

UNIVERSITY OF OSLO

Department of informatics

A Systematic Review of Empirical Research
on Model-Driven Development with UML

Master thesis
60 credits

Terese Helene Haug

February 2007

 2

 3

Abstract

Model-Driven Development (MDD) with UML is gaining widespread use in the IT-
industry. However, little is known with regards to the actual costs and benefits of
MDD with UML. This thesis is a systematic review of 21 selected articles reporting
empirical studies on MDD with UML, published between 2000 and 2005, in three
leading journals and one conference proceeding. The objective of the investigation is
to get an overview of the state-of-the-art for empirical studies of MDD with UML, and
show the typical information found in articles of this topic. The data collected during
analysis of these 21 articles, was used to address the following issues: The amount of
empirical research of MDD with UML, the extent of different empirical research
methods used, what different UML-diagrams that are studied and their benefits, for
which application domains UML are studied, to what extent UML is compared to
other approaches, the possibilities for meta-analysis and what the authors suggest
about future research.

The main conclusion of this study is that it does not exist sufficient empirical
evidence to draw conclusions regarding the usefulness of Model-Driven Development
with UML. The few existing empirical studies of MDD with UML do mostly suggest
that UML is useful, but they are too few and deal with too many aspects of UML-
usage, to allow for definite conclusions about the usefulness of the technique. Further,
the main findings of this review are the following. Experiments is the most used
research method within studies of MDD with UML, and this study found four times as
many experiments as case studies. UML usage was found to yield benefits for the
comprehension, construction and correctness of a system. However, the study also
revealed that the benefits of UML-usage are often dependent on the application
domain and the experience and abilities of developers. Furthermore, few studies exist
that investigate the cost-effectiveness of UML-usage, and most studies have focus on
detailed aspects of the use of single diagrams. Hence, the results could be useful for
companies that already make extensive use of UML, but these results do not provide
much guidance when UML is introduced in a company.

 4

 5

Acknowledgements

First of all, I would like to thank my supervisor, Bente Anda, for her guidance,
encouragement and support with this work. I would also like to thank Erik Arisholm
for his involvement and valuable contributions. Thanks to Sturle Helland for the
cooperation when planning and performing this review. I am also grateful to Simula
Research Laboratory for providing such great facilities and work environment. Last
but not least, my gratitude goes to my family and friends for their encouragement and
support during this period.

Oslo, February 2007

Terese Helene Haug

 6

 7

Contents

1. INTRODUCTION ..11
1.1 MOTIVATION ..11
1.2 OBJECTIVE..12
1.3 CONTRIBUTIONS ...12
1.4 STRUCTURE OF THESIS ...13

2. MODEL-DRIVEN DEVELOPMENT WITH UML ...15
2.1 THE UNIFIED MODELLING LANGUAGE ...15
2.2 RELATED TECHNIQUES ...17

2.2.1 Specification and Description Language SDL ...17
2.2.2 Structured Analysis & Design ..17

3. RELATED WORK...19
3.1 RESEARCH IN SOFTWARE ENGINEERING: AN ANALYSIS OF THE LITERATURE20
3.2 THE TYPE OF EVIDENCE PRODUCED BY EMPIRICAL SOFTWARE ENGINEERS20
3.3 A SURVEY OF CONTROLLED EXPERIMENTS IN SOFTWARE ENGINEERING21
3.4 EXPERIMENTAL VALIDATION IN SOFTWARE ENGINEERING ..21
3.5 A SYSTEMATIC REVIEW OF CASE STUDIES IN SOFTWARE ENGINEERING22
3.6 SUMMARY ..24

4. EMPIRICAL RESEARCH METHODS ..25
4.1 EXPERIMENTS...26
4.2 CASE STUDIES ..26
4.3 EXPERIENCE REPORTS ..27
4.4 SURVEYS ..28

5. METHODOLOGY ...29
5.1 RESEARCH METHOD - SYSTEMATIC REVIEW ..29
5.2 DISTRIBUTION OF WORK ..31
5.3 PLANNING THE REVIEW: PILOT STUDY ...31
5.4 SELECTION OF JOURNALS AND CONFERENCES ..31
5.5 STUDY SELECTION PROCEDURES AND INCLUSION CRITERIA ..32

5.5.1 The Nature of Included Studies ..32
5.5.2 Procedures for Selecting Articles...33
5.5.3 Deciding Upon the Inclusion Criteria..35

5.6 DATA EXTRACTION ..35
5.7 ANALYSIS OF THE ARTICLES...37
5.8 OTHER INTERESTING QUESTIONS..38

6. RESULTS..39
6.1 THE AMOUNT OF EMPIRICAL RESEARCH ON MODEL-DRIVEN DEVELOPMENT WITH UML.........39
6.2 THE EXTENT OF EXPERIMENTS, CASE STUDIES AND EXPERIENCE REPORTS41

6.2.1 The Extent of Experiments..42
6.2.2 The Extent of Case Studies ...43
6.2.3 The Extent of Experience Reports ..43

6.3 EVALUATED UML-DIAGRAMS AND REPORTED BENEFITS..43
6.3.1 Different Ways UML-Diagrams are Evaluated..45
6.3.2 Aspects Evaluated ..46
6.3.3 Benefits of Using UML-Diagrams..48

6.4 UML STUDIED IN DIFFERENT APPLICATION DOMAINS...50
6.5 UML COMPARED TO OTHER APPROACHES...51
6.6 META-ANALYSIS ..52
6.7 DIRECTIONS FOR FUTURE WORK ..54

 8

6.7.1 The Amount of Articles that Present Aims for Future work ...54
6.7.2 Replication of Study in Different Contexts ...55
6.7.3 Further Refinements of the UML-Method under Consideration56
6.7.4 Further Evaluation of the Cost-Effectiveness of UML ...56
6.7.5 Further Studies to Compare UML to Other Approaches ...57
6.7.6 Combine Approach under Study With Other Approaches..57
6.7.7 Further Study of Other UML-Diagrams or Other Aspects than those under
Consideration in Current study ..58
6.7.8 A Broader Perspective for Future Work...58
6.7.9 What the Directions for Future Work Indicate About the Status of Current research58

7. THREATS TO VALIDITY..61
7.1 CHOICE OF JOURNALS AND CONFERENCE PROCEEDINGS ..61
7.2 SELECTION OF ARTICLES ..61
7.3 DATA EXTRACTION...62

8. CONCLUSIONS AND FUTURE WORK..63

REFERENCES ...67

APPENDIX A - DATA EXTRACTED FROM ARTICLES ..69

 9

List of Tables

Table 1: Surveys of Empirical Studies in Software Engineering 19
Table 2: Inclusion- and Exclusion words ... 34
Table 3: The Extent of Included Articles and Research Methods in each of the
examined Publication Sources.. 39
Table 4: Trend over Years .. 41
Table 5: Research Methods in Included Articles. .. 42
Table 6: UML-Diagrams Evaluated ... 44
Table 7: Articles that evaluate UML-Diagrams. .. 44
Table 8: What Aspects that are Studied in which Article... 47
Table 9: Application Domains Studied. ... 50
Table 10: Articles and Aims for Future Work.. 54
Table 11: How the Authors’ seek to differentiate their Study...................................... 55
Table 12: Articles that have Identified a need to Refine the Technology under Study 56
Table 13: Articles that aim to Compare UML to other Approaches. 57

 10

 11

1. Introduction

Section 1.1 presents the motivation, and Section 1.2 presents the objective of the
research and states the research questions that is investigated in this thesis. Section 1.3
describes the contributions of this work. The last Section of the introduction Section
presents the structure of the remainder of this thesis.

1.1 Motivation
Model-Driven Development (MDD) with UML is gaining widespread use in the IT-
industry, and aims to raise the level of abstraction for software development by the use
of models as key artefacts in software development, from system specification and
analysis, to design and testing. The use of UML is claimed among others to improve
the quality of software product deliverables, to support reuse and reduce the effort of
developing and maintaining the software product.

However, little is known with regards to the actual costs and benefits of MDD with
UML. Briand et al. [8] state that many methods, processes, tools or notations are being
used without thorough evaluation. Sjøberg et al. [19] write that research in empirical
software engineering should aim to acquire general knowledge about which
technology (process, method, technique, language, or tool) is useful for whom to
conduct which (software engineering) tasks in which environments. Thus, there is a
need for understanding different properties, advantages and drawbacks of MDD with
UML. That is, when you should use the technique, to what extent and what benefits
and costs it will entail.

A few surveys have been conducted to determine the state of Software Engineering
research as a whole with respect to topic, research approach, research method,
reference discipline and level of analysis [9, 11, 18, 19, 22]. To the authors’
knowledge there has however not been performed any studies that thoroughly cover
empirical studies of Model-Driven Development with UML.

Briand et al. [8] state that the overall objective of empirical studies of object-oriented
technologies and products is to gather tangible evidence about its properties and gain
deeper insights into the nature of the object-oriented paradigm and its relationship to
other approaches.

Software Engineering is a relatively new research field and a strong experimental
model of the field has not yet been developed. It is, however, more and more
recognized that empirical studies need to be combined and conclusions need to be
generalized in order to build a body of evidence to provide a scientific foundation for
the engineering of software products. This is the field of meta-analysis. Miller [15]
states reasons for performing meta-analytical procedures like this; “deriving reliable
empirical results from a single experiment is an unlikely event. Hence to progress
multiple experiments must be undertaken per hypothesis and the subsequent results
effectively combined to produce a single reliable conclusion.”

 12

As the state-of-the art of Model-Driven Development with UML has not been
thoroughly investigated, I focus on this topic in this thesis.

1.2 Objective
This thesis is a systematic review of 21 selected articles published between 2000 and
2005 in IEEE Transactions on Software Engineering, Empirical Software Engineering,
the conference proceeding UML/MODELS and the Requirements Engineering journal,
that report empirical studies on Model-Driven Development (MDD) with UML. The
objective of the investigation is to get an overview of the state-of-the-art for empirical
studies on Model-Driven Development with UML, and show the typical information
found in articles of this topic.

The data collected during analysis of these articles was used to answer the following
research question:

RQ: Is there support for the usefulness on Model-Driven Development with UML in
empirical research, hereunder:

SRQ1: What is the amount of empirical research on Model-Driven
Development with UML in relevant journals and conference proceedings?
SRQ2: What is the extent of the use of empirical experiments, case studies,
surveys and experience reports in research on Model-Driven Development with
UML?
SRQ3: Which UML-diagrams have been evaluated and what are the benefits, if
any?
SRQ4: In which application domains has UML been evaluated?
SRQ5: Is UML compared to other approaches?
SRQ6: Is it possible to perform meta-analysis of parts of the research we’ll
find in this review?
SRQ7: What does the authors of UML-studies claim to be important future
work and what does this indicate about current research?

1.3 Contributions
The main contribution of this review is in presenting the state-of-the-art of Model-
Driven Development (MDD) with UML.

The main conclusion of this study is that it does not exist sufficient empirical evidence
to make conclusions regarding the usefulness of Model-Driven Development with
UML. The few existing empirical studies of MDD with UML do mostly suggest that
UML is useful, but they are too few and deal with too many aspects of UML-usage, to
allow for definite conclusions regarding the usefulness of the technique.

 13

Further, the main findings of this review are:
 2,2 percent of the examined articles empirically evaluate Model-Driven

Development with UML in industrial projects or in experiments with human
subjects.

 Experiments are the most used empirical research method within studies of
MDD with UML, and this study found four times as many experiments as case
studies. In addition to case studies, it was also a number of experience reports
and one structured questionnaire.

 The conference proceeding UML/MODELS, as the most important publication
source for research of MDD with UML studied in this thesis, had primarily
case studies and experience reports among the empirical studies. The most
prestigious publication source that was examined in this selection, IEEE
Transactions on Software Engineering, had only experiments.

 The most frequently evaluated UML-diagrams are Use Case Diagrams and
Statechart Diagrams.

 Further, the existing studies deal with very many different aspects of UML
usage. This makes it difficult to arrive at a conclusion regarding how to use
UML and regards to utilitarian value and costs based on empirical studies. The
empirical studies that involve UML usage have also often another primary
focus on e.g. inspection of software artefacts.

 The overall results show that the use of UML has an impact on many aspects of
software development, both in relation to comprehension, construction and
correctness of a system and predictability in Software Engineering, and all the
aspects have improvement potential when UML is used. However, such
benefits are strongly dependent of the abilities and experience of developers
and the application domain, which UML is applied.

 UML is not compared to any extent to other approaches. Only one article
deliberatively compared UML to another approach. Three articles indirectly
compared UML to other approaches.

 This study also looked at what the authors of the studies viewed as important
future work. Most of them found it necessary to replicate the study, perhaps
with another type of subjects or another application domain. Almost as many
found it necessary to refine the UML-based technique under study. Only two of
the studies argued that future studies should evaluate the cost-effectiveness of
UML.

1.4 Structure of Thesis
Section 2 presents relevant background of Model-Driven Development with UML.
Related work is presented in Section 3. An overview of empirical methods is presented
in Section 4. The research method for this review is described in Section 5. Section 6
presents the findings and a discussion of the results of this review. Section 7 discusses
the validity of this review. Finally, Section 8 concludes and presents directions for
future work.

 14

 15

2. Model-Driven Development with UML

Model-Driven Development (MDD) aims to raise the level of abstraction for software
development by the use of models as the key artefacts in software development, from
system specification and analysis, to design and testing. Model Driven Development is
increasingly gaining the attention of both industry and research communities. This
thesis studies Model-Driven Development, with UML-models as the key artefacts in
software development.

The following sections presents an introduction of the Unified Modelling Language
and two related techniques.

2.1 The Unified Modelling Language
The Unified Modelling Language (UML) is a general-purpose visual modelling
language that is used to specify, visualize, construct and document the artefacts of a
software system [17]. UML captures decisions and understanding about systems that
must be constructed, and is used to understand, design, browse, configure, maintain
and control information about such systems.

UML is intended for use with all development methods, lifecycle stages, application
domains and media [17]. The UML specification does not define a standard process
but is intended to be useful with an iterative development process [17]. One such
development process is the Rational Unified Process (RUP), which is developed hand-
in-hand with the UML to guide the effective use of UML for modelling [14]. It
describes which models you need, why you need them and how to construct them.
RUP is also a Use Case driven approach, which means that the Use Cases defined for
the system are the foundation for the rest of the development process.

The UML was adopted in 1997 as a standard by the OMG (Object-Management
Group) and has continued to be refined in new versions, into today’s UML 2.0. UML
was developed in an effort to simplify and consolidate the large number of object-
oriented development methods that had emerged and the modelling language is
intended to unify past experience about modelling techniques and to incorporate
current software best practises into a standard approach [17]. The Object-Management
Group is also promoting a model-driven approach for software development through
its Model Driven Architecture (MDA™) initiative and its supporting standards, such
as UML, MOF and QVT [1]. With its rich palette and middleware independence, UML
forms a foundation of MDA [2].

UML includes semantic concepts, notation and guidelines and has static, dynamic,
environmental, and organizational parts [17]. It is intended to be supported by
interactive visual modelling tools that have code generators and report writers. UML is
built upon object-oriented concepts like classes and operation, however non-object
oriented systems may also be modelled using UML.

http://www.omg.org/docs/omg/03-06-01.pdf

 16

A system is modelled as a collection of discrete objects that interact to perform work
that ultimately benefits an outside user. The UML captures information about the static
structure and dynamic behaviour of a system [17]:

 The static structure defines the kind of objects important for a system and to its
implementation, as well as the relationships among objects to accomplish
goals.

 The dynamic behaviour defines the history of objects to accomplish goals.

UML 2.0 defines thirteen types of diagrams, divided into three categories [2]:

Six diagram types represent static application structure; three represent general types
of behaviour; and four represent different aspects of interactions:

Structure Diagrams: Class Diagram, Object Diagram, Component Diagram,
Composite Structure Diagram, Package Diagram, and Deployment Diagram.

Behaviour Diagrams: Use Case Diagram; Activity Diagram, and State
Machine Diagram.

Interaction Diagrams, all derived from the more general Behaviour Diagram,
include the Sequence Diagram, Communication Diagram, Timing Diagram,
and Interaction Overview Diagram.

UML provides several extension mechanisms to allow modellers to make some
common extensions, to create tailored versions of UML, without having to modify the
underlying modelling language. Extensions are organized into profiles. The
extensibility mechanisms are stereotype, tagged values and constraints [17]:

 A stereotype is a new kind of model-element devised by the modeller and
based on the existing kind of model element.

 A tagged value is a named piece of information attached to any model element.
 A constraint is a textual statement of a semantic relationship expressed in some

formal language or in natural language. The UML includes the definition of a
constraint language, the Object-constraint Language (OCL), which is
convenient for expressing UML constraints.

A coherent set of stereotypes with their tag definition and constraints is modelled as a
profile [17].

 17

2.2 Related Techniques
UML was developed in an effort to simplify and consolidate the large number of
object-oriented development methods that had emerged. Two of these methods are
presented next. UML is partly based on these methods, among several other methods.

2.2.1 Specification and Description Language SDL

The Specification and Description Language (SDL) is an object-oriented, formal
language defined by the International Telecommunications Union-
Telecommunications Standardization Sector (ITU-T) as recommendation number
Z.100. The key features of the language are summarized in [3].

Although SDL is widely used in the telecommunications field, it is also now being
applied to a diverse number of other areas ranging over aircraft, train control, medical
and packaging systems. The language is intended for the specification of complex,
event-driven, real-time, and interactive applications involving many concurrent
activities that communicate using discrete signals [4].

The basis for description of behaviour is communicating Extended State Machines that
are represented by processes. For systems engineering SDL is usually used in
combination with other languages and are comparative to a subset of UML.

2.2.2 Structured Analysis & Design

Structured Analysis and Design, abbreviated SA/SD has been the most popular and
widely used analysis and design method since the 1970s. Although it is being
superseded by object-oriented approaches, many of the notations, processes, and
heuristics of this method have been adopted by later methods [5]. Also, SA/SD is still
widely used.

Structured analysis and design is an approach that emphasizes analysis of data flows
and processes rather than control flows or functional hierarchies [5].

The following diagrams of SA/SD are defined by [6]:

Data Flow Diagrams: System analysts use process models (i.e. data flow
diagrams, DFDs) to show information flow and processing in a system. The
model usually starts with a context diagram showing the system bubble
surrounded by the external environment identified by external entities. Data
flows bring information to and from the system process. A process can explode
to a child diagram that presents its details using data stores, data flows and sub
processes. The diagram levelling process allows complex systems to be easily
partitioned into a stack of simple diagrams with rigorous balancing of
information between levels. Information structures are defined in an associated
data dictionary.

http://www.excelsoftware.com/processmodel.html

 18

Structure Charts: Structure charts show module structure and calling
relationships. In a multi-threaded system, each task (thread of execution) is
represented as a structure chart. Large structure charts are levelled into a stack
of connected diagrams.

State Models: State models include diagrams and tables that show the
significant states in a system, events that cause transitions between states and
the actions that result.

Task Diagrams: Task diagrams show threads of execution and the real-time
operating system services like queues, event flags and semaphores that connect
them in a multi-tasking environment. Each task can be associated with its
structure chart representation.

http://www.excelsoftware.com/structuremodel.html
http://www.excelsoftware.com/statemodel.html
http://www.excelsoftware.com/taskmodel.html

 19

3. Related Work

There has been performed several surveys to determine the state of Software
Engineering research as a whole with respect to topic, research approach, research
method, reference discipline and level of analysis. This Section summarizes these
efforts. These studies cover the entire field of Software Engineering, but are still of
relevance to this thesis, due to the structure of the studies and the characteristics that
have been measured. An overview of the related work can be found in Table 1.

Sections 3.1 to 3.5 give a description of the related work. A summary of the related
work is provided in Section 3.6.

Table 1: Surveys of Empirical Studies in Software Engineering1

 Zelkowitz et al.
[22]

Glass et al. [9] Segal et al. [18] Sjøberg et al.
[19]

Holt [11] This thesis

Purpose Classifies
empirical
studies in SE
and validates
the taxonomy of
empirical
studies
proposed by the
authors

Surveys topics,
research
approaches,
research methods,
reference
disciplines and
level of analysis

Surveys topics,
research
approaches,
methods,
reference
disciplines and
level of
analysis, units
of analysis and
authors.

Surveys topics,
subjects, tasks,
environments, and
internal and
external validity
of controlled
experiments in

Surveys the use
of case studies
in ESE.

