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Table 1: Abbreviations
Abbreviation: Meaning:

VCO Voltage Controlled Oscillator

FDSM Frequency Delta Sigma Modulator

A/D Analog to digital

A/F Analog to frequency

F/D Frequency to digital

ADC Analog to digital converter

DAC Digital to analog converter

DSP Digital signal processing

OSR Oversampling ratio

LO Local oscillator

LSB Least Significant Bit

MSB Most Significant Bit

RCA Ripple Carry Adder

RCAM Ripple Carry Array multiplier

CSA Carry Save Adder

CLA Carry Lookahead Adder

PPM partial product matrix

This table lists the meaning of common abbreviations and acronyms

used throughout the thesis:
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Chapter 1

Introduction

This chapter provides some background in order to explain the motivation

for developing the linearization technique described later. An introduc­

tion is provided to the FDSM concept, for which the linearization technique

is developed.

1.1 Background

An increasing part of the world is becoming digital. Since all the natural

processes are analog and the computer is digital, an analog to digital

conversion is necessary for any kind of digital signal processing. Due

to the rapid increase in digital products, like digital radio(DAB), digital

television, mp3 players etc, the demand for high quality A/D converters

increases in parallel as well. In addition, wireless and battery driven

equipments, being essential in the trendy tech world today, requires A/D

converters which operates well with low supply voltages and also have

low power consumption.

A novel analog to digital conversion technique, well suited for the

products of today, is the Frequency Delta Sigma A/D conversion tech­

nique, so called FDSM [4] [5]. This is a high quality A/D converter, which

operates well with low power supplies and also requires low power. The

term “FDSM” does not have any clear definition. While referring to FDSM

some interpret the Voltage Controlled Oscillator (VCO) as a part of the

FDSM, whereas others will exclude the VCO from FDSM. In this thesis

however, we will utilize the last mentioned interpretation of FDSM. The

FDSM technique is mathematically equivalent to the conventional ∆ ­ Σ
technique [6]. The FDSM uses frequency modulation (FM) for converting

1
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Figure 1.1: The complete FDSM system with non­linear LC­VCO input

and digital correction

analog signals into digital. Another advantage of FDSM is of being fully

digital as we have defined FDSM without the VCO. This will avoid the

problems due to analog circuitry. In order to provide the input to the

FDSM system, a VCO is utilized. As there is no feedback in the FDSM,

linearity errors in the VCO provided input are not compensated.

For the A/D conversion a linear relationship between the analog in­

put and digital output is necessary, otherwise the digital representation

is heavily distorted. Therefore VCOs showing good linearity, such as the

ring oscillator have always been used in the front end of the FDSM [7] [8].

However, the linearity of such ring oscillators is limited for low supply

voltages. In consequence new solutions are being considered.

In this thesis another approach than the common ring oscillator method

is developed, which will inherently focus on how good linearity is achieved.

The technique is to use a LC­VCO, a systematic nonlinear VCO, and in

attempt to obtain linearity we apply digital correction at the back end

of the FDSM. The FDSM being a non­feedback system, results the non­

linearity from the VCO pass through. This non­linearity can thus be cor­

rected in the digital domain, namely at the back end of the FDSM. The

developed technique in this thesis is mainly based on the square root

characteristic of LC­VCO. Alternatively before the signal (analog) enters

the FDSM, a correction could be made right after the VCO. Such a cor­

rection would have to be done in the analog domain, which is however a

more difficult way to obtain the desired correction, and is therefore not

preferable. The over all system will look something like shown in figure

1.1.

Other and more common use of the LC­VCO is in radio, and other

wireless communication systems, where the LC­VCO is used for fre­

2



Table 1.1: LC­VCO vs Ring Oscillator

Ring Oscillator LC − VCO
V/F conversion Good linear Non­linear

Power consumption Higher power consumption Low power consumption

Phase Noise Worse phase noise Low phase noise

Tuning Range (relative) Wide tuning range Small tuning range

Area Small area Big area

quency up­ and down conversion of signals. In this thesis the focus

is at the use of LC­VCO in FDSM, thus our main concern is the linear

characteristics of the LC­VCO. Linearity of the LC­VCO is rarely a subject

of concern when being used for its normal applications.

There are both advantages and disadvantages when using LC­VCO

compared to ring oscillator [9]. These are listed in table 1.1.

The main reason why we focus on LC­VCO, is that the main nonlinear­

ity of LC­VCO is known à priori. This is due to square root dependency

of the output frequency on the input voltage [10] that applies for most

LC­VCOs. The linearization technique is also tended to correct for this

non­linearity. Since we know that the non­linearity has the shape of a

square root, it will be tried corrected by squaring.

This thesis is mainly based on the LC­VCO built by Bjørn Christian

Paulseth [11], another Master student here at University of Oslo. He

made a LC­VCO operating at frequencies around 5 GHz. His main focus

was to get the phase noise as low as possible. Since he had a satisfactory

square root response, we selected to use this VCO for our linearization

process. He tuned the VCO from 0­1 V, and recorded the output fre­

quencies. Those frequencies are used in this thesis.

To sum up, the goal of our research has been to assess the achieved

linearity by using our developed technique on the frequency values ob­

tained by Paulseth. By applying these values in our developed lineariza­

tion technique, good results are obtained. Non­linearity as low as ­42 dB

or equivalent 7 bit is recorded.

1.2 Thesis layout

The layout of the thesis is as follows

3



• Chapter 1 is an introduction, and presents the motivation for doing

this thesis

• Chapter 2 starts with the introduction of the source of non­linearity

and the FDSM system. Thereafter some existing linearization tech­

niques are presented, and finally the theory of the linearization

technique developed is presented.

• Chapter 3 is an analyze of the real data. Comparison of the ob­

tained results with theory and other solutions is done. A discus­

sion around the results is presented.

• Chapter 4 starts with some theory about the implementation of

the squarer circuit. The different parts used in the VHDL squarer

code are presented, and finally results from the implementation

are presented

• Chapter 5 sums up the work done, gives a conclusion and sugges­

tions for further work

4



Chapter 2

Digital Linearization

In this chapter an introduction to the source of non­linearity is given, fol­

lowed by a brief presentation of the FDSM system. A few existing linear­

ization techniques are introduced. Finally, the theory of our linearization

technique is presented.

Before taking a detailed look at the linearization technique developed

in this thesis, an introduction is provided on the LC­VCO and the FDSM.

It is the LC­VCO which is the source of non­linearity in our A/D con­

verter.

2.1 Source of non­linearity

The main operation of a VCO is to generate frequencies that are propor­

tional to some tuning voltage. The LC­VCOs are most frequently tuned

by reverse biased pn junctions or MOS varactors . Due to the charac­

teristic of the varactors that are applied and also the tank circuit, the

LC­VCO gain is quite non­linear.

For our purpose the LC­VCO functions as an integrated part of an

A/D converter. An analog signal received by the VCO is used in order

to generate some frequency proportional to this input signal. Further,

this frequency is provided as input to the FDSM system. Therefore the

VCO can be considered an analog to frequency (A/F) converter. One

consideration to keep in mind when using the LC­VCO is that the pro­

portional factor which regulates the voltage­frequency relationship, is

not constant. When applying higher voltages to the LC­VCO, the change

in frequency per unit change in the input voltage is decreased, thus mak­

ing the LC­VCO non­linear.

5



Usually, the non­linearity of the LC­VCO is unwanted in the FDSM ap­

plication. However, if the characteristics of the non­linearity is known

a priori, such as the usual square root function of LC­VCOs, then there

is the possibility to try to digitally correct the FDSM output in order to

obtain linearity. We will try to get the linearity by squaring the FDSM

output values, which has the form of a square root function. As better

square root output the LC­VCO has, thus better linearization is achieved

and thus simpler, faster, and less area occupying would the digital cor­

rection circuit be. In order to correct a square root characteristics, only

a squaring circuit is needed. If there are any other non­linearities, addi­

tional correction circuitry is needed.

For further details on LC­VCO, I will refer to the thesis of Bjørn Chris­

tian Paulseth [11].

2.2 Frequency Delta­sigma modulator

For our purpose, the FDSM is just a black box. Taking analog frequencies

as its input, and giving digital values as its output. A brief introduction

is given here to provide a better understanding of the complete system.

