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Abstract 

Labels for the categories have been found to facilitate learning by boosting accuracy. 

According to the label-feedback hypothesis this facilitation is due to a mechanism selectively 

sensitizing perceptual dimensions. To further investigate the label facilitation phenomenon, 

one group of participants in our study learned both named and hard-to-name artificial 

categories, in a novel, within-subjects design. Another group of participants was 

administered a—highly similar—paired-associate task purportedly not involving 

sensitization of dimensions. Results showed that labels boosted accuracy during learning, 

but only when learning to categorize—not when learning to associate. The label-feedback 

hypothesis posits that labels exert an influence also after new categories have been learned. 

To test for sustained effects of labels, we administered a post-learning visual discrimination 

task while monitoring participants’ eye movements and analyzing dwell time on the trained 

shapes. There was some indication of sustained effects of labels for newly-learned 

categories, but there was no effect following learning to associate. Our results suggest that 

labels for newly-learned categories have immediate effects during learning, and that the 

effects of labels may also be sustained during post-learning processing.  

 

 Keywords: verbal labels, category learning, visual attention, eye tracking 
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Introduction 

In the field of category learning, verbal labels for the categories have been argued to 

influence categorization processes. Evidence to support this link originates in developmental 

psychology, as children’s formation of categories is affected by correlated linguistic cues 

(Landau et al., 1988; Yoshida & Smith, 2005). Children’s categorization is facilitated when 

categories are accompanied by verbal labels (Waxman & Markow, 1995), a benefit not 

observed with other kinds of cues (such as tones; Fulkerson & Waxman, 2007).  

The facilitative effect of verbal labels for the categories is also evident in adults with 

fully developed linguistic capacities. Lupyan et al. (2007) trained participants to classify 

figures of alien creatures in two categories. Following each categorization decision, a 

redundant verbal label was presented. Results suggested that verbal labels (either visual or 

auditory) for the categories facilitated learning by increasing accuracy during the learning 

process, compared to non-verbal (location) cues or to the absence of cues. Thus, verbal 

labels for the categories have been suggested to have immediate effects on learning to 

categorize.   

The effects of labels are also thought to persist after the categories have been 

formed. Labels for the categories may interact with the perceptual processing of 

categorization for items in well-known categories (“concepts”, e.g., Lupyan, 2008b; Lupyan 

& Thompson-Schill, 2012, for a review see Lupyan et al., 2020). Moreover, labels can exert 

an influence following the learning of novel artificial categories (Tolins and Colunga, 2015). 

Thus, the effects of verbal labels for the categories are not only immediate but also 

expected to be sustained. 

This study re-examines the effects of category labels for newly-trained artificial 

categories. Both immediate and sustained effects were tested, using a novel within-subject 
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design consisting of two sessions, i.e., two successive tasks. For clarity purposes, we present 

the study of immediate and sustained effects separately, but the reader should keep in 

mind that participants took part in a single experimental session. 

Study of Immediate Effects 

The label-feedback hypothesis (Lupyan, 2012a; 2012b) was founded on work 

suggesting that categorization is accompanied by the warping of perceptual space 

(Goldstone, 1994; Goldstone & Steyvers, 2001). Specifically, Goldstone (1994) showed that 

perceptual dimensions that are category-relevant are sensitized, whereas category-

irrelevant dimensions are desensitized, as evident by post-categorization perceptual 

judgments (see also Folstein et al., 2012, 2013, 2014, 2015; Pothos & Reppa, 2014; Van 

Gulick & Gauthier, 2014). Lupyan (2012a; 20212b) suggested that this warping of perceptual 

space—or, in other words, a selective activation of category-diagnostic perceptual 

features—is boosted when verbal labels for the categories are present (but not when labels 

are absent or when linguistic processes are down-regulated). The influence of labels results 

in more “prototypical” (Lupyan, 2012b) or “categorical” (Lupyan, 2012a) perceptual 

representations of categorization items, in the sense that perceptual differences that are 

important for categorization are emphasized whereas unimportant differences are 

deemphasized.  

The mechanism of selective sensitization has also received support from a recent 

study by Barnhart et al. (2018) employing a familiarization paradigm. Children and young 

adults passively viewed items of a category accompanied by an auditory label, and eye 

recordings revealed that fixations on category-diagnostic features of categorization item 

increased in the course of the familiarization. A result of this purported sensitization 

mechanism, as predicted by Lupyan (2012b), is that the process of category learning is 
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facilitated (i.e., accuracy is increased) when labels for the categories are present (Lupyan et 

al., 2007).   

However, the selective-sensitization mechanism has not always been found to boost 

categorization accuracy. Specifically, in category structures that may be learned using more 

than one dimension, an attentional shift has been revealed. In particular, labels were found 

to promote selective activation of perceptual dimensions that are typically diagnostic of 

category membership in real-world occasions, such as shape (over hue, Brojde et al., 2011) 

or frequency (over orientation, Perry & Lupyan, 2014), even if this shift had deleterious 

effects on accuracy within the specific experimental context. Thus, the original prediction 

has been refined by empirical evidence: Labels may be predicted to boost learning accuracy, 

but only when the category-relevant perceptual dimension is typically diagnostic in 

everyday categorization.  

Nevertheless, a review of the literature regarding the learning of such “everyday” 

categories suggests that the finding of label facilitation is not ubiquitous. Brojde et al. (2011) 

used the stimuli of Lupyan et al. (2007), and found in two experiments that labels had no 

effect on shape-based categorization accuracy. Using a similar procedure, Tolins and 

Colunga (2015) found no label advantage during learning to categorize when frequency was 

the category-diagnostic dimension. Finally, Lupyan and Casasanto (2015) contrasted the 

effects of different redundant verbal labels on shape-based categorization performance. 

They found an advantage from redundant real words, compared to the no-label condition, 

as well as from pseudowords, but only when they were selected to activate the same class 

of perceptual features as the words.  

In sum, the facilitative effect of labels during the learning of categories based on 

dimensions that are typically predictive of category membership (Lupyan et al., 2007) has 
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occasionally failed to emerge (Brojde et al., 2011; Tolins & Colunga, 2015), or has been 

subject to choices regarding the experimental materials (Lupyan & Casasanto, 2015). This 

constitutes a challenge for the label-feedback hypothesis and warrants further examination 

of the replicability of the phenomenon. This was the purpose of the present study.  