Surveys the extent
of empirical studies
of Model-Driven
Development with
UML.

Scope SE SE ESE SE ESE ESE
Journals and
proceedings

ICSE proc.,
IEEE Software,
TSE

IEEE Software,
IST, JSS, SP&E,
TOSEM, TSE

EMSE EASE, EMSE,
ICSE, IEEE
Computer, IEEE
Software, ISESE,
IST, JSME, JSS,
METRICS,
SP&E, TOSEM,
TSE

EASE, EMSE,
ICSE, IEEE
Computer,
IEEE Software,
ISESE, IST,
JSME, JSS,
METRICS,
SP&E, TOSEM,
TSE

EMSE,
UML/MODELS,
TSE, RE

Sampling of
papers

All papers in
1985, 1990 and
1995

Every fifth paper
in the period
1995-1999

All papers
between 1997
and 2003

All papers in the
period 1993-2002

50 papers
randomly
selected among
the papers
scanned and
analyzed by
Sjøberg et al.
[19]

All papers in the
period 2000-2005

Number of
investigated
papers

612 369 119 5453 papers
scanned, 103
papers analyzed in
depth

427 papers
scanned, 50
papers analyzed
in depth

963 papers
scanned, 21 papers
analyzed in depth

1 This table is an extended version of Table 1 in Sjøberg et al [19].

 20

3.1 Research in Software Engineering: An Analysis of
the Literature

Glass et al. [9] seek to give an objective description of the state of Software
Engineering by examining 369 papers in six leading research journals in the Software
Engineering field in the period 1995 to 1999. The papers were categorized according
to topic, research approach, research method, reference discipline and units of analysis.

They conclude that SE research is diverse regarding topic, narrow regarding research
approach and method, inwardly focused regarding reference discipline, and technically
focused (as opposed to behaviourally focused) regarding level of analysis.

The spread of topics were broad. Most of the papers were placed in the category
‘Systems/software concepts’ (54.8 percent) where the subcategory
‘methods/techniques’ (18.2 percent) made the largest part.

As to research approach, over half of the papers were formulative (55.3 percent); a
further 28% were descriptive and only 13,8% evaluative. Findings show that the most
frequent used research methods are those concerning conceptual analysis and concept
implementation. Laboratory experiments with human subject constituted only 3
percent, while the case study method constituted 2,2 percent.

Regarding reference disciplines, 98 percent of the papers did not have references to
other fields. An interesting finding is that SE research is mostly about technical,
computing focused issues, and rarely about behavioural concerns.

3.2 The Type of Evidence Produced by Empirical
Software Engineers

Segal et al. [18] investigate the nature of the evidence published in the period 1997-
2003 in the academic journal Empirical Software Engineering, drawing on the
taxonomy developed by Glass et al. [9]. The 119 articles examined in [18] were
classified according to topic, research approach, research methods, reference discipline
and units of analysis.

Investigations of the following research questions were conducted; what is the
prevalence of case and field studies of Software Engineering practice? Is there a wide
variety in the types of evidence reported in the field of empirical Software
Engineering?

The main findings of Segal et al [18] were the following:

 The research was somewhat narrow in topic with about half the papers focusing
on measurement/metrics, review and inspection

 Researchers were almost as interested in formulating as in evaluating
 Hypothesis testing and laboratory experiments dominated evaluations
 That research was not very likely to focus on people and extremely unlikely to

refer to other disciplines

 21

Glass et al. [9] found that 13.8 percent of the papers featured evaluation, whereas
Segal et al. [18] found that 53 percent of the papers in Empirical Software
Engineering did the same.

3.3 A Survey of Controlled Experiments in Software
Engineering

Sjøberg et al. [19] report on a survey that characterized quantitatively the controlled
experiments in Software Engineering, published in nine journals and three conference
proceedings (5453 articles) in the decade from 1993 to 2002. Only 113 (1,9 percent) of
the 5453 articles reported controlled experiments. The study focuses on technology,
subjects, tasks, type of application systems, and environments in which the
experiments were conducted. Additionally, data on experiment replication, and
internal and external validity were also collected and discussed.

The largest categories regarding topics are software lifecycle/engineering (49 percent)
and Methods/Techniques (32 percent) caused by the large number of experiments on
inspection techniques (36 percent) and object-oriented design techniques (eight
percent).

It was found that 87 percent of the subjects were students whereas nine percent were
professionals. Actually, almost 50 percent of all subjects in Software Engineering are
students.

They identified tasks performed by the subject according to the following categories:
plan (ten percent), create (20 percent), modify (16 percent), and analyze (54 percent).
Duration of task was provided in some manner in almost 80 percent of the papers.
However, specific duration data pr subject was only reported in 36 percent of the
experiments.

In 75 percent of the experiments, the applications were constructed for the purpose of
the experiment or were student projects. Commercial applications were used by 14
percent. Internal validity was reported in 63 percent and external validity in 69 percent
of the experiments.

3.4 Experimental Validation in Software Engineering
Zelkowitz and Wallace [22] conducted a survey on experimental models for validating
technology. By this study, they wanted firstly, to determine how well the computer
science community is succeeding at validating its theories, and secondly, to determine
how computer science compares to other scientific disciplines.

They developed a taxonomy for Software Engineering experimentation that describes
the following twelve validation methods: static analysis, lessons learned, legacy data,
literature search, field study, assertion, case study, project monitoring, simulation,
dynamic analysis, synthetic and replicated. Additionally, a significantly amount of the
papers were categorized as papers with no experimentation (papers describing a new
technology that contained no experimental validations). The list was not meant to be

 22

an ultimate list, rather as a good starting point for understanding Software Engineering
experimentation. The study examined how these approaches have been used.

Of the 612 papers assessed, where 50 were judged to be “not applicable”, 562 papers
were examined. These were published in IEEE Transactions on Software Engineering,
IEEE Software and the proceedings from International Conference on Software
Engineering from 1985, 1990 and 1995. Each paper was classified according to the
data collection method used to validate the claims in the paper. They distinguished
between data used as a demonstration of concepts and true attempts at validation of the
results.

Zelkowitz and Wallace state among their quantitative findings that too many papers
have no experimental validation (one third of the papers) at all. However, the
percentage dropped from 1985 to 1995, which seems to indicate improvement. Among
the papers that did have a form of validation, they claim that too many papers used an
informal (assertion) form. Researchers use lessons learned and case studies in about
ten percent of the studies, while the other techniques are used only sporadically. About
five percent relied on the simulation method, while the remaining techniques were
used in one to three percent of the papers. They also found that terminology is not used
in a consistent manner.

The qualitative findings suggest that authors often fail to state their goals clearly or to
point to the value that their method or tool adds to the experimentation process.
Additionally, authors often fail to state how they validate their hypotheses and use
terms very loosely.

3.5 A Systematic Review of Case Studies in Software
Engineering

The work of Holt [11] is a systematic review of 50 randomly selected articles that
report case studies. Holt [11] investigates the state of the art regarding the use of case
studies in empirical Software Engineering. Secondly, important characteristics of case
studies for researchers to give careful considerations when conducting case studies are
identified.

Holt [11] has identified that research on technology that is to be adopted in an
industrial setting must give evidence of relevance to the industry, and for this, case
studies are important in that they give the opportunity to test technology in realistic
surroundings with all the affecting factors. The data collected during analysis of these
50 articles, was used to address the following issues: the extent of case studies in
empirical Software Engineering, the quality of reporting case studies, the specification
of the case study research method, what researchers call a case study, the affiliation of
authors, confusion regarding research methods, and the extent of the use of multiple
case studies.

 23

The main findings of Holt [11] are:
 Close to twelve percent of the 427 papers searched, use case study as the

research method.
 There are great variances in the way of reporting case study results. The

general impression is that information is not clearly reported.
 Researchers are not very likely to explicitly state what kind of research method

that has been used.
 Case studies are mainly used for two purposes, namely evaluative and

demonstrative purposes.
o Typical characteristics for articles with an evaluative nature are rather

high response rates for the six questions in the survey, the reporting of
observations of use, and most likely the use of professionals as subjects.

o Typical characteristics for articles with a demonstrative nature are
relatively low response rates for the six questions in the survey, the
reporting of technology outcome, and most likely the use of authors of
the articles as subjects.

 The majority of the articles with authors affiliated in research communities
appear to report technology data.

 The lack of observations of use may be reminiscent of the assertion method.
 The extent of multiple case studies is 22 percent.

Furthermore, Holt [11] suggest the following criteria for case studies in empirical
Software Engineering:

First of all, the author should specify that the research method used is the case
study method. The focus in the case study should be use/evaluation of a
software technology. Furthermore, the case study should test a technology in an
industrial setting. Finally, the technology must be used by others than the
researchers themselves (because of no manipulation), preferably by
professionals.

Additionally, Holt [11] has identified a need for a specified definition of case studies
standards for how to conduct case studies in empirical Software Engineering, and
propose that use of guidelines would help researchers ensure the quality of the results.

 24

3.6 Summary
As we can see there has been performed several surveys to determine the state of
Software Engineering research as a whole with respect to topic, research approach,
research method, reference discipline and level of analysis. The surveys express a
general need for an increase in empirical validation in addition to a more structured
way of reporting research.

There has however, to the authors’ knowledge, not been undertaken any studies that
thoroughly cover empirical studies of Model-Driven Development with UML. The
classification scheme in e.g. Glass et al. [9] is for example not detailed enough to help
us decide which parts of UML that is covered in the research.

The majority of the surveys I have referred to in this Section report on several types of
research methods and the character of such studies in software engineering. Sjøberg et
al. [19] and Holt [11] present an in-depth study of a specific research method, namely
controlled experiments and case studies in Software Engineering.

A difference between this study and the studies I refer to is that I provide the state-of-
the-art regarding the use of specific research methods and a specific topic, namely
empirical experiments, case studies, surveys and experiences on Model-Driven
Development with UML.

 25

4. Empirical Research Methods

Empirical research could be defined as research based on the scientific paradigm of
observation, reflection and experimentation as a vehicle for the advancement of
knowledge. In this Section I concentrate on exploring empirical research methods and
explain the importance for empirical methods in Software Engineering.

Wohlin et al. [20] state reasons for the importance of empirical methods in Software
Engineering like this:

“Software Engineering is not only about technical solutions. It is to a large
extent also concerned with organizational issues, project management and
human behaviour. For a discipline like Software Engineering, empirical
methods are crucial, since they allow for incorporating human behaviour into
the research approach taken.”

Empirical methods provide an important scientific basis for Software Engineering.
Empirical methods such as controlled experiments, case studies, surveys and
experience reports are needed to help us evaluate and validate the research results.
These methods are needed so that it is possible to scientifically state whether
something is better than something else. The main motivation is that it is needed from
an engineering perspective to allow for informed and well-grounded decision [20].

There are two main types of research paradigms having different approaches to
empirical studies [20]:

 Qualitative research is concerned with studying objects in their natural
setting. A qualitative researcher attempts to interpret a phenomenon based on
explanations that people bring to them (Denzin and Lincoln references by
[20]).

 Quantitative research is mainly concerned with quantifying a relationship or

to compare two or more groups [Creswell references by [20]]. The aim is to
identify a cause-effect relationship. The quantitative research is often
conducted through setting up controlled experiments or collecting data through
case studies. Quantitative investigations are appropriate when testing the effect
of some manipulation or activity.

Quantitative strategies such as controlled experiments are appropriate when testing the
effects of a treatment, while a qualitative study of beliefs and understandings are
appropriate to find out why the results from a quantitative investigation are as they are
[20].

The following sections describe common empirical research methods used in Software
Engineering.

 26

4.1 Experiments
In the scientific method, an experiment is a set of actions and observations, performed
to verify or falsify a hypothesis or research a causal relationship between phenomena.
They are often highly controlled and hence also occasionally referred to as controlled
experiment [20]. Experiments are sometimes referred to as research-in-the-small [13]
since they are concerned with a limited scope and most often are run in a laboratory
setting.

Wohlin et al. [20] describes the operation of an experiment in the following way:
“When experimenting, subjects are assigned to different treatments at random. The
objective is to manipulate one or more variables and control all other variables at fixed
levels. The effect of the manipulation is measured, and based on this a statistical
analysis. In some cases it may be impossible to use true experimentation; we may have
to use quasi experiments. The latter term is often used when it is impossible to perform
random assignment of the subjects to the different treatments”.

In an experiment the researcher has control over the study and how the participants
carry out the tasks that they are assigned to. This can be compared to a typical case
study, where the researcher is more of an observer [20]. The advantage of the
experiment is, of course, that the study can be planned and designed to ensure high
validity, although the drawback is that the scope of the study often gets smaller [20].
For example, it would be possible to view a complete software development project as
a case study, but a typical experiment does not include all activities of such a project.

4.2 Case Studies
Case study research is sometimes referred to as research-in-the-typical [13]. It is
described in this way due to that normally a case study is conducted studying a real
project and hence the situation is “typical”. Zelkowitz and Wallace [22] describe a
case study to be an observational research method that is used for monitoring a project
and collecting data over time without intervention by the researchers. This is in
contrast to experiments, in which the researcher usually has control over various
factors

Yin [21] defines a case study as follows:

1. A case study is an empirical inquiry that investigates a contemporary
phenomenon within its real-life context, especially when the boundaries
between phenomenon and context are not clearly evident.

2. The case study inquiry
 Copes with the technically distinctive situation in which there will be many

more variables of interest than data points, and as one result
 Relies on multiple sources of evidence, with data needing to converge in a

triangulating fashion, and as another result
 Benefits from the prior development of theoretical propositions to guide

data collection and analysis.

Yin [21] states that case studies, like experiments, can be exploratory, descriptive or
explanatory.

 27

A case study is conducted to investigate a single entity or phenomenon within a
specific time space. Data is collected for a specific purpose throughout the study. The
researcher collects detailed information on, for example, one single project during a
sustained period of time. Based on the data collection, statistical analyses can be
carried out. The case study is normally aimed at tracking a specific attribute or
establishing relationships between different attributes [20].

Within Software Engineering, case studies should not only be used to evaluate how or
why certain phenomena occur, but also to evaluate the differences between, for
example, two design methods. This means in other words, to determine “which is best”
of the two methods [21]. Case studies are very suitable for industrial evaluation of
Software Engineering methods and tools because they can avoid scale-up problems
[20].

There are both pros and cons with case studies. Case studies are valuable because they
incorporate qualities that an experiment cannot visualize, for example, scale,
complexity, unpredictability, and dynamism [20]. Another advantage of case studies is
that they are easier to plan but the disadvantages are that the results are difficult to
generalize and harder to interpret, i.e. it is possible to show the effects in a typical
situation, but it cannot be generalized to every situation [21].

When performing case studies it is necessary to minimize the effects of confounding
factors. A confounding factor is a factor that makes it impossible to distinguish the
effects from two factors from each other [20]. This is important since we do not have
the same control over a case study as in an experiment.

The difference between case studies and experiments is that experiments sample over
the variables that are being manipulated, while case studies sample from the variables
representing the typical situation [20]. A case study is an observational study while the
experiment is a controlled study, and further, the level of control is lower in a case
study than in an experiment. Researchers are not completely in control of a case study
situation. This is good, from one perspective, because unpredictable changes
frequently tell them much about the problems being studied. The problem is that we
cannot be sure about the effects due to confounding factors [20].

4.3 Experience Reports
An experience report/lessons learned is an historical method and is often produced
after a large industrial project is completed, whether data is collected or not. The case
study, in contrast, is an observational method that concerns the collection of data from
projects as they evolve. A study of these documents often reveals qualitative aspects,
which can be used to improve future developments [22]. If project personnel are still
available, it is possible to interview them to obtain trends in looking at the effects of
methods.

 28

4.4 Surveys
In surveys, the primary means of gathering qualitative or quantitative data are
interviews or questionnaires. A survey is by [13] referred to as research-in-the-large
(and past) since it is possible to send a questionnaire to or interview a large number of
people covering whatever target population we have. A survey is often an investigation
performed in retrospect, when e.g. a tool or technique, has been in use for a while.
Respondents belong to a representative sample from the population being studied. The
results from the survey are then analyzed to derive descriptive and explanatory
conclusions and then generalized to the population from which the sample was taken
[20].

 29

5. Methodology

Section 5.1 describes the research method I have used in the thesis. Section 5.2 present
how the work of this thesis is distributed. Section 5.3 describes the planning of this
review. Section 5.4 describes the selection of publication sources. Section 5.5 presents
criteria and procedures for selecting articles, and Section 5.6 describes how the data
was collected. Section 5.6 describes how the articles were analyzed. At last, Section
5.7 present interesting, unanswered questions.

5.1 Research Method - Systematic Review
As the purpose of this study is to investigate the extent of empirical research on model
driven development with UML from the period 2000 to 2005, a systematic review was
chosen as the research method for this thesis. The goal of this thesis is to present a
review of current empirical evidence of Model-Driven Development with UML.

Kitchenham [12] propose a guideline for systematic reviews appropriate for Software
Engineering researchers, including PhD students. These guidelines [12] have
functioned as a guide for how to undertake this review.

Kitchenham [12] describes a systematic review as “a means of evaluating and
interpreting all available research relevant to a particular research question, topic area
or phenomenon of interest. Systematic reviews aim to present a fair evaluation of a
research topic by using a trustworthy, rigorous, and auditable methodology.”
According to Kitchenham [12] the major advantage of systematic reviews is “that they
provide information about the effects of some phenomenon across a wide range of
settings and empirical methods”. Another advantage, which is related to quantitative
studies, is the possibility of combining data using meta-analysis techniques. This may
increase the probability of identifying real effects that individual smaller studies are
not able to detect.

A systematic review involves several discrete activities. Kitchenham [12] summarises
the stages in a systematic review into three main phases:

1. Planning the review
2. Conducting the review
3. Reporting the review

The stages of a systematic review are explained next.

In the planning the review stage, the recognition of the need for a review is
established. Moreover, a review protocol is developed. This protocol specifies the
research question being addressed and the methods that will be used to perform the
systematic review. The purpose of the protocol is to reduce the probability of
researcher bias.

 30

The components of a protocol include all the elements of the review plus some
additional planning information [12]:

 Background. The rationale for the review.
 The research questions that the review is intended to answer.
 Search strategy (search terms and resources to be searched).
 Study selection criteria and procedures. It is usually helpful to pilot the

selection criteria on a subset of primary studies.
 Study quality assessment checklists and procedures. Develop quality checklists

to assess the individual studies.
 Data extraction strategy.
 Synthesis of the extracted data.
 Project timetable. Define the review plan.
 Protocol review. The protocol is a critical element of any systematic review.

Researchers must agree a procedure for reviewing the protocol.

In the conducting systematic review phase, Kitchenham [12] emphasize the following
activities:

1. The first activity is to identify the research, or, more precisely, the
potentially relevant primary studies2. It is vital to determine and follow
a search strategy for this identification process.

2. The second activity is the selection of the primary studies that are
actually relevant.

3. When the relevance is decided upon, the third activity is to evaluate the
quality of the primary studies.

4. The fourth activity is the data extraction. Here, it is important to have
designed a data extraction form in order to accurately record
information.

5. The fifth and last activity in the execution of the systematic review is
the data synthesis. This activity includes gathering and summarising the
results of the chosen primary studies.

Elements of the second, fourth and fifth activity should as far as possible be specified
in the review protocol in the planning stage.

In the reporting stage of the systematic survey, the data are interpreted and presented.
Kitchenham [12] emphasizes the importance of communicating the results of a
systematic review effectively.

The various elements of the systematic review in this thesis are documented in sections
5.3 to 5.7.

2 A primary study is the individual studies contributing to a systematic review [12].

 31

5.2 Distribution of Work
The systematic review that is reported in this master thesis is partly a cooperation
between two master students. The project group consisted of two master students and
two supervisors. The planning and conducting of the review, selecting articles and data
extraction, were undertaken by both students in the project. The cooperation lasted
until data collection was finished (when all the wanted data was extracted from each of
the included articles). The data analysis- and reporting stage were individual work.

When I in the next sections refer to “we”, I refer to the work that was undertaken by
both students. However, all the written parts of this thesis are individual work.

5.3 Planning the Review: Pilot Study
Before the systematic review could be conducted, we needed to get a basic
understanding of the different empirical research methods, related studies and why the
review was needed.

