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ABSTRACT

We present new constraints on the frequency dependence of the cosmic birefringence angle from the Planck Data Release 4 polariza-
tion maps. An axion field coupled to electromagnetism predicts a nearly frequency-independent birefringence angle, βν = β, while
Faraday rotation from local magnetic fields and Lorentz violating theories predict a cosmic birefringence angle that is proportional
to the frequency, ν, to the power of some integer n, βν ∝ νn. In this work, we first sampled βν individually for each polarized HFI
frequency band in addition to the 70 GHz channel from the LFI. We also constrained a power law formula for the birefringence
angle, βν = β0(ν/ν0)n, with ν0 = 150 GHz. For a nearly full-sky measurement, fsky = 0.93, we find β0 = 0.26◦ ± 0.11◦ (68% C.L.)
and n = −0.45+0.61

−0.82 when we ignore the intrinsic EB correlations of the polarized foreground emission, and β0 = 0.33◦ ± 0.12◦ and
n = −0.37+0.49

−0.64 when we use a filamentary dust model for the foreground EB. Next, we used all the polarized Planck maps, including
the 30 and 44 GHz frequency bands. These bands have a negligible foreground contribution from polarized dust emission and we thus
treated them separately. Without any modeling of the intrinsic EB of the foreground, we generally find that the inclusion of the 30
and 44 GHz frequency bands raises the measured values of βν and tightens n. At nearly full-sky, we measure β0 = 0.29◦+0.10◦

−0.11◦ and
n = −0.35+0.48

−0.47. Assuming no frequency dependence, we measure β = 0.33◦ ± 0.10◦. If our measurements have effectively mitigated
the EB of the foreground, our constraints are consistent with a mostly frequency-independent signal of cosmic birefringence.
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1. Introduction

Parity violation has so far only been observed in the weak inter-
action, but there are extensions of the standard model that intro-
duce more parity-violating effects. One popular example is a
pseudo-scalar axion-like field φ which couples to the electro-
magnetic tensor and can cause parity-violating physics for elec-
tromagnetic waves (Turner & Widrow 1988; Carroll et al. 1990;
Harari & Sikivie 1992). The Chern-Simons term couples the
field φ to the electromagnetic tensor Fµν of the form L ⊃
1
4gφγφFµνF̃µν, where F̃µν is the dual tensor of Fµν and gφγ is the
coupling constant (see the review by Marsh 2016). It is possible
to show that this term changes the phase velocity of the left- and
right-handed circular polarization of photons, which effectively
causes a rotation of the linear polarization of electromagnetic
waves by an angle β. This can be detected in the polarization of
the cosmic microwave background (CMB). The standard model
of cosmology, ΛCDM, predicts no intrinsic EB correlation of the
CMB.

A cosmic birefringence angle β would rotate the intrinsic
EE power spectrum, CEE

` , and BB power spectrum, CBB
` , into

an observed EB power spectrum, CEB,o
`

=
sin(4β)

2

(
CEE
` −CBB

`

)
,

where “o” denotes the observed value and ` is the multipole
moment. However, the problem of measuring β this way is
two-fold: there is polarized Galactic emission that conceals the
cosmic signal and no instruments are perfectly calibrated. The
polarization miscalibration angle of an instrument, α, is per-
fectly degenerate with the cosmic birefringence angle, β, when
solely the CMB is analyzed. A lack of strong priors on α for

an instrument will necessarily give a large degree of uncer-
tainty on β. This is seen in the original Planck 2015 analysis,
where the authors found β = 0.29 ± 0.05(stat.) ± 0.28(syst.)
(Planck Collaboration Int. XLIX 2016). Here, the latter system-
atic uncertainty is the miscalibration uncertainty expected from
the calibration before launch. The other problem is that the
Galactic foreground emission is polarized; without a proper
foreground removal, the polarized foreground emission will
inevitably contaminate the measurements.

A novel method to mitigate these two problems was devel-
oped by Minami et al. (2019) and Minami & Komatsu (2020a).
The assumption is that the mechanism that can cause cosmic
birefringence mostly affects the CMB photons. This could either
be because the effect was the strongest shortly after the last-
scattering surface or because the effect is stronger over longer
distances. This means that cosmic birefringence has a negligible
effect on the Galactic foreground emission and that the linearly
polarized CMB emission is rotated by α+ β, while the polarized
foreground emission is only rotated by α. This method allows for
the degeneracy between α and β to be broken, but the intrinsic
foreground EB power spectrum needed to be specified. Assum-
ing that the intrinsic EB correlation of the foreground is zero,
Minami & Komatsu (2020b) used the high-frequency instrument
(HFI) polarized maps from the Planck public release 3 (PR3) to
find a measurement of β = 0.34◦ ± 0.14◦ (68% C.L.), which
corresponds to the statistical significance of 2.4σ. They empha-
sized the possibility that the intrinsic foreground EB can create
an effective angle γ which skews the measurements β → β − γ
and α → α + γ; this leaves the sum α + β invariant. The authors
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pointed out that the positive T B and T E inferred from the Planck
data suggest EB > 0 (Huffenberger et al. 2020); hence, γ > 0,
which would make the measured β a lower bound.

An astrophysical model for the intrinsic EB of dust was
described by Clark et al. (2021). Their work showed evidence
for the applied Galactic mask to greatly affect the magnitude
and sign of the EB power spectra of the polarized foreground
emission. With a Galactic mask of sky fraction fsky ≈ 0.7, they
found a robustly positive CEB,dust

`
for ` . 500 using their fila-

mentary dust model, which would also suggest a lower bound
of β if one ignores the intrinsic dust EB. On the other hand, a
smaller Galactic mask gave EB correlations with a fluctuating
sign over multipoles `. This mask dependence was confirmed by
Diego-Palazuelos et al. (2022) where a declining measurement
of β was found when ignoring the intrinsic EB power spectra
of the foreground using polarized data from the Planck pub-
lic release 4 (PR4; Planck Collaboration Int. LVII 2020), often
called the “NPIPE” release.

In Minami & Komatsu (2020b) and Diego-Palazuelos et al.
(2022), the cosmic birefringence angle β was assumed to be
independent of the photon frequency ν. In this paper, we explore
a possible frequency dependence. This is not the first time a
frequency-dependent cosmic birefringence angle has been con-
sidered in the literature. Gubitosi et al. (2014) used polariza-
tion data of WMAP7, BOOMERanG, QUAD, and BICEP to
look for any hints of a frequency-dependent β. Other constraints
have come from looking at Lorentz violating origins, such as
Kahniashvili et al. (2008) using WMAP data. Galaverni et al.
(2015) also constrained several models of cosmic birefrin-
gence using CMB and other astrophysical data at a much
wider frequency range. No detection of a frequency-dependent
β has been found, but this work generalizes the methods of
Diego-Palazuelos et al. (2022) and Minami & Komatsu (2020b)
to search for such a frequency dependence. These authors
assumed that βwas constant for all frequencies, which gave them
a hint of a non-zero β. Motivated by their result, the goal of this
work is to learn more about the frequency dependence of that
signal. Also, for the first time, we include the low-frequency
instrument (LFI) polarized data to put constraints on the fre-
quency dependence of the signal. All uncertainties quoted in this
paper are at a 68% confidence level.