To test for the label-facilitation phenomenon during learning, we asked a group of 

participants to learn four novel artificial categories. Categorization stimuli varied across the 

dimensions of shape, color and size. Importantly, the category-relevant dimension was 

shape, a dimension that is typically predictive of categories. Instead of using redundant 

verbal labels after a categorization decision has been made (Lupyan et al., 2007), we tested 

for the effect of labels by manipulating the nameability of the category labels: Two of the 

categories were denoted by pseudowords (label categories), and two of the categories were 

denoted by visual symbols (ideogram categories, see Fig. 1A) that were previously found to 

be hard to name (Fotiadis & Protopapas, 2014). We predicted that participants should learn 

the label categories with increased accuracy compared to the ideogram categories. 
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Figure 1 

(A) Design of the Experiment and Sequence of Events in the Learning Tasks (B) and in the 
Discrimination Task (C)  
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Note. (A) There were two phases: a Learning Phase and a Visual Discrimination Phase, 

administered in succession within a single experimental session. In the Learning Phase 

participants were trained to learn either four categories (category-learning group) or four 

pairings (paired-associate-learning group). The right-pointing arrows denote trained 

mappings of stimuli (on the left hand side) to responses (on the right hand side). Category 

learning involves multiple stimuli (with different sizes and border colors) mapping onto each 

response, whereas paired-associate learning involves a single (black-border) stimulus paired 

with each response. Two of the categories were denoted by verbal labels (label categories), 

whereas the other two were denoted by hard-to-name visual symbols (ideogram 

categories). Similarly, there were two verbal (label) pairings and two hard-to-name 

(ideogram) pairings. Following learning, there was a second (Visual Discrimination) phase, 

where all participants were administered an eyetracking visual discrimination task 

employing the previously trained shapes. Panels (B) and (C) depict the sequence of events 

during the trials of the Learning and Discrimination Sessions, respectively. 

 

 

Labels have been suggested to selectively sensitize perceptual dimensions in a 

pervasive but transient fashion (Lupyan, 2021a; 2012b). That is, the ground upon which 

labels exert an influence is the sensitization of perceptual space. We reasoned that if the 

learning task does not involve such sensitization then no effect of labels should be observed. 

To this end, we employed paired-associate learning which—to our knowledge—has not 

been suggested to induce sensitization of perceptual dimensions (see General Discussion for 

more on this issue). Specifically, in our study another group of participants was 

administered a task that highly resembled the categorization task in every respect, but—
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crucially—did not require the forming of categories; instead, it required the forming of pairs. 

In this paired-associate task there was only one perceptual dimension that varied across 

four stimuli (the dimension of shape, see Fig. 1A). The four stimuli had to be mapped to four 

labels, thus forming four pairs1. Similarly to the categorization task, the response cues for 

two of the pairs were pseudowords (label pairings) and the response cues for the other two 

pairs were visual symbols (ideogram pairings). If labels facilitate learning due to a 

perceptual-sensitizing mechanism (Lupyan, 2012a; 2012b) and paired-associate learning is 

not mediated by the same mechanism, then the label and the ideogram pairs should be 

learned with comparable accuracy. Alternatively, if labels facilitate learning in a more 

general way (Lupyan et al., 2007), then the label pairs should be learned with increased 

accuracy compared to the ideogram pairs.  

Method 

Participants   

Sixty nine students of the University of Athens participated in exchange for course 

credit, meeting the requirements of normal or corrected-to-normal vision, no diagnosis of 

dyslexia, and Greek being their native language. All participants provided—verbally—

informed consent. The experiment consisted of two phases (see Fig. 1). In the first phase 

participants were required to learn new categories (category-learning group) or new pairs 

(paired-associate-learning group). In the second phase both groups of participants were 

administered a visual-discrimination task involving eye tracking. The data from 21 

participants were discarded prior to any data analysis due to difficulties with the eye-

tracking procedure, e.g., reduced calibration accuracy caused by eye glasses or contact 

                                                 
1 We are not implying that there is a minimum number of exemplars required for a category to be built. We 
are only arguing that a fixed shape that is repeatedly presented in the same “context” (here, the computer's 
white screen) is not a category. 
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lenses or technical failures. Thus, results reported here correspond to a sample of 48 

students who completed both tasks. Twenty four (four male) of them were randomly 

assigned to the category-learning group (age M = 20.3 years; SD = 1.5) and 24 (three male) 

to the paired-associate-learning group (age M = 22.5 years, SD = 5.9). 

Materials 

Categorization Stimuli. Four four-point abstract shapes of low association value (and 

thus considered hard-to-name; Hulme et al., 2007; MacLeod & Dunbar, 1988) from the 

Vanderplas and Garvin (1959) repository were perceptually equated in size, using the 

method of adjustment (implemented in PsychoPy; Peirce, 2007) to obtain points of 

subjective equality (PSEs). Specifically, ten participants (not taking part in the main study) 

were asked to increase or decrease the size of the random shapes in order to match the size 

of a circle which remained constant in size. In each trial of this perceptual-equation task, 

two shapes were presented side-by-side on the screen, the circle and one of the random 

shapes. Each shape was presented ten times, half of them in an initial size that was greater 

than that of the constant shape. In each trial the screen side (left or right) and exact position 

of the stimuli were random. Points of subjective equality (PSEs) were calculated for each 

shape by averaging participants’ average responses. Subsequently, 288 categorization items 

were created—72 for each shape—by varying the size (randomly within 0.2–0.8 of the PSE) 

and border color (randomly selected hues) of the PSEs.  

Paired-Associate Stimuli. Four association items were created, identical to the 

abstract shapes used in category learning but with black margin and size corresponding to 

75% of the PSEs. Categorization and paired-associate stimuli may be found at 

https://osf.io/rdnf7/. 
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Pseudowords. Two pseudowords served as response cues for the label categories 

and pairings, namely σάβης (/'savis/) and ρήτης (/'ritis/), previously used by Fotiadis and 

Protopapas (2014). The two pseudowords were equal in numbers of letters, syllables, and 

phonemes, stress position, and orthographic typicality (the mean orthographic Levenshtein 

distance of the 20 nearest neighbors—OLD20—was 2.00 for both pseudowords taking stress 

into account; Protopapas, Tzakosta, Chalamandaris, & Tsiakoulis, 2012; Yarkoni, Balota, & 

Yap, 2008). 

Ideograms. Response cues for the ideogram categories and pairings were two hard-

to-name Chinese characters (previously used by Fotiadis & Protopapas, 2014), namely 辛 

(U+8F9B) and 辰 (U+8FB0). One stroke was erased from the second character to equate 

number of strokes—and thus perceptual complexity.    

Procedure 

Category Learning. Participants were administered 288 training trials, organized in 

12 blocks of 24 trials. Each shape was presented equally often within a block. Participants 

never saw a categorization item twice.  

Participants were told that they would be presented with four different shapes in 

varying size and color, and with four responses: two names and two ideograms. Their job 

was to learn which shape (disregarding color and size) corresponded to each response.  

At each trial a fixation cross was presented for 500 ms, followed by a categorization 

item presented for 2000 ms. The two pseudowords and the two ideograms appeared next in 

a random vertical arrangement for a maximum of 10000 ms. Participants responded by 

clicking on a response option, and feedback—the words “correct” or “wrong” in Greek—was 

delivered for 500 ms. The procedure was programmed in DMDX display software (Forster & 
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Forster, 2003). Participants were given eight practice trials in the beginning and a short 

break after every four blocks. The task lasted approximately 35 minutes.  

The order of categorization items and the permutation of response cues were 

pseudorandom (implemented with MIX; Van Casteren & Davis, 2006), with constrains 

precluding the same permutation of response cues in consecutive trials, and the same shape 

in more than two consecutive trials. All possible permutations of response cues were 

presented in each block. Participants received the same order of categorization items. 