We were, before starting the examination of journals and conference proceedings,
introduced to a sample of about ten articles from different publication sources. This
collection was the choice of my supervisor and was meant as an ideal or inspiration-
source for what type of studies that was to be interesting for this review. It was useful
for us to get an idea of what to look for in subsequent work. We performed a pilot-
study of these articles to decide upon research questions and what information we
wanted to extract from the articles and decide upon criteria for inclusion. The result of
this was a data extraction form with data fields to fill in data from the articles. We used
these articles to identify and agree on an appropriate data extraction strategy and study
selection criteria (inclusion criteria). The search strategy was also decided upon. To
review the protocol, all the elements of this planning stage were agreed upon by the
supervisors of this project.

The following sections describe the elements of the systematic that were agreed upon
in the planning stage.

5.4 Selection of Journals and Conferences
We examined three journals and one conference proceeding in this review. The
publication sources that were examined were chosen because they are central. It was
decided that we would gather all articles of interest from these publication sources in
the six- year period 2000-2005.

The four publication sources examined in this study have different focus and were
selected for the following reasons:

- IEEE Transactions on Software Engineering (TSE) is the journal with most
prestige within Software Engineering.

 32

- Empirical Software Engineering (EMSE) is the leading journal for empirical
studies within Software Engineering.

- UML/MODELS is the leading conference proceeding of Model-Driven

Development (and it doesn’t exist any corresponding journal).

- Requirements Engineering Journal (RE) is the leading journal on requirements
engineering and we therefore expected that the journal would contain a few
articles about especially Use Cases.

5.5 Study Selection Procedures and Inclusion Criteria
Once the appropriate decisions had been made regarding the duration of the study, the
journals to be examined, and data extraction form and inclusion criteria to be used, we
began examining the papers themselves. This section describes the search terms and
study selection criteria for selecting the 21 articles that report on empirical studies of
Model-Driven Development with UML.

First I will describe what type of studies that are included in this review. Next I will
explain the procedures for deciding if an article presents an empirical study of Model-
Driven Development with UML. At last is present the process of agreeing upon the
inclusion criteria.

5.5.1 The Nature of Included Studies

In this thesis we are interested in including empirical studies of Model-Driven
Development (MDD) with UML. Studies that are of interest in this review are studies
that evaluate different properties, advantages and drawbacks of MDD with UML.

The types of empirical studies that are taken into account in this review are
experiments, case studies, experience reports and surveys. We do not distinguish
between randomized experiments and quasi experiments in this survey because both
experimental designs are relevant to empirical Software Engineering experimentation.
We are interested in studies that are of evaluative nature. Studies that are of no interest
in this review are studies that are of demonstrative character. An article that proposes a
new technique or approach and demonstrates the usage through a small example, a
“case study,” that only is performed to show the usability of the technology, is
excluded from this review. This type of study is often called “proof of concept” and is
often performed by the authors of the articles. This doesn’t provide a realistic context
and there could be a bias in favourite of the technology since the authors know their
technology very well.

We found many articles that claimed to report a case study in the abstract, but then
after reading the article, it appeared that the case study was of demonstrative character
as described over, and it was excluded from the review. Often these articles proposed a
new extension to UML or suggest a new approach without evaluate it properly. We are
interested in studies that are performed in realistic contexts; this could be laboratory
settings with human subjects or field studies/case studies with professionals or
experience reports of UML in use.

 33

5.5.2 Procedures for Selecting Articles

In order to identify and extract empirical research of Model-Driven Development with
UML, we systematically read the titles and abstracts of 963 scientific articles
published in the selected publication sources in order to identify and extract empirical
studies done on Model-Driven Development with UML for the period 2000-2005.

The selection of articles was done in two iterations:

First, we read through all the abstracts, and sometimes the introduction and
conclusion of each paper to decide whether the article was interesting for our
study based on keywords in its abstracts. These keywords are hereafter referred
to as inclusion words. The inclusion criteria for the first iteration of selecting
articles are a mix of subjective understanding of the paper when reading the
abstract and use of inclusion-words.

We gathered all abstracts in word-documents as we read them, one document
for each journal or conference proceeding and sometimes one document for
each year we examined. Each abstract was then marked with a colour code,
green for included and red for excluded. Those abstracts that were marked
green were then downloaded for further investigation. In this way we could
easily cooperate, to decide what articles to include with all abstracts from a
publication source gathered in one place. We could easily comment on the
abstracts in the word-document and go back in time.

Secondly, we examined each of the selected articles closer to decide whether
they were to be included or excluded from the review. During this process we
extracted data in order to answer the research questions from each article to fill
in a data extraction form. The articles were also classified as experiment, case
study or experience report. Those articles that were included in the first
iteration but excluded in the next iteration were commented for why they were
excluded.

The inclusion criteria for the first iteration were loosely stated. It is better to select too
many articles in the first iteration than to miss articles that may be of interest as it is
vital for the project to select all the existing articles of this topic.

The inclusion criteria varied over the sources we examined. Next I will describe the
procedures for selecting articles from each of the publication sources.

 34

The Journal Empirical Software Engineering
The Empirical Software Engineering Journal has a strong focus on empirical research
and we could therefore expect to find empirical research. The focus of the first
iteration when examining the abstracts in this journal was therefore to decide whether
the articles reported on research of Model-Driven Development with UML, and not so
much in deciding on the empirical value. We looked for words in the abstract that were
in association with modelling and UML. These were words like e.g. UML, unified
Modelling Language, modelling, Use Case, diagram, analysis and design and other
words are that associated with e.g. UML-diagrams or other UML-constructs.

The Conference Proceeding UML/MODELS
The next publication source we examined was the conference proceeding
UML/MODELS. The examination of this conference was much more troublesome
than for the previous journal we examined as the focus of this examination was the
opposite of the previous journal. Here we could expect to find UML-related research
since the whole conference is dedicated to modelling and UML. We could, however,
not expect anything about the empirical value of the articles. The main focus of this
examination was therefore to decide the empirical value of each article. In this case we
defined words that would make it easier for us to decide upon inclusion for the first
iteration. The words are listed in Table 2.

If the paper looks interesting (regards UML or modelling), but doesn’t include any of
the inclusion-words, we may choose to take it into further investigation. If the abstract
include both an inclusion word and an exclusion word, we include it based on the
inclusion word.

Table 2: Inclusion- and Exclusion words

Inclusion words Exclusion words
Empirical
Experiment
Case study
Experience report/lessons learned
Report on result/reports on/reports on the
application
Based on earlier research
Comparison/compare/comparative study
Take a systematic look
Investigate
Analyze, analyse, analysis
Examines – Systematically evaluating
We study/Studies/studied
Assessment

Propose, proposed, proposal
Present, presentation
Discuss, discussion
Describe, description
Introduce
Address the problem/issue
Suggested, suggestion
Identify
Explain
Overviews/reviews
Demonstrate/show how
Illustrate/illustrated with
examples/demonstrate with examples/running
example/demonstrate approach/exemplified
A talk, argue, provide, explore, outline,
characterize, define, consider

 35

IEEE Transactions on Software Engineering and Requirements
Engineering Journal
At last we examined the journals IEEE Transactions on Software Engineering and the
Requirements Engineering Journal. In these two journals we could not expect anything
about empirical value or content. We assumed that there wouldn’t be that many UML-
related articles so we selected in the first iteration all articles that had a hint of
UML/modelling in it. The paper is included if the word «UML», «Unified Modelling
language», «Use Case», «model-driven», “modelling” «PBR», «UBR» or another
UML- associated word is present in the title or abstract of the paper. First we identified
all the articles that studied UML and then we used the same inclusion words used in
the previous section to decide upon the empirical value.

5.5.3 Deciding Upon the Inclusion Criteria

We used a bottom-up approach for choosing the criteria for inclusion. We had little
experience of different research methods and how research papers are reported, so we
partly defined the inclusion criteria while examining the papers. We had a good
opinion about what kind of studies we wanted in our survey after presented to the
pilot-study sample of articles but the complete set of criteria was decided after a period
of reading articles.

As to come to a shared understanding of the criteria for inclusion we individually read
the articles from both the pilot-study sample, the Empirical Software Engineering
journal and the UML/MODELS conference individually and then came together to
discuss our individual selection of articles.

It happened that we had selected different articles, and it was consequently useful to
discuss the selected articles to come to a shared understanding of the inclusion criteria.
If it was unclear from the title or abstract whether an empirical study of MDD with
UML was described, we both read the entire article.

5.6 Data Extraction
During the pilot-study, when planning this systematic review, we identified what data
we needed to extract from each article in order to answer the research questions. We
identified both article-specific information and research method specific information
that we needed to extract from each article. This resulted in a data extraction form with
data-fields to fill in relevant information about each article. All the extracted data from
each of the 21 included articles are presented in Appendix A.

First of all, we extracted article-specific data from each article. This includes the title
of the article, authors, publication year, and publication source. Each article was also
assigned to an article ID.

 36

Further, we extracted data that was common for all research methods used in the
articles. We extracted data if there existed an answer in the article. If not, the data field
remained empty. The following data fields are common for all articles and research
methods:

 Type of study, hereunder experiment, case study, experience report or
structured questionnaire.

 Intent: The intension of the study.
 Results/ Lessons learned: The main results and lessons learned from the

study.
 Future work: Directions for future work, what the researchers express about

aims for future work, hereunder replication, refinement, comparing UML to
other approaches, cost-effectiveness of UML etc.

 Development phase: In which development phase MDD with UML is applied,
hereunder requirements, analysis and design, inspection etc.

 Application domain: Type of projects where MDD with UML are studied,
hereunder-electronic commerce, telecommunication, embedded systems etc.

 Participant/ project details: Details regarding number of subjects, project
details, education, experience etc.

 Collection of data and analysis: Description of how the study data were
collected and analysed.

Furthermore, from experiments, case studies and the structured questionnaire we
collected the same data, except from one extra data field that was collected exclusively
from experiments, namely a field for which Hypothesis that were used in the
experiment. These data fields were common for experiments, case studies and
structured questionnaires:

 Study design.
 Location: Location of study, place or country.
 Exp year: Year of experimentation.
 Duration: Duration of study.
 Case tools: Case tools used in study.
 Software artefacts: Software artefacts used in study. Includes which UML

diagrams that were studied.

For Experience Reports, we didn’t include all of the data fields that were collected
from experiments, case studies and structured questionnaire, but Duration of the
experiences collected was extracted from these studies.

Some of the data fields became superfluous in this review. These data fields were
supposed to be taken into account when answering whether a possible meta-analysis
could be performed based on the included articles of this review (SRQ6). However, it
appeared that the included articles were too heterogeneous to be subject for such
procedures. The data fields that were supposed to be used when answering this
question were; Participant details, Collection of Data and Analysis, Study design,
Location, exp. year, Duration of study, Case tools and Hypothesis.

 37

5.7 Analysis of the Articles
This section describes how the articles were analyzed in order to address each of the
seven sub-research questions (see section 1.2).

The data extracted from the 21 articles selected from a selection of 963 articles are
stored in MS Word documents, one document for each article. The word document
consists of a template to fill in data that is collected from each article. It was our
intention to make a database of the included articles, but due to the relatively small
number of resulting articles and time-limitations, we didn’t go through with this. It was
a relatively easy task to withdraw data from each Word-document.

I used simple descriptive statistics on the collected data. For each article, I collected
data to answer to each of these questions if an answer existed.

The total number of examined articles and the number of included articles were used to
answer SRQ1 about the amount of empirical research in Model-Driven Development
with UML.

In order to address SRQ2, the extent of empirical research methods in MDD with
UML, I classified each of the included articles according to research method used in
study.

Furthermore, I classified the articles according to which UML-diagrams that were
studied, what aspects of UML-usage that were evaluated and the results of the
evaluation to answer SRQ3.

To answer SRQ4, I extracted data about which application domain UML is studied
from each article.

To identify if UML is compared to other approaches, SRQ5, I collected data about the
intention of the study.

SRQ6, regarding the possibilities for performing meta-analysis in this study, was
addressed by examining the articles for homogeneity. This was done by examining
hypothesis.

To identify SRQ7, what researchers aim for future work, I extracted data from each
article on what they express about future work.

 38

5.8 Other Interesting Questions
During analysis of the articles, many interesting questions were identified:

 Are UML diagrams useful in different contexts, like different application
domains and development phases?

 How is a diagram used most beneficially? Are there benefits to be gained in
applying UML-diagrams in different ways?

 Are there any benefits with combining diagrams to evaluate effect, maybe to
improve e.g. comprehension or construction quality of UML?

 Are UML-diagrams beneficial when UML is compared to other approaches? Is
there any benefits explored compared to not using modelling at all?

 What are the benefits when UML-diagrams are used in an extended way, e.g. in
project management activities like estimation or in inspection of software
artefacts?

These questions could, however, mostly not be answered based on the articles
identified in this study.

 39

6. Results

This Section presents and discusses the results of the review we conducted with the
purpose of answering the research question presented in Section 1:

RQ: Is there support for the usefulness of Model-Driven Development with
UML in empirical research?

The research question is further split into seven sub questions that will be paid
attention to in Sections 6.1 to 6.7.

We investigated a total of 963 articles in three relevant journals and one conference
proceeding, and ended up with 21 articles, a percentage of 2,2 percent, that fulfilled
our criteria for inclusion. Each of the 21 articles have been assigned to an ID, in the
format A#, which will be used to refer to the analyzed articles in the following
sections. The data extracted from these articles can be found in Appendix A.

6.1 The Amount of Empirical Research on Model-
Driven Development with UML

In this section I investigate the extent of empirical research on Model-Driven
Development (MDD) with UML in the examined journals and conference proceeding.
Table 3 presents a summary of the extent of included articles in the four publication
sources that was examined.

Table 3: The Extent of Included Articles and Research Methods in
each of the examined Publication Sources.

Journals and conference
proceedings

Total No of
articles 2000-2005

No of articles
included in the
review

Distribution of included
articles on research
methodology

Empirical Software
Engineering (EMSE)

139 7

6 Experiments
1 Structured questionnaire

UML/MODELS 228 8

5 Experience reports
1 Case study
2 Experiments

IEEE Transactions on
Software Engineering
(TSE)

462 2

2 Experiments

Requirements
Engineering (RE)

134 4

2 Experiments
2 Case studies

TOTAL 963 21

12 Experiments
5 Experience reports
3 Case studies
1 Structured questionnaire

 40

The journal IEEE Transactions on Software Engineering (TSE) contained the largest
number of articles, with approximately half of the total number of examined articles.
Only 2 out of 462 articles in TSE were included in this review. This is a share of 0,43
percent. The TSE Journal was the source with the lowest share of empirical research of
Model-Driven Development with UML among the four publication sources that were
investigated.

In the Empirical Software Engineering Journal, 7 out of 139 articles were included in
the review. This is a share of five percent of the articles, and was the publication
source with the highest share of empirical research of Model-Driven Development
with UML.

The conference proceeding UML/MODELS is the leading conference proceeding of
Model-Driven Development (and it doesn’t exist any corresponding journal).
UML/MODELS contained few articles with empirical value. Only 3,5 percent, 8 out of
228 articles in UML/MODELS reported on empirical studies of MDD with UML.

The Requirements Engineering Journal contained a total of 134 articles, and the
included articles from this journal were counted to four. This is a share of almost three
percent.

The results do not show a big difference across the four publication sources in terms of
the amount of empirical research of Model-Driven Development with UML. Three of
the publication sources have a share of between three and five percent of empirical
studies of interest for this review. The fourth publication source, namely the TSE
Journal, separates from the three other sources with a significantly smaller share of
empirical studies of Model-Driven Development with UML. The TSE Journal is also
the publication source examined in this review that has the widest perspective, both in
terms of number of articles and scope. The other three publication sources are more
narrowed towards specific domains, like empirical Software Engineering, Model-
Driven Development and Requirements Engineering.

The fact that empirical studies of Model-Driven Development is represented so
scarcely in the TSE Journal indicates that empirical studies of Model-Driven
Development play a minimal role in the Software Engineering community, as the TSE
Journal is a publication with much prestige within the Software Engineering
community.

UML/MODELS is the leading conference proceeding of Model-Driven Development.
For that reason we expected to find a higher share of empirical studies of Model-
Driven Development in the UML/MODELS conference compared to the other three
publication sources, which cover a wider part of the field of Software Engineering. It
seems that empirical methods are not central among those who are interested in UML,
and that UML-research is focused on formulating and proposing new methods and
extensions to UML and not so much on evaluating existing approaches.

From the Requirements Engineering Journal we expected to find studies of Use Case
modelling, but the journal has neither focus on empirical research nor UML.

 41

It appears that Model-Driven Development with UML is not a central topic among
researchers who have focus on empirical studies. Correspondingly, empirical methods
are not in widespread use among those who are interested in UML. Further, UML-
research is focused on formulating and proposing new methods and extensions to
UML and not so much on evaluating existing approaches.

Trend over Years
I can see no trend in any directions for the years 2000 to 2004. In the year of 2005,
however, I found twice as many articles as the preceding years. Almost half of the
included articles (43 percent) were found in the year of 2005. Table 4 presents the
distribution of included articles over the years. It seems that the empirical research of
Model-Driven Development with UML is becoming more widespread in these days,
but it is too soon to say whether this is a coincidence or if it is to become more focus
on this type of research.

Table 4: Trend over Years

Year No of Included Articles
2000 4
2001 2
2002 3
2003 1
2004 2
2005 9

6.2 The Extent of Experiments, Case Studies and
Experience Reports

In this section I investigate the extent of empirical experiments, case studies and
experience reports in Model-Driven Development research.

The research method that is most represented in the included studies are experiments.
Twelve articles, which is over half of the included articles, use experiments as research
method. The other half part of the articles is distributed between five experience
reports, three case studies and one structured questionnaire.

I found an uneven distribution of experiments, case studies and experience reports
across the examined journals and the conference proceeding. The distribution of
different research methodologies across publications can be seen in Table 3.

The journals Empirical Software Engineering (EMSE) and IEEE Transactions on
software Engineering (TSE) contained a higher percentage of experiments than the
other two publication sources. EMSE and TSE contained eight of the twelve
experiments included in the review, and had no share of case studies or experience
reports. EMSE contained the majority of experiments that were included in the study.
Six out of twelve articles that reported experiments were found in the EMSE journal.
EMSE didn’t have case studies or experience reports, but contained one study based

 42

on the use of a structured questionnaire. The other three publication sources contained
two experiments each.

UML/MODELS is focused more on experiences and case studies. UML/MODELS
contained all the experience reports included in the review. Case studies are distributed
between the Requirements Engineering Journal (2) and UML/MODELS (1).

Table 5: Research Methods in Included Articles.

Research Methodology Article IDs No of Articles %
Experiment A5, A7, A9, A10, A12,

A13, A14, A15, A16,
A17, A19, A20

12 57,1

Experience Report A1, A3, A4, A6, A8, 5 23,8
Case Study A2, A18, A21 3 14,3
Structured Questionnaire A11 1 4,8
TOTAL 21 100

6.2.1 The Extent of Experiments
The amount of included experiments in this review is 1,25 percent of the total number
of examined articles. The extent of experiments varies from 0,4 percent to 4,3 percent
across the four examined publication sources.

The surveys summarized in Table 1 also report extent of experiments in various
studies:

In Glass et al. [9], the authors classify 3 percent of the articles as laboratory
experiments using human subjects and less than 1 percent as field experiment.
According to the survey by Zelkowitz and Wallace [22], laboratory experiments as
controlled methods are reported in 2,1 percent of the articles. Sjøberg et al. [19] find a
lower percentage of articles (1,9 percent) that report controlled experiments.

Like the results in Sjøberg et al [19], this review report a higher proportion of
controlled experiments for the EMSE journal than for the other examined sources. The
percentage for controlled experiments in EMSE is 4,3 percent in this review. This is
not surprising as the focus of the EMSE journal is empirical Software Engineering.
Since the EMSE journal stand out to report a higher percentage of experiments, it is
interesting to compare the results from this review with other related studies.
According to the survey by Sjøberg et al. [19], the percentage of controlled
experiments in EMSE is 17,7 percent. Segal et al. [18] report that laboratory
experiments with human subjects are reported in 29 percent of the articles in EMSE.
The differences between Segal et al. and Sjøberg et al. might be the narrower study
type definition of Sjøberg et al. Sjøberg et al. [19] have probably used a narrower type
definition of experiments, so the results of this study are probably most comparable
with the Segal et al. [18] study. Thus, this means that experiments of MDD with UML
is represented in 4,3% of the articles in EMSE, compared to all experiments in EMSE
which is 29%.