As mentioned earlier, we will focus on the non­linearity of the VCO

in FDSM. Compared to conventional delta sigma converters, the FDSM

has a major advantage that it do not have feedback, thus avoiding non­

linearities which appear in feedback DAC’s in traditional ∆− Σ convert­

ers. The lack of this feedback in turn, makes the FDSM very sensitive

to non­linearities in the VCO. As a consequence of the FDSM being a

non feedback device, any non­linearities from the VCO will pass right

through[8]. The linearity of the A/D conversion is thus limited by the

linearity of the VCO. A highly linear VCO is therefore important. The

VCO might by a linear VCO, or a non­linear VCO with correction.

The FDSM is superior to conventional Nyquist converters. First of all

the FDSM provides the same advantage as conventional ∆ − Σ modulat­

ors, of noise shaping. By using high oversampling ratio, e.g much higher

sampling frequency than the minimum required nyquist sampling rate,

the quantization noise is pushed out of band to frequencies higher than

the frequency range of the signal of interest. Another advantage of the

FDSM is of being a fully digital converter, as defined without the VCO,

thus avoiding the analog domain problems. In addition the FDSM also

6
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Figure 2.1: A simple first order FDSM (ref[1])

have some advantages compared to traditional Delta­Sigma modulators,

these are

• multibit quantization with no feedback DAC

• very simple implementation in standard digital CMOS

• very high sampling frequency potential

• suited for low power supply voltage operation

• potential of low power consumption [10]

2.3 Linearization techniques

There exist diffferent kind of linearization techniques. Some techniques

are specific for the device targeted, examples of which are found in

[12], while other are more general [13] [14] [15]. A lineariztion tech­

nique for VCO linearization and one linearization technique developed

for corrrecting non­linearity in ADC are shortly presented here.

One linearization technique, developed for VCOs is “Linearization by

frequency feedback” [14]. This technique uses frequency feedback to lin­

earize the non linear output of the VCO. The authors also assume that

this technique may also potentially reduce the phase noise, but this was

not observed in the realized structure.

Another linearization technique is described in [15], where a digital

correction scheme for real­time applications is described. This tech­

nique has been proposed to correct for Integral Nonlinearity in any kind

of ADCs. One potential advantage from using this technique, is the pos­

sibility to correct for offset errors. The price to pay for these benefits is

7



that an identical extra ADC must be included together with some extra

digital signal processing (DSP) circuitry.

Since for our purpose, the linearization is to be done in the digital

domain, placed at the back end of the FDSM, any technique requiring

feedback to the VCO could not be used. We also wanted a simple but

effective technique, without any complex signal processing. The desired

technique should also use as few components as possible, to keep the

power consumption low. The technique that is developed in this thesis

is linearization by squaring. Unlike the other techniques, this technique

is based on à priori knowledge about the non­linearity. Since the known

non­linearity has the shape of a square root, a squaring in theory gives

perfect linearization. But we are working with real components, and as

known nothing is ideal in the real world. Deviations thus both from an

ideal square root at the output of the VCO, and from perfect linearity at

the squared output is expected. These deviations will be analyzed in the

next chapter.

Regarding implementation, the squaring can be achieved by a mul­

tiplier device, since squaring is indeed a special case of multiplication.

Squaring is multiplication in the special case where the multiplicator and

the multiplicand are the same. A lot of literature is found on multipli­

ers. Since we only needed squaring, and not multiplication in general, we

wanted to make a squarer circuit. The reason for this is that a squarer is

more compact than a multiplier, thereby reducing the area requirement

and power consumption, two major factors in todays world. More about

the implementation is found in chapter 4.

2.4 The linearization technique

The technique developed in this thesis is somewhat different from pre­

vious mentioned techniques. The main difference that can also be con­

sidered an advantage is that the non­linearity we are working with here

is static and known à priori. Unlike the other techniques where the non­

linearity is unknown, the à priori knowledge about the non­linearity sim­

plifies the linearization. Since we know the shape of the non­linearity,

which in our case is the square root function, we can make a circuit to

correct for exact that non­linearity, The non­linearity being static, gives

us also the advantage that we can make a static correction, instead of

8



some complex dynamic correction.

The linearization technique is meant to be implemented with the

FDSM system. To keep the circuit size small, and also save power, a

simple technique requiring few components was needed. Multiplication

is an option to solve this problem. However a squarer was selected to

make the implementation even more compact. Since fewer components

are needed to implement a squarer, compared to traditional multipliers,

power is also saved.

By linearization here in this thesis, is meant to have a linear relation

between the output of the digital correction circuit, and the input to the

VCO. Some of the internal results may be non­linear, but the final result

is to be linear.

The concept can be easier explained by an example. Let us assume that

three different signals are applied to the VCO, where the amplitude of

the first signal is A1. The amplitude of the second signal, A2, is A1 +
∆V1, and the amplitude of the third signal is A3 = A2+∆V2, and ∆V1 =
∆V2 The desired output is of course that the VCO has a linear response

so that the second oscillation frequency is f2 = f1+∆f1, and the third

frequency is f3 = f2+ ∆f2, such that ∆f1 = ∆f2. This is the desired

and also the correct output. The desired relationship can be described

mathematically as,

A1 → f1

A2 = A1+∆V1→ f2 = f1+∆f1

A3 = A2+∆V2→ f3 = f2+∆f2

∆V1 = ∆V2→ ∆f1 = ∆f2

However, since the VCO is non­linear, we get that ∆f2 6= ∆f1.

At the next step, the FDSM frequency to digital conversion, these fre­

quencies are simply converted to digital values. The FDSM performs

only an F/D conversion, converting one frequency at the time, without

changing their internal non­linear relationship. As a result, any non­

linearity that appears at the FDSM input, would pass right through with

no change. Finally the FDSM outputs a bit­stream representing the input

frequency. The bitstream then passes through a sinc2 low pass decima­

tion filter that provides 16 bit digital values. The final result is that for a

linear analog voltage input to the VCO, the digital 16 bit representation

9



is non­linear and totally different from the original analog signal. AS the

non­linearity has passed unchanged through the FDSM, a digital correc­

tion can be done here, after the sinc2 filter.

To find the over all response, we can start at the beginning and ana­

lyze the individual responses. The first conversion of the analog signal

is done by the VCO, going from an analog voltage signal to a frequency.

As mentioned above, the VCO has a non­linear response. The next step

is the FDSM. The FDSM takes the frequency output of the VCO and con­

verts the frequency into a digital representation. The FDSM has a linear

response. For the overall response of a system to be linear, all the in­

dividual responses must be linear. In our case however, a non­linear

response is followed by a linear response, so that the overall response is

nonlinear.

Hsys = Hvco ∗HFDSM = Hnonlinear ∗Hlinear = Hnonlinear

However, even though the VCO has a non­linear response, the re­

sponse is known a priori. Thus this non­linearity can be corrected by

applying a correcting circuitry with a inverse response to the response

of the VCO,

Hsys = H(vco)nonlinear∗H(FDSM)linear∗
1

H(vco)(nonlinear)
= Hlinear

As mentioned above for a system to be linear all the individual re­

sponses have to be linear. This is not the case in our final solution. We

do not have only one, but two non­linear responses. The VCO response

and the inverse of this response. How can the result than be linear? The

fact is that the non­linear responses are inverse to each other, with the

result that the non­linear response is canceled. Figure 2.1­2.3 shows how

the signal is converted from being a linear analog signal at the input of

the VCO, to becoming a nonlinear digital representation at the output of

the sinc2 filter.

The technique we will demonstrate here consists of some simple

mathematics manipulation of the output values from the sinc2 filter.

As mentioned before, these values appear in a square root manner and

by simply squaring all the values, a theoretical good linearization may

be achieved. How good linearity we get, depends at how good square

root shape the values appear in. Under ideal conditions, with ideal com­

ponents, perfect linearity is achieved. Under such ideal conditions, the

VCO would have a perfect square root output. This perfect square root

10
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would pass unchanged through the FDSM(the non­linearity having the

shape of a square root will pass unchanged, the values will get a F/D

conversion). At the back­end of the FDSM, a squaring would be applied

to this perfect square root, giving a perfect linear result.

However under actual conditions, and not ideal, things are different.