Assignment of shapes to categories was counterbalanced across participants with the 

constraint that the shapes were paired, so that two shapes belonging to a pair were both 

predictive of either label or ideogram categories. This resulted in eight possible 

combinations of shape-response assignment, with three participants randomly assigned to 

each combination. To minimize participants’ discomfort due to the head rest, eye-

movements were not recorded during this session. DMDX scripts and details of the 

procedure (e.g., shape assignment), for both the category and the paired-associate learning 

task, can be found at https://osf.io/rdnf7/. 

Paired-Associate Learning. The paired-associate learning task was a modification of 

the category-training task in that (a) each categorization item (varying in size and color) was 

replaced with the corresponding association item, and (b) instructions made no reference to 

either size or color. 

Data Analysis   

Analyses were conducted in R version 4.2.1 (R Core Team, 2021), employing 

generalized additive mixed models (Wood, 2011) with binomial distributions (Dixon, 2008), 

via a logit tranformation (Jaeger, 2008), fitted with restricted maximum likelihood and 

marginal likelihood estimation using package mgcv (Wood, 2011). Model comparison and 
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visualization of model estimates was done using package itsadug (Van Rij et al., 2020). Data 

and analysis scripts are available at https://osf.io/rdnf7/. 

Results 

No-response trials (three from the category-learning group and four from the paired-

associate-learning group, comprising 0.05% of the data) and trials with response latencies 

less than 250 ms (five, from paired-associate-learning only; 0.03%) were excluded from 

analyses. Participants' accuracy increased, as trials progressed, in learning both the label 

and ideogram categories, averaging 88.8% (SD = 5.8) correct in category learning and 88.3% 

(SD = 5.6) in paired-associate learning (label categories: M = 90.5%, SD = 5.7; ideogram 

categories: M = 87.1%, SD = 6.8; label pairings: M = 87.9%, SD = 6.5; ideogram pairings: M = 

88.4%, SD = 6.6). Figure 2 depicts participants’ learning accuracy for the category-learning 

and the paired-associate-learning group in blocks of 24 trials.  

 Accuracy was analyzed using generalized additive mixed-effects models (Baayen et 

al., 2017). A null model with no fixed effects was first created, with a smooth term of trial as 

well as random effects modeling individual variability in the shape of the learning curve. In R 

notation the model was: 

m0: acc ~ s(trial) + s(trial, sbj, bs = "fs", m=1) 

with s(trial) denoting a smooth term of trial, and s(trial, sbj, bs = "fs", m=1) denoting by-

participant random smooth terms of trial. 

The null model (m0) was compared to a model (m1) that included the interaction of 

learning group (category vs. paired-associate) by condition (label vs. ideograms), and also 

kept the smooth term of trial, as well as random effects. In R notation, the model was:  

m1: acc ~ group * condition + s(trial) + s(trial, sbj, bs = "fs", m=1) 

Model comparison procedures indicated that m1 provided better fit to the data. 
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To test if learning progressed differently depending on group and/or condition, a 

dummy variable was created to encode the interaction of learning group by condition (“igc”: 

Interaction of Group by Condition) in four distinct levels, namely category-labels, category-

ideograms, paired-labels, and paired-ideograms. A model (m2) including four different 

smooth terms of trial, one for each level of the igc variable, was then fit: 

m2: acc ~ group * cnd + s(trial) + s(trial, by = igc)  

+ s(trial, sbj, bs = "fs", m = 1) 

 Model comparison procedures indicated that the term modeling different smooth terms 

(i.e., m2) did not improve model fit. Best-fit model estimates of learning accuracy are 

depicted in the line graphs in Fig. 2. 

 Our research question concerned the difference in accuracy between the label and 

ideogram categories, and also between the label and ideogram pairings. The fact that the 

best-fit model (m1) included a single smooth term of trial, independent of group and 

condition, means that any difference between learning label and ideogram categories, or 

label and ideogram pairings, remained constant throughout the training session. The 

estimate of the difference between label and ideogram categories suggested that labels 

provided facilitation: b = 0.548, SE = 0.097, ɀ = 5.650, p < .001. In contrast, the estimate of 

the difference between the label and ideogram pairings (obtained by re-leveling the group 

factor and refitting the model) suggested that there was no facilitation in the paired 

associate learning group: b = −0.082, SE = 0.093, ɀ = −0.890, p = 0.374. (These p values are 

not adjusted; the former survived Bonferroni correction for two comparisons.)  

 Additional analyses (available under Supplementary Analyses at https://osf.io/rdnf7) 

revealed that the two groups (irrespective of whether the response cues were labels or 

ideograms) did not differ in accuracy (b= −0.219, SE = 0.259, ɀ = − 0.846, p = 0.397). 

https://osf.io/rdnf7
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Figure 2 
Results of the Learning Phase  

  

 
Note. Points (squares and triangles) depict average accuracy of participants in learning the 

label and ideogram categories (left panel) and the label and ideogram pairings (right panel) 

in blocks of 24 trials. Error bars show between-subjects standard errors of the means. 

Smooth lines depict best-fit model estimates of accuracy, excluding random effects of 

participants. Error bands show 95% confidence intervals of the estimates.   
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Discussion 

 A label advantage was found during learning to categorize: participants exhibited 

increased accuracy in learning the label compared to the ideogram categories throughout 

the task (cf. Brojde et al., 2011; Tolins & Colunga, 2015). Moreover, this label advantage was 

found to be specific to the learning of categories: there was no facilitation due to labels 

during learning to associate. Overall, these results are supportive of the assumption of a 

labels-dependent dimension-sensitizing mechanism offering facilitation during learning 

(Lupyan 2012a; 2012b). 

Study of Sustained Effects 

Beyond the immediate effects observed during the learning process, labels were 

predicted to exert an influence after the categories have been learned. The mechanism of 

selective sensitization due to verbal labels has been suggested to account for phenomena of 

categorical grouping on the processing of categorization items of well-known categories. 

This influence is not an all-or-none phenomenon, but rather depends on the level of 

activation of participants’ linguistic activity. Lupyan (2012a; 2012b) suggested that linguistic 

activity may be up-regulated (by, e.g., presenting labels at the beginning of each 

experimental trial, Lupyan & Thompson-Schill, 2012), allowed to exert an influence with no 

intervention (labels are self-activated when a categorization item is presented), or down-

regulated (through, e.g., verbal interference, Lupyan, 2009; see Perry & Lupyan, 2013, for a 

critical review of such methodologies). By manipulating linguistic activity it has been shown 

that the effect of labels for well-practiced categories (“concepts”) is a pervasive yet 

transient phenomenon in numerous test tasks that were utilized in this research program: 

visual search (Lupyan & Spivey, 2008), same–different discrimination (Lupyan, 2008b; 

Lupyan et al., 2010), picture verification (Edmiston & Lupyan, 2015; Lupyan & Thompson-
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Schill, 2012; Perry & Lupyan, 2016), probe detection (Lupyan & Spivey, 2010b),“odd-one-

out” procedures (Lupyan, 2009), object detection (Lupyan & Spivey, 2010a; Lupyan & Ward, 

2013), and object recognition (Lupyan, 2008a). Thus, the effect of verbal labels for well 

known (“overlearned;” Lupyan & Spivey, 2010b) categories might be said to be well 

supported.  