2. Theory

In this section, the focus is mainly on an axion-like field that
couples to electromagnetism. We also go on to show how we
measure the cosmic birefringence signal to be consistent with
frequency independence, which we go on to show is consistent
with the predictions of an axion-like field. Therefore, we do not
go into the details of Faraday rotation or any other models that
would cause a frequency-dependent signal.

In this paper, we assume that only the linearly polarized
CMB emission has been rotated by the cosmic birefringence
angle, β, while the polarized foreground emission from the
Milky Way has not been rotated. We are, therefore, looking for
a potential mechanism that is either substantial on large length
scales so that its effect on the polarized foreground emission is
negligible or it is, instead, an effect that was only present around
the time of recombination or shortly after.

An axion-like field φ that couples to electromagnetism can be
the cause of cosmic birefringence. We make the assumption that
the field is homogeneous and only varies over time. The disper-
sion relation for electromagnetic waves becomes (Carroll et al.

1990; Harari & Sikivie 1992)

ω2
± = k2 ± kgφγφ̇, (1)

where ω is the angular frequency, k is the wavenumber, and gφγ
is the coupling constant; in addition, + is right-handed circular
polarization and − is left-handed. Performing a series expansion
of ω± in small gφγφ̇ gives:

ω± = k ±
gφγφ̇

2
−

(
gφγφ̇

)2

8k
±

(
gφγφ̇

)3

16k2 + O

((
gφγφ̇

)4
/k3

)
. (2)

Our convention for the cosmic birefringence angle β is that it
rotates the linear polarization clockwise on the sky. We then get

β = −

∫
dt
ω+ − ω−

2

= −

∫
dt

gφγφ̇2
+

(
gφγφ̇

)3

16k2 + O

((
gφγφ̇

)5
/k4

) . (3)

The first term is independent of the wavenumber. Neglecting
any electromagnetic contribution, the equation of motion for φ
is given by the Klein-Gordon equation (Marsh 2016),

φ̈ + 3Hφ̇ + m2φ = 0, (4)

where m is the mass of the axion-like particle, while H is the
Hubble parameter. There is only a finite mass interval of m where
we can detect an axion-like particle with our method. If the mass
is smaller than the Hubble expansion today, H0 ≈ 10−33 eV,
then the field is generally too slowly varying by the Hubble
friction to be detected. We note that a large coupling constant,
gφγ, can make fields with smaller masses detectable (Fujita et al.
2021). On the other hand, to get a significant rotation from β, we
need the field to start oscillating after decoupling which yields
m . 10−28 eV (Marsh 2016; Arvanitaki et al. 2010). Fields that
oscillate before the decoupling quickly get suppressed since the
era of decoupling was not instantaneous, meaning that not all
polarized waves were rotated equally. The method behind this
analysis is therefore able to probe ultra-light axion-like fields
with a mass range of 10−33 eV . m . 10−28 eV and possibly
even lower, depending on the amplitude of gφγ.

If the mass is much larger than H0, the axion-like field has
decayed, φ(t0) ≈ 0, leading the cosmic birefringence angle to
be β = gφγφrec/2, where φrec is the value of the field at recom-
bination that is expected to have a negligible difference to its
primordial value. A detection of cosmic birefringence in polar-
ized CMB data can therefore constrain an axion-like field in the
(gφγ, φrec)-plane (Marsh 2016).

We go on to derive a crude upper bound on the first
frequency-dependent term of β in Eq. (3) to show that the fre-
quency dependence of β cannot be detected by the sensitivity
level of Planck. We assume that the Hubble parameter is con-
stant H = Hrec ≈ 10−28 eV, and φ is critically damped, namely,
m = 3H/2. The field is then φ = φrece−3H t/2, where we take
t = 0 at the time of recombination and approximate today to be
at infinite time t → ∞. The contribution from the second term in
Eq. (3) is:∣∣∣∣∣∣∣∣
∫

dt

(
gφγφ̇

)3

16k2

∣∣∣∣∣∣∣∣ =
3|gφγφrec|

3

256π2

(
Hrec

(1 + z)ν

)2

=
(
1.7 × 10−60

)◦
, (5)

where the frequency is ν = k/2π, and we used the lowest
Planck frequency band that we consider in this work, namely,
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ν = 30 GHz; also, we assume that the redshift at recombina-
tion is z ≈ 1100, so that the initial frequency at recombination
is νi = (1 + z)ν. We also use the result of Minami & Komatsu
(2020b) that β = −

∫
dt gφγφ̇2 =

gφγφrec

2 ≈ 0.3◦. The Hubble param-
eter, H, is certainly not constant and it will decrease over time,
causing the field φ to become underdamped. In fact, Eq. (4) can
be solved exactly if we assume the expansion parameter a ∝ tn

for some value of n. The resulting equation takes the form of
Bessel functions (Marsh 2016). The point is however that chang-
ing the mass m and allowing H to vary with time will not mag-
nify the first frequency-dependent term by around 60 orders of
magnitude. It is, therefore, safe to assume that Planck’s sen-
sitivity level will not pick up any potential frequency depen-
dence of β caused by an ultra-light axion-like field coupled to
electromagnetism.

There are, however, other mechanisms that could cause cos-
mic birefringence that we mention here in brief (Gubitosi & Paci
2013). If the observed isotropic cosmic birefringence was caused
by Faraday rotation originating from primordial magnetic fields
(Subramanian 2016), we would expect βν ∝ ν−2. In the case
where the birefringence angle is linear in frequency, βν ∝ ν,
we could be observing Lorentz violating electrodynamics (Shore
2005). Such a measurement could be translated into a test of
Lorentz violation (Kahniashvili et al. 2008). We also consider
the possibility of βν ∝ ν2, which has been predicted from quan-
tum gravity theories to potentially modify the dispersion rela-
tion of photons (Myers & Pospelov 2003). We are therefore able
to learn a lot about the origin of the measured cosmic birefrin-
gence result of Diego-Palazuelos et al. (2022) by quantifying the
frequency dependence of the signal.

