The second concept we need to look at to understand the clause analysis
algorithm is the trail data structure. The trail is arguably the most
important data structure of a modern SAT solver, and a majority of the time
spent proving CreuSAT has been spent on predicates and functions which
are related to the trail. We will now give an introduction to the trail and
how it enables clause learning, and we will in Subsection 5.3.1 - Furthering
our understanding of the trail look at how we realize this in CREUSOT.

As mentioned, the trail is simply a stack consisting of the literals which
have been assigned, the reason for their assignment, and the time for their
assignment. Our encoding for the trail is derived from the SAT solver
called Starlit, which is authored by Jannis Harder. We encode the trail as a
Vec<Step>, where a Step is defined as follows:

pub struct Step {
pub lit: Lit,
pub decision_level: usize,
pub reason: Reason,

}

The lit is the literal which was assigned, the decision_level is the decision
level where the assignment was made, and the reason is the reason for the
assignment. We define Reason as follows:

pub enum Reason {
Decision,
Unit(usize),
Long(usize),

}

59

https://github.com/jix/starlit/blob/main/starlit/

Decision means that the literal was a decision — the solver was in a state
where unit_propagate did not return a conflict, and the decision making
mechanism produced this literal. The Long(usize) reason means that the
the given literal was found to be the unit literal of the clause which is
found by indexing the clause database on the given usize. The assignment
was thus implied by a "long" clause, which in our case means any clause
with length greater than 11. We call this clause the literal’s antecedent.
Unit(usize) is the same as Long, but for unit clauses2.

The decision level of an assignment is simply a count of how many Steps
that occur "below" the given Step on the stack which have Decision as their
Reason. Steps which have the same decision level have the same decision
as their "root cause".

The key thing to understand about the trail is that it, in addition to keeping
track of decisions, and making efficient backtracking possible, it also gives
us efficient access to clauses to do resolution on. If we have a clause which
is unsatisfied, then, for all its literals which do not have Decision as their
Reason, we are able to use the trail to find a clause which is guaranteed
to be resolvable with the clause. The antecedent of a literal will always be
a clause which at an earlier point was unit, and then had its unit literal
satisfied. We will call this property post unit later, meaning that the clause
was unit, and is now satisfied, and the fact that the trail efficiently yields
clauses which are post unit with regards to some literal is a centerpoint of
the proof.

5.1.4 The conflict analysis algorithm

With resolution and the trail explained, we can explain our implementation
of the conflict analysis algorithm. For the conflict analysis algorithm, we
will be following the algorithm of Chaff [42], as presented in [58], which
modern solvers derive their implementation from. We translate it to Rust-
like pseudocode:

fn conflict_analysis(self) -> Result<(usize, ())> {
check_ground()?;
let mut cl = self.find_conflicting_clause();
loop {

let lit = choose_literal(cl);
let var = variable_of_literal(lit);
let ante = self.get_antecedent(var);
cl = resolve(cl, ante, var);
if stop_criterion_met(cl) {

break;
}

1It is called Long because we in the future plan to handle binary clauses separately.
2Having Unit carry a reference to a clause in the formula is due to a weakness of the

current proof, where we need to actually instantiate the clause and store it in the clause
database.

60

}
self.add_clause_to_database(cl);
Ok(clause_asserting_level(cl))

}

On entry, we check whether we have a ground conflict, which means that
we have reached a conflict on decision level 0, corresponding to a formula
which is conflicting without having made any decisions. If that is the
case, then our formula is UNSAT, and we return an error. A thing to note
here is that in our implementation, we do a complete derivation of the
empty clause. This is simply because we have not prioritized proving that
having made no decisions and reaching a conflict means that the formula is
UNSAT. Instead we choose to execute a version of conflict analysis without
the stopping condition, and produce the empty clause as a witness.

In the case that there was no ground conflict, then we get the conflicting
clause from the Formula, and start doing iterated resolution. For each loop
iteration, we find the conflicting literal, get the reason for its assignment,
and then update the clause to be the resolvent of the clause and the
antecedent of the conflict literal.

As cl is a conflict clause, it starts being unsatisfied. It is then resolved with
the antecedent of the conflicting literal. As the antecedent was a unit clause
with its only satisfied literal being the one which was just resolved out, the
resolvent is unsatisfied as well. At the next iteration, the process repeats
itself: we resolve out the only literal which is satisfied in the antecedent of
a literal in cl, and maintain a clause which is unsatisfied. All of this is due
to how we designed the trail: it allows us to efficiently find clauses to do
resolution on.

At each point during this process we have a clause which is implied
by the current formula. We therefore have do decide on when to
stop doing resolution, and learn the clause. This is handled by the
stop_criterion_met function.

For the stopping criterion, we have many choices. As cl is at all times
implied by the clause database, we could at any point learn the current
clause, potentially learning multiple clauses if we so desire. We decide to
learn one clause for each conflict, and to learn the first clause which has
exactly one literal assigned at the current decision level. Such a clause has
the desirable property that it becomes unit if we backtrack one level, and
is what is called an asserting clause, giving rise to what is called assertion
based backtracking [57]. In practice we backtrack "as far as possible", which
corresponds to backtracking to the level before the clause would stop being
unit.

This scheme of clause learning corresponds to learning a clause which
contains the first unique implication point (UIP), and is called the 1UIP
scheme. We will not go into all the details of UIPs and various UIP-learning
schemes, as this is not needed to understand the algorithm.

61

5.2 The main ideas of the proof

With the core of the algorithm explained, we can start discussing the main
ideas of the proof. Before doing that, we will briefly explain why we
have omitted explaining the CDCL algorithm as the process of creating
an implication graph, and then doing a cut of said implication graph.
This subsection is intended for those who are already familiar with the
explanation of clause learning as doing a UIP-cut of the implication graph,
and who are curious as to why we have omitted explaining it.

If you are not familiar with this view, then you may safely skip this
subsection, as we will not explain it in detail. It should be noted that the
views are equivalent, and there may very well be a CREUSOT proof for
which the cut of the implication graph view is suited as an explanation.

5.2.1 The suboptimality of the cut of the implication graph

We have not found this way of explaining CDCL to be well suited
for understanding the program proof. The reason for this is that the
implication graph and the cuts do not show themselves in the proof, nor
in the code. In addition: when explaining the 1-UIP cut, the reason for
its optimality — that it yields an asserting clause — is obscured. The
implication graph puts emphasis on the fact that one assignment led to
another assignment, an aspect which is completely vacant in our proof.
In the proof, the relevant part is not that an assignment implied another
assignment, but that we can, given an unsatisfied clause and a literal in
that clause, use the trail to find a clause to do resolution on. How that
clause ended up in the trail is not important, what matters is that all the
reasons of the trail carry that property.

Out of this comes our view of the trail, and thus the solver as a whole.
Instead of viewing the trail as an implication graph, we view it as what it
is: a stack, where there exists a series of invariants on the elements of this
stack.

5.2.2 CDCL as an extension of DP

The CDCL algorithm, though often viewed as an extension of the DPLL
algorithm, is fundamentally different in a few key ways. The first
key difference is that the DPLL algorithm is fundamentally search based,
whereas the CDCL algorithm is fundamentally resolution based. In DPLL
unsatisfiability is tied to the complete exploration of the search space,
whereas in CDCL it is tied to a valid series of resolution steps, ending in the
empty clause. Both DPLL and CDCL have the same notion of satisfiability:
a complete assignment which is not unsatisfiable.

In Chapter 4 – Verification of the DPLL algorithm, we presented DPLL as
an optimization on the search algorithm of Chapter 3 – Verification of a
minimal solver, where the net effect of unit propagation is to reduce the
search space. CDCL, however, we view as an improvement on the DP

62

algorithm which we looked at in Subsection 5.1.2 – Interlude: resolution
and the Davis Putnam procedure. DP does all possible resolutions, whereas
in CDCL, unit propagation is used to efficiently identify the clauses to do
resolution on. Whereas the DP algorithm can be viewed as doing eager
resolution, CDCL can be viewed as doing lazy resolution, only applying the
resolution algorithm on the clauses which are antecedents of the literals of
the conflict clause.

In DP, satisfiability is tied to reaching a formula which does not contain
the empty clause, and where there are no further possibilities for doing
resolution. For CreuSAT, we view satisfiability as "happenstance" — we
"happened" to reach a complete assignment which did not lead to a conflict,
whereas the notion of unsatisfiability is still tied to resolution of the empty
clause. In other words: we combine the satisfiability condition of the DPLL
algorithm and the unsatisfiability condition of the DP algorithm. Both of
these are based on giving a witness, which makes the postconditions for
the solver both easy to specify and easy to prove.

The fact that we don’t have to maintain and prove a complete search makes
it possible to achieve a much more decoupled solver, in some ways making
the proof of CDCL arguably easier to implement, at least in terms of "peak
hardness". Whereas we for the proof of the DPLL algorithm had to prove
that we did in fact traverse the whole search space, and therefore had to do
the whole proof of unit propagation being a "forced" choice, this obligation
is completely lifted for the CDCL algorithm. For the CDCL algorithm, our
formula is SAT if we manage to find a complete assignment which does not
lead to a conflict, and it is UNSAT if we in the attempt to do so manage to
do a series of resolution steps which end in the empty clause. As we have
maintained equisatisfiability with the original formula while learning new
clauses, the formula is thus equisatisfiable with the empty clause, which by
definition is unsatisfiable.

We do not have to prove that we are exploring the entirety of the search
space, as the semantics of the solver are not tied to this notion. As long
as the satisfiability of the input formula is maintained by the operations
done by the solver, with the learning of new clauses being the critical
part to get right, the remainder of the proof is for the most part proof of
safety properties. This is illustrated by the fact the entirety of the proof of
correctness for unit propagation has been removed, and that implementing
decision heuristics has been solved by solely proving safety, and then
injecting a runtime-check of completeness, which is only run for satisfiable
formulas.

That being said, proof of correctness for clause learning is not exactly
trivial, and CDCL solvers open up for a lot more optimizations. CDCL
solvers also have both more code, and code which is less amenable to
verification than DPLL solvers. The algorithm does in general consist of
manipulation of pointers and vectors, both of which are notoriously hard
to reason about. Though much of the difficulties are lifted by the Rust type
system and its modelling in CREUSOT, even what might be considered

63

"simple" properties, for instance that all permutations of a clause are
equivalent, can be cumbersome to prove.

We will not go into all of these challenges, though we will look at the trail
in some detail. The correctness of the solver is reliant on the correctness of
the trail, and thus specifying the correct invariants and maintaining these
throughout the run of the solver is paramount. Maintaining the invariants
is what enables us to efficiently use the trail to find clauses to do resolution
on, in addition to enabling efficient backtracking.

5.3 Proof of CreuSAT

We will in this section explain what we consider to be the most important
parts of proving CreuSAT. Compared to the earlier explanations, we
maintain a rather high level description, with the goal of transferring
the intuitions of the proofs, though we will present some code snippets
throughout.

5.3.1 Furthering our understanding of the trail

As we have already touched on, the trail is arguably the most important
part of CreuSAT, and understanding it is key to understanding the proof.

The final version of the trail consists of the previously discussed trail,
in addition to a few related data structures, which we use for efficiency
reasons.

pub struct Trail {
pub assignments: Assignments,
pub lit_to_level: Vec<usize>, // usize::MAX if unassigned
pub trail: Vec<Step>,
pub curr_i: usize,
pub decisions: Vec<usize>,

}

assignments is the same assignments as known from Robinson: a vector
of u8s, where 0 corresponds to false, 1 corresponds to true, and all other
values correspond to unset. There exists a bijection from the trail to the
assignments. assignments corresponds to a realization of all the steps of
the trail on an empty Assignments, and all the entries of the assignments
which are assigned have a corresponding Step in the trail. assignments
is thus strictly speaking an optimization, but we know of no solver which
does not keep track of the partial assignment.

lit_to_level gives the decision level where a literal was assigned, and
curr_i is used to keep track of how much of the trail has been processed.
During unit propagation, we will enqueue Steps to the trail as further
unit clauses are identified. Whenever unit propagation returns without a
conflict, curr_i is equal to the length of the trail. decisions is used to

64

keep track of the amount Steps at each decision level, and is used to do
backtrack more efficiently.

