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Laser-induced molecular alignment is well understood within the framework of the Born-Oppenheimer (BO) approx-
imation. Without the BO approximation, however, the concept of molecular structure is lost, making alignment hard
to define precisely. In this work, we demonstrate the emergence of alignment from the first-ever non-BO quantum
dynamics simulations, using the HD molecule exposed to ultrashort laser pulses as a few-body test case. We extract
the degree of alignment from the non-BO wave function by means of an operator expressed in terms of pseudo-proton
coordinates that mimics the BO-based definition of alignment. The only essential approximation, in addition to the
semiclassical electric-dipole approximation for the matter-field interaction, is the choice of time-independent explicitly
correlated Gaussian basis functions. We use a variational, electric-field-dependent basis-set construction procedure,
which allows us to keep the basis-set dimension low whilst capturing the main effects of electric polarization on the
nuclear and electronic degrees of freedom. The basis-set construction procedure is validated by comparing with vir-
tually exact grid-based simulations for two one-dimensional model systems: laser-driven electron dynamics in a soft
attractive Coulomb potential and nuclear rovibrational dynamics in a Morse potential.

I. INTRODUCTION

Manipulating and ultimately controlling molecules by
means of electromagnetic fields1 has the potential to fun-
damentally change chemistry, as illustrated by recent work
on electric-field mediated reactions and catalysis.2–4 Within
spectroscopy, an important effect of an electric field is the
alignment and possibly even orientation of molecules with re-
spect to the polarization direction,5,6 paving the way for accu-
rate investigations of the coupled electronic-nuclear dynam-
ics down to the attosecond time scale. While most chemi-
cal applications in condensed phases use static electric fields,
the state-of-the-art for individual molecules is impulsive laser-
induced alignment, which periodically revives after the laser
is turned off (provided decoherence is avoided).6

The theory of laser-induced molecular alignment7–9 obvi-
ously relies on the concept of molecular structure, i.e., it
relies on the Born-Oppenheimer (BO) approximation10,11 in
one form or another, including the Born-Huang expansion11

which is often, incorrectly,12,13 claimed to be exact. In the
simplest BO-based treatment, the molecule is considered a
rigid rotor, which aligns with the linear polarization direc-
tion of the laser pulse through the generation of an angularly
confined rotational wave packet. In exact molecular quan-
tum mechanics, however, the concept of molecular structure is
lost due to the spherical atom-like symmetry of any molecular
system combined with the particle-permutation symmetries of
the full molecular wave function.14–16 In this work, we inves-
tigate if laser-induced alignment emerges from non-BO sim-
ulations. Our goal is a qualitative theoretical confirmation of
the overwhelming experimental evidence of the laser-induced

alignment phenomenon, not quantitative predictions of an ac-
tual experimental setup.

In past decades, explicitly correlated Gaussian (ECG)17

functions have been used as basis functions to compute the
lowest-lying (rovibrational, in BO terminology which is of-
ten used also in non-BO work) states with spectroscopic ac-
curacy without invoking the BO approximation.15,18,19 Al-
though imaginary-time propagation has been investigated,20

the parameters of the ECGs are typically optimized alongside
the linear expansion parameters in a variational energy min-
imization. Embedded in dissociation continua, higher-lying
bound rovibronic states (corresponding to electronically ex-
cited states) are more challenging to describe and it has been
proposed to treat them as resonances.21

In the present work, we investigate laser-induced alignment
of the HD molecule using ECG-based simulations without the
BO approximation. Although the natural generalization of the
computational approach to stationary states would be to deter-
mine the nonlinear ECG parameters from the time-dependent
variational principle, we here adopt a simplified approach us-
ing statically optimized ECG parameters in the presence of
electric fields. Expanding the all-particle wave function in
these fixed ECG basis functions leads to simple equations
of motion (EOMs) for the time-dependent linear coefficients
that can be propagated using well-known integrators. Laser-
induced alignment and post-pulse revivals should then emerge
clearly in the three-dimensional pseudo-proton density, which
is spherically symmetric in the initial state.
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II. THEORY