The digital correction consisting of squaring, is applied at the back­end

of the FDSM. The correction circuitry consists simply of a digital squar­

ing circuit. Since it is now assumed real conditions, the VCO will not

have a perfect square root output. As a consequence, the final result,

the output of the correction circuit, will have some deviations from a

perfect linear output.

As mentioned earlier, the change in frequency per unit voltage change,

is much lower for high voltages than for low voltages. A way of repres­

enting this change is to use the derivative, which is a measure for change

per unit. This can be described mathematically as:

f ′(v1) > f
′(v2), given v1 < v2

12



However, it already exists a well defined mathematics description of

the resonance frequency of the LC­VCO. This description is given as

F = 1

2π
√
LC

(2.1)

where L is the inductance of the VCO, and C the capacitance. A capa­

citance can be represented as charge per voltage as

C = q

V
(2.2)

and by combining equation 2.1 and 2.2 we get the result,

F =
√
V√
qL

(2.3)

As can be seen from equation 2.3, the frequency is proportional to

the square root of the voltage scaled with a constant factor 1/
√
qL, where

q is the electron charge, and L represents the inductance of the varactor.

These are the values that appears at the output of the VCO. A linear rela­

tionship can be achieved by multiplication with the inverse function, in

this case a squaring function as shown by Equation 2.4. Here comes one

of the strengths of this technique. It can be used with any LC­VCO who

has this square root relationship, independent of all other parameters.

F =
√
V√
qL

=>
( √

V√
qL

)2

= V

qL
(2.4)

As a result of non­ideal components, the output deviates from the

ideal square root function. These deviations will be further analyzed by

using toolboxes in Matlab in the next chapter. The result will also be

used to consider if any other correction than the squaring is necessary

to achieve satisfactory results.
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Chapter 3

Data Analysis

In this chapter simulations are done in order to verify the theory estab­

lished in the preceding chapter, and comparison is made between the two.

Both the non­linear output of the VCO used, and the linear output values

of the correction circuit will be analyzed. The results obtained are com­

pared to results obtained using other types of oscillators.

All the analysis in this chapter are based at LC­VCO output values

which we got from Bjørn Christian Paulseth, another student here at

University of Oslo.

Yet another student here at University of Oslo, Mohammad Ali Saber,

also worked with a LC­VCO [2]. Unlike Paulseth, Saber made the VCO

specifically to be used in a FDSM application. Because of this special

purpose of the VCO, Saber’s VCO did not have the square root output

that LC­VCO’s usually have. Saber’s target was to design a LC­VCO with

linear regions. The whole output needed not to be linear, but it was suffi­

cient to have some linear portions. The intention was to improve on the

VCO’s linear characteristics in order to avoid any post processing. The

linearization technique developed in this thesis, is therefore not applied

to this VCO. The VCO does not display the square root output charac­

teristics, therefore it is not meaningful to apply squaring for this VCO’s

output values. A plot of the output of this VCO is shown in figure 3.1.

From here on Bjørn’s VCO is used. This LC­VCO was tuned from 0­1V

and the output frequency values were recorded in a file. These values are

further explored in this thesis. These values were imported in Matlab,

and plots were made. The main characteristics of the VCO are shown

through these plots.

By tuning this VCO with voltages from 0­1 V, the VCO operates at fre­
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Figure 3.2: Cadence output values vs. fitting

quencies from 5­ 5.3 GHz, providing a frequency range of approximately

300 MHz. The output frequencies are displayed with a resolution of

0.02V, giving 51 points of values. The resolution of 0.02V is assumed

good enough for our purpose.

To further process these values, the Curve Fitting Toolbox in Matlab

was used. Most of the analysis was done using this toolbox. The values

were imported to this toolbox, where a fitting to an ideal square root

function was applied to check how well these values match the ideal

square root function. The original values together with the fitting are

plotted in figure 3.2.

As seen by the plot, there is a slight deviation. The form of this

deviation can be seen by plotting the residuals. This is done in figure

3.3. The normalized residuals are calculated according to equation 3.1

17



0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

4

5

6
x 10

−3

Input (V)

N
or

m
al

iz
ed

 r
es

id
ua

ls

Residual plot for
output fitting to an ideal

square root.

Figure 3.3: Residual plot. The deviation in data from an ideal square

root function.

and 3.2.

residuals[i] = f itted[i]− orig[i] (3.1)

norm_residuals[i] = residuals[i]
orig[i]

(3.2)

3.1 Polynomial fitting

Curve fitting was applied to the output of the VCO. Fittings of different

degree polynomials were applied to the square root output of the VCO

to find out more on the error. The fittings were done from a first degree

18



Table 3.1: Polynomial fit
polynomorder(V) linearity

1.order 92.86

2.order 99.51

3.order 99.97

4.order ∼ 1

(linear fit), to a fourth degree fit. The different fits applied to the output

can be seen in figure 3.4, while the residual­plot from these fittings is

seen in figure 3.5. The fourth degree fitting is not shown in the fitting

plot, because it totally overlapped the original data, making it impossible

to see the original data in the figure. However, in the residual plot this

fitting is plotted together with the other fittings.

As observed from figure 3.5, most of the non­linearities would be

removed if the system was compensated by a fourth­order function.

An ideal LC­VCO should only have second­order errors, but since the

varactor used is not ideal, these non­linearities will add up and cause

higher­order errors. The second­order error is however dominating. This

is due to square function which is found naturally in the MOS transist­

ors. As we are correcting for this second­order error, most of the error

is compensated. We are actually only performing a squaring, thus not

correcting all the second order errors, but a big part. This is because the

second order error is not a pure square function. It also contains some

first order coefficients and a constant. It is not of the form x2, but is of

the form ax2 + bx + c.

The result would be even better if we compensated with a higher­order

function. This is however not done here in this thesis. The correcting

function we use, is not supposed to only be good mathematical. The

correcting function is to be implemented in hardware. A high­order

function would be rather complex in hardware, and is therefore not pre­

ferred.

3.2 Adjustments to the VCO output

The VCO, operating at frequencies around 5 GHz is normal for LC­VCO’s.

For the FDSM application such frequencies are too high to handle, be­

cause the FDSM can not operate at such high frequencies. Therefore, in
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order to make the output frequencies compatible with the FDSM applic­

ation, they must be scaled down. The down­scaling can be achieved by

applying a frequency divider or a pre­scaler on the VCO’s output values.

Such a frequency divider may consist of simple D flip flops, where each

D flip­flop scales down the input frequency to half the input value. In

order to scale down the frequency down to reasonable values for the

FDSM, which is about 50­100 MHz, 6 flip flops are needed, resulting in a

division by 26 = 64, and the frequencies are than scaled down to about

80 MHz. Since all the values are divided by the same amount, the shape

of the VCO output values are retained. A division do not only reduce the

oscillation frequencies, but the frequency range is also reduced accord­

ingly. This means that the frequency range is now only about 5 MHz,

which is a relatively small range for a LC­VCO. However, the VCO is to

be used in a FDSM application. Therefore the measure of interest is the

absolute frequency range, rather than the relative. For the FDSM applica­

tion a frequency range of approximately 1 MHz is sufficient. A frequency

range of 5 MHz is thus well acceptable. This approach of using D flip­

flops is assumed in the simulations later.

An alternative approach in order to down­scale the frequencies is

to use a RF­mixer [16]. The advantage would be that the frequency

range would stay the same, while the operating frequency would be

down­scaled. To use this mixer solution, a local oscillator(LO) would

be needed. The task of the LO is to generate some reference frequen­

cies. The LO generated reference frequencies are to be multiplied with

the incoming frequencies from th LC­VCO, in order to down­scale the

LC­VCO output frequencies. The multiplication of the frequencies from

the oscillators, would result in two new frequencies. We would get the

sum and the difference of the frequencies of the two oscillators. Only

one of the resulting frequencies is needed, the other can be filtered out.

This local oscillator would be a part in addition to the mixer, both being

analog parts. They would have big area requirement when implemen­

ted, and would also increase the power consumption. In addition, we

would have to deal with analog parts, which is not preferred. These are

the reasons for not recommending the mixer solution, although it would

have been nice to have wide frequency range. This solution is also quite

complex, compared to the simple D flip­flops.