We define the invariant for the Trail as follows:

impl Trail {
#[predicate]
pub fn invariant(self, f: Formula) -> bool {

pearlite! {
self.assignments.invariant(f)
&& trail_invariant(@self.trail, f)
&& lit_to_level_invariant(@self.lit_to_level, f)
&& decisions_invariant(@self.decisions, @self.trail)
&& self.trail_entries_are_assigned()
&& self.decisions_are_sorted()
&& self.lit_is_unique()
&& self.lit_not_in_less(f)
&& unit_are_sat(@self.trail, f, self.assignments)
&& long_are_post_unit_inner(@self.trail, f, @self.assignments)

}}}

We will not discuss the invariants which carry the _invariant postfix, as
they are safety invariants. trail_entries_are_assigned() maintains the
first part of the aforementioned bijection. We used to maintain an invariant
for the second part as well, but found that we did not use it3, and thus
removed it. decisions_are_sorted() states that the decision levels of the
trail form a monotonically increasing sequence.

lit_is_unique states that there does not exist multiple steps which contain
a literal with the same index as another literal on the trail. lit_not_in_less
states that the literal of a given step does not occur in any clause which is
referenced at an earlier entry. We carry this property in the trail, but it
could most likely be removed, and then proven every time we need it. This
is because if the literal were to occur in any previous clause, then either the
literal has to be the literal of the clause which is satisfied, or it has to be one
of the unsatisfied literals. In the first case, we would have a duplicate entry
on the trail, breaking the lit_is_unique invariant. In the second case, we
would have a literal which is both unsatisfied and satisfied at the same
time: a contradiction.

unit_are_sat exists solely to help the SMT solvers4, and it should be pos-
sible to remove it. It is essentially a rewording of trail_entries_are_assigned
with regards to the Reason of the Step.

This leaves only the aptly named long_are_post_unit predicate. It states

3Enabling the bijection is a requirement for making unit propagation a complete
evaluation function. As we will discuss in Subsection 5.4.1 – Two watched literals, we
sacrifice completeness. When we reintroduce completeness, we will have to reestablish the
bijection.

4As we discuss in https://sarsko.github.io/Creusot, the absolutely most important job of
a proof writer is to make the proof easy for the SMT solvers.

65

https://sarsko.github.io/Creusot

that entries on the trail which have Long as their reason are what we call
post_unit. post_unit means that a clause was unit and then had its unit
literal satisfied, or, in other words: that it has one literal which is satisfied,
and that the remainder of its literals are unsatisfied. We define post_unit
as follows:

impl Clause {
#[predicate]
pub fn post_unit_inner(self, a: Seq<AssignedState>) -> bool {

pearlite! {
exists<i: Int> 0 <= i && i < (@self).len()

&& (@self)[i].sat_inner(a)
&& forall<j: Int> 0 <= j && j < (@self).len()
&& j != i ==> (@self)[j].unsat_inner(a)

}
}

}

It states that there exists a satisfied literal, and that all other literals of the
clause are unsatisfied.

On top of post_unit, we define the clause_post_with_regard_to_lit
predicate. Its definition is somewhat convoluted, but it essentially states
that the given clause is post unit, and that the given literal is the literal of
the clause which is satisfied. It is defined as follows:

#[predicate]
pub fn clause_post_with_regard_to_lit(

c: Clause, a: Assignments, lit: Lit) -> bool {
pearlite! {

c.post_unit(a)
&& exists<i: Int> 0 <= i && i < (@c).len()
&& (@c)[i].polarity == lit.polarity
&& @(@c)[i].idx == @lit.idx && (@c)[i].sat(a)

}
}

With clause_post_with_regard_to explained, we can give the definition
of long_are_post_unit. It is as follows:

#[predicate]
pub fn long_are_post_unit(trail: Trail, f: Formula) -> bool {

pearlite! {
forall<j: Int> 0 <= j && j < (@trail.trail).len() ==>

match (@trail.trail)[j].reason {
Reason::Long(k) => clause_post_with_regards_to(

(@f.clauses)[@k],
trail.assignments,
@(@trail.trail)[j].lit.idx),

_ => true

66

}
}

}

The maintaining of the long_are_post_unit is what ensures the correct-
ness of the clause learning mechanism, which is the topic of the next couple
of sections.

5.3.2 Facilitating clause learning

It makes little sense to do clause analysis without learning the clause. We
therefore start with the clause learning mechanism, and "move backwards"
to the clause analysis mechanism. To prove clause learning, we need to
introduce a notion of two formulas being equisatisfiable, such that if the
formula was eventually satisfiable before, it is eventually satisfiable after
the clause addition. Whereas we before were exploring the search space,
and therefore had to take into account the current partial assignment(the
formula could be an eventually satisfiable formula, but not in any
extension of the current partial assignment), a formulas satisfiability is
now completely separated from the current partial assignment. Thus, we
introduce the notion of equisatisfiability as follows:

#[predicate]
pub fn equisat(

f: (Seq<Clause>, Int), o: (Seq<Clause>, Int)) -> bool {
pearlite! { eventually_sat_complete_no_ass(f) ==

eventually_sat_complete_no_ass(o)
}

}

where the eventually_sat_complete_no_ass predicate is defined as fol-
lows:

#[predicate]
pub fn eventually_sat_complete_no_ass(

f: (Seq<Clause>, Int)) -> bool {
pearlite! {

exists<a2 : Seq<AssignedState>> a2.len() == f.1
&& complete_inner(a2) && formula_sat_inner(f, a2)

}
}

complete_inner() and formula_sat_inner() are defined as before, that
is: a complete assignment is one where all variables are assigned, and a
satisfied formula is one where all its clauses are satisfied. Finally: a satisfied
clause is a clause where at least one literal is satisfied.

In other words: two formulas are equisat if and only if the existence of
an assignment which satisfies the first formula implies the existence of an
assignment which satisfies the second formula, and vice versa.

67

We further add this as a postcondition to the functions which have access
to a mutable formula, adding loop invariants where necessary, ensuring
that our algorithm in its entirety maintains a formula which is equisat to
the original formula.

With the equisatisfiability predicate sorted, we have to prove that the
resolution function generates clauses which when added to a formula
results in an equisatisfiable formula. To do this, we create a predicate,
equisat_extension, which states that a given formula, were it to be
extended with a given clause, would result in a formula which is
equisatisfiable with the original formula.

#[predicate]
pub fn equisat_extension_inner(

c: Clause, f: (Seq<Clause>, Int)) -> bool {
pearlite! {

eventually_sat_complete_no_ass(f) ==>
eventually_sat_complete_no_ass((f.0.push(c), f.1))

}
}

We then create a lemma function which states that if we have a clause which
is an equisatisfiable extension of the formula, and resolve it with a clause
which is in the formula, then we get a new clause which is an equisatisfiable
extension of the formula.

#[logic]
#[requires(formula_invariant(f))]
#[requires(equisat_extension_inner(c, f))]
#[requires(c2.in_formula_inner(f))]
#[requires(c3.resolvent_of(c, c2, k, m))]
#[ensures(equisat_extension_inner(c3, f))]
pub fn lemma_resolvent_of_equisat_extension_is_equisat(

f: (Seq<Clause>, Int), c: Clause, c2: Clause, c3: Clause,
k: Int, m: Int) {
lemma_eq_formulas(f, (f.0.push(c3), f.1), c3);

}

The observant reader may notice that we had to define and access the
model of Formula to prove these lemmas, as there was no way to talk
about a formula where we have added a clause without working on
sequences. The observant reader may also notice the internal helper
lemma, lemma_eq_formulas. It is defined as follows:

#[logic]
#[requires(f2.0 == f.0.push(c))]
#[ensures((f.0).len() + 1 == (f2.0).len())]
#[ensures(forall<i: Int> 0 <= i && i < (f.0).len() ==>

((f.0)[i]).equals((f2.0)[i]))]
#[ensures(@(f2.0)[(f2.0).len()-1] == @c)]

68

pub fn lemma_eq_formulas(
f: (Seq<Clause>, Int), f2: (Seq<Clause>, Int), c: Clause) {}

lemma_eq_formulas exists to help the SMT solvers understand what the
result of pushing to a formula is. equals() is defined as follows:

impl Clause {
#[predicate]
pub fn equals(self, o: Clause) -> bool {

pearlite! {
(@self).len() == (@o).len()
&& forall<j: Int> 0 <= j && j < (@self).len() ==>

(@self)[j] == (@o)[j]
}

}
}

Finally, we have the resolvent_of predicate:

impl Clause {
#[predicate]
pub fn resolvent_of(
self, c: Clause, c2: Clause, k: Int, m: Int) -> bool {

pearlite! {
(forall<i: Int> 0 <= i && i < (@c).len() && i != k ==>
(@c)[i].lit_in(self)) && // #1
(forall<i: Int> 0 <= i && i < (@c2).len() && i != m ==>
(@c2)[i].lit_in(self)) && // #2
(forall<i: Int> 0 <= i && i < (@self).len() ==>
((@self)[i].lit_in(c) || (@self)[i].lit_in(c2))) && // #3
!(@c)[k].lit_in(self) && !(@c2)[m].lit_in(self) && // #4
(@c2)[m].is_opp((@c)[k]) // #5

}
}

}

k and m are the indexes of the resolved out literal of the first and the second
clause, respectively. resolvent_of is conjunction of 5 different statements.
We have commented each of them in the snippet, and go through them in
order. #1 states that all of the literals of c which are not the resolved out
literal occur in the resolvent. #2 states the same, but with regards to c2
instead of c. #3 states that all the literals of the resolvent either exist in c or
in c2. #4 states that the resolved out literal does not occur in the resolvent.
Finally, #5 states that the literal which has been resolved out occur with
opposite polarities in c and c2.

5.3.3 Proving the clause learning

With the ability to add clauses, as well as the relevant lemmas and the
resolution predicate defined, we return to the clause analysis mechanism.

69

We follow the structure of the proof as presented earlier. On entry to
conflict_analysis, we get the conflicting clause from the clause database.
We then start doing iterative resolution on the antecedents of its literals
until we reach a clause which is asserting. We simply maintain the
invariant that our clause satisfies the clause invariant with regards to the
input formula, that it is an equisatisfiable extension of the input formula,
and that it is UNSAT. Whenever we do resolution, we know, due to the
invariant on the trail, that the antecedent is what we call post_unit — it
has one literal which evaluates to true, while the rest evaluates to false.

We also know that the literal which evaluates to true occur in both
clauses. As it is the only literal which is true in the antecedent,
and the other clause only contains UNSAT literals, we know that we
can do resolution. We then do resolution, wherein we invoke the
lemma_resolvent_of_equisat_extension_is_equisat lemma. We there-
fore have a new clause which both satisfies the clause invariant with re-
gards to the formula, and which is an equisatisfiable extension. As we re-
solved out the only literal which was satisfied, this new clause is also UN-
SAT. If the literal has now become asserting, we are done, and may learn
the clause.

The initial implementation and proof ended up being a fair bit of pain. Part
of this was lack of understanding, part of it was some earlier suboptimal
design decisions, part of it was due to limitations with CREUSOT, and part
of it was due to some of the properties actually being hard, especially for
SMT solvers. We ended up having to guide the SMT solvers more than
desired, and the code became plagued with proof assertions. The same
was the case for the trail, which together with clause analysis ended up
accounting for over 2/3 of the invocations of proof_assert!.

We later redid the proof and implementation of resolution and the clause
analysis mechanism. This resulted in a faster implementation with less
code and significantly shorter proofs. To make it easier on the SMT solvers,
as well as to make it easier to make an efficient implementation, we change
long_are_post_unit slightly. Whereas we before had that the clause was
post unit with regards to some literal of the clause, we now have it so that it
is always post unit with regards to the first literal of the clause.

It should be noted that we were doing this before as well, but having it
statically proven enables us to skip the first literal of all clauses which we
do resolution on. This means that resolution becomes the simple procedure
of removing the literal which is to be resolved out, and then add all but the
first literal of the second clause. Ideally we would not add the literals which
are going to be resolved out at all, but we leave this for future work.

A note about the current implementation of conflict analysis is that we
maintain a seen vector to enable O(1) checking of membership, as well as
a variable to keep track of the amount of literals which are assigned on the
current decision level.

70

5.3.4 Backtracking the trail

Implementing backtracking was surprisingly difficult, and it was in fact the
last part of the algorithm which was proven correct. We believe the reason
for it being challenging is a combination of the author’s lack of expertise,
the tools offered by CREUSOT, the chosen encoding of the trail, certain
patterns which are challenging for SMT solvers, and an inherent hardness
of the problem. The weighting of the different factors contributing to the
difficulty is not entirely clear.