A. Laser-driven non-BO quantum dynamics

We use atomic units throughout this manuscript unless ex-
plicitly stated otherwise. We treat the HD molecule inter-
acting with a laser pulse in the nonrelativistic electric-dipole
approximation, allowing us to separate the internal (relative)
motion from the center-of-mass motion, which is unaffected
by the laser as HD is neutral. Using the coordinate transforma-
tion of Ref. 18 with the origin of the internal coordinate frame
placed at the deuteron (with mass22 MD = 3670.48296785),
the internal Hamiltonian becomes Ĥ(t) = Ĥ0 + V̂ (t), where t
denotes time and

Ĥ0 =
3

∑
i=1

(
p̂2

i
2mi

+
q0qi

ri

)
+

2
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3
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qiq j
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+

p̂i · p̂ j

MD

)
, (1)

V̂ (t) =−D̂E (t). (2)

The laboratory and internal frames are chosen parallel18 with
the z-axis parallel to the electric field,

E (t) = E0 sin(ω(t − t0))G(t), (3)

where E0 is the field strength, ω is the carrier frequency, and
t0 ≥ 0 is the time at which the laser is turned on. The enve-
lope, G(t), controls the shape and duration of the laser pulse.
The operator D̂ is the component along the field direction of
the electric-dipole vector operator, D̂ = ∑

3
i=1 qiri. The time-

dependent Schrödinger evolution iΨ̇(t) = Ĥ(t)Ψ(t) is started
at t = 0 with the ground state of the internal Hamiltonian, Ĥ0.

The Hamiltonian Ĥ(t) describes the motion of three inter-
acting particles, referred to as pseudo-particles,18 in the cen-
tral field of the charge of the deuteron, q0 = 1. The position
relative to the deuteron of pseudo-particle i with charge qi
(qi = 1 for the pseudo-proton and qi = −1 for the pseudo-
electrons) and reduced mass mi = MDMi+1/(MD + Mi+1)
(Mi = 1 for the pseudo-electrons and Mi = 1836.15267389
for the pseudo-proton22) is denoted ri, and p̂i is its conjugate
momentum operator. Finally, ri = |ri| and ri j = |ri −r j|.

Using a spin-free formulation18,23 and a fixed time-
independent and non-orthogonal ECG basis set of a finite di-
mension, L, we obtain wave functions for stationary (elec-
tronic spin-singlet) states, |ψn⟩, and the corresponding ener-
gies, En, by diagonalization of Ĥ0. Following Ref. 18, the
ECGs are not explicitly symmetry adapted with respect to the
rotational and inversion symmetries of Ĥ0 and, hence, the sta-
tionary states cannot be strictly characterized by angular mo-
mentum quantum numbers and parity. The time-dependent
approximate wave function may then be expressed as

ΨL(x, t) =
L−1

∑
n=0

ψn(x)Cn(t), (4)

where the pseudo-particle coordinates are collected in the d-
dimensional vector, x (d = 9 for HD). The expansion coeffi-
cients are determined by the time-dependent variational prin-

ciple, leading to the EOMs

iĊn(t) = EnCn(t)+
L−1

∑
m=0

Vnm(t)Cm(t), Cn(0) = δn0, (5)

where the dot denotes the time derivative and the initial condi-
tion corresponds to HD being in the ground state, |ψ0⟩, before
the laser is turned on at t = t0 ≥ 0. The matter-field interaction
matrix elements are defined as Vnm(t) = ⟨ψn|V̂ (t)|ψm⟩.

Within the nonrelativistic electric-dipole approach outlined
above, the only approximation is the construction of the finite
ECG basis set, to which we turn our attention next.

