
UNIVERSITY OF OSLO
Department of Informatics

Service Planning in
a QoS-aware
Component
Architecture

Cand Scient thesis

Øyvind Matheson
Wergeland

15th April 2007

2

Preface
This thesis has taken me much more time to complete than I ever anticipated. I have to thank
my supervisor Frank Eliassen for being more patient than I would have assumed. He has
taught me that researchers tend to stand upon the toes of other researches, when they should
be standing on their shoulders. I indeed hope that I have managed to climb some shoulders in
this thesis.

I also have to thank my co-student, friend, and former colleague Tore Engvig for the mutual
support and all the fun and interesting time we have spent together in the QuA arena.

Several of the people of in the QuA project has taught and helped me a lot over the years.
Special thanks go to Richard Staehli, Hans Rune Rafaelsen, and Eli Gjørven.

Finally I have to thank my ever-supporting wife for pushing me to finish this work.

Oslo, April 2007.

3

Table of contents
Preface ... 3
Table of contents ... 4
List of figures .. 7
List of tables .. 8
1. Introduction... 9

1.1. Background ... 9
1.1.1. Components and services... 9

1.2. Problem area.. 10
1.2.1. QuA.. 11
1.2.2. Specific problem statement .. 11

1.3. Goal ... 12
1.3.1. What is not covered.. 12

1.4. Method .. 12
1.5. Result .. 12
1.6. Overview of the rest of this thesis... 13

2. Background and related work ... 14
2.1. Background ... 14

2.1.1. Middleware .. 14
2.1.2. Components ... 14

2.2. Industrial component standards... 15
2.2.1. CORBA/CCM.. 15
2.2.2. EJB... 16
2.2.3. COM/DCOM/COM+ ... 17

2.3. Research projects .. 17
2.3.1. Reflection ... 17
2.3.2. dynamicTAO.. 18
2.3.3. Open ORB 2... 19
2.3.4. Quality Objects .. 20
2.3.5. QoS for EJB ... 21
2.3.6. Q-RAM .. 21
2.3.7. Aura.. 22

2.4. Summary ... 22
3. QuA... 23

3.1. A canonical component model.. 23
3.2. The QuA component model .. 23

3.2.1. QuA object space ... 24
3.2.2. QuA capsules ... 24
3.2.3. Component repositories ... 24
3.2.4. QuA components.. 25
3.2.5. QuA/Type meta interface... 26
3.2.6. QuA Names.. 26

3.3. QuA services ... 26
3.3.1. Bindings and compositions .. 26
3.3.2. Requesting services.. 26
3.3.3. Service planning... 27
3.3.4. Service execution ... 27

3.4. Summary ... 27
4. Problem description .. 28

4.1. The overall QoS problem .. 28

4

4.1.1. Overview of a QoS session .. 28
4.2. The service planning problem... 29

4.2.1. Describing QoS .. 29
4.2.2. Negotiating QoS... 30
4.2.3. Initial service configuration ... 31
4.2.4. Resource monitoring .. 31
4.2.5. QoS monitoring.. 31
4.2.6. Dynamic reconfiguration ... 32
4.2.7. QoS policing .. 33

4.3. Problem scope ... 33
4.4. Summary ... 33

5. Analysis .. 34
5.1. Method .. 34
5.2. Hypothesis... 34
5.3. Prototype background ... 34

5.3.1. Component types and QoS models .. 35
5.3.2. Utility function interface .. 35
5.3.3. Service requests.. 36
5.3.4. Describing resources .. 37
5.3.5. Algorithm for the Generic Implementation Planner 37

5.4. Experiment description ... 38
5.4.1. Select and configure audio codec... 38
5.4.2. Configure video stream.. 42
5.4.3. Goals .. 44

5.5. Summary ... 45
6. Designing and implementing service planning... 46

6.1. Porting issues .. 46
6.2. Capsule core design model.. 46

6.2.1. Package qua.core.. 46
6.2.2. Package qua.core.repositories .. 47
6.2.3. Package qua.core.component ... 48
6.2.4. Package qua.core.spec.. 49
6.2.5. Package qua.core.planners ... 50
6.2.6. Package qua.core.brokers... 50
6.2.7. Package qua.core.qos ... 50
6.2.8. Package qua.core.resources.. 51

6.3. Capsule service components ... 52
6.3.1. BasicServicePlanner... 52
6.3.2. BasicImplementationBroker .. 52
6.3.3. BasicRepositoryDiscoveryService ... 53

6.4. Instantiating the QuA Java capsule ... 53
6.5. Adding QoS awareness to the QuA Java capsule ... 54

6.5.1. A QuA type for QoS-aware components ... 54
6.5.2. The GenericImplementationPlanner .. 54
6.5.3. A dummy resource manager .. 55
6.5.4. QoS-aware components ... 56

6.6. Summary ... 56
7. Experiment results .. 57

7.1. Experiment environment ... 57
7.2. Select audio codec... 57
7.3. Configure video stream ... 62
7.4. Summary ... 63

8. Evaluation and conclusion .. 64

5

8.1. Experiment evaluation .. 64
8.1.1. Model evaluation.. 64
8.1.2. Precision evaluation ... 64
8.1.3. Effectiveness evaluation... 64

8.2. Generic Implementation Planner feasibility.. 64
8.3. Open questions .. 65
8.4. Conclusion .. 65

Appendix A – Overview of ISO 9126 – External and Internal Quality Metrics 66
References ... 69

6

List of figures
Figure 1: Service oriented architecture.. 9
Figure 2: A layered architecture .. 14
Figure 3: A component architecture .. 14
Figure 4: CORBA 3 component overview (based on a figure from Szyperski (2002)) 16
Figure 5: Conceptual view of the QuA architecture (Staehli and Eliassen 2002) 24
Figure 6: Recursive reconfiguration of composite components .. 32
Figure 7: Example QoS model for multimedia ... 35
Figure 8: Quantization of analog signal .. 39
Figure 9: Bandwith requirements for the raw audio codec component................................... 41
Figure 10: A utility function for audio .. 42
Figure 11: Static UML structure of the capsule core packages ... 46
Figure 12: Static UML structure of the qua.core package... 47
Figure 13: Static UML structure of the qua.core.repositories package 47
Figure 14: Static UML structure of the qua.core.component package 48
Figure 15: Static UML structure of the qua.core.spec package... 49
Figure 16: Static UML structure of the qua.core.planners package .. 50
Figure 17: Static UML structure of the qua.core.brokers package.. 50
Figure 18: Static UML structure of the qua.core.qos package .. 51
Figure 19: Static UML structure of the qua.core.resources package....................................... 51
Figure 20: The BasicServicePlanner component... 52
Figure 21: The BasicImplementationBroker component .. 52
Figure 22: The BasicRepositoryDiscoveryService component... 53
Figure 23: Static UML structure of the QuA Java capsule.. 53
Figure 24: The interface for /qua/types/QoSAware .. 54
Figure 25: Static UML structure of the QoS-aware implementation planner.......................... 55
Figure 26: Static UML structure of the dummy resource manager ... 55
Figure 27: Static UML structure of the dummy QoS-aware components 56
Figure 28: Selected configurations for scenario 1 ... 58
Figure 29: Selected configurations for scenario 4 ... 58
Figure 30: Selected configurations for scenario 2 ... 58
Figure 31: Selected configurations for scenario 5 ... 58
Figure 32: Selected configurations for scenario 3 ... 58
Figure 33: Selected configurations for scenario 6 ... 58
Figure 34: Utility values for scenarios 1-3 .. 59
Figure 35: Utility values for scenarios 4-6 .. 59
Figure 36: Configurations for extended scenario 1 ... 60
Figure 37: Utility values for extended scenario 1.. 60
Figure 38: Utilization of available bandwidth for scenarios 1-3 ... 60
Figure 39: Utilization of available bandwidth for scenarios 4-6 ... 60
Figure 40: Utilization of available CPU for scenarios 1-3 .. 60
Figure 41: Utilization of available CPU for scenarios 4-6 .. 60
Figure 42: Selected compression for scenarios 4-6 ... 61
Figure 43: Time to plan service for scenarios 1-3 ... 62
Figure 44: Time to plan service for scenarios 4-6 ... 62
Figure 45: Utility values for scenarios 7-9 .. 62
Figure 46: Time to plan for scenarios 7-9, by available bandwidth .. 63
Figure 47: Time to plan for scenarios 7-9, by number of QoS dimensions............................. 63

7

List of tables
Table 1: Resource abstraction layers ... 37
Table 2: Example of spatial and temporal resources ... 37
Table 3: QoS dimensions for audio codec experiment.. 40
Table 4: Component resource requirements.. 40
Table 5: Minimum and maximum QoS constraints for audio codec experiment 41
Table 6: Experiment scenarios for audio codec experiment.. 42
Table 7: QoS dimensions for video stream experiment... 43
Table 8: Minimum and maximum QoS constraints for video stream experiment................... 44
Table 9: Experiment scenarios for video stream experiment .. 44
Table 10: Experiment scenarios for audio codec experiment revisited 57
Table 11: Compression and resource usage alternatives for scenario 5 at 70 kb/s available

bandwidth ... 61
Table 12: Experiment scenarios for video stream experiment revisited.................................. 62

8

1. Introduction

1.1. Background
It is commonly agreed that building modern computer systems is a complex task.
Sommerville says that even a simple system has “high inherent complexity” (Sommerville
1995, p. v). Abstraction and divide and conquer are the main strategies to cope with this
complexity. Component based software engineering (CBSE) offers both strategies;
framework mechanisms as persistence, distribution, and transactions can be separated into a
component platform and “abstracted away” from the business logic in the components. The
components themselves also offer abstractions through encapsulation, as well as being an
intuitive target for separation of various business functions. In addition, CBSE promotes
reuse, primarily of the framework mechanisms through reusing component platforms, but to
some degree also from reusing component implementations.

Abstraction takes other forms as well; an object-oriented design provides encapsulation that
effectively “abstracts away” the implementation of the provided functionality. The ordering of
functionality in architectural layers abstracts away both the implementation of the layer below
the current layer as well as the functionality of the levels further down (see Figure 2 on page
14 for an example of architectural layers).

Another important observation is that many applications share a lot of common functionality.
When this shared functionality, also shares the same abstract interfaces, it can be generalized
and implemented. The common functionality may often be hard to implement correct, so
using a well-known and well-tested implementation saves a lot of development time and cost.
Current state of the art is to use CBSE in an attempt to profit from software re-use (Szyperski
2002).

1.1.1. Components and services
Current industry architectures for open distributed systems are often called “service oriented
architectures” (Papazoglou and Georgakopoulos 2003). In such architectures, there are
usually three distinct entities (see Figure 1):

Service producers offer services that are described in an implementation neutral way.

Service consumers have a need for certain services to fulfill their responsibilities, and
consume services from the producers.

Service directories are used by service producers that want to register their services for
lookup by service consumers.

Service
consumer

Service
directory

Service
producer

1. Publish service

2. Lookup service

3. Use service

Components and services pair up well; component instances provide services to its
environment. And both components and services need to have their interfaces formally

Figure 1: Service oriented architecture

9

described using some interface description language (IDL). E.g., Web Services may be
described using an IDL called Web Service Description Language (WSDL).

A major difference between acquiring a component and a service is the market model.
Acquiring a component means that a piece of software is made available for the acquirer and
it can then typically be used indefinitely without any additional cost. Using a service is more
likely to have a per-execution cost model.

When acquiring a component, the acquirer must provide the necessary resources so the
component can execute with the expected quality of service (QoS), while service providers
are responsible for the resource availability.

Services may depend on other services to execute, in addition to depend on resources. A
service aggregator may provide a managed service that is composed of basic services
(Papazoglou and Georgakopoulos 2003). Underlying services as well as resources may be
acquired from other parties. Both the functionality and the QoS of the managed service are
aggregated. The task of composing services is similar to the task of composing with
components, but the composed service is envisioned with a very loose coupling where the
composition may be used only once (Gold et al. 2004).

1.2. Problem area
Software components that provide services have certain qualities. There are many models that
can be used to describe software qualities, of which ISO 9126 is one. ISO 9126 lists the
following main quality characteristics:

• Functionality

• Reliability

• Usability

• Efficiency

• Maintainability

• Portability

These characteristics are further divided into sub-characteristics (for a complete list of sub-
characteristics, see Appendix A). Some of these characteristics are static once the component
has been implemented, such as its usability, maintainability and portability compliance. Other
quality characteristics may be configurable and even dynamically reconfigurable during
execution, such as accuracy and security. Sub-characteristics may be broken further down in a
recursive manner.

Other terms for these quality characteristics are non-functional or extra-functional. Some
prefers the latter term because these characteristics may be implemented as functions in the
software that implement the service, they are just abstracted away from the main functional
interface. Quality characteristics may be organized in a hierarchical tree, where a higher-level
characteristics consists of some lower level characteristics. Consider a characteristic audio
quality could refer to the combination of the characteristics sample rate and sample size.
Here, the audio quality level “CD sound” could refer to a sample rate of 44.1 kHz and sample
size of 16 bits. Quality characteristics are sometimes also called quality dimensions, but some
use this term is to refer only to the lower level characteristics.

The quality of an executing service is called quality of service, or just QoS. The quality of a
service depends on the current quality of the different underlying quality dimensions that are
relevant for the service. It is not straightforward to measure QoS, as what is the preferred
quality depends on the context of the service. For example, the delay may be more important
than the signal-to-noise ratio for an audio service in a phone conversation, and vice versa in a

10

radio broadcast. Also, the metrics used to measure QoS may be subjective, as poor,
acceptable, and good usability.

The main problem when trying to achieve high QoS is that the execution environment is not
known before the execution time of a service. Some of the parameters may be known, or
rather presumed, at development time, but only to a limited extent. Examples of such
parameters are the availability of an IP-based network, but not the bandwidth, and a minimum
of available RAM, but not the maximum. This problem does not apply to embedded systems,
where the environment may be specified exactly.

We say that a system is QoS-aware if it is able to trade quality in one dimension with another,
e.g., delay with signal-to-noise ratio.

As stated in section 1.1, component-based software engineering is believed to be an effective
way to create software systems. The effectiveness is supposed to arise from the ease of
reusing already developed functionality, which is made available as components.

Component-based systems should be QoS-aware so that the resources shared among the
different component instances running in the systems are utilized not only fairly, but in an
optimized manner, depending on the preferences of the service consumers. Sharing resources
between concurrent services can be achieved by giving the component platform or framework
responsibility to plan the services, called service planning in this thesis.

For a platform to be able to plan QoS-aware services, it needs an extendible QoS model, as it
is impossible to foresee the QoS domains of future services.

1.2.1. QuA
This thesis is written in the context of the Quality Architecture (QuA) project. QuA provides
an architecture for a QoS-aware component model, but at the early stage of the work, only a
Smalltalk prototype which implemented the basic component model existed, and it did not
include any QoS-awareness. Also, the QoS related interfaces where underspecified.

In QuA, service planning is the process of choosing component implementations for a service
composition (Staehli and Eliassen 2002), and allocating resources to the implementation
instances in a way that maximizes the quality of the provided service, limited by the available
resources at the time the service is planned.

The QuA platform is motivated by research in reflective middleware and dynamic
reconfiguration, to make it possible for any part of the system to inspect and reconfigure the
platform and running services (Staehli and Eliassen 2002).

1.2.2. Specific problem statement
With component implementations on one side, and the operating environment on the other,
the first part of the service planning process is to choose the composition and implementations
of components to satisfy a service consumer. The problem is to enable the middleware to
choose the best available component implementation for given QoS requirement and available
resources. As the task of choosing component implementations is most likely to be a common
one for the middleware, it would be preferable if the logic for this can be reused across
different service types or domains

A straightforward solution to the problem is most likely to be inefficient, as the search space
grows rapidly with each implementation and quality dimension to consider. Providing a
generic solution that also is efficient for all variations of the problem is not very likely, but a
generic solution should at least be efficient enough to be usable for some use cases.

The problem statement can be summarized as follows:

How can a component middleware efficiently choose a component implementation based
on component type, QoS requirements and available resources?

11

1.3. Goal
The goal is to implement a version of the QuA architecture including its service planner
component framework. The service planner framework consists of a composition planner,
binding planner, and an implementation planner, which cooperate to locate, instantiate, and
bind together the component implementations needed to provide a given service. The
implementation will be made QoS-aware by including a pluggable Generic Implementation
Planner. This implementation planner should be able to choose between different available
implementations based on a client’s QoS requirements and available resources at planning
time.

The validity and effectiveness of such a generic planner should be verified using experimental
simulations. Both the correctness of the choice and the scalability with respect to the number
of implementations and number of quality dimensions specified by the client should be
investigated.

An implementation should be selected and configured within one or a few seconds on a
typical personal computer per component type. The configuration should have the highest
possible utility value with the available resources, or at least very close to this value.

This goal is in line with the second sub goal of QuA, which is “to develop, prototype and
experimentally evaluate a QoS aware component architecture with platform managed QoS”
(Eliassen et al. 2002, p. 4).

1.3.1. What is not covered
QoS is a large area, and it is not possible to consider all elements in a single thesis. More
specifically, several elements are taken for granted in this work, as QoS negotiation, resource
reservation and monitoring, QoS policing, QoS monitoring, and adaptation to maintain agreed
QoS.

QoS negotiation is the process where the service consumer and service provider negotiate the
quality level of the service, possibly involving the cost for the service. The result of such a
negotiation is a contract.

Reservation and/or monitoring of resources is assumed to be available to the component
platform and handled by a resource manager. Note that resource reservation is not required,
but then QoS adaptation should be in place to allow services to degrade gracefully.

Policing means that the system enforces the client to behave as agreed in the contract from the
QoS negotiation. Without policing, any client not keeping to its contract could break the
system by flooding it with requests or not releasing resources when supposed to.

Monitoring the actual QoS level, and adaptation of executing services to maintain the agreed
quality level, are considered beyond the scope of this thesis.