Our initial representation of the trail encoded it as a tuple consisting of
Vec<Vec<Lit>> and Vec<(usize, Reason)>. The first of these represents
the trail, where each decision level is encoded as a vector of assigned
literals. The first element in each of these vectors is the decision of that
decision level, and the remaining literals are the literals implied by that
decision. The 0th vector does not adhere to this invariant, and contains all
the literals which are implied at decision level 0, or, in other words: it is a
level of units.

The second is simply a mapping between each literal and the decision level
where it was assigned, as well as the reason for its assignment. The second
vector is exactly f.num_vars long, and is indexed on the idx of a Lit.

This representation worked fine, and it was fairly straightforward to
prove all desired properties, except that undoing a single decision level
yielded a result where the trail_are_post_unit invariant holds. It is not
decided whether proving this property is truly infeasible for such a data
structure, but it was decided to redo the trail to follow the more traditional
"linear" trail representation. Though this was a fairly large refactoring, the
provability and general improvements in ergonomics of the new trail were
immediately obvious.

The proof of backtracking for the linear trail was done before integrating
the trail with the rest of the solver. An attempt was therefore made to port
the proof of backtracking for the linear trail to the initial version of the
trail, which was already integrated with the rest of the solver. This effort
was fruitless, and it was decided more viable to refactor the entirety of the
solver, and thus in part redo a substantial amounts of the proofs.

5.4 Optimizations

In this section we describe the various optimizations which have been
implemented, and the main ideas behind their proofs.

5.4.1 Two watched literals

The simplest way to figure out whether a clause is unit is to visit it and
check whether it is satisfied, and if it is not, check if it has one unassigned
literal, at which point we propagate the unit literal. This is the way we
do it in Robinson. The step up from this approach is to keep counts of

71

the amount of unassigned literals for all the clauses, and enqueue those
who reach a count of 1. This is an improvement, but we can do better, by
employing a technique called two watched literals (TWL/2WL).

2WL explained

The two watched literals scheme dates back to the head/tail list of
the solver SATO [56] and was later refined by the solver Chaff [42] in
2001. They noted that 90% of the time of a SAT solver was spent on
unit propagation. To remedy this, the two watched literal scheme was
introduced. It is based on the observation that a clause cannot become
unit as long as at least two of its literals are unset. We therefore "watch"
two unset literals of each clause. If any unwatched literal in the clause is
assigned, the clause has either become satisfied or its satisfiability is still
undecided, but we know that it is not unit: our two watched literals are
still unassigned.

In the case that one of the watched literals is assigned, we check to see if
there exists another unassigned literal which is not watched. If so, then we
remove the previous watch, and watch this literal instead. In the case that
the clause is satisfied, for instance by one of the unwatched literals being
satisfied at a previous point, we update the watch to watch this literal.
Usually the watching of literals is organized by watching for one of the
first two literals of a clause being falsified. We then reorder the clause to
maintain that the first two literals are watched, and in the case that the
clause is satisfied, we move this satisfied literal to the start of the clause
and watch it.

As an example, take the following clause:

p
Ó
a
∅
_

Ó

b
∅
_ c

∅
_ d

∅
q

The currently watched literals are indicated with an arrow. The currently
assigned value is denoted with ∅ for no current assignment, J for a
positive assignment, and K for a negative assignment.

Let us say that c is assigned to J, as in:

p
Ó
a
∅
_

Ó

b
∅
_ c

J
_ d

∅
q

This results in no work to be done for this particular clause.

Let us say we later set a to J as well, falsifying a, as in:

p
Ó
a
J
_

Ó

b
∅
_ c

J
_ d

∅
q

This will result in a visit to the clause, and we will move the watch to c,
which is satisfied:

72

p a
J
_

Ó

b
∅
_

Ó
c
J
_ d

∅
q

In practice we reorder the clause, resulting in the following clause:

p
Ó
c
J
_

Ó

b
∅
_ a

J
_ d

∅
q

In the case that b were to become falsified, we would visit the clause, see
that c is currently satisfied, and return, without updating the watches. In
the case that d were to become assigned, we would not have to do any
changes to our watches.

As an example of the case where the clause becomes propagating, take the
following initial assignment:

p
Ó
a
∅
_

Ó

b
∅
_ c

K
_ d

J
q

c and d are currently unsatisfied, but as both our watches are unset, we
know the clause is yet to be propagating. Let us say we falsify b as in:

p
Ó
a
∅
_

Ó

b
K
_ c

K
_ d

J
q

This results in a visit to the clause, where we discover that there is nowhere
to place the second watch, resulting in the propagation of a with this
clause as its reason.

This leaves only the case where the clause somehow has become falsified.
Let us again say we have the previous formula and assignments:

p
Ó
a
∅
_

Ó

b
K
_ c

K
_ d

J
q

Since b became falsified, we currently have a visit to the clause in queue.
If a is falsified as well by the time we visit the clause, the visit will show
that all of the literals are falsified, and thus that the clause is falsified. This
could for instance happen if the following clause is also in the problem set:

p
Ó
a
∅
_

Ó

b
K
q

In this case, whichever clause is visited first will result in either a or a
being propagated, falsifying the other clause before we get a chance to
update the watch on b.

A correctly implemented two watched literal scheme has the advantage
that no watches has to be updated during backtracking. When backtrack-
ing due to a conflict, we undo at least all the variables which were assigned
at the current level, and thus go from a state where the invariant for the
two watched literals scheme does not hold, to a state where we know it
does hold. When undoing further levels, we are going from a state where
the invariant holds, to a new state where we know the invariant holds.

73

Improvements to 2WL

There are a few further refinements which can be done to the 2WL scheme.
The first is to treat binary clauses separately. Binary clauses are essentially
implications, and if one of the literals is assigned, we either have a conflict,
or we can propagate the other literal. By treating them separately, we
can save a likely cache miss, by only loading the associated watch for the
binary clause. We did not observe a significant improvement in speed in
treating binary clauses separately, and have thus not prioritized adding it
to CreuSAT, though it is likely to be included in the future.

The second refinement is to add a blocking literal for each watch. The
blocking literal is a literal which is not the watched literal, which also
occurs in the watched clause. We store the blocking literal directly in the
watch, and then check whether it is satisfied before visiting the clause to
find a new literal to watch. If the blocking literal is satisfied, then we know
that the clause is not unit, and return without updating the watch. This
saves us a likely cache miss on loading the watched clause. We found
blocking literals to be a substantial improvement, as well as being easy to
prove, and do therefore include this optimization.

The third refinement is to keep track of the current search position for each
clause [22]. This is done to avoid accidental quadratic behaviour when
trying to find new literals to watch, which can happen if the literals which
occur early in a clause are falsified early in the search process. When
searching for a new literal to watch, we start from this search position, and
loop around when the index goes out of bounds. If we find an unset literal,
we update the search position to the next index to start the search from. We
observed very solid improvements from this technique, and do therefore
include this optimization.

Proving 2WL

Proving two watched literals proved to be quite tricky. Because we imple-
ment clauses as a vector of literals, we have to prove that the reordering of
the clauses maintains all invariants and notions of satisfiability. The same
applies to the popping and pushing of the Watches. These goals, in combin-
ation with a few others, are the "notoriously sticky" goals of the proof. This
seems to be linked to sequences being modeled opaquely in WHY3, though
there might exists solutions which could be employed, either in CREUSOT

or by the proof writer.

The "stickyness" introduced by the current proof of 2WL, combined with
discovering that proving 2WL in Isabelle took 15 months [29], made us
decide on foregoing completeness, both in order to save time, and in order
to keep fluidity of the code base as a whole. This allows us to treat 2WL as
an optimization and as largely separate from the solver as a whole, which
again enabled more experimentation in other parts of the solver. The main
issue with fully proving 2WL, and thus maintaining completeness, is that
it would lead to pervasive obligations, and make some changes which one

74

might want to make lead to parts of the proof having to be redone.

That being said, the solver has since become more mature, and it is likely
that proving 2WL, and thus reintroducing completeness, will be looked at
in the not too distant future.

Proving the improvements to 2WL

The two optimizations to 2WL which we prove, are blocking literals
and circular search. Adding and proving blocking literals is, as we
have sacrificed completeness, not very difficult. We simply check the
satisfiability of the blocking literal before entering the body of the
propagate_lit_with_regard_to_clause function. When updating the
blocking literal, we simply have to maintain the safety invariant that the
variable of the literal is less than the number of variables for the formula.

Proving circular search, on the other hand, is a bit more cumbersome. We
considered adding an invariant that the carried search index is between 2
and the length of the associated clause, but decided that this was not worth
it. The main issue is that this invariant became somewhat pervasive, and
all functions which do clause reorderings, additions or deletions would
have to either reestablish the property, or prove that it is maintained. We
therefore opted for the following:

let mut search = util::max(util::min(search, clause.len()), 2);

which seems to have had negligible performance impact. The loop is then
split into two loops, one which iterates from search to clause.len(), and
then one which iterates from 2 to search.

5.4.2 Variable move-to-front

Whenever unit propagation does not return a conflict clause or a ground
conflict, we either have a complete assignment, in which case we are SAT,
or we have an incomplete assignment, and must therefore make a decision.
The simplest alternative is to make for instance an either arbitrary or a
random decision, neither of which are very good. A step up from not
discriminating, is to calculate some metric for each variable, and then
choose the variable which has the highest score. Examples of such scores
could be the number of occurrences of a variable, or number of occurrences
with a metric favoring literals which occur in shorter clauses.

Such metrics are significantly better than arbitrary or random decisions,
but they can be further improved upon. During the search, it is possible to
gain information about which variables are actually important, and update
the decision order. This is done by favoring literals which occur in recently
learned clauses. This is what is done by the two decision heuristics which
are considered state-of-the-art. The first of these is called (Exponential)
Variable State Independent Decaying Sum (EVSIDS/VSIDS), and was also
introduced by the Chaff solver. The second of these, and the one we choose
to implement, is called variable move-to-front (VMTF).

75

We choose to implement the VMTF heuristic as it performs at least as well
as VSIDS, while in general being considered easier to implement and to
reason about, as it does not require a heap, nor floating point numbers.
The VMTF heuristic was originally presented by Lawrence Ryan in his
Master’s thesis [51]. Even though the thesis demonstrated good results
for the heuristic, VSIDS has remained as the dominant decision heuristic,
likely because Ryan never released the source code to his solver. That being
said, largely due to [10] by Biere and Fröhlich in 2015, and the subsequent
adoption of VMTF in solvers such as CaDiCaL, Splatz [8], and IsaSAT [21],
the VMTF heuristic has gained in popularity in recent years.

We will be implementing the VMTF of Biere et al., as it is presented in [10]
and [21]. We will be employing the moving to front of all of the literals
which are involved in conflict analysis, rather than the moving of a small
constant, e.g. 8, as described in [51]. The VMTF of Biere et al. consists
of having a doubly-linked linked list stored in a vector or array, ensuring
O(1) enqueue and O(1) dequeue. Furthermore, each node also stores a
timestamp, indicating the last time it was moved to front. When using the
linked list, we maintain the invariant that the linked list is sorted in reverse
order with regards to timestamps, or in other words: the high timestamps
are towards the start of the linked list, and the low timestamps are towards
the end. A note here is that we sort the variables to bump on current
timestamp, and thus keep the relative order of the bumped variables.

We also maintain a current search index, such that everything "before"
(reachable by following a series of previous-pointers from the search index
to the INVALID pointer) the search index are assigned. Maintaining these
invariants means that finding the next unassigned index is cheap, and
backtracking simply requires us to check if the timestamp of the unassigned
index is higher than the current search index, and is thus also cheap.
Finally, as the timestamp may overflow, we check for this, and eventually
do a rescoring of all the nodes in the list, maintaining their order and their
invariant.

We implement VMTF with the Decisions struct:

pub struct Decisions {
pub linked_list: Vec<Node>,
timestamp: usize,
pub start: usize,
pub search: usize

}

where Node is defined as:

pub struct Node {
pub next: usize,
pub prev: usize,
pub ts: usize,

}

76

timestamp stores the current timestamp, start stores the index of the
first node of the linked list ("head"), and search is the index to start the
next search for an unassigned index to decide on. Each Node stores its
timestamp, ts, as well as the index to the node before it, and the index to the
node after it. We use usize::MAX as the value for None, as we have bounded
the number of variables of the formula to usize::MAX/2. We have not
tested whether this actually gives any performance or space improvements
over using Option<usize>, but it may, and it also makes the ergonomics of
the specifications marginally better.