 43

6.2.2 The Extent of Case Studies
The amount of included case studies in this review/Model-Driven Development is 0,3
percent.

Other studies have examined the use of case study as research method in the field of
Software Engineering. .

 Segal et al. [18] found that 13 percent of the papers examined in the Empirical
Software Engineering journal, used case study as the research method.

 Holt [11] found that close to 12 percent reported on case studies.
 Zelkowitz and Wallace [22] found that 10,3 percent of the papers relied on the

case study method.
 Glass et al. [9] found that only 2.2 percent of the papers were case studies.

The share of case studies and experiments for MDD in this study seem to agree
proportionate with the share of the total distribution of empirical studies in Software
Engineering, but it appears to be a somewhat larger share of experiments in the sub-
field MDD with UML compared to the whole field of Software Engineering.

6.2.3 The Extent of Experience Reports
The amount of included experience reports in this review is 0,5 percent. It is difficult
to state something general about this number, since the share of experience reports are
generally not so closely investigated.

6.3 Evaluated UML-Diagrams and Reported Benefits
In this research question I am interested in investigating the extent to which the
different UML diagrams are evaluated. I am also interested in investigating what
aspects of UML-diagram usage that is evaluated and what the possible benefits (and
drawbacks) with different diagrams are.

Over the years, UML has naturally developed in certain directions from the first
version in 1997 to today’s version, UML 2.0. The UML-diagrams have consequently
also changed over time. Names of UML-diagrams have slightly differed with different
versions of UML. When I next speak of different UML-diagrams, I have not taken into
account different versions of UML, but I simply refer to the diagram-names used in
each article.

UML-diagrams are evaluated in 11 out of 21 articles, whereby one is a case study and
ten are experiments. The other ten articles evaluate UML as a whole or evaluate
extension mechanisms of UML such as stereotypes, meta-models/UML-profiles or
tools etc.

I found that seven UML-diagrams are evaluated in different ways in the 21 included
articles of this review. As a comparative reference, but not an answer, OMG [2]
defines 13 UML-diagrams in their UML 2.0 version. The distributions of UML-
diagrams that are evaluated in the included articles are presented in Table 6.

 44

Table 6: UML-Diagrams Evaluated

Diagrams Evaluated Article IDs No of articles
Class Diagram A14, A15, A17 3
Deployment Diagram A15 1
Use Case Diagram A2, A9, A10, A13, A14, A16, A17 7
Statechart Diagram A5, A12, A15, A17 4
Sequence Diagram A12, A15, A17 3
Collaboration Diagram A12 1

 The most evaluated UML-diagram in this review is the Use Case Diagram,

where 7 out of the 21 included articles have evaluated Use Case Diagrams in
one way or another.

 The second most evaluated UML-diagram is the Statechart Diagram, which is
evaluated in four articles.

 The Class Diagram and Sequence Diagram is both the third most evaluated
diagram in this review with three articles each.

Many articles evaluate more than one diagram-type in their study. The 11 articles that
evaluate UML-diagrams are represented 18 times in Table 6. This means that each
article evaluates almost an average of 2 diagrams each.

A list of articles that study different diagrams, and what aspects that are evaluated are
presented in Table 7.

Table 7: Articles that evaluate UML-Diagrams.

Article ID Intent Diagrams studied Aspects evaluated
A2
Case study

Evaluate a method for effort
estimation based on Use
Cases

Use Cases. Accuracy

A5
Experiment

Evaluate the effect of
composite states in
Statechart diagrams.

Statecharts. Understandability and
efficiency

A9
Experiment

Evaluate the use of a set of
Use Case authoring
guidelines

Use Cases. Construction
completeness and
structure.

A10
Experiment

Evaluate an inspection
technique that is based on
Use Cases.

Use Cases. Defect detection
efficiency.

A12
Experiment

Evaluate three different
notations for representing
the dynamic behaviour in
UML

Sequences,
Collaborations,
and Statecharts.

Semantic
comprehension.
Time and score.

A13
Experiment

Evaluate an inspection
technique that is based on

Use Cases. Defect detection
efficiency.

 45

Use Cases.

A14
Experiment

Evaluate two alternative
ways of applying a Use Case
model in a design process.

Use Cases and
Classes.

Completeness, structure
and time.

A15
Experiment

Compare an approach made
by authors’ to UML.

Deployments,
Statecharts,
Classes,
Sequences.

Comprehension and
construction quality

A16
Experiment

Evaluate an inspection
technique that is based on
Use Cases compared to
another approach.

Use Cases. Defect detection
efficiency.

A17
Experiment

Evaluate the impact of OCL
in UML.

Use Cases,
Sequences,
Statecharts, and
Classes.

Comprehension,
Maintenance, and
Defect Detection
effectiveness

A19
Experiment

Evaluate the possible
synergies and relationships
between diagrams in the
context of requirements
analysis.

Use Cases and
Classes.

Complementary effect,
Informational roles and
values. Completeness
of diagrams and
perceived ease of use.

6.3.1 Different Ways UML-Diagrams are Evaluated
I have identified three main categories for how UML-diagrams are evaluated with
regards to the usage area of different diagrams. These categories are explained next,
and the different articles in each category are listed.

The first category is articles that evaluate diagrams “as they are” and in their usual
area of use:

 Compare different ways of applying UML-diagrams to investigate which way
that leads to a better result in other UML-diagrams [A14].

 Compare UML to other self-made technique, with regards to comprehension
and construction quality in UML-diagrams of web application models [A15].

 Evaluate the semantic comprehension of diagrams [A12].
 Evaluate the synergies and relationships between diagrams in the context of

requirements analysis [A19].

The second category is articles that evaluate UML-diagrams when different guidelines,
languages, methods, techniques, formality, or UML-extensions etc. are added or
applied to the diagrams to evaluate effect:

 Evaluate the understandability of Statechart Diagrams when composite states
are applied [A5].

 Evaluate construction-, completeness-, and structure quality of Use Case
descriptions when a specific Use Case authoring guideline is applied [A9].

 Evaluate whether OCL has an impact on defect detection in UML models,
comprehension of UML models and maintenance of UML documents [A17].

 46

The third category consist of articles that evaluate extended use of UML-diagrams e.g.
where diagrams are applied to process activities or development phases like
estimation, inspection or other activities that are beyond the ordinary usage area:

 Evaluation of how well Use Cases (as input to the Use Case Point method)
apply to the estimation process [A2].

 Evaluation of how well Use Cases apply to inspection of software artefacts
[A10, A13, A16].

6.3.2 Aspects Evaluated
The included articles evaluate different aspects of UML-diagram usage. Some articles
evaluate comprehension aspects of using UML-diagrams, while others evaluate
construction aspects.

Except from four articles, all the included articles evaluate comprehension or/and
construction aspects of UML-diagrams in addition to other aspects such as
maintenance, defect detection and synergies between diagrams. I found that these two
aspects, comprehension and construction, were the two main aspects that are
evaluated.

The four articles that don’t evaluate comprehension and construction aspects of UML-
diagrams evaluate extended use of UML where UML-diagrams are used as a basis for
methods that is used in wider development such as the estimation process and
inspection of software artefacts. The aspects studied in these four articles are defect
detection, time and accuracy aspects.

When it comes to comprehension and construction quality of UML diagrams, I can see
a few tendencies for what type of diagrams that are likely to be evaluated related to
certain aspects. Table 8 gives an overview of what aspects that are studied in which
article.

When I look at the comprehension aspect of evaluated UML-diagrams, I see that the
most evaluated diagram is the Statechart Diagram. Sequence Diagrams and Class
diagrams are evaluated second most frequently. When it comes to construction
aspects of UML-diagrams, however, two other diagrams stand out as the two most
evaluated diagrams, namely Use Case- and Class Diagrams.

The Statechart Diagram is the most evaluated UML-diagram when we look at
comprehension aspects. All the four articles that reported on evaluation of
comprehension aspects had Statechart diagrams as part of the evaluation. But the
Statechart Diagram was only evaluated exclusively in one article. The three other
articles evaluated Statechart Diagrams along with other diagrams. The Statechart
Diagram is also evaluated against construction, defect detection, maintenance and time
aspects. It is not evaluated with regards to accuracy of method, ease of use and
synergic values.

From Table 8 it appears that the Use Case Diagram is the diagram that is evaluated
with the widest perspective. The Use Case Diagram is evaluated with respect to all the
aspects of UML-diagram usage that I have registered. The Use Case Diagram is also

 47

the only diagram that is used in extended ways in wider development activities such as
estimation of effort and inspection of software artefacts. In estimation, Use Cases are a
basis for the Use Case Point method that is used to estimate effort. Use Cases are also
used in inspection of software artefacts in methods such as Usage-based reading and
Perspective-based reading. Use Cases are here used to guide the inspection of software
artefacts.

Table 8: What Aspects that are Studied in which Article

Aspects studied Article IDs No of articles a diagram is studied
Comprehension A5, A12, A15, A17,

A19

Statechart Diagram – 4
Sequence Diagram – 3
Class Diagram – 3
Use Case Diagram – 2
Deployment Diagram – 1
Collaboration Diagram – 1

Construction A9, A14, A15 Use Case Diagram – 2
Class Diagram – 2
Statechart Diagram –1
Sequence Diagram – 1
Deployment diagram – 1

Defect detection A10, A13, A16, A17

Use Case (PBR/ UBR) – 3
Use Case Diagram – 1
Sequence Diagram – 1
Statechart Diagram – 1
Class Diagram – 1

Maintenance A17 Use Case Diagram
Sequence Diagrams
Statechart Diagram
Class Diagram

Accuracy of method A2 Use Case Point Method – 1
Time aspects A10, A12, A13,

A14, A16
Use Case (UBR/PBR) – 3
Use Case diagram – 1
Sequence Diagram- 1
Collaboration Diagram – 1
Statechart Diagram – 1
Class Diagram – 1

Synergies A19 Use Case Diagram – 1
Class Diagram – 1

Ease of use A19 Use Case Diagram – 1
Class Diagram – 1

 48

6.3.3 Benefits of Using UML-Diagrams

In this section I will answer the research question whether UML-diagrams yield any
benefits under development of new and existing software. More detailed questions that
we would like to find answers for in empirical studies of UML are:

1. Do different UML-diagrams yield benefits in different ways, and what are the
possible drawbacks with different diagrams?

a. Are there different benefits to be gained when applying UML-diagrams
in different ways?

2. Which diagrams gain benefits in terms of comprehension and construction
quality?

a. Are some diagrams easier to comprehend or to construct than others
and are certain diagrams more completely constructed than others?

b. Are some diagrams easier to learn for amateurs?
3. What are the benefits when UML-diagrams are used in an extended way, e.g. in

project management activities like estimation or in inspection of software
artefacts?

First of all I will summarize the results of evaluated aspects like comprehension and
construction quality of UML-diagrams. Next I will summarize the result of defect
detection aspects and accuracy of method aspects.

Results from Evaluation of Comprehension Aspects
When it comes to comprehension aspects of modelling with UML- diagrams, I have
summarized all the results:

- The use of Composite states improves the understandability of Statechart
Diagrams, so long as the subjects have some previous experience in using them
[A5].

- The comprehension of the dynamic modelling in object-oriented designs

depends on the diagram type and on the complexity of the document. The
design is more comprehensible, when the dynamic behaviour is modelled in a
Sequence Diagram. When using a Collaboration Diagram, the design turns out
to be less comprehensible as the application domain, and consequently, the
document is more complex [A12].

- For structure comprehension, when comparing another self-made technique

(OPM) to UML, the results were better for OPM in one system; but better for
UML in the other [A15].

- Using OCL can improve the ability to understand a system modelled with

UML, but such benefits are strongly dependent on ability, experience, and
training [A17].

- Use Case Diagrams are more completely interpreted than Class Diagrams, and

the presence or absence of one diagram (out of Use Cases and Class Diagrams)
when interpreting the other diagram has no effect on the outcome of the
interpretation [A19].

 49

The overall results are, hence, that different ways of applying UML diagrams and
augmenting them with Composite states or OCL appears to have an impact on the
comprehension of software systems, but the results are very much dependent on the
application domain for which UML is used and the qualifications of the developers
applying the technique. The results also show that diagrams do not support the
understanding of other diagrams.

Results from Evaluation of Construction Aspects
The results from evaluating of construction aspects are summarized next:

- Use Case authoring guidelines do not necessarily improve the Use Case
descriptions [A9].

- Different ways of applying a Use Case model in an object-oriented design

process have an impact on the quality of the resulting Class Diagrams [A14]:
Using Use Cases in the validation of Class Diagrams resulted in Class
Diagrams that implemented more of the requirements, while deriving Class
Diagrams from Use Cases resulted in Class Diagrams with a better structure.

- The results suggest that the technique made by the authors, OPM, is better than

UML in modelling the dynamics aspect of the Web applications [A15].

The existing results give some indications of how different ways of applying UML in
the construction process may yield differences in the quality of the final product, but
overall the results show that the construction aspects of UML have been the subjects of
very little evaluation.

Results from Correctness Aspects
Four articles evaluate defect detection aspects of UML-diagrams.

Three articles evaluate how well Use Cases apply to the inspection of software
artefacts [A10/A13/A16]:

One article investigates if different perspectives taken by inspectors lead to the
detection of different defects and if one perspective is superior to the other
[A10]. The results show that the perspective that uses Use Cases didn’t
succeed more than the other two perspectives. The two other evaluate an
inspection technique based on the expected usage of the system, Usage-based
reading [A13/A16]. The results of these studies show that Usage-based reading
is efficient and effective in detecting the most critical faults from a user’s point
of view, and it is also most efficient to use pre-developed Use Cases for usage-
based reading [A13].

One article [A17] evaluates the impact of Object-constraint language, OCL, on
the effectiveness when detecting defects in UML-diagrams. The results of this
study show that OCL has the potential to significantly improve an engineers’
ability to inspect a system modelled with UML, but also such benefits are
strongly dependent on the ability, experience, and training of software
engineers [A17]

 50

The overall results show that applying OCL in the construction of UML-diagrams may
improve such models, and further that applying usage-based reading with Use Cases as
input may be a way of improving defect detection in code inspections. However, the
results also show that the individual abilities and motivation of those using the
techniques were more important than the actual technique used.

Use Case Diagrams in Predictions
One article has studied the accuracy of an estimation method based on Use Cases, the
Use Case Point method, in estimating software development effort [A2]. The results of
this study indicate that the Use Cases can be useful in improving estimation accuracy.

6.4 UML Studied in Different Application Domains
This section presents an overview of in which application domains that UML have
been evaluated.

Nine of the articles report on studies of UML in different application domains. These
nine articles and the application domains studied are listed in Table 9.

Table 9: Application Domains Studied.

Article ID# Application Domains Studied
Case Studies
A2 Electronic commerce and call-centres, in particular within banking and

finance.
A18 Electronic commerce.
A21 Web- application. A Web-enabled database with end user and call

centre operator interfaces.
Experience Reports
A1 A global customer service system and an Embedded control system for

flow meters for a large, globally distributed shipping company.
A3 Thales - a wide variety of systems.
A4 Control system for Industrial plant applications.
A6 Telecommunication.
A8 A Commercial Customer Relationship Management application /a

service-oriented, multi-tier application.
Structured Questionnaire
A11 Telecommunication.

It appears that a few application domains like telecommunication; electronic
commerce and control systems are studied more frequently than other application
domains in the included articles of this review.

 51

When it comes to experiments, one out of twelve experiments study UML for specific
application domains. This experiment use extensions of UML for Web-applications
[A15]. One of the other articles [A7] studies quality of UML-stereotypes, and presents
an experiment that is independent of application domain.

The rest of the experiments, ten articles, use “toy systems” as experimental tasks in
their experiments. Six out of ten articles use either ATM systems or Library systems as
experimental tasks in their experiments.

The most frequently used “toy systems” are ATM [A5, A10, A19] and Taxi systems
[A13, A16, A17] with three articles each using these two as experimental tasks.
Library systems are also popular with two articles using them [A12, A14].

Other “toy systems” that are used as experimental tasks are:

 A phone call [A5].
 Interaction between a supermarket checkout operator and the checkout machine

[A9].
 PG (Parking garage) [A10].
 A Simple Cellular Telephone [A12].
 A Digital Dictaphone [A12]
 A Video Store (VS) system [A17].
 A music club [A19].
 Socio-technical systems for the Military domain [A20].

6.5 UML Compared to Other Approaches
The results show that UML is not empirically compared to other approaches to any
great extent. Only one article has deliberately tried to compare UML to another
approach. This article experimented with comprehension and construction of web
application models, and compared a technique made by the authors, OPM, to UML
[A15].

Of the 21 included articles, it is three articles that indirectly compare UML to other
approaches. These three articles report on studies with Usage-based reading and
Perspective based reading and has evaluated how well Use Cases apply to inspection
of software artefacts. Usage-based reading and Perspective-based reading are reading
techniques that utilize Use Cases during fault searching. The cornerstones of UBR are
Use Cases and prioritization. Use Cases are utilized to guide reviewers through a
software document during inspection.

Two of these articles report on studies that perform a comparison between Usage-
based reading and checklist-based reading. Checklist-based reading is the traditional
reading technique that provides a list of issues and questions, capturing the knowledge
of previous inspections, helping the reviewers to focus their reading.

The third article investigates whether different perspectives in Perspective-based
reading (PBR) detect different defects and if one is superior to the other. One of the
perspectives in the PBR reading technique is the user-perspective, which applies Use

 52

Case modelling. Here, the user perspective is compared to equivalence partitioning for
the tester perspective and structured analysis for the design perspective.

The Use Cases are prioritized in an order of importance from users’ requirements on
the system developed. Hence, reviewers using UBR focus on the important parts first,
leading to the important faults are found.

We had expected to find more articles that compare UML to other approaches.
Examples of such approaches are the Specification and Description Language SDL [3,
4] and Structured Analysis & Design [5, 6]. These two modelling languages are
presented in section 2.2.

6.6 Meta-Analysis
One question I want to investigate is whether there is a basis for drawing conclusions
from research done of Model-Driven Development with UML. In this section I
investigate the possibilities for performing procedures for meta-analysis in this thesis.

Meta-analysis is a statistical procedure for combining data from multiple studies.
Miller [15] states reasons for performing meta-analytical procedures like this:

“Deriving reliable empirical results from a single experiment is an unlikely
event. Hence to progress multiple experiments must be undertaken per
hypothesis and the subsequent results effectively combined to produce a single
reliable conclusion.”

Decisions about the utility of an intervention or the validity of a hypothesis cannot be
based on the results of a single study, because results typically vary from one study to
the next [7].

It is interesting to investigate whether it is possible to perform meta-analysis of the
research in the field of Model-Driven Development. The main conclusion I have
arrived at is that the included articles of this review are too different and too few to be
object for meta-analysis. Among the 21 included articles, there are a great variety of
UML related topics studied. It is a necessary demand for certain homogeneity across
studies, when meta-analysis is taken into account, and the included articles of this
review are too heterogeneous.

In their illustration of the use of meta-analysis in Software Engineering, Pickard et al.
[16] conclude that:

“Meta-analysis is appropriate for homogeneous studies when raw data or
quantitative summary information, e.g., correlation coefficient, are available. It
can also be used for heterogeneous studies where the cause of the heterogeneity
is due to well-understood partitions in the subject population.”

When the treatment effect (or effect size) is consistent from one study to the next,
meta-analysis can be used to identify this common effect [7]. When the effect varies
from one study to the next, meta-analysis may be used to identify the reason for the
variation.

http://www.meta-analysis.com/pages/effects.html

 53

The only subject that is evaluated a few times in the included articles are reading
techniques, based on use-cases, that is used in inspection of software artefacts. These
articles are however not homogenous enough to be object for meta-analysis in this
thesis.

Meta-analytic methods allow us to summarize the outcomes of previous research, and
form empirically derived expectations for future research focus [10].

Next I will present some procedures for meta-analysis.

Miller [15] describes the starting procedures for meta-analysis as the following stages:

1. A traditional meta-analysis starts with an exhaustive search of the literature to
find all the articles describing empirical evaluations of the concept under
investigation.

2. Subsequently the researcher must analyse these reports for their quality and the

`weight' of their experimental results, but initially what is important is that all
the potentially relevant articles are found.

3. From these articles, the researcher should only identify the relevant variables

required to evaluate their meta-analytical hypothesis. The unit of analysis in a
meta-analysis should be the impact of variable X on variable Y.