1.4. Method
This thesis will present a hypothesis for service planning in a QoS-aware component
architecture, and test the hypothesis with a prototype for such an architecture, including a
possible model for a part of the service planning process.

The hypothesis will be tested by running and analyzing experiments on the provided
prototype.

1.5. Result
This thesis will present an implementation of a QuA Java capsule with a Generic
Implementation Planner. The Generic Implementation Planner can be applied to select and
configure any QoS-aware component for a limited QoS domain, which is a viable solution to
the stated problem.

12

1.6. Overview of the rest of this thesis
Chapter 2 presents the technical background and related work for this thesis, and the QuA
architecture is presented in chapter 3. The problem area is described in detail in chapter 4.
Chapter 5 contains an analysis of the problem area and a solution proposal, and describes two
experiments to evaluate the solution proposal. The design and implementation of the solution
proposal is presented in chapter 6, and chapter 7 contains the experiment results. The final
chapter 8 contains the evaluation and conclusion of the work.

13

2. Background and related work
This chapter provides an overview of the most relevant technologies for this thesis. Section
2.1 briefly describes well-known architectures from distributed computing, section 2.2 shows
the current industrial standards, and finally in section 2.3 other research projects are
discussed.

2.1. Background

2.1.1. Middleware
Middleware is a typical example of software reuse that has emerged from the distributed
systems area. The idea is to create reusable communication modules, and hide the fact that the
system is distributed over different nodes in a network. There are two major benefits from this
approach; the first is that communication is tedious and error-prone to design and implement,
so it is very efficient to re-use an existing communication module. The other is that the
programming model for the distributed system becomes similar to a non-distributed program,
also called location transparency. However, as will be pointed out later, location transparency
may not always be desired.

There are middleware implementations for distribution mechanisms as remote procedure calls
(RPC) for procedural systems, and remote method invocations (RMI) for object-oriented
systems. The term middleware points to the placement of this functionality in the middle
between the application layer and the operating system layer in the system architecture, as
shown in Figure 2. Middleware itself can be further divided into sub-layers, as common
middleware services and domain specific services (Schmidt 2002).

There exist numerous middleware specifications and implementations, e.g., Sun RPC, OMG’s
CORBA, Java RMI, and Microsoft DCOM.

Application layer

Middleware layer

OS layer

Hardware layer

Abstract

Concrete
Figure 2: A layered architecture

2.1.2. Components
Component-based software engineering is another approach for providing common
mechanisms to applications, where the system is (at least partially) implemented as
components that are wrapped by containers. The containers may intercept calls and perform
extra functions before the call is forwarded to the actual component. Functionality provided
by the container may be authorization of the caller, transaction management, and trace
logging.

Container

Component Services Layer

Component
Container
Component

Figure 3: A component architecture

The rules that govern the interaction of components and containers are described in a
component model. The domain of component models can be divided in two; graphical

14

components and enterprise components. Graphical components are used for building
graphical user interfaces (GUI), and the probably best known model for this is Microsoft’s
object linking and embedding (OLE) model (Szyperski 2002).

In the enterprise domain, there are several commercial component models as well as research
component models. Some of these models are interoperable, as Sun’s Enterprise JavaBean
(EJB) model and OMG’s CORBA Component Model (see section 2.2 below for more on
industrial standards).

There are written (and said) much about components in the recent years. Szyperski (2002) is
probably the most cited reference for a definition of components, not least because of many
disagreements over the phrasing of the definition in the first edition of the book. He defines
that a software component has contractually (i.e., formally) specified interfaces and explicit
context dependencies only. A component that adheres to the definition can then be deployed
and used in compositions by third parties. On the implementation side, neither of the
requirements is usually completely supported, as it is hard to specify interface semantics
formally, and likewise to specify all explicit context requirements, e.g., the needed stack size
for a component that is implemented using a recursive algorithm. On the other hand, it is hard
to verify the semantics of an implementation, and it only makes sense to specify context
requirements that the platform has mechanisms to handle.

Szyperski (ibid.) does not specify what makes up a component, but requirements such as
polymorphic behavior suggest that object-oriented languages are preferred for component
development.

A component model is implemented by a component platform. A (typical higher-level)
component platform may also be built using an existing component model, as OpenCOM,
which is implemented using (a subset of) Microsoft COM (Blair et al. 2001). Another
example of this is Microsoft OLE which is a superset of Microsoft COM (Szyperski 2002).

Szyperski (ibid.) also advocates the use of component frameworks. A component framework
is a micro-architecture with a specific area of concern. The framework specifies the contracts
for components that are plugged into the framework, thus making the framework
configurable. Open ORB 2 (see 2.3.3 below) is a very good example of how component
frameworks can be recursively packaged as components and then define dependencies
between the component frameworks in the same way as dependencies between single
components (Coulson et al. 2002).

2.2. Industrial component standards
Of today’s component standards, the following three are important to look into; Microsoft
COM for its widespread use on the Microsoft Windows platform, Sun’s Enterprise JavaBeans
which is heavily used in enterprise systems, and the CORBA Component Model, which is a
good reference model for component models.

2.2.1. CORBA/CCM
OMG’s Common Object Request Broker Architecture (CORBA), and the CORBA
Component Model (CCM) is a programming-language neutral approach to distributed
systems and components (Szyperski 2002). Today CORBA is viewed as a platform itself,
although CORBA ORBs and services are implemented in several programming languages.

CCM is an interesting model to look at as a reference model, as it is explicit in some of its
external dependencies. In CCM, a component defines both its required and provided
interfaces, called receptacles and facets, respectively, as well as provided and required event
sinks and sources. Figure 4 shows an example CORBA component, where the provided ports
are shown on the left hand side, and the required ports on the right.

15

Equivalent interface

Event sources

Facets Receptacles

Event sinks

Attributes

Figure 4: CORBA 3 component overview (based on a figure from Szyperski (2002))

In addition, a CORBA component must implement a special interface, called the Equivalent
interface. This interface is used by clients programmatically to discover the other interfaces
that are provided by the component. Components may also contain attributes, accessed and
changed through method calls.

Component implementations may contain implementations for several platforms in the same
binary bundle. This is a neat way for a component vendor to ship components, but may make
the deployment process on limited devices such as a mobile phone, a bit cumbersome,
because the bundle must be stripped of unnecessary implementations before deployed to the
device.

Which component implementations to use in a system are chosen by component assemblers
(Schmidt and Vinoski 2004).

The model only makes dependencies to other components explicit, and not other kind of
dependencies, such as resources the component requires to execute. It is also possible for a
component to call other CORBA objects that are not listed as receptacles, thus breaking the
explicit dependency rule.

QoS is not a part of CCM, but OMG also provides a specification for Real-time CORBA (RT-
CORBA). An RT-CORBA implementation allows control of some system resources to
distributed applications (Schmidt and Vinoski 2001). Management is limited to processing,
communication, and memory resources. However, Wang, Balasubramanian, and Gill (2002)
argue that it is not sufficient to run CCM on top of RT-CORBA, and that CCM must be
extended with QoS mechanisms.

2.2.2. EJB
Enterprise JavaBean (EJB) is Java’s component model for distributed systems
(Sun Microsystems 2003). In EJB, access to components, or beans, and also between beans,
are always through the container. Extra-functional services offered by the container are
distribution, transaction management and security. In addition, the platform also offers
connectivity services such as naming service, database access and asynchronous messaging.

The EJB container runs within an EJB server. The different EJB server implementations
compete on providing additional extra-functional properties as scalability, load balancing and
reliability (i.e., failover).

EJB specifies that each bean must provide interfaces for remote and/or local lookup, and
remote and/or local interfaces for method access, as well as a deployment descriptor. The
deployment descriptor may declare transaction and security requirements. During
deployment, the container generates the code that implements the interfaces to be exposed by
the container, including transaction and security management.

The developer of an EJB component specifies any required interfaces by listing their names in
the bean’s deployment descriptor. During deployment, these names must be resolved to the

16

actual names of their deployed implementations. There is no automatic type checking at
deployment time, so the correctness resolving process is left completely to the component
deployer. However, this indirection could allow for postponing the resolving until runtime
using an implementation broker or trader.

Choosing an implementation is, as in CORBA, executed using the naming service. If an
implementation does not implement the assumed interface, the client will receive an
exception. It is not specified how beans can be updated runtime, but this is possible at least in
theory as long as the exposed interfaces are kept unchanged, and the container directs all new
method calls to the implementation, and dereference the old when it is no longer used.

2.2.3. COM/DCOM/COM+
Microsoft COM is a foundation for several models. It is defined in terms of interfaces and
binary interoperability (Szyperski 2002), so a component can be implemented in any language
that compiles to such a binary. All COM interfaces must provide the method QueryInterface
as its first method, which can be used to discover if a component implements a given
interface. Also, all COM components must implement a special interface called IUnknown
that can be used to get access to the QueryInterface method.

The COM platform offers some services to the components running on it, as persistent storage
of the state of an instance, uniform data transfer (typically used in a GUI environment for
clipboards etc.), and a transaction server is also available.

Distributed COM (DCOM) adds distribution transparency to Microsoft COM. COM+ is a
newer version of Microsoft COM. Some of the services from COM are reimplemented in
COM+, such as transactional processing. COM+ also offers asynchronous messages and
running components in a load-balanced cluster.

2.3. Research projects
In the research area, several projects are investigating reflection as a promising approach for
dynamically reconfigurable systems (Kon et al. 2002). This section contains an overview of
reflection and some projects which has made major contributions to the field.

The projects that are described here addresses the problem area either by introducing QoS
monitoring and/or management mechanisms to component systems, or, in case of the Q-RAM
project (Rajkumar et al. 1997), provide an algorithm for maximizing QoS.

There exists numerous research projects in the area, as both researching component models
and QoS are of increasing popularity, and it is not possible to cover all such projects. A recent
project, COMQUAD (Göbel et al. 2004), researches how aspect oriented programming (AOP)
can be used to implement non-functional properties in component models. There are also
projects in the mobile computing domain researching component models such as SATIN
(Zachariadis and Mascolo 2003), and CASA (Mukhija and Glinz 2004). The former paper
briefly describes a generic framework for distributing mobile code and capabilities, while the
latter describes a framework where each application is dynamically reconfigurable, but an
application is limited to a single node, and consumes services provided by other, remote
application. For a more extensive list of projects, see the technical report by McKinley et al.
(2004b)

2.3.1. Reflection
Reflection is a system’s capability to inspect, evaluate and change itself (Kon et al. 2002).
Change through reflection is also called intercession (McKinley et al. 2004a).

Reflection is split into structural reflection and behavioral reflection. Structural reflection is
related to the structures in the system, such as class hierarchies, type systems, and state
information. Behavioral reflection is defined by Chiba (2000) as “the ability to intercept an
operation such as method invocation and alter the behavior of that operation”. The dynamic

17

proxy mechanism in Java is a form of behavioral reflection, but it is a weak form because the
existing object is not changed, i.e., the change of behavior is only seen by client objects.

The Equivalent interface in CCM (see 2.2.1 above) is an example of structural reflection in
middleware. Another example is the portable interceptor specification, which provides
behavioral reflection to CORBA.

Interfaces such as IUnknown and Equivalent are called meta interfaces, as they give access to
meta information about the component. Components may also be represented using meta
classes, similar to the class java.lang.Class in Java, which can be used to access meta
information for a specific class.

Some systems may provide limited reflection capabilities, for example only allowing
inspection and not changing the system. Java provides limited reflection by allowing full
access to inspection – called introspection – of the type hierarchy, methods and fields, but
only fields can be changed.

The evaluation part of reflection, i.e., the system’s capability to determine when and how it
should change, is naturally limited by the logic implemented within the system. Such logic is
almost always limited by a programmer’s knowledge (or guess) of what changes are possible.
To be able to implement an extensible reflective system, this logic must be pluggable.

2.3.2. dynamicTAO
Kon et al. (2000) describes a reflective and dynamically reconfigurable ORB based on The
ACE ORB (TAO). TAO is a statically configurable CORBA ORB, where which services and
implementations that are going to be available at runtime, are specified at deployment time.
TAO aims at embedded systems where the resources are known in advance. dynamicTAO
recognizes the fact that resources vary in space (from computer to computer) and time (on the
same computer), and claims that existing middleware systems does not support these
variations. As the variations are increasing, a new generation of middleware is needed that
support dynamic reconfiguration based on the variations in the system’s environment.

Their proposed solution is to use reflection to support both resource monitoring and dynamic
reconfiguration. Reflection is implemented using component configurators that reify the
structure of the ORB and contain the dependencies between the various components. The
leaves of this structure are the reconfigurable categories as concurrency, security, monitoring,
etc. To support dynamic reconfiguration, dynamicTAO implements the strategy pattern
(Gamma et al. 1995) to select and change the strategy to use for each category. The strategies
are implemented as components, and each component may declare external dependencies to
other implementations.

dynamicTAO also provides mechanisms that avoid inconsistent configurations of the ORB.
This is necessary since using a reference to an unloaded component may cause not only the
caller to fail, but the entire ORB process. Such mechanisms are important when designing
systems that are supposed to run over long periods of time.

Since TAO is implemented in C++, dynamicTAO also needed to provide an implementation
for dynamic loading and linking. This support is extended from existing capabilities in the
Adaptive Communication Environment (ACE).

Reconfiguration is controlled by user level APIs and applications, and is not managed by the
ORB itself. It is even possible to store and delete components in a persistent repository during
runtime with this API, but there is no meta class for components.

Interceptor components are used to monitor the performance of an ORB instance. The
monitor components are loaded and unloaded in the same way as strategy components. The
information collected by the monitor is then available for clients, which can use this
information to reconfigure the system.

18

2.3.3. Open ORB 2
Open ORB 2 is another ORB that also is reflective and dynamically reconfigurable.

Open ORB 2 connects component technology with middleware’s need to be configurable and
dynamically reconfigurable. Configurable means that the same middleware platform can be
deployed in different environments with different resources and requirements, while
dynamically reconfigurable means that the services running in the middleware, and even the
middleware itself, can be reconfigured during runtime (Coulson et al. 2002).

Open ORB 2 is built upon components in a reflective component model, called OpenCOM.
OpenCOM is implemented using a subset of Microsoft COM, and there is also an
implementation available based on Mozilla XPCOM (Cleetus 2004).

The OpenCOM component model provides three meta models for reflection purposes, the
interface meta model, the architecture meta model, and the interception meta model. These
meta models are accessed through meta interfaces available in all OpenCOM components.

The interface meta model allows for inspection of the interfaces and receptacles in a
component, while the interception meta model allows programmatically insertion and
removal of interceptors. These interceptors are run before and/or after the actual method is
invoked, but not instead of the invocation. The architecture meta model is fully reflective as it
allows both inspection of, and changing of, the coupling of components. Since the meta
models also are implemented with OpenCOM components, they also provide reflection. To
avoid infinite recursion of meta components, a meta component is not instantiated before it is
accessed.

To realize the ORB implementation, a set of component frameworks with responsibility of
different concerns are provided. The component frameworks are arranged in layers, as well as
being implemented as composite components. A component framework manages the
components that are plugged into it, and a higher-level component framework manages the
lower-level component frameworks that are plugged into it in the same way, since they are
exposed just as components.

This architecture allows for adaptation of the ORB in almost any possible way, where each
component framework can be changed through its meta interfaces. To avoid adapting the
ORB to an inconsistent state, the component frameworks are composed into a top-level
component framework which contains layer-composition policies that governs adaptation.

Resource management is handled through a resource model, called a meta-model in Coulson
et al. (2002). This model contains resource abstractions and resource managers for different
resource types.

Coulson et al. (2002) argue that a major limitation with other middleware platforms is that
only basic binding types (remote method invocations, media streams and event handling) are
supported by existing middleware, and richer binding types are provided ad-hoc and without
explicit dependencies. Therefore, Open ORB 2 provides an extensive binding component
framework.

The binding component framework only manages which binding types that will be provided.
Adaptation of a binding is managed by the binding type implementation. Binding types are
dynamically loaded the first time a binding of that type is requested.

Composition can be adapted through structural reflection using the architecture meta object.
To avoid breaking the architecture, Open ORB 2 provides different architectural constraints
(Blair et al. 2001), one of which is the type system. In addition, layer-composition policies are
realized as components that allow or disallow composition changes (Coulson et al. 2002).

In ReMMoC (Grace, Blair, and Samuel 2003), component frameworks are extended by
including a receptacle IAccept. The interface is used to govern the reconfiguration policies of
that component framework.

19

2.3.4. Quality Objects
Quality Objects (QuO) is described in (Loyall et al. 1998; Schantz et al. 2002).

QuO identifies the need to separate implementing an application’s functional aspects from
implementing its QoS aspects, as well as the need to reuse implemented QoS aspects. They
reason that developers of distributed object systems that need QoS support bypass the
middleware as it lacks the necessary support.

The QuO model extends the CORBA model with QoS support, and at the core of the
implementation is a specialized ORB. QoS aspects are divided into contracts, system
condition objects, callback mechanisms, object delegates, and mechanism managers.

System condition objects are used for two purposes; to monitor parts of the system state, and
to let the client control desired (but not necessarily provided) service level. It can be argued
that the latter should be provided by separate control interfaces. This would provide a cleaner
model where additional features such as admission to increase the service level could be
controlled by the middleware.

QuO contracts define operating regions with different service levels and transitions between
these regions. A region consists of a predicate and possible nested sub-region. The predicate
must evaluate to true for the region to become active. Only one region can be active at each
level of nesting. In their examples, the top level regions are connected with the system
condition objects that the client controls (e.g., client requests an RSVP connection); while the
sub-regions are connected to system condition objects that monitors the state of QoS aspects
(e.g., RSVP connections are not available in the underlying network).

A QuO contract is similar to a state machine that defines which output signals (callbacks) are
to be generated upon which input signals (system condition monitors). QuO does not provide
a mechanism for negotiation of such contracts. Also, a QuO contract quickly becomes god-
objects (Brown et al. 1998) in the sense of services, as the contract must know the entire
service composition to be able to specify the possible adaptations. Thus, QuO contracts may
be good for small services or parts of a more complex service, but insufficient for a large and
complex service.