3. Method

Our analysis method follows that of Minami et al. (2019) and
Minami & Komatsu (2020a). We start with the main assump-
tion that the effect of cosmic birefringence, β, only substantially
affects the CMB photons. However, an instrumental polarization
miscalibration angle alters all linearly polarized plane waves,
which we characterize by an instrument-dependent angle α. For
a single detector, we can therefore write the spherical harmonics
coefficients for the E- and B-modes (Seljak & Zaldarriaga 1997;
Kamionkowski et al. 1997) as:

Eo
`m = cos(2α)Efg

`m − sin(2α)Bfg
`m

+ cos(2α + 2β)ECMB
`m − sin(2α + 2β)BCMB

`m + Enoise
`m , (6)

Bo
`m = cos(2α)Bfg

`m + sin(2α)Efg
`m

+ cos(2α + 2β)BCMB
`m + sin(2α + 2β)ECMB

`m + Bnoise
`m . (7)

Here, “fg” denotes the foreground component. We define the
power spectra as CXY

` = 1
2`+1

∑
m X`mY∗`m. To account for the

effect of noise, we also define the ensemble average of the
power spectra as 〈CXY

` 〉 = δmmδ``′〈X`mY∗`′m′〉. Taking the equa-
tions above, we can derive the following equation (Minami et al.
2019):

〈CEB,o
`
〉 =

tan(4α)
2

(
〈CEE,o

`
〉 − 〈CBB,o

`
〉
)

+
sin(4β)

2 cos(4α)

(
〈CEE,CMB

`
〉 − 〈CBB,CMB

`
〉
)

+
1

cos(4α)
〈CEB,fg

`
〉 +

cos(4β)
cos(4α)

〈CEB,CMB
`

〉, (8)

where “o” denotes the observed value. We have thus been able
to derive an equation that does not explicitly depend on the
E- and B-modes of the polarized foregrounds, 〈CEE,fg

`
〉 and

〈CBB,fg
`
〉. And we can use the foreground to our advantage to

break the degeneracy between the miscalibration angle α and
the cosmic birefringence angle β. Unfortunately, we are left
with the intrinsic EB-mode of the polarized foreground emis-
sion in our equation. For lack of an astrophysical model, this
was set to zero in the initial analysis of Planck Data Release 3 in
Minami & Komatsu (2020b), but they gave a discussion of how
a non-zero EB would influence the analysis (Minami et al. 2019;
Minami & Komatsu 2020a). We later show how the filamentary
dust model of Clark et al. (2021) can create non-zero EB cor-
relations of dust and how to implement an ansatz motivated by
their model into our equations.

The last term in Eq. (8) can be assumed to be zero since
ΛCDM does not predict any parity-violating correlations at
the last scattering surface. However, chiral gravitational waves
(Thorne et al. 2018) would predict intrinsic EB correlations of
the CMB emissions. Thus, we could, in principle, use Eq. (8)
to probe this term, but for the purpose of this work, we set
〈CEB,CMB

`
〉 = 0.

Before applying this to real data, we need to gener-
alize the method to incorporate multiple frequency bands
(Minami & Komatsu 2020a). This work is based on the NPIPE
pipeline which splits the detectors of each of the HFI frequency
bands and the 70 GHz band into two groups, namely the A and
B split. Therefore, for each of these frequency bands, we have
two maps of the sky and two miscalibration angles per band,
which act as the average over the detectors for a given split.
We also analyze the frequency dependence of a possible cos-
mic birefringence angle βν. Thus, we denote i as a specific fre-
quency band and data split for the miscalibration angle αi, but
for βi, it only denotes the frequency of a given band. Follow-
ing Minami & Komatsu (2020a) with the exception of having
a frequency-dependent βi, we now write observed spherical har-
monics coefficients for polarization. For completeness, we derive
the equations based on the assumption that we have access to
the EB power spectrum of the polarized foreground emission.
Assuming that the CMB has no intrinsic EB correlations, we
get〈CEiE j ,o

` 〉

〈CBi B j ,o
` 〉

 = R(αi, α j)

〈CEiE j ,fg
` 〉

〈CBi B j ,fg
` 〉

 + D(αi, α j)

〈CEi B j ,fg
` 〉

〈CBiE j ,fg
` 〉


+ R(αi + βi, α j + β j)

〈CEiE j ,CMB
` 〉

〈CBi B j ,CMB
` 〉

 + δi, j

〈CEiE j ,noise
` 〉

〈CBi B j ,noise
` 〉

 ,
(9)

〈CEi B j ,o
` 〉 = RT (αi, α j)

〈CEiE j ,fg
` 〉

〈CBi B j ,fg
` 〉

 + DT (αi, α j)

〈CEi B j ,fg
` 〉

〈CBiE j ,fg
` 〉


+ RT (αi + βi, α j + β j)

〈CEiE j ,CMB
` 〉

〈CBi B j ,CMB
` 〉

 . (10)

Here,

R(θi, θ j) =

[
cos(2θi) cos(2θ j) sin(2θi) sin(2θ j)
sin(2θi) sin(2θ j) cos(2θi) cos(2θ j)

]
, (11)

D(θi, θ j) =

[
− cos(2θi) sin(2θ j) − sin(2θi) cos(2θ j)
sin(2θi) cos(2θ j) cos(2θi) sin(2θ j)

]
, (12)

R(θi, θ j) =

[
cos(2θi) sin(2θ j)
− sin(2θi) cos(2θ j)

]
, (13)
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D(θi, θ j) =

[
cos(2θi) cos(2θ j)
− sin(2θi) sin(2θ j)

]
. (14)

We are not working with auto-spectra, so we can discard the noise
term in Eq. (9). Combining Eqs. (9) and (10), we can eliminate〈CEiE j,fg

`
〉

〈CBiB j,fg
`

〉

 explicitly to end up with one equation,

〈CEi B j ,o
` 〉 = RT (αi, α j)R−1(αi, α j)

〈CEiE j ,o
` 〉

〈CBi B j ,o
` 〉

 +

[
RT (αi + βi, α j + β j)

− RT (αi, α j)R−1(αi, α j)R(αi + βi, α j + β j)
]

×

〈CEiE j ,CMB
` 〉

〈CBi B j ,CMB
` 〉

 + ZT (αi, α j)

〈CEi B j ,fg
` 〉

〈CBiE j ,fg
` 〉

 , (15)

where

ZT (αi, α j) = DT (αi, α j) − RT (αi, α j)R−1(αi, α j)D(αi, α j)

=
2
[
cos(2αi) cos(2α j), sin(2αi) sin(2α j)

]
cos(4αi) + cos(4α j)

· (16)

We now switch from the ensemble average spectra, 〈C`〉, to
the estimated power spectra, C`. Excluding auto-spectra, we can
group all combinations of (i, j) into a vector of observed spectra
Co
` = [CEiE j,o

`
,CBiB j,o

`
,CEiB j,o

`
]T and vectors of beam-smoothed

theoretical ΛCDM spectra CΛCDM
` = [CEiE j,ΛCDM

`
,CBiB j,ΛCDM

`
]T .