B. Basis construction

The nonorthogonal basis set, {|φµ⟩}, consists of normalized
shifted ECGs17,19

φµ(x) = (2d det(Aµ)/π
d)1/4 exp(−(x−sµ)

†Aµ(x−sµ)), (6)

that are defined by real symmetric positive-definite d × d
width matrices Aµ and real shift vectors sµ of dimension d.
For computational reasons, the width matrices are constrained
to be spatially isotropic,18 but we keep the theoretical formu-
lation general for notational convenience. Depending explic-
itly on interparticle distances, the ECGs are excellently suited
for the description of correlated motion whilst allowing ana-
lytic evaluation of Hamiltonian integrals.17 We refer to Ref. 19
for a detailed review of ECGs and their applications. We de-
note by zµ the nonlinear parameter vector that contains both
the entries of a Cholesky factor Lµ of Aµ (Aµ = LT

µ Lµ ) and of
the shift vector, sµ . Referring to the width matrices by their
Cholesky factors will be useful for the minimization problem
we describe next.

The basis is constructed by a five-step procedure based on
the minimization of the Rayleigh quotient

R(z1, . . . ,zN ;E ) =
∑µ,ν c∗µ cν ⟨φµ | Ĥ0 − D̂E | φν⟩

∑µ,ν c∗µ cν ⟨φµ | φν⟩
, (7)

for fixed values of the static electric field E . For zero field,
the minimization problem is well-defined, and one obtains an
approximate ground state |ψ0⟩ = ∑µ |φµ⟩cµ of the zero-field
Hamiltonian, Ĥ0. For non-vanishing electric field, the Hamil-
tonian Ĥ0 − D̂E is unbounded from below. For sufficiently
small fields, however, a local minimum corresponding to a
localized state is found by constraining the ranges of the non-
linear parameters.

First step: The first N elements, |φ0,1⟩ , . . . , |φ0,N⟩, of the
basis, i.e. the nonlinear parameters z0,1, . . . ,z0,N ,
are obtained by minimizing the Rayleigh quotient,
R(z1, . . . ,zN ;E = E0) with zero field E0 = 0.

Second step: An increasing grid of positive electric fields
(E1, . . . ,EM) is selected. For each field Em a set of basis
functions, |φm,1⟩ , . . . , |φm,N⟩, is obtained by minimizing
R(z1, . . . ,zN ;E = Em). The minimization is initiated by
the nonlinear parameters determined for the previous
field Em−1.
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Third step: All basis functions obtained in the second step
are iteratively joined with the zero-field basis upon
passing the following simple linear-dependence test. A
basis candidate, |φ⟩, is added to the basis if | ⟨φ | φµ⟩ |<
τ , where τ > 0 is a chosen tolerance, for all basis func-
tions, |φµ⟩, that constitute the current basis.

Fourth step: Due to the axial symmetry of Ĥ0 − D̂E , the ba-
sis function |φm,µ⟩ corresponding to the opposite field,
−Em, has the same width matrix Am,µ and a shift sm,µ

that is flipped in the opposite direction. Such a basis
function is appended to the basis if its counterpart has
passed the acceptance test. The resulting basis is called
the generator set.

Fifth step: Due to the spherical symmetry of Ĥ0, three copies
of the generator set are obtained by rotating the shift
vectors three times consecutively about the x-axis by
an angle of π/4. The resulting set consisting of four
copies of the generator set is then rotated by an angle
π/2 about the y- and z-axes, yielding a spherically dis-
tributed basis set consisting of nine unique copies of the
generator set.

III. RESULTS

A. Validation of the basis-set construction for 1d systems

We test the basis-set construction procedure for two simple
1d model systems representing a bound electron and a bound
proton in the HD molecule by comparing with the results from
the split-step Fourier (SSF) method,24 which is an essentially
exact grid-based approach. For 1d systems, the fifth step of
the basis-set construction procedure above is excluded.

