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Abstract

Donaldson-Thomas (DT) theory and Pandharipande-Thomas (PT) theory
represent two ways of counting curves on complex threefolds by integration
against virtual classes of Hilbert schemes and stable pair spaces, respectively.
The DT-PT correspondence, proven by Bridgeland and Toda, equates these
two theories via an equality of generating series of invariants. In this thesis we
review the theory and techniques required to investigate this correspondence
and its analogues in specific examples.
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Introduction

Classically, enumerative geometry deals with problems involving counting
geometric objects (lines, circles, conics, etc.), satisfying some incidence
conditions. These incidence conditions could be requiring objects to pass
through a number of points, to be contained in a specific surface, or perhaps to
satisfy certain tangency conditions. Consider the problem of Apollonius:

Given three circles in the plane, how many other circles are
tangent to all three?

Often, the way to approach an enumerative problem is to find a “space”
parametrizing the objects to be counted, and study how imposing the incidence
conditions reduces that space. Understanding the reduction is part of the
subject of intersection theory. A circle in the plane is determined by three
independent parameters (or moduli): the two coordinates of the center point,
and the radius. From this observation, we can associate a three-dimensional
space, denoted by P3, where each point corresponds to a unique circle in the
plane. Using Bezout’s theorem, it can be shown that after reducing this space
of circles three times by imposing the condition that we only consider circles
which are tangent to the given ones, what we should end up with is 8 points.

Even when the actual number of tangent circles is more or less than 8,
the number 8 is the “correct” answer–it conveys deeper information about the
problem, as it does not depend on the specific choice of the three circles. In this
thesis we discuss two frameworks for defining enumerative invariants associated
to curves embedded in threefolds.

Modern enumerative geometry In the last 60 years, there has been
significant advancement in the study of moduli spaces and intersection theory.
Work of Grothendieck related to representable functors, such as Hilb and Quot,
and Mumford’s Geometric Invariant Theory (GIT) are foundational to the topics
in this thesis. The theory of stacks, also built on these ideas, plays an important
role, though goes beyond the scope of this thesis. A robust intersection theory,
as set down by Fulton, is a central tool for studying enumerative invariants
based on moduli spaces.

Unlike P3 in the example problem above, moduli spaces in the modern
theory can be extremely difficult to work with. Indeed, before the 1990s, most
“curve-counting” theories were only equipped to handle lines, (e.g., Schubert
calculus) or other genus 0 curves [PT14a].
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With a maturing theory of moduli spaces and intersection theory in place,
Li and Tian [LT98] and Behrend and Fantechi [BF97] introduced notions of
virtual classes which could be used as “corrected” moduli spaces. Based on
virtual classes, several modern curve-counting theories have been developed,
[PT14a]. The first of these theories was Gromov-Witten theory, an enumerative
theory based on the moduli space of stable maps from fixed curves into a space.

Donaldson-Thomas theory Donaldson-Thomas (DT) theory, as presented
in this thesis, is based on work of [Tho00]. This is considered a sheaf -counting
theory, applying to threefolds, and originally defined as a holomorphic analogue
to the Casson invariant. A major contribution of [Tho00], was the introduction
of a deformation-obstruction theory for stable sheaves defining a virtual class;
it serves as a model for now several invariants defined from moduli of objects in
the derived category with some notion of stability.

Donaldson-Thomas theory may also be viewed as a curve-counting theory
by the equivalence stable rank one sheaves with trivial determinant and ideal
sheaves. In other words, DT moduli spaces are represented by Hilbert schemes.
As an enumerative theory, Hilbert schemes have the disadvantage that curves
degenerate into curves of higher genus plus “free points”. An example of this is
the twisted cubic in P3 deforming in a flat family to a nodal plane cubic with
an embedded point that may further deform into a smooth genus one curve and
a free point (see [Har77, III §9] for the first degeneration).

Seminal work of [Mau+06a] relates Donaldson-Thomas invariants to Gromov-
Witten invariants, via their generating series. The conjecture (now theorem in
most cases) was that after a change of variable, the two generating series differ
only by the contribution of the free points on the DT side.

Pandharipande-Thomas theory At first conjecturally, Pandharipande-
Thomas (PT), or stable pairs, invariants are the geometric realization of quoti-
enting DT invariants by the contribution of free points. In fact, that they are
related this way is the DT-PT correspondence. Like the Hilbert scheme, the
moduli space underlying the PT invariants parametrizes embedded curves, but
in a way such that zero dimensional contributions are, in some sense, confined
to the curve. As explained in [PT09a], the stable pairs moduli space can be
viewed as a modification of the Hønsen compactification of Cohen-Macaulay
curves [Høn04], which admits a virtual fundamental class.

Scope of this thesis The DT-PT correspondence is an expression of wall-
crossing for counting invariants in the derived category. However, we will
not address the correspondence at this level. Instead, we will develop the
relevant theory, examples and computational tools to explore the correspondence
empirically.

Outline

We begin Chapter 1 by recalling the Hilbert scheme, Hilbert polynomials and
how they define stability for coherent sheaves. We associate the Hilbert scheme
with stable rank one sheaves (referring to [Tho00]) in order to pass freely
between the two notions in later sections. The Hilbert scheme of points on affine
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space is also discussed, as it will be the model for degree zero DT invariants.
Stable pairs are then derived from the general notion of a coherent system. We
discuss some of their geometric properties and briefly reflect on the relation
to the Hilbert scheme. The next section introduces moduli spaces of quiver
representations. The reason for this is that such schemes are naturally the
critical locus of a regular function inside a smooth ambient variety; in this
situation, DT and PT invariants are computable by the Behrend function.
Finally, we define torus actions and localization in the non-virtual case as a
primer for virtual localization. We compute the 27 lines on the cubic surface as
an example.

In Chapter 2 we develop the main technical tools in DT theory, both
to define and compute invariants. These are virtual fundamental classes,
virtual localization and Behrend functions. We use virtual localization to
compute low degree DT invariants for A3 and see that our result agrees with
the partition function computed by [Mau+06b]. We briefly discuss the other
MNOP conjectures.

Finally, in Chapter 3, we introduce the PT invariants and compute generating
series for the local P1. We discuss the general form of DT-PT correspondences,
before exploring the unweighted correspondence. In particular, we show that it
fails in the simplest case when dimX 6= 3. We end by discussing the original
DT-PT correspondence, in general and in the case of the local P1, as well as its
K-theoretic refinement.

Conventions

By a Calabi-Yau threefold X, we mean a nonsingular variety over C with
dimX = 3, trivial canonical bundle ωX ' OX and vanishing h1, H1(X,OX) =
0. The names “resolved conifold” and “local P1” are used interchangebly for
the total space of the bundle OP1(−1)⊕OP1(−1).
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CHAPTER 1

Preliminaries

1.1 Hilbert schemes

Moduli functors and Hilb
Moduli spaces parametrize isomorphism classes of a given set of, typically
geometric, objects. A coarse moduli space realizes a one-to-one correspondence
between the (closed) points of some scheme and isomorphism classes of desired
objects, e.g., line bundles or space curves. The correspondence between closed
points of a scheme X over k and maps from Spec k → X hints at a way to
upgrade the problem. A scheme X with the association k-points to isomorphism
classes extended into a contravariant functor Sch→ Set, contains much more
information about the objects parametrized. Maps from more general schemes
should correspond to families, and varying a point continuously in the source
scheme should correspond to a continuous deformation.

Definition 1.1.1. Suppose F : Sch→ Set is a moduli functor, a functor mapping
schemes to “families.” If there exists a scheme M with functor of points
hM = Hom(−,M) naturally equivalent to F , then we say that F is representable
(by M) and that M is a fine moduli space.

Universal families Fine moduli spaces are especially desirable because of the
presence of universal families. IfM represents a moduli functor F , then there
is a canonical family U → M corresponding to the identity in Hom(M,M)
called the universal or tautological family. It typically has the property that the
schematic fiber over a point is isomorphic to the object that point corresponds
to.

One of the most important moduli functors is the Hilbert functor denoted
Hilb. In this case, families are flat families [Har77, III, §9], which, roughly
speaking, exclude undesirable behavior such as sudden increase in dimension.

Definition 1.1.2 ([Str96, Def. 3.1]). An algebraic family of closed subschemes
of X, parametrized by T , is a closed subscheme Z ⊆ XT = X ×k T . The family
is flat if the induced morphism Z → T is flat.

That the flatness condition above is the right one seems mysterious from
the definition. For families over integral noetherian schemes, perseveration of
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1.1. Hilbert schemes

the Hilbert polynomial is a necessary and sufficient condition for flatness [Har77,
III, Theorem 9.9].

Hilbert polynomials Let S = k[x0, . . . , xn]. Declaring deg xi = 1, gives S
the structure of a Z-graded ring

S =
⊕
k∈Z

Sn,

where Sk = 0 if k < 0. Recall that closed subschemes of projective space
Pn = ProjS are given by homogenous ideals I ⊂ k[x0, . . . , xn]. The Hilbert
function of IZ is defined to be the integer function mapping d to the dimension
over k of the d-th graded piece of S/I with its induced grading. Note that while
several homogenous ideals I may define the same Z, their Hilbert functions
agree for d � 0. By [Har77, I, Theorem 7.5 (Hilbert-Serre)] these Hilbert
functions are given by unique numerical polynomials for d� 0, and therefore
any Z ⊆ Pn has a well-defined Hilbert polynomial, PZ . Recall that for projective
space Pn itself (given by the zero ideal) we have

PPn(d) =
(
n+ d

d

)
.

The definition of the Hilbert polynomial above may be extended to any
projective scheme Z with ample line bundle O(1) defining an embedding into
some projective space, note that PZ depends on the projective embedding,
i.e., choice of O(1). Nevertheless, some aspects of the Hilbert polynomial are
independent of this choice, for example, the dimension of Z is equal to the
degree of PZ and the arithmetic genus pa(Z) is equal to (−1)rPZ(0)−1, [Har77,
I, §7].

We will return to the Hilbert polynomial in a more general form, in order
to define stability. We now define the Hilbert functor and the scheme that
represents it:

Definition 1.1.3 (Hilbert functor/scheme, [Str96, Def. 3.2]). Let HilbX(T ) be
the set of flat algebraic families of a closed subschemes Z ofX parametrized by T .
If T ′ → T is any morphism, Z → Z ×T T ′ gives a map HilbX(T )→ HilbX(T ′),
which makes HilbX a contravariant functor on the category of k-schemes. If
HilbX is representable, the k-scheme HilbX representing it is called the Hilbert
scheme of X.

Remark 1.1.4. If such a scheme exists, then HilbX =
⊔

HilbPX ; and the Hilbert
functor defined above is covered by the open and closed subfunctors given by
specifying the Hilbert polynomial P . The subtlety in the difference of notation
between the Hilbert functor HilbX and the Hilbert scheme HilbX is only a
slight abuse by the Yoneda lemma.

Theorem 1.1.5 (Grothendieck, [Gro60]). Assume that X is projective and P is
a numerical polynomial. Then HilbP X exists and is projective.