If we wish to include the intrinsic EB-modes of the foreground,
we can make vectors of the polarized foreground EB-spectra
Cfg
`

= [CEiB j,fg
`

,CBiE j,fg
`

]T . As an example, we later use ten maps
which gives us that the length of Co

` is 3 · (10 · 10 − 10) = 270,
where we excluded the auto spectra, while CΛCDM

` and Cfg
`

have
2 · (10 · 10 − 10) = 180 elements for each multipole `. To solve
this equation for all combinations of input maps, we group them
into block diagonal matrices:

Ai j =
[
−RT (αi, α j)R−1(αi, α j), 1

]
, (17)

Bi j =

[
RT (αi + βi, α j + β j) − RT (αi, α j)R−1(αi, α j)

× R(αi + βi, α j + β j)
]
, (18)

Zi j = ZT (αi, α j), (19)

so that we are solving the equation

uT` ≡ ACo
` − BCΛCDM

` − ZCfg
`

= 0. (20)

The covariance matrix for this equation is

M` = ACov(Co
` ,C

o
` )A

T + BCov(CΛCDM
` ,CΛCDM

` )BT

+ ZCov(Cfg
`
,Cfg

`
)ZT

− ACov(Co
` ,C

ΛCDM
` )BT − BCov(CΛCDM

` ,Co
` )A

T

− ACov(Co
` ,C

fg
`

)ZT − ZCov(Cfg
`
,Co

` )A
T , (21)

where we have assumed that there are no correlations between
ΛCDM power spectra and the polarized foreground power spec-
tra. Unfortunately, we do not have access to CEB,fg

`
explicitly. In

the next section, however, we show how we can use a filamen-
tary dust model to relate the EB spectra of the foreground to the
E-modes and B-modes. In this work, we thus set Cfg

`
= 0, and in

the next section incorporate the effect of the foreground into the

matrices A and B. We are also not including the ΛCDM power
spectrum CΛCDM

` in the covariance matrix in Eq. (21) since we
find a negligible difference in the posterior distribution when we
include it. Thus, we only use M` = ACov(Co

` ,C
o
` )AT .

As in previous works (Diego-Palazuelos et al. 2022;
Minami & Komatsu 2020b), we bin the spectra into groups of
∆` = 20 multipoles to minimize noise and cosmic variance.
We focus only on high-` multipoles by using `min = 51 and
`max = 1490, which gives the number of bins Nbins = 72.
Explicitly, we get

CXY
b =

1
∆`

∑
`∈b

CXY
` (22)

Cov(CXY
b ,CZW

b ) =
1

∆`2

∑
`∈b

Cov(CXY
` ,CZW

` ), (23)

where b is the bin number. To account for masks, we divide the
covariance matrix, Mb, by the sky fraction fsky which we define
as

fsky =
1

Npix

(∑Npix

i=1 w2
i

)2

∑Npix

i=1 w4
i

· (24)

Here, wi is the weight of the apodized mask at pixel i and Npix
is the number of pixels (Hivon et al. 2002; Challinor & Chon
2005).

We solve the equation by sampling over βi and αi using a
Markov chain Monte Carlo to evaluate:

ln L = −
1
2

Nbin∑
b=1

(
uTb M−1

b ub + ln |Mb|
)
, (25)

where Mb is the binned covariance matrix. The latter term ln |Mb|

in the log-likelihood was used in Diego-Palazuelos et al. (2022)
but not in Minami & Komatsu (2020a). In simulations, we found
that by adding the term, we obtained posteriors for the angles
that were better aligned with the input values, especially for
smaller values of fsky.

To get the theoretical ΛCDM power spectra of the CMB, we
use CAMB1 (Lewis et al. 2000) using the cosmological parame-
ters from Planck 2018 (Planck Collaboration VI 2020). We then
beam smooth the theoretical ΛCDM spectra so that

CΛCDM
` =

[
CEE,ΛCDM
`

WEiE j,EiE j

`
w2

pix,`, CBB,ΛCDM
`

WBiB j,BiB j

`
w2

pix,`

]
,

(26)

where WXY,XY
`

are the beam window matrices and wpix,` are the
pixel window functions. Both i and j denote the frequency and
data split.

We first use five polarization-sensitive frequency bands from
the Planck satellite. From the HFI, we adopt all the polarization-
sensitive bands, namely the 100, 143, 217, and 353 GHz chan-
nels, along with the 70 GHz band from the LFI. The NPIPE
pipeline splits the data for each frequency band into two groups
of maps, A and B. For the 70 GHz and higher frequency chan-
nels, these data splits are detector splits. This gives one average
miscalibration angle for each set of detectors and, hence, we get
ten miscalibration angles αi where i = 70A, . . . , 353B. To get the
observed power spectra Co

` from these maps, we use PolSpice2

(Chon et al. 2004).

1 https://github.com/cmbant/CAMB
2 http://www2.iap.fr/users/hivon/software/PolSpice/
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We use the same masks as in Diego-Palazuelos et al. (2022).
They all include a carbon monoxide (CO) mask that excludes
pixels where there are bright CO emission lines. Unpolarized CO
emission can cause intensity to polarization leakage, and so pix-
els with CO emission brighter than 45 KRJ km s−1 are excluded.
These masks also exclude point sources that are the union of
the polarized HFI maps. Four Galactic masks that cover 5%,
10%, 20%, and 30% are combined with the CO and point-
source masks, leaving one mask with only a combined CO and
point-source mask. This gives five masks with a sky coverage of
fsky = 0.93, 0.90, 0.85, 0.75, and 0.63.

We look at the frequency dependence of a possible cos-
mic birefringence angle βν where ν is the frequency of the
photons. To test the frequency dependence of the birefrin-
gence angle, we will sample βν in two different ways. First,
we sample βν for each frequency band individually for ν ∈
{70, 100, 143, 217, 353}GHz. To minimize the loss of the signal-
to-noise ratio, we also chose to fit the cosmic birefringence angle
to a power law βν = β0(ν/ν0)n. Here, ν0 is a reference frequency
that we set to 150 GHz, since we find it to give the smallest error
bars on β0.