4. Once the researcher has completed these processes, they are ready to start the

meta-analysis process.

I have performed stage one of these procedures. As the procedures described by [15]
indicate; a natural step following a systematic review is meta-analysis. Meta-analysis
would also be a natural step following this systematic review, but the articles of this
study are too heterogeneous to be object for meta-analysis.

Glass et al. [9] investigated the research methods used by Software Engineering
researchers in the period 1995 to 1999. They found that meta-analysis was represented
in zero percent of the research methods used. This indicates that empirical Software
Engineering, MDD with UML included, has little focus on combining and
summarizing empirical results.

 54

6.7 Directions for Future Work
In this section I investigate what the authors’ of the included articles aim for future
research and what they advise others to focus on. I want to find out where the focus is
placed when the experts consider future work and what this indicates about current
work and what directions MDD research with UML is taking.

What the researches express about important future work indicate how far the research
has come. Often the few sentences in the end of each paper say a lot about the quality
of the work done, what the authors didn’t have time for in their current study,
weaknesses with their study and what the author consider being important unexplored
aspects of UML usage.

To answer these issues I have divided this sub-research question into eight questions
that are answered in the following sections.

6.7.1 The Amount of Articles that Present Aims for Future
work

All the 21 included articles present some kind of directions for future work. Most of
the authors aim to conduct further studies in the future to validate the results of their
work and contribute to the body of knowledge of Model-Driven Development with
UML. It varies, however, how detailed the aims for future work is reported. Table 10
presents an overview of what different articles aim for future research. As we can see,
the authors’ focus mainly on replicating their study and refining the method under
consideration.

Table 10: Articles and Aims for Future Work

Goal for Future Studies Article IDs No of Articles %
Replicate in other contexts A1, A2, A5, A7, A10,

A11, A12, A13, A14,
A15, A16, A19

12 57,1

Replicate, but not specified
how

A9, A17, A18, A21 4 19

Refine method under study A1, A2, A3, A5, A7,
A8, A9, A18, A20,
A21.

10 47,6

Replication and refinement A1, A2, A5, A7, A9,
A18, A21

7 33,3

Compare UML to other
approaches

A2, A4, A15, A16 4 19

Combine models/methods A2, A16, A21 3 14,3
Wider perspective A2, A21 2 9,5
Cost-effectiveness A2, A17 2 9,5

 55

6.7.2 Replication of Study in Different Contexts
In this section I identify how many authors’ that aim to replicate their study in other
contexts (different domains, different subjects, different development phase, different
research methodology etc.) to contribute to the body of evidence on Model-Driven
Development with UML. Is this work in progress? Table 11 presents an overview of
how the authors intend to differentiate their future replications.

A total of 16 out of 21 articles report aims for replicating their study. Twelve articles
specify how future replications should be differentiated. The most reported
differentiation is to use different subjects in future studies. Replications with other
research methodologies and replications in other domain and replications with other
experimental designs are also identified in many articles. Four articles aim to replicate
the study, but don’t specify how to differentiate the replication.

Five articles don’t report aims to study UML in other contexts [A4/A6/A8/A20]. Four
out of these five articles that don’t seek to conduct replications of their study are
experience reports. This may be because of the nature of experience reports; they are
often written in retrospect and are not so easy to replicate. Most of these articles have
identified a need to conduct further refinements of their UML-
experiences/method/language/tool under consideration to improve or make UML more
precise.

Table 11: How the Authors’ seek to differentiate their Study

Type of Data Article IDs No of Articles
Number of articles that suggest that
further work should aim to study
UML in different contexts.

A1, A2, A5, A7, A10,
A11, A12, A13, A14,
A15, A16, A19

12

Replicate with different subjects e.g.
students or professionals.

A2, A5, A15, A16,
A19

5

Replicate in other domains. A1, A2, A7, A11, A12,
A16

5

Replicate with an other research
methodology, e.g. case study or
experiment

A5, A16, A19, A7 4

Replicate with other experimental
designs, e.g. different number of
subjects or size and complexity of
task.

A5, A13, A14, A16 4

Conducting the same analyses on data
from existing experiments

A10 1

 56

6.7.3 Further Refinements of the UML-Method under
Consideration

Most of the articles that don’t seek to replicate the study in other contexts, aim to
refine their methods/tools/languages in future work. This need for further refinements
is identified in the current work.

Ten articles report a need to refine the method/tool under consideration. These ten
articles and the identified need for refinements are listed in Table 12.

Three out of these ten articles focus only on refinements in their aims for future work.
The rest, seven articles, seek to both replicate the study in other contexts and refine the
method under consideration.

Table 12: Articles that have Identified a need to Refine the Technology
under Study

#AID Refinements
A1 Refine the proposed tool. Incorporate other types of media and refine the

transition between different levels of restriction.
A2 Study the precision of the Use Case Point method compared with expert

estimates.
A3 Specify more precise descriptions of mappings.
A5 Investigate the optimal nesting level within the composite states.
A7 Develop guidelines on how to choose a type of stereotype appropriate for the

purpose under consideration.
A8 Make the template language more readable, as well as extending support for it

into our development environment.
A9 Improve existing guidelines
A18 Add specific heuristics to method under consideration to guide analysts in

identifying, resolving and managing inconsistencies.
A20 Provide support for the user strategies observed and respond to subjects’

suggestions by developing a help system for a step-by-step scenario generation
procedure or a scenario template and providing domain-specific information
with more examples. Finally, future work will develop an automatic scenario-
generation tool with information extraction techniques

A21 Improve pattern language for Use Case descriptions.

6.7.4 Further Evaluation of the Cost-Effectiveness of UML
In this section I have collected data to answer the question whether authors focus on
the cost-effectiveness of UML in their aims for future work.

Only two articles have addressed a need for further studies of cost-effectiveness of
UML. One was the article on the use of OCL in UML models, which says, “future
experiments should determine whether the benefits of devising OCL expressions
justify their cost” [A17]. The other was the article on the use of Use Cases in
estimation, which expresses a need to compare different methods for applying Use
Cases in estimation with regards to precision of the estimates and the effort needed to

 57

produce them [A2]. It does not seem to be much focus on investigating the cost-
effectiveness of UML in the reported future work of the included articles.

6.7.5 Further Studies to Compare UML to Other Approaches

In this section I investigate what the authors of the included articles express about
comparing UML to other approaches in their future work.

Three articles aim to compare UML to other approaches in future work. These three
articles and their aims for comparing UML to other approaches are listed in Table 13.

The results from section 6.5 indicate that UML is not compared to other approaches to
any extent. It does not seem that UML is going to be compared to other approaches in
the future either, especially when it comes to “the basics” of UML. One study [A4] has
developed a domain-specific language based on UML stereotypes and seeks to
compare their use of stereotypes with approaches from other domains.

Table 13: Articles that aim to Compare UML to other Approaches.

#AID Comparison of UML with other Approaches
A2 Study the precision of the Use Case Point method compared with expert

estimates. Compare the different methods for Use Case estimation described
with regards to precision of the estimates and the effort needed to produce
them.

A4 Compare our use of stereotypes with approaches from other domains
A16 The method needs to be replicated and compared with, for example, usage-

based testing.

6.7.6 Combine Approach under Study With Other Approaches
Three of the included articles aim to combine methods to investigate the possible
effects.

One article [A21] wants to explore the relationship between the ability to predict the
model of a finished application (Requirements pattern language) and the estimation of
effort (Use Case Point method). One other article [A16] seeks to investigate a hybrid
of two reading techniques, namely Usage-based reading and Checklist-based reading.
Another article [A2] believes that it would be useful to investigate how the Use Case
Points method, which provides top-down estimates based on a measure of size, can be
combined with other methods that provide bottom-up estimates.

These articles are, however not concerned with combining UML directly to other
approaches as these articles have another primary focus, namely a requirements pattern
language that is applied to Use Case construction, an inspection technique that utilizes
Use Cases and an estimation method that utilizes Use Cases.

 58

6.7.7 Further Study of Other UML-Diagrams or Other Aspects
than those under Consideration in Current study

One article [A19] considers investigating the rest of the modelling diagrams in UML,
such as Activity Diagram, Sequence Diagram, and Statechart Diagram. The same
article express that determining the core UML diagrams and the core constructs in
each diagram are other interesting topics in the area.

6.7.8 A Broader Perspective for Future Work
In this section I investigate if the authors’ see ”the bigger picture”, if their aims include
investigating other use-areas of UML than those under study in the current article. I
found two articles that expressed such needs, and these two articles were in relation to
estimation and project management.

The first article [A2] states, “The purpose of using the estimation method investigated
in this paper is to provide a complete estimate for all the activities in the project.
Nevertheless, we believe that some of the activities in a development project do not
depend on size or Use Cases points, for example, training and establishing a new
programming environment. Therefore, such activities should be estimated in
alternative ways and then be added to the Use Cases estimate to provide a final
estimate.” The other article [A21] wants to explore the role of Use Cases in wider
project management, such as the reporting of progress, and the management of
requirements that changes.

6.7.9 What the Directions for Future Work Indicate About the
Status of Current research

The authors have generally high ambitions for future work, as 76,2 percent of the
included studies report that they intend to replicate their study. They seem to be aware
of the need to replicate the study to support their findings. The fact that so many
authors focus on replicating their studies, indicate that the body of evidence is far from
large enough.

It appears that the main focus of future work lies with replication and refinement
aspects. Almost as many articles aim to refine the technique under consideration as
replicating the study. The need for replications of the studies is apparently there and
most of the studies are not replicated. The fact that most of the articles also claim that
refinements are needed indicate that more research needs to be done.

 16 of the 21 included articles express that they intend to replicate the study,
and 12 of these specify how to differentiate the replication.

 About half of the articles identify a need to refine the UML-method/tool under
consideration.

 Only 5 articles don’t mention anything about replicating the study. Out of these
5 articles, 4 articles are experience reports, and these are naturally not the
easiest research methodology to replicate. The experience reports don’t report
on replications, but focus on refinements.

 One third of the articles have identified a need for both replicating and refining
their UML-method/tool under study.

 59

But what about other aspects of UML-usage that are interesting to evaluate, such as
comparing UML to other approaches, evaluating cost-effectiveness or combining
diagrams/methods? It doesn’t seem to be much focus on such aspects.

The current research is not focused on comparing UML to other approaches to any
extent; Only one article compare UML to other approaches, namely OPM. In
directions for future work, three articles aim for comparing UML to other approaches.

One other question is if the use UML is cost-effective, that is yields economic benefits.
Aims for evaluating the cost-effectiveness of UML in future work is reported in two
articles. This indicate that researchers have ambitions for giving support of detailed
use of UML, but they are not so engaged with the big questions attached to the use of
MDD with UML, i.e. questions about when you should use the technique, to what
extent and what benefits and costs it will entail.

The overall impression I have from the results of this sub-question is that research on
Model-Driven Development with UML has a long way to go before a substantial body
of knowledge can be collected. There are a great variety of topics in the included
articles and the fact that the variety of studies is so large indicates that there is a need
for replication of studies to collect evidence for the usefulness of UML.

 60

 61

7. Threats to Validity

The following Section discusses the most important threats to the validity of the results
of this systematic review.

7.1 Choice of Journals and Conference Proceedings
The journals reviewed in this thesis were chosen because they are central in the field of
Software Engineering. The conference proceeding UML/MODELS was chosen
because it is the only conference that is concerned with the field of model-drivel
development and UML. Hence, I believe that the journals and conference proceeding
chosen constitute a proper representation of where empirical studies of MDD with
UML are likely to be found. However, it is difficult to determine whether the selection
of publication sources is representative of studies on Model-Driven Development with
UML as these are spread over the field of Software Engineering research. The chosen
publication sources are central, and I thus believe that the results are representative.

7.2 Selection of Articles
The systematic review of this thesis reviewed 21 articles selected from 963 articles
from four publication sources. We were two persons that agreed upon the selection of
articles. We did the identification of these articles individually and then came together
to discuss the selection of articles. If there were disagreements, we discussed it and
came to an agreement. We did a thorough job searching the publication sources for
empirical studies of MDD with UML and we read through all articles that possibly
could be of interest for our study.

It is often difficult to determine, based on the abstract, whether the article describes an
empirical study. The abstract is supposed to summarize the work done in that specific
article and it should be specified in the abstract how the research is validated. We used
keywords, inclusion words, to help us decide whether an article reported MDD with
UML based on its abstract. But based on my experience from this study I do not think
it is possible to define definite keywords for deciding the empirical value of an article.
The awareness of researchers when reporting their research doesn’t seem to allow for
this. It was sometimes difficult to decide based on the abstract if the article was
interesting, and we ended up scanning through many complete articles to be able to
decide the empirical value.

We may have missed articles during the selection of articles, due to our inexperience
in the field of Model-Driven Development with UML and empirical methods, but I
don’t consider this to be a significant threat to the validity as we were very thorough in
our search. This was the main reason for not having time to examine a larger set of
publication sources; we used much time on reading and extracting data from the
articles.

 62

7.3 Data Extraction
During the analysis of the articles, we extracted data from 21 articles. The data
provided answers to various questions of qualitative nature. The small number of
included articles allowed us to read all the articles thoroughly and gather data in a
thorough way.

It was occasionally difficult to extract data from the articles due to lack of a tradition
for empirical research. It was not always obvious e.g. what the correct research method
was for each study. Sometimes an article classified itself as a case study, while we
would classify it as an experience report.

A common way of addressing this validity threat is to have data extraction performed
independently by several reviewers so that the results can be compared and discussed
[12]. We addressed this validity threat by just doing that; we individually read the
whole article and agreed upon the extraction of data from each article. We did this for
the articles in the pilot-study and continued to independently extract data from the
articles until we were sure that we had a common idea of the type of data to be
extracted from each article.

 63

8. Conclusions and Future Work

Model-Driven Development (MDD) with UML is gaining widespread use in the IT-
industry, and aims to raise the level of abstraction for software development by the use
of models as key artefacts in software development, from system specification and
analysis, to design and testing. The use of UML is claimed among others to improve
the quality of software product deliverables, to support reuse and reduce the effort of
developing and maintaining the software product. However, little is known with
regards to the actual costs and benefits of MDD with UML.

This thesis is a systematic review of 21 selected articles that report empirical studies
on Model-Driven Development (MDD) with UML. The objective of the investigation
is to get an overview of the state-of-the-art for empirical studies of Model-Driven
Development with UML, and to show the typical information found in articles of this
topic. The data collected during analysis of these 21 articles, was used to address the
following issues: The amount of empirical research of MDD with UML, the extent of
different empirical research methods used, what different UML-diagrams that are
studied and their benefits, for which application domains UML are studied, to what
extent UML is compared to other approaches, the possibilities for meta-analysis and
what the authors suggest about future research.

The main conclusion of this study is that it does not exist sufficient empirical evidence
to draw conclusions regarding the usefulness of Model-Driven Development with
UML. The few existing empirical studies of MDD with UML do mostly suggest that
UML is useful, but they are too few and deal with too many aspects of UML-usage, to
allow for definite conclusions about the usefulness of the technique.

We found relatively few studies, 2,2 percent, that empirically evaluate Model-Driven
Development with UML in industrial projects or in experiments with human subjects.
Research on MDD with UML has so far had little focus on empirical studies, and
empirical studies have seldom MDD with UML as a topic. The empirical studies that
involve UML usage have also often another primary focus on e.g. inspection of
software artefacts.

Further, the existing studies deal with very many different aspects of UML usage. This
makes it difficult to arrive at a conclusion regarding how to use UML and regards to
utilitarian value and costs based on empirical studies. It was, however, a strong
increase of empirical studies of MDD with UML in 2005, so if this represents a
general trend, the possibilities for making such conclusions may be improved.

Experiments are the most used research method within studies of MDD with UML,
and this study found four times as many experiments as case studies. In addition to
case studies, it was also a number of experience reports. These also report experiences
with UML usage in industry projects, but with less formality than the case studies.

The Conference proceeding UML/MODELS, as the most important publication source
for research of MDD with UML studied in this thesis, had primarily case studies and

 64

experience reports among the empirical studies. The most prestigious publication
source that was examined in this selection, TSE, had only experiments, indeed only
two. This shows that experiments have a strong position among scientists that make
use of empirical methods, and could also be considered to be the research method that
gives the best and most solid results. At the same time, it appears that those who study
UML are most interested in studies that report industrial experiences, i.e. case studies
and experience reports. The research is very much focused on formulating and
proposing new methods and extensions to UML, and not so much in evaluating
existing approaches.

This study separates the studies in accordance to how UML is used in relation to
comprehension of a system, construction of a system, correctness of a system and
predictability in Software Engineering. The main results show that UML usage could
yield importance for the results of all these aspects, and all the aspects have
improvement potential when UML is used. However, some of the articles study the
interaction between use of UML, experience and competence of the developers and
application domain. These studies show that these factors are decisive for successful
use of UML and that it often has as much importance as the technology itself for how
well the results become. This indicates that future studies of MDD with UML should
describe the experience and competence of developers, and also the domain where
UML is used. Further, it is especially a need for more studies of what level of
competence that are necessary to utilize different aspects of UML, and how different
aspects of UML are adapted to different application domains.

This study looked especially at what the researchers behind the studies viewed as
important future work. Most of them found it necessary to replicate the study, perhaps
with another type of subjects. Others found it necessary to refine the UML-based
technique under study. Only two of the studies argued that future studies should
evaluate the cost-effectiveness of UML. This indicate that researchers have ambitions
for giving support of detailed use of UML, but they are not so engaged with the big
questions attached to the use of MDD with UML, i.e. questions about when you should
use the technique, to what extent and what benefits and costs it will entail. Hence, the
results could be useful for companies that already make extensive use of UML, but
these results do not provide much guidance when UML is introduced in a company.

Future Work
This review has shown that it exists relatively few studies that empirically evaluate
Model-Driven Development with UML in industrial projects or in experiments with
human subjects.

A proposal for future work would be to replicate this study, but to include a larger set
of publication sources. Empirical studies of MDD with UML are spread over the
whole Software Engineering field, and it may be necessary to search a larger set of
publication sources to get enough articles to be able to perform meta-analytical
procedures. We had not time available to include a larger set of publication sources in
this thesis as the selection of articles and extraction of data was too time consuming.

 65

This review showed a strong increase of empirical studies of MDD with UML in 2005.
A proposal for future work could be to include the following year to investigate if this
is a general trend, and if it were, it would give opportunities to make improved
conclusions about the usefulness of MDD with UML.

Furthermore, a proposal for future work is to investigate other aspects of empirical
studies on Model-Driven Development with UML that were not taken into account in
this study. We extracted more data from the articles than we got use for in this thesis.
This data was mainly focused on what type of subjects that were used, tasks, collection
of data and analysis, and hypothesis etc.

 66

 67

References

1. [cited-3.1.2007]; Available from: http://www.eclipse.org/proposals/eclipse-
mddi/.

2. [cited-5.1.2007];-Available-from:
http://www.omg.org/gettingstarted/what_is_uml.htm.

3. [cited-16.01.2007];Available from: http://www.sdl-forum.org/SDL/index.htm.
4. [cited-13.01.2007]; Available from: http://www.iec.org/online/tutorials/sdl/.
5. [cited-15.01.2007];Available-from:

https://users.cs.jmu.edu/tuckerrj/Courses/Cs555-
Common/StudyUnits/Unit5/SASD/sld001.htm.

6. [cited12.01.2007];Available-from:
http://www.excelsoftware.com/sasdtopic.html.

7. [cited-15.01.2007;Available-from:
http://www.meta-analysis.com/pages/why_do.html.

8. Briand, L., et al., Empirical Studies of Object-Oriented Artifacts, Methods, and
Processes: State of the Art and Future Directions. Empirical Software
Engineering, 1999. 4(4): p. 387-404.

9. Glass, R.L., I. Vessey, and V. Ramesh, Research in Software Engineering: An
analysis of the literature Information and Software Technology, 2002. 44(8): p.
491-506.

10. Hayes, W. Research synthesis in software engineering: a case for meta-
analysis. in Proceedings of the International Symposium on Software Metrics.
1999.

11. Holt, N.E., A systematic review of case studies in software engineering. 2006,
University of Oslo. p. 1-82.

12. Kitchenham, B. Procedures for Performing Systematic Reviews. 2004 [cited;
Available from:
http://www.idi.ntnu.no/emner/empse/papers/kitchenham_2004.pdf.

13. Kitchenham, B., L. Pickard, and S.L. Pfleeger, Case Studies for Method and
Tool Evaluation IEEE Software 1995: p. 52-62.