The QoS developer – also called Qoskateer (Schantz et al. 2002) – that is QoS-enabling an
object must include an object delegate that is responsible for in-bound QoS management as
contract evaluation during method invocation. The delegate must provide the same interface
as the remote object, but is local to the client1.

The client Qoskateer must provide the necessary callback objects to get signals from the
middleware when adaptation requires the client to change its behavior.

Generic QoS properties as availability and real-time data streams are handled by mechanism
managers – also called property managers.

An important observation by QuO, is that QoS relevant information is bound at different
times, namely development time, configuration time, initialization time, negotiation time, and
reality time (usually called runtime). Any QoS-aware system will have to accumulate all this
information to be able execute its services properly.

QuO shows where and how QoS mechanisms for monitoring and adaptation can be plugged
into a middleware platform, given that the platform allows for this; i.e. it must be an open
platform. Still, QoS negotiation and policing is missing. It could be possible to support
policing by providing standard system condition objects for the supported QoS properties.
The ORB could then connect all services requiring the same property to the corresponding
system condition object. It seems to be harder to extend QuO with negotiation, as the
contracts – which are the subject of negotiation – are highly specialized.

1 Several of the figures show a delegate also on the server side. This may indeed be useful for
monitoring and controlling QoS, especially when an object is shared by several clients.

20

2.3.5. QoS for EJB
Miguel, Ruiz, and García-Valls (2002) describes a project where the EJB component model is
extended with QoS. At the heart of the model is what they call the resource consuming
component (RCC). Their logical model is based on CCM, where the RCC has facets,
receptacles, message sinks, and messages sources, but the implementation is limited to
synchronous calls, i.e. facets and receptacles, as it is based on the EJB 1.1 specification.
(Message-driven beans that support asynchronous calls did not appear until the EJB 2.0
specification.) The project extends the EJB model with a new component type called
QoSBean. The QoSBean interface is designed to support both session and entity component
types.

To provide the requested QoS, the RCC can require resources and a certain quality on other
components that it depends on. The QoS negotiation is based on the reservation scheme, and
two algorithms are provided. The RCC container can perform the QoS negotiation process on
behalf of the component, but the component can also customize the process, and a QoS
context object is available to the component to help implement the customization.

The implementation seems to be limited to QoS negotiation and admission control, and
neither policing nor adaptation is supported. Admission control, reservation and scheduling is
handled by a Resource Manager, while a QoS Manager handles distribution of resources
between different concurrent services. While the tasks connected to the Resource Manager are
thoroughly discussed, the QoS Manager is not explained, neither is it discussed how the
system can utilize the available resources in an optimal way.

The QoS for EJB project shows that component models can provide a clear separation of
functionality and QoS. Their QoS model is within the assumption/guarantee paradigm, where
an RCC can require (assume) minimum resource availability by reservation, and require
minimum quality levels of the components it depends on, to provide (guarantee) a certain
quality level.

2.3.6. Q-RAM
Rajkumar et al. (1997) presents an analytical approach for resource allocation to a QoS-aware
system. Their task is to maximize the total system utility, which is defined as the sum of the
utility of all the services executing concurrently in a system.

The Q-RAM model takes into account both QoS dimensions that are independent and
dependent. Q-RAM defines dependent dimensions as follows: “A QoS dimension, Qa, is said
to be dependent on another dimension, Qb, if a change along the dimension Qb will increase
the resource demands to achieve the quality level previously achieved along Qa.”. Their
example of this is a system which incorporates an audio stream, where an increase in the
sample rate will demand an increase of the CPU consumption, so the encoding process can be
able to provide the same level of quality as before the sample rate was increased. It is not
pointed out that such dependencies may be the result of the implementation, but once they
exist, the system must take the dependencies into account when allocation resources to QoS
dimensions.

Their model seems sound, but has some practical limitations on the utility function, which
must be “twice continuously differentiable and concave”. Also, the differential utility function
must be available to the resource allocation algorithm.

The intuition behind the Q-RAM algorithm is to allocate resources to the service and QoS
dimension that makes the utility increase most at any point, until the resource is completely
spent or increasing the resource usage does not increase the utility.

As the focus of Q-RAM is the resource allocation model, there is not provided any component
or service model within their model, even though services are central in it. On the other hand,
the Q-RAM model seems so generic that it may be applied for QoS management to any QoS
aware component system.

21

2.3.7. Aura
The Aura project (Poladian et al. 2004) has an approach similar to QuA and this thesis. They
recognize the process of transforming a user’s QoS request to capabilities and resources, and
the need for an efficient algorithm to select implementations. Aura uses an algorithm
implementation from Q-RAM. However, the scope is limited to a single application and there
is no reference to component models, although it is most likely to implement their services,
called capabilities, using components. In addition, Aura shows how the implementation
selection algorithm supports reconfiguration by comparing the observed utility with the best
computed utility.

2.4. Summary
There exist several component models for middleware. Even the industrial models provide
reflection capabilities, even though they are limited. Also, support for several extra-functional
properties are available. The models with extended reflection capabilities also offer client
applications a fine-grained control over inspection and adaptation of a running system.

There is still certain functionality that is not available in any of the middleware platforms.
None of the platforms support choosing a component implementation upon the request of a
component type based on resource availability and QoS requirements. Likewise, even though
the platforms provide pluggable mechanisms for QoS management such as resource
reservation and monitoring, it is assumed that the application must provide the mechanism
itself, none of the platforms offers to completely manage QoS on behalf of both clients and
components/objects. Q-RAM and Aura are the exceptions, where the platforms handle QoS,
but do not provide any component model.

QuO is the only component platform which offers to perform the adaptation of a service
based on a specification, the other platforms only opens up the possibility to adapt, but both
the “reasoning” and the code to execute the adaptation must still be provided by the
application. Aura also offers to provide reconfiguration, by periodically re-calculate to find a
more optimal configuration, but how to actually reconfigure a service based on the new
calculation is not explained.

With a component based platform, it would be great if it was possible to offer total QoS
management to an application, including QoS specification, contract negotiation, resource
management, monitoring, policing, and adaptation. It seems to still be a long way, but putting
together some of the pieces described in this chapter could look like a step in the right
direction.

22

3. QuA
The Quality Architecture (QuA) project2 aims at building a component platform where the
platform itself manages quality of service (Staehli and Eliassen 2002). QuA recognizes that
reflection is a key mechanism for supporting the adaptability that is necessary for QoS
management (Staehli et al. 2003).

3.1. A canonical component model
QuA introduces the notion of a canonical component model (Staehli and Eliassen 2002),
where key concepts for component models are defined. It is not argued if the canonical model
is complete, but such a model is useful for describing component models. The entities
identified in the QuA canonical model correspond to the following:

• Packaged component – an immutable (binary) value representing a component
implementation3 (called an X component, where X is the type implemented by the
component).

• Component instance – an entity that performs some work and communicates using
messages (called object in Staehli and Eliassen (2002)4).

• Composition of component instances.

• Component platform – instantiates, manages, and executes the components.

• Component type – describes the syntax and semantic of the functional interface to be
implemented by a component.

The term packaged component is chosen with care in this thesis. In various papers, and
specifically in Szyperski (2002), it is often unclear when the term component implementation
refers to the source code of a component, the (possibly) compiled and then packaged
component, an installed component, or the component platform’s representation of the
implementation, which is used to instantiate the component.

Note that this model is only a suggestion, it is not validated that it is canonical, but it can still
serve as a reference model for other component models, as Microsoft COM, EJB, or
OpenCOM.

3.2. The QuA component model
QuA is a higher-level component model (Staehli and Eliassen 2002). This means that an
implementation can utilize functionality provided by a lower level component model, e.g.
OpenCOM (see section 2.3.3 on OpenCOM), but a lower level component model is not
necessary. A QuA implementation only need to provide a small set of core functions. In fact,
this thesis presents a QuA implementation based on Java 2 Standard Edition (J2SE).

The QuA component model contains the following entities:

• QuA type – specifies a syntactic and semantic interface for a component. QuA types
may inherit from other types.

• QuA component – implements one or more QuA types.

• QuA component repository – where the packaged QuA components are installed.

• QuA capsule – implements the runtime platform.

2 Joint project between Simula Research Laboratory, Sintef, and University of Tromsø, Norway
3 Component implementations are in some QuA papers called blueprints.
4 In the QuA papers where the term blueprint is used, “component” is often used as short hand for
component instance.

23

In QuA, even the platform is built using QuA components (called capsule service
implementation components in Figure 5). The capsule core only consists of the minimum
functionality needed to load component repositories and, to instantiate and to bind the
platform components. In addition, the core defines the QuA types for the platform
components. This is in line with the canonical model described above.

Figure 5: Conceptual view of the QuA architecture (Staehli and Eliassen 2002)

3.2.1. QuA object space
The object space in QuA (or just QuA space) is a distributed space, served by of a set of
collaborating QuA capsules that may reside on different hosts or nodes. These capsules share
a QuA namespace that is inhabited by QuA objects. The QuA platform defines some specific
QuA objects, but arbitrary objects can be promoted to QuA objects by registering them with
the QuA capsule. This means that any object in any process that instantiates a QuA capsule
can be bound to other local or remote QuA objects.

The specified QuA object types are component repository, component type, packaged
component, and component instance, in addition to arbitrary promoted objects. There is no
special QuA object type for resources at this level.

3.2.2. QuA capsules
The QuA platform is a distributed platform, where each process runs (at least) one instance of
a QuA capsule, similar to CORBA where each process in a CORBA space runs an ORB. The
QuA capsule itself is a minimal core where components need to be plugged in to provide the
necessary capsule services. Implementing the capsule as components is similar to the Open
ORB 2 design (Blair et al. 2001). A small capsule core should be easier than a monolithic
system to port to a range of platform, including platforms with limited resources such as
PDAs and mobile phones. The necessary capsule components can then be ported
independently.

3.2.3. Component repositories
All QuA capsules contain a volatile repository where run-time and other volatile objects are
registered. Typical volatile objects are component instances and proxies for remote objects. In

24

addition, a number of persistent repositories can be served by each capsule. Persistent
repositories will typically contain packaged component types and implementations.

QuA repositories are used to store types, implementations and instance references. In
comparison with CORBA (Coulouris, Dollimore, and Kindberg 2001 p. 679), QuA
repositories may bee seen both as an interface repository and implementation repository.
However, in comparison with the CORBA implementation repository, the QuA repository is
used for actually storing the implementation, while the QuA capsule is responsible for
instantiating (activating in CORBA terminology) the components.

3.2.4. QuA components
Everything in a QuA capsule is implemented as components, with the exception of the
minimum core functionality that is needed to instantiate and bind local components without
any QoS management. This is similar to how Open ORB 2 is implemented using OpenCOM
components (Blair et al. 2001).

Component types
A component type (or QuA Type) describes the syntax and semantics for a service (type).
Ideally, both syntax and semantics should be defined formally, but QuA does not define how
component types should be specified. Types are named, and may be versioned. A QuA Type
is platform independent.

Component implementations
A component may be implemented in any programming language, or platform, if a QuA
capsule supports that platform, similar to how CORBA object may be implemented in any
platform for which a CORBA ORB is provided (Coulouris, Dollimore, and Kindberg 2001 p.
671). One component implementation may implement several component types. Components
are compiled (if necessary), and packaged with metadata that describes which types it
implements and which capsule version and platform implementation it requires, as well as its
name and version.

Component dependencies
If a component requires another component, this should also be part of the component
metadata. Components should only require a component type, not a specific implementation,
but to allow for some extra flexibility, it may be possible to allow both. It is not specified how
this is handled in QuA.

Composite components
Composite components are not clearly defined in QuA. A composite component specifies a
set of components and their architecture, i.e., how the component instances are to be bound
together. It should be possible to specify compositions of both types and implementations,
and provide this specification in a capsule implementation neutral format, however, as with
component dependencies, QuA does not specify such a format. QuA names could be used to
refer to types and implementations in a packaged composite component, with additional
information on the architecture. Any language to describe an object graph could be adopted
for this usage.

Packaged components
A component package is an immutable binary value containing the blueprints needed to
instantiate this component. The package is prefixed with following information about the
contained component

• Which version of the QuA platform this component is implemented for. This can be
used to maintain backward compatibility.

25

• Type implemented by this component, e.g. AudioSource.

• Short name for this component, e.g. Microphone.

• The QuA capsule type this component is implemented for, e.g. Java.

Component instances
Component implementations are instantiated by the QuA capsule and registered in the
capsule’s volatile repository. A component implementation needs to provide a well defined
factory so the capsule is able to create, or manufacture, instances of that implementation. A
component instance may be a factory for component instances of a different type, e.g. an
audio binding factory instance could used to create audio bindings.

3.2.5. QuA/Type meta interface
All QuA components must implement the QuA/Type interface. This interface allows for
discovering which types the component implements dynamically, similar to the IUnknown
interface in Microsoft COM and the Equivalent interface in the CORBA Component Model.

3.2.6. QuA Names
When a packaged component is published to a component repository, its short name is
prefixed with the path to this repository. Duplicate names are not allowed. Instead the QuA
name contains a version number. In this way, it is possible to identify a QuA component
implementation, or type, uniquely in one QuA space.

3.3. QuA services
A QuA component instance, or a collaborating composition of component instances, provides
a QuA service. A service is defined to be “a subset of input messages to some composition of
objects and their causally related outputs” (Staehli and Eliassen 2002 p. 5). The service
consumer may either be an entity outside the QuA framework, i.e., a QuA client, or the QuA
core (for platform services), or another QuA service. In the latter case, the consumed service
is a called a sub-service. It is not defined whether a single component instance may serve
multiple consumers simultaneously, or how services are scoped in this case.

3.3.1. Bindings and compositions
Component instances, and other objects promoted to QuA objects, may be bound together in a
composition. The bindings are performed by binding services, which can create local or
remote bindings.

3.3.2. Requesting services
A QuA client requests a service by providing the QuA capsule with a service specification
(ServiceSpec). This specification contains the requested functionality of the service,
represented with the QuA type of the service. The service may also be restricted to bind to
objects in specific capsules. These objects may represent resources, as specific microphones
and speakers in an audio conference, but can really be any QuA object, as long as the objects
supports the necessary bindings to be composed as a part of the QuA service.

When requesting a service, the client can provide a quality specification (QualitySpec) along
with the functional specification for the required service. The QualitySpec contains the QoS
properties the client expects from the service. It is not defined how QualitySpecs are
negotiated, and what happens if a QualitySpec can not be satisfied. For the latter case, the
alternatives are to either re-negotiate the QualitySpec, or just reject the service request.

26

3.3.3. Service planning
Component implementations are not specified by the client, but provided by the platform
itself. The composing is delegated to the service planning framework, which is a component
framework where different service planners can be hooked in, e.g. a specific service planner
for the audio domain.

Service planning consists of three parts:

• Implementation planning – selecting a component implementation

• Binding planning – selecting remote bindings to bind components together

• Composition planning – selecting the complete component composition for a service

3.3.4. Service execution
As stated above, a QuA component instance, or a composition of component instances,
executes a service. The service can be within one capsule or distributed – in QuA the idea is
that distribution of services should be transparent to the client. A service executes within a
service context. If the service is distributed, the service context will be distributed as well.

3.4. Summary
Service planning is key to the QuA architecture. This is the main mechanism that QuA uses to
be support platform managed QoS, together with leveraging an open and reflective
architecture. Another important aspect of the architecture is that also the capsule itself
consists of components providing capsule services. This design should make it easier to port
QuA capsules to different platforms. QuA also embraces utility functions a generic approach
to describe QoS.

27

4. Problem description
This chapter discusses service planning in the context of the overall QoS problem. At the end,
the problem area of this thesis is scoped.

4.1. The overall QoS problem
The overall problem is to execute a service such that it is optimized both with respect to the
end users’ quality requirements, and the available system resources. If there were infinite – or
just always enough – resources available, it would be trivial to create and offer component
implementations that satisfy any end user requirement. But in practice in a distributed
environment, resources have physical limitations, high prices, or low availability. QoS aware
systems are introduced to cope with these limited resources. The challenge for these systems
is to optimize resource utilization.

The following detailed description of the problem area is from the point of view for a
component based distributed system.

4.1.1. Overview of a QoS session
We have established that QoS is not a problem – it is a solution to lack of resources. QoS
management is split in two phases, static QoS management and dynamic QoS management
(Aurrecoechea, Campbell, and Hauw 1998). The former phase takes place before the service
is provided to the service consumer, and the latter phase during the service execution.

In the static QoS phase, the following typically takes place:

• Describe QoS requirements. The service consumer provides a formal description of
her QoS requirements. These are then provided as the service consumer’s input to the
next step.

• QoS negotiation that results in a QoS contract. The QoS contract defines limits on the
QoS characteristics that the service must operate within, and optionally also how
many resources the service is allowed to consume during service execution.

• Initial service configuration is performed by the service provider. The service is
configured to use some set of resources to provide a certain QoS level.

After the static phase is completed, the service is ready for use by the service consumer. If the
service executes in an environment with resource management, resources are reserved during
the static QoS phase, and – unless some reservation fails – the QoS management job is done.
More often, resources are not managed in a way that make is possible to reserve all needed
resources exclusively for a service, so QoS management continues with the dynamic phase,
which consists of the following elements:

• QoS monitoring that monitors the provided QoS. If the provided QoS level decreases
below the agreed QoS level in the contract, the service must be reconfigured.

• Resource monitoring – if more resources become available during the service
execution, these can be used to increase the provided QoS.

• Dynamic reconfiguration of the service takes place based on QoS and resource
monitoring. If the service cannot be reconfigured to still satisfy the QoS contract, the
service should be terminated. It is also possible to start over with a new QoS
negotiation at this point.

• QoS policing to avoid that the service consumes more resources than the QoS
contract allows.