In the last section, we analyze the inclusion of the 30 and
44 GHz frequency bands separately. This is due to their polarized
foreground emission being dominated by synchrotron emission
rather than dust emission. For the 30 and 44 GHz bands, the data
splits A and B are, in fact, time splits, unlike the other detec-
tors which are detector splits. We, therefore, sample one mis-
calibration angle αi for each of the two frequency bands. The
other bands, 70 GHz and higher frequency bands, still have two
miscalibration angles each. Therefore, using all seven polarized
Planck maps gives us a total of 12 miscalibration angles.

Even though the 70 GHz maps contain more polarized syn-
chrotron emission than dust emission, we made the choice of
including the 70 GHz channel in the analysis with the HFI bands.
This is partly to see if the measured birefringence angle βν at
70 GHz is also heavily mask-dependent, which is hypothesized
to be due to EB correlations caused by polarized dust emission
which is sub-dominate at 70 GHz. The 70 GHz channel is also a
band where there is a less total foreground contribution, and so,
we might hope to get a stronger signal of βν at this frequency.

4. Filament model for EB correlations in dust

The largest uncertainty of Eq. (15) is the intrinsic EB corre-
lations of the polarized foreground emission. Unlike the other
power spectra, we do not have a reliable and robust theory
of what this could be. However, as in Diego-Palazuelos et al.
(2022) we make an ansatz based on the filamentary dust model
of EB from Clark et al. (2021) as our best estimate of the intrin-
sic dust EB correlations.

First, we start by relating the intrinsic effect of the fore-
ground’s EB correlations to the miscalibration angle α. By defin-
ing the correlation ratio as:

rXY
` ≡

CXY
`√

CXX
`

CYY
`

, (27)

we can write CEB,fg
`

= rEB,fg
`

√
CEE,fg
`

CEB,fg
`

. The intrinsic EE
and BB-correlations of dust emission are approximately pro-
portional to each other, CEB,fg

`
= ξCEE,fg

`
where ξ ≈ 0.5

(Planck Collaboration XI 2020). This gives (Minami et al. 2019)

CEB,fg
`

=
rEB,fg
`

√
ξ

1 − ξ

(
CEE,fg
`

−CEB,fg
`

)
. (28)

For the sake of argument, let us assume that the correlation ratio
is independent of multipoles, rEB,fg

`
= rEB,fg. Then we can define

an effective angle γ, sin(4γ)/2 = rEB,fg √ξ/(1 − ξ). This angle
is completely degenerate with the miscalibration angle α. By
ignoring the intrinsic EB correlations of the foreground emis-
sion, instead of measuring α and β, we are measuring α + γ and
β − γ, respectively, which leaves the sum of α + β as invariant.

Interstellar dust dominates the Galactic polarized emission
at frequencies '100 GHz (Planck Collaboration XI 2020). The
polarized dust emission was hypothesized in Huffenberger et al.
(2020) to cause EB correlations when the filaments have their
long axis partially misaligned with interstellar magnetic fields.
The misalignment angle can be characterized by a multipole-
dependent effective angle ψdust

` (Clark et al. 2021). This angle
works as an averaged misalignment angle for filaments on the
given angular scale. The estimate for this angle was given as:

ψdust
` =

1
2

arctan
CT B

`

CT E
`

 · (29)

With this angle, Clark et al. (2021) estimated the EB correlations
to be

CEB,dust
`

= |rT B,dust
`

|

√
CEE,dust
`

CBB,dust
`

sin(4ψdust
` ). (30)

Due to the approximate proportionality between CEE,dust
`

and
CBB,dust
`

, and to avoid taking the square root of noisy data, we
set explicitly CBB,dust

`
→ CEE,dust

`
. We therefore use the ansatz

from Diego-Palazuelos et al. (2022):

CEB,dust
`

= A`C
EE,dust
`

sin
(
4ψdust

`

)
, (31)

where A` is equivalent to |rT B
` | which we then sample over differ-

ent multipole ranges along with αi and βi. For small angles, we
can relate this to the effective angle γ`:

γ` ≈ A`

CEE,dust
`

CEE,dust
`

−CBB,dust
`

CT B,dust
`

CT E,dust
`

· (32)

To get the spectra needed to compute γ`, we take the cross-
power spectrum of the A and B splits at 353 GHz with the respec-
tive mask. The polarization of the CMB emission is much less
intense at this frequency, so it is expected that this frequency
band describes polarized dust emission. Taking out A`, we cal-
culate Eq. (32) with the 353 GHz spectra and apply it to all fre-
quency bands. Since we are taking ratios of spectra, the spectral
energy density of the power spectra cancels out for other fre-
quency bands. Thus, we expect γ` to be independent of the fre-
quency. This has been confirmed numerically by allowing A` to
vary with frequency, which gives similar posterior distributions
of the sampled parameters.

For the 70 GHz band, polarized thermal dust no longer
dominates, and we expect synchrotron emission to be of sim-
ilar or slightly higher amplitude than polarized dust emissions
(Planck Collaboration Int. XXII 2015; Planck Collaboration IV
2020; BeyondPlanck Collaboration 2020). Nevertheless, we still
apply the filamentary dust model to the 70 GHz band because we
still expect a dust contribution. As we comment on more later,
synchrotron emission has not been found to contain any intrin-
sic EB correlations (Martire et al. 2022), and so, we assume that
polarized dust emission is the only foreground component that
is expected to contain any intrinsic EB for the 70 GHz channel.
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Fig. 1. Constraints on βν for each frequency band considered at nearly
full-sky, fsky = 0.93. The constraints of the power law measurement,
βν = β0(ν/ν0)n, are shown as colored 1σ-bands. The individual mea-
surements of βν for each frequency channel are shown as error bars.

Similarly to Diego-Palazuelos et al. (2022), when we use the
filamentary dust model, we sample four multipole ranges for A`

in combination with sampling over βν and αi. For A`, we choose
the `-ranges 51 ≤ ` ≤ 130, 131 ≤ ` ≤ 210, 211 ≤ ` ≤ 510,
511 ≤ ` ≤ 1490.

We can then relate the intrinsic EB of the foreground to the
EE and BB: CEiB j,fg

`
= 2γ`(C

EiE j,fg
`

−CBiB j,fg
`

). In matrix notation,
this becomes:CEiB j,fg

`

CBiE j,fg
`

 = F`

CEiE j,fg
`

CBiB j,fg
`

 , F` = 2γ`

[
1 −1
1 −1

]
. (33)

We can now put this expression into Eqs. (9) and (10), and we
end up with modified A and B matrices (Diego-Palazuelos et al.
2022):

A′`,i j =
[
−ΛT

` (αi, α j)Λ−1
` (αi, α j), 1

]
, (34)

B′`,i j =
[
RT (αi + βi, α j + β j) − ΛT

` (αi, α j)Λ−1
` (αi, α j)

× R(αi + βi, α j + β j)
]
, (35)

where we have defined

Λ`(αi, α j) = R(αi, α j) + D(αi, α j)F`, (36)

ΛT
` (αi, α j) = RT (αi, α j) + DT (αi, α j)F`. (37)

The equation we are solving for now is

A′`C
o
` − B′`C

ΛCDM
` = 0, (38)

with the corresponding covariance matrix M′
` using A′` and B′` in

Eq. (21) with Z = 0. As mentioned, we find no difference in the
posterior distribution when including the ΛCDM power spectra
in the covariance, and therefore, we set M′

` = A′Cov(Co
` ,C

o
` )A′T .