Proving decision heuristics is not as difficult as it initially may seem. The
key insight is to realize that one can treat the decisions as entirely separate
from the rest of the solver, and that one can get away with just proving
safety. We therefore implement VMTF, prove its safety, then add a linear
check at the end which checks that all variables have been assigned. In
the case that there exists an unassigned variable, this variable is returned.
It should be noted that we could prove away this check, but we have not
prioritized it, as it is a linear pass which will run once for instances which
are SAT, and never for instances which are UNSAT. The current check does
not introduce incompleteness, nor affect performance, so we believe effort
is better spent elsewhere.

The final proof of VMTF is thus a proof of the safety of the linked list, and
that all the variables which are returned from the get_next function are
unassigned and in bounds with regards to the partial assignment.

5.4.3 Phase saving

When making a decision, we have to find an variable which is unassigned,
and then decide on which polarity to assign. Previously this was done as a
part of the decision heuristic, but what is now considered state-of-the-art is
a technique which is called phase saving. It is really a quite simple technique:
when deciding on a polarity, choose the same polarity as the last time the
index was assigned. If the index has not been assigned to before, it is usual
to assign it to false, but one could also opt to assign true, choose at random,
or base the choice on some calculation. We choose to initially try setting
each index to false.

Implementing and proving phase saving are both fairly straight forward, at
least with the way we chose to represent the partial assignments. Initially
we represented assignments as a Vec<Option<bool>>. As Option<bool>
has three possible values, we are guaranteed not to have a bitarray, most
likely ending up with using a byte for each of our assignments. This leaves
us in a situation where we either implement two vectors — one which
keeps track of which indexes are assigned, and one which contains the
actual assignments, or we accept the one byte per value, and represent our
assignments as a vector of u8s.

The first alternative not only less ergonomic to use and to reason about,
it is not even likely to be any faster, especially when one later wants

77

to add phase saving. We therefore refactored the code to represent the
assignments as a Vec<u8>, and solve the issue of unassigning in the
following way:

pub fn unassign(&mut self, idx: usize) {
self[idx] += 2;

}

Proving this then becomes quite easy, we just have to require that the index
is assigned on entry.

Similarly, on assigning a decision, we simply decrement the value at the
index by 2, and prove safety and correctness by requiring that the index is
either 2 or 3 on function entry.

5.4.4 Clause database simplification

As the solver progresses, it may learn clauses which enables the clause
database to be simplified. Most of the techniques which are applied by
the state-of-the-art are out of scope for this thesis, but we will implement
a very simple clause database minimization mechanism. The technique
we implement is essentially a simplified version of pure literal elimination.
When we learn a unit clause, we unwatch all clauses which have become
satisfied by the unit clause, as they will now always be satisfied. Ideally,
we would also remove all occurrences of the negation of the literal of the
unit clause, which we could model as a resolution step which results in the
removal in the unit clause.

For the proof, we simply exploit the incompleteness introduced by the
current proof of watched literals, and remove the watches for the clause.
If we reintroduce completeness at a later point, this would not work for
clauses which are a part of the original formula. We would then either
have to prove that a unit clause enables the deletion of all the clauses where
it occurs, or make do with only deleting learned clauses. As all learned
clauses are implied by the initial formula, their deletion can be done at
will.

5.4.5 Clause deletion

As the search progresses, more and more clauses are added to the clause
database. As clauses are added to the clause database, they are added to the
watch list as well, making the unit propagation mechanism take more and
more time. To mitigate this slowdown, clauses are deleted from the clause
database, which also has the benefit of using less memory. As observed
for instance by Audemard and Laurent in [2], more than half of the learnt
clauses do not occur in the final proof of unsatisfiability. Though they may
propagate a clause which is not useful, or update the heuristics to lead to a
favourable effect, keeping them around is a net negative. The same is the
case for clauses which do occur in the final proof, but which will not be
used again during the run of the solver.

78

We don’t know for certain which clauses are useful, and which are not, but
certain heuristics are better than others. In general, useful clauses are those
which are likely to become involved in unit propagation. This is linked to
the length of the clause, and thus many solvers keep clauses which are less
than some length. It is also linked to what is called the Literal Block Distance
(LBD) which was introduced by the Glucose solver [3]. The LBD of a clause
is initially calculated when learning a clause, and is simply the count of
distinct decision levels among the literals of the clause. The intuition for
why LBD is useful, is that it captures clauses which have literals which are
"linked". A clause with a low LBD has required few decisions to become
unsatisfied, even though it might consist of many literals. This means
that an assignment to any of the "linked" literals is likely to lead to the
propagation of the other "linked" literals, and the clause is thus likely to be
involved in unit propagation.

There are multiple designs for clause deletion. The design we chose was
to implement it as a two phased design, where the first phase simply
unwatches the clauses to be deleted, and the second phase cleans up and
frees the deleted clauses. If one does it in one phase, either deletion has
to be combined with search restart, or one has to check whether the clause
exists as the antecedent for some assignment in the trail when doing the
deletion. Splitting it into two phases circumvents this issue, as one can do
memory reclamation at a point when one is sure the clauses do not exist as
antecedents, such as during search restart.

We have yet to implement the actual garbage collection phase, and are thus
wasting memory. This should not be a conceptually very hard proof, as we
are maintaining the invariant that all the clauses which have been added to
the clause database are equisatisfiable extensions of the initial formula, and
can thus be added and removed at will. It will, however, most likely be a
somewhat tedious proof, as poping from vectors always leads to having
to prove that invariants are maintained. As we have yet to experience
issues with memory, we have not prioritized this effort. We thus simply
exploit the incompleteness introduced by 2WL to gain clause deletion with
minimal required proof work.

5.4.6 Search restart

Search restarts has its origin in the desire to avoid heavy-tailed behaviour
for SAT instances when running the DPLL algorithm. The observation was
that the solver could get "stuck" in an area of the search space where there
was no solution, while if it had done a different decision early on in the
search, it would find a solution and terminate. This effect of search restart
persists in CDCL solvers. In addition, doing a search restart enables the
solver to learn clauses from a different part of the search space, which is
helpful both for SAT and UNSAT instances.

A consideration when implementing search restart is how often to restart,
and how much to increase the delay between each restart. If one restarts

79

too often, one might not make any meaningful progress, and miss either
a potential solution or the learning of important clauses. Restarting too
seldom leads to the aforementioned problem of being stuck. If search
restart is combined with clause deletion, either restarts have to become
less and less frequent, more and more clauses have to be kept, or both,
otherwise the solver may become non-terminating.

There are a few schemes for clause restarts which are popular. The first
scheme, which for instance MiniSat uses, is what is called Luby restarts,
which based on the Luby sequence of Luby, Sinclair and Zuckerman [33].
The second scheme, which was popularized by the Glucose [3] solver, is
usually called Glucose (style) restarts, or aggressive restarts.

It may also be called exponential moving average (EMA) based restarts,
as it is based on keeping track of the slow-moving and the fast-moving
averages of the LBD of learned clauses. In the case that the fast-moving
average is substantially higher than the slow-moving average, the search
is restarted. This corresponds to recently learned clauses having an on
average high LBD, or, in other words: we are learning bad clauses.

Aggressive restarts are very useful, but they have one drawback: they may
cause a SAT assignment to be missed. The scheme was therefore later
extended to block a restart if the current length of the trail is significantly
longer than the average length of the trail for the last 5000 conflicts [4].

Recently, combining Luby restarts and Glucose style restarts has become
popular. This was introduced in [49] by Chanseok Oh, and has later been
refined through a technique which is called target phases. Target phases was
introduced by CaDiCaL in 2019, and was later described in [9]. It combines
a hybrid restart strategy with a refinement of phase saving. Instead of
always choosing the last assigned polarity, the solver also has "phases"
where it may try for instance always true, always false, random, or the
opposite of the saved phase.

As we did not learn about the hybrid techniques until quite recently, we
implement a search restart scheme which is similar to the one found in
Glucose. It should be noted that it is likely that we will add target phases
in the near future.

Implementing and proving search restart is fairly straightforward. Search
restart is just the act of backtracking to asserting level, and then continuing
backtracking. In other words, we get most of the implementation for free.

5.5 The top level contracts

We end this chapter with a presentation of the top level specifications of
the entry point to our solver. In other words: if you agree that these
specifications capture the correctness of a SAT solver, then you agree that
we have, indeed, created a SAT solver which is verified to be correct.

80

Whereas we previously treated inner and non-inner predicates as being
the same, we will now provide the entirety of the specifications, ad
verbatim. This is because we were before presenting the ideas of the proof,
whereas we are now providing the contract of our solver.

We start with presenting the data structures which will appear throughout
our specifications:

pub type AssignedState = u8;
pub struct Lit {

pub idx: usize,
pub polarity: bool,

}
pub struct Clause {

pub rest: Vec<Lit>,
}
pub struct Formula {

pub clauses: Vec<Clause>,
pub num_vars: usize,

}

A note about Clause is that its field is called rest. This is due to a previous
attempt of having all clauses be at least binary, with the fields first for
the first literal, second for the second literal, and rest for the remaining
literals. This experiment did not pan out proof-wise, but as we would like
to resume the experiment in the future, we have kept the naming.

We also present their models:

impl Model for Clause {
type ModelTy = Seq<Lit>;
#[logic]
fn model(self) -> Self::ModelTy {

self.rest.model()
}

}

impl Model for Formula {
type ModelTy = (Seq<Clause>, Int);
#[logic]
fn model(self) -> Self::ModelTy {

(self.clauses.model(), self.num_vars.model())
}

}

impl Model for Assignments {
type ModelTy = Seq<AssignedState>;
#[logic]
fn model(self) -> Self::ModelTy {

self.0.model()
}

81

}

We simply call the model() function on their composite parts. We do not
define a model for Lit .

The entry point of CreuSAT:

#[ensures(match result {
SatResult::Sat(assn) => { formula_sat_inner(@(^formula), @assn)

&& formula.equisat(^formula) },
SatResult::Unsat => { (^formula).not_satisfiable()

&& formula.equisat(^formula) },
_ => { true },

})]
pub fn solver(formula: &mut Formula) -> SatResult

We will start with explaining SatResult. Then we will look at equisat,
before looking at the satisfiability predicates.

SatResult is an enum which is defined as follows:

pub enum SatResult {
Sat(Vec<AssignedState>),
Unsat,
Unknown,
Err,

}

The Sat variant gives a satisfying assignment of the formula. The Unknown
variant exists in case we make the solver incremental in the future, and the
Err variant exists both to capture errors such as an invalid formula, and to
allow for the aforementioned incompleteness.

equisat is as previously discussed:

impl Formula {
#[predicate]
pub fn equisat(self, o: Formula) -> bool {

pearlite! { self.eventually_sat_complete_no_ass() ==
o.eventually_sat_complete_no_ass() }

}
}

The same applies to eventually_sat_complete_no_ass:

#[predicate]
pub fn eventually_sat_complete_no_ass(

f: (Seq<Clause>, Int)) -> bool {
pearlite! { exists<a2: Seq<AssignedState>> a2.len() == f.1
&& complete_inner(a2) && formula_sat_inner(f, a2) }

}

eventually_sat_complete_no_ass calls the predicate complete_inner(),
which is the same as before:

82

#[predicate]
pub fn complete_inner(a: Seq<AssignedState>) -> bool {

pearlite! { forall<i: Int> 0 <= i && i < a.len() ==> !unset(a[i]) }
}

It also calls formula_sat_inner. It is conceptually the same satisfiability
predicate as the one used in Friday and in Robinson. We provide it and its
component parts for the sake of completeness:

#[predicate]
pub fn formula_sat_inner(f: (Seq<Clause>, Int),

a: Seq<AssignedState>) -> bool {
pearlite! { forall<i: Int> 0 <= i && i < f.0.len() ==>

f.0[i].sat_inner(a) }
}

impl Clause {
#[predicate]
pub fn sat_inner(self, a: Seq<AssignedState>) -> bool {

pearlite! { exists<i: Int> 0 <= i && i < (@self).len() &&
(@self)[i].sat_inner(a) }

}
}

impl Lit {
#[predicate]
pub fn sat_inner(self, a: Seq<AssignedState>) -> bool {

pearlite! {
match self.polarity {

true => (@a[@self.idx] == 1),
false => (@a[@self.idx] == 0),

}
}

}
}

The SatResult::Sat(assn) branch of the match statement thus says that
our final formula is equisatisfiable with the formula given at entry, and that
the final formula is satisfiable with the Assignments assn.