Sustained effects of labels should also be evident after newly-learned categories 

have been formed, since the label feedback hypothesis makes no distinction between new 

and overlearned categories. Tolins and Colunga (2015) tested this assumption by training 

participants to learn new artificial categories with or without the presence of redundant 

category labels. To test for long-lasting effects, the categorization stimuli were used in a 

subsequent categorization task. In this second task there was no label present, and the 

categorization rule changed. It was predicted that the category-diagnostic dimension should 

be sensitized to a greater extend when a label was present, and that this sensitization 

should be evident in the post-learning task because labels are self-activated. In a series of 

two experiments there was no evidence of label facilitation during learning, nor of the 

predicted sustained effects of labels in the post-learning task. Results showed that labels 

affected categorization only when the change in the categorization rule involved a reversal 

(i.e., stimuli that previously belonged to category A were assigned to category B, and vice 

versa), and this result was taken to suggest that verbal labels act as material symbols 

facilitating category-to-response mappings.  

The fact that there was no evidence of sustained effects of labels for newly-learned 

categories constitutes a challenge for the label feedback hypothesis. Additionally, we argue, 

there was a limitation in the Tolins and Colunga (2015) study that needs to be addressed for 

a proper investigation of labels’ sustained effects. In both of their experiments there was no 
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evidence of facilitation during learning2, and, therefore, it seems reasonable to assume that 

labels for the categories did not selectively sensitize the perceptual space during learning in 

their experiments. It is therefore only natural to expect that self-activated labels would not 

warp perceptual space following learning, given that the same mechanism is proposed to 

underlie effects both during and following learning. Although it is unclear why labels had no 

effect in the Tolins and Colunga study, a possible explanation is that labels were not 

activated and thus did not exert an influence. For example, it could be argued that 

participants may have ignored the redundant labels in that particular experimental context. 

Consistent with this assumption, Lupyan (2006) provided preliminary evidence suggesting 

that labels do not provide an effect by just being present; they have to be learned by 

participants (see also Brojde & Colunga, 2011 for results supporting this argument). In our 

learning task participants could not ignore the labels since they were not redundant; they 

had to click on the category labels (either pseudowords or ideograms) in order to respond. 

In sum, given the importance of sustained effect for the viability of the label-feedback 

hypothesis, and also the limitations of the Tolins and Colunga study, further testing of such 

long-lasting effects of labels for newly-learned categories seems to be warranted.  

We tested for sustained effects of labels by investigated the allocation of attention 

following learning. Perry and Lupyan (2016) suggested that selective attention may be 

thought of as the sensitization of perceptual space, influenced by verbal labels for the 

categories. We therefore predicted that shapes that had been predictive of named 

categories (label shapes) should capture attention to a greater extent compared to shapes 

                                                 
2 In their Experiment 2 the result of no accuracy boosting during learning is to be expected, since the category-
diagnostic dimension was orientation, which is not a typically diagnostic dimension. But in their Experiment 1 
the category diagnostic dimension was frequency, and in this case redundant labels are predicted to boost 
accuracy during learning. 
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that had been predictive of hard-to-name categories (ideogram shapes). This effect should 

be evident in a post-learning task, because learned labels are naturally self-activated and 

therefore affect perceptual processes. Specifically, immediately after the learning session, 

both groups of participants performed a visual discrimination task on the trained shapes (in 

the absence of labels and ideograms, see Fig. 1B), while their eye movements were 

monitored (cf. Farrell, 1985; Belke & Meyer, 2002). Based on the findings of Rehder and 

Hoffman (2005a; 2005b), fixation durations were treated as measures of attention. In 

particular, we applied this rationale to the post-training discrimination task: Insofar as the 

shapes that had previously been predictive of named categories would capture attention to 

a greater extent, compared to the shapes that had previously been predictive of hard-to-

name categories, participants should spend more time fixating the label shapes than the 

ideogram shapes in post-training trials presenting one label and one ideogram shape to be 

discriminated. In contrast, attention was assumed to be equally captured by shapes that had 

previously been associatively paired with either named or hard-to-name response cues, 

because associative learning is purportedly not mediated by the same sensitization 

mechanism as category learning. Therefore, participants in the paired-associate-learning 

group were predicted to spend comparable amounts of time fixating the label and ideogram 

shapes.   

Method  

Materials 

The four association items used in the paired-associate learning task were presented 

as stimuli for the discrimination task. Each stimulus subtended a rectangle of roughly 2.5 cm 

horizontally by 6 cm vertically (1.8° × 4.4° of visual angle), presented on a 20-inch flat LCD 

monitor with a 1600 × 900 resolution at 60 Hz. Stimuli were placed 13.6 cm (10° of visual 
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angle) to the left and right of center, to minimize the effectiveness of peripheral vision (cf. 

Belke & Meyer, 2002) and encourage eye movements. Random jitter—both horizontally and 

vertically—of maximum ±20 pixels (0.4° of visual angle) for both stimuli introduced a slight 

uncertainty about exact position to prevent iconic-memory strategies from dominating 

performance and—again—to encourage eye movements.  

Procedure  

Participants were administered four blocks of 24 trials, programmed in Experiment 

Builder software (SR Research Ltd.). The script is available at https://osf.io/rdnf7/. Each 

stimulus was presented equally often within a block. Half of the trials were different, that is, 

presented two different stimuli on the screen, and the other half were same, that is, 

presented the same stimulus on both locations. All possible permutations of stimuli were 

included within a block. In pilot testing participants were found not to fixate a stimulus if it 

had just been presented on the same side of the screen. Thus, the pseudorandom trial order 

was constrained to preclude presentation of the same stimulus on consecutive trials 

(following Belke & Meyer, 2002).    

 A discrimination trial started with a drift check, followed by a fixation cross—

subtending a square with a side of 1° of visual angle—presented for a minimum of 500 ms. 

Presentation of the two shapes was triggered by the participants' gaze recorded within the 

fixation cross for 150 ms, and lasted for 3000 ms. Participants were required to press one of 

two keys on the keyboard—as fast and accurately as possible—to denote whether the two 

shapes were different or the same. 

 An Eyelink 1000 Plus eyetracker sampling monocularly at 2000 Hz recorded the eye 

providing the best calibration accuracy. A head and chin rest was used, and calibration took 

place on average every two blocks, or more often if required. Participants were given a 
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block of practice trials, there was a short break in the middle of the procedure, and the task 

lasted on average 20 minutes.  

Data preprocessing and analysis  

Analyses of participants’ behavioral measures, including accuracy and response 

latencies, were exploratory, since no predictions were made concerning these measures. 

Accuracy was analyzed by analysis of variance. Response latencies were best fit by the 

gamma distributions and were analyzed with generalized mixed models.  

Analyses of participants' eye movements focused on fixation duration and only 

included data from trials presenting one label and one ideogram shape (8 trials within each 

block). The online parser of SR Research Ltd was used for fixation detection. Two 

rectangular areas of interest (AOIs) were defined prior to data collection, each subtending a 

square exceeding each stimulus by a margin of 5.5° of visual angle (7.5 cm). This margin was 

defined as the sum of the equipment’s nominal accuracy (0.5° of visual angle) and a rough 

measure of the span of peripheral vision (5° of visual angle). Because of the substantial 

eccentricity of stimulus placement near the screen edges, the AOIs were not symmetric 

(only 100 pixels, amounting to 2.78 cm, or 2° of visual angle, for the distal margins). 