Example 1.1.6 (Curves in P2, [Har10, Ex. 1.1]). Consider P2 = ProjC[x, y, z].
A curve of degree d in P2 is defined (up to scaling) by a homogenous polynomial
a0x

d + · · · + anz
d, with ai ∈ k and n =

(
d+2

2
)
− 1, i.e., the number of degree

5



1.1. Hilbert schemes

d monomials in n + 1 variables. This gives a bijection between plane curves
and Pn (the ai’s become the projective coordinates). Define a family C by the
polynomial a0x

d + · · · + anz
d, where now the ai are coordinates of Pn. We

see that under the projection C → Pn, the fiber over a point a ∈ Pn is the
curve a corresponds to. Using C, one shows that Pn represents HilbPdP2 , where
Pd(z) = − 1

2d(d− 2z − 3).

Hilb for quasi-projective varieties There are several variations and general-
izations to the Hilbert functor and scheme defined above. Without modification,
the Hilbert functor written above (1.1.3) is not representable in the quasi-
projective case. In affine space, for example, any subvariety is contained in a
flat family containing an empty fiber. The solution is to consider the Hilbert
scheme of an ambient projective scheme Y , and to consider the open locus in
HilbY of closed subschemes of Y not meeting the boundary Y \X.

The Hilbert polynomial and stable sheaves

The realization of Hilbert schemes of curves as moduli spaces of stable sheaves
is important for defining invariants of such spaces in the next chapter. It also
indicates that there is more general framework for moduli spaces that are like
the Hilbert scheme. We start by introducing some preliminary definitions from
[HL10].

Definition 1.1.7 (Dimension of a coherent sheaf). Let F be a coherent sheaf
on a scheme X; Recall that the support of F , SuppF is defined to be
{x ∈ X | Fx 6= 0}. If X is Noetherian, SuppF is closed [Har77, Exercise
II.5.6], and we define the dimension of a coherent sheaf, dimF , to be the
dimension of the support of F .

Definition 1.1.8 (Hilbert polynomial for coherent sheaves, [Har77, Exercise
III.5.2]). Let X be a projective scheme over a field k with very ample line bundle
O(1) on X. For a coherent sheaf F on X, we define the Hilbert polynomial of
F (with respect to OX(1)) to be the numerical polynomial PF such that

PF (n) = χ(F(n))

for n � 0 and χ(F(n)) the sheaf-theoretic Euler characteristic: χ(F(n)) =∑
i(−1)iHi(X,F ⊗ O(n)). This agrees with the previous definition via

PZ = POZ .

Remark 1.1.9. Since the Euler characteristic is additive on exact sequences, so
too is the Hilbert polynomial. It can be shown, for example in [HL10, Lemma
1.2.1], that for any coherent sheaf F , PF can be written uniquely as,

PF (n) =
dimF∑
i=0

αi(F)m
i

i!

where αi ∈ Q and αdimF 6= 0 (this is called the multiplicity of F). This form of
PF is used in the following definitions.

Definition 1.1.10 (Rank of a coherent sheaf, [HL10]). Let F be a coherent sheaf
on a projective scheme X with dimF = dimX = d. The rank of F is defined
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1.1. Hilbert schemes

as
rk(F) = αd(F)

αd(OX) .

Remark 1.1.11. Note that if X is integral then it contains a dense open U such
that F|U is locally free and, by additivity of the Hilbert polynomial, has the
same rank as F . In the locally free case, the rank of a sheaf agrees with the
rank of the associated vector bundle.

Definition 1.1.12 (Reduced Hilbert polynomial, [HL10]). The reduced Hilbert
polynomial of a coherent sheaf F is of dimension d is defined as

pF (n) = PF (n)
αd(F) .

Definition 1.1.13 (semistable (stable) sheaf, [HL10]). A coherent sheaf F is
semistable if

(i) F is pure (i.e., has no nontrivial subsheaves of lower dimension), and

(ii) for all proper subsheaves G ⊆ F , we have pG(n) ≤ pF (n), n� 0 (often
written simply as pG < pF ).

We say that F is stable if this inequality is strict.

Proposition 1.1.14. Suppose that X is smooth projective variety of dimension
d ≥ 3. Let C ⊂ X be a curve in X; the associated ideal sheaf IC is stable, of
rank one, and has trivial determinant.

Proof. By additivity of the Hilbert polynomial on the sequence

0→ IC → OX → OC → 0

we have that POX = PIC + POC . Since the degree of POC is 1, we must have
αd(IC) = αd(OC) and thus rk(IC) = 1. For stability, first note that IC is pure:
any subsheaf of lower dimension must be torsion, but IC ⊆ OX . Now by [HL10,
p. 1.2.6] stability is equivalent to p(IC) < p(Q) for all proper quotient sheaves
IC → Q with αdimX(Q) > 0. This is trivially satisfied, since the last condition
would imply that IC has a nontrivial subsheaf of lower rank, i.e., rank zero
since X is integral, which contradicts purity.

Remark 1.1.15. This is the easy direction of an equivalence (see [Mau+06a,
p. 1.4] or [Tho00, p. 3.40] for the other direction). Furthermore, that equivalence
is only the bijection on points between the Hilbert functor, and the relevant
stable sheaf functor. Later we will take this equivalence as granted and freely
pass between the Hilbert scheme and the moduli space of stable sheaves with
fixed determinant.

Hilbert schemes of points

Using the definition above, we may define the Hilbert scheme of n points to be
the component of Hilb indexed by the constant polynomial n. The subschemes
parametrized by this component will be zero dimensional of length n. In the
case of affine space, these subschemes are exactly those corresponding to ideals
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1.2. Stable pairs

I ⊂ C[x1, . . . , xd] of colength n. Hilbert schemes of points underlie the degree
zero DT invariants and will be important in the following sections. We recall
some important properties.

The Hilbert scheme of points is well-behaved in dimension ≤ 3: If X is
nonsingular then HilbnX is nonsingular when dimX ≤ 2 or n ≤ 3; the bounds
are strict for any X [Fan06, p. 7.2]. In the surface case Hilbn S is a resolution
of singularities over Symn S [Fog68].

Theorem 1.1.16 (Göttsche formula, [Göt90]). Let S be a smooth projective
surface over C. The generating series for Euler characteristics of Hilbert
schemes of points on S is given by the following:

∞∑
n=0

χ(Hilbn S)qn =
∞∏
m=1

(1− qm)−χ(S). (1.1)

Example 1.1.17 (K3 surfaces). It’s well known that Hilbert schemes points on
K3 surfaces provide a large class of hyperkähler manifolds, those of so-called
K3[m]-type [Deb20]. Using the Göttsche formula, we may compute their Euler
characteristics: The right side of (1.1) is approximated in Mathematica®by

GF[u_, q_, x_] := Product[(1 - q^i)^-x, {i, u}]

and since the topological Euler characteristic of any K3 surface S is 24, we
compute via

n = 6(*number of terms*);
Series[GF[n + 1, q, 24], {q, 0, n}];
CoefficientList[%, q]

that χ(Hilbn S) = 24, 324, 3200, 25650, 176256, 1073720, . . ..

Theorem 1.1.18 (Cheah formula, [Che96]). Let X be a smooth projective
threefold over C. The generating series for Euler characteristics of Hilbert
schemes of points on X is given by the following:

∞∑
n=0

χ(HilbnX)qn =
∞∏
m=1

(1− qm)−mχ(X) = M(q)χ(X) (1.2)

where

M(q) =
∞∏
m=1

(1− qm)−m

is the MacMahon function [Mac16].

1.2 Stable pairs

From the perspective of counting curves, one of the main problems with Hilbert
schemes is the presence of subschemes with “free points” in the component of
any curve. Spaces of stable pairs give a different compactification of embedded
curves. The main references for this section will be [Le 93; PT09a; PT14a;
ST11].
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1.2. Stable pairs

Generalities

Definition 1.2.1 (Coherent System/Pair, [Le 93, p. 61]). Let X be a nonsingular
projective variety of dimension n. A coherent system (F ,Γ) of dimension d is a
coherent sheaf F on X of dimension d and a subspace Γ ⊆ H0(F). A coherent
system is a pair if dim SuppF = 1 = dim Γ = 〈s〉, which we often written
simply as (F , s).

Remark 1.2.2. A coherent system is a generalization of a linear system, when F
is a line bundle. Recall that H0(X,F) ∼= Hom(OX ,F), therefore we will also
often write a pair (F , s) as s : OX → F .

Definition 1.2.3 (Reduced Hilbert polynomial of a coherent system, [Le 93,
p. 62]). Let (Γ,F) be a coherent system on X. Let PX denote the Hilbert
polynomial of X, r the multiplicity of F , and pF the reduced Hilbert polynomial
of F . We define the reduced Hilbert polynomial of (Γ,F) to be

p(Γ,F) = dim Γ
r

PX + pF .

We can now define the (semi)stability of coherent systems completely
analogously to that of coherent sheaves:

Definition 1.2.4 (stability for coherent systems, [Le 93, p. 62]). A d-dimensional
coherent system (Γ,F) is semistable if,

(i) F is pure of dimension d, i.e., F has no nontrivial subsheaves of dimension
< d, and

(ii) For any nontrivial coherent subsheaf F ′ ⊂ F , the coherent system
(Γ′,F ′) = (Γ ∩H0(F ′),F) we have

p(Γ′,F ′) ≤ p(Γ,F).

We say that (Γ,F) is stable if this inequality is strict.

Example 1.2.5. Consider a coherent system (0,F). We have p(0,F) = pF , and
therefore F is (semi)stable if and only if (0,F) is.

Proposition 1.2.6 ([PT09a]). A pair (F , s) is stable if and only if F is pure
and s : OX → F has zero dimensional cokernel.

We begin to discuss moduli of stable pairs, and include the following
definition of families of coherent systems for completeness.

Definition 1.2.7 (Families of coherent systems). Let X be a smooth projective
variety of dimension d. A flat family of coherent systems on X, parametrized
by S consists of two sheaves F ,Q, where

(i) F is coherent on X × S which is flat over S, and

(ii) Q is a locally free quotient of the relative Ext sheaf Extdq(F , p∗ωX).

Remark 1.2.8 (Fiber over a point). Let us check that a family over a point is a
pair. Le Potier shows [Le 93, Lemma 4.9] that over a closed point s ∈ S,

Extdq(F , p∗ωX) = Extd(Fs, ωX).
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1.2. Stable pairs

By Serre duality, Extd(Fs, ωX) = H0(Fs), and thus Fs = F and the kernel of
the quotient of H0(Fs) defines a pair on X.

Theorem 1.2.9 ([Le 93, Théorème 4.13]). Let X be a smooth projective variety,
there is a projective scheme SystP X representing a functor SystPX ,

SystPX : Sch −→ Set

T 7−→
{
flat families of semistable coherent systems

(F ,Q)with PFt
= P for all t ∈ T

}
.

Remark 1.2.10. Note that we may write this scheme as a disjoint union

SystP X =
⊔
n∈N

SystP,nX

where SystP,nX parametrizes coherent systems with dim Γ = 1. Thus,
choosing a Hilbert polynomial P of degree one, we see that the space SystP,1X
parametrizes stable pairs on X. From now on we will denote this space by
PairsP X.

Geometric aspects

In specializing from coherent systems to stable pairs, several geometric aspects
emerge. In the best case, i.e., when a pair has smooth supporting curve, it is
equivalent data to a Weil divisor on that curve.