28

4.2. The service planning problem
Service planning means that the platform or middleware should provide a service to clients
based on functional and QoS requirements (Staehli and Eliassen 2002). In this context, QoS
requirements are all extra-functional requirements that apply to services at run-time, such as
timing, accuracy, and security. More specific, service planning is the process of identifying
and instantiating component implementations, and then configure and bind the instances
together to provide the requested service.

This definition places service planning in the final “initial service configuration” step of the
static QoS phase. Before the service can be planned, we must assume that the required QoS
has been specified and negotiated.

4.2.1. Describing QoS
‘QoS description’ is almost an oxymoron in a computing context, as qualitative terms such as
‘good’ and ‘bad’ does not make any sense in a binary world. Computing is all about numbers;
hence there is need for quantitative measures of a service’s quality characteristics. A way of
obtaining quantitative measures is to break down quality characteristics into a layer of sub-
characteristics, with mappings on how to calculate the more qualitative value on the higher
level from the more quantitative values on the lower level. CQML (Aagedal 2001) provides a
notation for recursive quality characteristics, e.g.:
quality_characteristic media_quality {
 domain: increasing enum{bad, average, good}
 audio_quality;
 video_quality;
}

Here we define the QoS characteristic, or QoS dimension, ‘media_quality’ for an audio-video
service to have the increasingly better values ‘poor’, ‘average’, and ‘good’, and that this
characteristic is made up of the characteristics ‘audio_quality’ and ‘video_quality’. These
characteristics must again be defined, and may be broken down this way in several layers,
until objectively measurable characteristics are defined. To continue the example,
‘video_quality’ could be defined as:
quality_characteristic video_quality {
 domain: increasing enum{bad, average, good}
 frame_resolution;
 frame_rate;
 color_depth;
}

The good, the bad, and the context
After the main quality characteristics have been identified and broken down into objective
measures, the mappings between the different layers must be defined. The problem here is
that which combination of audio and video quality that maps to the media quality domain
depends on the context the media service is used in. What is ‘good’ quality in one context,
may be ‘bad’ quality in another; consider a (one-way) streaming application in two different
cases. In our first case, the user accesses the service using a mobile phone with a limited
screen. This user would probably say that a very small frame resolution is ‘good’. In our
second case, consider a user accessing the service using a regular workstation with a high
resolution screen. The latter user would probably map the ‘good’ frame resolution in the first
case to ‘bad’. In other words, QoS is highly context dependent.

Tradeoffs
Our former user using her mobile phone probably also has other limited resources such as
bandwidth. In the case above, this does not really matter – it is just very inconvenient to carry
a 20” LCD panel around in your pocket. But on the other hand, the latter user may also be on

29

some remote location using a mobile phone link with limited bandwidth, and this connection
would not be able to handle a combination of high frame resolution, high frame rate, and high
color depth. She would then have to prioritize between these QoS characteristics, and this
prioritization must be included in the QoS characteristic mappings to be communicated to the
service provider.

Utility functions
One way of representing the overall QoS for a service consisting of several underlying quality
dimensions, is to use a utility function, which maps values from all the underlying dimensions
to a normalized real value in the interval [0, 1]. A utility value of 0 means that the service is
useless to the service consumer, because the quality of one or more dimensions are
unacceptable. 1 means that the QoS is as good as desired in all dimensions.

The user’s requirements and tradeoffs are captured and mapped to mathematic expressions in
the utility function. How this is done, is studied in the field of human-computer interactions
(Poladian et al. 2004).

4.2.2. Negotiating QoS
The following must be resolved during the QoS negotiation:

• How much resources are required to satisfy the requested QoS

• How much of the necessary resources are available

• And, optionally, the cost of the service

Required resources
Before it is possible to calculate the required resources, it is necessary to figure out which
component implementations the service will be composed of, as different implementations
will have different resource requirements, e.g., for our video stream example, using MPEG4
instead of MPEG2 will require less bandwidth and more CPU.

This means that already at this stage, the system must figure out alternative service
compositions, component implementations, and estimate how much resources the different
alternatives will require.

Available resources
Discovering available resources can optionally be combined with reserving the necessary
resources. If the service will be distributed among several autonomous resource management
domains, resource usage must be negotiated with each domain.

Cost
QoS negotiations are complicated if one or both of the parties do not want to disclose all their
preferences. A parameter that is likely not to be revealed from the other party, is the price-to-
service-level ratio, i.e. how much the consumer is willing to pay for a certain service level, or
how cheap the provider can sell a certain service level.

The service consumer may disclose what she is willing to pay for different levels of QoS to
the producer. This opens up for that the party calculating the utility, which is most likely the
producer, can take advantage of the other party. Fixed pricings or having a neutral third party
broker to negotiate the service are possible solutions to this. Koistinen and Seetharaman
(1998) presents an algorithm where two parties can negotiate QoS without disclosing all
underlying information, but their approach does require that some level of trust are
established between the service provider and the service consumer.

Another complicating factor is the non-autonomous resource domains mention above. The
service provider could have to negotiate the cost for the resources the service requires.

30

However, this is more likely to be done in advance then as a part of the QoS negotiation, e.g.
network connectivity is ordered months in advance, but it is also possible to envision
resources procured on demand, e.g., some resource provider may have lots of spare
computing power, and wants to sell access to this resource. Note that providing resources this
way could be treated like providing a (low-level) service.

4.2.3. Initial service configuration
When the negotiated QoS has been accepted, the system can instantiate the components that
the service is to be composed of. As we discovered above, it is necessary to find possible
service compositions already in the QoS negotiation step.

Single service vs. entire system
Another dimension to the QoS problem, is that the service provider may have a different
opinion on what QoS is ‘best’ than the service consumer. The consumer wants as high as
possible utility on one or a few concurrent services, while the producer has two options; serve
as many consumers as possible, or maximize the profit of resource usage. We call the former
maximizing the system utility value, while the latter can be thought of as maximizing the
resource utility value. The latter is interesting to service producers that are resource
consumers of resource providers.

For the consumer using the services provided, the best implementation is the one providing
the highest utility value, limited by the current available resources, and possibly the cost of
those resources.

The system utility value can be defined to be the sum of the utility of each service provided
by the system (Rajkumar et al. 1997). Note that using this definition, serving 1 consumer with
100% utility, is better than serving 99 consumers with 1% utility each, while the number of
served consumers could have an impact in the total system utility value. Also note that the
utility values must be normalized in such a model, and after services are normalized, it is
possible to weigh the utility of some services higher than others.

In a distributed multi-party system where consumers must pay for resource consumption, it
may be more likely that the ‘best’ service is the one which the consumer is willing to pay
most for using least resources, but still getting satisfactory quality. A service could even get
reduced quality or be terminated by the service provider if another consumer appears that are
willing to pay more for the same resources.

4.2.4. Resource monitoring
Resource monitoring is to monitor how much capacity are available for the resources
currently used by the service, or possibly used in another configuration of the service. If
resource capacity increases, the service can be configured to utilize the increased capacity to
increase QoS level.

If resource monitoring discovers that capacity is decreasing with a trend that tells the system
that the QoS will be dramatically affected, the system can try to reconfigure the service to use
less resources and still provide adequate QoS. Consider our video stream example and
imagine that the network throughput decreases so much that the system will have to drop
frames because they arrive to late to be played. It could be better to reconfigure the system to
decrease the frame size and sustain the frame rate.

It is not the responsibility of resource monitoring to reconfigure the system – it only notifies
other parts of the system, which may take actions.

4.2.5. QoS monitoring
QoS monitoring is similar to resource monitoring, except that here is the actual QoS
monitored. QoS monitoring will not discover that extra resource capacity is available; in that

31

case it will only report that the service is running with maximum QoS in the current
configuration. This information could be used to reconfigure the system to utilize more
resources, but without resource monitoring, the system can not really know if the resources
have spare capacity.

On the other hand, QoS monitoring will report that the quality is decreasing, and this
information can be used to trigger dynamic reconfiguration, e.g., to utilize the available
resources better. Consider QoS monitoring for the video streaming application; the QoS
monitoring discovers that the frame rate drops drastically, which could happen due to network
congestion. This is another way to trigger the reconfigure of the service to reduce the frame
size to maintain the original frame rate.

If the monitored QoS drops below an acceptable lever altogether, the service should be
terminated and possibly renegotiated.

When the service has completed execution, a QoS monitoring report can be used to calculate
the actual cost of the service.

4.2.6. Dynamic reconfiguration
Dynamic reconfiguration of services, also called service adaptation, may occur at different
levels of a service. At the lowest granularity it means that some parameters of an executing
component instance are tuned by some QoS manager. A higher level of adaptation is when
one ore more executing component instances are replaced with other components, possibly
changing the component architecture of the service. At the highest level, when the system is
not able to provide the agreed service level, adaptation can incur renegotiation of the service
level. If cost is involved, this may mean that the service provider has to lower the price for the
service.

Service adaptation may also be applied recursively. Figure 6 shows a video service made up
of three component instances, where the video stream composite component consists of four
component instances. The lines between the component instances reflect the bindings.
Changing some run-time parameter of the video stream component may propagate in three
different ways:

1. The parameters of one or more of the sub-components may be altered. E.g., the
compression ratio on the encoder is changed.

2. Some of the components are changed, but the component architecture (how the
components are bound together) is kept. E.g., the codec could be switched by
changing the encoder and decoder components with different implementations.

3. The component architecture is completely changed, e.g. the stream switches to a raw
video stream, where the encoder, decoder, and controller components are removed,
and only the data stream is kept.

Camera

Encoder Data
Stream Decoder

Video
Stream Player

Controller

Figure 6: Recursive reconfiguration of composite components

32

4.2.7. QoS policing
QoS policing is the mechanism that ensures that a service does not utilize more resources than
agreed in the QoS contract. QoS policing can utilize resource monitoring and dynamic
reconfiguration, and potentially terminate services that uses too much resource capacity.

4.3. Problem scope
As we see, the QoS problem area is quite wide. This thesis will look at the following
elements:

• How to programmatically describe QoS and available resources, independently from
different component implementations.

• How a QoS description can be used to select a single component implementation.

• How a component instance can be configured to maximize QoS, given limited
resource availability.

This is summarized as:

How can a component middleware efficiently choose a component implementation based
on component type, QoS requirements and available resources?

This leaves several important mechanisms that must exist in a complete QoS aware system as
beyond the scope of this thesis:

• QoS negotiation

• Resource and QoS monitoring

• Dynamic reconfiguration

• QoS policing

Note that the way utility functions are used in this thesis, they should not be considered to be
a part of QoS negotiation. It is expected that the system maximizes the utility value with the
current given available resources, and also cost is not a part of the utility functions. A utility
function could possibly be the outcome of a prior QoS negotiation.

In addition, the following optional elements are also considered beyond the scope:

• Cost

• Resource management

The narrowed problem area thus does not cover an entire QoS aware system by itself, but it is
neither sufficient to look only at the areas beyond the scope of this thesis.

4.4. Summary
In this chapter, the QoS problem area has been described, and the problem for this thesis has
been narrowed down to a part of the problem area; how to select a component implementation
in a specific environment.

33

5. Analysis
This chapter starts with presenting a hypothesis for QoS-aware service planning. It then goes
on with analysis on how the hypothesis can be implemented and tested, and finally describes
two experiments that can be used to evaluate the hypothesis.

5.1. Method
The overall method used in the thesis, is to present a hypothesis and test it with an
experiment. To be able to test this way, the experiment is described as a set of test cases and
goals.

5.2. Hypothesis
QuA states that service planning requires specific service planner for different QoS domains,
called applications domains (Staehli and Eliassen 2002). However, since QuA provides a
generic approach to QoS modeling using utility functions (ibid.), a generic component model
(ibid.), and a generic resource model (Abrahamsen), it could also be possible to provide a
generic solution to select component implementations for a specific service. The hypothesis to
test can be formulated as:

It is possible to make a generic solution to selecting and configuring a component
implementation when the QoS model and resource model are generic, with as high level of
QoS as possible, given limited resource availability.

Intuitively, a possible obstacle for this hypothesis is that the solution space is so big that any
generic solution will not be efficient enough or precise enough. Efficient here means how fast
an implementation and configuration is selected, while precise means how far from the
highest possible level of QoS the selection actually is.

The inspiration for the hypothesis is the solution of Q-RAM (Rajkumar et al. 1997), which
describes a very similar problem; how to maximize the resource usage given a set of services.
Transformed to a component based platform, the components for the services are already
selected in Q-RAM, but only satisfying a minimum level of QoS.

5.3. Prototype background
To be able to conduct the experiment, we need a prototype of a component based platform.
The early QuA capsule prototype written in Smalltalk by Staehli based on (Staehli and
Eliassen 2002) founds a good basis. Important aspects of the QuA platform that the capsule
needs to support includes:

• Pluggable service planners

• Component repositories

• QoS descriptions

• Resource descriptions

The prototype needs to provide components for:

• Basic implementations of capsule core services – for bootstrapping the capsule

• Example component implementations to select and configure

• The generic implementation planner itself

The prototype can show that the proposed solution is feasible. It is also possible to test a
prototype for precision and effectiveness.

34

5.3.1. Component types and QoS models
In general, a component type is described by its syntactic and semantic specifications
(Szyperski 2002). In order to specify QoS and calculate resource requirements for given QoS
levels, all service consumers and component implementations must agree on which QoS
dimensions that are known for a specific type, hence this must be a part of the type
specification. We call the set of QoS dimensions that a type specifies the type’s QoS model.

A QoS model may include other QoS models. E.g., a QoS model for timing, defining QoS
dimensions as delay and jitter, may be included by QoS models for both audio and video, and
a QoS model for multimedia may include the audio and video QoS models.

Timing

Audio Video

Jitter Delay

Frame size

Frame rate

Color Depth

Frequenzy
bandwith

Multimedia

Quantization
noise

Max
frequence

Min
frequence

Frame
width

Frame
height

Figure 7: Example QoS model for multimedia

Figure 7 shows such a QoS model. The utility for a service of this type would only depend on
the values from the QoS dimensions in the leaf nodes of the QoS model, with objective,
quantitative values; hence an implementation of QoS models can be simplified to only consist
of the leaf dimensions.

A QoS statement holds values for all the leaf QoS dimensions of a QoS model. The statement
is just a value, and can represent values such as current monitored QoS, minimum QoS, or
maximum QoS.

5.3.2. Utility function interface
Depending on the context, the function to calculate the utility value may combine the QoS
dimensions in any possible way. We can define a generic interface for a utility function to
accept a single argument; a QoS statement. An issue with a generic interface is that the QoS
model known to the utility function may differ from the QoS statement. A missing value for a
QoS dimension is most likely to cause an error when computing the utility value, and its
existence should be asserted by the platform before invoking the function. Values for QoS
dimensions unknown to the function can be ignored; implying that the quality in those
dimensions do not affect the utility value.

To normalize the utility values for different service requests, we define the value range for
utility functions to be a real number in [0, 1], where 0 is unusable, and 1 is as good as possible
in the context the service is requested in.

The utility may be different for the same objective QoS level, depending on the subject of
interest; e.g., an audio service with a frequency cutoff at 4 kHz (used for speech) and a delay
of 0.5 seconds could yield a utility of 0.2 for a client that requests music to be played, while it
could yield a utility of 0.9 for a client that requests to listen to a debate.

35

5.3.3. Service requests
In QuA, a service is defined as an output trace with and a causally related input trace (Staehli
and Eliassen 2002). More specific, a service has type that specifies both its syntax and
semantics, which can be described in a functional specification. The required extra-functional
properties of the service can be described in a quality specification. A service request consists
of a both the functional specification and the quality specification.

Functional specification
The simplest service request only specifies the type of the service, and the platform is free to
realize the service in any way to enhance the quality of the system.

The functional specification may also hold additional requirements, as binding to specific
resources; e.g. a specific microphone and loudspeaker. It may also be desirable to request a
specific implementation of a type to override the platform, or even a specific instance of a
component implementation.

A realization of the functional specification may hold references to the following elements:

• Components types to include in the service.

• Components implementations to include in the service.

• Component and resource instances to include in the service.

• List of unidirectional component bindings (service architecture description).

Quality specification
The quality specification must at least provide the utility function, so the system can calculate
the utility of any given QoS statement. To simplify service planning (and potentially QoS
monitoring), it should contain two QoS statements in addition:

• Minimum QoS (minQoS) values for each QoS dimension. If the quality drops below
the given value in any of these dimensions, the service becomes useless for the
service consumer, and the utility value drops to 0.

• Maximum QoS (maxQoS) values for each QoS dimension. There is no point for the
system to enhance the quality in any dimension above this value. If all dimensions are
at maximum or higher, the utility value is 1.

The utility function is defined in the range [minQoS, maxQoS] for all the QoS dimensions in
its quality model, and it must be increasing in this range. The utility value would never
decrease because of an increase in some QoS dimension, so this should not be a problem
when specifying a utility function. To support the case where increasing the quality in one
QoS dimension does not have an effect unless the quality in some other QoS dimension also
increases, it is not required that the function is strictly increasing. Since the maxQoS
statement is required, the system can tell if maximum quality is not provided in a QoS
dimension, even though the utility value does not increase with every increase in this
dimension.

The quality specification needs to provide a mechanism to calculate the utility value for a
given QoS level, represented as a QoS statement. In a distributed environment, this can be
realized in a number of ways, as mobile code (e.g., a packaged component), remote method
calls, a platform neutral function language, or limiting the service planner to run in the
capsule that requests the service.

In a component platform, it is tempting to choose providing utility functions as packaged
components, but in a language independent component system, such as CCM or QuA, this
will still limit the function to be executed on the underlying platform it was written on.
Remote method calls solves this problem, but as the function may be executed almost

36

continuously during service planning and QoS monitoring, this may impose a large overhead.
A platform neutral function language is the only approach where the system can choose freely
where to execute the function, but this requires a formal language description and execution
environment, e.g., an interpreter, to be a part of the component platform.

With a prototype that only supports one language, it is sufficient to provide the utility function
as a packaged component.