This leaves SatResult::Unsat. It calls the predicate not_satisfiable()

impl Formula {
#[predicate]
pub fn not_satisfiable(self) -> bool {

pearlite! {
exists<c: Clause> (@c).len() == 0
&& c.equisat_extension(self)

}
}

}

83

not_satisfiable() simply states that the empty clause is an equisat
extension of the formula — that the formula implies the empty clause.
equisat_extension is, as we remember, defined as follows:

#[predicate]
pub fn equisat_extension_inner(

c: Clause, f: (Seq<Clause>, Int)) -> bool {
pearlite! {

eventually_sat_complete_no_ass(f) ==>
eventually_sat_complete_no_ass((f.0.push(c), f.1))

}
}

And that is the entirety of specification. Note that we do not put any
requirements on the input formula. We thus try to establish the formula
invariant on entry, and return an error in the case that the formula is
malformed.

84

Part IV

Evaluation and the road ahead

Chapter 6

Evaluation

In this chapter we will evaluate Robinson and CREUSOT in terms of
performance, lines of code, and how long they take to prove. We will
compare them to a collection of other solvers, some of which are verified,
some of which are not. Finally we will discuss the results.

6.1 Setup

Execution setup

We will be testing the solvers on the StarExec cluster, which is the cluster
which the SAT competitions are held on.

At the time of writing, this is the specification of the StarExec cluster, as
stated on https://www.starexec.org/starexec/public/machine-specs.txt:

Starexec stats nodes 001 - 192:
Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz (2393 MHZ)

10240 KB Cache
263932744 kB main memory

Software:
OS: CentOS Linux release 7.7.1908 (Core)
kernel: 3.10.0-1062.4.3.el7.x86_64
glibc: glibc-2.17-292.el7.x86_64

gcc-4.8.5-39.el7.x86_64
glibc-2.17-292.el7.i686

We will be building CreuSAT with the following command:

RUSTFLAGS='-C relocation-model=static' cargo build --release
\ --target x86_64-unknown-linux-musl

We are building on a 64-bit Manjaro 21.2.6 with the 5.10.117-1-MANJARO
kernel and the following version of rustc:

rustc 1.61.0 (fe5b13d68 2022-05-18)

87

https://www.starexec.org/starexec/public/machine-specs.txt

We compile with the following flags:

-O3

Verification setup

We will be using CREUSOT commit #830cec1with rustc nightly-2022-05-14
and WHY3 version 1.5. We will be running the default auto level 3 strategy
in the WHY3 IDE. We will be using Alt-Ergo 2.4.1, Z3 4.8.12, and CVC4
1.8. We are doing the benchmarks on Manjaro 21.2.3 with the 5.10.98-
1-MANJARO kernel. The CPU is an Intel(R) Core(TM) i7-7700K CPU
@ 4.20GHz, and the memory is 4 x 8GB of Corsair Vengeance DDR4
3000MHz.

WHY3 allows for specifying a time limit, a memory limit and a process
limit for external provers. We will for all configurations use a time limit
of 0 seconds, corresponding to no timeout. We will be running once
with the configuration of 1 prover and 16 GB of memory, and once with
the configuration of 8 provers and 4GB of memory. We will call the
first configuration "single-threaded", and the second configuration "multi-
threaded". We did attempts with 16 provers with 2 GB each and 32 provers
with 1 GB each as well, but they were indistinguishable performance-wise
from 8 provers with 4 GB of memory each.

We verify TrueSAT commit #62f52fd as found in the repository of Cezar
Andrici. The verification is done on the aforementioned Manjaro with
Dafny 3.6.0.40511 and the Dafny Visual Studio Code extension version 2.4.0
with
aspnet-runtime-6.0.2.sdk102-1.

We build TrueSAT using the provided Makefile. To execute the code, we
use the Mono JIT compiler version 6.12.0.

We verify IsaSAT commit #a09e37b as found in the IsaFoL reposit-
ory. The verification is done on the aforementioned Manjaro with
Isabelle2021-1, isabelle_llvm commit #547c8a2 and afp-2022-06-07. We run
the following command: isabelle build -d „/afp-2022-06-07/thys
-d „/isabelle_llvm/thys -d . -b IsaSAT

We will be benchmarking IsaSAT as submitted to SAT Competition 2022.

We will be benchmarking versat as found on the homepage of Aaron
Stump per 11.01.22. Built with gcc 8.5.0 and the following command: gcc
-s -m32 -std=gnu89 -O2 versat.c -o versat on Red Hat Enterprise
Linux 8.6, kernel version 4.18.0, and then submitted as built to the StarExec
cluster.

6.2 Evaluation of Robinson

We will be comparing Robinson with TrueSAT. TrueSAT is a pure DPLL
solver written and verified with Dafny, and it is thus quite similar to

88

https://github.com/andricicezar/TrueSAT
https://bitbucket.org/isafol/isafol/src/master
https://github.com/lammich/isabelle_llvm/tree/2021-1
https://homepage.divms.uiowa.edu/~astump/software.html

Robinson, both in terms of what the code does, and in how the proof is
conducted.

Verifying Robinson

Verifying Robinson by choosing a the root node in WHY3 and running the
auto level 3 takes around 1 minute, 46 seconds of wall-clock time when
running single-threaded, and around 24 seconds of wall-clock time when
running multi-threaded.

Verifying Robinson after having done proof discovery by obsoleting all the
proofs, and then replaying all the obsolete proofs in WHY3 takes around 24
seconds of wall-clock time when running single-threaded, and around 10
seconds of wall-clock time when running multi-threaded.

Using the WHY3 proof replay feature by running time why3 replay
-Lprelude mlcfgs/Robinson in the root directory of the repository yields
the following: 42,64s user 1,77s system 275% cpu 16,144 total

Verifying TrueSAT

Verification of TrueSAT takes 1 minutes 36 seconds when running with 8
cores, and 4 minutes 22 seconds when running single-threaded.

Benchmarking the solvers

Benchmark Robinson TrueSAT CreuSAT

uf100 14.69 72.73 1.18
uuf100 33.80 121.86 2.62
uf125 8.85 26.43 0.44

uuf125 18.38 54.45 0.97
uf150 35.11 110.79 1.38

uuf150 98.34 298.70 3.50
uf175 213.06 613.27 5.21

uuf175 520.56 1924.57 14.05
uf200 950.48 4189.55 23.68

uuf200 2301.75 10491.42 67.40

Table 6.1: Results of running the solvers on random 3SAT benchmarks

Benchmark Robinson TrueSAT CreuSAT

hole6 0.085 0.056 0.088
hole7 0.137 0.153 0.139
hole8 0.949 2.254 3.759
hole9 15.274 45.445 57.162

hole10 281.032 1088.263 491.569

Table 6.2: Results of running the solvers on pigeonhole problems

89

As we were not sure whether we would get TrueSAT to work on the
StarExec clusters, we chose to do the benchmarking locally. DPLL solvers
are, except for problems such as those based on the pigeonhole principle,
orders of magnitudes slower than CDCL solvers. We therefore believe that
running Robinson and TrueSAT on problems from the SAT competitions
would not be very insightful. We instead choose to run the solvers on the
problems used by Andrici and Ciobâcă in [1], under the assumption that
these were chosen due to being suited to evaluate DPLL solvers.

These are random 3SAT problems from the SATLIB problems, as found
per 14.05.22. The uf100 and uuf100 problem sets consist of 1000 problems
each, whereas the rest consist of 100 problems each. As DPLL solvers
are known to outperform CDCL solvers on pigeonhole problems, we also
benchmark the solvers against the 5 pigeonhole problems which are found
in the SATLIB benbchmarks. The given times are in seconds, and is the
time it takes to run the given solver on all the problems in the problem set.
We include CreuSAT for comparison reasons.

6.3 Evaluation of CreuSAT

We will be comparing CreuSAT with the verified SAT solvers versat and
IsaSAT. These are, to the best of our knowledge, the only two verified
solvers which have been able to solve a substantial amount of problems
from the SAT competitions.

versat

versat was introduced as a part of the PhD thesis of Duck Ki Oe [48] in
2012. It is written in the dependently typed programming language GURU,
which offers code generation to the C programming language. versat was,
at the time of its creation, the highest performing verified SAT solver, and
remained as this until being surpassed by IsaSAT in 2018.

The source code of versat totals 9884 lines of code, of which it is estimated
that around 80% is auxiliary code [48]. Oe does not state how long it takes
to verify versat. We have not prioritized getting GURU to work, largely
because the GURU programming language has been discontinued since
2012.

IsaSAT

IsaSAT is a verified SAT solver which was introduced in 2018 [21], and
which has since been improved. IsaSAT is based on a refinement technique
in Isabelle/HOL, and is a part of the Isabelle Formalization of Logic
(IsaFoL) [27] project.

Running the build command results in the following:

• Finished Isabelle_LLVM (0:10:05 elapsed time, 0:34:42 cpu time,
factor 3.44)

90

https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

• Finished Watched_Literals (0:33:00 elapsed time, 1:24:31 cpu time,
factor 2.56)

• Finished IsaSAT (1:20:56 elapsed time, 4:33:34 cpu time, factor 3.38)

In terms of lines of code, IsaSAT is a lot larger than versat. The CDCL
session is around 25 thousand lines of code, the Watched_Literals session
is around 44 thousand lines of code, and the IsaSAT session is around
78 thousand lines of code. It should be noted that much of this has
been generated automatically, by using the Sledgehammer functionality in
Isabelle, and that much of this code is needed to support borth LLVM and
SML as compile targets.

We also count the lines of code of the IsaSAT of branch CPP 2019, which be
believe corresponds to IsaSAT-30 of [20]. The line count for this version is
around 104 thousand lines of code.

CreuSAT

The current version of CreuSAT has a bit over 4 thousand lines of code, with
a proof overhead of around 3 to 1.

Most versions of CreuSAT has had its proof pass by running auto level
3 and waiting. The current version needs manual intervention on the
move_to_end and remove_from_clause functions in Clause. These do not
pass after splitting, but pass when running Alt-Ergo on them for 15 and 7
seconds, respectively. We also have to manually do inline_all + split on a
few of the subgoals. We thus prove CreuSAT by running Alt-Ergo without a
time limit on these, and then run WHY3 auto level 3 on the root node. Once
we see that auto level 3 has become stuck, we do the manual steps. Time is
measured from the instant the first Alt-Ergo solver is dispatched, and ends
when the root node is verified.

Verifying CreuSAT by doing the procedure stated above takes around 53
minutes of wall-clock time when running single-threaded, and around 15
minutes of wall-clock time when running multi-threaded.

Verifying CreuSAT after having done proof discovery by obsoleting all the
proofs, and then replaying all the obsolete proofs in WHY3 takes around 9
minutes and 3 seconds of wall-clock time when running single-threaded,
and 3 minutes and 14 seconds of wall-clock time when running multi-
threaded.

Using the WHY3 proof replay feature by running time why3 replay
-Lprelude mlcfgs/CreuSAT in the root directory of the repository yields
the following: 996,67s user 27,10s system 405% cpu 4:12,31 total

Performance evaluation

We will, in addition to CreuSAT, IsaSAT and versat, also benchmark the
following solvers:

91

• CleanMaple_PriPro as submitted to SAT Competition 2021. Chosen
as it was the lowest performing solver of the previous SAT competi-
tion, and does thus indicate the "bottom" of the state-of-the-art.

• Kissat_MAB as submitted to SAT Competition 2021. Chosen as it was
the highest performing solver of the previous SAT competition.

• Minisat-v2.2.0-106-ge2dd095, simp_proof as submitted to SAT Com-
petition 2018. Chosen as it is the latest version of the well-known
MiniSat solver.

• Varisat as submitted to SAT Competition 2018. Chosen as it is, to the
best of our knowledge, the best SAT solver written in Rust to ever
enter the SAT Competition.

• MicroSat as it exists in the repository of Marijn Heule per commit
#04f9625.

SOLVER SAT UNKNOWN UNSAT
Kissat_MAB 230 204 217

MiniSat 282 211 158
Varisat 281 230 140
IsaSAT 175 346 130

CleanMaple 253 290 108
CreuSAT 210 362 79
versat 60 529 62

Table 6.3: Results of running the solvers on the SAT Race 2015 problems

SOLVER SAT UNKNOWN UNSAT
Kissat_MAB 230 104 217

MiniSat 200 193 158
Varisat 200 211 140
IsaSAT 175 246 130

CleanMaple 182 261 108
MicroSat 158 288 105
CreuSAT 145 327 79
versat 60 429 62

Table 6.4: Results of running the solvers on the SAT Race 2015 problems
with the manthey_Dimacs* problems removed

We run the solvers on the 651 benchmarks of the SAT Race 2015 with a
memory limit of 24 GB and a time limit of 1800 seconds.