Proposition 1.2.11 ([PT09a, p. 412]). Let (F , s) be a stable pair on X, and let
CF denote the schematic support of F . Then CF is a Cohen-Macaulay curve
on X with structure sheaf isomorphic to im(s).

Definition 1.2.12 (Zero locus of a stable pair, [PT09a]). Given a stable pair
OX

s→ F , from 1.2.6 we had that the cokernel of s has zero-dimensional support.
Define the zero locus of the pair as the reduced support scheme of coker s.

Proposition 1.2.13 (Stable pairs on smooth curves, [PT09a]). Stable pairs
supported on a smooth curve C correspond to Weil divisors on C.

Proof. Let (F , s) be a stable pair supported on C. F may be viewed as a pure
rank one sheaf on C, which implies F|C is locally free of rank one. Since C is
nonsingular, F is then given by OC(D) for a Weil divisor D.

Even when C is singular, we always have stable pairs with any given zero
locus:

Proposition 1.2.14. For any Cohen-Macaulay curve C ⊂ X and any finite
collection of closed points D =

⊔
pi on C, there exists a stable pair OX

s→ F
with CF = C and zero locus D.

Relation to the Hilbert scheme In some sense, the goal of this thesis is to
explore the relation between the Hilbert scheme and the Pairs space. Here
however, we simply remark the following similarity: As we saw in the last
section the Hilbert scheme may be thought of as parametrizing ideal sheaves
IZ ⊂ OX , which are equivalent to quotients of the structure sheaf, OX � OZ .
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1.3. Quiver representations

Stable pairs OX → F are in one sense a relaxation of this, in that the map need
not be surjective, but with zero dimensional cokernel, and in another sense a
restriction, requiring that the sheaf F be pure. Both stable pairs schemes and
Hilbert schemes parametrize stable objects in the derived category, with two
different notations of stability.

1.3 Quiver representations

The main references for this section will be [Kin94; Ric21; Sze08; Tod21]. The
aim is to define moduli spaces of quiver representations, and especially to
realize certain examples, such as the Hilbert scheme of points HilbnA3 and
the local P1, relevant for this thesis as such spaces. More generally, quivers
with superpotentials define varieties which are critical loci in smooth ambient
varieties, and therefore carry a canonical symmetric perfect obstruction and
zero dimensional virtual class. This makes them model spaces for defining and
computing enumerative invariants.

Basic definitions

A quiver is simply a finite directed graph, allowing for multiple edges and loops.
To fix our notation we make the following definition in accordance with [Sze08].

Definition 1.3.1. A quiver Q = (V,E, h, t : E → V ) consists of a finite vertex
set V , a finite edge set E, and maps h, t determining the orientation of a given
edge. If the vertices are indexed by a set I, we will sometimes abuse notation
and take values for h and t in I.

Example 1.3.2 (The A2 quiver). The A2 quiver is Q = ({v0, v1}, {e}, h : e 7→
v1, t : e 7→ v0), and can be drawn as,

v0 v1
e

Path algebra Given a quiver, it is natural to consider the paths contained
therein. In the set of all paths, including the do-nothing path at each vertex,
one may define a binary operation by concatenation if the two paths match
up, and as zero otherwise. Taking formal linear sums over a given base field, k
along with this operation defines an algebra known as the path algebra, kQ (as
a k-vector space it has a basis consisting of all paths in Q).

Example 1.3.3 (The A3 quiver). Below we have the quiver with V = {v},
E = {x, y, z} and constant maps h, t : e 7→ v.

v0
x

y

z

11



1.3. Quiver representations

The path algebra of Q is given by linear sums of monomials in x, y and z, i.e.,
CQ = C〈x, y, z〉.

Superpotentials For any quiver Q, an element of the quotient by the
commutator, CQ/[CQ,CQ] is called a superpotential. Since the product of non-
adjacent paths is zero, we immediately see that superpotentials are represented
by formal sums of closed paths in Q. Similarly, from the commutator relation, we
get that cyclic permutations of a given path represent the same superpotential.

This last observation makes the following "formal differentiation" well-defined
on superpotentials.

Definition 1.3.4 (Noncommutative derivative). Given a cycle C in Q containing
edges e1, . . . en, define the formal derivative with respect to some edge e ∈ Q as:

∂eC =
n−1∑
i=0

de(σi(C)), de(σi(C)) =
{
w if σi(C) = ew

0 otherwise

where σi(C) denotes the i-th cyclic permutation of C and w is some word in
the ei. This operation extends linearly to superpotentials, yielding a linear
map CQ/[CQ,CQ]→ CQ. Given a superpotential W we may thus define the
Jacobian ideal just as in other contexts, IW = 〈∂eW | e ∈ E〉.

Example 1.3.5 (One-loop quiver). Consider the quiver Q = ({v0}, {x}, h, t).

v0

x

with superpotential W = xn+1. We see that noncommutative derivative agrees
with the ordinary derivative, ∂xW = (n+ 1)xn.

Example 1.3.6 (Formal differentiation and Jacobian ideal). Consider the A3

quiver Q from (1.3.3), W = xyz − xzy defines a non-zero superpotential, and

∂xW = yz − zy, ∂yW = zx− xz, ∂zW = xy − yz.

Thus, we have IW = 〈yz − zy, zx − xz, xy − yz〉, and therefore CQ/IW '
C[x, y, z].

Quiver representations and moduli

Definition 1.3.7 (Quiver representation). A representation of a quiver Q =
(V,E, h, t) consists of the following data:

i. vector spaces Vi, one for each vertex vi in V ,

ii. linear maps φe : Vt(e) → Vh(e), one for each e ∈ E.

Given a |V |-tuple, or dimension vector, d = (d1, . . . , d|V |) ∈ N|V |, we say that
a Q-representation is d-dimensional if dimVi = di for all 1 ≤ i ≤ |V |. A
morphism of Q-representations f : ({Vi}, {φe})→ ({Ui}, {ψe}) is a collection
of linear maps fi : Vi → Ui commuting with the maps φe, ψe.

12



1.3. Quiver representations

Remark 1.3.8 (Path-algebra representations). Representations of a path algebra
CQ are simply modules over CQ. It can be easily shown that for any quiver Q,
the category of quiver representations Rep(Q) is equivalent to the category of
finitely generated CQ representations. This follows almost immediately from
defining the functor, i.e., the map determining a CQ representation from a
quiver representation, cf. [Cra08, Proposition 4.2]. Note that this implies that
Rep(Q) is an abelian category. We will sometimes use the language of modules
when describing quiver-representations and vice versa.

Before we consider moduli of quiver representations, we must first describe
the isomorphism classes. From (1.3.7) it is clear that a morphism of quiver
representations is an isomorphism if and only if the maps fi are isomorphisms.
Thus, from the perspective of determining isomorphism classes of quiver
representations, the fi might as well be automorphisms, i.e., elements GL(Vi).
Indeed, with any given d-dimensional choice of vector spaces {Vi}, we can
describe the isomorphism classes of d-dimensional Q-representions as the
orbits of G =

∏
v∈V GL(Vi) acting on R(Q, d) =

⊕
e∈E Hom(Vt(e)), Vh(e)) by

g · φe 7→ gh(e)φeg
−1
t(e). For example, if Q is the A2 quiver (1.3.2), v1

e→ v1, the
action is given by

V1 V2

V1 V2

φe

g1 g2g−1
1 g−1

2

(g1,g2)·7−−−−−→
V1 V2

V1 V2

φe

g1 g2g−1
1 g−1

2

Note that R(Q, d) is an affine space acted on by a linear reductive group.
Thus, after determining the semi-stable locus, the moduli scheme can be
described by the GIT quotient. By restricting to the view of framed quivers we
achieve a nice description of this locus, namely the semi-stable representations
will correspond to cyclic modules.

Definition 1.3.9 (Framed quiver). A (1-)framed quiver is a quiver ~Q with a
distinguished vertex (often denoted by ∞) and a single edge emanating from
∞ (the vertex it points to is often denoted by 0, or k). A framed quiver
representation is a quiver representation with dimension vector d such that
dim d∞ = 1.

Suppose that a framed quiver ~Q is defined by augmenting an ordinary
quiver Q = (V,E, h, t) by adding the vertex v∞ to V , adding edge e∞ pointing
to some vertex vk, and adjusting h and t accordingly. The space of framed
representations of ~Q with dimension vector ~d = (1, d) (that is, ~d∞ = 1 and d is
a dimension vector for Q), may be alternatively described as

R( ~Q, ~d) =
∏

e∈E∪{e∞}

Hom(Vt(e), Vh(e))

=
∏
e∈E

Hom(Vt(e), Vh(e))×Hom(C, Vk)

=
∏
e∈E

Hom(Vt(e), Vh(e))× Vk = {(φe)e∈E ,m ∈ Vk}

where the Vi are some starting choice of vector spaces satisfying d.

13



1.3. Quiver representations

Now, following [Sze08], let S0 be the open subvariety of R( ~Q, ~d) =
{(φe)e∈E ,m ∈ Vk} where the vector m generates the CQ-module (Vi, φe),
in other words, every Vi is spanned by vectors obtained by repeatedly applying
the φe to m. If W is a superpotential for Q, let X denote the closed subscheme
of S0 of representations satisfying the relations ∂eW = 0 for all e ∈ E (1.3.4).
Recalling the G action on R( ~Q, ~d) from above, [Sze08] shows the following.

Theorem 1.3.10 ([Sze08, Proposition 1.2.2]).

(i) There exists a smooth and quasi-projective geometric quotient N of S0

by G, containing a closed subschemeMk,d ⊂ N which is a quotient of X by G.

(ii) The space Mk,d carries a tautological family (Mk,d,mk,d) of framed
cyclic CQ/IW -modules, generated at the vertex k.

(iii) The spaceMk,d a fine moduli space representing a functor of certain
CQ/IW -modules.

Example 1.3.11 (HilbnA3). Consider the framed A3 quiver

v∞ v0 x

y

z

with superpotential W = xyz−xzy as in 1.3.6. From (1.3.10), the moduli space
Mv0,n parametrizes n-dimensional C[x, y, z]-modules, with module structure
induced by a linear surjection from C[x, y, z] (from the condition defining S0,
above). Such modules are identified with n-dimensional quotients of C[x, y, z],
which we identify with the Hilbert scheme HilbnA3.

Example 1.3.12 (Local P1). Consider the following framed quiver

v∞ v0 v1
x0

y0

x1

y1

with superpotential W = x0x1y0y1 − x0y1y0x1 (the Klebanov-Witten superpo-
tential). The algebra A = CQ/IW is a non-commutative crepant resolution for
the conifold singularity

Z = Spec(C[x, y, z, w]/(xy − zw)),

[Sze08, §2]. Most importantly, Van den Bergh showed in [Van04] that the
bounded derived category Db(X) where X is the local P1, is derived equivalent
to Db(A). Invariants based on Db(X) may be calculated by studying the above
quiver.

14



1.4. Torus actions and localization

The condition defining S0 used in 1.3.10 was a convenient way to describe
the semistable locus with respect to the G-action. That the resulting moduli
spaces in the cases above are also moduli of sheaves over varieties suggests a
relation with notions of stability defined in previous sections. For quivers, we
have the following more general definition.