5. Results

In this section, we report the results of the analysis on the
HFI bands and the 70 GHz band from the LFI. We first report
the nearly full-sky, fsky = 0.93, measurement of a frequency-
independent β. When neglecting the intrinsic EB of the polar-
ized dust emission, we find β = 0.31◦ ± 0.10◦. When using

Table 1. Individual measurements of βν at nearly full-sky, fsky = 0.93,
with and without modeling the intrinsic EB of the polarized dust
emission.

Ignore EB fg Model EB fg
ν [GHz] βν βν

70 0.72◦ ± 0.50◦ 0.76◦ ± 0.50◦
100 0.41◦ ± 0.16◦ 0.47◦ ± 0.16◦
143 0.20◦ ± 0.12◦ 0.26◦ ± 0.12◦
217 0.28◦ ± 0.13◦ 0.33◦ ± 0.13◦
353 −0.25◦ ± 0.38◦ −0.22◦ ± 0.38◦

the filamentary dust model, we find β = 0.37◦ ± 0.11◦.
We note that these are slightly different from those reported
in Diego-Palazuelos et al. (2022) since we are including the
70 GHz channel.

For a frequency-dependent value of βν, we show our nearly
full-sky, fsky = 0.93, measurement in Fig. 1. This shows both the
individual measurements of βν for each frequency band and the
power law model, βν = β0(ν/ν0)n, where we use ν0 = 150 GHz,
since we find that this reference frequency gives the smallest
uncertainty in β0. The power law models are shown as 1σ-bands,
and we show the results both when using the filamentary model
for the polarized dust emission and when we ignore the intrinsic
EB of the foreground emission.

For the individual measurements, we quote the nearly full-
sky values in Table 1, while for the power law model, we find
β0 = 0.26◦ ± 0.11◦ and n = −0.45+0.61

−0.82 when ignoring CEB,fg
`

,
and, otherwise, β0 = 0.33◦ ± 0.12◦ and n = −0.37+0.49

−0.64 when we
use the filamentary dust model for CEB,fg

`
.

It was reported in Diego-Palazuelos et al. (2022) that remov-
ing the 353 GHz maps from the analysis gave a drop in the
measurement of the frequency-independent birefringence angle,
which suggests that the 353 GHz band increases the measured
value of β. On the other hand, we note that the individual mea-
surement of βν for the 353 GHz channel yields a negative value
as seen in Fig. 1. This leaves the role of the 353 GHz chan-
nel unclear. Therefore, we investigate the effect of the 353 GHz
frequency band on the βν measurements in Fig. 2 where we
ignore the intrinsic EB power spectra of the foreground emis-
sion. The 1σ-bands are in this case the frequency-independent
measurements, where the gray band is the constraint taken from
Diego-Palazuelos et al. (2022) when excluding both the 70 and
353 GHz channels (β = 0.08◦ ± 0.21◦) and the light green 1σ-
band excludes only the 353 GHz channel (β = 0.19◦±0.19◦). We
also show the measurement of βν when we sample it individually
for each frequency band. The figure indicates that the 353 GHz
band does not bias the measurement of the other bands signif-
icantly. Instead, it decreases the individual measurement uncer-
tainties for all frequency bands. This can be explained by the
domination of polarized dust emission at 353 GHz which helps
break the degeneracy between α and β through the cross-power
spectra with lower frequency channels.

The measured angles of a frequency-dependent βν for
ν ∈ {70, 100, 143, 217, 353}GHz are shown in Fig. 3 as a func-
tion of the fractional sky coverage fsky. The upper panel shows
the probability distribution for the cosmic birefringence angle βν
for each frequency band when we ignore the intrinsic EB cor-
relations of the foreground. We observe a decreasing βν as we
mask more of the Galactic plane for 100, 143, and 217 GHz. This
is consistent with Diego-Palazuelos et al. (2022) where a similar
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Fig. 2. Constraints on βν for each frequency band considered at nearly
full-sky, fsky = 0.93, when we ignore the EB correlations of the fore-
ground. The colored 1σ-bands are frequency-independent measure-
ments, unlike the power law model shown in Fig. 1.

drop was shown for a single frequency-independent β. We do
not see this decline for the 70 GHz band. This band has a higher
contribution from polarized synchrotron emission than the other
bands, therefore, the mask-dependent contribution to CEB,dust

`
is

less significant. In the lower panel of Fig. 3, we show the prob-
ability distribution where we instead use the filament model for
CEB,dust
`

. The drop in βν when we ignore the foreground EB is
mitigated when using this model. This reinforces the hypothe-
sis that the intrinsic EB-correlation of dust is mostly positive for
large Galactic masks as reported by Clark et al. (2021).

For the power law measurement, βν = β0(ν/ν0)n, we show
our result in Fig. 4 as a function of the sky fraction, fsky. When
β0 = 0, n is fully degenerate. Since we find no theoretical mod-
els for large or small spectral indices, n, and no support from the
individual measurements of βν that there should be a large spec-
tral index n dependence, we set a flat prior |n| ≤ 3. This prevents
n from diverging around β0 ≈ 0. When we remove the prior on
n, we find no support for other solutions at higher |n|.

The decline in the cosmic birefringence angle parameter β0
is also apparent at large Galactic masks when the intrinsic EB
correlations of the polarized foreground emission are ignored.
This drop is mostly mitigated when the filamentary dust model
for EB is taken into account.

The spectral index n is shown in the lower panel of Fig. 4.
When we ignore CEB,fg

`
, we get results that are consistent with

β0 = 0◦ for larger sky cuts, and this generates broad uncertain-
ties in n. The filamentary dust model yields a positive β0, which
allows us to probe the frequency dependence of the signal more
accurately. For both nearly full-sky and large-sky cuts, we get
a measurement that is consistent with a frequency-independent
birefringence angle. The 68% C.L. lower limits for fsky = 0.9
and fsky = 0.85, touch n = −2, which would be expected from
Faraday rotation caused by local magnetic fields.