We choose these benchmarks as they are the most recent benchmarks which
currently exist on the StarExec clusters. This means that we can test
on them without using of our storage quota, which we need for storing
solvers, results and some other CNF files which we use for testing.

A thing to note about table 6.3 is that IsaSAT and Kissat rejects, due to
discrepancies in the CNF-file, 100 benchmarks which are known to be

92

https://github.com/marijnheule/microsat

SAT. These problems also revealed a soundness issue in MicroSat, which
reported these as being UNSAT, even though they are SAT. They also cause
versat to crash. We therefore also present 6.4, which has these benchmarks
removed.

6.4 Discussion of results

Discussion of the Robinson results

As we can see from table 6.1, Robinson is consistently around 3 to 5 times
faster than TrueSAT. We believe this is in part due to Robinson being
written in Rust, which in general is faster than C#, and in part due to the
problem set not favouring the improvements which TrueSAT implements,
and which we do not implement. The first difference between Robinson
and TrueSAT is in terms of variable heuristic. TrueSAT implements the
Maximum Occurrences in clauses of Minimum Size (MOMS) variable
ordering heuristic, whereas Robinson simply does a count of the number of
occurrences of all the variables on solver entry, and uses that as its order. As
all the clauses are of the same length, MOMS becomes a dynamic maximum
occurrence heuristic.

The second optimization which TrueSAT implements, and we do not, is to
keep a count of how many literals are satisfied in each clause at all times.
This enables more efficient identification of clauses which are unit than
having no scheme, but is more expensive than 2WL. As we went straight to
2WL, we do not know how efficient such a scheme is. We believe much of
the gain from this scheme is lost due to the fact that all of the clauses have
a length of 3, and thus visiting all of the clauses to check whether they are
unit is not very expensive.

We are not all that surprised that Robinson is faster on the pigeonhole
problems as well, as these also contain short clauses. We also do not
see how the slight difference in decision heuristic would be beneficial, as
we have to explore the entirety of the search space anyways. What we
however are somewhat surprised by is that CreuSAT performs so well on
the pigeonhole problems in general, and the hole10 problem in particular.
This is likely in part carried by the fact that CreuSAT in general has slightly
faster code than Robinson, for instance by using unsafe indexing methods,
which Robinson does not. We also see that both Robinson and TrueSAT
are completely outclassed by CreuSAT on the random 3SAT problems —
an expected result, which highlights the performance difference between
CDCL and DPLL solvers.

Verifying Robinson is about twice as fast as verifying TrueSAT when
running single threaded, and about four times as fast when running multi-
threaded. This is much less of a difference than expected, as the version
described in [1] took 13 minutes to verify. They state in the same paper that
it used to take 2 hours, which indicates that they have put in an effort to
reduce the verification time. We have not looked into reducing the time

93

https://github.com/marijnheule/microsat/issues/8

to verify Robinson, but it may be that the same techniques which have
benefited TrueSAT may benefit Robinson as well.

Discussion of the CreuSAT results

There are a couple of things to note about the performance results. The
first is that, though there is still some more to go to become competitive
with the state-of-the-art, CreuSAT is able to solve a substantial amount
of the problems. As we can see from table 6.4, CreuSAT solves 85 more
SAT instances than the verified solver versat, and 30 less than the verified
solver IsaSAT. We can also see that it solves 17 more UNSAT instances than
versat, and 51 less UNSAT instances than IsaSAT. This brings us to the
second thing to note: there is a substantial difference between the amount
of solved SAT instances and the amount of solved UNSAT instances.

We can see from the table that this is the case for other solvers as well,
though the difference is more pronounced for CreuSAT. This suggests that
it may in part be explained as an artifact of the problem set, and in part as
a defect of CreuSAT. The fact that Kissat exhibits this behaviour to a lesser
degree, may suggest that there is substantial gain in doing preprocessing,
which most of the other solvers do not do.

We also believe that the difference may be due to two other reasons:
lack of clause minimization, and a suboptimal heuristic for restarts and
clause deletions. Indeed, an unverified extension of CreuSAT with a better
heuristic solves 17 more UNSAT instances, while only solving 2 more
SAT instances. Though heuristics in general are considered easy to prove,
verifying this better heuristic would require making a design change. As
we are still considering whether we want to make this change, we have not
prioritized verifying this improvement.

As for the lack of clause minimization: we believe this would yield a
substantial improvement. The smaller clauses are beneficial as they, in
addition to having fewer literals to visit, also prune the search space more
efficiently. This helps for both the SAT and the UNSAT problems, but
should boost UNSAT performance more than it boosts SAT performance.
A formula being UNSAT corresponds exactly to a series of resolution steps
from the input formula to the empty clause, and having shorter clauses
results in this proof being shorter. For the SAT case we still have to at some
point experience a sufficiently long period without restarts that we manage
to reach a satisfying assignment.

We believe these two changes would bring the solver closer to the state-
of-the-art in terms of performance, especially with regards to UNSAT
problems. That being said, we are very content with the current
performance, especially when considering the size of the program and the
size of the proof. CreuSAT manages to achieve a performance which is
better than versat with less than half as many lines of code. Comparing the
proof overhead against IsaSAT is a bit more difficult, as IsaSAT has better
performance than CreuSAT.

94

We have not been able to get IsaSAT-30 to work on the StarExec clusters,
but, we conjecture, based on the results of [20], where IsaSAT-30 solved 801
problems, and MicroSat solved 1018 problems, that we are around the same
performance as IsaSAT-30, potentially slightly above. IsaSAT-30 consisted
of a bit more than 104 thousand lines of code, which is 100 thousand lines
more than CreuSAT. We have not been able to prove IsaSAT-30, but we do
not find it likely that it proves in less than 15 minutes, which is the time
CreuSAT takes, when modern IsaSAT requires a little over two hours.

95

Chapter 7

Conclusion

In this chapter, we summarize the main contributions of the thesis. After
that, we discuss CREUSOT, and revisit the belief which lead to this thesis.
Then we will look at some of the related work. Finally we discuss the future
of CreuSAT.

7.1 Summary of Contributions

We identify the following contributions:

• We present, to the best of our knowledge, the largest proof of Rust
code to date.

• We present a positive example showing the efficacy of the prophetic
encoding of mutable pointers, and of CREUSOT in particular. Its
robustness can be seen both in reduced verification effort and in
reduced verification times.

• We present the first verified SAT solver which is able to solve a sub-
stantial amount of problems from recent SAT competitions without
the use of interactive theorem provers and code synthesis. This is not-
able both in terms of showing the viability of deductive verification
in general, and of Rust as a target for deductive verification efforts.

• We present the second fastest verified SAT solver to date.

7.2 Discussion of CREUSOT

This thesis has its origin in the belief that CREUSOT, or a tool like CREUSOT,
could, through leveraging the Rust type system, offer improvements over
existing methods. We believe that this thesis provides substantial evidence
for this belief, and have thus increased our confidence in this initial belief.
We would in that regard like to do a short discussion on our experience
with using CREUSOT. This section is based on our experience and is
therefore subjective.

97

The success of this thesis is in large part because of Rust and because of
CREUSOT, but it also in part despite them. CREUSOT did not have support
for vectors until October of last year, and there are many features which
either are not supported, or are just now being supported1. There are still
many opportunities to achieve nonsensical errors in WHY3, and we still
manage to find new ways to get CREUSOT to crash. There is also some to be
desired with regards to the user experience, and the resources for learning
CREUSOT have until now been close to non-existent.

Though none of this is desirable, they are also the sort of thing which it is
both possible to overcome, and possible to solve. It is quite remarkable
how much CREUSOT has improved since RustVerify of last year, and it
seems to be likely that progress will continue. Most of the faults are at the
surface level, and the core is solid. CREUSOT generates VCs which check
out quickly, in addition to having access to multiple SMT solvers for the
more challenging VCs. For most VCs it is possible to quickly figure out if
your proof is correct, or, in the case where it is not, to figure out what is
missing. One can then focus on the VCs which take some more time, with
the confidence that it is more likely to be an error in the proof, than that the
SMT solvers need some more time.

7.3 Related work and conclusion

Verification of Rust code

Much of the verification effort in relation to Rust has been done with
regards to verifying the foundation of the language, for instance with
RustBelt [28]. There has also been made a fair amount of verification tools,
some of which are aimed at program verification. Of these, there are a
couple of tools aimed at verifying safe Rust code, and which support a
sufficiently large subset of the Rust programming language that they can
be used for the same purposes as CREUSOT. The first is the Prusti [54]
verification tool, which is based on the Viper [44] verification infrastructure,
and the second is the Aeneas [25] verification toolchain.

Prusti is on the surface level quite similar to CREUSOT, being a deductive
verification tool where one annotates the source code. It is however based
on separation logic, and they do thus model borrows as pledges, instead
of by using the prophetic final (ˆ) operator. What we consider to be a
strength of CREUSOT when compared to Prusti, is the access to multiple
SMT solvers, as well as manual tactics to aid the SMT solvers when needed.
We do not know of any project based on Prusti which is similar in size to
this one, though Prusti has a substantial amount of tests in their repository,
and has also been used for instance in the VerifyThis Competition,

Aeneas is a new tool which is based on the modelling the termination
of a mutable borrow as a backwards function. They do not do program

1It has jokingly been said that CreuSAT is probably the world’s fastest SAT solver
without for-loops. We are not sure IsaSAT has any either, so maybe we are in second place.

98

verification through the annotation of source code, opting rather for
extrinsic proofs, for instance in F* or Coq. Another difference is that their
approach is independent of the concrete implementation of the borrow
checker, meaning that they can verify programs which the current borrow
checker rejects, due to it being too conservative. They implement a low-
level, resizing hash table as their chief case study. In the case that there
exists more work which is based on Aeneas, then we do not know of it.

This means that this thesis represents, to the best of our knowledge, the
largest proof of Rust code to date, in part by default. We believe that we
make a strong case of the efficacy of verifying Rust code, and hope that this
thesis inspires others to use either CREUSOT, Prusti, Aeneas, or some other
tool, to verify Rust code.

Formal verification of SAT solvers

The mechanized verification effort of modern SAT solving algorithms
dates back to the PhD thesis of Filip Marić [35], which was improved
upon in later work [34][36]. The work of Marić et al. is based on a
shallow embedding into Isabelle/HOL. In the same period, Lescuyer and
Conchon developed a formalization in Coq [32], and Shankar and Vaucher
verified a description of a modern DPLL procedure [52]. These early works
either did not offer an executable version, as is the case for Shankar and
Vaucher’s work, or did not prioritize the performance of the solver. They
were focused on creating a proof of the DPLL/CDCL algorithm, whereas
we have been focused on creating an executable SAT solver with high
performance and high correctness guarantees.

A solver which is more similar to CreuSAT in that regard, versat, which,
to the best of our knowledge, is the first verified solver able to solve
a substantial amount of problems from the SAT competitions. As we
demonstrated in the previous chapter, we achieve a better performance
than versat, especially with regards to satisfiable instances, requiring
substantially less proof code to achieve this result. We also compare
favourably in terms of the properties we prove, as versat only gives a
static guarantee of the correctness of the UNSAT result, based on the
argument that checking whether a given model is SAT can be done in
linear time. versat also does the same trade-off as CreuSAT in sacrificing
completeness for performance, and does thus have the same run-time
check to circumvent the proving of 2WL.

A solver which does prove completeness, and which also focuses on
performance, is the IsaSAT solver, which we also looked at in the previous
chapter. There we saw that it outperforms CreuSAT, and is thus, to the
best of our knowledge, currently the fastest verified SAT solver. We also
saw that it requires around 150 thousand lines of proof code to achieve this
result, and that verifying the solver takes hours, instead of minutes, as is
the case for CreuSAT.

It is still too early to say if the reduced code size is beneficial, and if

99

maintaining a fast proving time is doable while further properties and
optimizations are proven. What we do believe is an advantage, though,
is being "code first". Fleury et al. notes in [21] that they spent 2 weeks on
implementing and proving a change in the conflict-clause representation,
only to have it be slower. We do not have to prove code to test its
efficacy, which should yield faster iteration time. Another gain here is
that we can prove our correctness guarantees incrementally: first safety,
then soundness, then completeness, whereas Isabelle has to be given a
specification which is correct and which terminates.