The new frequency range, when 6 D flip flops are assumed used to

down scale the VCO output frequencies, is seen in plot 3.6. As seen by

the plot, the shape is retained. We say that 6 flip flops are assumed
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used, because the flip flops were not actually made. Only the division by

64 was done in Matlab, to simulate the actual process.

3.3 A/D conversion

When the frequencies are down scaled, they still remain in an analog

state. They must be converted to digital form before the digital correc­

tion can be applied. The values are quantized in time, since we only have

51 values, but their amplitude also have to be quantized. This quantiz­

ation represents the A/D conversion that is done by the FDSM in a real

system.

Since the values will be inside a certain range, and they will be above

a minimum value (offset), the values can be adjusted for this offset,

and normalized according to the range before they are converted, giving

much better resolution. The conversion is done according to formula

3.3.

F = Fin − Fmin
Fmax − Fmin

(3.3)

In the real process, the conversion is done by the FDSM , but we will

use Matlab for simulation purpose, assuming ideal conversion. The ac­

tual FDSM outputs an oversampled bit­stream, where the oversampling­

ratio (OSR) is given as

OSR = fs

fnyquist
(3.4)

where fs is the sampling frequency of the FDSM. Thefnyquist in the

denominator of equation 3.4 stands for the Nyquist sampling frequency.

The Nyquist sampling frequency is the theoretical minimum sampling

frequency a signal with max frequency fmax can be sampled with without

distorting the signal, and is given as

fnyquist = 2∗ fmax. (3.5)

In actual Nyquist rate A/D converters also, samplings rate a little

above the Nyquist rate is used. This is because no components are ideal.

The bit­stream out of the FDSM is then sent through a low pass

decimation filter, which removes the noise that are pushed to the higher
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frequencies by the FDSM. This filter also reduces the sampling frequency

to the Nyquist rate, and outputs 16 bit word. To simulate this process,

also in our simulation is chosen 16 bit representation. The result of us­

ing formula 3.3 is that the frequencies are now normalized within the

range 0­1. To represent them with 16 bit, only a multiplication with 216

, and the rounding of to the nearest integer is needed,

16 bit = round(F ∗ 216) (3.6)

The last value in the array, 216 = 65536, is replaced with 65535. As

known the highest value that can be represented with x bit is 2x − 1.

The changing from 65536 to 65535 is done to keep us within 16 bits.

In the real FDSM, the conversion may not be ideal, but our purpose is

to focus at the non­linearity of the VCO, other sources of noise are dis­

regarded. Although the FDSM reduces the quantization noise significant.

Since the 16 bit representation have the form of a square root func­

tion, a squaring function is applied, so that all the values in the array

are squared. As seen by plot 3.7, the squared result is linear in the mid­

region, but bends of at the corners. Since we have 5 MHz range, and we

only need approximately 1 MHz, we have room for reduction. By choos­

ing a smaller input voltage range of the plot, higher linearity may be

achieved. The smaller area must still provide sufficient frequency range,

so it can not be arbitrary small. When choosing a smaller voltage range,

the resulting frequency range must be kept in regard, so that the fre­

quency range do not become to small.

The whole 32 bit range of the output represents 5 MHz of frequency

range. The 16 bit input is squared, thereby the 32 bit output. Shown by

equation 3.7.

(216)2 = 232 (3.7)

It would seem possible that to get better linearity, since the whole

range represent 5 MHz, any portion of 1/5 of the output can be selected.

This is not the case. The reason for this is found in plot 3.6, which is

the input to the FDSM. Since the input is square­root, e.g non­linear, the

curve do not have a constant derivative. The square root function has a

steep slope in the beginning, but flattens out for higher values. The res­

ult is that for small voltage values, we can get sufficient frequency range

by only a small input voltage range. As higher up we get in the input

voltage, thus wider input voltage range do we have to select, to obtain
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sufficient frequency range. An arbitrary portion of 1/5 can therefore not

be selected. If an area of good linearity is selected from the output plot

shown in figure 3.7, one must go back to the input plot shown in figure

3.6 to see if the selected voltage range has enough frequency range or

not.

Matlab is used to simulate the whole process, from a linear voltage

input to the VCO, through non­linearities, to the corrected output of the

squaring circuit. With Matlab the results will be analyzed and we can get

an idea of how good linearization is achievable before it is implemented

in hardware.

To get better linearity, a smaller area can be selected. The choice of

this smaller area can be done here in Matlab. Different ranges within the

whole range can be selected, and than the range with best linearity can

be selected.
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Table 3.2: Linearity results
In range(V) Out range(MHz) Linearity Max deviation Bit

0­1 5.375 99.48 4.5% 4.47

0.14­0.3 1.25 99.92 2.75% 5.18

0.32­0.8 2.00 99.68 5.26% 4.25

0.44­0.66 0.844 99.92 0.8% 6.97

0.7­1 0.359 99.66 0.33% 8.24

0.2­0.36 1.09 99.98 0.7 % 7.12

3.4 Further improvements

As seen from the plots in the preceding section, the VCO output is not

an ideal square root, with the consequence that the results do not be­

come ideal linear when squared. The results from the squaring in the

previous section will be further tried improved by selecting smaller in­

put ranges. Different input ranges will be considered in this section, and

their linearity will be compared towards finding the best linearity.

To get an impression of the linearity, first the entire tuning range

is selected. The goodness of linearity for the other ranges will than be

compared to this one.

The squared values are plotted together with their best linear fit and

the corresponding residuals in figure 3.4. The maximum normalized

residual value is presented in table 3.2. The curve fitting tool only

showed actual residuals, not relative. Therefore only the actual resid­

uals are plotted. However, for comparison purpose the relative resid­

uals were needed. The relative residuals are thus calculated according

to equation3.2, and the maximum value of the residuals for the different

ranges are presented in table 3.2.

The bit representation of the non­linearity is calculated according to

3.8

bit = 20log(max deviation)

6.02
(3.8)

The linearity column of table 3.2 shows how well the different

ranges matches their best linear fit.

As seen from table 3.2, different ranges have their advantages and

disadvantages. The whole input range gives the best frequency range,

but suffers at all the other criteria, such as linearity and also max devi­

ation. The range 0,44­0,66V has good linearity and also very low value
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Figure 3.8: Linear fit for the full input range 0­1 V
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Figure 3.11: The best linear fit and corresponding residuals
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for max deviation, but have poor frequency range. The 0,3 ­ 0,8 V range

, has a very good frequency range and acceptable linearization, but has

a very high value of max deviation. Another range with high linearity

is the 0,14 ­ 0,3 V range, however the frequency range for this one is

not so good. This range also has its disadvantage, namely that it do not

have the lowest value for max deviation. The range in table 3.2, 0.7­1 V,

has the lowest value for max deviation. It could thus have been the best

range for our purpose. The problem is that this range only has a fre­

quency range of 0.359 MHz. This is far below the approximately 1 MHZ

required in th FDSM application. The last range in the table, 0.2­0.36 V,

has the best linearity result and also lowest max deviation. However the

frequency range is not the best. None of the ranges can thus be labeled

as the over all best or worst.When selecting a tuning range, trade offs

such as linearity, output range and max deviation have to be considered.

The range ultimately selected, should depend on the specific application.

Some of the ranges are plotted with their linear fit and corresponding re­

siduals in figure 3.8 to 3.11.

3.5 Matlab results

As can be seen from the plots in the preceding chapter and table 3.1,

many good results are achieved by the various simulations in Matlab.

The original output of the VCO was very non­linear, a square root actu­

ally. By applying the linearization technique, a huge improvement in the

linearity was obtained, with results from 99.4% match to a linear fit.

The whole input range do not show good linearity results, but there

is still room for improvements. We have 5 MHz of range, while approx­

imately 1 MHz is sufficient for the FDSM application. Therefore a smaller

portion of the tuning range is selected in order to improve on the linear­

ity. Table 3.1 shows the results over different tuning ranges.

As mentioned in the previous section, trade offs have to be con­

sidered when selecting a tuning range. Since our primary concern is

linearity, the 0.2 ­ 0.36 V tuning range is considered as the best for our

purpose. This is due to good linearity, while max deviation is also the

lowest. A possible drawback of choosing this range could have been that

this input voltage range do not result in the best frequency range, but a

range of 1.09 MHz is well acceptable for FDSM application. This range is

thus considered as the best.
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The obtained results are satisfactory. We have to keep in mind, that

the proposed technique is developed for a special purpose; to be used

with the FDSM modulator. Before drawing any final conclusions about

the good linearity, it is therefore necessary to compare the results with

other results obtained. A lots of work have been done towards achiev­

ing the best linearity for the FDSM A/D converter. Many different ap­

proaches are tried out. The results obtained in this thesis is therefore

compared to these other results in the next section. Until then, a final

conclusion can not be drawn.