The QoS model in this thesis is a quality model, as opposed to the error model described by
Staehli and Eliassen (2004). An error model can be viewed as the inverse of a quality model,
as it measures the error or how far from ideal a service is operating.

5.3.4. Describing resources
Several resource models have been suggested throughout the years, as the General Resource
Model in the UML Profile for Schedulability, Performance, and Time, and CQML+
(Abrahamsen). Resources may exist at different abstraction layers, e.g. CPU cycles may be
abstracted to operating system processes or application threads, as shown in Table 1.

Abstraction Processing Memory
Application Thread Buffers
OS Process Virtual memory
HW CPU cycles Swap space and physical memory

Table 1: Resource abstraction layers

Resources are of either spatial or temporal character (Rajkumar et al. 1997), as shown in
Table 2.

Memory spatial
CPU cycles temporal
Throughput temporal

Table 2: Example of spatial and temporal resources

To be more precise, all resources are temporal, i.e. any resource can be shared over time.
Also, a spatial resource can be broken down to units that are only temporal, e.g. a single
memory block (Abrahamsen).

Temporal resources can also be divided between resources that allow time-sharing, and
resources that are only of exclusive use (Abrahamsen). For the latter type, a resource manager
could emulate a time-sharing mechanism.

Resources can be described similar to QoS. They need to be described at the lowest level that
they can be monitored or managed

5.3.5. Algorithm for the Generic Implementation Planner
The rationale for providing a generic algorithm to choose component implementation and
configuration is to avoid implementing separate algorithms for each QoS model.

Each QoS-aware component must provide a function for resource requirement based on a
QoS statement. This function is used by the algorithm to verify if the system can provide the
necessary resources for a given QoS level.

Requiring that the service request must provide the minQoS statement, we can quickly
disregard component implementations that require more resources than currently available,
under the assumption that to be able to provide increased QoS, more resources are required
for that component. This is a sound assumption – a component requiring fewer resources to
provide higher QoS would be completely backwards.

First, the implementation planner locates all QoS-aware component implementations of the
given type, using an implementation broker. Before the actual search for the best possible

37

utility is begun, there are two possible cut-offs; first the planner checks the resource
requirements for the maxQoS statement for all the implementations. If there are enough
resources available for any of the implementations, any of these can be selected immediately.
If all implementations require more resources than currently available to satisfy the maxQoS
statement, the second cut-off is to check the resource requirement for the minQoS statement
for all of the implementations. Any implementation that requires more resources to satisfy the
minQoS statement than currently available is disregarded as described above at this point.

The implementation planner’s task now, is to maximize the utility value in the space defined
by [minQoS, maxQoS). As the only requirement on the utility function is to be an increasing
function, i.e., if the QoS level increases in any one if its defined QoS dimensions, the utility
can not decrease, the QoS space must be search in all dimensions, until there are not enough
resources available to increase the quality in some dimension. This search can be
implemented as a depth-first search.

The problem is similar to the algorithm presented by Rajkumar et al. (1998) in the way that
we have a set of discrete and dependent QoS dimensions, for which we want to maximize the
utility value, Rajkumar et al. (1998) prove that the problem of maximizing the resource
allocation with discrete and dependent QoS dimensions is an inexact 0-1 knapsack problem,
which is NP-hard. It is not formally proven that the variation of the problem in this thesis also
is NP-hard, but its close relation with the problem in Q-RAM suggests it is.

5.4. Experiment description
This section describes two experiments, one where an audio codec is selected and configured,
and one where a raw video stream is configured. The former experiment is designed to
analyze the precision of the algorithm, and the latter experiment is designed to analyze the
effectiveness of the algorithm.

5.4.1. Select and configure audio codec
In this experiment, the Generic Implementation Planner should select and configure the audio
codec component implementation that provides the highest utility, with 1 or 2 QoS
dimensions in the quality specification, and limited resources.

The QoS dimensions are frequency bandwidth and quantization noise, and the required
resources are network bandwidth and CPU. We will map these dimension to quantified values
for objective measurement.

Frequency bandwidth
Frequency bandwidth should be a fairly objective measurement by itself. The human ear is
capable of hearing sounds of approximately 20 to 20.000 kHz (Tanenbaum 1996 p 724).
According to the Nyquist theorem it is sufficient to sample twice the highest frequency to be
reproduced (Tanenbaum 1996 p. 81)5. The sample rate for audio CDs, which is 44.1 kHz,
should then be sufficient to reproduce all audible frequencies, however some claim that using
higher sampling rates will provide reproduced audio that sounds closer to its original form to
the human ear (Dunn 1998). Digital audio tapes (DAT) provides 48 kHz sample rate, and
DVD audio supports up to 192 kHz sample rate!

For simplicity, we disregard the minimum frequency of the frequency bandwidth in the
experiment, setting the frequency bandwidth equal to the maximum frequency. We then map
the frequency bandwidth to just below ½ of the sampling rate, which can be used to represent
this QoS dimension.

5 Tanenbaum is slightly wrong according to Wikipedia (2007), which states the Shannon-Nyquist
theorem as follows (my emphasis): “Exact reconstruction of a continuous-time baseband signal from its
samples is possible if the signal is bandlimited and the sampling frequency is greater than twice the
signal bandwidth.”

38

Quantization noise
When transforming an analog signal to a discrete value for digital representation, some
information is always lost, as shown in Figure 8. If the quantization of audio is crude enough,
it is audible to the human ear, and is known as quantization noise (Tanenbaum 1996 p. 725).

Figure 8: Quantization of analog signal

Each audio sample is represented with a finite number of bits. Audio CDs uses 16 bits to
represent each sample per channel, while DVD audio uses 16, 20, or 24 bits per channel.
Higher number of bits provides less quantization noise.

Compression
Audio can be compressed in various ways. An obvious compression scheme is to reduce the
sample rate. This is a lossy compression where the information of higher tones is lost. The
compression ratio is then equal to the ratio between the original and produced sample rates.

Another way to compress audio is to reduce the sample size. One scheme is to use coarser
values to represent each sample, e.g. 8 bits instead of 16 bits. Reducing the sample size will
increase the quantization noise.

The intuitive approach is to distribute the sample values linear, but the human ear picks up
sound on a logarithmic scale (Tanenbaum 1996 p 724), which is leveraged in phone systems,
that uses either the A-law or µ-law algorithm for compression, both uses logarithmic
distribution of the quantified values (ITU-T 1993).

There are also other audio compression schemes that use different schemes for compression
audio, as MP3 (Peterson and Davie 2000, p. 557).

It is possible to measure the quantization noise when compressing audio, but since the ideal
audio signal is analog, some error has already been introduced. However, the perceived
quality of audio is strongly subjective, which is studied in psychoacoustics. ITU-T has
developed subjective methods for measuring the perceived quality of speech codecs, called
Mean Opinion Score (ITU-T 1996).

For this experiment, we will assume that the sample size reflects the quantization noise.

QoS space
Table 3 shows the two QoS dimensions for the experiment, and the domain used to represent
values on these dimensions. For simplicity, we ignore timing QoS dimensions as delay and
jitter. Both the processing in the audio codec and network transport will impose delay. Jitter
may be caused by variations in CPU and network availability during the execution of the
service. Adding a buffer at the audio sink may reduce jitter, but this will increase the delay.

39

QoS dimension Domain Direction Suffix
Sample rate Real numbers Increasing kHz
Sample size Integers Increasing bit

Table 3: QoS dimensions for audio codec experiment

QoS aware components
For this experiment, we will mock two imaginary QoS aware audio codec components. Both
are configurable in the following ranges:

• Sample rate [8.0, 44.1] kHz, in steps of 0.1 kHz

• Sample size [8, 16] bits, in steps of 1 bit

Both components only support one audio channel (mono).

The first component implementation (raw) mocks a simple codec that will only downsample
raw real-time audio. This component requires CPU based on the output sample rate, and both
the sample rate and sample size depend on available network throughput.

For the second component implementation (compressor), we mock a codec that utilizes CPU
to compress raw or downsampled audio. This component is capable of loss-less compression
of real-time audio up to 25%, but at a cost of additional CPU. Note that the resource
requirement for an actual loss-less encoder would depend on the actual content of the media
stream. E.g., gaps of silence can be compressed much more efficient than rock music.

Resource requirements
The resource requirements for the two components are shown in Table 4.

Resource Raw Compressor
CPU Sample rate * 0.3 Sample rate * 0.3 * (compression/50 + 1)
Bandwidth Sample rate * sample size Sample rate * sample size * (1-compression)

Table 4: Component resource requirements

Figure 9 shows the bandwidth requirements for the raw audio codec component. The output
of this function could be fed into a data stream component which may add overhead in packet
headers and possible retransmission of packets. The sample frame size is also relevant to
compute network packet sizes, as frames should not be split between packets, as well as
network path minimum MTU, which should be detected to avoid packet fragmentation.

For raw audio, the sample frame size is simply the sample size, but various codecs, as MP3,
may groups information for several samples into one frame, and add a header with time and
codec information (Peterson and Davie 2000 p 558).

40

Figure 9: Bandwith requirements for the raw audio codec component

Utility function
Figure 10 shows the utility function we will use in the experiment. The related minimum and
maximum QoS constraints are shown in Table 5.

QoS dimension minQoS maxQoS
Sample rate (kHz) 8.0 44.1
Sample size (bits) 8 16

Table 5: Minimum and maximum QoS constraints for audio codec experiment

The utility function to compute the surface is defined as follows:

Sample rate utility function ur

8 kHz <= sample rate < =44.1 kHz:
ur = log37.2(sample rate – 6.9)

Sample size utility function us

8 bits <= sample size <= 16 bits:
us = (sample size-7) / 9

Combined audio utility function ua

ua = ur * us

The logarithm base of the sample rate factor is chosen to normalize the function in the interval
[0, 1]. The function implies that increase in sample rate is preferred over increase in sample
size up to certain point.

41

Figure 10: A utility function for audio

Scenarios
To investigate how the algorithm behaves under varying conditions, we will run 6 different
scenarios, adjusting the available components, available resources, and number of QoS
dimension the service consumer has requirements on. Table 6 shows the resource availability
for the various scenarios. For the scenarios with only one QoS dimension, only the
corresponding factor of the utility function is used.

Scenario Available
components QoS dimensions Utility

function CPU Bandwidth

1 Raw Sample size us 55% 50-150 kb/s
2 Raw Sample rate ur 55% 50-150 kb/s
3 Raw Sample rate and

sample size
ua 55% 50-150 kb/s

4 Raw and
compressor

Sample size us 55% 50-150 kb/s

5 Raw and
compressor

Sample rate ur 55% 50-150 kb/s

6 Raw and
compressor

Sample rate and
sample size

ua 55% 50-150 kb/s

Table 6: Experiment scenarios for audio codec experiment

The available bandwidth will be increased in steps of 10 kb/s. The variation in bandwidth
should cover the points where increase in sample size should be preferred to increase in
sample size in scenario 3 and 6.

5.4.2. Configure video stream
In this experiment, the Generic Implementation Planner should configure a raw video stream
that provides the highest utility, with 1, 2, or 3 QoS dimensions in the quality specification,
and limited network bandwidth. The QoS dimensions are frame size, frame rate, and color
depth.

42

Frame size
The frame size is the product of frame height and frame width. Assuming the aspect ratio of
4:3 in standard television broadcast (Tanenbaum 1996 p. 728), we can represent the frame
size with only one of these dimensions. The frame height in European television is 576 visible
lines (ibid.). In this experiment, we will use frame height as the QoS dimension.

Frame rate
The frame rate is simply the number of video frames displayed per second. At 50 frames per
second, the human eye is not able to recognize the frames as individual images (Tanenbaum
1996 p. 727), however a frame rate of 25 Hz is sufficient to view smooth movement
(Tanenbaum 1996 p. 728).

Color depth
The color depth is the number of different colors used in the video stream; the higher number
of different colors we want to reproduce, the higher number of bits must be used to represent
each pixel. Digitizing color is similar to sampling audio – if too few bits are used, we get a
visible quantization error. When using 8 bits for each of the additive primary colors, (red,
green, and blue, also referred to as RGB), we get a color depth of 224 ≈ 16.8 million different
colors, which is more than the human eye is capable of distinguish (Tanenbaum 1996 p. 729).
In this experiment, we will use the number of bits per pixel to represent the color depth.

QoS space
Table 3 shows the three QoS dimensions for the experiment, and the domain used to represent
values in these dimensions.

QoS dimension Domain Direction Suffix
Frame rate Integers Increasing Hz
Frame height Integers Increasing line
Color depth Integers Increasing bit

Table 7: QoS dimensions for video stream experiment

QoS aware component
For this experiment, we will only mock one imaginary QoS aware video stream component,
configurable in the following ranges:

• Frame rate [1,25] Hz, in steps of 1 Hz

• Frame height [30, 576] lines, in steps of 1 line

• Color depth: [8, 24] bits, in steps of 1 bit

Resource requirements
The network bandwidth requirement for streaming raw video, with no frame or network
packet overhead, is (in kb/s):

frame size * frame rate * color depth / 1000

Frame size can be expressed as:

frame height2 * 4/3

Utility function
The utility function for this experiment consists of too many dimensions to be visualized, but
it is similar to the utility function for the audio codec experiment, with the addition of an extra
logarithmic component. The related minimum and maximum QoS constraints are shown in
Table 8.

43

QoS dimension minQoS maxQoS
Frame height (lines) 30 576
Frame rate (Hz) 1 25
Color depth (bits) 8 24

Table 8: Minimum and maximum QoS constraints for video stream experiment

The utility function to compute the surface is defined as follows:

Frame height utility function uh

30 lines <= frame height <= 576 lines:
uh = (frame height - 29) / 546

Frame rate utility function ur

1 Hz <= frame rate <= 25 Hz:
ur = log25.1(frame rate + 0.1)

Color depth utility function uc

8 bits <= color depth <= 25 bits:
uc = log17.1(color depth – 6.9)

Frame height and rate video utility function uf

uf = uh * ur

Combined video utility function uv

uv = uh * ur * uc

As in the select audio codec experiment, the logarithm bases are chosen to normalize the
functions in the interval [0, 1].

Scenarios
To be able to perform timing operations, we need to design the various scenarios to be
possible to satisfy the minimum required QoS, but not the maximum required QoS.

Table 9 lists the scenarios we will use for this experiment. The available network bandwidth
will be varied in steps if 500 kb/s.

Scenario QoS dimensions Utility function Bandwidth
7 Frame height uh 500-4000 kb/s
8 Frame height and frame rate uf 500-4000 kb/s
9 Frame height, frame rate and

color depth
uv 500-4000 kb/s

Table 9: Experiment scenarios for video stream experiment

5.4.3. Goals
To be usable, the algorithm needs to be effective and precise. As suggested earlier, the
problem the algorithm is trying to solve is most likely NP-hard, but if the solution space is
small enough, it can be searched fast enough. The algorithm should find a solution with the
highest possible utility value with the available resources, or at least very close to this value.

Effectiveness
As a service may consist of a large set of components, the implementation planner will have
to run several times during service planning. It is hard to define a concrete goal for how fast
the algorithm must to be useful in practical appliance, but the algorithm implementation
probably has to finish within one or a few seconds per component type on a typical personal
computer.

44

It will be interesting to measure the effectiveness of the algorithm as the number of QoS
dimensions is increased in the experiments. 2-3 QoS dimensions may be insufficient for real-
world components, e.g., a multimedia stream component supporting both video and audio
constraints would be configurable in all the five QoS dimensions in the two experiments
described here, and the quality in each dimension would probably depend on the available
network bandwidth and CPU. The suggested NP-hard nature of the problem requires services
with few QoS dimensions to be planned very quick, should the algorithm be usable for
services with more QoS dimensions.

Precision
If we call the utility value provided by the configuration provided by the algorithm uselected,
and the highest possible utility with the available resources upossible, we can define the
precision of the algorithm as uselected / upossible. It is hard to find upossible, but we can try to reason
around uselected with the component configuration output from the implementation planner.

In the audio experiment, we can get an indication of the precision by looking at how the
algorithm selects configuration around the point where increasing sample size yields higher
utility than increasing sample rate. To find this point, we can compare the derivative of each
of the components f = utility(sample size) and g = utility(sample rate).

9
1)('

9
7)(

=

−
=

xf

xxf

)2.37ln()9.6(
1)('

)9.6(log)(2.37

−
=

−=

x
xg

xxg

39.9

9.6
)2.37ln(

9
)2.37ln()9.6(

1
9
1

≈

+=

−
=

x

x

x

This shows that for sample rates above 9.4 kb/s, increasing the sample size yields a relative
higher utility than increasing the sample rate.

How much of the available resources that are utilized is another indication of the precision of
the algorithm, assuming that the algorithm does select the component implementation and
configuration that utilizes the available resources in the best way. It may also be that the
selected component does not require all the available resources of some resource types.

5.5. Summary
This chapter has presented a hypothesis for a generic approach to QoS-aware service planning
in a component based software architecture. The QoS requirements for two domains, audio
encoding and video streaming, have been described. Experiments have been detailed, with a
set of scenarios for each domain. Finally the goals for the experiments – precision and
effectiveness – have been discussed.

45

6. Designing and implementing service planning
The implementation consists of a QuA Java capsule core, basic implementations of the core
services, and the QoS-aware Generic Implementation Planner, which implements the
algorithm described in section 5.3.5. This chapter discusses the design and implementation,
which is based on a previous prototype.

6.1. Porting issues
The Java capsule core is a port to Java from the prototype in Smalltalk, developed by Staehli
and based on the architecture described by Staehli and Eliassen (2002). The port was not
straightforward, as Smalltalk has stronger support for reflection than Java, e.g., inspecting the
method call stack to find the current service context. Also, the loose type system of Smalltalk
(method arguments are not typed), were intriguing the porting. Smalltalk does not support
interfaces the way Java does, but abstract classes were provided to define the interfaces for
some implementation classes.

The main additions in the Java version compared to the Smalltalk version, are that QuA types
are represented as Java interfaces, several of the core services are made into components, a
package format for QuA component implementations is defined, along with a format for
persistent repositories, and a repository implementation that reads this format.