The theoretical models considered in this work are based on
integer values of n. Therefore, for nearly full-sky, fsky = 0.93, we
fix n to be the integer values, n ∈ {−2,−1, 0, 1, 2}, and only mea-
sure β0 in Table 2. We also give the corresponding ∆χ2 ≡ −2 ln L
with respect to n = 0, which shows that the frequency-invariant
solution n = 0 is the favored integer solution.

In Fig. 5, we have included the posterior distribution of our
power law assumption of β in the (n, β0)-plane at nearly full-sky,
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Fig. 3. Constraints on a frequency-dependent β for various values of
fsky. The upper panel assumes no intrinsic EB from the polarized fore-
ground, while the lower panel shows the modeling of the foreground
EB using the filament model.

fsky = 0.93. The blue contour shows the probability distribution
when we use the filamentary dust model for the EB foreground,
while the green contour shows our measurement when we ignore
the dust’s intrinsic EB. We see that when β0 is close to zero, n is
degenerate and seems to give n < 0. However, for larger values
of β0, we see support for a frequency-independent birefringence
angle, n = 0.

This work is focused on probing the frequency dependence
of βν assuming that the signal exists. Therefore, we check what
constraints we get on n by having a flat prior of β0 ≥ 0.1◦. In that
case, we find n = −0.43+0.58

−0.73 when ignoring EB of the foreground
emission and n = −0.34+0.48

−0.56 when using the filament model.

6. Including all the Planck polarized frequency
maps

In this section, we include the 30 and 44 GHz frequency chan-
nels from the LFI into our analysis. Thus, we are using all the
polarized frequency maps from both the LFI and HFI of Planck.
We treat the inclusion of these two frequency bands separately
since they have a negligible contribution of polarized dust emis-
sion compared to the polarized synchrotron emission.

The EB power spectrum of synchrotron emission has not
been detected yet. Martire et al. (2022) found that the EB of
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Fig. 4. Measurement of the power law, βν = β0(ν/ν0)n, for various val-
ues of fsky. The upper panel shows the measurement of β0, while the
lower panel models the observed n. We set a flat prior, |n| ≤ 3.

Table 2. Measurement of β0 for fixed values of n for the power law
measurement of the cosmic birefringence angle, βν = β0(ν/ν0)n for ν0 =
150 GHz.

Ignore EB fg Model EB fg
n β0 ∆χ2 β0 ∆χ2

2 0.03◦ ± 0.05◦ 8.21 0.04◦ ± 0.05◦ 9.45
1 0.17◦ ± 0.08◦ 4.67 0.21◦ ± 0.09◦ 5.60
0 0.31◦ ± 0.10◦ 0.00 0.37◦ ± 0.11◦ 0.00
−1 0.25◦ ± 0.09◦ 0.38 0.28◦ ± 0.09◦ 0.75
−2 0.14◦ ± 0.06◦ 2.25 0.15◦ ± 0.06◦ 3.01

Notes. The corresponding ∆χ2 is given with respect to n = 0.

synchrotron emission is compatible with zero at 1σ using the
30 GHz band of Planck and the WMAP K-band for different
sky fractions. The low signal-to-noise of these instruments puts
weak constraints on it, but QUIJOTE and C-BASS aim to get
a better understanding of the polarized synchrotron emission
(Poidevin et al. 2018; Jones et al. 2018). Hence, we treat the
full analysis of all Planck polarized maps with the inclusion of
the 30 and 44 GHz channels separately, and we do not include
any modeling of the intrinsic EB of either dust or synchrotron
emission.
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Fig. 5. Constraints on the power law model βν = β0(ν/ν0)n for nearly
full-sky fsky = 0.93. The green contour shows the probability distri-
bution when we ignore the intrinsic EB of the foreground, while the
blue contour shows that with the filament model for the foreground.
The quoted values are for ignoring the EB correlations of the fore-
ground. The equivalent values using the filament model for dust EB
are β0 = 0.33◦ ± 0.12◦ and n = −0.37+0.49

−0.64.
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Fig. 6. Constraints on βν at nearly full-sky fsky = 0.92, where we
have included the 30 and 44 GHz maps from the LFI. We ignore the
intrinsic EB of the foreground emission, and the 1σ-band shows the
constraints from the power law measurement, βν = β0(ν/ν0)n, where
ν0 = 150 GHz. The dashed green line with the 1σ-band shows the
frequency-independent β.

When including the two additional bands, we create a
new point-source mask that is the union of all the LFI
and HFI point-source masks. We combine it with the same
CO and Galactic masks, and the new sky coverages become
fsky = 0.92, 0.88, 0.84, 0.74, and 0.62.

We present the nearly full-sky, fsky = 0.92, measurements
in Fig. 6. Here, we show the individual samples of βν for each
frequency band, in addition to the power law measurement,

A10, page 8 of 11



J. R. Eskilt: Frequency-dependent cosmic birefringence

Table 3. Individual measurements of βν at nearly full-sky, fsky = 0.92,
without modeling the intrinsic EB of the polarized dust emission.

Ignore EB fg
ν [GHz] βν

30 0.75◦ ± 0.68◦
44 0.27◦ ± 0.68◦
70 0.82◦ ± 0.45◦
100 0.42◦ ± 0.16◦
143 0.20◦ ± 0.12◦
217 0.28◦ ± 0.12◦
353 −0.19◦ ± 0.38◦
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Fig. 7. Posterior distributions of n and β0 at nearly full-sky fsky = 0.92
for the power law measurement, βν = β0(ν/ν0)n, where ν0 = 150 GHz.
We included the 30 and 44 GHz maps from the LFI, and we ignore the
intrinsic EB of the foreground emission.

βν = β0(ν/ν0)n, with ν0 = 150 GHz shown as a 1σ-band. The
values of the individual measurement are quoted in Table 3.
For the power law model, we find β0 = 0.29◦+0.10◦

−0.11◦ and n =

−0.35+0.48
−0.47. The posterior distribution for this measurement is

shown in Fig. 7. We see that the individual measurements of βν
at 30 and 44 GHz bands are positive, and they slightly increase
the measured value of β0 for the power law measurement as seen
in Fig. 7 compared to Fig. 5. The inclusion of the two lowest fre-
quency polarized LFI bands also help constrain better the spec-
tral index n. The posterior distribution is slightly more centered
around n = 0 with smaller uncertainties.