Duration of fixations within an AOI was determined using the Data Viewer software (SR 

Research Ltd.).  

 Following Henderson et al. (1999; Võ & Henderson, 2009), fixations with duration 

less than 90 ms or greater than 1000 ms were excluded from analysis. The sum of durations 

of fixations landing within an AOI (hereafter “dwell time”) was calculated for each 

participant and trial. Dwell time was analyzed as a function of trial, to account for temporal 

order effects (such as increasing familiarity; cf. Lupyan & Spivey, 2008, Supplementary 

Materials), using generalized linear mixed-effects models with gamma distributions. 
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Confidence intervals for the model’s fixed effects estimates were extracted using package 

merTools (Knowles & Frederick, 2020). To more thoroughly investigate the time course of 

the predicted difference between label and ideogram shapes, dwell time was additionally 

analyzed with generalized additive mixed models (Wood, 2011) with gamma distributions, 

fitted with restricted maximum likelihood and marginal likelihood estimation using package 

mgcv (Wood, 2011). Model comparison and visualization of model estimates was done using 

package itsadug (Van Rij et al., 2020). All analyses were conducted in R version 4.2.1 (R Core 

Team, 2021), and data along with analysis scripts may be found at https://osf.io/rdnf7/. 

Results 

Accuracy 

No-response trials (11 from the category-learning group and 5 from the paired-

associate-learning group, totaling 0.34% of the data) were excluded from analysis. Both 

groups were highly accurate in the task: Taking all trials into account, participants averaged 

98.1 % (SD = 1.9) correct responses in the category-learning group and 98.3 % (SD = 1.6) in 

the paired-associate group. A Welch's t-test for independent samples suggested that the 

two groups did not differ in accuracy, t(44.08) = −.28, p = .783. To examine the differences 

between same and different trials we conducted a two-way ANOVA on average accuracy, 

with group as the between-subjects factor, and type of trial (same vs. different) as the 

within-subjects factor. Results revealed no interaction of group by type, F(1, 46) = 1.392, η2 

= .014, p = .244, and no effect of group, F(1, 46) = .075, η2 = .0008, p = .785. There was an 

effect of trial type, F(1, 46) = 6.769, η2 = .066, p = .013, suggesting higher accuracy in 

different than in same trials, consistent with previous findings (Farell, 1985). Further 

analyses (available at https://osf.io/rdnf7/) revealed no effect of response cues on accuracy.  
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Response Latencies 

No-response trials (11 from the category-learning group and 5 from the paired-

associate-learning group, totaling 0.34% of the data) as well as incorrect trials (43 from the 

category-learning group and 40 from the paired-associate-learning group, totaling 1.80% of 

the data) were excluded from analysis. Mean response latencies were 1081.71 ms (SD = 

210.67) in the category learning group and 962.92 ms (SD = 148.70) in the paired-associate 

group. This difference was significant, t(41.361) = 2.263, p = 0.029. Within each learning 

group, participants responded equally fast to same and different trials (ps > .05). 

Analysis of response latencies was done using generalized mixed-effects models with 

gamma distributions. Model comparison procedures suggested that the best-fit model was: 

m_rt: RT ~ trial*Group + trial*same_diff + (1|sbj) 

with (1 | sbj) denoting by-participant random intercepts. There was a significant interaction 

of trial by group: b = 0.584, SE = 0.244, t = 2.40, p = .017. Visualization of the model’s 

estimates suggested that participants in the category learning group took longer to respond 

compared to the paired-associate group at (both for same and different trials), and that 

both groups’ speed of responding increased as trials progressed. There was also an 

interaction of trial by type of trial (same vs. different): b = −1.208, SE = 0.156, t = −7.773, p < 

.001. Visualization suggested that participants took longer to respond to same than to 

different trials at the beginning of the task. Participants’ speed of responding increased for 

both types of trials and eventually converged towards the end of the task. All analyses and 

visualizations are available at https://osf.io/rdnf7/. 

Average Dwell Time 

This analysis included only critical trials, that is, different trials displaying one label 

shape and one ideogram shape (eight per block). Participants in the category-learning group 
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spent on average 668.28 ms (SD = 213.09) fixating the label shapes and 683.82 ms (SD = 

220.49) fixating the ideogram shapes. Participants in the paired-associate-learning group 

spent on average 726.59 ms (SD = 225.21) fixating the labels shapes and 727.52 ms (SD = 

205.96) fixating the ideogram shapes. Participants in both groups spent on average 

comparable time fixating the shapes (Category learning: 676.04, SD = 210.57, Paired-

associate: 726.95, SD = 201.437) as indexed by a t-test (t(45.91) = −0.856, p = .397).   

 Analyses suggested that the gamma distribution fit the data better than the normal 

distribution. In R notation, the model used was:  

m: dwell_time ~ group * cnd * trial + (1+cnd*trial|sbj) 

with (1+cnd*trial|sbj) denoting by-participant random intercepts and by-participant random 

slopes of trial interacting with condition (label vs. ideogram shape). Trial was centered to 

facilitate convergence.  Results showed a triple interaction of group (Category vs. Paired-

Associate learning) by condition (label vs. ideogram shape) by trial, b = 32.545, SE = 7.055, t 

= 4.613, p < .001.  

 To pinpoint the locus of the significant difference, we next analyzed data from the 

category-learning group only: 

m_cat: dwell_time ~ cnd * trial + (1+cnd*trial|sbj) 

Results showed an interaction of condition (label vs. ideogram shape) by trial for the 

category-learning group: b = −47.26, SE = 13.29, t = −3.555, p < .001, and no fixed effects of 

either condition or trial (ps > .05).  

 A similar model was fit to data from the paired-associate-learning group only:  

m_pa <- dwell_time ~ cnd * trial + (0+cnd*trial|sbj)  

Full random structure caused convergence issues, therefore in this model only by-

participant random slopes of trial interacting by condition were included. In this model 
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there was no interaction of trial by condition: b = 3.048, SE = 19.90, t = 0.153, p = .878, and 

no main fixed effects (ps > .05). 

 Estimates of the full model (m), excluding random effects groups of participants, are 

shown in Fig. 3, separately for the two groups of participants. As previously noted, to further 

investigate if there was a difference in dwell time between the label and ideogram shapes, 

we analyzed data from each group using generalized additive models. These models indicate 

the range of values of an independent variable—in our case trial—for which a difference is 

significant. There was no difference during the task in dwell time between shapes that had 

previously been predictive of named or hard-to-name categories. Similarly, there was no 

difference in dwell time between shapes that had previously been paired with verbal labels 

or hard-to-name response cues. All analyses are available at: https://osf.io/rdnf7/.   
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Figure 3 

Results of the Discrimination Session 

 
 

Note. Points (squares and triangles) depict average dwell time in the label and ideogram 

shapes for the category-learning group (left panel) and the paired-associate-learning group 

(right panel) in blocks of eight trials (eight out of 24 trials in each block were the trials of 

interest). Error bars show between-subjects standard errors of the means. Lines depict the 

model’s estimate of dwell time, excluding random effects of participants. Error bands show 

95% confidence intervals of the estimates.  