14. Kruchten, P., The Rational Unified Process An Introduction Third Edition
2003: Addison-Wesley.

15. Miller, J., Applying meta-analytical procedures to software engineering
experiments. The Journal of Systems and Software 2000(54): p. 29-39.

16. Pickard, L.M., B. Kitchenham, and P.W. Jones, Combining Empirical Results
in Software Engineering. Information and Software Technology 1998. 40: p.
811-821.

17. Rumbaugh, J., I. Jacobson, and G. Booch, The Unified Modeling Language
Reference Manual, Second Edition. 2005: Addison Wesley.

18. Segal, J., A. Grinyer, and H. Sharp. The type of evidence produced by
empirical software engineers. in Proceedings of the 2005 workshop on
Realising evidence-based software engineering. 2005. St. Louis, Missouri:
ACM Press.

19. Sjøberg, D.I.K., et al., A Survey of Controlled Experiments in Software
Engineering. IEEE Transactions on Software Engineering, 2005. 31(9): p. 1-
21.

http://www.eclipse.org/proposals/eclipse-mddi/
http://www.eclipse.org/proposals/eclipse-mddi/
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.sdl-forum.org/SDL/index.htm
http://www.iec.org/online/tutorials/sdl/
http://www.excelsoftware.com/sasdtopic.html
http://www.meta-analysis.com/pages/why_do.html
http://www.idi.ntnu.no/emner/empse/papers/kitchenham_2004.pdf

 68

20. Wohlin, C., M. Höst, and K. Henningson. Empirical Research Methods in
Software Engineering. in ESERNET 2001-2003. 2003. LNCS 2765.

21. Yin, R.K., Case Study Research Design and Methods. 2003: Sage Publications.
22. Zelkowitz, M.V. and D. Wallace, Experimental Validation in Software

Engineering. Information and Software Technology, 1997. 39(11): p. 735-743.

 69

Appendix A - Data Extracted from Articles

The conference proceeding UML/MODELS:

Article ID A1
Title Supporting Several Levels of Restriction in the UML
Author Christian Heide Damm, Klaus Marius Hansen, Michael Thomsen,

Michael Tyrsted
Year 2000
Source UML 2000, LNCS 1939, pp. 396-409, 2000
Type of study Experience report.
Intent Reports on experiences from investigating the practice of initial, creative,

and collaborative problem domain modelling through a number of
concrete projects. Argue for the usefulness of several levels of restriction
of the UML meta model for the usefulness of transferring a model
element from one level of restriction to another. Present and discuss a
tool, Knight, which illustrates the main ideas.

Results/
Lessons
learned.

In an object-oriented software development project – and in the process
of creating a UML model – the UML is not sufficiently flexible, and
hence it does not support all phases of object-oriented modelling.
Likewise, existing tools do not support initial modelling phases in a
satisfactory way. UML is often too restrictive in initial, informal, and
creative modelling, and it is in some cases not restrictive enough, e.g., for
code generation.

UML should support the initial phases of modelling, where incomplete
diagram elements and freehand drawing are heavily used. It is necessary
to do more expressive, but less restrictive, modelling in the initial and
creative problem domain modelling.

The fact that the UML metamodel disallows practices used in modelling
suggests that the UML metamodel should be modified. Instead of having
several more or less incidental metamodel, the UML metamodel itself
could contain different levels. The levels of the UML metamodel should
cover the range from very expressive models to models close to code.

A change in the UML metamodel should be accompanied by appropriate
tool support. Modelling involves going from more or less expressive
diagrams to more restricted models, and tools should support this
process.

Future work - CASE tools are too concerned with software engineering aspects of
development. Instead, aspects such as creativity, flexibility, and idea
generation should be focused on and more widely supported.
- Set up longitudinal studies of Knight in use in companies.

 70

- Refinements are needed in the Knight tool.
- Provide guidance or automation of a tool.
- Experiment with the transportable Mimio technology.
- Commercialize the tool.

Development
phase

Initial, creative, and collaborative problem domain modelling.

Application
domain

A large, globally distributed shipping company/a global customer service
system for the company. An Embedded control system for flow meters.

Duration
Project/
Participants
Details

Project Dragon: Involved a research group and a large, globally
distributed shipping company. The goal of the project was to implement
a prototype of a global customer service system for the company. This
was realized over a one and a half year period by the development of a
series of successful prototypes. In this project, three of the authors
participated actively and observed ongoing work.
Project Danfoss: was concerned with implementing an embedded control
system for flow meters. The project lasted a year and involved
experienced developers from a research group and engineers from a
private company. One of the authors participated in this project. This
involved formal observations of work and active participation. Thus our
approach was a mix of (ethnographic) observations and active
involvement in the project studied

Both projects used an iterative object-oriented approach to system
development. Throughout development, UML was used on whiteboards
and in CASE tools to visualise an emerging understanding of the
problem and solution domains.

Collection of
data and
analysis

Experiences from two projects.
Project 1: Three of the authors participated actively and observed
ongoing work.
Project 2: One of the authors participated in this project. This involved
formal observations of work and active participation.
Thus our approach was a mix of (ethnographic) observations and active
involvement in the project studied

Three representative scenarios distilled from the studies, used as a basis
for analysis of current modelling practice.

 71

Article ID A2
Title Estimating Software Development Effort Based on Use Cases –

Experiences from Industry
Author Bente Anda, Hege Dreiem, Dag I.K. Sjøberg, Magne Jørgensen
Year 2001
Source UML 2001, LNCS 2185, pp. 487-502, 2001
Type of
study

Case study

Intent Evaluate the application of a method for effort estimation based on Use
Cases points. Compare estimates based on Use Cases Points for three
development projects with estimates obtained by experts, in this case
senior members of the development projects, and actual effort.

Result The results indicate that this method can be used successfully since the
Use Case estimates were close to the expert estimates in our three case
studies. In one case it was also very close to the actual effort. The results
indicate that the guidance provided by the Use Case Points method can
support expert knowledge in the estimation process. Our experience is
also that the design of the Use Case models has a strong impact on the
estimates.

The following aspects of the structure of a Use Case model had an impact
on the estimates:
- The use of generalization between actors. The number of actors in a
Use Case model affects the estimate.
- The use of included and extending Use Cases.
- The level of details in the Use Case descriptions. The size of each Use
Case is measured as the number of transactions. We experienced the
following difficulties when counting transactions for each Use Case.

Future work - Study the precision of the Use Case Point method compared with expert
estimates.
- Study the precision of the estimates when using the Use Case Points
method in different types of projects and with estimators that have
different levels of experience.
- Combine the Use Case Points method, which provides top-down
estimates based on a measure of size, can be combined with other
methods that provide bottom-up estimates.
- Activities in a development project that do not depend on size or Use
Case Points should be estimated in alternative ways and then be added to
the Use Case estimate to provide a final estimate.
- Compare the different methods for Use Case estimation with regards to
precision of the estimates and the effort needed to produce them.
- Investigate whether other methods for Use Case estimation are suitable
for Use Case models with less detail.

Development
phase

Estimation in requirements engineering process.

 72

Application
domain

E-commerce and call-centres, in particular within banking and finance.

Study design 3 projects. Projects A, B and C. The research project was conducted in
parallel with project A during a period of seven months. Projects B and
C, on the other hand, were finished before the start of our research.

Location The study was conducted in a software development company located in
Norway, Sweden and Finland. The company has a total of 350
employees; 180 are located in Norway. The company uses UML and
RUP in most of their software development projects, but currently there
is neither tool nor methodological support in place to help the estimation
process.

Duration 7 months.
Case tools Programming environment: Java (Visual Café and JBuilder), Web Logic,

MS Visual Studio, Java (Jbuilder)
Software
artefacts

Project A: Use Case model, iteration plan and spreadsheets with
estimates and effort.
Project B: Requirements specification with Use Case diagrams and
textual descriptions of Use Cases, project plan and time sheets recording
the hours worked on the project.
Project C: A requirements specification with brief textual descriptions of
each Use Case, a Use Case model in Rational Rose with sequence
diagrams for each Use Case, project plan and initial estimates, and from
an interview with two of the project members.

Participant
detail

6+6+9 (=21) subjects. Professionals. 0-17 years of experience.

Collection of
data and
analysis

We compared estimates based on Use Case Points with estimates
obtained by experts and actual effort. We collected information about the
requirements engineering process and about how the expert estimates
were produced. We also collected information about the Use Case
models and actual development effort.

Data from project A was collected from the project documents, and from
several interviews with project members. Data from project B was
collected from project documents, and from e-mail communication with
people who had participated in the project. Data from project C was
collected from project documents, and from an interview with two of the
project members.

 73

Article ID A3
Title Practical Experiences in the Application of MDA
Author Miguel de Miguel, Jean Jourdan, and Serge Salicki
Year 2002
Source UML 2002, LNCS 2460, pp. 128-139, 2002. Springer-Verlag Berlin

Heidelberg 2002
Type Experience report
Intent Introduce some problems detected in the process of adoption of MDA

solutions in Thales.
Result The adoption of MDA require to take some decisions about the

technologies to be used, and the tools and methods that can support
MDA. These problems can create problems equal or more complex than
the problems that MDA try to solve. If there is not a precise description
of mappings, two different implementation of mappings can generate
very different code or models and this can create the dependencies
between the software and the mapping solution used

Future work OMG has started to specify more precise descriptions of mappings.
Development
phase

Application
domain

Many different domains.

Duration
Project/
Participant
Detail

During last years, Thales has started some actions for the adoption of
model driven engineering techniques. Two pilot programs have UML and
modelling engineering as main references in the software development
process. These pilot programs include the application and evaluation of
these techniques in four real projects, and other actions develop supports
for the adoption of these techniques and for their practical application in
the near future. The real projects use current solutions for the
transformation of models and code generation and evaluate the cost of
their application. And the innovation actions include the development of
UML extensions to support specific domains modelling languages,
techniques, and technologies, and the models transformations [25].

Collection of
data and
analysis

 74

Article ID A4
Title Using UML for Information Modelling in Industrial Systems with

Multiple Hierarchies
Author Peter Fröhlich, Zaijun Hu, and Manfred Schoelzke
Year 2002
Source UML 2002, LNCS 2460, pp. 63-72, 2002
Type Experience report
Intent Report on experiences in applying a UML domain-specific language for

information modelling of industrial plant applications, which typically
consist of multiple structural hierarchies.

- Introduce a meta-model, which describes, how the information models
can be expressed in UML.
- Discuss a simple case study, which applies this model in the context of
ABB`s Industrial IT platform.
- Describe our experiences with UML-based modeling in this domain and
discuss the differences between a UML-based representation and the
concepts of IEC 61346.

Result/
Lessons
learned

We have modelled two larger applications in the field of control system
engineering successfully with the domain-specific models. Each of these
applications was easily mapped to our Industrial IT platform. The teams
creating these models consisted of engineers as well as computer
scientists. We found that the usage of our UML models helped both
groups. They explained to the computer scientists the idea of multiple
hierarchies and helped the engineers to phrase their ideas within the
concepts, the Industrial IT platform supports.

Earlier attempts to map UML models representing one hierarchy (e.g.
only the functional hierarchy) into the platform and merge them with
structures for the other hierarchies later were not successful. We therefore
believe, that the complexity of the multiple hierarchies can only be
addressed in a model, which describes all hierarchies in parallel.

In our experience, such a model can only be created at the beginning of
the system development or application integration project. This means, at
the beginning of the application integration process a set of object types
with their relations in the different structures are created in the form of a
library of object types. The attributes within one application aspect can
then still be adapted to changes during the project, and new applications
can be added with little effort.

In contrast to our previous work [11], where we used a formal meta-
model with a custom semantics for modelling industrial applications, the
current work is based on UML stereotypes. This more informal use of a
meta model has been better accepted by the users than our previous

 75

logics-based approach.
Future work Part of our future work is to compare our use of stereotypes with

approaches from other domains
Development
phase

Application
domain

Industrial plant applications with multiple hierarchies. Control system
engineering.

Duration
Project/
Participant
detail

Computer scientists and engineers.

Collection of
data and
analysis

 76

Article ID A5
Title Evaluating the Effect of Composite States on the Understandability of

UML Statechart Diagrams
Author José A. Cruz-Lemus, Marcela Genero, M. Esperanza Manso and Mario

Piattini
Year 2005
Source MODELS 2005, LNCS 3713, pp. 113-125, 2005
Type of study Experiment
Intent Evaluate the effect of composite states on the understandability of the

UML statechart diagrams.
Hypotheses H0: the use of composite states does not improve the understandability

efficiency of an UML statechart diagram.
H1: the use of composite states improves the understandability efficiency
of an UML statechart diagram.

Result The results of the experiment confirm, to some extent, our intuition that
the use of composite states improves the understandability of the
diagrams, so long as the subjects of the experiment have had some
previous experience in using them.

Future work - Replicate with experienced practitioners, as well as by taking data from
real projects and using other experimental design.
- Investigate the optimal nesting level within the composite states.
- Check validity against UML2.0 Meta-model.
- In addition, we will investigate whether our proposed metrics [2] could
be used as maintainability indicators of UML statechart diagrams.

Development
phase

OO design. And code generation.

Application
domain

Experimental task: an ATM machine and a phone call.

Study design. Controlled experiment. Replication.
Location Exp. 1: University of Murcia. Exp. 2: University of Alicante.
Exp year Exp. 1: February 2005, Exp. 2: March 2005.
Duration
Case tools
Software
artefact

UML statechart diagrams. Composite states.

Participant
detail

Exp. 1: 55 Computer Science students from the University of Murcia.
All the subjects were in the fourth year of Computer Science and had
received a complete Software Engineering course in which they had
studied modelling techniques, including UML. They also received a
short training session before the performance of the experiment.

 77

Exp. 2: 178 subjects. Replication. The subjects were Computer Science
students. Got extra points in exam to participate, but it was voluntarily to
participate. The skill of the subjects using UML for modelling,
especially UML statechart diagrams, was much lower in this replication,
as most of them had only a few months of experience, and they had not
worked with some UML meta-model constructs (e.g. composite states)
yet. They received the same training session as in the original
experiment before performing the replication, but even with this, their
experience level was much lower, compared to the first group of
subjects.

Collection of
data and
analysis

Questionnaire. Time logging.

 78

Article ID A6
Title Model-Driven Engineering in a Large Industrial Context — Motorola

Case Study
Author Paul Baker, Shiou Loh, and Frank Weil
Year 2005
Source MODELS 2005, LNCS 3713, pp. 476–491, 2005. c Springer-Verlag

Berlin Heidelberg 2005
Type Experience report.
Intent Present experiences within Motorola in deploying a top-down approach

to MDE for more than 15 years.
Results/
Lessons
learned

We have found that through the coordinated and controlled introduction
of MDE techniques, significant quality and productivity gains can be
consistently achieved, and the issues encountered can be handled in a
systematic way.

- Code generators are much better than humans at finding optimal and
correct sequences of bit-manipulation instructions for performing the
marshalling and dealing with data from different endian machines.
-Through the coordinated and controlled introduction of MDE
techniques, significant quality and productivity gains can be consistently
achieved, and the issues encountered can be handled in a systematic way.
- Field data has shown that code generated by Mousetrap has fewer
defects than hand code or code generated by vendor tools.

- Architects and designers were reluctant to invest the extra effort needed
to develop rigorous models since the benefit of automated test generation
did not immediately justify the extra effort within their project scope.
- Users often did not understand the differences between test generation
and test specification.... and hence do not gain the full benefits
- The use of scenario-based test generation tools yields an approximately
33% reduction in the effort required to develop test cases.

- Motorola has seen tremendous gains in some areas of the development
process. This reduction is attributed to the ability to add a model test that
illustrates the problem, fix the problem at the model level, test the fix by
running a full regression test suite on the model itself, regenerate the
code from scratch, and run the same regression test suite on the
generated code.

Future work Continue to invest in MDE technology improvement ranging from
automation technologies, metrics, profile development, meta-modeling,
and analysis tools.

Application
Domain

Telecommunication.

Development

 79

phase
Duration 20 years.
Project/
Participant
details

Motorola has been active in MDE for nearly two decades and has seen
incredible successes and glaring failures.

Collection of
data and
analysis

 80

Article ID A7
Title Properties of Stereotypes from the Perspective of Their Role in Designs
Author Miroslaw Staron, Ludwik Kuzniarz
Year 2005
Source MODELS 2005, LNCS 3713, pp. 201-216, 2005. c Springer-Verlag

Berlin Heidelberg 2005
Type of study Quasi experiment.
Intent Evaluate whether stereotypes are appropriate for the purpose/quality of

stereotypes.
Hypotheses How to elaborate quality assessment criteria for new stereotypes based

on existing stereotypes which are known to be “good”?
Result The results indicate that there exist some relationships between different

categories in these classifications which make certain stereotypes
(decorative) not usable for a certain purpose (code generation). The set
of standard UML constructs is known to be insufficient for all purposes
and the users of UML often create stereotypes to enrich their set of
modelling elements.

Four categories of stereotypes according to expressiveness: Decorative
stereotypes, Descriptive stereotypes, Restrictive stereotypes and
Redefining stereotype

The classification organizes the stereotypes into three categories
according to their role: Code Generation stereotypes, Virtual Metamodel
Extension stereotypes, Model Simplification stereotypes.

Future work Develop guidelines on how to choose a type of stereotype appropriate for
the purpose under consideration. Use properties in our further research
for developing guidelines for creating and using stereotypes in a more
efficient way. Validate the method in a company.

Development
phase

Application
domain

Study design Before classifying all stereotypes, the appropriateness of the classifier
was verified by comparing the classifier’s classification results to
classifications of other subjects (Auxiliary Experiment) and was
performed in an academic environment with doctoral students classifying
a subset of thirteen stereotypes

Location
Duration
Case tools
Software Stereotypes.

 81

artefact
Participant
detail

Classifier. The auxiliary study was conducted with two additional
subjects. The subjects (and the classifier) possessed the necessary
knowledge of stereotypes and they also participated in other studies on
stereotypes. They were sufficiently experienced in modeling, object
orientation and programming.

Collection of
data and
analysis

We identified the types of a set of 98 stereotypes and their properties in
an empirical way by investigating stereotypes from UML profiles used in
industrial software development.

In the criteria elaboration we group stereotypes using categories from
two classifications of stereotypes, (i) according to their role and (iii)
according to their expressiveness. Based on the results of classifying
stereotypes we elaborated types of stereotypes. The properties are
intended to be used in further research for developing guidelines for
creating and using stereotypes in a more efficient way.

 82

Article ID A8
Title Using a Domain-Specific Language and Custom Tools to Model a Multi-

tier Service-Oriented Application — Experiences and Challenges
Author Marek Vokáč and Jens M. Glattetre
Year 2005
Source Models 2005, LNCS 3713, pp. 492- 506, 2005. c Springer-Verlag Berlin

Heidelberg 2005
Type Experience report
Intent Report of experiences of a re-implementing of a commercial Customer

Relationship Management application, in stages, as a service-oriented,
multi-tier application with a domain-specific UML language.

Lessons
learned

Perhaps the single most positive consequence of using a model is to raise
the general consciousness level about the need for well-designed,
thought through interfaces. Standardization is also an important benefit.

- The combination of modelling and generation helps by codifying and
enforcing the “standard” way of doing things. Simultaneous generation
of remote interfaces, local implementations, data and message contracts
as well as unit test skeletons and documentation pages from a single
model ensures that all of these artefacts are actually created
- We have successfully used this approach on a prototype scale, and are
now transitioning to full-scale development.
- In general, increased modelling experience correlates with an increased
perception of the benefits of the approach.
- Current modelling tools based on UML reflect the fact that UML
semantics are informal, while specific enough to point clearly in the
direction of an object oriented target language.
- Tools that support the creation of Domain-Specific Languages are not
yet ready for heavy industrial use.

- Our solution has been to create a simple code generator based on text
substitution, and to use a UML Profile to define the additional semantics
we need in the modelling language.
- Our experience so far is that the approach works quite well for those
lower layers of the application that express similar functionality
repeatedly, such as Data Access Objects for individual tables. When
modelling more high-level services, the emphasis is more on the
standardization of naming and behaviour, and the generation of skeletons
rather than complete functionality.