Definition 1.3.13 (θ-stability, [Kin94]). Given a quiver Q, a dimension vector
d, and a vector θ ∈ R|V | such that θ · d = 0. We say that a Q-representation
(Vi, φe) of dimension d is θ-semistable (stable) if for any non-zero proper
subrepresentation (V ′i , φ′e) of dimension d′ we have θ(v′) ≤ 0 (resp. θ(v′) < 0).

Remark 1.3.14. Invariants defined for moduli of quiver representationsMθ
k,d

vary discretely with change of stability parameter θ, this is described as a
wall-chamber structure.

Definition 1.3.15 (Trace of a superpotential). Any superpotential W for a
quiver Q, defines a regular function Tr(W ) : R(Q, d) → C called the trace of
W . It suffices to define Tr(c) for an arbitrary cycle c = ei1ei2 · · · eik and extend
linearly to any W .

Tr(c) : R(Q, d)→ C (1.3)
(Vi, φi) 7→ tr(φi1 ◦ φi2 ◦ · · · ◦ φik) (1.4)

Remark 1.3.16. The trace of a superpotential Tr(W ) = f descends to a regular
function f̄ on the moduli spaceMk,d from 1.3.10. It can be shown that the
vanishing of the 1-form df agrees with the vanishing of the Jacobian ideal IW
1.3.4 (see [Sze08, Theorem 1.3.1] and [Seg08, Proposition 3.8]), and in fact,
Mk,d = Z(df̄) With (1.3.11), this shows that the Hilbert scheme HilbnA3 is
closed subscheme of smooth variety defined as a critical locus.

1.4 Torus actions and localization

Torus actions

Throughout this thesis, by tori we mean an algebraic torus, the scheme
C∗ = SpecC[t, t−1] and higher products (C∗)r = SpecC[t±1

1 , . . . , t±1
r ]. They will

often be denoted by T. The ordinary group structure on C∗ is algebraic, making
tori into group schemes. Our main interest in this section will be to see how
these groups act on a given space, and more importantly how that information
can be leveraged to study the space being acted on. We require group actions
to be morphisms G×X → X, commuting with the group operations. Likewise,
a representation of a torus T is a morphism ρ : T→ GLn(C); the integer n is
the dimension of the representation. One dimensional representations are called
characters. It’s well known that representations of algebraic tori decompose
into sums of characters. As in the case of ordinary representations of groups,
we will often refer to a representation as its underlying vector space when the
action (the morphism ρ) is implicit.

Proposition 1.4.1. The characters of C∗ are given by C-algebra maps C[s±1]→
C[t±1] where t 7→ sw for some w ∈ Z. The integer w is then called the weight
of the character.
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1.4. Torus actions and localization

Proof. A character of C∗ is a morphism SpecC[t, t−1]→ SpecC[s, s−1], which
is equivalent s to C-algebra map ϕ : C[s±1]→ C[t±1]. This map is determined
by the image of t, ϕ(t) which must be invertible, i.e., ϕ(t) = atw for some
integer w. Since the map must commute with multiplication by C, we have
a = 1.

Remark 1.4.2. Knowing how representations of higher dimensional tori
decompose and the above statement, we can identify the Grothendieck ring of
representations of a torus T = (C∗)r, i.e., the representation ring R(T), with
Zr. We also see that a given T-representation V can be decomposed into weight
spaces V =

⊕
Zr Vα. Visually, this decomposition is the same as a Zr-grading

of V . The correspondence between torus actions and graded modules is very
general (see 1.4.3).

Proposition 1.4.3. There is an equivalence of categories between T-equivariant
quasi-coherent sheaves and Zr-graded A modules:

QCohT(SpecA) ' Zr-GrMod(R).

As a reference for this statement see [Gan19, Proposition 1.7].

Fixed loci

Definition 1.4.4 (Fixed-point scheme, [Mil17, §7.b]). Suppose T acts on a
C-scheme X by a : T×X → X. We define the fixed-point scheme XT as the
largest subscheme of X on which T acts trivially. In other words, if Z ⊂ X is
any subscheme such that at|Z : Z → X equals idX |Z : Z → X (where at is the
map X → X induced by fixing t ∈ T), then inclusion Z ↪→ X factors uniquely
through XT:

Z

XT X

∃!g

Remark 1.4.5. Direct constructions of the fixed-point scheme are given in broad
generality by [Fog73] and [Mil17]. In the case when X is smooth and projective,
the fixed point locus is also smooth [Fog73; Ive72]. Iversen also proved that,
in that case, the Euler characteristic (as the top Chern class of the tangent
bundle) of X agrees with the Euler characteristic of the smooth fixed locus.
More generally, Bialynicki-Birula proved the following, which we sometimes call
“Euler localization”:

Theorem 1.4.6 ([Bia73, Corollary 2]). Suppose that X is acted on by T = C∗,
then

χ(X) = χ(XT),
where χ is the Euler-Poincaré characteristic of the underlying topological space.

Example 1.4.7 (χ(P1) = 2.). Consider the action on P1 = ProjC[x0, x1] given
by t · (x0, x1) = (tx0, t

2x1). The only C∗ fixed points are [0; 1] and [1; 0], so
|(P1)T| = 2 = χ(P1).

Proposition 1.4.8 ([Ric21]). Consider the standard action of T = C∗d on Ad
by scaling in the coordinate ring R = C[x, y, z]. There are bijections between
the following,
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1.4. Torus actions and localization

(i) fixed subschemes of length n,

(ii) monomial ideals in R of colength n,

(iii) d-dimensional partitions of size n.

Corollary 1.4.9 (Euler). The generating series for the Hilbert scheme of points
on A2 is: ∑

n=1
χ(Hilbn A2)qn =

∏
n=1

1
1− qn .

Example 1.4.10. We can use Euler localization (1.4.6) to compute Euler
characteristics of Hilbert schemes of points on projective spaces. The P2

and P3 columns can be checked by formulas of Göttsche [Göt90] and Cheah
[Che96].

P1 P2 P3 P4 P5 P6

χ(Hilb1(−)) 2 3 4 5 6 7
χ(Hilb2(−)) 3 9 18 30 45 63
χ(Hilb3(−)) 4 22 64 140 260 434
χ(Hilb4(−)) 5 51 215 615 1410 2800
χ(Hilb5(−)) 6 108 660 2476 7026 16632

Example 1.4.11 (Fixed loci of PairsP X). For X a nonsingular toric threefold,
we have from [PT09b, Theorem 1] that any connected component of the T-fixed
locus is a product of P1’s, noting that the 0-th product is a point. Pandharipande
and Thomas show this by characterizing the fixed points in terms of box
configurations analogous to 1.4.8.

Atiyah-Bott localization

Here we will introduce Atiyah-Bott localization and review some applications.
The statement is given in terms of equivariant cohomology/Euler classes, which
we recall briefly. The main consequence of the theorem is that if a torus (here
in the Lie group setting, which will denote by T , instead of T) acts on a
compact manifold, then the map on equivariant cohomology induced by the
inclusion of the fixed locus becomes an isomorphism after a certain localization
(in the commutative algebra sense). Moreover, the inverse map can be described
explicitly, and can be used effectively for computations in the form of the
integration formula 1.4.17.

Though we are primarily interested in applying localization in the algebraic
setting, we will instead recall notions from equivariant (singular) cohomology
and appeal to the analogy between homology and the Chow ring. This avoids
the problem of dealing with the Borel construction algebraically. Equivariant
(co)homology is a generalization of ordinary (co)homology that respects a given
group action (H∗G = H∗ when G acts trivially). In the best case, when the
group action is free, the equivariant (co)homology is equal to the ordinary
cohomology of the quotient.

In fact, the principles that the equivariant theory should behave like the
cohomology of the quotient and also be homotopy invariant lead naturally to
the construction 1.4.13, which first requires the following gadget.

Proposition 1.4.12 ([tDie08, §14.4]). For any group G there exists a weakly
contractible space EG on which G acts freely.
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1.4. Torus actions and localization

It is the total space of the universal bundle EG → BG, where BG is the
classifying space of G and which we may take as the quotient of EG by the
G action. We remark that this is also a universal object in the sense of the
previous sections: BG represents the functor from the homotopy category to
sets, mapping spaces Z to isomorphism classes of principal G-bundles over Z.

Definition 1.4.13 (Equivariant cohomology). Let a group G act on a topological
space X. By 1.4.12, the space X × EG has the same homotopy type as X and
is acted on freely by G. Let (X ×G EG) denote (X ×EG)/G, this is known as
the Borel construction or Borel space. Define

H∗G(X) = H∗G(X ×G EG).

Note that when X = pt, then H∗G(X) = H∗(BG).

Example 1.4.14 (G = C∗, X = pt). G acts freely on Cn \ {0} by scaling, the
homotopy groups πi(Cn \ {0}) are trivial for all i < n. Thus, by the universal
property, we may take EG = C∞ \ {0}, whence BG = P∞. Therefore,

H∗G(X) = H∗G(P∞) = Z[s1].

Likewise, H∗C∗r(X) = H∗G((P∞)r) = Z[s1, . . . , sr], with si of cohomological
degree 2.

Definition 1.4.15 (Equivariant vector bundles). Let a group G act on a
topological space X. A G-equivariant vector bundle on X is a vector bundle
π : V → X with a choice of G-action on V , aV : G× V → V commuting with
projection and the action on X:

G× V V

G×X X.

aV

id×π π

aX

(1.5)

Definition 1.4.16 (Equivariant Chern classes/Euler class). Given a G-
equivariant vector bundle V over X (1.4.15), we define the G-equivariant
Chern classes, cGi (V ) ∈ H∗G(X) to be the ordinary Chern classes (in cohomol-
ogy) of the bundle induced by (1.5): V ×G EG → X ×G EG. We define the
equivariant Euler class as the top equivariant Chern class: eT(V ) = cTrkV (V ),
i.e., the Euler class of induced bundle.

Proposition 1.4.17 ([AB84], [BV83, Théorème 1.6]). Let M be a compact
manifold with the action of a torus T with an isolated set of fixed points MT .
For any φ ∈ H∗T (M) we have∫

M

φ =
∑

P∈MT

i∗Pφ

eT (NP |M )

where
∫
M
φ denotes the pushforward of φ to a point, iP is the inclusion of a

point P ↪→M and e(NP |M ) is the Euler class of the normal bundle at P .

Example 1.4.18 (Euler localization). Using the integration formula (1.4.17)
we can retroactively verify the principle of “Euler localization” above (in the
smooth manifold case). Let T act on a manifold M with isolated fixed points
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1.4. Torus actions and localization

MT . First, by the Poincaré-Hopf theorem, the Euler characteristic χ(M) is
equal to the degree of top Chern class of the tangent bundle, from there we can
apply localization:

χ(M) =
∫
M

e(TM) ∈ H0(pt) ∼= Z

=
∑

P∈MT

e(TPM)
eT (NP |M )

=
∑

P∈MT

e(TPM)
e(TPM) = |MT |

since the normal bundle to a point is the tangent space.