 

Discussion 

In the Discrimination Phase of our study, we examined the sustained effects of 

category labels on attention, contrasted with the sustained effects of labels for associations. 

Results suggested that the deployment of attention (indexed by fixation durations) as trials 

progressed was dependent on whether the shapes had previously been predictive of named 

or hard-to-name categories. In contrast, attention was similarly captured by shapes that had 

previously been paired with either labels or hard-to-name symbols in paired-associate 
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training. Our results do not clearly bear out our prediction of increased fixation durations on 

the label shapes compared to ideogram shapes for the category-learning group. 

Nevertheless, and in contrast to previous studies (Tolins & Colunga, 2015), the present 

findings are indicative of sustained effects of labels on attention mechanisms, importantly, 

only after learning to categorize and not after learning to associate. The finding of an 

interaction of trial progression by type of shape on the deployment of attention for the 

category learning group suggests that the sustained effects of labels may be subject to 

participants' adaptation to the task, an issue considered further in the General Discussion. 

General Discussion 

 Theories of the interaction between linguistic and perceptual processes suggest that 

verbal labels for the categories selectively sensitize perceptual dimension that are typically 

diagnostic in everyday categorization (Lupyan 2012a; 2012b; Perry & Lupyan, 2014). This 

mechanism is predicted to provide both immediate facilitative effects during learning and is 

also supposed to affect attention processes following learning (Lupyan et al., 2007; Tolins & 

Colunga, 2015). Previous research, though, provided mixed results (Brojde et al, 2011; 

Lupyan & Casasanto, 2015; Tolins & Colunga, 2015), necessitating further exploration of the 

immediate and sustained effects of labels.  

In our study a group of participants learned named and hard-to-name artificial 

shape-based categories. To preclude alternative explanations of a purported labels effect, 

we recruited an additional group of participants who were asked to learn named and hard-

to-name shape-based pairings. To examine the sustained effect of labels on attention, both 

groups of participants were subsequently administered a visual discrimination task while 

their eye movements were monitored. 
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Comparing Category and Paired-Associate Learning 

 A comparison of learning effects for categories with learning effects for associations 

is not novel. A similar approach was used by Poldrack et al. (2001) in a neuroimaging study 

aiming to shed light on brain structures employed specifically during the learning of 

categories (and not learning in general). Nevertheless, it is not a common approach in the 

field, thus warranting further scrutiny. In the present section we clarify the rationale of this 

comparison and its relevance to our research questions. 

 Our experimental design is based upon the claim that the ground upon which verbal 

labels exert an influence is the warping of perceptual space (see Lupyan, 2012b). We 

assume that when participants perform the paired-associate task in our study perceptual 

space is not warped in the same way. Therefore, comparing the effect of labelling for 

categorization and labelling for associations is of interest. To support this argument, we aim 

to rule out two possibilities: First, that perceptual warping also occurs during and following 

the paired-associate task due to a categorization-like mechanism. Second, that learning 

named pairings might induce perceptual warping due to alternative mechanisms.   

Perceptual warping occurs when categorizing or when naming an entity, because 

naming is, in effect, categorization (Goldstone, 1994; Lupyan, 2012b). Indeed, names can 

serve as category labels (Goldstone et al., 2001); when naming an entity or an object, 

various perceptual aspects, as experienced over different occasions in the course of time 

(such as orientation, luminance, background stimuli, or even facial expressions if naming an 

animate entity), should be ignored/desensitized whereas other features are emphasized. So, 

the effects of labels are observed following the learning of a name through a categorization-

like process arguably affecting perceptual space (Lupyan et al., 2020). One can argue that 

learning named pairings in our paired-associate task is similar to learning to name an object 
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and could be accompanied by the warping of perceptual space. However, we contend that 

our paired-associate regime is not equivalent to learning to name an object and bears no 

resemblance—in terms of cognitive demands—to naming an object as it happens in 

everyday life. Specifically, our participants were only presented with a unique stimulus 

constant in all perceptual dimensions. There was thus no “irrelevant” perceptual dimension 

to be ignored or deemphasized and no perceptual warping to be induced though a 

categorization-like mechanism based on abstracting over and emphasizing perceptual 

dimensions (Goldstone, 1994). 

In considering alternative possibilities, besides categorization-like mechanisms, we 

are not aware of any evidence that learning to pair shapes to names—in an one-to-one 

fashion—involves perceptual warping of the shape dimension. Admittedly, this issue has not 

been thoroughly investigated. A recent study is perhaps most relevant: Calignano et al. 

(2021) employed a training regime similar to our paired-associate training task. They 

showed that pairing a novel object with an auditory pseudoword induced reduced capturing 

of attention compared to an object-only condition or compared to pairing with non-

linguistic sounds. This finding may be taken to suggest that, during paired-associate 

learning, labels affect attention in the opposite direction compared to category learning, 

thus supporting the argument that our paired-associate task constitutes a valid approach to 

testing the label-feedback hypothesis.3 In sum, the literature has only provided preliminary 

results but no indication that paired-associate learning, as implemented in our experiment, 

should induce perceptual warping the way category learning is predicted to do. We thus 

                                                 
3 Caution is warranted in interpreting this finding, however, because presenting the object with the previously 

paired pseudoword had a similar effect on attention as presenting it with an irrelevant pseudoword, leaving 
open the possibility that attention was affected by the presence of any linguistic sound, irrespective of what 
was previously learned. 
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conclude that examining the effects of labels when learning to associate constitutes a 

theoretically relevant contrast to category learning. The validity of this contrast is also 

supported (post-hoc) by our results in showing different effects of labels depending on 

training regime. 

Immediate Effects of Labels  

To examine the effects of labels on learning to categorize, we manipulated the 

nameability of the response cues. Contrary to previous studies (Brodje et al., 2011; Tolins & 

Colunga, 2015) our experiment revealed a label advantage during learning to categorize, in 

that named categories were learned with increased accuracy compared to hard-to-name 

categories. Importantly, this advantage cannot be attributed to special selection of 

experimental material (c.f. Casasanto & Lupyan, 2015) given our counterbalanced materials 

and procedures. Moreover, this effect cannot be attributed to a general facilitation due to 

the processing of verbal stimuli (Lupyan et al., 2007) since there was no effect of labels 

during learning to associate. Overall, these results showed a label advantage during learning 

to categorize (Lupyan et al., 2007) and are supportive of a labels-dependent mechanism 

inducing perceptual sensitization of category-diagnostic dimensions (Lupyan, 2012a; 2012b).  

Sustained Effects of Labels 

 Following learning to map stimuli to named or hard-to-name response cues, 

participants in our study were given a visual discrimination task, while their eye movements 

were monitored. Participants fixated shapes that were diagnostic of named categories 

differently compared to shapes that were diagnostic of hard-to-name categories, as 

indicated by an interaction of trial progression by type of shape on dwell time. Importantly, 

participants in the paired-associate group fixated shapes that were previously paired to 

either named or hard-to-name symbols similarly throughout the task. Although this pattern 
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was not predicted, these results are of interest as they constitute the first piece of evidence 

suggesting sustained effects of labels for newly-trained categories. Importantly, these 

sustained effects were observed along with facilitative immediate effects of labels during 

learning, consistent with the idea that both immediate and long-term effects of labels are 

the product of the same mechanism inducing the warping of perceptual space.  