This is, to the best of our knowledge, a capability for verified CDCL SAT
solvers which has not existed before, and ties in with the fact that we
have targeted an imperative implementation directly. The full advantages
and eventual disadvantages of this approach remain to be seen, though
we are optimistic, both in terms of further improvements to proof and to
performance.

Before we revisit the thesis statement, we will briefly mention TrueSAT,
which we compared to Robinson in the previous chapter. TrueSAT is
verified in Dafny, and the structure of the proof is similar to the structure
of the proof of Robinson. As we saw, Robinson was around 3 to 5 times
faster than TrueSAT, and both Robinson and TrueSAT were over an order
of magnitude slower than CreuSAT. This is the case, despite TrueSAT
having both count-based identification of unit clauses, as well as a slightly
better decision heuristic. We thus view Robinson as a more performant
realization of the goal of achieving a verified SAT solver through deductive
verification, and CreuSAT as a further improvement upon Robinson.

Finally, we look at the thesis statement which we set out to explore in the
start of the thesis:

• To investigate whether it is possible to create a formally verified
SAT solver with comparative performance to those based on proof
assistants, while targeting an imperative implementation directly.

Considering that we are currently faster than all but one of the verified
SAT solvers which are based on proof assistant, we believe that it is
indeed possible to create a formally verified SAT solver with comparative
performance to those based on proof assistants, while targeting an
imperative implementation directly.

7.4 Future work

We will in this section look at work that could be done in extension of
Robinson and CreuSAT.

7.4.1 Extending Robinson

With the exception of solving pigeon hole problems efficiently, the need
for fast DPLL solvers is about non-existent. It is therefore not very likely

100

that we will ever improve Robinson substantially, but it may be that others
may want to. We identify the following areas of improvement, ranked in
increasing order of difficulty:

• Implementing and proving better decision heuristics.

• Implementing and proving pure literal elimination.

• Implementing and proving count based unit propagation.

• Making the solver iterative by implementing and proving a trail
mechanism.

• Implementing and proving two watched literals.

Robinson should be much easier to understand and to do changes in than
CreuSAT, and should be a decent starting point for those wishing to try out
proving SAT solvers with CREUSOT.

7.4.2 Improving CreuSAT

Though we are very happy with what we have managed to achieve,
CreuSAT is a piece of software, and, as it usually is with software, there
are possibilities for improvements. In this section we discuss various
improvements to CreuSAT which we would like to pursue in the future.

7.4.2.1 Proving completeness

Though we believe sacrificing completeness for performance has been the
correct choice, a solver which is proven complete is obviously better than
one which is not. Proving completeness for CreuSAT would require proving
the semantics of the 2WL scheme. This took Mathias Fleury 15 months
to do, after already having the abstract CDCL calculus, and experience
with Isabelle [29]. We do not believe that proving this in CREUSOT will
be easy, but we conjecture that it will take less than 15 months to do. A
key realization here is that completeness can be ensured by proving the
correctness of 2WL for the initial formula, and then simply maintain that
the original formula is always watched. It is very likely that we will go for
such a scheme, as it means that further watches, as well as the addition and
deletion of learned clauses can be treated entirely separately.

7.4.2.2 Improving performance and adding features

Though CreuSAT has very solid performance when considering it being
verified, it has still some more to go to become competitive with the
state-of-the-art. An aspect which became apparent once we started
benchmarking, is that we should have benchmarked much earlier, and
tuned our solver to do better at the benchmarks. We believe there is a
decent amount of gain to be had simply in making the code more efficient,
improving the layout of the data structures, in addition to adding further
optimizations.

101

The performance optimizations which we consider to be of the highest
yield at the moment:

• Building up more possibilities in the logic to model actions as
resolution. This desire is based on the insight that most actions
which are done by a CDCL SAT solver can be modelled as resolution.
In addition to being useful in the clause learning algorithm, a
better resolution framework would enable self-subsuming resolution.
Many actions, such as simplification after learning a unit clause, or
learned clause minimization, should be possible to efficiently model
as doing self-subsuming resolution. We will likely build the logical
capacity of modelling actions as resolution together with concrete
implementations of features such as learned clause minimization and
simplification.

• Moving to an arena-based memory management scheme, with
clauses and clause header represented together, as well as special
handling of clauses of various length. This is not something which
has been looked at much, but it should be possible by proving the
correctness of the representation and defining the correct abstraction
barriers for the rest of the specification to use.

• Implementing the target phases technique of CaDiCaL [11]. We did
not realize the significance of this technique until quite recently, but
it should yield quite a substantial improvement on SAT instances
without a substantial amount of work in implementing and proving.
Target phases is essentially an optimization on phase saving, with
the addition of adding "phases" to the search processes. As anything
related to decisions can be proven by simply proving safety, this
should be an optimization with very high yield.

There are also various other techniques, many of which offer small
improvements, which we would like to look at implementing and proving.
To identify which of these to prioritize, we will have to experiment with an
unverified solver.

7.4.2.3 Reducing the time needed to prove the solver

We have demonstrated CREUSOT’s ability to generate obligations which
require little resources to prove. We have however not expended much
resources into making these obligations prove even faster. We believe that
there is a significant possibility for improvements, both for making proof
discovery go faster, and for making the proof with a given proof tree go
faster. We believe some of this can be gained through changes in CreuSAT,
some of this can be gained through changes in CREUSOT, and some through
tuning the heuristics of WHY3. This work is largely out of scope for this
thesis, but is something which we would like to explore in the future.

102

Bibliography

[1] Cezar-Constantin Andrici and Ştefan Ciobâcă. ‘Who Verifies the Veri-
fiers? A Computer-Checked Implementation of the DPLL Algorithm
in Dafny’. In: arXiv:2007.10842 [cs] (19th July 2020). arXiv: 2007.10842.
URL: http://arxiv.org/abs/2007.10842 (visited on 21/11/2021).

[2] Gilles Audemard and Laurent Simon. ‘On the Glucose SAT solver’.
In: International Journal on Artificial Intelligence Tools 27 (Feb. 2018),
p. 1840001. DOI: 10.1142/S0218213018400018.

[3] Gilles Audemard and Laurent Simon. ‘Predicting learnt clauses
quality in modern SAT solvers’. In: Twenty-first international joint
conference on artificial intelligence. 2009.

[4] Gilles Audemard and Laurent Simon. ‘Refining restarts strategies for
SAT and UNSAT’. In: International Conference on Principles and Practice
of Constraint Programming. Springer, 2012, pp. 118–126.

[5] John G. Barnes. Programming in ADA. Addison-Wesley Longman
Publishing Co., Inc., 1984. 340 pp.

[6] Clark Barrett et al. ‘CVC4’. In: Computer Aided Verification. Ed. by
Ganesh Gopalakrishnan and Shaz Qadeer. Vol. 6806. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2011, pp. 171–177.
ISBN: 978-3-642-22110-1. DOI: 10.1007/978-3-642-22110-1_14.

[7] Patrick Baudin et al. ‘ACSL: ANSI C Specification Language’. In:
CEA-LIST, Saclay, France, Tech. Rep. v1 2 (2008).

[8] Armin Biere. ‘Splatz, lingeling, plingeling, treengeling, yalsat enter-
ing the sat competition 2016’. In: Proc. of SAT Competition (2016),
pp. 44–45.

[9] Armin Biere and Mathias Fleury. ‘Chasing target phases’. In: Proceed-
ings of Pragmatics of (SAT) (2020).

[10] Armin Biere and Andreas Fröhlich. ‘Evaluating CDCL variable
scoring schemes’. In: International conference on theory and applications
of satisfiability testing. Springer, 2015, pp. 405–422.

[11] Armin Biere et al. ‘CaDiCaL, kissat, paracooba, plingeling and
treengeling entering the SAT competition 2020’. In: Proc. of SAT
Competition B-2020-1 (2020), p. 4.

103

https://arxiv.org/abs/2007.10842
http://arxiv.org/abs/2007.10842
https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1007/978-3-642-22110-1_14

[12] Yves Bertot Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts
in Theoretical Computer Science. An EATCS Series. Springer Berlin
Heidelberg, 2004. 472 pp. ISBN: 978-3-662-07964-5.

[13] Sylvain Conchon et al. ‘Alt-Ergo 2.2’. In: SMT Workshop: Interna-
tional Workshop on Satisfiability Modulo Theories. 12th July 2018.
URL: https://hal.inria.fr/hal-01960203 (visited on 26/10/2021).

[14] Stephen A. Cook. ‘The complexity of theorem-proving procedures’.
In: Proceedings of the Third annual ACM symposium on Theory of
computing. 1971, pp. 151–158.

[15] Martin Davis, George Logemann and Donald Loveland. ‘A Machine
Program for Theorem-Proving’. In: Commun. ACM 5.7 (July 1962).
Place: New York, NY, USA Publisher: Association for Computing
Machinery, pp. 394–397. ISSN: 0001-0782. DOI: 10 . 1145 / 368273 .
368557. URL: https://doi.org/10.1145/368273.368557.

[16] Martin Davis and Hilary Putnam. ‘A Computing Procedure for
Quantification Theory’. In: J. ACM 7.3 (July 1960). Place: New York,
NY, USA Publisher: Association for Computing Machinery, pp. 201–
215. ISSN: 0004-5411. DOI: 10.1145/321033.321034. URL: https://doi.
org/10.1145/321033.321034.

[17] Xavier Denis, Jacques-Henri Jourdan and Claude Marché. The
CREUSOT Environment for the Deductive Verification of Rust Programs.
Research Report RR-9448. Inria Saclay - Île de France, 2021. URL:
https://hal.inria.fr/hal-03526634.

[18] Niklas Eén and Niklas Sörensson. ‘An Extensible SAT-solver’. In: The-
ory and Applications of Satisfiability Testing. Ed. by Enrico Giunchiglia
and Armando Tacchella. Vol. 2919. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 2004, pp. 502–518. ISBN: 978-3-540-
24605-3. DOI: 10.1007/978-3-540-24605-3_37.

[19] Jean-Christophe Filliâtre and Andrei Paskevich. ‘Why3 — Where
Programs Meet Provers’. In: Programming Languages and Systems.
Ed. by Matthias Felleisen and Philippa Gardner. Red. by David
Hutchison et al. Vol. 7792. Series Title: Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 125–128. ISBN: 978-3-642-37035-9 978-3-642-37036-6. DOI: 10 .
1007 / 978 - 3 - 642 - 37036 - 6_8. URL: http : / / link . springer . com/ 10 .
1007/978-3-642-37036-6_8 (visited on 12/05/2022).

[20] Mathias Fleury. ‘Optimizing a Verified SAT Solver’. In: NASA
Formal Methods. Ed. by Julia M. Badger and Kristin Yvonne Rozier.
Vol. 11460. Lecture Notes in Computer Science. Springer Interna-
tional Publishing, 2019, pp. 148–165. ISBN: 978-3-030-20652-9. DOI:
10.1007/978-3-030-20652-9_10.

104

https://hal.inria.fr/hal-01960203
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://hal.inria.fr/hal-03526634
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
http://link.springer.com/10.1007/978-3-642-37036-6_8
http://link.springer.com/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-030-20652-9_10

[21] Mathias Fleury, Jasmin Christian Blanchette and Peter Lammich. ‘A
verified SAT solver with watched literals using imperative HOL’.
In: Proceedings of the 7th ACM SIGPLAN International Conference
on Certified Programs and Proofs. CPP 2018. New York, NY, USA:
Association for Computing Machinery, 8th Jan. 2018, pp. 158–171.
ISBN: 978-1-4503-5586-5. DOI: 10.1145/3167080. URL: https://doi.org/
10.1145/3167080 (visited on 21/11/2021).

[22] Ian P. Gent. ‘Optimal implementation of watched literals and more
general techniques’. In: Journal of Artificial Intelligence Research 48
(2013), pp. 231–252.

[23] John Hatcliff et al. ‘Behavioral interface specification languages’. In:
ACM Computing Surveys 44.3 (June 2012). Number: 3, pp. 1–58. ISSN:
0360-0300, 1557-7341. DOI: 10.1145/2187671.2187678. URL: https://dl.
acm.org/doi/10.1145/2187671.2187678 (visited on 02/05/2022).

[24] Marijn J.H. Heule, Matti Järvisalo and Martin Suda. ‘SAT competition
2018’. In: Journal on Satisfiability, Boolean Modeling and Computation
11.1 (2019). Publisher: IOS Press, pp. 133–154.

[25] Son Ho and Jonathan Protzenko. Aeneas: Rust Verification by Func-
tional Translation. Version 1.0. May 2022. DOI: 10.5281/zenodo.6597014.
URL: https://doi.org/10.5281/zenodo.6597014.