The analogous theory of equivariant Chow groups were defined in [EG98a],
and, of greater utility for our purposes, the authors proved the following algebraic
analogy of 1.4.17:

Proposition 1.4.19 ([EG98b]). Let X be a smooth proper variety with the action
of a torus T with an isolated set of fixed points XT, for any α ∈ AT∗,loc we have∫

X

α =
∑
Z∈XT

i∗Zα

eT(NZ|X) . (1.6)

Moreover, if a ∈ A0X is the pullback of an element α ∈ AT
0X, then deg a may

be evaluated by 1.6.

Example 1.4.20 (27 lines on a cubic surface). Consider the T = C∗
action on P3 = ProjC[x0, x1, x2, x3] scaling by t · (x0, x1, x2, x3) →
(tw0x0, t

w0x1, t
w0x2, t

w0x3) with unique weights w0, w1, w2, w3 ∈ Z. This action
lifts to the Grassmannian G = G(1, 3) and has 6 fixed points corresponding
to the coordinate axes: {`i,j = Z(xi, xj)}i<j . Recall the universal sequence
([EH16, §3.2]):

0→ S → OG ⊗ V → Q→ 0 (1.7)

where S and Q are the universal sub and quotient bundles and PV = P3, i.e.,
V ∗ = H0(OP3(1)). It can be shown, say from the proof of [EH16, Proposition
6.4], that any cubic form f induces a global section σf of Sym3 S∗ whose zero
locus in G is exactly the lines contained in X = Z(f). Thus, if this locus of
lines is zero dimensional and reduced (which indeed it is, though we will omit
this part) then the number of lines on a cubic surface is given by the degree of
c4(Sym3 S∗), the top Chern class (Sym3 S∗ has rank 4 since rkS∗ = 2). By

|lines in X| =
∫
G(1,3)

e(Sym3 S∗) =
∫
G(1,3)

eT(Sym3 S∗)

=
∑
`i,j

eT(Sym3 S∗)|`i,j
eT(N`i,j |G) (by localization)

Applying the Whitney sum formula to the normal bundle exact sequence
(short, in this case) we find that eT(N`|G) = eT(T`G). Recall also (again
[EH16, §3.2]) that the tangent bundle of the Grassmannian is given by
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1.4. Torus actions and localization

T G = Hom(S,Q) = S∗ ⊗ Q, so T`G = S∗|` ⊗ Q|`. By the tautological
property of S, we see S∗|`ij ∼= 〈xi, xj〉. It follows that

eT(T`i,jG) =
∏
k 6=i,j

(wi − wk)(wj − wk),

and
Sym3 S∗|`i,j ∼= Sym3〈xi, xj〉 ∼= 〈x3

i , x
2
ixj , xix

2
j , x

4
j 〉

so
eT(Sym3 S∗)|`i,j ) = (3wi)(2wi + wj)(wi + 2wj)(3wj).

We have computed,

|lines in X| =
∑
`i,j

(3wi)(2wi + wj)(wi + 2wj)(3wj)∏
k 6=i,j(wi − wk)(wj − wk) (1.8)

which, for distinct weights w0, w1, w2, w3, simplifies to 27. This can be checked
using various wi using the following Mathematica®code:

lindices = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}};
loacs[w__] := Sum[

((3 w[[l[[1]]]]) * (2 w[[l[[1]]]] + w[[l[[2]]]]) *
(w[[l[[1]]]] + 2 w[[l[[2]]]]) * (3 w[[l[[2]]]])) /
Product[(w[[l[[1]]]] - w[[k]]) * (w[[l[[2]]]] - w[[k]]),

{k, Complement[{1, 2, 3, 4}, l]}],
{l , lindices}];

w = {0, 1, 2, 3};
loacs[w]

Remark 1.4.21 (Lines on a quintic threefold). It can be shown by the same
technique that the general quintic hypersurface in P4 contains 2875 lines. Unlike
the previous example, the locus in the Grassmannian of lines on such a threefold,
i.e., the Fano scheme is not always reduced and zero dimensional. Indeed, the
Fermat quintic, for example, contains 1-dimensional families of lines. Already
from this example, we see that defining invariants based on counts of embedded
curves in threefolds will require more sophisticated constructions.
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CHAPTER 2

Donaldson-Thomas theory

In this chapter we introduce the main technical background and techniques for
defining and computing Donaldson-Thomas invariants.

2.1 Virtual fundamental classes

In realizing spaces of ideal sheaves, stable pairs and quiver representations as
schemes, we have crossed the first major hurdle in most modern enumerative
problems. The language of schemes gives us several tools with which to define
invariants and extract enumerative information. Nevertheless, some of these
schemes are notoriously unwieldy (cf. [Vak06]). Indeed, the simplest moduli
space relevant for enumerative invariants of threefolds is the Hilbert scheme of
points Hilbn A3; this is singular already when n = 3 and reducible for n� 0.

The solution is to consider instead virtual classes, which represent a
“corrected” version of these spaces. Any such notion should accord with the
following principles:

1. A virtual class should be of expected dimension.

2. It should agree with the ordinary fundamental class in ideal settings, i.e.,
when it’s representing something smooth and/or defined by transverse
intersections.

3. It should, in some sense, be deformation invariant.

The following two examples are familiar situations invoking the principles
of virtual cycles.

Example 2.1.1. The “virtual” dimension is a familiar concept: Let Y by a
smooth variety of dimension d, and let E be a rank r vector bundle on Y .
Consider X = Z(s), the zero locus of some section of E. Locally, X is cut out
by r equations and therefore the expected dimension or virtual dimension of X
is d− r. It may happen that dimX ≥ d− r, yet there is a still a natural choice
of cycle class associated to X of the “correct” dimension, the r-th Chern class
of E. Indeed, if X is purely d− r dimensional, then we have

cr(E) = [X] ∈ Ad−r(X),

see [Ful98, Example 3.2.16].
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Example 2.1.2 (Bezout). Consider now Y = Pn and E = O(d1)⊕O(d2)⊕ · · ·⊕
O(dr). The vanishing X = Z(s) of a section of E is then the intersection of r
hypersurfaces of degrees di. By the Whitney sum formula we have

cr(E) =
∏
i

c1(O(di)) =
∏
i

diH

where H is the class of a hyperplane. When r = n we are used to thinking of
the right side of the equality as the "expected class" by Bezout’s theorem.

Idealized virtual classes

Problems requiring virtual classes often arise in intersection theory. A well-
defined intersection product has to handle degenerate cases such as non-
transverse, “excess,” and even self-intersection. The intersection theory of
Fulton-MacPherson provides a robust framework for such problems, starting
with idea of deformation to the normal cone. We apply similar ideas to define
a virtual class [X]vir in the case of a closed embedding of a scheme X into an
ambient nonsingular variety Y , and call this the idealized setting. Later we
will see that this, in fact, a local model for the far more general definition of a
virtual fundamental class.

We first recall for a vector bundle E → X the flat pullback and the associated
Gysin homomorphisms. This, along with the normal cone of an embedding
X ↪→ Y , will allow us to define a cycle, which at least is of the correct dimension.

Proposition 2.1.3 ([Ful98, Theorem 3.3]). Let π : E → X be a vector bundle
on a scheme X. The flat pullback

π∗ : Ak−r(X)→ Ak(E)

is an isomorphism for all k.

Remark 2.1.4 (Gysin maps). In the case of 2.1.3, we observe that idX = π ◦ 0E ,
where 0E : X → E denotes the zero section. Thus, the maps 0∗E : Ak(E) →
Ak−r(X) are equal to the inverse of the π∗; these are Gysin homomorphisms
[Ful98, p. 65].

Definition 2.1.5 (Normal cone, [Ful98, §4.2]). Let X be a closed subscheme of
a scheme Y with ideal sheaf IX . We define the normal cone to X in Y to be

CX/Y = Spec
∞⊕
n=0
InX/In+1

X .

If Y is of pure dimension d, then CX/Y is of pure dimension d, [Ful98, B6.6].

Remark 2.1.6 (Normal sheaf). Recall that the normal sheaf is the dual of
IX/I2

X [Har77, II, §8]. In the smooth case, the normal bundle is then given by
Spec Sym IX/I2

X . The natural surjection Sym IX/I2
X �

⊕∞
n=0 InX/I

n+1
X is an

isomorphism when X is nonsingular.

Definition 2.1.7 (Idealized virtual classes, [BCM20]). Suppose a scheme X
admits a closed embedding, i : X ↪→ Y , into a smooth ambient variety Y of
dimension d. An obstruction bundle is a vector bundle EX/Y over X with an
embedding

CX/Y ↪→ EX/Y
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2.1. Virtual fundamental classes

where CX/Y is normal cone. We define the virtual fundamental class with
respect to EX/Y to be

[X]vir
EX/Y

= 0∗E [CX/Y ].

Example 2.1.8. Following [Ric21], we can easily describe a suitable embedding
CX/Y ↪→ EX/Y in the further idealized case when X is the zero scheme of a
section of vector bundle E → Y , i.e., when we have the fiber diagram,

X Y

Y E.

y
s

0E

Writing E = Spec SymE∨, the section s is a map of sheaves OY → E with kernel
IX the ideal sheaf of X = Z(s). Dualizing, IX is the image of s∨ : E∗ → OY ,
and so pulling back to X gives a surjection onto the conormal sheaf

E∗|X → I/I2,

whence
NX/Y ↪→ E|X

after applying Spec Sym. Composing with the inclusion CX/Y ↪→ NX/Y induced
by the surjection Sym I/I2 �

⊕
In/In+1, we find that E|X is an appropriate

obstruction bundle. Since CX/Y has pure dimension d = dimY , the induced
virtual fundamental class is

[X]vir
E|X = 0∗E|X [CX/Y ] ∈ Ad−rX, (2.1)

which is of expected dimension. Note that in this example, [X]vir is the localized
top Chern class of E with respect to the s, [Ful98, §14.1].

Example 2.1.9 (Regular embedding, [BCM20, p. 4.7],[Tho00, p. 31]). When
X ⊆ Y is smooth, i.e., X ↪→ Y is a regular embedding, for any obstruction
bundle EX/Y we have CX/Y = NX/Y and

[X]vir
EX/Y

= ctop(E)

where E = coker(NX/Y → EX/Y ), by [Ful98, Ex. 4.1.8].

POTs and virtual fundamental classes

A perfect obstruction theory (POT) allows for the definition of a virtual
fundamental class without requiring a global embedding, as opposed to the
idealized case above. This more general notion is indeed an extension of the
virtual class define above, however, as we will see in (2.1.19). The idealized
model is still very useful; the construction is much easier to work with, applies
to our main examples (A3 and the local P1), and may be viewed as the “local
model” for the general construction (2.1.21).

We are most interested in a virtual fundamental class for ideal sheaves on
threefolds; the relevant POT for projective threefolds is given by [Tho00], and
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2.1. Virtual fundamental classes

we recall a few of its properties. Notably, in the Calabi-Yau case, the Thomas’s
construction is symmetric (2.1.23), and has a zero dimensional associated virtual
fundamental class. Donaldson-Thomas invariants are defined in this most special
case as the lengths of these virtual classes, as zero dimensional subschemes.