 The finding of a dynamic deployment of attention—dependent on verbal labels—as 

trials progressed, is consistent with experience from previous explorations of the idea that 

visual processing—affected by labels of overlearned categories—might depend on 

experimental trial (Lupyan & Spivey, 2008). It is also consistent with the finding that the 

effect of overtly presenting labels of categories is time-dependent both for overlearned 

(Lupyan & Spivey, 2010b) and newly-familiarized categories (Barnhart et al., 2018). 

Moreover, analysis of response latencies in the discrimination task revealed that 

participants' speed of responding increased as trials progressed. Given the tight coupling of 

behavioral and eye-movement measures (Rehder & Hoffman, 2005a; 2005b), it seems 

plausible to also expect practice effects in fixation durations.  

Local Sensitization of Dimensions 

 Our results suggest that, during learning, shapes that are diagnostic of named 

categories are sensitized to a greater extent compared to shapes that are diagnostic of hard-

to-name categories. Following learning, shapes that were previously diagnostic of named or 

hard-to-name categories were found to capture attention differently as trials progressed. 

We argue that these results are important, also because they are only possible if a 

perceptual dimension may be selectively sensitized. That is, the results speak to the issue of 

whether labels selectively activate specific values of a dimension rather than the entire 

dimension. 



Category Labels     32 

This issue is far from trivial. The majority of experimental research examining 

category-learning processes and systems has utilized between-subjects manipulations and 

corresponding comparisons (Ashby & Maddox, 2005). Although this approach has proven 

fruitful in advancing our understanding of category learning, it does not help elucidate 

whether it is entire perceptual dimensions or, rather, specific perceptual values that are 

important for categorization. A perceptual dimension encompasses all possible values 

within it; therefore, even if it is the features of specific values that capture attention during 

learning to categorize, a between-subjects design is—in principle—not diagnostic of the 

distinction and can only attest in favor of dimensional sensitization or activation.  

Surprisingly few studies have addressed the dimension vs. values distinction. As 

noted, Goldstone (1994) showed that perceptual sensitization following learning to 

categorize is a localized phenomenon (i.e., it is greater for values of a diagnostic dimension 

that cross a category boundary compared to values that belong to the same category). This 

result was replicated by Van Gulick and Gauthier (2014). In related research, Aha and 

Goldstone (1992) provided evidence suggesting that, following learning to categorize, 

different values of a perceptual dimension may be selectively attended to (see also Blair et 

al., 2009).   

With respect to the label-feedback hypothesis, Lupyan (2012b) explicitly posited that 

it is specific perceptual features that are selectively activated by verbal labels, rather than 

general perceptual dimensions. However, the studies examining the initial and sustained 

effects of category labels (Brodje et al., 2011; Lupyan & Casasanto, 2015; Lupyan et al., 

2007; Perry & Lupyan, 2014; Tolins & Colunga, 2015) have all used between-subjects 

manipulations. In contrast, in our experiments the varying nameabilty of formed categories 

was a within-subjects manipulation. All participants learned both named and hard-to-name 
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categories in a single training procedure. If labels activate the diagnostic perceptual 

dimension as a whole, rather than the features of specific diagnostic values linked to labels 

(i.e., the dimension of shape rather than the label shapes specifically), then we should have 

observed no difference in accuracy between label and ideogram category learning, as well 

as no difference in the post-learning processing of label and ideogram shapes. We may 

therefore conclude that labels for the categories result in increased activation (both during 

and also following learning) of specific values within a dimension, rather than activating the 

whole dimension, in accordance with Goldstone’s (1994) suggestion that perceptual space is 

locally warped as a result of learning to categorize. 

Interpretation under Alternative Theories of Category Learning 

Our findings of the differential effects of easy-to-name vs. hard-to-name category 

labels have so far been interpreted exclusively through the label-feedback hypothesis 

framework, which was the theoretical foundation of our design and our predictions. Here 

we consider the implications of our results in light of other theoretical perspectives. 

The warping of perceptual space as a result of learning to categorize is well 

documented (e.g., Goldstone, 1994; Goldstone et al., 2001; Pothos & Reppa, 2014). In 

addition, the development of functional features that reflect representational changes (and 

not just changes at a higher, decisional level; Schyns & Rodet, 1997) has been hypothesized 

to mediate learning effects and explain differences between novice and expert categorizers 

(Schyns et al., 1998). Under this framework, our participants may have learned to rely on 

parts of the stimuli (e.g., sharp edges on two shapes or almost right angles in the other two) 

to distinguish four shape-based categories. Future research should investigate the extent to 

which easy-to-name vs. hard-to-name labels may modulate the development of functional 

features. 
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The COVIS model of category learning (Ashby & Maddox, 2005) suggests that 

learning may be mediated by either the explicit system (employing hypothesis-testing 

processes) or the implicit system (employing information-integration processes). Both 

systems underlie learning simultaneously during a task and one of the two systems provides 

the response depending on trial demands (e.g., Ashby & Crossley, 2010). In our experiment, 

learning hard-to-name categories may have been mediated by the implicit system, resulting 

in lower accuracy, whereas easy-to-name categories were learned through the explicit 

system (a verbal rule being more plausible), resulting in higher accuracy (see Fotiadis & 

Protopapas, 2014, for an examination of this hypothesis based on the nameability of the 

categorization items). The COVIS framework does not involve representational change 

(Ashby et al., 1998), however, making it unclear how it might account for sustained effects 

of labels on attention during a post-categorization task.  

Goldstone et al. (2001) examined the effects of learning to categorize on item 

similarity judgements. They provided evidence not only for representational change but also 

a strategic “label-based bias” (p. 30) in that items that share a category label are likely to be 

judged as being more similar to each other compared to items from different categories. 

Goldstone et al. did not suggest that these effects influence the learning process by 

modulating accuracy. However, in our study, hard-to-name labels may arguably have 

exerted smaller strategic influences compared to easy-to-name labels, differentially 

affecting category learning (which is driven largely by similarity, e.g., Nosofsky, 1986) 

without requiring an assumption of sensitization. It remains to be investigated if such 

strategic influences may manifest themselves in subsequent viewing behavior, and more 

specifically if they can account for the interaction of dwell time by category nameability.  
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The distinction between supervised and unsupervised categorization (Love, 2002; 

Pothos et al., 2011) may also be relevant to our findings. Pothos et al. suggested that the 

processes that support supervised categorization are intimately related to those of 

unsupervised category formation, both being based on similarity. Yet only supervised 

categorization involves “transformation of representations” (p.1710). Under this framework, 

hard-to-name category labels might have led to less supervised learning, and thereby less 

pronounced warping of psychological space, compared to easy-to-name categories. This 

account leads to predictions that are compatible with those of the label-feedback 

hypothesis (Lupyan, 2012a), both for initial and sustained effects, so further research is 

required to disentangle the two possibilities. 