Future work - Making the template language more readable, as well as extending
support for it into our development environment.
- Further major development will probably wait for the availability of
more sophisticated tools. We continually strive to find the correct
balance between investment in inhouse tools and dependence on external
tools. In the future, a switch to externally developed tools is quite

 83

probable, when sufficiently mature and well-supported tools are offered.
Development
phase

Domain specific language, applies all phases. This paper focuses on a
code generation tool.

Application
domain

A commercial Customer Relationship Management application /a
service-oriented, multi-tier application.

Duration
Participant
detail

Six developers. The developers’ experience with modelling ranges from
minimal to extensive (more than 5 years), and their time with the
company from 7 years down to just a few months.

Collection of
data and
analysis

- Conducting interviews with architects and developers in our
organization to extract the knowledge presented here.
- In order to define our DSL, we have taken the minimum set of concepts
needed to capture our modelling requirements, and translated them into a
UML profile.

 84

The Empirical Software Engineering Journal:

Article ID A9
Title Replicating the CREWS Use Case Authoring Guidelines Experiment
Author Karl Cox, Keith Phalp
Year 2000
Source Empirical Software Engineering, 5, 245–267 (2000)
Type of study Experiment
Intent Replicate a previous experiment on evaluating the effects of using a set

of Use Case authoring guidelines (the Crews guidelines).
Hypotheses 3 hypotheses on the effects of content guidelines and 4 hypotheses on the

effects of style guidelines on the Use Cases.
Result The use of content guidelines led to more complete Use Cases. The use

of the style guidelines together with content guidelines had some
positive effect on the structure of the Use Cases, but was not useful for
Use Case content. Use of only style guidelines had a negative effect on
both aspects of Use Case quality. Many of the content guidelines were
applied “by chance” also by the subjects not following the guidelines,
hence the actual guidelines were not very useful. the CREWS guidelines
do not necessarily improve the use-case descriptions

Future work Further experiments on the effects of the guidelines. Development of
guidelines that help analysts locate appropriate information in documents
for use in use-case descriptions. Experiments that combine both reading
and writing guidelines.

Development
phase

Requirements engineering.

Application
domain

Experiment task: Supermarket checkout

Study design A: A control group in which subjects were given the problem statement
only
B: An experimental group in which the subjects were given the problem
statement and CREWS Style Guidelines
C: An experimental group in which the subjects were given the problem
statement and CREWS Content Guidelines
D:An experimental group in which the subjects were given the problem
statement and CREWS Style and Content Guidelines
Groups A and B contained four subjects each and groups C and D three
subjects each. Pen and paper with textual description and guidelines.

Location Bournemouth University
Exp year
Duration One hour to write the Use Cases.
Case tools None.

 85

Software
artefact

Use Case.

Participant
details

14 subjects, full-time students at a Masters degree course in Software
Engineering. The subjects received a half-day seminar on Use Cases a
week before the experiment. This was their first exposure to Use Cases.
The seminar included a discussion of use-case structure and contents,
such as levels of abstraction. The subjects also completed a form about
their experience of systems analysis and programming. Experience
ranged from 0 to 6 years in systems analysis and from 0 to 15 years in
programming. Ages ranged from 23 to 48.

Collection of
data and
analysis

The subjects received instructions (including Use Case guidelines for
some of the experimental groups). The resulting Use Cases were
evaluated against a set of criteria defined by the authors.

 86

Article ID A10
Title Are the Perspectives Really Different? – Further Experimentation on

Scenario-Based Reading of Requirements.
Author Björn Regnell, Per Runeson, Thomas Thelin.
Year 2000
Source Empirical Software Engineering, 5, 331–356, 2000.
Type of study Experiment
Intent 1) To investigate if different perspectives taken by code inspectors

(using the inspection technique Perspective-Based Reading, PBR) detect
different defects and if one perspective is superior to the others. 2) To
compare PBR to checklist-based inspection. Partial replication of
previous study.

Hypotheses Heff: The perspectives are different with respect to efficiency measured
in terms of the number of defects found per hour of inspection.
Hrate: The perspectives different with respect to effectiveness or
detection rates measured in terms of the fraction of defects identified.
Hfound: The perspectives are different with respect to defects detected
measured in terms of the distribution of defects found.

Result The analysis result show that (1) there is no significant difference
between the three perspectives in terms of defect detection rate and
number of defects found per hour, (2) there is no significant difference in
the defect coverage of the three perspectives, and (3) PhD students with
a checklist approach find significantly more defects per hour and have
significantly higher detection rate than MSc students with PBR
approach.
The results suggest that a combination of multiple perspectives may not
give higher coverage of the defects compared to single-perspective
reading. It is also indicated that individual abilities and motivation are
more important than the reading technique used.

Future work Conduct the same analyses on data from existing experiments as well as
new replications with the purpose of evaluating differences among
perspectives.

Development
phase

Inspection, applies to all development phases.

Application
domain

Experimental domain: ATM and Parking Garage

Study design Partial replication of previous studies. Control group. Formal factorial
experiment. 3 groups, 10 subjects per perspective.

Location
Exp year Spring 1998
Duration
Case tools None.

 87

Software
artefacts

Two requirements documents and scenarios for three perspectives (user
applying Use Case modelling, designer applying structured analysis, and
tester applying equivalence partitioning). Reporting templates for time
and defects.

Participant
details

30 Msc and PhD students + a control group of 9 PhD students used a
checklist reading technique. The subjects are fourth-year students at the
Master’s programme in Computer Science & Engineering and Electrical
Engineering at Lund University and PhD students at the department of
Communication Systems and the Department of Computer Science at the
same university. The MSc students were all given a two hour
introduction, while the PhD students were given a one-hour introduction.
An overview of the study was given together with a description of the
defect classification. The MSc students practised their own perspective
reading technique. The data collection forms were also explained and
used during the exercise. The checklist method was described for the
PhD students.

Collection of
data and
analysis

The subject’s defects’ logs.

 88

Article ID A11
Title Empirical Evaluation of CASE Tools Usage at Nokia
Author Maccari, Riva
Year 2000
Source Empirical Software Engineering, 5, 287–299 (2000)
Type Structured questionnaire
Intent Evaluation of case tool usage at Nokia, understanding the domains and

consequences of CASE tools
Result From this survey, it emerged that CASE tools support is reputed most

useful for the following functions: graphical drawing, automatic
documentation generation and storage of diagrams. The results hint to a
mismatch between the features required by the developers and those
offered by CASE products.

No feature has been rated very well implemented. This may mean that, in
general, commercial CASE tools fail to implement features in an optimal
way.

Modelling for standard UML-notation, be able to edit all the UML
diagrams, perform diagrams and support for design specification is by
the respondents considered to be sufficiently well implemented.
- Sufficiently well implemented and highly desired:
Support for standard UML notation, Perform diagram analysis (e.g.
consistency check), Support design specification, Utilise a repository,
Allow easy editing of text notes inside diagrams, Allow easy editing of
graphical data (diagrams)
- Insufficiently well implemented but highly desired:
Be intuitive and easy to use, Automatically generate well-structured
documents, Manage versioning

Future work - Investigate the reasons that lie behind results. Two evident examples
are the lower-than-expected usefulness of code generation and the
expressed need for configuration management and testing related
features.
- Investigate the consequences of CASE tools usage in our software
development organisation using an interpretive approach.
- Carry out similar experiments with developers and teams belonging to
different telecom industries.

Development
phase

All phases.

Application
domain

Telecom software/Mobile handsets.

Study design Interpretive. Context: It was performed on the context of various mobile
phone software development units inside Nokia, both in Europe and in
the US.

 89

Location Finland (6), Europe (7) and US (1)
Exp year Fall 1999
Duration
Case tools Respondents had experience with and rated these case tools: Rose98,

objectiveTime developer, Prosa/om, Rhadsody, Qlm 2.1
Software
artefact

Participant
details

14 design engineers and software developers. The respondents have
between 6 months and 25 years of software development experience,
with an average of 8.25 years of experience. Their experience in
software development inside Nokia ranges between 6 months and 7
years, with 2.71 years on average. Their experience in mobile phones
software development ranges between the same value of 6 months and 7
years, but with an average of 2.14 years.

Collection of
data and
analysis

A Structured questionnaire was sent to 48 design engineers and software
developers by electronic mail during August 1999. The answers were
collected and analysed during fall 1999.
We received 14 responses, for a response rate of almost 30%. According
to Edwards (1972), as quoted in Wood (1999), a response rate of 20% to
30% for mailed questionnaires is considered acceptable.

We have analysed the collected data using two simple descriptive
statistics: median and standard deviation.

 90

Article ID A12
Title An Initial Experimental Assessment of the Dynamic Modelling in UML
Author MARI CARMEN OTERO, JOSE´ JAVIER DOLADO
Year 2002
Source Empirical Software Engineering, 7, 27–47, 2002.
Type of study Experiment
Intent The goal of this empirical study is to compare the semantic

comprehension of three different notations for representing the dynamic
behaviour in unified modeling language (UML): (a) sequence diagrams,
(b) collaboration diagrams, and (c) state diagrams.

Hypotheses H1: There is no difference between 3x3=9 experimental conditions with
respect to . . .
H2: There is no difference between the subjects using the three diagram
types with respect to . . .
H3: There is no difference between the subjects reading OO design
documents with respect to . . .

Result The main conclusion of this study is that the comprehension of the
dynamic modelling in object-oriented designs depends on the diagram
type and on the complexity of the document. The software project design
written in the UML notation is more comprehensible, when the dynamic
behaviour is modelled in a sequence diagram. While if it is implemented
using a collaboration diagram, the design turns out to be less
comprehensible as the application domain, and consequently, the
document is more complex.

Future work Include the effects of the interactions. We have shown in this experiment
that investigating the interaction between factors is essential to
understanding the results of the experiment.
More practical work with the models is needed, in order to identify
which diagrams provide the most appropriate semantics for each domain.

Development
phase

Design.

Application
domain

Experimental task: A Simple Cellular Telephone, a Library System and a
Digital Dictaphone

Study design Goal-question-metric (GQM) for organizing the experiment. 3x3
factorial design with repeated measures. Blocking technique.

Location
Exp year May 1999.
Duration
Case tools None.
Software
artifacts

Sequence, collaboration and state diagrams.

 91

Participant
details

18 Last year students. The students attended classes about UML
regularly before the experiment and participated in a training exercise (1
day) related to the correct use of the material.

Collection of
data and
analysis

Chronometer. Questionnaires were scored.
Collect time.

 92

ArticleID A13
Title Evaluation of Usage-Based Reading - Conclusions after Three

Experiments
Author Thomas Thelin, Per Runeson, Claes Wohlin, Thomas Olsson, Carina

Andersson.
Year 2004
Source Empirical Software Engineering, Volume 9, Issue 1 - 2, Mar 2004, Page

77
Type of study Experiment
Intent Evaluate the usage-based reading, UBR, technique.

Exp. 1: Compare Use Case driven inspections with prioritized Use Cases
versus randomly ordered Use Cases.
Exp. 2: Compare UBR with checklist-based reading (CBR).
Exp. 3: Investigate whether the reviewers perform better in the
preparation phase if they develop Use Cases as part of the inspection or
if it is better to utilize pre-developed Use Cases in the inspection. The
third experiment also studies UBR as part of the inspection process.

Hypotheses Exp. 1: Is UBR effective in finding the most critical faults? Is UBR
efficient in terms of total number of critical found faults per hour? Are
different faults detected using different priority orders of Use Cases?
Exp. 2: Is UBR more effective and efficient than CBR?

Exp. 3: Is pre-developed Use Cases needed for UBR?
HEff - There is a difference in efficiency (i.e., found faults per hour)
between the reviewers utilizing pre-developed (Util) Use Cases and the
reviewers who develop Use Cases (Dev).
HRate - There is a difference in effectiveness (i.e., rate of faults found)
between the reviewers utilizing pre-developed Use Cases and the
reviewers who develop Use Cases.
HFault - The reviewers utilizing pre-developed Use Cases detect
different faults than the reviewers who develop Use Cases.

Result The main results are (1) UBR is an efficient and effective reading
technique that can be used for user-focused software inspections, (2)
UBR is more efficient and effective if the information used for UBR is
developed prior to, instead of during the individual preparation, and (3)
the meeting affects the UBR inspection in terms of increased
effectiveness and decreased efficiency.
From the first experiment, it is concluded that the reviewers find
different faults using prioritized Use Cases compared to randomly
ordered Use Cases. Furthermore, UBR (prioritized Use Cases) is
significantly more effective and efficient than randomly ordered Use
Cases in finding faults of high importance for a user.
From the second experiment, it is concluded that UBR is significantly
better than CBR in terms of both effectiveness and efficiency in finding
the faults that affect the user the most. The results show that reviewers

 93

applying UBR are more efficient and effective in detecting the most
critical faults from a user’s point of view than reviewers using CBR.
From the third experiment, it is concluded that is more efficient to use
pre-developed Use Cases for UBR. However, there is a trade-off of
whether the Use Cases should be developed beforehand or on the fly
during inspection. The meeting of the third experiment increased the
effectiveness of the faults found, but decreased the efficiency.

Future work The series of experiments presented in this paper shows that UBR has
the potential to become an important reading technique. However, more
research is needed and there are several areas that should be considered
in order to further develop and investigate UBR. Among these are
replications, time-controlled reading (add time limits to the Use Cases),
reading techniques for inspection meetings and case studies in software
organizations.

Development
phase

Inspection, applies to all development phases.

Application
domain

Experimental task: Taxi system.

Study design Exp. 3: Two groups. Controlled variable: experience.
Location Sweden (Lund University, Blekinge Institute of Technology).
Exp. year Exp. 1: fall 2000. Exp. 2: spring 2001.Exp. 3: Fall 2001.
Duration Exp. 3: Two days.
Case tools None.
Software
artefacts

Exp. 1&2: High-level design (Use Cases).
Exp. 3: Textual requirements document (natural language), Use Case
documents,
A design document. In addition, the communication between the system
and the users is specified. Furthermore, the design document contains
two message sequence charts (MSC)

Participant
details

Exp. 1: 27 Students of their third year of the software engineering
Bachelor’s program at Lund University (Campus Helsingborg).
Exp. 2: 23 Students of their fourth year of the software engineering
Master’s program at Blekinge Institute of Technology.

Exp. 3: 82 (34+48) Students. The experiment was a mandatory part of
two courses in verification and validation. The subjects in Hbg were 34
third-year students at the software engineering Bachelor’s program at
Lund University. The students were almost finished with their education
and have experience in requirements engineering, Use Case
development, software design and in the particular application domain
(taxi management systems).
The subjects in Rb were 48 fourth-year software engineering Master’s
students at Blekinge Institute of Technology. Many of the students have
extensive experience from software development. As part of their
Bachelor degree, they have obtained practical training in software

 94

development. Several of the Master students also work in industry in
parallel with their studies.

Collection of
data and
analysis.

Exp. 3: Fault log, time log, Experience questionnaire, Inspection
questionnaire, The experiment data are analyzed with descriptive
analysis and statistical tests. The collected data were checked for normal
distribution. Mann-Whitney test, Chi-square test, Kruskal Wallis.

 95

Article ID A14
Title Investigating the Role of Use Cases in the Construction of Class

Diagrams
Author Bente Anda and Dag I.K. Sjøberg
Year 2005
Source Empirical Software Engineering. 10, 3 (Jul. 2005), 285-309.
Type of study Experiment
Intent Investigate empirically advantages and disadvantages of two alternative

ways (derivation technique and validation technique) of applying a Use
Case model in an object-oriented design process. Compare the use of
pen and paper with the use of a commercially available modeling tool
regarding the two techniques.

Hypotheses H10: There is no difference in the completeness of the class diagrams.
H20: There is no difference in the structure of the class diagrams.
H30: There is no difference in the time spent constructing the class
diagrams.
(Both experiments).

Result The validation technique resulted in class diagrams that implemented
more of the requirements. The derivation technique resulted in class
diagrams with a significantly better structure than did the validation
technique in the student experiment and slightly better structure in the
experiment with the professionals. There was no difference in time
spent between the two techniques. In the experiments the use of the
tool did have an effect on the results.

Based on these results, it may be beneficial to derive classes directly
from the Use Cases when the Use Case model contains many details
and there is a strong need for good structure, but that otherwise it is
better to apply the Use Case model in validation.

Future work - Conduct further studies to investigate how to apply a Use Case model
in an object-oriented design process.

- Increase the size and complexity of the task, use different Use Case
format

- Compare different tools by having a larger number of subjects using
each tool, improve the collection of background data, as well as process
information during the experiment, to study which process attributes
and skills actually affect the quality of the object-oriented design, and
extend the evaluation of the quality of the resulting class diagrams by
combining several aspects.

Development
phase

Transition from functional requirements to object-oriented design.

Application
domain

Experiment domain: Library system.

 96

Study design 2 controlled experiments. Replicated. Based on pilot experiment.
Experiment 2 is a differentiated replication of Experiment 1.
Randomized block experimental design. Students were divided into
two groups, one group with pen and paper one with UML-tools.
Professionals used their familiar development tool.

Location Oslo
Exp. year
Duration 2,5 to 4,5 hours.
Case tools Experiment 1: Tau UML Suite, pen and paper.

Experiment 2: Visio, Rational Rose, Magic Draw.
Software
artefacts

Textual requirements document and Use Case model.

Participant
details

Experiment 1: 53 Subjects were students (third or fourth year of
study) taking an undergraduate course in software engineering. They
had learned the basics of object-oriented programming and UML
through this and one previous course. The subjects were paid to
participate in the experiment.
Experiment 2: The subjects were 22 consultants from eight
companies. All of them had used UML on software development
projects. More than half of them had studied UML as part of their
education. The companies were paid to participate in the experiment.

Collection of
data and
analysis.

The subjects uploaded documents produced through a web based tool
for experiment support. Feedback collection tool (only experiment 1).
Analyze the class diagrams and rating them by Author and extern.

 97

Article ID A15
Title OPM vs. UML - Experimenting with Comprehension and Construction

of Web Application Models
Author Iris Reinhartz-Berger, Dov Dori.
Year 2005
Source Empirical Software Engineering, Volume 10, Issue 1, Jan 2005, Pages

57 - 80
Type of study Experiment
Intent Evaluating comprehension and construction quality of OPM in

comparison to UML in the domain of web applictions. Conallen’s
extension to UML is compared to OPM.

Hypotheses 1. Questions which can be answered by inspecting a single UML view
would be more correctly answered when UML rather than OPM is
used.
2. OPM will be more adequate than UML for understanding the
dynamic aspects of a system and the complex relations among various
(structural and dynamic) system modules.
3. OPM was expected to be more correctly and more easily applied
than UML for modelling complex, dynamic applications.

Result 8 out of 9 questions scored higher when the system was modelled using
OPM than when it was modelled using UML. In particular, the
construction problems for both systems scored higher when students
were required to use OPM. In both case studies, when using OPM the
students answered the distribution questions more correctly, but these
differences were not statistically significant. For the structure
comprehension category questions, the students’ results were
significantly better when using OPM in the project management
system, while in the book ordering application the students’ results in
this category were insignificantly better when they used UML.
Comparing OPM to UML in terms of Web applications comprehension
and modelling quality, we concluded that the single OPM diagram
type, the Object-Process Diagram (OPD), which supports the various
structural and dynamic aspects throughout the system lifecycle, is
easier to understand and apply by untrained users.

The results suggest that OPM is better than UML in modelling the
dynamics aspect of the Web applications. In specifying structure and
distribution aspects, there were no significant differences. The results
further suggest that the quality of the OPM models students built in the
construction part were superior to that of the corresponding UML
models.

Future work Future work should validate our findings with analysis and design
experts who are familiar with these languages.
Further experiments should also be carried out to compare OPM to
other leading modelling languages and methods.

 98

Development
phase

Design.

Application
domain

Web applications. Experimental tasks: project management system and
a book ordering application.

Study design Two groups, two test form types. The two case studies were designed
to be identical in their scope, or size. Final three-hour examination of
the course. The questions on both models for the same case study were
identical.

Location Technion, Israel Institute of Technology
Exp year Spring semester 2002
Duration 3 hours.
Case tools
Software
artefacts

UML (deployment, Statecharts, site map, class, sequence) and OPM-
diagrams/models.

Participant
details

81 Third year students in a four-year engineering B.Sc. program at the
Technion, Israel Institute of Technology, who took the course
‘‘Specification and Analysis of Information Systems’’. They had no
previous knowledge or experience in system modeling and
specification. During the 13-week course the students studied three
representative modeling notations: DFD for two weeks, UML for five
weeks, and OPM for two weeks. They then also studied how to model
Web applications in UML and OPM for one additional week each. The
students were required to submit four modeling assignments in order to
practice the use of DFD, UML (Use Case, Class, and Sequence
Diagrams), Statecharts, and OPM.