[26] Charles AR Hoare. ‘Proof of a program: FIND’. In: Communications of
the ACM 14.1 (1971). Publisher: ACM New York, NY, USA, pp. 39–45.

[27] isafol / isafol — Bitbucket. URL: https://bitbucket.org/isafol/isafol/src/
master/ (visited on 13/06/2022).

[28] Ralf Jung et al. ‘RustBelt: securing the foundations of the Rust
programming language’. In: Proceedings of the ACM on Programming
Languages 2 (POPL 27th Dec. 2017), 66:1–66:34. DOI: 10.1145/3158154.
URL: https://doi.org/10.1145/3158154 (visited on 21/11/2021).

[29] Peter Lammich, Mathias Fleury and Jasmin C. Blanchette. ‘A Verified
SAT Solver with Watched Literals Using Imperative HOL’. Matry-
oshka 2018. Amsterdam, The Netherlands, 26th June 2018. URL: https:
//matryoshka - project .github . io/matryoshka2018/slides/Matryoskha -
2018-Fleury-A-Verified-SAT-Solver.pdf (visited on 07/06/2022).

[30] Gary T. Leavens, Albert L. Baker and Clyde Ruby. ‘Preliminary
design of JML: A behavioral interface specification language for
Java’. In: ACM SIGSOFT Software Engineering Notes 31.3 (2006).
Publisher: ACM New York, NY, USA, pp. 1–38.

[31] K. Rustan M. Leino. ‘Dafny: An automatic program verifier for func-
tional correctness’. In: International Conference on Logic for Program-
ming Artificial Intelligence and Reasoning. Springer, 2010, pp. 348–370.

[32] Stéphane Lescuyer and Sylvain Conchon. ‘A reflexive formalization
of a SAT solver in Coq’. In: 21st International Conference on Theorem
Proving in Higher Order Logics. 2008, pp. 64–75.

105

https://doi.org/10.1145/3167080
https://doi.org/10.1145/3167080
https://doi.org/10.1145/3167080
https://doi.org/10.1145/2187671.2187678
https://dl.acm.org/doi/10.1145/2187671.2187678
https://dl.acm.org/doi/10.1145/2187671.2187678
https://doi.org/10.5281/zenodo.6597014
https://doi.org/10.5281/zenodo.6597014
https://bitbucket.org/isafol/isafol/src/master/
https://bitbucket.org/isafol/isafol/src/master/
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://matryoshka-project.github.io/matryoshka2018/slides/Matryoskha-2018-Fleury-A-Verified-SAT-Solver.pdf
https://matryoshka-project.github.io/matryoshka2018/slides/Matryoskha-2018-Fleury-A-Verified-SAT-Solver.pdf
https://matryoshka-project.github.io/matryoshka2018/slides/Matryoskha-2018-Fleury-A-Verified-SAT-Solver.pdf

[33] Michael Luby, Alistair Sinclair and David Zuckerman. ‘Optimal
speedup of Las Vegas algorithms’. In: Information Processing Letters
47.4 (1993). Publisher: Elsevier, pp. 173–180.

[34] Filip Marić. ‘Formal verification of a modern SAT solver by shallow
embedding into Isabelle/HOL’. In: Theoretical Computer Science 411.50
(12th Nov. 2010), pp. 4333–4356. ISSN: 0304-3975. DOI: 10.1016/j.tcs.
2010.09.014. URL: https://www.sciencedirect.com/science/article/pii/
S0304397510004937 (visited on 21/11/2021).

[35] Filip Marić. ‘Formalization and Implementation of Modern SAT
Solvers’. In: Journal of Automated Reasoning 43.1 (June 2009), pp. 81–
119. ISSN: 0168-7433, 1573-0670. DOI: 10 . 1007/ s10817 - 009 - 9127 - 8.
URL: http://link.springer.com/10.1007/s10817-009-9127-8 (visited on
21/11/2021).

[36] Filip Marić and Predrag Janičić. ‘Formal Correctness Proof for DPLL
Procedure’. In: Informatica 21.1 (1st Jan. 2010). Publisher: Institute of
Mathematics and Informatics, pp. 57–78. ISSN: 0868-4952. URL: https:
//content . iospress .com/articles/ informatica/ info21- 1- 05 (visited on
21/11/2021).

[37] J. P. Marques-Silva and K. A. Sakallah. ‘GRASP: a search algorithm
for propositional satisfiability’. In: IEEE Transactions on Computers
48.5 (1999), pp. 506–521. DOI: 10.1109/12.769433.

[38] Yusuke Matsushita, Takeshi Tsukada and Naoki Kobayashi. ‘Rus-
tHorn: CHC-Based Verification for Rust Programs’. In: Programming
Languages and Systems. Ed. by Peter Müller. Lecture Notes in Com-
puter Science. Springer International Publishing, 2020, pp. 484–514.
ISBN: 978-3-030-44914-8. DOI: 10.1007/978-3-030-44914-8_18.

[39] Yusuke Matsushita et al. ‘RustHornBelt: A Semantic Foundation
for Functional Verification of Rust Programs with Unsafe Code’.
In: Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. PLDI 2022. event-
place: San Diego, CA, USA. New York, NY, USA: Association for
Computing Machinery, 2022, pp. 841–856. ISBN: 978-1-4503-9265-5.
DOI: 10.1145/3519939.3523704. URL: https://doi.org/10.1145/3519939.
3523704.

[40] Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1992. 594 pp. ISBN:
0-13-247925-7.

[41] F. Lockwood Morris and Cliff B. Jones. ‘An early program proof by
Alan Turing’. In: IEEE Annals of the History of Computing 6.2 (1984).
Publisher: IEEE Computer Society, pp. 139–143.

[42] Matthew W. Moskewicz et al. ‘Chaff: engineering an efficient SAT
solver’. In: Proceedings of the 38th annual Design Automation Confer-
ence. DAC ’01. New York, NY, USA: Association for Computing Ma-
chinery, 22nd June 2001, pp. 530–535. ISBN: 978-1-58113-297-7. DOI:
10.1145/378239.379017. URL: https://doi.org/10.1145/378239.379017
(visited on 20/11/2021).

106

https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1016/j.tcs.2010.09.014
https://www.sciencedirect.com/science/article/pii/S0304397510004937
https://www.sciencedirect.com/science/article/pii/S0304397510004937
https://doi.org/10.1007/s10817-009-9127-8
http://link.springer.com/10.1007/s10817-009-9127-8
https://content.iospress.com/articles/informatica/info21-1-05
https://content.iospress.com/articles/informatica/info21-1-05
https://doi.org/10.1109/12.769433
https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017

[43] Leonardo de Moura and Nikolaj Bjørner. ‘Z3: An Efficient SMT
Solver’. In: Tools and Algorithms for the Construction and Analysis of
Systems. Ed. by C. R. Ramakrishnan and Jakob Rehof. Vol. 4963.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2008, pp. 337–340. ISBN: 978-3-540-78800-3. DOI: 10.1007/978-3-540-
78800-3_24.

[44] Peter Müller, Malte Schwerhoff and Alexander J. Summers. ‘Viper:
A verification infrastructure for permission-based reasoning’. In:
International conference on verification, model checking, and abstract
interpretation. Springer, 2016, pp. 41–62.

[45] Tobias Nipkow, Markus Wenzel and Lawrence C. Paulson. Isa-
belle/HOL: a proof assistant for higher-order logic. Springer, 2002.

[46] U. Norell. ‘Towards a Practical Programming Languages Based on
Dependent Type Theory’. PhD thesis. Department of Computer
Science and Engineering, Chalmers, 2007.

[47] Peter O’Hearn. ‘Separation logic’. In: Communications of the ACM 62.2
(2019). Publisher: ACM New York, NY, USA, pp. 86–95.

[48] Duckki Oe et al. ‘versat: A verified modern SAT solver’. In: Interna-
tional Workshop on Verification, Model Checking, and Abstract Interpreta-
tion. Springer, 2012, pp. 363–378.

[49] Chanseok Oh. ‘Between SAT and UNSAT: the fundamental differ-
ence in CDCL SAT’. In: International Conference on Theory and Applica-
tions of Satisfiability Testing. Springer, 2015, pp. 307–323.

[50] Sam Owre, John M. Rushby and Natarajan Shankar. ‘PVS: A pro-
totype verification system’. In: International Conference on Automated
Deduction. Springer, 1992, pp. 748–752.

[51] Lawrence Ryan. ‘Efficient algorithms for clause-learning SAT solv-
ers’. Master’s thesis. Simon Fraser University, 2004.

[52] Natarajan Shankar and Marc Vaucher. ‘The Mechanical Verification
of a DPLL-Based Satisfiability Solver’. In: Electronic Notes in The-
oretical Computer Science. Proceedings of the Fifth Logical and Se-
mantic Frameworks, with Applications Workshop (LSFA 2010) 269
(22nd Apr. 2011), pp. 3–17. ISSN: 1571-0661. DOI: 10 . 1016/ j . entcs .
2011.03.002. URL: https://www.sciencedirect.com/science/article/pii/
S1571066111000594 (visited on 21/11/2021).

[53] Jan Smans, Bart Jacobs and Frank Piessens. ‘Implicit dynamic
frames’. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 34.1 (2012). Publisher: ACM New York, NY, USA, pp. 1–
58.

[54] Alexander J. Summers. ‘Prusti: deductive verification for Rust (key-
note)’. In: Proceedings of the 22nd ACM SIGPLAN International Work-
shop on Formal Techniques for Java-Like Programs. FTfJP 2020. New
York, NY, USA: Association for Computing Machinery, 23rd July
2020, p. 1. ISBN: 978-1-4503-8186-4. DOI: 10 .1145/3427761 .3432348.

107

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1016/j.entcs.2011.03.002
https://doi.org/10.1016/j.entcs.2011.03.002
https://www.sciencedirect.com/science/article/pii/S1571066111000594
https://www.sciencedirect.com/science/article/pii/S1571066111000594
https://doi.org/10.1145/3427761.3432348

URL: https : / / doi . org / 10 . 1145 / 3427761 . 3432348 (visited on
21/11/2021).

[55] Grigori S. Tseitin. ‘On the complexity of derivation in propositional
calculus’. In: Automation of reasoning. Springer, 1983, pp. 466–483.

[56] Hantao Zhang. ‘SATO: An efficient propositional prover’. In: Interna-
tional Conference on Automated Deduction. Springer, 1997, pp. 272–275.

[57] Lintao Zhang and S. Malik. ‘Validating SAT solvers using an
independent resolution-based checker: practical implementations
and other applications’. In: 2003 Design, Automation and Test in Europe
Conference and Exhibition. 2003, pp. 880–885. DOI: 10.1109/DATE.2003.
1253717.

[58] Lintao Zhang and Sharad Malik. ‘Validating SAT solvers using
an independent resolution-based checker: Practical implementations
and other applications’. In: 2003 Design, Automation and Test in Europe
Conference and Exhibition. IEEE, 2003, pp. 880–885.

108

https://doi.org/10.1145/3427761.3432348
https://doi.org/10.1109/DATE.2003.1253717
https://doi.org/10.1109/DATE.2003.1253717

	Introduction
	I Background and the verification of a minimal solver
	Background
	Rust
	SAT and SAT solvers
	SAT
	CNF
	Algorithms for solving SAT

	Proof of code and Creusot

	Verification of a minimal solver
	The algorithm
	The proof idea
	Implementation of Friday
	Proof of Friday

	II Verification of a DPLL solver
	Verification of the DPLL algorithm
	The DPLL algorithm
	The main ideas of the proof
	Proof of Robinson

	III Verification of a CDCL solver
	Verification of the CDCL algorithm
	The CDCL algorithm
	Overview
	Interlude: resolution and the Davis Putnam procedure
	Introduction to the trail
	The conflict analysis algorithm

	The main ideas of the proof
	The suboptimality of the cut of the implication graph
	CDCL as an extension of DP

	Proof of CreuSAT
	Furthering our understanding of the trail
	Facilitating clause learning
	Proving the clause learning
	Backtracking the trail

	Optimizations
	Two watched literals
	Variable move-to-front
	Phase saving
	Clause database simplification
	Clause deletion
	Search restart

	The top level contracts

	IV Evaluation and the road ahead
	Evaluation
	Setup
	Evaluation of Robinson
	Evaluation of CreuSAT
	Discussion of results

	Conclusion
	Summary of Contributions
	Discussion of Creusot
	Related work and conclusion
	Future work
	Extending Robinson
	Improving CreuSAT