1. Basis for 1d Coulomb system

We first consider the hydrogen atom in 1d. The Hamilto-
nian representing the internal motion of the system is given
by Ĥ0 = − 1

2
d2

dx2 +V (x), where, for simplicity, we have cho-
sen unit effective mass of the electron. The potential V (x) is
obtained from the attractive soft Coulomb (SC) potential

VSC(r) =− 1√
r2 +δ 2

, (8)

by setting r = |x|: V (x) = VSC(|x|). The parameter δ =√
2 is chosen such that the ground state energy is ap-

proximately equal to −0.5. The zero-field basis con-
sists of N = 4 origin-centered Gaussians, and the opti-
mization procedure is initiated by the even-tempered ansatz,
Aµ = 4 · 1.32−2µ . The grid of field values is chosen as
0.01,0.02,0.03,0.032,0.0321,0.0322,0.0323,0.032394. No
local minima are detected at higher field values. The toler-
ance for basis-function acceptance is τ = 0.98 and the final
basis consists of L = 16 Gaussians, which are used to diago-
nalize Ĥ0.

FIG. 1: Dynamics of the 1d Coulumb system. Top row from
left: E (t), expectation value of the Hamiltonian, population

of the ground and first dipole-allowed states, and the induced
electric dipole moment. Full and dashed lines from the

Gaussian-based and SSF simulations, respectively. Middle
row: position probability densities at selected points in time.
Red curves from the Gaussian-based simulation, grey areas
from the SSF simulation. Bottom row: contour plot of the

Gaussian position probability density as function of x and t to
the left, difference between the Gaussian and SSF densities

to the right.

The system, initially in its ground state, is then exposed to
a 100-cycle laser pulse of the shape (3) with envelope

G(t) = sin2
(

π(t − t0)
T

)
Θ(t − t0)Θ(T + t0 − t), (9)

where Θ(t) is the Heaviside step function, t0 = 20 is the time
at which the laser is turned on, and T = 200π/ω is the du-
ration. The carrier frequency ω = 0.2672 is resonant with
the lowest-lying electric-dipole-allowed excited state and the
field strength is E0 = 0.01. The propagation is done with time
step ∆t = 0.08. The reference SSF simulation, with the ini-
tial ground state obtained from inverse iteration, is performed
with the same laser pulse and time step on a uniform real-
space grid of 2048 points in the interval [−300,300].

The results are shown in Fig. 1. The energy and induced
dipole moment are very well approximated by the Gaussian
basis, whereas the position probability density shows some-
what larger errors after the peak intensity of the laser pulse.
This is caused by ionization processes that are not captured
by the Gaussians. Still, the spread and oscillations of the
electronic wave packet are largely correct with the Gaussians,
showing errors of at most 10%. We conclude that the Gaus-
sian basis-set construction procedure yields roughly correct
electron dynamics as long as the driving laser field does not
induce significant ionization of the system.
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2. Basis for 1d Morse system

We consider the 1d HD molecule represented by the Hamil-
tonian Ĥ0 =− 1

2m
d2

dx2 +V (x), where the effective mass is given

in terms of the deuteron and proton masses as m =
MDMp

MD+Mp
=

1224. The potential describes the interaction between the two
nuclei, which we model as the H2-parametrized Morse poten-
tial

VM(r) = De(1− exp(−a(r− re)))
2, (10)

such that V (x) = VM(|x|). Hence, V (x) is a double-well po-
tential with the two wells symmetrically located at opposite
sides of the x axis and separated by a large potential bar-
rier. The Morse parameters are De = 0.17449, a = 1.4556,
and re = 1.4011. The zero-field basis is built of N = 8
Gaussians, half of them centered in the left well and the
other half in the right well. The grid of field values is
0.01,0.02,0.04,0.06,0.08,0.09,0.09354. At higher field val-
ues, the 1d HD molecule dissociates. The tolerance for basis-
function acceptance is τ = 0.98 and the final basis consists of
L = 26 Gaussians, which are used to diagonalize Ĥ0.