Definition 2.1.10 (Perfect obstruction theory, [BF97]). Let X be a scheme and
let L•X denote the truncated cotangent complex (described below). A perfect
obstruction theory for X is (quasi-isomorphic to) a complex E• ∈ Db(X) of
locally free sheaves supported in degrees [−1, 0] and a morphism φ : E• → L•X
such that the induced maps:

i. φ|h0 : h0(E•)→ h0(L•X) is an isomorphism, and

ii. φ|h−1 : h−1(E•)→ h−1(L•X) is surjective.

Remark 2.1.11 (truncated cotangent complex). Informally, for a morphism of
k-schemes f : X → Y , the cotangent complex generalizes the following exact
sequences:

f∗ΩX/Y → ΩX → ΩX/Y → 0, (2.2)

and for f a closed embedding with ideal sheaf I, the conormal sequence,

I/I2 → f∗ΩY → ΩX → 0, (2.3)

writing simply ΩX for ΩX/k. The truncated cotangent complex for a scheme
X has a nice local description [Tod21, p. 6]: For opens U ⊂ X with closed
embeddings i : U ↪→ Y with Y smooth, writing IU for the ideal sheaf of U ∈ Y ,
the truncated cotangent complex L•X restricted to U is given by,

L•X |U = (IU/I2
U → ΩY |U ),

coming from the conormal sequence (2.3), where ΩY |U = i∗ΩY . Note that if X
is quasi-projective then we may take U = X and Y as an open subset of the
ambient projective space to get a global description L•X .
Remark 2.1.12 (Virtual fundamental classes). The construction of the virtual
fundamental class with a given perfect obstruction theory is nontrivial [BF97],
but analogous to the 2.1. It involves the construction of the intrinsic normal
cone, which plays a similar role to the normal cone in the previous definition. As
in the choice of obstruction bundle above, the virtual class, in general, depends
on the choice of perfect obstruction theory. The virtual dimension in the [BF08]
construction is the rank of E•, i.e., the alternating sum of the ranks of the
constituent sheaves.

Example 2.1.13 (Trivial perfect obstruction theory). If X is smooth scheme
then the cotangent complex of X is the cotangent bundle ΩX . Taking
E• = [0→ ΩX ] yields the ordinary fundamental class, [X]vir = [X] ∈ AdimXX.

We know include three critical results from [Tho00] that allow the
construction of Donaldson-Thomas invariants (2.1.29), and realize them as
a “sheaf-counting” theory.

Theorem 2.1.14 ([Tho00, Theorem 3.30]). Let X be a smooth projective
polarized variety. LetM denote the moduli space of stable sheaves on X with a
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2.1. Virtual fundamental classes

fixed choice of Chern classes ci ∈ Ai(X) and letML denote the subscheme of
sheaves with some fixed determinant L with c1(L) = c1. If the numbers

dim Exti(E , E), i ≥ 3 (2.4)

are constant over all E in M, then for rank r > 0, ML admits a perfect
obstruction theory.

The explicit construction of the obstruction theory is given in [Tho00].
Thomas also shows the following as a corollary:

Proposition 2.1.15 ([Tho00, Corollary 3.39]). Let X be a smooth projective
3-fold with trivial or anti-effective canonical bundle, i.e., H0(X,∧3TX) 6= 0. If
the semistable sheaves with fixed data as in 2.1.14 are all stable then theML
of 2.1.14 admits a virtual fundamental class of dimension

vdim =
3∑
i=0

(−1)i+1 dim Exti0(E , E).

Moreover, ifM is smooth, then the virtual cycle is the top Chern class of the
obstruction sheaf, Ob = h1(E•∨).

Remark 2.1.16. Exti0(E , E) denotes the traceless part of Exti(E , E); recall that
for rk E > 0, there is a splitting Exti(E , E⊗I) = Exti0(E , E⊗I)⊕Hi(I), [Tho00,
p. 382]. In our case, however, we will have Ext0(I, I) = Ext(I, I) (2.1.18).

Corollary 2.1.17 (Main example, [Tho00, Corollary 3.40]). By 2.1.15, Hilbert
schemes of curves on a Calabi-Yau threefold X admit zero dimensional virtual
fundamental classes.

Remark 2.1.18. The previous proposition (2.1.15) applies to the Hilbert scheme
by the identification of ideal sheaves and stable sheaves mentioned after 1.1.14.
Following [Mau+06a], in the case that Hi(OX) = 0 when i > 0 we have
Ext0(I, I) = Ext(I, I), and thus vdim = 0 follows from Serre duality [Huy06,
Theorem 3.12]. More generally, later we will have vdim = 0 by virtue of the
obstruction theory being symmetric 2.1.23, 2.1.28.

Example 2.1.19 (Local model, [Tod21, p. 6]). Consider a locally free sheaf E
over a smooth scheme Y and global section s ∈ Γ(E). Let I be the image of
the dual section s∨ : E∨ → OY and X ⊂ Y the subscheme with ideal sheaf I.
We have the following commutative diagram:

E∨|X ΩY |X

I/I2 ΩY |X

s∨|X id id (2.5)

where the top morphism is defined by composition. By setting E• = (E∨|X →
ΩY |X), the above diagram gives a perfect obstruction theory on X: First, ΩY |X
is locally free because Y is nonsingular, and similarly E∨X is by assumption of
E . The requirements on the maps h0 and h−1 hold by construction. Note the
similarity with (2.1.8).

Remark 2.1.20. This example can also be found in [Ric21], [BCM20] and [PT14a],
sometimes referred to as the “toy model.”
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Proposition 2.1.21 ([Tod21, Remark 1.7]). Any perfect obstruction theory is
locally of the form in the diagram 2.5.

Remark 2.1.22. Toda gives a short argument for this fact [Tod21, p.7], using
the local description mentioned in 2.1.11. This claim justifies the term “local
model” in 2.1.19, and lets us appeal to the idealized virtual class definition 2.1.7
when discussing invariants which are defined using the more general definition
of virtual classes.

Definition 2.1.23 (Symmetic obstruction theory, [BF08]). Let φ : E• → L•X be
a perfect obstruction theory for a scheme X. We say that (E•, φ) is symmetric
if there exists an isomorphism

θ : E• → E•∨[1] with θ∨[1] = θ.

Proposition 2.1.24 ([Beh09]). All symmetric perfect obstruction theories on a
scheme X induce the same zero-dimensional virtual fundamental class.

Remark 2.1.25. That the associated virtual dimension is zero is easy to show:

vdim = rk E• = rk E•∨[1] = − rk E•

so rk E• = 0. That the virtual class of symmetric POT on X is intrinsic to
X follows from Behrend’s theorem (2.3.1). More generally, however, Siebert’s
result [Sie04, Theorem 4.6] says that the virtual fundamental class of a perfect
obstruction theory depends only on its K-theory class.

Example 2.1.26. There is a large class of examples of symmetric POTs coming
from the local model 2.1.19: when the section defining X is a closed 1-form a
smooth ambient Y . Taking ΩY as the vector bundle E in 2.1.19 with section a
closed 1-form ω = df , defines a perfect obstruction theory.

E• TY |X ΩY |X

L•X I/I2 ΩY |X

φ

∇ω

ω∨|X id id (2.6)

Moreover ∇ω is a symmetric bilinear form, and we may define θ in (2.1.23) as
the identity. See [BF08, Example 1.4, 1.5, 1.19]. The result is that whenever
a scheme X is defined as a critical locus, it has a canonical zero-dimensional
virtual class.

Remark 2.1.27. The symmetric POT given above does not serve as the local
model for an arbitrary symmetric POT in a way analogous to 2.1.19. In 2.1.26
it is sufficient that ω be an almost closed 1-form: dω ∈ IΩ2

Y , and in [PT14b]
the authors construct such a form which is not, even locally, expressible as a
critical locus in the sense of (2.1.26).

Proposition 2.1.28 ([BF08, Corollary 1.25]). Let X be a smooth projective
Calabi-Yau threefold. The perfect obstruction theory of [Tho00] (referenced in
2.1.14) is symmetric.

Donaldson-Thomas invariants

Definition 2.1.29 (Donaldson-Thomas invariants). Let X be a smooth projec-
tive Calabi-Yau threefold. Denote by [Hilbn,β ]vir the virtual class of the Hilbert
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scheme, as in 2.1.17, determined by [C] = β ∈ H2(X) and n = χ(OC), Define
the Donaldson-Thomas invariant In,β(X) by

In,β(X) =
∫

[Hilbn,β X]vir
1 ∈ Z. (2.7)

When X is implicit or arbitrary, we will often simply write In,β .

Remark 2.1.30. It follows from the construction in [BF97] that the virtual class
is proper since Hilbn,β is projective. Thus, the integral 2.7, i.e., the proper
pushforward to a point, is well-defined, and can be associated with an integer.
Remark 2.1.31 (Hilbn,β). In flat families the homology class [C] = β and the
sheaf Euler characteristic χ(OC) = n are constant. This allows us to re-label
our Hilbert schemes Hilbn,β instead of HilbP , making it visually much clearer
which curves we are considering. Note that when β = 0 this notation still agrees
with the previous notation for Hilbert schemes of points. More generally, It
is a consequence of the Grothendieck-Riemann-Roch theorem that the Chern
character (1, c1,−β,−n) with [C] = β ∈ H2(X) and n = χ(OC), determines
the Hilbert polynomial of C.
Remark 2.1.32 (Deformation invariance). The sense in which In,β is really
invariant is explained in [Tho00, Corollary 3.53], with the result being that DT
invariants are constant in projective families.

Example 2.1.33 (Basic example [Tho00, p. 405]). Consider the Hilbert schemes
of points HilbnX, with n = 1, 2 on a Calabi-Yau threefold X. They are
smooth and so, by (2.1.15), the virtual classes are the top Chern classes of
the obstruction sheaf. Using Thomas’ theory, or by 2.1.26 having realized
HilbnA3 as a critical locus in (1.3.16) and appealing to symmetry (1.3.16), the
obstruction sheaf is then just the cotangent bundle to HilbnX. Thus, we have
that

I1,0 = −χ(X) I2,0 = −χ(X [2]).

2.2 Virtual localization

In [GP99], Graber and Pandharipande prove a localization formula analogous
to Atiyah-Bott localization (1.4) in the context of virtual fundamental classes.
Indeed, when X is nonsingular and equipped with a C∗ action, using the trivial
perfect obstruction theory (2.1.13), i.e., [X]vir = [X], the virtual localization
formula recovers 1.4.19. While a useful computational tool, the main application
of the virtual localization for us will be to define Donaldson-Thomas invariants
for toric Calabi-Yau threefolds.

Definition 2.2.1 (Equivariant perfect obstruction theory). Suppose T = (C∗)r
acts on a C-scheme X. A T-equivariant perfect obstruction theory is a perfect
obstruction theory (2.1.10), (E•, φ), where E• is a T-equivariant complex
commuting with φ and the induced T-action on L•X .

Proposition 2.2.2 ([GP99, Proposition 1]). Let X be a C-scheme acted on by
T = C∗, and let (E•, φ) be an equivariant perfect obstruction theory for X. The
restriction of (E•, φ) to any (possibly reducible) component of the fixed locus XT

defines a perfect obstruction theory for that component.
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2.2. Virtual localization

Definition 2.2.3 (Virtual normal bundle, [GP99]). Given a T-equivariant perfect
obstruction theory, E• → L•X , we define the virtual normal bundle to be the
moving part of E•.