The Smalltalk prototype also lacked models for representing QoS and resources, which are
required for our experiments. A simplified resource model, based on the QuA resource model
(Abrahamsen), and a simple QoS model, based on CQML (Aagedal 2001), have been created
for the QuA Java capsule.

6.2. Capsule core design model
The QuA capsule itself is made up of component frameworks, similar to Open ORB II.
Component frameworks in the capsule core are the service planner framework, broker
framework, repositories framework, and resource management framework. All the
frameworks can be configured using alternative implementations of the core services that
make up each component framework.

This section provides an overview of each of the capsule core packages shown in Figure 11.

qua::core

component

brokers

planners

qos

repositories

resources

spec

QuA

JavaCapsule

-capsule1

ServiceContext

-capsule1
-defaultContext1

QuAName
*
+parentContext

1

Figure 11: Static UML structure of the capsule core packages

6.2.1. Package qua.core
The most central core classes reside directly in the qua.core package. They are shown in
Figure 12.

46

JavaCapsuleQuA

1

-capsule

1

-+repositoryPath
-+shortName
-+version
-+fixlevel

QuANameServiceContext-capsule

1

-defaultContext

1

*
+parentContext

1

Figure 12: Static UML structure of the qua.core package

The QuA class is the entry point for clients of the QuA Java capsule. It provides methods for
configuring, initializing, and shutting down a capsule instance, request services to be planned,
and execute planned services in a QuA service context.

Capsule instances are represented by instances of the JavaCapsule class. These instances
hold the configuration of available repositories, service planners and resource managers.
JavaCapsule is also capable of instantiating local components, which is leveraged when
providing QuA components as capsule services.
An instance of the ServiceContext class is intended to represent the context of the current
service. Contexts are arranged in a hierarchy. In this implementation, only a default, local
context is provided, but it could be extended to be distributed between several QuA capsules.

Instances of QuAName represents known objects in the QuA space, as repositories,
component types, component implementations, and component and resource instances. The
syntax for QuA names are defined as follows:

QuAName ::= repositoryPath [“/” shortName [“:” version “.” fixlevel]]

QuA naming conventions
The capsule itself is not named, but each Java capsule has a volatile repository which is
named. The volatile repository name can be used to identify the capsule.

The /qua/types repository path is reserved for types. The type names are mapped to Java
interface names by converting the path name part of the name to a Java package name. Since
Java does not support versioning of classes and interfaces, the version information is lost for
types. An example of this mapping is the QoSAware type, which has to be implemented by all
QoS-aware components:

/qua/types/QoSAware:1.0 → qua.types.QoSAware

An interface repository has not been implemented, implying that all interfaces that represents
QuA types must be available in the class path for the Java capsule at runtime. However, the
persistent repository could be extended to also operate as an interface repository.

6.2.2. Package qua.core.repositories
The design model for repositories is shown in Figure 13. Both persistent and volatile
repositories are named.

Repository

VolatileRepository PersistentRepository

«interface»
RepositoryDiscoveryService

core::QuAName
-repositoryName

11

Figure 13: Static UML structure of the qua.core.repositories package

Each capsule instance contains one VolatileRepository instance, where it stores all the QuA
objects that it knows, such as references to other repositories, component implementations
cache, component instances, and arbitrary QuA objects.

47

An instance of PersistentRepository mounts a zip file that contains a set of packaged QuA
component implementations. Each capsule instance mounts zero or more persistent
repositories. The current implementation only supports reading the file, requiring external
tools to generate persistent repository files, but the implementation can be extended to write
to the zip file when component implementations are published to persistent repositories.
Copying zip files between capsule nodes is a possible way of distributing packaged
components.

The RepositoryDiscoveryService is a core service that is used by the capsule to discover
repositories. An implementation of this service may discover remote repositories in other
capsule instances.

Initial repositories and the discovery service implementation are configured when
instantiating a Java capsule.

6.2.3. Package qua.core.component
A packaged QuA component implementation consist of meta-information and a platform-
specific component implementation. For the Java capsule, the platform-specific
implementation is a Java archive (JAR) file, with the required attribute “QuAComponent” in
the manifest file. The attribute is used to specify the façade class of the component. The
façade class must have a public, default constructor, which is used to instantiate the
component.

The classes shown in Figure 14 are used to represent component implementation meta
information, and load and instantiate packaged component implementations.

+shortName : string
+version : integer
+fixlevel : integer
+capsuleType : string
-blueprint : byte[]

QuAComponent

QuAComponentClassLoader

QuAComponentInputStreamQuAComponentOutputStream

-classLoader1
1

core::QuAName
+implementedTypes

1..*

0..*

+requiredTypes

0..*

0..*

io::InputStreamio::OutputStream

lang::ClassLoader

Figure 14: Static UML structure of the qua.core.component package

Dynamic component loading
Instances of the QuAComponent meta class is created by PersistentRepository by using a
QuAComponentInputStream to read a packaged QuA component from the repository file.
QuAComponentOutputStream can be used to serialize a QuAComponent instance to a
remote capsule or another persistent repository. QuAComponent is a meta-class, and
instances of QuAComponent instances can represent QuA component implementations for
any QuA capsule type.

To avoid namespace clashes for the Java implementation of QuA components, i.e. two
different components uses the same class name for different classes, each component is
loaded through a separate instance of QuAComponentClassloader. The class loader reads

48

the JAR file that is represented as the blueprint byte array, and calls the default constructor of
the façade class specified in the manifest file.

If two component implementations uses a Java library that is not available as a QuA
component, both of the components must include the library in their package, and it will be
loaded twice into memory, once by each class loader. Whenever possible, such libraries
should be made into separate components to avoid redundant class loading.

6.2.4. Package qua.core.spec
Clients requesting a service need to programmatically create a specification of the service.
The specification may also contain a specification of the desired quality of the service, but the
capsule does not guarantee any QoS, as this requires a QoS-aware service planner to be
configured in the service context that will plan and execute the service.

ServiceSpecBindingSpec
+utility(in : QoSStatement) : double

QualitySpec

qos::QoSStatement

core::QuAName
-QuAObjects

0..*

-bindings0..*

-types0..*

-qualitySpec

0..1

-minQoS

1 -maxQoS

1

ComponentSpec

-typeName1

-capsuleName 0..1
Figure 15: Static UML structure of the qua.core.spec package

The QuA capsule client must provide an instance of a ServiceSpec, which is the main class of
the service specification. It consists of the composition of the desired service; required current
QuA objects, required component types, and the required bindings between the components
and objects. The latter is provided using instances of the BindingSpec class. Note that the list
of QuA objects may contain both component instances as well as other arbitrary objects that
have been promoted to QuA objects.

Instances of ComponentSpec may hold an additional constraint on a new component
instances; the volatile repository (i.e., capsule instance) that the component must be
instantiated by.

Clients that require a QoS-aware service must provide an implementation of the abstract
QualitySpec class, including a utility method for the utility function to be used when
planning the service. QualitySpec instances hold two QoS statements: minQoS, which is the
lowest quality that will satisfy the client, and maxQoS, the service level that there is no point
to exceed.

The following predicates must hold for a QualitySpec:

1. utility(maxQoS) = 1

2. ∀qos : qos ∈ [minQoS, maxQoS) ⋀ 0 < utility(qos) < 1

3. ∀a, b : a, b ∈ [minQoS, maxQoS] ⋀ a < b ⋀ utility(a) ≤ utility(b)

The second and third predicate ensure that the function is non-decreasing in the interval it is
defined. Note that it is not necessary to define the function outside the interval [minQoS,
maxQoS]. The service planner uses the QoS constraints defined in minQoS and maxQoS to
avoid stepping out of the interval.

49

6.2.5. Package qua.core.planners
As shown in Figure 16, this package only contains the interfaces for the three components that
make up a service planner. The service planner implementations to use in the default service
context, are configured when instantiating a Java capsule.

+bind()
+resolve()

«interface»
BindingPlanner

+compose()

«interface»
CompositionPlanner

+implementationFor()
+instantiate()
+getImplementationBroker()
+setImplementationBroker()

«interface»
ImplementationPlanner

core::ServiceContext
0..*

+bindingPlanner

0..1

0..*

+implementationPlanner

0..1

0..*

+compositionPlanner

0..1

Figure 16: Static UML structure of the qua.core.planners package

CompositionPlanner implementations have the overall responsibility for instantiating the
entire service object graph and bind it together.

Implementations of ImplementationPlanner use an ImplementationBroker to locate a
component implementation that implements a given component type, and on request
instantiate a given component. It is the ImplementationPlanner that must select between
components if several components implement the same type.

A BindingPlanner implementation is responsible for resolving registered QuA objects to be
used in a service, and creating bindings to both local and remote QuA objects.

6.2.6. Package qua.core.brokers

+associateImplementation()
+findImplementations()

«interface»
ImplementationBroker

Figure 17: Static UML structure of the qua.core.brokers package

The only specified broker in this capsule implementation is the ImplementationBroker,
which is responsible for searching repositories for component implementations, and
registering discovered component implementations. An ImplementationBroker
implementation is configured when instantiating a Java capsule.

6.2.7. Package qua.core.qos
The QoS model is simplified to not represent hierarchical and enumerated QoS dimensions,
though enumeration could be represented as a limited range of natural numbers. Combining
the QoS dimensions is left to the discretion of the utility functions, so this model is sufficient
for the Generic Implementation Planner.

50

+name : string
QoSModel

+name : string
+domain : Domain

QoSDimension

QoSStatement
+value
QoSConstraint

1 1..*

*

1

*

1

1 1..*

Value must be in the
domain of the QoS
dimension

Figure 18: Static UML structure of the qua.core.qos package

QoSDimension is the basic building block in the QoS model.

An instance of QoSModel contains a set of QoSDimensions that is associated with a service
domain. Examples of QoS models are:

• TimingQoSModel, consisting of delay and jitter.

• AudioQoSModel, consisting of sample rate and sample size.

• VideoQoSModel, consisting of frame rate, frame size, and color depth.

QoSConstraint sets a constraint on a single QoS dimension. The constraint must be a value
in the domain specified by the dimension.

QoSStatement consists of a set of QoS constraints on the QoS dimensions of the related QoS
model. A QoS statement may have different semantics depending on the context. Some
example of QoS statements are minimum QoS, maximum QoS, and current QoS. If a
constraint for a dimension is not included in a QoS statement, it means that the quality of that
dimension does not matter, even though the dimension is included in the QoS model of the
statement.

6.2.8. Package qua.core.resources
For this implementation, we assume a resource manager that allows reserving the resources
that it manages. We also assume that both local and distributed resources are managed
through a single resource manager.

The implementation includes a simplified version of the QuA resource model (Abrahamsen).
It does not support hierarchical resource types, and the differences between spatial, temporal
and exclusive resources are left to the discretion of the Resource Manager. The
implementation includes a plug-in mechanism for resource managers.

The resource design model is symmetric to the QoS resource model.

+isAvailable()
+reserve()

«interface»
ResourceManager

+name : string
ResourceModel

ResourceStatement

+name : string
+domain : Domain

ResourceType

+value
ResourceConstraint

Value must be in
the domain of the
resource type

1..*

1

1..*

1

Figure 19: Static UML structure of the qua.core.resources package

ResourceType is the basic building block in the model. Resource types in QuA are typically
in the application abstraction layer. Examples of resource types are:

• Memory buffers

• Threads

• Bandwidth

51

ResourceModel represents the resources that can be managed by the current QuA space. A
resource model consists of a set of resource types. Examples of resource models are:

• PCResourceModel, consisting of CPU, memory, and peripherals such as
microphone, loudspeakers, and display.

• LANResourceModel, consisting of network bandwidth.

ResourceConstraint sets a limitation on a single resource.

ResourceStatement is a collection of resource constraints. The semantics of resource
statements differ depending on the context. A statement can mean the current reserved or used
capacity of the resources, the current free capacity of the resources, the total capacity or the
required capacity of a resource. Components specify their resource requirements with
resource statements.

A ResourceManager implementation is typically capable of managing resources defined in a
specific resource model. The resource model for a component implementation may differ
from the resource model currently managed. If a component requires a resource type that is
not known by the resource manager, the service planner should reject this component, as the
resource reservation will fail. The resource manager implementation to use can be configured
when the Java capsule is instantiated

6.3. Capsule service components
To provide a working QuA Java capsule, we need at least some basic implementations of the
core services for service planning, implementation broker, and the repository discovery
service.

6.3.1. BasicServicePlanner

BasicServicePlanner

«interface»
planners::BindingPlanner

«interface»
planners::CompositionPlanner

«interface»
planners::ImplementationPlanner

«interface»
brokers::ImplementationBroker

-implementationBroker 1
0..*

Figure 20: The BasicServicePlanner component

This is a basic implementation of a complete, non-QoS-aware service planner. As shown in
Figure 20, the BasicServicePlanner implements all the three service planner interfaces, but
each part is designed to work in a context where the other service planners are provided by
other implementations.

6.3.2. BasicImplementationBroker

BasicImplementationBroker

+associateImplementation()
+findImplementations()

«interface»
brokers::ImplementationBroker

Figure 21: The BasicImplementationBroker component

52

The BasicImplementationBroker is used by the BasicServicePlanner to find component
implementations of given QuA types. It uses the repository discovery service to find local
repositories, and search these repositories. Remote repositories are not supported by the
BasicImplementationBroker.

6.3.3. BasicRepositoryDiscoveryService

BasicRepositoryDiscoveryService

«interface»
repositories::RepositoryDiscoveryService

Figure 22: The BasicRepositoryDiscoveryService component

The BasicRepositoryDiscoveryService is a simple implementation of a repository discovery
service. It simply “discovers” local and remote repositories by the client telling the
component about them.

6.4. Instantiating the QuA Java capsule
The QuA Java capsule is configured to a set of properties. If the basic core component
implementations above are stored in a persistent repository file “basic.rep”, the following
properties can be used to instantiate a capsule named “/capsule1”, which mounts the persistent
repository as “/basic” and loads core components from this repository:
qua.VolatileRepository.name=/capsule1
qua.PersistentRepository_1.name=/basic
qua.PersistentRepository_1.file=basic.rep
qua.planner.CompositionPlanner.component=/basic/BasicServicePlanner:1.0
qua.planner.ImplementationPlanner.component =/basic/BasicServicePlanner:1.0
qua.planner.BindingPlanner.component=/basic/BasicServicePlanner:1.0
qua.broker.ImplementationBroker.component=/basic/BasicImplementationBroker:1.0
qua.repository.DiscoveryService.component=/basic/BasicRepositoryDiscoveryService:1.0

The properties can be provided as a file or programmatically when instantiating a capsule
through the QuA class. It is also possible to replace core components dynamically at runtime.

Figure 23 shows the overview of the QuA Java capsule, including the basic core components.

QuA

QuAName

JavaCapsule

ServiceContext

Repository

PersistentRepositoryVolatileRepository1
-volatileRepository

1

1

-persistentRepository

*

-repositoryName1
1

-capsule

1

«interface»
ImplementationPlanner

«interface»
CompositionPlanner «interface»

BindingPlanner

BasicServicePlanner

+compositionPlanner0..1
+bindingPlanner0..1

+implementationPlanner1

-capsule1
-defaultContext1

BasicImplementationBroker

«interface»
ImplementationBroker

«interface»
RepositoryDiscoveryService

1

+repositoryDiscoveryService*

BasicRepositoryDiscoveryService

-resourceManager

0..1

-implementationBroker1

0..*

«interface»
ResourceManager

Figure 23: Static UML structure of the QuA Java capsule

53

6.5. Adding QoS awareness to the QuA Java capsule
So far the QuA Java capsule is not really QoS-aware. It defines models for QoS specification
and resource management, but it does not use these models to create QoS-aware services. To
be able to create QoS-aware services, we need three more pieces to the capsule
implementation:

• A way of marking components as QoS-aware and calculate their required resources.

• A QoS-aware service planner that implements the generic implementation selection
and configuration algorithm.

• A resource manager for checking available resources, and resource reservations.

6.5.1. A QuA type for QoS-aware components
One way of marking components as QoS-aware, is to require these components to implement
a specific QuA component type. We define the type /qua/types/QoSAware for this purpose,
which maps to the Java interface QoSAware.

The service planner needs to figure out required resources for various QoS configurations of
the QoS-aware components. To calculate the required resources, we simply extend the
QoSAware type with a method to calculate required resources based on a QoSStatement, thus
forcing all QoS-aware components to implement this method. The method can return a list of
one or more resource statements, in case more than one resource configuration can be used to
provide the same level of QoS. This is similar to the programming model of QRR (Frølund
and Koistinen 1990).

A drawback to this solution is that the implementation planner must instantiate all the
components it is considering to use, and since the required resources must be calculated for
every iteration of the algorithm, it should instantiate the components in the local capsule,
which limits it to consider component implementations for the capsule type is it running on,
i.e. only QuA components for the QuA Java Capsule in our case.

Alternatives to this approach could be to describe the resource requirements in a QuA capsule
platform neutral language, or provide helper components for required resource calculations
implemented on several QuA capsule platforms. The meta information for a QoS-aware
component would then have to include either of these.

Finally, the service planner need a method to configure the QoS-aware with the selected
QoSStatement and ResourceStatement. The ResourceStatement must of course be one of the
statements returned by the call to requiredResources.

The complete specification for QoSAware is shown in Figure 24.