The correlation coefficient matrix for the sampled angles βν
at nearly full-sky is shown in Fig. 8. We see little correlations
between each LFI band and other frequencies, but the HFI chan-
nels give correlated measurements of βν. The strong correlations
between βν for ν ∈ {100, 143, 217}GHz could be due to the
high signal-to-noise of CCMB,EE

`
for these bands. The CMB EE

power spectrum is the same for all channels, and it strongly con-
strains the degeneracy α + β. Through cross-correlations with
the 353 GHz band, we also get correlations with β353. A combi-
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Fig. 8. Correlation coefficients between the individually sampled bire-
fringence angles βν at nearly full-sky, fsky = 0.92.
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Fig. 9. Constraints on βν when we sample them individually for each
frequency band. We have included the 30 and 44 GHz maps from the
LFI, and we ignore the intrinsic EB of the foreground emission. The
black line shows β when we instead assume it is independent of fre-
quency.

nation of the low signal-to-noise ratio of CEE
` and the foreground

being synchrotron rather than dust at LFI could explain the lack
of correlation between the LFI and HFI channels. To get a bet-
ter understanding of the correlation coefficients, we could ana-
lyze simulations to see if the lower signal-to-noise level in the
LFI bands are the cause of the smaller correlation coefficients as
compared to the HFI bands. However, we leave such an analysis
aside for future work.

We also try to fit the parameters of the power law model by
using the covariance matrix of βν and the average measurements
found in Table 3. We retrieve the values β0 = 0.29◦ ± 0.11◦ and
n = −0.36+0.48

−0.47, and we find that the shape of the posterior dis-
tribution is very consistent with the full (β0, n) analysis seen in
Fig. 7.

We show βν as a function of the sky coverage, fsky, in Fig. 9.
This plot also includes the measurement when we assume no
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frequency dependence of β shown as the black line. At nearly
full-sky, we measure this frequency-independent angle to be
β = 0.33◦ ± 0.10◦. This figure can be compared to Fig. 1
in Diego-Palazuelos et al. (2022). The drop in the frequency-
independent β as we mask more of the Galactic plane is partially
mitigated by the inclusion of the LFI frequency bands. We also
note that the individual measurements of βν for the HFI bands
are generally lifted by the inclusion of 30 and 44 GHz bands
as can be seen when comparing with Fig. 3. This is explained
by the inclusion of a large number of new combinations of
cross-power spectra with the 30 and 44 GHz channels. This sup-
ports the hypothesis that the EB power spectra of dust emission
create a positive effective angle γ at large Galactic masks that
gives a lower measured value of β. The 30 and 44 GHz should
have a negligible contribution of dust compared to synchrotron
emission.

7. Conclusions

In this work, we employ one of the pipelines of
Diego-Palazuelos et al. (2022) to explore the possibility of
a frequency-dependent cosmic birefringence angle βν. First, we
analyzed the HFI polarized frequency bands with the 70 GHz
band from the LFI. At nearly full-sky we get a positive measure-
ment of βν for all individual frequency bands except 353 GHz.
As expected from earlier investigations (Diego-Palazuelos et al.
2022), the measured cosmic birefringence angle declines as
a function of larger Galactic masks when we set the intrinsic
EB correlations of the polarized foreground emission to zero.
By using the EB dust ansatz of Diego-Palazuelos et al. (2022),
motivated by the filamentary dust model of Clark et al. (2021),
we can mitigate this effect.

We also sample a power law function of the birefringence
angle, βν = β0(ν/ν0)n. Using both the filamentary dust model
and neglecting the intrinsic dust EB, we get measurements that
are inconsistent with a positive integer solution to the spectral
index n, especially at large sky fractions. Some measurements at
large sky coverages allow negative integer n solutions. However,
we get the smallest uncertainty on n at fsky = 0.93, which favors
the frequency-independent solution, n = 0, over other integer
solutions.

We then included the 30 and 44 GHz channels, thereby run-
ning the analysis on all the polarized Planck maps from both the
LFI and HFI. These lowest frequency channels are dominated
by polarized synchrotron emission. Measurements of the polar-
ization of synchrotron emission indicate that the EB correlations
must be small and is so far consistent with zero (Martire et al.
2022). So we did not try to model the intrinsic EB of the fore-
ground emission.

The inclusion of all the LFI bands increased the mean value
and tightened the constraints on the frequency-independent mea-
surement of β at all sky fractions considered as compared
to Diego-Palazuelos et al. (2022) which only used the HFI
channels. Especially at large Galactic cuts, we find that includ-
ing the 30 and 44 GHz bands raise the individual measure-
ments of βν for the HFI bands. This supports the hypothesis of
Diego-Palazuelos et al. (2022) and Clark et al. (2021) that large
Galactic masks give a generally positive intrinsic EB of the
polarized dust emission that biases the measurement of β to a
lower value. The contribution of polarized dust emission at 30
and 44 GHz are negligible compared to synchrotron emission.

With all the polarized Planck maps, we measured
β = 0.33◦ ± 0.10◦ assuming β has no frequency dependence.
We also sampled the parameters of the power law model,

βν = β0(ν/ν0)n, at nearly full-sky for all the polarized LFI and
HFI bands, and we found that the spectral index n is more con-
strained by adding the 30 and 44 GHz channels. The data favors
n = 0 as the integer solution and does not favor Faraday rotation
as the cause of the potential cosmic birefringence signal.

Diego-Palazuelos et al. (2022) did a thorough investigation
of the instrumental systematics of the HFI frequency bands by
looking at realistic simulations of the NPIPE processing. The
impact of these systematics was found to be negligible for the
measurement of β. However, such an analysis was not done for
the LFI channels. This work has not analyzed the instrumental
systematics of the LFI bands, and we leave this for future studies.

If the intrinsic EB of polarized dust emission was the
cause of our positive measurement of βν, we would also
have found a frequency-independent signal, as explained in
Diego-Palazuelos et al. (2022). However, dust emission is not
the dominant foreground contribution for the LFI channels;
synchrotron is. Dust EB would, therefore, not directly explain
a measurement of βν > 0 for the lowest frequency LFI
bands. There have been measured correlations between polar-
ized synchrotron and dust emission (Choi & Page 2015) which
could create intrinsic foreground EB cross power spectra
between synchrotron-dominated and dust-dominated channels.
This could potentially bias our measurement of βν for frequen-
cies where synchrotron emission dominates.

We used a filamentary dust model for the intrinsic EB of
polarized dust emission, but to what extent can we trust this
model to describe the EB of dust emission, especially at nearly
full-sky? And does synchrotron emission have an intrinsic EB
power spectrum? If the filamentary dust ansatz describes dust
sufficiently and synchrotron has a negligible EB, the measure-
ments presented in this work provide evidence for a mostly
frequency-independent cosmic birefringence angle, but we can-
not claim that we have a good enough understanding of the
polarized foreground emission yet. Hence, we do not claim any
statistical significance with regard to our cosmic birefringence
measurements.

More work needs to be done to understand the physics of
the polarized foreground emission, but strong priors on the mis-
calibration angles of future satellite missions can also help us
ascertain whether we are measuring the foreground or a cosmic
signal.
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