3.6 Comparison to other work

In the preceding section the results obtained were presented. To get a

better picture of how good these results actually are, the results must be

presented in a relative way. For our purpose the results will be compared

with other work that is done with focus on getting lowest possible max

deviation from a straight line.

One of this is the master thesis of a student here at University of

Oslo, Jan Arne Leszczynski, who worked with another approach towards

getting linear oscillator [17]. He worked with ring oscillator with focus

on getting it as linear as possible. This oscillator was also meant to be

used with the FDSM system. In his thesis the oscillator itself had to

be linear, unlike our technique where the digital correction is providing

improved linearity,

All the FDSM systems up to today have been using ring­oscillators

at the input. Ring­oscillator have been selected because of its good lin­

ear response. Since the ring­oscillator can often have good linear re­

sponse, no additional correction circuitry is needed. The linearity thus

have been limited by the linearity of the ring oscillator. The main focus

of this thesis was to find out if it is possible to achieve any better lin­

earity by using LC­VCO with digital correction circuitry, than the regular

ring­oscillator.

As the preceding results show, the LC­VCO achieved very good lin­

earity. The results are compared with the results obtained using ring­

oscillators in table 3.3. In [17] two technologies were used, 350nm and

90nm. Three types of oscillators were made with the 350 nm techno­

logy, and two with 90 nm. Only the best results from these two tech­

nologies are presented here in this table. Another approach towards

getting highest possible linear ring oscillator is found in [8], in which
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Table 3.3: Linearity comparison
Oscillator non− linearity(%) Bit

LC­VCO 0.7% 7.12

Ring­oscillator 350nm [17] 0.12% 9,70

Ring­oscillator 90nm [17] ­0.19% 9,04

Ring oscillator, strong inversion [8] 0.5% 7.64

Ring oscillator weak inversion [8] 2.4% 5.34

Linear LC­VCO[2] 0.08% 10.3

the frequency tuning is performed from the bulk terminal of the MOS

transistors. Two different approaches are tried here, with the transist­

ors operating in strong­ and weak inversion. Both results are presented

in table 3.3. A piecewise­linear LC­VCO was also made in [2]. This VCO

is also presented in the table.

As there are not presented measured result for all the VCOs, the com­

parison is done of the simulated results. This way of comparison is be

the most fair.

As seen from this table, [2] which is a piecewise linear LC­VCO dis­

plays the best result. The results was also obtained without any post

processing. LC­VCO is thus a good alternative to the common ring os­

cillator in FDSM applications. However, we must keep in mind that all

results are simulated results, when measured, deviation may occur. To

draw an absolute conclusion from simulated results, would be wrong.

The results in the table are only meant to give an idea of how good res­

ults are obtained. These are not the final results.

The obtained results in this thesis was not better than the others, but

they were close. Improvement is possible, if a LC­VCO with better square

root output is made. Correcting for the higher­order errors is also a way

of getting improved results. This means that LC­VCO is absolutely an

alternative to the traditional ring oscillator considering linearity. De­

pending on your needs the one or the other can be selected out from the

criteria listed in table 1.1, or any other criteria one may have.

In theory perfect linearization is achieved by squaring a square root

function. The fact that we did not get perfect linearization was totally

expected. None of the components are ideal, mismatch between the­

ory and simulation does therefore exist. However, our final goal was
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not simulations. The developed linearization technique was supposed

to be implemented in hardware, which also is the reason for not ap­

plying complex higher­order mathematical corrections. More about the

implementation is presented in the next chapter.
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Chapter 4

Implementation of the squaring

circuit

In this chapter theory regarding implementation is presented. Thereafter

VHDL code for a squarer is written to verify the simulations carried out

in the previous chapter. The VHDL simulation results are later compared

with the Matlab simulation results obtained in the preceding chapter.

4.1 Digital squaring

The approach is to implement this squaring function in digital hardware

like FPGA or ASIC. The code of a 16 bit squarer function is made in VHDL.

A squaring requires fewer operations than multiplication, resulting in

faster and more compact implementation. For the multiplication of two

16 bit words, A and B, it would be generated 16 ∗ 16 = 256 product­

terms(PT),

PT(x) = ai ∗ bj i, j = 0...15

For squaring, the A and B operand are the same, reducing the number

of product­terms to 136.

4.1.1 Partial Product Matrix

The first step in any multiplication is the creation of the Partial Product

Matrix (PPM). In order to obtain a small size and fast implementation of

a squarer, the PPM should be optimized. As known, squaring is a special
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case of multiplication, in which the multiplicand and the multiplier are

the same. When the normal multiplication are carried out, for this case,

where the multiplier and multiplicand are the same, a very clear pattern

appear in the PPM, well visible. The product terms on the both sides of

the diagonal are symmetric. The symmetry is a result of the multiplier

and multiplicand being the same. Let i and j denote the bit number in

the multiplier and multiplicand. To obtain all the PT’s, all the ai bits

have to be multiplied with all the aj bits. Since both are the same, we

get the result

aiaj = ajai.

The multiplication of two different numbers do not have this sym­

metry, because

aibj 6= biaj.

As a result of the symmetry, the number of PT’s are reduced to approx­

imately 50% of an ordinary PPM.

To further reduce the the PPM, another identity of binary multiplication

can be used, namely 2 ∗ a = lef tshif t, yielding the result that all the

PT’s which appear twice in a column to be summed, are just shifted one

column to the left. The result is that 2a in column i can be replaced with

a in column i+ 1

The third and last identity, is that for binary multiplication , we have

that

a∗ a = a

The result from this is that the terms ai∗ai can be replaced with just ai.

The and operation for the bits of the same bit position can be avoided.

An example of this is shown in equation 4.1.

a3 and a3 = a3 (4.1)

The result of the presented squaring special features is that the PPM

can be created faster, since requiring fewer and operations and also

more compact than a multiplier.

The final result takes the form of a up side down triangle as shown

below.

38



a15a14a13........a2a1a0 ∗ a15a14a13........a2a1a0

a15a0 a14a0.....a2a0 a1a0 a0

a15a1 a14a1.....a2a1 a1 a0a1

a15a2 a14a2.....a2 a1a2 a0a2

................................................................

.................................................................

................................................................

a15a14 a14.....a2a14 a1a14 a0a14

a15 a14a15.....a2a15 a1a15 a0a15

a15a14 a15a13.............................................a1a0 0 a0

..................................................................................

..............................................................

......................................

...............

a8

In ordinary multiplication, Booth recording is a common used method

to reduce the PPM. However, as ¨ shown above the PPM for a squarer is

well reduced compared to compared to a multiplier for the same size

input. Booth recording is therefore not utilized in the realization of the

squarer.

4.2 Adder

When the PPM is optimized, a good way to sum all the PP’s is needed.

Finding a good algorithm to sum the PP’s, can give the biggest reduction

in delay. Thus the type of adder to be used, has to be selected carefully.

Following, a few adders are presented, with their Pro and Cons, whereas

one or more of them are selected.

4.2.1 Ripple Carry Adder

Amongst numerous adders, Ripple Carry Adder (RCA) is a very basic

and straightforward adder. Before two bits at position i can be summed,

they have to wait until the carry from the previous position, i−1, arrives.

Thus, before the summation at the Most Significant Bit(MSB) can be done,

in worst case the carry must ripple through all the adders from the Least

Significant Bit (LSB) to MSB. The carry delay is thus proportional to n,

where n is the word length.
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Cd = n∗Ad

Cd is the carry delay, n is the word length and Ad the delay of one

adder.

Implementing the RCA in hardware is also straightforward with no

no complex routing. For the summation of two n bits word, where n is

small, the RCA can be the first choice. As long as n is small, the dif­

ference in delay, compared to other adder structures is not significant.

When choosing any other adder structure than the RCA, the time delay

that is saved compared to the RCA must be evaluated against the in­

creased complexity. For small n, the RCA may even be faster than the

other adders, because of the complex wiring of the other adders. The

carry delay of RCA is proportional to n.