Remark 2.2.4. By "moving part" we mean the following: Analogous to the case
of vector spaces, a C∗ action on a coherent sheaf F , determines a decomposition
into C∗-eigensheaves,

F =
⊕
k∈Z
Fk,

indexed by the weight of the C∗ action (cf. 1.4.3). We call F0 the fixed part
of F and

⊕
k 6=0 Fk the moving part of F . These notions extend naturally to

complexes. Note also that in the non-virtual case, this coincides with the usual
normal bundle.

Definition 2.2.5 (Euler class, [GP99]). The Euler class of a two term complex
[B0 → B1] is the ratio e(B0)/e(B1).

Theorem 2.2.6 (Virtual localizaiton formula [GP99]). Let X be an algebraic
scheme with a C∗-action and a C∗-equivariant perfect obstruction theory. Then

[X]vir = ι∗
∑ [Xi]vir

eC∗(Nvir
i )

in AC∗
∗ (X)⊗Q[t, t−1] where t is the generator of the C∗-equivariant ring of a

point.

Localization and DT invariants

One of the running assumptions of the previous section (2.1) was that the
starting variety was projective, and we defined Donaldson-Thomas invariants
(2.1.29) for projective and Calabi-Yau threefolds. We would like to use virtual
localization to compute invariants, and one would naturally look to toric varieties
for a class of examples. Note, however, that since toric varieties are rational
they have geometric genus zero, whereas projective Calabi-Yau’s have pg = 1.
Therefore, in order to use virtual localization in Donaldson-Thomas theory, we
have to expand our definition to accommodate more general projective varieties,
or make a new definition for toric Calabi-Yau’s. In fact, both are possible. The
specification of Calabi-Yau above was mainly for convenience, to ensure a zero
dimensional virtual class; the integral (2.7) may be modified with "insertions"
to produce integer invariants when the virtual dimension is positive. When X
is toric, we make the following definition:

Definition 2.2.7 (Toric DT invariants). Let X be a nonsingular toric threefold
with proper T-fixed point set (Hilbn,β X)T under the induced action. Define

In,β(X) =
∫

[(Hilbn,β X)T]vir

1
eT(Nvir) ∈ Q(s1, s2, s3) (2.8)

Remark 2.2.8. Agrees by localization theorem. Called in [BP08] “residue
invariants.” From that paper: the POT still well-behaved, or can be obtained
by equivariant compactification and restriction.
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Example 2.2.9 (Degree 0 invariants of A3). We calculate the degree 0 DT-
invariants In,0(A3) for low n. The standard (C∗)3 action on A3 via the
coordinate ring C[x, y, z], i.e., (t1, t2, t3) · (x, y, z) 7→ (t1x, t2y, t3z), induces
an action on HilbnA3 with isolated fixed points. On a fixed component Z, the
induced T-equivariant POT gives virtual normal bundle Nvir

Z = Ext1(IZ , IZ)→
Ext2(IZ , IZ), [BB07; Mau+06a; Mau+06b; Ric21]. By virtual localization,

In,0(A3) =
∑

Z∈(Hilbn,β X)T

eT(Ext2(IZ , IZ))
eT(Ext1(IZ , IZ))

. (2.9)

To compute eT(Exti(IZ , IZ)), we use the correspondence between T-actions and
gradings 1.4.3. Thinking of the T-representations Exti(IZ , IZ) as multigraded
modules, the multigraded Hilbert series then determines the decomposition into
weight spaces (see 1.4.2). This can be computed using Macaulay2 [GS], we
may write Exti(IZ , IZ) as a sum of characters in Z[t±1

1 , t±1
2 , t±1

3 ]. Finally, with
si = eT(ti), the Euler classes eT(Exti(IZ , IZ)) can be determined using Chern
class identities such as the Whitney sum formula, and c1(L⊗L′) = c1(L)+c1(L′)
for line bundles L,L′.

For n = 1, the only T-fixed ideal is IZ = (x, y, z), and

Ext1(IZ , IZ) = t−1
1 + t−1

2 + t−1
3 (2.10)

Ext2(IZ , IZ) = t−1
1 t−1

2 + t−1
1 t−1

3 + t−1
2 t−1

3 . (2.11)

Note that Ext1(IZ , IZ) is indeed the tangent representation. It follows that

I1,0(A3) = eT(Ext2(IZ , IZ))
eT(Ext1(IZ , IZ))

= (s1 + s2)(s1 + s3)(s2 + s3)
s1s2s3

.

Note that from 2.10, specializing the action to the subtorus T0 ⊂ T defined by
t1t2t3 = 1, we would have I1,0 = 1.

For n = 2, there are three fixed ideals: (x2, y, z), (x, y2, z), (x, y, z2). The
analogous calculation yields:

I0,2(A3) = I0,1(A3) ·
s2

1(s2 + s3) + s1
(
s2

2 − 3s2s3 + s2
3
)

+ s2s3(s2 + s3)
2s1s2s3

.

2.3 Behrend functions

Theorem 2.3.1 ([Beh09]). For any scheme X over C there is a canonical
constructible function νX : X → Z such that if X is proper and embeddable,
then ∫

[X]vir
1 = χ(X, νX) =

∑
n∈Z

nχ({νX = n})

with [X]vir given by any symmetric obstruction theory (2.1.23).

Remark 2.3.2. The function νX is often called the Behrend function. It comes
from the intrinsic normal cone [BF97], which was used to define general virtual
fundamental classes for a perfect obstruction theory. In fact, once the theory of
Behrend and Fantechi for the intrinsic normal cone cX is in place, the function
νX is relatively easy to define: Recall that MacPherson’s local Euler obstruction,
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Eu, maps integral algebraic cycles on a C-scheme X to constructible integer-
valued functions on X, [Mac74], cf. [Ful98, p. 19.1.7]. The Behrend function is
value of Eu for the intrinsic normal cone,

νX = Eu(cX)

[Beh09, Definition 1.4]. Using the global index theorem of MacPherson and
Behrend’s construction in the smooth case recovers Gauss-Bonnet [Beh09].

Theorem 2.3.3 ([Beh09]). Let M be a C-scheme and νM its Behrend function.

i. At smooth points P of M we have νM (P ) = (−1)dimM .

ii. If M is the critical scheme of a regular function f for a smooth ambient
scheme Y , i.e., M = Z(df), then

νM (P ) = (−1)dimM (1− χ(FP )) (2.12)

where FP is the Milnor fiber, i.e., the intersection of a nearby fiber and small
ball in Y around P .

DT invariant via Behrend functions Theorem 2.3.1 gives yet another way to
compute Donadson-Thomas invariants, and a second way to define DT invariants
whenX is quasi-projective. It is known that this extension agrees with invariants
defined via virtual localization 2.2.7 with a Calabi-Yau T-equivariant obstruction
theory in the toric case.

Example 2.3.4 (DT-invariants from quivers). In 1.3 we saw how Hilbert schemes
on A3 and the local P1, OP1(−1)⊕OP1(−1) are critical loci in smooth ambient
varieties. [BF08] use the Behrend function to calculate the invariants

I0,n =
∫

[Hilbn A3]vir
1

localized with respect to a 1-dimensional subtorus of T0 ⊂ (C∗)3 given by
t1t2t3 = 1. By similar methods [Sze08] compute invariants for the resolved
conifold.

Example 2.3.5 (Super-rigid curves). [BB07] perform a similar calculation to
[Sze08] in the case of the local P1. More generally, they compute the contribution
to the DT series of the so-called “super-rigid” curves, i.e., embedded rational
curves with normal bundle O(−1)⊕O(−1), (like that of the zero section in the
local P1).

2.4 MNOP

The two highly influential papers [Mau+06a] and [Mau+06b] of Maulik et al.
expand on work of Thomas, [Tho00] with a series of conjectures relating the
sheaf-counting theory thenceforth known as Donaldson-Thomas theory with
the more established field of Gromov-Witten invariants. The relation was given
in terms of generating series or “partition functions” of invariants. The authors
prove several of their conjectures in the toric projective case, starting a long

30



2.4. MNOP

series of papers building towards a GW/DT correspondence for all nonsingular
threefolds.

We view the study of generating series’ of invariants as the central influence
of the MNOP papers. We start with the DT-partition function.

Definition 2.4.1 (DT-partition function). Let X be a Calabi-Yau threefold.
Using definitions 2.1.29 2.2.7 for the Donaldson-Thomas invariants In,β of X,
we define the DT-partition function of X (with respect to β)

DTβX(q) =
∑
n∈Z

In,β(X)qn.

When β = 0, we call DT0X the degree zero series.

Remark 2.4.2. It can be shown that for any β, In,β = 0 for n� 0 (cf. [Tod09,
Lemma 3.10]), thus DTβX(q) is a formal Laurent series.

Note that degree zero partition function is the virtual version of the series
described by the Cheah formula (1.1.18). That it admits a similarly elegant
description is an interesting result on its own. Its form was conjectured and
first proven in the projective toric case to be the following by [Mau+06a].

Theorem 2.4.3 ([LP09]). Let X be a nonsingular projective, or quasi-projective
with a torus action, threefold. The degree 0 Donaldson-Thomas partition function
of X is determined by

DT0X(q) = M(−q)
∫
X
c3(TX⊗KX)

, (2.13)

where M is the MacMahon function.

Remark 2.4.4. In the case when X is non-projective toric, the exponent∫
X
c3(TX ⊗KX) is defined via localization 1.4.

Remark 2.4.5. Theorem 2.4.3 has been proven several times with varying levels
of generality (cf. [Mau+06b], [Li06], [BF08]), before the most general proof was
given in [LP09]. One technique of [LP09] involves degeneration to the toric
case, further motivating the study of toric invariants.

Example 2.4.6 (Checking terms for A3). If X = A3, we calculate the exponent
in 2.13 by localization 1.4.19,∫

X

c3(TX ⊗KX) = − (s1 + s2)(s1 + s3)(s2 + s3)
s1s2s3

,

in Q(s1, s2, s3),the equivariant cohomology ring of a point. By expanding the
degree zero partition function 2.13, in this case using the Mathematica®script

MM[u_, q_] := Product[(1 - q^n)^-n, {n, u}];
DT0A3[u_, q_, s1_, s2_, s3_] :=

MM[u, -q]^(-(s1 + s2) (s1 + s3) (s2 + s3)/(s1 s2 s3 ));
Series[DT0A3[5, q, s1, s2, s3], {q, 0, 3}];
CoefficientList[%, q] // FullSimplify

we observe that Theorem 2.4.3 agrees with our computations in 2.2.9 for n = 1, 2.
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The equivariant DT vertex Another way to state the calculation of 2.13 in the
case of A3 is as the 0-leg equivariant DT vertex WDT (∅, ∅, ∅). For A3 recall the
correspondence between T-fixed subschemes, monomial ideals and 3d-partitions;
the correspondence extends to partitions with infinite outgoing “legs”, i.e.,
monomial ideals I ⊂ C[x, y, z] = R for which R/I is infinite dimensional over
C. We refer to [Mau+06b, §4] or [PT09a, §5.2] for the definition of the full
equivariant DT vertex, WDT (λ1, λ2, λ3). Intuitively, they are generating series
for DT invariants of A3 (or more generally, any T-fixed point in toric X) with
underlying curve specified by the outgoing 2-dimensional partitions λ1, λ2, λ3.