+requiredResources(in QoS : QoSStatement) : List
+configure(in : QoSStatement, in : ResourceStatement)

«interface»QoSAware

Figure 24: The interface for /qua/types/QoSAware

6.5.2. The GenericImplementationPlanner
The heart of our QoS-aware service planner is the implementation planner that will select and
configure the best suited QoS-aware component implementation for the provided QualitySpec
and available resources. The GenericImplementationPlanner implements the algorithm
outlined in section 5.3.5 with a recursive depth-first search through the space defined by the
minQoS and maxQoS properties of the QualitySpec. Figure 25 shows the
GenericImplementationPlanner and the interfaces it uses for selecting and instantiating an
implementation

54

+implementationFor()
+instantiate()
+getImplementationBroker()
+setImplementationBroker()
-checkStatement()

GenericImplementationPlanner

+implementationFor()
+instantiate()
+getImplementationBroker()
+setImplementationBroker()

«interface»
planners::ImplementationPlanner

+requiredResources()
+configure()

«interface»
types::QoSAware

+reserve()
+isAvailable()

«interface»
resources::ResourceManager

+associateImplementation()
+findImplementations()

«interface»
brokers::ImplementationBroker

-implementationBroker 1
0..*

Figure 25: Static UML structure of the QoS-aware implementation planner

When asked to instantiate a given type, the GenericImplementationPlanner first asks the
configured ImplementationBroker of available implementations, using the
findImplementations method. When it has retrieves these component implementations, it
creates one instance of each, and then starts the search for which implementation and
configuration to use.

The recursive method that is used to search the QoS space is checkStatement. It checks the
output from the requiredResources method in QoSAware with isAvailable in the configured
ResourceManager. If a QoSStatement requires more resources than currently available, it
stops further searching the QoS dimension that is currently being searched.

The GenericImplementionPlanner also reserves the required resources when instantiating the
selected component, and finally it calls configure on the selected component instance.

If services are planned in parallel, there is a race condition for reserving resources that has
recently been verified to be available between the service planner instances.

The implementationFor and instantiate methods of GeneralImplementationPlanner are
synchronized to ensure that each planner instance only plan one implementation at a time.

6.5.3. A dummy resource manager
The resource manager is mocked with a dummy resource manager that can be manipulated
through the setAvailable method for the experiments, as shown in Figure 26.

+reserve()
+isAvailable()
+setAvailable()

DummyResourceManager

+reserve()
+isAvailable()

«interface»
resources::ResourceManager

Figure 26: Static UML structure of the dummy resource manager

55

6.5.4. QoS-aware components
When implementing QoS-aware components, the developer is has to understand the QoS
model defined for the type of her component, and figure out how to calculate the resource
requirements for her implementation. If it is not possible to deduce the resource requirements
directly from the implementation, she may have to use heuristics from experimenting with the
component for the calculation.

The component must also be made configurable when instantiated, and preferable re-
configurable during execution, to be able to support dynamic QoS management.

For our experiments, we only need dummy components, but their resource requirement
calculations still have to reflect reality. The components we will use are shown in Figure 27.

CompressorRaw RawVideo

«interface»
types::QoSAware

«interface»
types::AudioCodec

«interface»
types::VideoStream

Figure 27: Static UML structure of the dummy QoS-aware components

6.6. Summary
This chapter has discussed a Java implementation of a QuA capsule prototype in Smalltalk.
The capsule has been extended to provide core services as QuA components with basic
implementations of the services. The service planner has then been extended with a QoS-
aware implementation planner, and a QuA type for QoS-aware components has been
introduced. The Java implementation will be used to run the experiments described in chapter
5.

56

7. Experiment results
This chapter contains the results from running the experiments described in chapter 5, using
the QuA Java capsule from chapter 6.

7.1. Experiment environment
The environment was an Intel Pentium 4 3.2 GHz CPU with hyperthreading and 1 GB of
RAM, running Windows XP. The CPU and operating system should reflect a typical “home
PC”. Regarding the memory size, executing the audio codec experiment only consumed 11-12
MB, and the video stream experiment consumed 18.6 MB of RAM, so the experiments should
be reproducible on a computer with significantly less memory installed.

The QuA capsule ran on top of Sun’s Java Development Kit 1.6.0 with no tuning parameters
set.

7.2. Select audio codec
This section contains the results from running the scenarios and an analysis of the produced
values.

Before running the actual scenarios, the service was planned once so the QuA capsule had
discovered and loaded the component implementations. The initial planning also ensured that
the JVM had loaded all classes into memory. If this had not been done, the first service to be
planned had suffered a penalty when discovering and loading component implementations,
which are cached for later service planning in the same capsule instance.

The scenarios described in section 5.4.1 are repeated in Table 10.

Scenario Available components QoS dimensions CPU Bandwidth
1 Raw Sample size 55% 50-150 kb/s
2 Raw Sample rate 55% 50-150 kb/s
3 Raw Sample rate and sample size 55% 50-150 kb/s
4 Raw and compressor Sample size 55% 50-150 kb/s
5 Raw and compressor Sample rate 55% 50-150 kb/s
6 Raw and compressor Sample rate and sample size 55% 50-150 kb/s

Table 10: Experiment scenarios for audio codec experiment revisited

The compressor component implementation was selected by the planner for all
configurations in scenario 4, 5 and 6. This is caused by the available CPU, which the
component could utilize to reduce the required bandwidth.

The x-axis shows the variations in available bandwidth in all the following charts. Figure 28
through Figure 33 shows the QoS configurations selected by the generic implementation
planner for the different scenarios.

57

8

9

10

11

12

13

14

15

16

50 60 70 80 90 100 110 120 130 140 150

Available bandwidth (kb/s)

bi
ts

8,0

10,0

12,0

14,0

16,0

18,0

20,0

kH
z

Sample size

Sample rate

Figure 28: Selected configurations for

scenario 1

8

9

10

11

12

13

14

15

16

50 60 70 80 90 100 110 120 130 140 150

Available bandwidth (kb/s)

bi
ts

8,0

10,0

12,0

14,0

16,0

18,0

20,0

kH
z

Sample size

Sample rate

Figure 29: Selected configurations for

scenario 4

The main difference between scenario 1 and 4 is that the compressor component makes it
possible to serve the audio stream already at 60 kb/s available network bandwidth. In
addition, we get a slightly higher sample rate in scenario 4 due to compression. The sample
size stays at 8 bits, the minimum supported size.

8

9

10

11

12

13

14

15

16

50 60 70 80 90 100 110 120 130 140 150

Available bandwidth (kb/s)

bi
ts

8,0

9,0

10,0

11,0

12,0

13,0

14,0

15,0

16,0

kH
z

Sample size

Sample rate

Figure 30: Selected configurations for

scenario 2

8

9

10

11

12

13

14

15

16

50 60 70 80 90 100 110 120 130 140 150

Available bandwidth (kb/s)

bi
ts

8,0

9,0

10,0

11,0

12,0

13,0

14,0

15,0

16,0

kH
z

Sample size

Sample rate

Figure 31: Selected configurations for

scenario 5

We see the same pattern when comparing the selected configurations for scenario 2 and 5;
due to compression, scenario 5 supports a higher increase in sample rate than scenario 2.
When the maximum requested sample rate is achieved, it is no longer increased.

8

9

10

11

12

13

14

15

16

50 60 70 80 90 100 110 120 130 140 150

Available bandwidth (kb/s)

bi
ts

8,0

8,5

9,0

9,5

10,0

10,5

11,0

kH
z

Sample size

Sample rate

Figure 32: Selected configurations for

scenario 3

8

9

10

11

12

13

14

15

16

50 60 70 80 90 100 110 120 130 140 150

Available bandwidth (kb/s)

bi
ts

8,0

8,5

9,0

9,5

10,0

10,5

11,0

kH
z

Sample size

Sample rate

Figure 33: Selected configurations for

scenario 6

58

In scenario 3 and 6, we see that the sample rate increases to between 9.7 and 10 kHz, before
the sample size starts to increase. This corresponds with our calculation in section 5.4.3 that
showed that the utility function would prefer increasing the sample rate to 9.4 kHz before
increasing the sample size. The sample rate is only increased when there is available
bandwidth that is not usable by an increase in the sample size, e.g., increasing the sample size
to 10 bits at 90 kb/s available bandwidth in scenario 3, would force a sample rate of 9.0 kHz,
which is above the 9,4 kHz threshold calculated in section 5.4.3.

There are some interesting observations at 130 kb/s available bandwidth in scenario 3. There
is actually enough bandwidth to provide a sample size of 13 bits and 10 kHz sampling rate,
but at this point, increasing the sample rate from 0.8 kHz to 10.8 kHz and keeping the sample
size at 12 bits yields a slightly higher utility value, 0.20908 versus 0.20857. Also interesting,
this configuration consumes slightly less bandwidth than the less optimal configuration, 129.6
kb/s versus 130 kb/s. The higher utility is due to that the sample rate can be increased
relatively more than the sample size at this point. At the next step, some of the increase in
sample rate is traded for an increase in the sample size at 140 kb/s available bandwidth.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

50 60 70 80 90 100 110 120 130 140 150

Available bandwidth (kb/s)

U
til

ity

Scenario 1

Scenario 2

Scenario 3

Figure 34: Utility values for scenarios 1-3

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

50 60 70 80 90 100 110 120 130 140 150

Available bandwidth (kb/s)

U
til

ity

Scenario 4

Scenario 5

Scenario 6

Figure 35: Utility values for scenarios 4-6

Figure 34 and Figure 35 shows the utility values for all the scenarios. As expected, the utility
values for scenarios 2 and 5 follow the selected sample sizes, as the utility function is linear.
Similarly, the utility values for scenarios 1 and 4 grow logarithmically with the linear increase
in sample rate, which should not be a surprise either.

It is harder to analyze the utility values for scenarios 3 and 6. We should see a close to linear
increase in the utility until the sample size reaches the maximum value, and then a logarithmic
increase as the sample rate increases with the increasing available bandwidth. By extending
scenario 3 to be able to reach a utility of 1, it may be simpler to verify the configured utility
values with the expected. This requires scenario 3 to be increased to:

16 bits/sample * 44.1 k samples/s = 705.6 kb/s ≈ 710 kb/s

The selected configurations of this extended scenario are shown in Figure 36, and the utility
values in Figure 37. Here we see clearly that the utility increases quite quickly to 0.40 at 180
kb/s available network bandwidth, when the sample size has reached its maximum value, and
the utility then grows logarithmically as the sample rate grows linearly.

59

0

2

4

6

8

10

12

14

16

18

70 13
0

19
0

25
0

31
0

37
0

43
0

49
0

55
0

61
0

67
0

Avalable bandwidth (kb/s)

bi
ts

0

5

10

15

20

25

30

35

40

45

50

kH
z

Sample size

Sample rate

Figure 36: Configurations for extended

scenario 1

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

70 12
0

17
0

22
0

27
0

32
0

37
0

42
0

47
0

52
0

57
0

62
0

67
0

Avalable bandwidth (kb/s)

U
til

ity

Figure 37: Utility values for extended

scenario 1

Figure 38 through Figure 41 shows how much of the available resources that were utilized by
the service configurations. In scenario 2, we see that utilization between 80 and 120 kb/s
suffers from each increase in available bandwidth is 25% more than is needed to increase the
sample size with 1 bit, thus it is not possible to use all the available bandwidth at all steps in
this scenario. When we compare the sample sizes for scenario 2 in Figure 30 with scenario 5
in Figure 31, we see that in scenario 5, sample sizes are 1 bit larger than in scenario 2 for the
same interval. The extra available bandwidth has been utilized by using the available CPU to
compress the larger samples.

We see that in both scenario 2 and 5, the resource utilization drop when the utility reach 1. In
all the other scenarios, the utilization of available network bandwidth is close to 100%.

75 %

80 %

85 %

90 %

95 %

100 %

50 60 70 80 90 100 110 120 130 140 150

Available bandwidth (kb/s)

A
va

ila
bl

e
ba

nd
w

id
th

 u
til

iz
at

io
n

Scenario 1

Scenario 2

Scenario 3

Figure 38: Utilization of available

bandwidth for scenarios 1-3

75 %

80 %

85 %

90 %

95 %

100 %

50 60 70 80 90 100 110 120 130 140 150

Available bandwidth (kb/s)

A
va

ila
bl

e
ba

nd
w

id
th

 u
til

iz
at

io
n

Scenario 4

Scenario 5

Scenario 6

Figure 39: Utilization of available

bandwidth for scenarios 4-6

0 %

1 %

2 %

3 %

4 %

5 %

6 %

7 %

8 %

9 %

10 %

50 60 70 80 90 100 110 120 130 140 150

Available bandwidth (kb/s)

A
va

ila
bl

e
C

PU
 u

til
iz

at
io

n

Scenario 1

Scenario 2

Scenario 3

Figure 40: Utilization of available CPU for

scenarios 1-3

0 %

20 %

40 %

60 %

80 %

100 %

120 %

50 60 70 80 90 100 110 120 130 140 150

Available bandwidth (kb/s)

A
va

ila
bl

e
C

PU
 u

til
iz

at
io

n

Scenario 4

Scenario 5

Scenario 6

Figure 41: Utilization of available CPU for

scenarios 4-6

60

Scenarios 1 through 3 only require a small portion of the available CPU. The utilization of
available CPU in scenarios 4 through 6 follows the compression levels, which are shown in
Figure 42. It looks like utilizing network bandwidth has been preferred to CPU when there
have been two or more possible configurations to provide the same utility, but there is nothing
in the algorithm that may have caused this behavior. The algorithm treats all possible
configurations with the same utility equal, so this must be a side-effect of the current
implementation.

0

2

4

6

8

10

12

50 60 70 80 90 100 110 120 130 140 150

Available bandwidth (kb/s)

C
om

pr
es

si
on

 (%
)

Scenario 4

Scenario 5

Scenario 6

Figure 42: Selected compression for scenarios 4-6

This is where we could plug in a Resource Planner using a resource utility function to select
between configurations that are equal in service utility, but with different resource
requirements. The resource utility function could be used to weigh the cost of the different
resources, i.e., which resource statement to select after a QoS configuration been selected.
Table 11 shows the resource configurations to select between for in one of the steps in
scenario 5.

Compression (%) CPU (%) Bandwidth (kb/s)
3 16 69.8
4 21 69.1
5 26 68.4
6 31 67.7
7 36 67.0
8 40 66.2
9 45 65.5

10 50 64.8
11 55 64.1

Table 11: Compression and resource usage alternatives for
scenario 5 at 70 kb/s available bandwidth

Finally, we will look at how long time it took to plan the different services, shown in Figure
43 and Figure 44. The planning times were averaged over 100 runs of each service request.
The simpler scenarios and even scenario 3 take negligible time to plan. We see a linear
increase in planning time for scenario 4, but even this scenario is planned in less than 40
milliseconds.

The linear increase in scenario 4 from scenario 1 is due to the time it takes to calculate the
various resource requirements for the compression levels supported by the compressor
component.

61

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

50 60 70 80 90 100 110 120 130 140 150

Available bandwidth (kb/s)

Ti
m

e
to

 p
la

n
(m

s)
Scenario 1

Scenario 2

Scenario 3

Figure 43: Time to plan service for

scenarios 1-3

0

20

40

60

80

100

120

140

160

180

50 60 70 80 90 100 110 120 130 140 150

Available bandw idth (kb/s)

Ti
m

e
to

 p
la

n
(m

s)

Scenario 4

Scenario 5

Scenario 6

Figure 44: Time to plan service for

scenarios 4-6

7.3. Configure video stream
The scenarios for the video stream experiment are repeated in Table 12. We will concentrate
on looking at algorithm efficiency for this experiment.

Scenario QoS dimensions Utility function Bandwidth
7 Frame height uh 500-4000 kb/s
8 Frame height and frame rate uf 500-4000 kb/s
9 Frame height, frame rate and

color depth
uv 500-4000 kb/s

Table 12: Experiment scenarios for video stream experiment revisited

The utility values are plotted in Figure 45. As we see, only scenario 7 reached a utility of 1.0
at 4000 kb/s available bandwidth.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

500 1000 1500 2000 2500 3000 3500 4000

Available bandwidth (kb/s)

U
til

ity

Scenario 7

Scenario 8

Scenario 9

Figure 45: Utility values for scenarios 7-9

Figure 46 shows that the time spent planning with 1 and 2 QoS dimensions are comparable to
the results for the audio codec experiment. The planning time is negligible for 1 QoS
dimension, and within 200 ms for 2 QoS dimensions. However, at 3 QoS dimensions we see a
significant increase in planning time, reaching a maximum of above 1600 ms at 4000 kb/s
available network bandwidth.

If we draw the planning time graphs with number of QoS dimensions on the x-axis, as shown
in Figure 47, we see a clear hint of an exponential increase in planning time, as the number of
QoS dimensions increases. This strengthens the assumption that this problem is NP-hard.

62

0

200

400

600

800

1000

1200

1400

1600

1800

500 1000 1500 2000 2500 3000 3500 4000

Available bandwidth (kb/s)

Ti
m

e
to

 p
la

n
(m

s)

Scenario 7

Scenario 8

Scenario 9

Figure 46: Time to plan for scenarios 7-9, by

available bandwidth

500 kb/s

1000 kb/s

1500 kb/s

2000 kb/s
 2500 kb/s
3000 kb/s
3500 kb/s
4000 kb/s

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3

QoS dimensions

Ti
m

e
to

 p
la

n
(m

s)

Figure 47: Time to plan for scenarios 7-9, by

number of QoS dimensions

7.4. Summary
This chapter has described the results of executing the experiments. Only one of the scenarios
needed to be extended to provide better input for analysis. The experiments have been run
successfully, and the results will be evaluated in the next and final chapter.

63

8. Evaluation and conclusion
This chapter evaluates the test of the hypothesis presented chapter 5, and attempts to conclude
on how well the problem stated in chapter 4 has been solved. The problem statement and
hypothesis are repeated below.

Problem statement:

How can a component middleware efficiently choose a component implementation based
on component type, QoS requirements and available resources?

Hypothesis:

It is possible to make a generic solution to selecting and configuring a component
implementation when the QoS model and resource model are generic, with as high level of
QoS as possible, given limited resource availability.

8.1. Experiment evaluation

8.1.1. Model evaluation
The QuA Java capsule prototype has demonstrated through the successful execution of the
experiments that it is indeed possible to use generic approaches to specifying QoS and
resource availability in a component based software architecture. The prototype also has
showed that these approaches can be combined with a generic solution for selecting and
configuring component implementations. This confirms the validity of the hypothesis for a
limited number of QoS dimensions.