Collection of
data and
analysis.

All the questions about the project management system (in both UML
and OPM) were graded by one of the two teaching assistants, while the
questions about the book ordering application were graded by the other.

 99

IEEE Transactions on Software Engineering:

Article ID A16
Title An Experimental Comparison of Usage-Based and Checklist-Based

Reading
Author Thomas Thelin, Per Runeson, and Claes Wohlin
Year 2003
Source IEEE Transactions on Software Engineering vol. 9 No. 8 August 2003
Type of study Experiment.
Intent Compare usage-based and checklist-based reading. Reading techniques,

Inspection.
Hypotheses H0 Eff — There is no difference in efficiency (i.e., found faults per

hour) between the reviewers applying prioritized Use Cases and the
reviewers using a checklist.
HA Eff — There is a difference in efficiency between the reviewers
applying prioritized Use Cases and the reviewers using a checklist.
H0 Rate — There is no difference in effectiveness (i.e., rate of faults
found) between the reviewers applying prioritized Use Cases and the
reviewers using a checklist.
HA Rate — There is a difference in effectiveness between the
reviewers applying prioritized Use Cases and the reviewers using a
checklist.

H0 Fault—The reviewers applying prioritized Use Cases do not detect
different faults than the reviewers using a checklist.
HA Fault—The reviewers applying prioritized Use Cases detect
different faults than the reviewers using a checklist.

Result The main results from the analysis are that reviewers using UBR find
more critical faults and do it more efficiently.

Efficiency—Reviewers using usage-based reading are significantly
more efficient than reviewers using checklist-based reading. This
difference is significant for all faults and for critical faults.
Effectiveness—Reviewers using usage-based reading are significantly
more effective than reviewers using checklist-based reading. This
difference is significant for critical faults, but not for all faults.
Faults—Reviewers using usage-based reading find different and more
unique faults and, especially, more critical faults than reviewers using
checklistbased reading.
Teams—The team analysis also shows that usage based reading is more
effective and efficient than CBR. This is true for all team sizes ranging
from two to six reviewers.
Fault Finding—A reviewer applying usage-based reading starts to find
faults earlier than a reviewer using CBR. The differences for all faults
are about 20 minutes and this difference is even larger for critical
faults.

 100

Future
Work

- Enhance UBR, either to include checklist items or to investigate the
time-based ranking method.
- Replicate and compare with, for example, usage-based testing.
- Replicate in different context and address changes in the design, for
example, use a different domain, and seed more faults into the
document under inspection.
- Investigate the method in a case study in an industrial setting in order
to evaluate whether it still provides positive effects. Investigate the
method with professionals as subjects.
- Investigate UBR with time-controlled reading.
- Investigate a hybrid of UBR and CBR.

Development
phase

Inspection, which is performed in all phases. Inspection of a design
document.

Application
domain

Taxi management system

Study design Controlled. Two groups. Blocking on experience.
The Use Case document contains 24 Use Cases. The design document
contains 38 faults, of which two are new faults found during the
experiment and eight are seeded faults injected by the person who
developed the system. The 28 others are faults made during
development of the design document and later found in inspection or
test. These faults were reinserted prior to the experiment.

Location
Exp year Spring 2001.
Duration 2 days.
Case tools
Software
artefacts

One requirements document (natural language), one design document
written in the specification and description language (SDL)(includes
two MSC.), one Use Case document, and one checklist.

Participant
details

23 Fourth-year software engineering master’s students at Blekinge
Institute of Technology in Sweden. Many of the students have
extensive experience from software development. As part of their
bachelor’s degree, they have obtained extensive practical training in
software development. The experiment was a mandatory part of a
course in verification and validation.

Collection of
data and
analysis

A questionnaire was used to explore the students’ experiences.
Descriptive analysis and statistical tests. Checked as to whether they
follow a normal distribution. Since no such distribution could be
demonstrated using normal probability plots and residual analysis,
nonparametric tests are used. The Mann-Whitney test is used to
investigate hypotheses HEff and HRate and a chisquare test is used to
test HFault.

 101

Article ID A17
Title An Experimental Investigation of Formality in UML-Based

Development
Author Lionel C. Briand, Yvan Labiche, Member, Massimiliano Di Penta, and

Han (Daphne) Yan-Bondoc
Year 2005
Source IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31,

NO. 10, OCTOBER 2005
Type of study Experiment.
Intent Evaluate whether the OCL has an impact on three software engineering

activities, that is, 1) the detection of defects in UML models, 2) the
comprehension of a system’s functionality, behavior, and structure
based on UML models, and 3) the maintenance of UML documents,
with a particular focus on change impact analysis.

Hypotheses H0: There is no difference in the subjects’ Comprehension (C)
Maintenance (M), and Defect Detection (D) effectiveness while
working on UML analysis documents using or not using OCL.
Ha: using OCL improves effectiveness for all three dependent
variables.

Result The results show that, once past an initial learning curve, significant
benefits can be obtained by using OCL in combination with UML
analysis diagrams to form a precise UML analysis model. However, the
benefits for each task are modest and become practically significant
only when taken all together.
But, this result is however conditioned on providing substantial,
thorough training to the experiment participants. Furthermore, such
benefits are strongly dependent on the ability, experience, and training
of software engineers.

Future Work - Investigate if the benefits of devising OCL expressions justify their
cost.
- Take into account how to measure cost, the quality of implementation,
and the correctness and completeness of UML models.
- Re-evaluate the cost-benefit of defining precise UML models with
OCL constraints when tools are available.

Development
phase

Analysis and design.

Application
domain

Experimental tasks: Cab Distribution (CD) system and a Video Store
(VS) system.

Study design Compulsory laboratory exercises. Controlled. 4 experimental groups.
Each group existed of 9-10 students (a total of 38) This paper reports
on a series of two controlled experiments. 4 labs, each lab being a week
apart.
Two blocks (High Ability and Low Ability). Grouped according to

 102

whether they learned OCL in a prerequisite course or in the course (the
material and number of hours of lectures used were the same), and
according to the undergraduate engineering program they were
registered in. Each of the four student groups was then randomly
assigned subjects from blocks in nearly identical proportions.

Location Carleton University, Ottawa, Canada.
Exp. year
Duration Exp 1: 4 weeks, Exp 2: 8 weeks
Case tools
Software
Artefacts

Use Case diagram along with Use Case descriptions, sequence
diagrams, Statecharts, textual description of their states and transitions,
a class diagram, and a data dictionary

Participant
Details

Exp. 1: 38, Exp. 2: 84
The context of the experiment is a fourth year Computer and
Software Engineering course. The last, most advanced software
engineering course in their four-year Bachelor program. The students
have all been trained in UML-based object-oriented software
development in at least three previous courses, with an increasing focus
on software modelling. Students were not graded on performance but
were expected to perform their tasks individually in a professional
manner to obtain the points assigned to the laboratory. They were
aware of the pedagogical purpose of the exercises—that is to
experience modelling tasks in the presence or absence of OCL—but did
not know the exact hypotheses tested. More training was administered
before the second experiment trial than in the first trial.

Collection of
data and
analysis

UML analysis documents with or without OCL constraints, and with or
without seeded defects, questionnaires for the Comprehension and
Maintenance tasks, and a post lab survey questionnaire. Additionally,
to verify if the blocks are appropriate, a pre-lab survey questionnaire is
administered to obtain information about the background of the
subjects.

Defect Detection task: The subjects’ performance for this task is
measured as the percentage of seeded defects detected.
Comprehension task: The subjects’ performance for this task is
measured as the percentage of correctly answered comprehension
questions.
Maintenance task: The subjects’ performance for this task is measured
as the percentage of affected model elements correctly identified. A
complementary measure that was considered but not presented here due
to space constraints is the total number of wrongly identified model
elements: We did not observe significant differences.

 103

The Requirements Engineering Journal:

ArticleID A18
Title Deriving Goals from a Use-Case Based Requirements Specification
Author Annie I. Anto´n, Ryan A. Carter, Aldo Dagnino, John H. Dempster,

Devon F. Siege

Year 2001
Source Requirements Engineering (2001) 6: 63-73
Type of study Case study
Intent - Employ the goal and scenario identification and elaboration heuristics

available in the GBRAM (Goal-Based Requirements Analysis
Method).
- Report on experiences in managing a large collection of Use Cases
during the requirements specification activities for an electronic
commerce application

Results - Lack of contextual information increases the risk that system
requirements may be misinterpreted. We provided this context by
always attaching a goal to each Use Case.
- It is valuable to separate user goals from system goals by expressing
achievement goals accordingly. Achievement goal categories lead to
the derivation of a more complete set of goals and viewpoint analysis.
- Missing and inconsistent naming of Use Cases is indicative of an
incomplete and flawed specification

- The list of included and extended Use Cases often pointed to
undefined or non-existent Use Cases. Additionally, some referenced
Use Cases were never defined. To identify missing Use Cases, we
created an ‘includes tree’ to track relationships between Use Cases and
discovered 15 missing Use Cases.
- Due to the lack of requirements management tool support, a
significant amount of overhead was incurred. Whereas maintaining pre-
traceability requires dutiful attention, it can be greatly simplified with
appropriate tool support. Introducing additional traceability can affect
cost and scheduling estimates. However, the gains and benefits well
outweigh the costs [26].

- Domain-specific goal classes help ensure better requirements
coverage
- A Use Case collection is not a suitable substitute for an SRS.
- Our study gives evidence of software practitioners adopting a Use
Case collection as a suitable substitute for a requirements specification.

Development
phase

Requirements engineering.

Domain
studied

Electronic commerce.

Future work - Further research is needed and advances in the role of Use Cases and

 104

goals during requirements specification as well as the need to
investigate and develop more appropriate evolutionary requirements
and software process models for rapid development environments.
-Further extend and refine the GBRAM.
- Continue the collaboration with project sponsor to focus on defining
appropriate evolutionary prototyping models that provide analysts with
feedback and additional insights into the evolving set of requirements
needed to build a given system.
- Further investigation for the evidence of software practitioners
adopting a Use Case collection as a suitable substitute for a
requirements specification.

Location
Duration Sessions ranging from one to three hours in duration, once a week for

two months.
Case tools
Software
artefacts

Use Case model, requirements pattern.

Participant
details

Collection of
data and
analysis

Individual analysts performed goal analysis of agreed-upon Use Cases
that were then discussed and revised while collaboratively recording all
goals and auxiliary notes. During these sessions they applied the
GBRAM. The GBRAM was employed to analyse an existing
requirements specification.

Goals and their associated information were identified, numbered,
classified and stored. The information was tracked. Goals were named
using meaningful keywords selected from a predefined set of goal
categories.

 105

Article ID A19
Title Are Use Case and class diagrams complementary in requirements

analysis? An experimental study on Use Case and class diagrams in
UML

Author Keng Siau, Lihyunn Lee
Year 2004
Source Requirements Engineering (2004) 9: 229-237
Type of study Experiment
Intent Compare Use Case and class diagrams. Investigate whether these two

diagrams are able to complement each other in the context of
understanding system requirements.

Hypotheses – H1: The completeness of interpreting class diagrams and Use Case
diagrams is different.
– H2a: The inclusion of Use Case diagrams affects the completeness of
the problem domain interpretation using class diagrams.
– H2b: The inclusion of class diagrams affects the completeness of the
problem domain interpretation using Use Case diagrams.
– H3: The sequence combination of the diagrams affects the
completeness of the problem domain interpretation.
– H4: Perceived Usefulness is different between Use Case diagrams
and class diagrams.
– H5: Perceived Ease of Use is different between Use Case diagrams
and class diagrams.

Result Hypothesis H2a and H2b were rejected.
- The results show that the Use Case diagrams were more completely
interpreted than the class diagrams.
- The presence or absence of one diagram when interpreting another
diagram had no effect on the outcome of the interpretation.
- There is no statistical difference between class diagrams and the Use
Case diagrams for perceived usefulness.
- There is no significant difference in the perceived ease of use between
class diagrams and Use Case diagrams.

Development
phase

Requirements analysis.

Application
domain

ATM banking system and music club.

Future work - Replicate this study using different research methodologies or other
subjects.
- Investigate the rest of the modeling diagrams in UML, such as
activity diagram, sequence diagram, and statechart diagram.
- Determine the core UML diagrams and the core constructs in each
diagram.
- Assert a need for the coexistence of class diagrams and Use Case
diagrams for effective requirements analysis.

 106

Study design Randomly assigned to one of the two treatment groups
Case tools
Software
artefact

Use Case and class diagram.

Participant
detail

31 university student volunteers who had completed at least one object-
oriented UML course.

Collection of
data and
analysis

Experiments capturing subjects’ performance via questionnaires and
process-tracing method were carried out. The final data was obtained
from counts of matching information elements identified by the
subjects during protocol analysis. A scatter plot diagram and a
histogram. Chebyskev’s Rule. Verbal protocol analysis. Audiotaped
and later transcribed, coded, and analyzed.

 107

Article ID A20
Title Scenario advisor tool for requirements engineering
Author Jae Eun Shin, Alistair G. Sutcliffe, Andreas Gregoriades
Year 2005
Source Requirements Eng (2005) 10: 132–145
Type Experiment
Intent Investigate the usefulness of a scenario advisor tool, which was built to

help requirements engineers to generate sufficient sets of scenarios in
the domain of socio-technical systems.

Hypotheses
Result The overall user performance for writing new scenarios was

significantly better with the tool. For writing variations of scenario
provided, the overall user performance was also significantly higher
with the tool. The subjects used more information, and scenario
components with the tool than with the paper-based method, and this
may have led to better task performance. The scenario advisor tool
helped users to write sounder scenarios without any domain
knowledge, and is also useful for generating more variations of existing
scenarios by providing scenario generation hints for each property of
the model components.

Development
phase

Requirements engineering.

Application
domain

Socio-technical systems. Experiment applied in the Military domain.

Future work Refine the scenario advisor tool. Develop a help system for a step-by-
step scenario generation procedure or a scenario template and
providing domain-specific information with more examples. Develop
an automatic scenario-generation tool.

Duration
Case tools Scenario advisor tool.
Software
artefacts

Scenarios. Paper-based information (scenario taxonomy tables and
schema diagrams)

Participant
details

8 postgraduates and 2 researchers (mean age=28 years; mean computer
use=10.3 years; 6 male/ 4 female) participated in the experiment
without the tool. None had experience in scenario-based design,
although three had some experience in writing scenarios at a novice
level. Only one participant was familiar with the military domain.
9 postgraduates and 1 researcher (mean age=27.5 years; mean
computer use=10.5 years; 6 male/ 4 female) participated in the
experiment with the tool. None had experience in scenario-based
design although three had some experience in writing scenarios at a
novice level. Two participants said they were familiar with the military

 108

domain, but they were not domain experts.
Collection of
data and
analysis

Performance data was assessed by comparing subject scenarios to a
standard solution. For each sub-task, we graded the scenario produced
on a 50 point scale. Pre-test questionnaires were used to collect user
profiles, while post-test questionnaires assessed user satisfaction. We
used observation notes and audio recordings of evaluation sessions to
analyze usability problems and users’ scenario-generation strategies.
Debriefing interviews followed up observed usability problems and
collected user suggestions for improvements.

 109

Article ID A21
Title Testing the predictive ability of a requirements pattern language
Author Peter Merrick, Patrick Barrow
Year 2005
Source Requirements Engineering (2005) 10: 85–94
Type of study Case study
Intent Evaluate the predictive ability of a requirements pattern. Investigate

whether an accurate Use Case representation can be constructed from a
loosely defined customer requirements statement. A comparison of
functional requirements before and after the system is built.

Result Only one Use Case predicted from the initial diagrams was not
implemented in the final system The final system contained more Use
Cases than those predicted by the output from the pattern language. In
the final system, there were 30 Use Cases delivered, of which 21 were
predicted, or 70%. Of all identified Use Cases, fully 23% were assigned
to the wrong actor in the first modelling iteration.

The application of the RPL is an effective procedure for generating a
model quickly, at an early stage in the process, from a non-structured
requirements statement.

Future work - Improve pattern, but how and where will not become clear until they
have been used more often.
- Assemble a body of evidence where the RPL had been applied.
- Study the role of Use Cases in wider project management, such as the
reporting of progress, and the management of requirements that change.
Explore the relationship between the ability to predict the model of a
finished application and the estimation of effort. This work will follow
on from that explored in applications of the Use Case Points Method.

Development
phase

Procurement phase or ‘‘pre-analysis’’; the informal software
engineering lifecycle phase

Application
domain

A Web-enabled database with end user and call centre operator
interfaces. Website and database.

Location Norfolk, England.
Duration
Case tools
Software
artefact

Use Cases and Requirements pattern.

Participant
details

The 2 authors of this paper have applied the method. It is probably the
same two that developed the requirements pattern.

Collection of
data and
analysis

The original Use Case model was created through the application of a
requirements pattern language designed to be employed during the
procurement phase of an IT system. The final Use Case model was

 110

reverse engineered from the working application.

Comparison of whether Use Cases defined in the first iteration remain
in the second iteration. The second comparison looks at the models
from the perspective of the built system, and compares the number of
new user-goal Use Cases that were not predicted in the initial model.

 111

	Abstract
	Acknowledgements
	Contents
	List of Tables
	1. Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Contributions
	1.4 Structure of Thesis

	2. Model-Driven Development with UML
	2.1 The Unified Modelling Language
	2.2 Related Techniques
	2.2.1 Specification and Description Language SDL
	2.2.2 Structured Analysis & Design

	3. Related Work
	3.1 Research in Software Engineering: An Analysis of the Literature
	3.2 The Type of Evidence Produced by Empirical Software Engineers
	3.3 A Survey of Controlled Experiments in Software Engineering
	3.4 Experimental Validation in Software Engineering
	3.5 A Systematic Review of Case Studies in Software Engineering
	3.6 Summary

	4. Empirical Research Methods
	4.1 Experiments
	4.2 Case Studies
	4.3 Experience Reports
	4.4 Surveys

	5. Methodology
	5.1 Research Method - Systematic Review
	5.2 Distribution of Work
	5.3 Planning the Review: Pilot Study
	5.4 Selection of Journals and Conferences
	5.5 Study Selection Procedures and Inclusion Criteria
	5.5.1 The Nature of Included Studies
	5.5.2 Procedures for Selecting Articles
	 The Journal Empirical Software Engineering
	The Conference Proceeding UML/MODELS
	IEEE Transactions on Software Engineering and Requirements Engineering Journal

	5.5.3 Deciding Upon the Inclusion Criteria

	5.6 Data Extraction
	5.7 Analysis of the Articles
	5.8 Other Interesting Questions

	6. Results
	6.1 The Amount of Empirical Research on Model-Driven Development with UML
	Trend over Years

	6.2 The Extent of Experiments, Case Studies and Experience Reports
	6.2.1 The Extent of Experiments
	6.2.2 The Extent of Case Studies
	6.2.3 The Extent of Experience Reports

	6.3 Evaluated UML-Diagrams and Reported Benefits
	6.3.1 Different Ways UML-Diagrams are Evaluated
	6.3.2 Aspects Evaluated
	6.3.3 Benefits of Using UML-Diagrams
	Results from Evaluation of Comprehension Aspects
	Results from Evaluation of Construction Aspects
	Results from Correctness Aspects
	Use Case Diagrams in Predictions

	6.4 UML Studied in Different Application Domains
	6.5 UML Compared to Other Approaches
	6.6 Meta-Analysis
	6.7 Directions for Future Work
	6.7.1 The Amount of Articles that Present Aims for Future work
	6.7.2 Replication of Study in Different Contexts
	6.7.3 Further Refinements of the UML-Method under Consideration
	6.7.4 Further Evaluation of the Cost-Effectiveness of UML
	6.7.5 Further Studies to Compare UML to Other Approaches
	6.7.6 Combine Approach under Study With Other Approaches
	6.7.7 Further Study of Other UML-Diagrams or Other Aspects than those under Consideration in Current study
	6.7.8 A Broader Perspective for Future Work
	6.7.9 What the Directions for Future Work Indicate About the Status of Current research

	7. Threats to Validity
	7.1 Choice of Journals and Conference Proceedings
	7.2 Selection of Articles
	7.3 Data Extraction

	8. Conclusions and Future Work
	Future Work

	Appendix A - Data Extracted from Articles