Reduced series Roughly speaking, the degree zero invariants are the factors
by which we over-count curves because of the presence of free-points. [Mau+06a]
formally excise these degeneration contributions by forming the reduced DT
series:

DT′βX(q) = DTβX(q)/DT0X(q).

In the next chapter we discuss how the reduced series has its own geometric
interpretation, but for now we recall some of its properties, conjectured in
[Mau+06a, Conjecture 2].

Conjecture 2.4.7 ([Mau+06a, Conjecture 2]). The reduced series DT′βX(q) is
a rational function of q symmetric under the transformation q 7→ q−1.

Remark 2.4.8. This is now a theorem in the projective Calabi-Yau case by
Bridgeland [Bri11] and [Tod10], via the DT-PT correspondence.

Gromov-Witten invariants Donaldson-Thomas invariants are to the Hilbert
scheme what Gromov-Witten invariants are to the moduli space of stable maps.
That space, Mg(X,β), parametrizes maps f : C → X from at worst nodal
genus g curves C with Aut(f) finite and f∗[C] = β. It also admits a virtual
fundamental class, and the Gromov-Witten (GW) invariants are defined via
integration against this class. Summing over the genus, a partition function
GWβX(q) is formed analogously to 2.4.1. It is related to the DT partition
function by the third [Mau+06a] conjecture:

Conjecture 2.4.9 ([Mau+06a, Conjecture 3]). Let X be a Calabi-Yau threefold,
the change of variables q = −eiu equates the reduced DT and GW partition
functions:

DT′βX(−eiu) = GWβX(u). (2.14)

Remark 2.4.10. The toric case is proven by [Mau+11]. In the projective setting,
[PP16] proves this correspondence for Calabi-Yau complete intersections in
products of projective spaces, notably including the quintic in P4. Their result
work factors through the DT-PT correspondence.
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CHAPTER 3

DT-PT correspondences

3.1 Pandharipande-Thomas theory

The similarity between ideal sheaves and stable pairs extends to a construction
of perfect obstruction theories by [PT09a], and we have:

Theorem 3.1.1 ([PT09a, Theorem 2.14]). Let X be a smooth projective threefold,
and let Pairsn,β X denote the space of stable pairs determined by a curve class
β ∈ H2(X) and Euler characteristic χ(OC) = n for [C] = β. Pairsn,β X admits
a virtual fundamental class

[Pairsn,β X]vir ∈ Acβ (Pairsn,β X) (3.1)

where
cβ = vdim =

∫
β

c1(X). (3.2)

Remark 3.1.2. The relevant obstruction theory is inherited from one defined more
generally for the moduli space of fixed determinant complexes in the bounded
derived category. Indeed, before defining the relevant POT, Pandharipande and
Thomas first show that stable pairs faithfully embed in Db(X), i.e., that stable
pairs (F , s) and (F ′, s′) are isomorphic if and only if the associated complexes
{OX

s→ F} and {OX
s′→ F ′} are quasi-isomorphic. In some sense, this is the

more modern perspective on these objects. Finally, from 3.2 we see that the
Calabi-Yau condition ensures a zero dimensional virtual class.

Definition 3.1.3 (PT invariants). Let X be a Calabi-Yau threefold. Fixing n
and β as above, if X is projective we define

Pn,β(X) =
∫

[Pairsn,β X]vir
1 ∈ Z (3.3)

and if X is toric,

Pn,β(X) =
∫

[(Pairsn,β X)T]vir

1
eT(Nvir) ∈ Q(s1, s2, s3) (3.4)

where the si are generators for the equivariant cohomology of a point. We call
Pn,β the stable pair or Pandharipande-Thomas (PT) invariants.
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3.1. Pandharipande-Thomas theory

Remark 3.1.4 (Generating series). We denote the generating series (or partition
function) of PT invariants with specified curve class β ∈ H2(X) by

PTβX(q) =
∑
n∈Z

Pn,β(X)qn (3.5)

Remark 3.1.5. PT invariants may also be defined via Behrend functions. As
in the DT case, this way of defining invariants in the toric Calabi-Yau case
agrees with the definition above by specialization to a subtorus T0 ⊂ T such
that the defining T-equivariant perfect obstruction theory restricts to one which
is T0-equivariantly Calabi-Yau.

Example 3.1.6 (The local P1). Consider X = OP1(−1) ⊕ OP1(−1). The
stable pairs Pairsn,[P

1], with underlying curve class the zero section P1, are
parametrized by sections of O(n− 1) up to scaling (cf. 1.2.13). Thus,

Pairsn,[P
1] ∼= Symn−1 Pn−1 ∼= Pn−1.

Since Pn−1 is nonsingular, the virtual class is given by the top Chern class of
the cotangent bundle and therefore,

Pn,[P1] = (−1)n−1χ(Pn−1) = (−1)n−1n.

The generating series is

ZP,[P1] = q − 2q2 + 3q3 − 4q4 + · · · = q

(1 + q)2 .

Note that this example may be generalized to compute the contribution of
higher genus isolated nonsingular curves C, [PT09a, §4.2]:

ZCP,[C] =
∑
d≥0

q1−g+d(−1)dχ(Symd(C)).

The PT vertex Torus fixed stable pairs correspond, locally, to weighted box-
counts, similar to that of the DT case. These modified 3d-partitions always have
one or more outgoing “legs”, corresponding to the curve class of the support.
The PT equivariant vertex WPT(λ1, λ2, λ3) is a generating series which, roughly
speaking, counts possible local contributions of type specified by outgoing legs
λi of stable pairs, analogous to the DT equivariant vertex. This is defined
rigorously in [PT09b], and the authors prove a form of the vertex in the case of
one and two nonzero outgoing partitions λi.

DT-PT correspondences We now describe the general form of DT-PT
correspondences. Following [JWY21] we make the distinction between the
geometric correspondence between generating series for invariants (especially
for the projective case), and the combinatorial correspondence between vertices.
By a geometric DT-PT correspondence, we mean an equality of Laurent series∑

n∈Z
I∗n,βq

n =
∑
n∈Z

P ∗n,βq
n ·
∑
n∈Z

I∗n,0q
n (3.6)

for invariants I∗n,β and P ∗n,β of a nonsingular threefold, typically specified as
projective, Calabi-Yau, and/or toric, defined based on the Hilbert scheme or
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3.2. Unweighted correspondence

the pairs space, respectively. Here, I∗n,β means any of In,β , Iχn,β , or IKn,β , which
refer to the classical, unweighted, and K-theoretric versions of the invariants,
respectively. By the combinatorial correspondence, we mean a similar equality
of the respective vertices.

3.2 Unweighted correspondence

Definition 3.2.1 (Unweighted invariants). Let X be a nonsingular projective
variety, consider the schemes Hilbn,β X and Pairsn,β X, determined by a curve
class β ∈ H2(X) and Euler characteristic n as in (2.1.29) and (3.1.3). We define
the unweighted DT and PT invariants, Iχn,β(X) and Pχn,β(X) to be the Euler
characteristics of these schemes,

Iχn,β(X) = χ(Hilbn,β X) Pχn,β(X) = χ(Pairsn,β X).

Remark 3.2.2. Note that this definition does not involve virtual classes. By
Euler localization 1.4.6, these invariants may be calculated by in simple cases
by counting T-fixed points, if isolated.

Theorem 3.2.3 (Unweighted DT-PT, [ST11]). Let X be a nonsingular projective
threefold. For any curve class β ∈ H2(X,Z) there is an equality of formal
Laurent series: ∑

n∈Z
Iχn,β(X)qn =

∑
n∈Z

Pχn,β(X)qn ·
∑
n∈Z

Iχn,0(X)qn

Equivalently, for each n ∈ Z,

Iχn,β(X) = Pχn,β(X) +
∑
i=1

Pχn−i,β(X)Iχi,0(X).

Remark 3.2.4. This result in the projective Calabi-Yau case was also proven in
Bridgeland [Bri11] and Toda [Tod10].

Theorem 3.2.5 ([ST11, Theorem 1.5]). Let C be a Cohen-Macaulay curve in
a smooth projective threefold. Define In,C to be the Euler characteristic of the
subscheme of Hilbn+χ(OC),β X consisting of ideal sheaves IZ with underling
Cohen-Macaulay curve C such that IC/IZ is 0-dimensional of length n. Define
Pn,C to be the Euler characteristic of the subscheme of Pairsn+χ(OC),β X of
pairs supported on C with cokernel of length n. We have

In,C = Pn,C +χ(X)Pn−1,C +χ(Hilb2X)Pn−2,C + · · ·+χ(HilbnX)P0,C . (3.7)

Remark 3.2.6. Stoppa and Thomas show that the subsets defining In,C and
Pn,C are in fact schemes.

Proposition 3.2.7. The unweighted correspondences do not hold in general,
when dimension d 6= 3.

Proof. We consider X = P2 = ProjC[x0, x1, x2]. Let C = Z(x0) ∼= P1. In the
simplest case, when n = 1, from 3.7, we check if

I1,C = P1,C + χ(P2)P0,C . (3.8)

35



3.3. The DT-PT correspondence

From Example 3.1.6, we have Pn,C = χ(Pn), and thus (3.8)becomes I1,C = 2+3.
However, there are only three fixed points contributing to I1,C , namely C and
free point Z(x1, x2), and C with an embedded point thickened once along the
x1 = 0 or x2 = 0 lines. Applying this argument to each fixed line, provides
a counter example to Theorem 3.2.3 in dimension two, when X = P2 and
β = [P1]

3.3 The DT-PT correspondence

The following is the DT-PT correspondence, conjectured by Pandharipande and
Thomas in [PT09a, Conjecture 3.3] and proven by Bridgeland, [Bri11, Theorem
1.1].

Theorem 3.3.1. Let X be a smooth projective Calabi-Yau threefold. For each
class β ∈ H2(X,Z) there is an equality of Laurent series:

DTβ(q) = PTβ(q) · DT0(q).

Theorem 3.3.2 (DT-PT vertex correspondence, [JWY21]). (Calabi-Yau vertex)

WDT(µ1, µ2, µ3) = M(q)WPT(µ1, µ2, µ3) (3.9)

The local P1 With Theorem 2.4.3 and Example 3.1.6 we have two of the three
components in the DT-PT correspondence for the local P1, with β as the class
of the zero section. Using calculations of [BB07] or [Sze08] for the DT partition
function, the correspondence can be verified directly, in this case.

The Hilbert scheme and the pairs space over the local P1 may be realized
as moduli spaces of θ-stable (1.3.13) quiver representations for the conifold
quiver and superpotential (Example 1.3.12), cf. [NN10; Sze08]. In fact, [NN10]
classifies the entire wall-chamber structure.

K-theoretic correspondence Finally, we remark that a K-theoretic refine-
ment of Donaldson-Thomas and stable pairs have recently been introduced
[Oko17], and a DT-PT correspondence has been conjectured in [NO16]. A form
of the K-theoretic analogue of the degree zero partition function, cf. Theorem
2.4.3, known as Nekrasov’s formula has already been proven [Oko17], and
directly generalizes the 0-leg equivariant DT vertex ([Oko17, Ex. 3.4.45]).
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