The system, initially in its ground state, is then exposed
to the same 100-cycle laser pulse as the 1d Coulomb sys-
tem above, except that the carrier frequency is adjusted to be
resonant with the lowest-lying dipole-allowed excited state,
ω = 0.0228, and the laser is turned on at t0 = 275. The prop-
agation is done with time step ∆t = 0.93. The reference SSF
simulation, with the initial ground state obtained from inverse
iteration, is performed with the same laser pulse and time step
on a uniform real-space grid of 2048 points in the interval
[−300,300].

As shown in Fig. 2, the agreement between the Gaussian-
based and SSF simulations is excellent. The error in the po-
sition probability density is on the order of 1% at worst. We
conclude that the Gaussian basis-set construction procedure
yields roughly correct rovibrational dynamics.

B. Laser-driven alignment of the HD molecule

The basis-set construction procedure is initiated with N = 8
ECGs at zero field. The initial values of the nonlinear pa-
rameters are variationally optimized within the orbital ap-
proximation (no coupling between coordinates) with cen-
ters at a distance of 1.4 (roughly the BO equilibrium dis-
tance of HD) from the origin on the z-axis. Relaxing
the orbital approximation, the final zero-field set is then
fully optimized. The basis-function acceptance threshold is
τ = 0.98 and the grid of positive field values is chosen to
be 0.01,0.02,0.04,0.06,0.08,0.085,0.0913486. At greater
fields, no stable local minima are detected. The resulting gen-
erator set consists of 110 ECGs and the final basis set thus
consists of L = 990 ECGs. We stress that this is a rather mod-
est basis-set size and that neither ionization nor full dissocia-
tion dynamics can be properly accounted for.

The resulting ground-state energy is −1.153798, roughly
0.012 above the rovibrational ground-state energy obtained

FIG. 2: Dynamics of the 1d Morse system. Top row from
left: E (t), expectation value of the Hamiltonian, population

of the ground and the two lowest-lying dipole-allowed states,
and the induced electric dipole moment. Full and dashed

lines from the Gaussian-based and SSF simulations,
respectively. Middle row: position probability densities at

selected points in time. Red curves from the Gaussian-based
simulation, grey areas from the SSF simulation. Bottom row:
contour plot of the Gaussian position probability density as

function of x and t to the left, difference between the
Gaussian and SSF densities to the right.

within the BO approximation using full configuration interac-
tion (FCI) theory with the aug-cc-pV5Z Gaussian basis set25

to compute the potential-energy curve. The mean HD dis-
tance is 1.497, which yields an estimated rotational constant
of 40cm−1 (compared with 44.6421cm−1 in the essentially
exact vibrational ground state from the BO FCI calculation)
and a rotational period of trot ≈ 417fs. In order to study
laser-driven alignment, we use a nonadiabatic pulse (dura-
tion shorter than trot). In agreement with BO selection rules,
all rovibrational transitions are electric-dipole forbidden and,
therefore, we choose the carrier frequency resonant with the
dipole-allowed rovibronic state located 0.482681 above the
ground state, well below the experimental26 ionization en-
ergy of 0.5676. The oscillator strength of this transition is
0.14, and the excited rovibronic state couples to several low-
lying rovibrational states with transition energies in the vicin-
ity of the carrier frequency and with oscillator strengths rang-
ing from 0.02 to 0.14. Hence, the resonant laser pulse should
populate several rovibronic states below the ionization energy
and thus induce alignment. Although alignment induced by
laser pulses resonant or near-resonant with a vibrational or ro-
bibrational transition have been studied previously,9,27–29 we
remark that the alignment mechanism studied in the present
work does not correspond to most experimental setups where
non-resonant carrier frequencies are chosen to explicitly avoid
electronic excitations.