8.1.2. Precision evaluation
The experiments show that the precision of the algorithm is only bound by the step size in the
QoS dimensions. As long as the utility is less than 1, at least one of the limited resources is
almost completely exhausted.

8.1.3. Effectiveness evaluation
At 3 QoS dimensions, we see that finding the optimal component configuration takes up to
1.5 seconds, and increases with the search space (bandwidth). Spending 1.5 seconds per
component is in within the stated goal.

More disturbing, is the exponential increase in planning time with increasing number of QoS
dimensions, and Figure 47 shows that the increase is steep even for exponential functions.

The search space, and thus the search time, could be reduced by increasing the step size for
some QoS dimensions, trading decreased precision for increase in effectiveness.

In other words, even though the stated goal has been achieved, we can not conclude on the
general effectiveness of the algorithm.

8.2. Generic Implementation Planner feasibility
It seems that a generic approach to selecting a component implementation is feasible within
the boundaries of the experiments in this thesis, i.e., 3 QoS dimensions. However, if the
number of QoS dimensions is increased to 4, it is uncertain if the algorithm is effective
enough, and at 5 QoS dimensions it may be useless. The algorithm needs to be tested with
experiments with 4 and 5 QoS dimensions to conclude on this observation though.

If the QoS dimensions that depend on the same set of resources are grouped together, the
algorithm could be used to maximize the utility for each of these sets, and then combine the
results. This would reduce the complexity of the NP-hard part of the problem, but requires
knowledge of component implementations to create these groups.

64

A divide-and-conquer approach like this could probably be done in a specific implementation
planner, which could be programmed with knowledge of how QoS dimensions are realized in
a specific QoS domain. The QuA service planner could select a specific implementation
planner based on the QoS model associated with the requested QuA component type.

The generic implementation planner was introduced as an alternative to implementing a
specific service planner for each QoS domain that a QuA capsule should support.
Implementing a QoS domain specific service planner has a cost, in terms of development
time. The generic approach could be used when a specific planner is not (yet) available. It
may also be useful to experiment with when developing a specific planner, to gather
heuristics of possible component configurations, and for comparing the effectiveness of a
specific planner in benchmarking.

8.3. Open questions
There are some loose ends to the solution proposed in this thesis. First of all, is that the
effectiveness of the algorithm with more than 3 QoS dimensions is unknown.

Another open question is how can the service utility and resource requirements be calculated
in a heterogeneous, distributed QuA space, i.e., a QuA space consisting of capsules and
components implemented on different platforms.

Finally, how can subjective QoS preferences be transformed to a utility function based on
objective measurements? Using utility functions for specifying and measuring QoS depends
on this transformation.

8.4. Conclusion
This thesis has proposed a solution to the described problem, through presenting and
evaluating a hypothesis. The solution is viable, at least as long as the space of the QoS
domain it is applied to is not too big.

In other words, a generic approach to planning QoS-aware services in a component based
software architecture is possible on the level of selecting and configuring component
implementations. The implemented algorithm may also be reused within specific service
planners.

65

Appendix A – Overview of ISO 9126 – External and
Internal Quality Metrics
The following in an excerpt from Aagedal (2003), and is provided here for reference.

Functionality
The capability of the software product to provide functions which meet stated and implied
needs when the software is used under specified conditions.

Suitability
The capability of the software product to provide an appropriate set of functions for
specified tasks and user objectives.

Accuracy
The capability of the software product to provide the right or agreed results or effects with
the needed degree of precision.

Interoperability
The capability of the software product to interact with one or more specified systems.

Security
The capability of the software product to protect information and data so that unauthorized
persons or systems cannot read or modify them and authorised persons or systems are not
denied access to them.

Functionality compliance
The capability of the software product to adhere to standards, conventions or regulations in
laws and similar prescriptions relating to functionality.

Reliability
The capability of the software product to maintain specified level of performance when used
under specified conditions.

Maturity
The capability of the software product to avoid failure as a result of faults in the software.

Fault tolerance
The capability of the software product to maintain a specified level of performance in
cases of software faults or of infringement of its specified interface.

Recoverability
The capability of the software product to re-establish a specified level of performance and
recover the data directly affected in the case of a failure.

Reliability compliance
The capability of the software product to adhere to standards, conventions or regulations
relating to reliability.

Usability
The capability of the software product to be understood, learned, used and attractive to the
user, when used under specified conditions.

66

Understandability
The capability of the software product to enable the user to understand whether the
software is suitable, and how it can be used for particular tasks and conditions of use.

Learnability
The capability of the software product to enable the user to learn its application.

Operability
The capability of the software product to enable the user to operate and control it.

Attractiveness
The capability of the software product to be attractive to the user.

Usability compliance
The capability of the software product to adhere to standards, conventions, style guides or
regulations relating to usability.

Efficiency
The capability of the software product to provide appropriate performance, relative to the
amount of resources used, under stated conditions.

Time behaviour
The capability of the software product to provide appropriate response and processing
times and throughput rates when performing its function, under stated conditions.

Resource utilisation
The capability of the software product to use appropriate amounts and types of resources
when the software performs its function under stated conditions.

Efficiency compliance
The capability of the software product to adhere to standards or conventions relating to
efficiency.

Maintainability
The capability of the software product to be modified. Modifications may include corrections,
improvements or adaptation of the software to changes in environment, and in requirements
and functional specifications.

Analysability
The capability of the software product to be diagnosed for deficiencies or causes of
failures in the software, or for the parts to be modified to be identified.

Changeability
The capability of the software product to enable a specified modification to be
implemented.

Stability
The capability of the software product to avoid unexpected effects from modifications of
the software.

Testability
The capability of the software product to enable modified software to be validated.

67

Maintainability compliance
The capability of the software product to adhere to standards or conventions relating to
usability.

Portability
The capability of the software product to be transferred from one environment to another.

Adaptability
The capability of the software product to be adapted for different specified environments
without applying actions or means other than those provided for this purpose for the
software considered.

Installability
The capability of the software product to be installed in a specified environment.

Co-existence
The capability of the software product to co-exist with other independent software in a
common environment sharing common resources.

Replaceability
The capability of the software product to be used in place of another specified software
product for the same purpose in the same environment.

Portability compliance
The capability of the software product to adhere to standards or conventions relating to
portability.

68

References
Abrahamsen, Espen. Unpublished. Resource Model for the QuA Platform.

Aurrecoechea, Christina, Andrew T. Campbell, and Linda Hauw. 1998. A Survey of QoS
Architectures. Multimedia Systems 6 (3):138-151.

Blair, Gordon, Geoff Coulson, Anders Andersen, Lynne Blair, Michael Clarke, Fabio Costa,
Hector Duran-Limon, Tom Fitzpatrick, Lee Johnston, Rui Moreira, Nikos
Parlavantzas, and Katia Saikoski. 2001. The Design and Implementation of Open
ORB 2. IEEE Distrib. Syst. Online 2 (6).

Brown, William H., Raphael C. Malveau, Hays W. "Skip" McCormick III, and Thomas J
Mowbray. 1998. Anti Patterns. New York City: John Wiley & Sons, Inc.

Chiba, Shigeru. 2000. Load-time structural reflection in Java. Paper read at ECOOP 2000.

Cleetus, Anita Maria. 2004. An Implementation Of The OpenCOM Core CFs. MSc
dissertation, Distributed Systems Engineering, University of Lancaster.

Coulouris, George, Jean Dollimore, and Tim Kindberg. 2001. CORBA case study. In
Distributed Systems - Concepts and design. Essex: Pearson Education Ltd.

Coulson, Geoff, Gordon S. Blair, Michael Clarke, and Nikos Parlavantzas. 2002. The design
of a configurable and reconfigurable middleware platform. Distributed Computing 15
(2):109-126.

Dunn, Julian. 1998. Anti-alias and anti-image filtering: The benefits of 96kHz sampling rate
formats for those who cannot hear above 20kHz. Paper read at 104th AES
Convention, at Amsterdam.

Eliassen, Frank, Richard Staehli, Jan Øyvind Aagedal, Arne-Jørgen Berre, Anders Andersen,
and Gordon Blair. 2002. Excerpt from Quality of Service Aware Component
Architecture Project Proposal: Simula Research Laboratory, SINTEF Oslo,
University of Tromsø.

Frølund, Svend, and Jari Koistinen. 1990. Quality of Service Aware Distributed Object
Systems. Paper read at 5th USENIX Conference on Object-Oriented Technologies
and Systems (COOTS '99), at San Diego.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns:
Elements of Reusable Object-Oriented Software: Addison Wesley.

Gold, Nicolas, Andrew Mohan, Claire Knight, and Malcolm Munro. 2004. Understanding
service-oriented software. IEEE Software 21 (2):71-77.

Grace, Paul, Gordon Blair, and Sam Samuel. 2003. Interoperating with Services in a Mobile
Environment: Lancaster University.

Göbel, Steffen, Christoph Pohl, Simone Röttger, and Steffen Zschaler. 2004. The
COMQUAD Component Model - Enabling Dynamic Selection of Implementations
by Weaving Non-functional Aspects. Paper read at 3rd International Conference on
Aspect-Oriented Software Development, at Lancaster, UK.

69

ITU-T. 1993. Pulse Code Modulation (PCM) of Voice Frequencies. In ITU-T
Recommendation G.711: International Telecommunication Union.

———. 1996. Methods for subjective determination of transmission quality. In ITU-T
Recommendation P.800: International Telecommunication Union.

Koistinen, Jari, and Aparna Seetharaman. 1998. Worth-Based Multi-Category Quality-of-
Service Negotiation in Distributed Object Infrastructures. Paper read at Enterprise
Distributed Object Computing Workshop, 3-5 Nov 1998, at La Jolla, CA, USA.

Kon, Fabio, Fabio Costa, Gordon Blair, and Roy H. Campbell. 2002. The case for reflective
middleware. Communications of the ACM 45 (6):33-38.

Kon, Fabio, Manuel Román, Ping Liu, Jina Mao, Tomonori Yamane, Luiz Claudio
Magalhães, and Roy H. Campbell. 2000. Monitoring, Security, and Dynamic
Configuration with the dynamicTAO Reflective ORB. Paper read at Middleware
2000.

Loyall, Joseph P., Richard E. Schantz, John A. Zinky, and David E. Bakken. 1998. Specifying
and measuring Quality of Service in distributed object systems. Paper read at ISORC,
at Kyoto, Japan.

McKinley, Philip K., Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng. 2004a.
Composing Adaptive Software. IEEE Computer 37 (7):56-64.

———. 2004b. A Taxonomy of Compositional Adaptation. Michigan: Software Engineering
and Network Systems Laboratory, Department of Computer Science and Engineering,
Michigan State University.

Miguel, Miguel Angel de, José F. Ruiz, and Marisol García-Valls. 2002. QoS-Aware
Component Frameworks. Paper read at 10th International Workshop on Quality of
Service, May 2002.

Mukhija, Arun, and Martin Glinz. 2004. A Framework for Dynamically Adaptive
Applications in a Self-Organized Mobile Network Environment. Paper read at 24th
International Conference on Distributed Computing Systems Workshops.

Papazoglou, M. P., and D. Georgakopoulos. 2003. Service-Oriented Computing.
Communications of the ACM 46 (10):25-28.

Peterson, Larry L., and Bruce S. Davie. 2000. Computer Networks - A Systems Approach:
Morgan-Kaufman.

Poladian, Vahe, João Pedro Sousa, David Garlan, and Mary Shaw. 2004. Dynamic
Configuration of Resource-Aware Services. Paper read at 26th International
Conference on Software Engineering, at Edinburgh.

Rajkumar, Ragunathan, Chen Lee, John P. Lehoczky, and Daniel P. Siewiorek. 1997. A
Resource Allocation Model for QoS Management. In 18th IEEE Real-Time System
Symposium.

———. 1998. Practical Solutions for QoS-Based Resource Allocation. In RTSS.

70

Schantz, Richard E., Joseph P. Loyall, Michael Atighetchi, and Partha Pal. 2002. Packaging
Quality of Service Control Behaviours for reuse. Paper read at ISORC, at Washington
DC, USA.

Schmidt, Douglas C. 2002. Middleware for real-time and embedded systems.
Communications of the ACM 45 (6):43-48.

Schmidt, Douglas C, and Steve Vinoski. 2001. Object Interconnections: Real-time CORBA,
Part 1: Motivation and Overview. C/C++ Users Journal.

———. 2004. Object Interconnections: The CORBA Component Model: Part 1, Evolving
Towards Component Middleware. C/C++ Users Journal.

Sommerville, Ian. 1995. Software Engineering. 5th ed. Essex: Addison-Wesley.

Staehli, Richard, and Frank Eliassen. 2002. QuA: A QoS-Aware Component Architecture.

———. 2004. Compositional Quality of Service Semantics. Paper read at Specification and
Verification of Component Based Systems (SAVCBS04), Workshop at ACM
SIGSOFT.

Staehli, Richard, Frank Eliassen, Gordon Blair, and Jan Øyvind Aagedal. 2003. QoS-Driven
Service Planning in an Open Component Architecture.

Sun Microsystems. 2003. Enterprise JavaBeans Specification, Version 2.1: Sun
Microsystems.

Szyperski, Clemens. 2002. Component Software. Edited by C. Szyperski. 2nd ed, Component
Software Series: Addison-Wesley.

Tanenbaum, Andrew S. 1996. Computer Networks. 3rd ed: Prentice-Hall.

Wang, Nanbor, Krishnakumar Balasubramanian, and Chris Gill. 2002. Towards a Real-time
CORBA Component Model. Paper read at OMG Workshop On Embedded & Real-
Time Distributed Object Systems, July, at Washington D.C.

Wikipedia. 2007. Shannon-Nyquist sampling theorem, 2007-03-05 2007 [cited 03-05 2007].
Available from http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem.

Zachariadis, Stefanos, and Cecilia Mascolo. 2003. Adaptable mobile applications through
SATIN: exploiting logical mobility in mobile computing middleware. Paper read at
1st UK-UbiNet Workshop, 25-26 September 2003, at Imperial College, London.

Aagedal, Jan Øyvind. 2001. Quality of Service Support in Development of Distributed
Systems. Ph.D. thesis, Department of Informatics, University of Oslo, Oslo.

———. 2003. Quality of Service Support in Software Architecture. In Lecture no 8 in IN-
MMO - Modellering med objekter.

71

http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem

	 Preface
	Table of contents
	List of figures
	List of tables
	1. Introduction
	1.1. Background
	1.1.1. Components and services

	1.2. Problem area
	1.2.1. QuA
	1.2.2. Specific problem statement

	1.3. Goal
	1.3.1. What is not covered

	1.4. Method
	1.5. Result
	1.6. Overview of the rest of this thesis

	2. Background and related work
	2.1. Background
	2.1.1. Middleware
	2.1.2. Components

	2.2. Industrial component standards
	2.2.1. CORBA/CCM
	2.2.2. EJB
	2.2.3. COM/DCOM/COM+

	2.3. Research projects
	2.3.1. Reflection
	2.3.2. dynamicTAO
	2.3.3. Open ORB 2
	2.3.4. Quality Objects
	2.3.5. QoS for EJB
	2.3.6. Q-RAM
	2.3.7. Aura

	2.4. Summary

	3. QuA
	3.1. A canonical component model
	3.2. The QuA component model
	3.2.1. QuA object space
	3.2.2. QuA capsules
	3.2.3. Component repositories
	3.2.4. QuA components
	3.2.5. QuA/Type meta interface
	3.2.6. QuA Names

	3.3. QuA services
	3.3.1. Bindings and compositions
	3.3.2. Requesting services
	3.3.3. Service planning
	3.3.4. Service execution

	3.4. Summary

	4. Problem description
	4.1. The overall QoS problem
	4.1.1. Overview of a QoS session

	4.2. The service planning problem
	4.2.1. Describing QoS
	4.2.2. Negotiating QoS
	4.2.3. Initial service configuration
	4.2.4. Resource monitoring
	4.2.5. QoS monitoring
	4.2.6. Dynamic reconfiguration
	4.2.7. QoS policing

	4.3. Problem scope
	4.4. Summary

	5. Analysis
	5.1. Method
	5.2. Hypothesis
	5.3. Prototype background
	5.3.1. Component types and QoS models
	5.3.2. Utility function interface
	5.3.3. Service requests
	5.3.4. Describing resources
	5.3.5. Algorithm for the Generic Implementation Planner

	5.4. Experiment description
	5.4.1. Select and configure audio codec
	5.4.2. Configure video stream
	5.4.3. Goals

	5.5. Summary

	6. Designing and implementing service planning
	6.1. Porting issues
	6.2. Capsule core design model
	6.2.1. Package qua.core
	6.2.2. Package qua.core.repositories
	6.2.3. Package qua.core.component
	6.2.4. Package qua.core.spec
	6.2.5. Package qua.core.planners
	6.2.6. Package qua.core.brokers
	6.2.7. Package qua.core.qos
	6.2.8. Package qua.core.resources

	6.3. Capsule service components
	6.3.1. BasicServicePlanner
	6.3.2. BasicImplementationBroker
	6.3.3. BasicRepositoryDiscoveryService

	6.4. Instantiating the QuA Java capsule
	6.5. Adding QoS awareness to the QuA Java capsule
	6.5.1. A QuA type for QoS-aware components
	6.5.2. The GenericImplementationPlanner
	6.5.3. A dummy resource manager
	6.5.4. QoS-aware components

	6.6. Summary

	7. Experiment results
	7.1. Experiment environment
	7.2. Select audio codec
	7.3. Configure video stream
	7.4. Summary

	8. Evaluation and conclusion
	8.1. Experiment evaluation
	8.1.1. Model evaluation
	8.1.2. Precision evaluation
	8.1.3. Effectiveness evaluation

	8.2. Generic Implementation Planner feasibility
	8.3. Open questions
	8.4. Conclusion

	Appendix A – Overview of ISO 9126 – External and Internal Quality Metrics
	References