Finally, Pothos and Reppa (2014) examined the factors that modulate sensitization 

(operationalized as “similarity change”) and found that similarity change was more 

pronounced for more difficult/less intuitive category structures compared to easier 

categories. This finding is relevant for our study in that the label categories were arguably 

more intuitive/easy than the ideogram categories, therefore (a) more accurately learned, 

and (b) leading to less pronounced sensitization involving the label shapes than the 

ideogram shapes. In contrast, Lupyan’s (2012a; 2012b) prediction would be that more 

nameable labels entail greater sensitization, resulting in greater accuracy for easy-to-name 

categories than for hard-to-name categories. That is, both accounts suggest that easy-to-

name categories are learned more accurately than hard-to-name categories, so accuracy 

cannot discriminate between the two. Predictions diverge regarding sustained effects, 

however, due to the contrasting hypotheses for sensitization: Pothos and Reppa’s account 

would predict (under the assumption that greater sensitization results in increased 

attention; Perry & Lupyan, 2016) that label shapes should be less attended to than ideogram 
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shapes. In contrast, the prediction from Lupyan’s account would be that label shapes should 

capture attention to a greater extent than ideogram shapes. Our finding of an interaction 

between type of category (easy-to-name vs. hard-to-name) and trial progression on dwell 

time during the post-categorization task cannot distinguish between the two accounts. 

Perhaps a training regime specifically designed to equate accuracy between easy-to-name 

and hard-to-name categories might be more informative, aiming to examine if attentional 

capture is promoted or hindered for items that had previously been diagnostic of hard- vs. 

easy-to-name categories. 

In sum, we suggest that our paradigm of simultaneously learning easy-to-name and 

hard-to-name categories may provide testing benchmarks for theories of category learning. 

Comparing the effects of verbal vs. non-verbal labels for the categories may elucidate the 

nature of changes taking place at the representational level of the cognitive system. 

Limitations and Future Directions 

In examining the label-feedback hypothesis, we manipulated linguistic activity by 

using names vs. hard-to-name symbols, rather than by using redundant labels vs. the 

absence of labels (e.g., Brojde et al., 2011; Lupyan et al., 2007; Tolins & Colunga, 2015). This 

manipulation took the effect of correlated cues out of the equation but introduced a 

possible limitation. Verbal labels and ideograms were equated in size but arguably placed 

different demands on, e.g., memory or perception, potentially leaving the results open to 

alternative interpretations. Similar asymmetries are seen in previous studies (for example, 

between geometric and resistant-to-verbalization stimulus features, Kurtz et al., 2013, or 

between verbal labels and location cues, Lupyan et al., 2007), as it is not always clear what 

should be equated and by which criteria. Further theoretical and experimental work should 

address criteria and procedures for equating verbal and hard-to-name stimuli. 
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In our study we found initial effects and some indication of sustained effects of 

labels for the newly-learned categories on the processing of categorization items (cf. Tolins 

and Collunga, 2015, examining sustained effects in the absence of initial effects). The label-

feedback hypothesis posits that the same mechanism underlies both effects during and also 

following learning (Lupyan, 2012a; 2012b) and it has been argued that the mere presence of 

labels does not suffice, but rather the labels have to be learned (Lupyan, 2006). We 

therefore submit that further investigation of the effects of redundant labels should include 

an assessment of the degree to which participants have learned the labels prior to 

examination of label effects, either initial or sustained. Alternatively, we suggest that using a 

paradigm like the one introduced here, which uses named and hard-to-name response cues, 

might be an efficient way of examining the effect of labels. Participants may not ignore the 

labels in such a procedure, and labels are, therefore, allowed to exert their influence on 

perceptual space. 

In our study we contrasted the effects of labels for categories with those for 

associations. The two tasks differed only on which stimulus dimensions participants were 

exposed to. Categorization items varied in border color, size, and shape, whereas stimuli in 

the paired-associate task only varied in shape. In both tasks shape was the diagnostic 

dimension. We hypothesized that, although strikingly similar, the two tasks would affect 

perceptual space differently. In particular, perceptual space was predicted to be warped for 

category learners, but not for learners of associations. We have offered no direct evidence 

sensitization occurred during learning to categorize but not during learning to associate. 

Post-hoc multidimensional scaling analyses of response times from the discrimination task 

(available under Supplementary Analyses in https://osf.io/rdnf7/) are consistent with the 

hypothesis that the perceptual space following categorization is sensitized depending on the 

https://osf.io/rdnf7/
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nameability of labels, compared to learning to associate. Moreover, our findings of initial 

and some sustained effects for categories—but not for associations—seem to corroborate 

our hypothesis. Nevertheless, no firm conclusions can be drawn, at least from our 

experiment, given that we did not have a pre-learning vs. post-learning design to directly 

test for sensitization. Future studies should better investigate the nature of differences 

between the two tasks.  

As noted, following learning, there was some indication of sustained effects of labels 

for the categories, but not for the associations, on the visual processing of learned shapes as 

indexed by fixation durations. An unanticipated result also emerged whereby participants 

who underwent category training were slower, during the post-training task, in deciding 

whether the two shapes were same or different, compared to participants who underwent 

paired-associate training. We submit that this result—though not specifically predicted—

indicates that processes mediating category and paired-associate learning may differently 

affect post-learning behavioral measures. As an additional theoretical possibility, this result 

might reflect exemplar novelty during the test task: Participants in the paired-associate 

group had already seen the exact same stimuli of the discrimination task, whereas 

participants in the category-learning group had seen different exemplars (in size and color). 

However, we believe this possibility to be remote because the sizes of the test task stimuli 

were well within the established category of the category-learning participants (based on 

the space spanned by the exemplars). Still, this minor discrepancy between the two groups 

was the reason our predictions concerned sensitization effects within groups (label vs. 

ideogram shapes for each of the groups) and not strict between-groups comparisons. More 

research is required to further dissect the result of greater response latencies for the paired-

associate group and disentangle the effects of novelty from the effects of learning regime. 
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Perhaps a task designed to track pupil size4 (known to be indicative of attention processes; 

Kahneman, 1973) while participants view the trained shapes (equated for novelty) following 

learning could help shed light on the mechanisms allowing labels to influence the 

deployment of attention.  

Conclusions 

In the present study we investigated the effect of labels for the categories during 

initial learning and in a post-learning test task. We found that participants were more 

accurate in learning named compared to hard-to-name categories. It was also revealed that 

there was no label advantage during learning to associate, precluding explanation by a 

general theory of facilitation in processing verbal stimuli. Contrary to previous research 

(Tolins & Colunga, 2015), there was some evidence of sustained effects of category labels on 

attention mechanisms recruited in an eye-tracking visual discrimination task. These 

sustained effects did not emerge following learning to associate, attesting to an explanation 

based on a labels-dependent mechanism selectively sensitizing perceptual dimensions. 

 The present research contributes to the category-learning literature by suggesting 

that linguistic representations interact with perceptual and attention processes recruited 

both during and also following the learning of categories (Lupyan, 2012a; 2012b). Our 

results have challenging implications for current theories of learning, and also for the 

language and thought debate (e.g., Gleitman & Papafragou, 2013; Lupyan et al., 2020; 

Regier et al., 2010), helping elucidate the more general question regarding the interplay 

between the language faculty and learning processes.  

                                                 
4 Although pupil size data were collected during the discrimination task, the design of the task, mainly the 
eccentricity of the stimuli and the variation in their placement, prevents a meaningful analysis (Mathôt & 
Vilotijević, 2022). 
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