However for the summation of partial products in a multiplier, the

version that would be used is the Ripple carry Array Mutiplier (RCAM).

This has a worst case carry delay of 2n [18].

4.2.2 Carry Save Adder

The Carry Save Adder(CSA) is another type of adder [3]. This adder is

faster than the RCA in that manner that each carry bit do not have to

ripple through all the adders. Rather the carry bits are stored in a carry

array, thereby the name CSA, and the sum bits are stored in a sum ar­

ray, whereas those two arrays are summed together to produce the final

output. In the final step where the two last vectors are accumulated,

the type of adder must be selected carefully. A RCA used at this stage,

minimizes, or in worst case removes the time saved using CSA. For the

final accumulation, a Carry Lookahead Adder is used, which is further

explained in the next section. Unlike the linear increase in delay propor­

tional to word length for the RCAM, for which the delay is given as 2n,

the CSA delay increase as a logarithmic function citenettet.

Cd = n+ log(n)

[18].

For multiplication, and thereby also squaring, the CSA is most fre­

quently used. This is because unlike the other adders, which outputs

one sum bit at the same position as the input bit, and a carry bit to the

next position, the CSA outputs two bits at the same position as the input,

both a carry and a sum bit. The CSA is a 3:2 compressor, meaning that
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Figure 4.1: carry Save Adder

it takes 3 bits as its input, and reduces them to 2. For the summation of

the partial products of a squarer, which has more than 3 levels, 3 and 3

levels are reduced to 2 and 2, until finally two vectors remain, one sum

and one carry. There also exists some 4:2 compressor versions of the

CSA, but they are not used here as they become very complex. The CSA

adder is more complex and requires complex routing, compared to the

RCAM. However, we get the benefit of reduced delay at low cost.

When we have more than three input, as the partial products in our

squarer, the CSA’s are set together in a tree structure. The combination

of CSA’s in this fashion is referred to as a Wallace Tree. A very simple

CSA is shown in figure 4.1.

4.2.3 Carry Lookahead Adder

The partial products is by the Wallace Tree reduced to only two vectors,

the sum vector and the carry vector. For the accumulation of this two

vectors, the Carry Lookahead Adder (CLA) is used.

CLA has its strength in being very fast, but is rather complex. The com­

plexity is the reason for not using CLA for the partial product summa­

tion. Since many summations are required, the whole system would end

up being too complex. CLA is used for the final accumulation. As only

two vectors are to be summed, the sum and carry vector output from the

CSA, the gain in speed is more the loss in form of increased complexity.

The delay of a CLA increase logarithmic with the word length [19].

CLAs for more than 4 bits word become highly complex. Addition of

words longer than 4 bits is therefore achieved by combibing several 4

bits CLAs.

Two main words for the CLA is propagate and generate. They

hold information about whether there will be generated a carry, or a
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Figure 4.2: A 4 bit CLA adder ([3])

carry will just be propagated at bit position i. Generate equals 1 whenever

the addition of two bits a and b is such that they will generate a carry

regardless of whether or not the previous stage generated a carry, this

represents the binary and operation,

A stage is called propagate when only one of the bits equal 1, rep­

resenting the binary xor operation. It means that the stage has the

potential to generate a carry, but the ganeration of a carry out depends

if there is a carry in or not.

Whether the stage will generate a carry or not, depends on whether

the stage generates a carry itself, or if it propagates the carry from the

previous significant bit position. The equations for these three opera­

tions are given below. A four bit CLA adder is shown in figure 4.2.

G(A, B) = A and B

P(A,B) = A xor B

Ci = Gi + PiCi−1
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4.2.4 Adder conclusion

The conclusion drawn from the preceding adder presentations is that

the CSA is used to sum up the partial products. The reason for this is

that the CSA is less complex than the CSA, although it is slower than the

CLA. A tree structure is needed for the summation and a tree built up by

CLA’s would be very complex.

To sum up the final carry­ and sum vector, the CLA is preferred. This

is due to the high speed of the CLA. The complexity is limited because

only two vectors are to be summed

4.3 VHDL code

The VHDL code is made in accordance to the model of [20]. The pur­

pose of this code is to take an 16 bit digital word as its input, square it

and output the 32 bit as the final result. The VHDL code is attached in

appendix B. The SQ entity is the top entity of the squarer. Within this

entity there are several other entities, used as components. The top en­

tity inside the SQ entity is the multiplier. The different components of

the squarer are explained further in the following sections. Figure 4.3

shows a plot of the signal flow.

4.3.1 Multiplier

The wallace Tree, Squarebit and DBLC are all used as components within

this entity.The multiplier provides the input to the squarebit and get the

result back from the DBLC adder.

4.3.2 Squarebit

This is a entity inside the multiplier. What the squarer does is to take

the 16 bit input, and produce the Partial Product Patrix (PPM). The PPM

consists of 136 bit. The output is sent to the Wallace Tree.

4.3.3 Wallace Tree

The input to the Wallace Tree entity is the partial product bits, which the

squarebit outputs. The Wallace tree takes this partial product matrix,

consisting of 136 bit, and sums them up. The output of the Wallace tree
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Figure 4.3: Representation of the digital squaring in VHDL
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is two 31 bit vectors, a sum vector and a carry vector. A structure of the

wallace Tree is shown in figure 4.3.3

4.3.4 DBLC adder

The DBLC (Distibuted Binary Carry Lookahead Adder) adder is a tree

consisting of the CLA adders. This adder takes the two output vectors

from the Wallace Tree as its input, sums them up, and produces the final

32 bit result.

4.4 VHDL testbench

A VHDL testbench is made to be able to simulate the VHDL code and to

check that it works properly. The Matlab file dig_val.m (see appendix

45



A)is used as input to the testbench. This is because the values in this

file represents the 16 bit output of the sinc 2 LP­filter at the back end of

the FDSM. The content of the file is in decimal form and must therefore

be converted to a format that hardware can handle, before the values

are used in the testbench. The type conversion is done in the testbench,

where these values are type changed from natural to std_logic_vector.

The testbench inserts these values to the SQ, which is the Unit Under

Test (UUT) and the result is written to another output file. The signal “Q”

reprsents the 32 bit squared result. The type of “Q” is std_logic_vector.

This type is not supported by the “write” procedure in VHDL. The type of

“Q” is therefore changed to bit_vector before it is written to the output

file. The output file thus contains an array of binary values. These values

can be changed to decimal form in Matlab. This squared result is finally

compared with the results of simulation from previous chapter.

4.5 Physical implementation

Only the VHDL code is written in this thesis. This is because our primary

concern has been the linearity. Any other simulations to get any area

or delay results for the written code is not done. The area and tim­

ing constraaints dependens heavily on the device on which the code is

implemented. Some devices are optimized for speed, while others are

optimized for area. To get one general result for area and time delay is

thus impossible, as long we do not specify any target device on which

the code is to be implemented.

4.6 VHDL simulations

A waveform plot of the squarer output is presented here to verify the

results, and also to verify that the code actually works properly.

4.7 VHDL results

The results from the VHDL testbench are written to the file out.m.

These are,as expected exactly the same as obtained in Matlab. Since the

code only performs a squaring, no deviations exist. Both the Matlab and

VHDL results are plotted in figure 4.7. They totally overlap each other.

To make it easier to separate between the two, diffferent colors are used
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Figure 4.5: The waveform, showing the output of the digital squarer
47



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

9

Input(V)

O
ut

pu
t (

32
 b

it)
di

sc
re

t r
ep

re
se

nt
at

io
n

 

 
Matlab result
VHDL result

Figure 4.6: The Matlab and VHDL result plotted together

together with different marks. The figure confirms that the code works

properly and also that the developed technique is possible to implement

in hardware.
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Chapter 5

Conclusion

5.1 Conclusion

The focus of this thesis has been to investigate the possibilities to use

a LC­VCO in the FDSM application. A tradition have been to always use

the ring­oscillator as the FM modulator in front of the FDSM system. We

wanted to try some other oscallitors in our search for improved linearity

The new idea that we have been working with is to use LC­VCO in

front of the FDSM, with digital correction, instead of the regular ring­

oscillator, and see if any better linearity is obtained. . This thesis have

somehow been an theoretical introduction to this new idea. Considering

linearity good results are obtained by the proposed technique. A non­

linear VCO was improved significant. We have to keep in mind the fact

that this technique was developed to be used in the FDSM application.