The pulse is defined by Eq. (3) with the envelope (9) and
peak intensity 3.5TW/cm2 (E0 = 0.01). The carrier frequency
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FIG. 3: ⟨Âp⟩ during and after interaction with the 100-cycle
(31.5fs) resonant laser pulse. The vertical dotted line marks

the end of the laser pulse.

is ω = 0.482681, the duration is 100 cycles, T = 31.5fs, and
the laser is turned on at t0 = 0. We numerically integrate
the EOMs (5) using the sixth-order Gauss-Legendre integra-
tor30,31 with a convergence tolerance on the residual norm of
10−10 and time step ∆t = 0.1.

To monitor alignment of the HD molecule with respect to
the field direction (z), we compute at each time step the ex-
pectation value of the operator

Âp = z2
p − x2

p − y2
p = r2

p cos(2θp), (11)

where subscript p indicates pseudo-proton coordinates. In
analogy with the BO-based theory,6 the polar angle θp mea-
sures the degree of alignment. Assuming that the amplitudes
of the vibrational motion are much less than 1 throughout the
dynamics, we expect maximal alignment to occur at the max-
ima of ⟨Âp⟩= ⟨Ψ(t)|Âp|Ψ(t)⟩.

The expectation value ⟨Âp⟩ is plotted in Fig. 3. In qualita-
tive agreement with BO theory,6 the highest degree of align-
ment is observed slightly after the laser intensity peaks (at
t = 16.25fs) and approximately periodic revivals of the max-
ima are observed after the pulse is turned off. The period is
roughly 102fs for both maxima and minima.

The alignment can be visualized through the pseudo-proton
density, which is shown along with the pseudo-electron den-
sity in Fig. 4 at selected time steps. The pseudo-particle den-
sities are computed from the 48 dominant stationary states
of the internal molecular wave packet (reproducing the norm
of the wave function to within 0.5% throughout the whole
dynamics) using a slight generalization of the approach de-
scribed in Ref. 32. Although spherical symmetry is not en-
forced a priori, the basis-set construction procedure yields
essentially correct symmetry of the ground-state densities,
Fig. 4a. Slightly after the laser intensity peaks, the pseudo-
proton density peaks sharply on the z-axis, corresponding to
alignment. The off-axis density appears to be a non-BO man-
ifestation of the BO concept of pendular states.5,7,8 After the
pulse is turned off, the densities oscillate between ground-
state-like spherical distributions, Fig. 4c, and predominantly
aligned distributions, Fig. 4d. Although the pseudo-proton
density peaks even more sharply than at the peak laser inten-
sity, the value of ⟨Âp⟩ is significantly reduced due to spreading
in the xy-plane. These perpendicular components arise during
the dynamics in the second half of the pulse.

Inspired by the “adiabatic turn-on, rapid turn-off” ap-
proach,33 we perform an additional simulation where the same
laser pulse is very rapidly turned off after the peak intensity is
reached at 50 cycles. Specifically, we use a 1-cycle turn-off
time. The resulting ⟨Âp⟩ is shown in Fig. 5. With the (50+1)-
cycle pulse, the oscillation period is significantly longer: the
average time between maxima and between minima is roughly
275fs. The ⟨Âp⟩ curve indicates enhanced alignment during
the post-pulse dynamics, an observation confirmed by the den-
sity plots in Fig. 6.

IV. CONCLUDING REMARKS

Laser-induced molecular alignment is well established
experimentally and well understood within the theoretical
framework of the BO approximation. In this communica-
tion, we have presented proof-of-principle non-BO simula-
tions of the HD molecule exposed to resonant laser pulses,
showing the emergence of field-free alignment in the sense
of the pseudo-proton density oscillating between essentially
spherical and linear shapes. We have used a limited number
of static ECG basis functions built from variational bound-
state optimization in the presence of static electric fields.
Our results thus are qualitative, and quantitative simulations
would require more flexible ECG basis sets constructed with
time-dependent complex nonlinear parameters, enabling high-
accuracy non-BO simulations of, e.g., high-harmonic genera-
tion spectra from aligned few-particle molecules.
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