Therefor the results must be seen together with other results obtained

in the same field. In this context the results were not the best.

The theoretical foundation is build, besides analysis and simulations

verifying the theory. A working hardware code is also written which

shows that the technique is possible to implement in hardware. It is

shown that this new idea is absolutely competitive to the ring­oscillator

based FDSM. It is therefore recommended to take this idea further.

Both the Matlab simulation results and VHDL results shows good linear­

ity. Nonlinearity as low as 0.007 is obtained. This is not better than the

best reported result for the ring oscillator, but is very close. The fact

that the obtained results are not better than the ring oscillator, do not

mean that the results are bad.
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The linearization technique depends on the LC­VCO output charac­

teristic. For the technique to be optimal the LC­VCO must have a very

good square root characteristic. The LC­VCO we have been working with

in this thesis was not developed with that focus. It is thought that with a

LC­VCO created with especially focus at getting as fine square root char­

acteristic as possible, better results may be expected. A way of doing

this may be to get the voltage to capacitance characteristic as linear as

possible. We have only done a squaring to obtain the results. By correct­

ing the higher­order errors, improvements are possible. This will be at

the cost of increased complexity for the hardware implementation.

5.2 Future work

As the conclusion is drawn that the idea of using LC­VCO in the FDSM

application certainly has a future, some words must be said about what

work is to be done further. In this thesis is done the theory, analysis and

simulations. Only VHDL code is written. The next natural step would be

an actual implementation in hardware of the VHDL code, FPGA or ASIC,

and then check the result. When implementing, parameters as delay

and area should be kept in mind. Maybe some changes in the code are

needed to get satisfactory values for the area and delay. Power consump­

tion should also be measured. Since one of the strengths of the FDSM is

low power consumption, it should be focus on keeping the power con­

sumption low.

The next step could be to set together the include an actual FDSM in

between the LC­VCO and the digital correction, namely set up the whole

system. This will be the most interesting part, namely to check the res­

ults when the whole system is set together. In this thesis an ideal FDSM

have been assumed, it will be interesting to see how results are with the

real system. It will also be interesting to see how much the real results

deviate from our results, which are based on an ideal FDSM.

Some other linearization techniques may also be tried out. Maybe

some kind of adaptive linearization. The proposed technique in this

thesis may also produce some better results if a LC­VCO with focus on

the square root characteristic is built.

As shown in the Matlab results section, better results are obtained

by using higher degree of correction. A suggestion is also to make a
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complex circuit which corrigates for errors up to 4th or 5th degree. It

will be a complex circuit, but the linearity will also be improved.
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Appendix A

Matlab script

% The matlab code for the process from the VCO output, via

%frequency dividing and A/D conversion, to squaring.

%The original values

figure()

plot(bjorn_orig_value(:,1),bjorn_orig_value(:,2))

title(’The vco response’)

xlabel(’Input voltage’)

ylabel(’Out frequency’)

% divide the vco output values, to get values in a

% range suitable for the FDSM.

Freq_div_val(:,1)= bjorn_orig_value(:,1);

Freq_div_val(:,2)= bjorn_orig_value(:,2)./(2^6);

figure()

% column1= input voltage

% column2= output frequencies

plot(Freq_div_val(:,1),Freq_div_val(:,2))

title(’The new frequency range’)

xlabel(’Input voltage’)

ylabel(’Out frequency’)

% Remove the offset

a=min(Freq_div_val(:,2));

b=max(Freq_div_val(:,2));

offset_rem(:,1)= Freq_div_val(:,1);

offset_rem(:,2)= Freq_div_val(:,2)­ a;

freq_range= max(offset_rem(:,2))

% Scale to the region 0­1
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normalized(:,1)= Freq_div_val(:,1);

normalized(:,2)= offset_rem(:,2)./(b­a);

% 16 bit rpresentation

dig_val(:,1)= normalized(:,1);

dig_val(:,2)= round (normalized(:,2).*(2^16));

figure()

plot(dig_val(:,1),dig_val(:,2))

title(’The 16 bit digital representation’)

xlabel(’Input voltage’)

ylabel(’Discret value’)

% linearisation, by squaring. giving 32 bit result

finale(:,1)= dig_val(:,1);

finale(:,2)= dig_val(:,2).^2;

figure()

plot(finale(:,1),finale(:,2))

title(’The 32 bit squared value’)

xlabel(’Input voltage’)

ylabel(’Squared discret value’)
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Appendix B

Top entity

library ieee;

use ieee.std_logic_1164.all;

entity SQ is

port(X: in std_logic_vector(15 downto 0);

CLK: in std_logic;

­­ CLK only used with buffering/pipelining/accumulate

P: out std_logic_vector(31 downto 0));

end SQ;

library ieee;

use ieee.std_logic_1164.all;

architecture A of SQ is

component MULTIPLIER_16_16

port(MULTIPLICAND: in std_logic_vector(0 to 15);

PHI: in std_logic;

RESULT: out std_logic_vector(0 to 31));

end component;

signal A: std_logic_vector(0 to 15);

signal Q: std_logic_vector(0 to 31);

signal LOGIC_ZERO: std_logic;

begin

LOGIC_ZERO <= ’0’;

U1: MULTIPLIER_16_16 port map(A,CLK,Q);

­­ std_logic_vector reversals to incorporate decreasing vectors

A(0) <= X(0);

A(1) <= X(1);

A(2) <= X(2);

A(3) <= X(3);

A(4) <= X(4);

A(5) <= X(5);

A(6) <= X(6);

A(7) <= X(7);

A(8) <= X(8);
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A(9) <= X(9);

A(10) <= X(10);

A(11) <= X(11);

A(12) <= X(12);

A(13) <= X(13);

A(14) <= X(14);

A(15) <= X(15);

P(0) <= Q(0);

P(1) <= Q(1);

P(2) <= Q(2);

P(3) <= Q(3);

P(4) <= Q(4);

P(5) <= Q(5);

P(6) <= Q(6);

P(7) <= Q(7);

P(8) <= Q(8);

P(9) <= Q(9);

P(10) <= Q(10);

P(11) <= Q(11);

P(12) <= Q(12);

P(13) <= Q(13);

P(14) <= Q(14);

P(15) <= Q(15);

P(16) <= Q(16);

P(17) <= Q(17);

P(18) <= Q(18);

P(19) <= Q(19);

P(20) <= Q(20);

P(21) <= Q(21);

P(22) <= Q(22);

P(23) <= Q(23);

P(24) <= Q(24);

P(25) <= Q(25);

P(26) <= Q(26);

P(27) <= Q(27);

P(28) <= Q(28);

P(29) <= Q(29);

P(30) <= Q(30);

P(31) <= Q(31);

end A;
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Multiplier

library ieee;

use ieee.std_logic_1164.all;

entity MULTIPLIER_16_16 is

port

(

MULTIPLICAND: in std_logic_vector(0 to 15);

PHI: in std_logic;

RESULT: out std_logic_vector(0 to 31)

);

end MULTIPLIER_16_16;

library ieee;

use ieee.std_logic_1164.all;

architecture MULTIPLIER of MULTIPLIER_16_16 is

component SQUARE_BIT_16

port

(

OPA: in std_logic_vector(0 to 15);

SUMMAND: out std_logic_vector(0 to 136)

);

end component;

component WALLACE_16_16

port

(

SUMMAND: in std_logic_vector(0 to 136);

CARRY: out std_logic_vector(0 to 30);

SUM: out std_logic_vector(0 to 30)

);

end component;

component DBLCADDER_32_32

port

(

OPA:in std_logic_vector(0 to 31);

OPB:in std_logic_vector(0 to 31);

CIN:in std_logic;

PHI:in std_logic;
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SUM:out std_logic_vector(0 to 31)

);

end component;

signal PPBIT:std_logic_vector(0 to 136);

signal INT_CARRY: std_logic_vector(0 to 32);

signal INT_SUM: std_logic_vector(0 to 31);

signal LOGIC_ZERO: std_logic;

begin ­­ Architecture

LOGIC_ZERO <= ’0’;

S:SQUARE_BIT_16

port map

(

OPA(0 to 15) => MULTIPLICAND(0 to 15),

SUMMAND(0 to 136) => PPBIT(0 to 136)

);

W:WALLACE_16_16

port map

(

SUMMAND(0 to 136) => PPBIT(0 to 136),

CARRY(0 to 30) => INT_CARRY(1 to 31),

SUM(0 to 30) => INT_SUM(0 to 30)

);

INT_CARRY(0) <= LOGIC_ZERO;

INT_SUM(31) <= LOGIC_ZERO;

D:DBLCADDER_32_32

port map

(

OPA(0 to 31) => INT_SUM(0 to 31),

OPB(0 to 31) => INT_CARRY(0 to 31),

CIN => LOGIC_ZERO,

PHI => PHI,

SUM(0 to 31) => RESULT(0 to 31)

);

end MULTIPLIER;
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Squarebit

library ieee;

use ieee.std_logic_1164.all;

entity SQUARE_BIT_16 is

port

(

OPA: in std_logic_vector(0 to 15);

SUMMAND: out std_logic_vector(0 to 136)

);

end SQUARE_BIT_16;

architecture SQUARE_BIT of SQUARE_BIT_16 is

begin

­­ Gates in square matrix column 0

SUMMAND(0) <= OPA(0);

­­ End square matrix column 0

­­ Gates in square matrix column 1

­­ End square matrix column 1

­­ Gates in square matrix column 2

SUMMAND(1) <= OPA(0) and OPA(1);

SUMMAND(2) <= OPA(1);

­­ End square matrix column 2

­­ Gates in square matrix column 3

SUMMAND(3) <= OPA(0) and OPA(2);

­­ End square matrix column 3

­­ Gates in square matrix column 4

SUMMAND(4) <= OPA(0) and OPA(3);

SUMMAND(5) <= OPA(1) and OPA(2);

SUMMAND(6) <= OPA(2);

­­ End square matrix column 4

­­ Gates in square matrix column 5

SUMMAND(7) <= OPA(0) and OPA(4);

SUMMAND(8) <= OPA(1) and OPA(3);

­­ End square matrix column 5

­­ Gates in square matrix column 6

SUMMAND(9) <= OPA(0) and OPA(5);

SUMMAND(10) <= OPA(1) and OPA(4);
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SUMMAND(11) <= OPA(2) and OPA(3);

SUMMAND(12) <= OPA(3);

­­ End square matrix column 6

­­ Gates in square matrix column 7

SUMMAND(13) <= OPA(0) and OPA(6);

SUMMAND(14) <= OPA(1) and OPA(5);

SUMMAND(15) <= OPA(2) and OPA(4);

­­ End square matrix column 7

­­ Gates in square matrix column 8

SUMMAND(16) <= OPA(0) and OPA(7);

SUMMAND(17) <= OPA(1) and OPA(6);

SUMMAND(18) <= OPA(2) and OPA(5);

SUMMAND(19) <= OPA(3) and OPA(4);

SUMMAND(20) <= OPA(4);

­­ End square matrix column 8

­­ Gates in square matrix column 9

SUMMAND(21) <= OPA(0) and OPA(8);

SUMMAND(22) <= OPA(1) and OPA(7);

SUMMAND(23) <= OPA(2) and OPA(6);

SUMMAND(24) <= OPA(3) and OPA(5);

­­ End square matrix column 9

­­ Gates in square matrix column 10

SUMMAND(25) <= OPA(0) and OPA(9);

SUMMAND(26) <= OPA(1) and OPA(8);

SUMMAND(27) <= OPA(2) and OPA(7);

SUMMAND(28) <= OPA(3) and OPA(6);

SUMMAND(29) <= OPA(4) and OPA(5);

SUMMAND(30) <= OPA(5);

­­ End square matrix column 10

­­ Gates in square matrix column 11

SUMMAND(31) <= OPA(0) and OPA(10);

SUMMAND(32) <= OPA(1) and OPA(9);

SUMMAND(33) <= OPA(2) and OPA(8);

SUMMAND(34) <= OPA(3) and OPA(7);

SUMMAND(35) <= OPA(4) and OPA(6);

­­ End square matrix column 11

­­ Gates in square matrix column 12

SUMMAND(36) <= OPA(0) and OPA(11);

SUMMAND(37) <= OPA(1) and OPA(10);

SUMMAND(38) <= OPA(2) and OPA(9);

SUMMAND(39) <= OPA(3) and OPA(8);
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SUMMAND(40) <= OPA(4) and OPA(7);

SUMMAND(41) <= OPA(5) and OPA(6);

SUMMAND(42) <= OPA(6);

­­ End square matrix column 12

­­ Gates in square matrix column 13

SUMMAND(43) <= OPA(0) and OPA(12);

SUMMAND(44) <= OPA(1) and OPA(11);

SUMMAND(45) <= OPA(2) and OPA(10);

SUMMAND(46) <= OPA(3) and OPA(9);

SUMMAND(47) <= OPA(4) and OPA(8);

SUMMAND(48) <= OPA(5) and OPA(7);

­­ End square matrix column 13

­­ Gates in square matrix column 14

SUMMAND(49) <= OPA(0) and OPA(13);

SUMMAND(50) <= OPA(1) and OPA(12);

SUMMAND(51) <= OPA(2) and OPA(11);

SUMMAND(52) <= OPA(3) and OPA(10);

SUMMAND(53) <= OPA(4) and OPA(9);

SUMMAND(54) <= OPA(5) and OPA(8);

SUMMAND(55) <= OPA(6) and OPA(7);

SUMMAND(56) <= OPA(7);

­­ End square matrix column 14

­­ Gates in square matrix column 15

SUMMAND(57) <= OPA(0) and OPA(14);

SUMMAND(58) <= OPA(1) and OPA(13);

SUMMAND(59) <= OPA(2) and OPA(12);

SUMMAND(60) <= OPA(3) and OPA(11);

SUMMAND(61) <= OPA(4) and OPA(10);

SUMMAND(62) <= OPA(5) and OPA(9);

SUMMAND(63) <= OPA(6) and OPA(8);

SUMMAND(64) <= OPA(15);

­­ End square matrix column 15

­­ Gates in square matrix column 16

SUMMAND(65) <= (OPA(0)) and OPA(15);

SUMMAND(66) <= OPA(1) and OPA(14);

SUMMAND(67) <= OPA(2) and OPA(13);

SUMMAND(68) <= OPA(3) and OPA(12);

SUMMAND(69) <= OPA(4) and OPA(11);

SUMMAND(70) <= OPA(5) and OPA(10);

SUMMAND(71) <= OPA(6) and OPA(9);

SUMMAND(72) <= OPA(7) and OPA(8);
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SUMMAND(73) <= OPA(8);

­­ End square matrix column 16

­­ Gates in square matrix column 17

SUMMAND(74) <= (OPA(1)) and OPA(15);

SUMMAND(75) <= OPA(2) and OPA(14);

SUMMAND(76) <= OPA(3) and OPA(13);

SUMMAND(77) <= OPA(4) and OPA(12);

SUMMAND(78) <= OPA(5) and OPA(11);

SUMMAND(79) <= OPA(6) and OPA(10);

SUMMAND(80) <= OPA(7) and OPA(9);

­­ End square matrix column 17

­­ Gates in square matrix column 18

SUMMAND(81) <= (OPA(2)) and OPA(15);

SUMMAND(82) <= OPA(3) and OPA(14);

SUMMAND(83) <= OPA(4) and OPA(13);

SUMMAND(84) <= OPA(5) and OPA(12);

SUMMAND(85) <= OPA(6) and OPA(11);

SUMMAND(86) <= OPA(7) and OPA(10);

SUMMAND(87) <= OPA(8) and OPA(9);

SUMMAND(88) <= OPA(9);

­­ End square matrix column 18

­­ Gates in square matrix column 19

SUMMAND(89) <= (OPA(3)) and OPA(15);

SUMMAND(90) <= OPA(4) and OPA(14);

SUMMAND(91) <= OPA(5) and OPA(13);

SUMMAND(92) <= OPA(6) and OPA(12);

SUMMAND(93) <= OPA(7) and OPA(11);

SUMMAND(94) <= OPA(8) and OPA(10);

­­ End square matrix column 19

­­ Gates in square matrix column 20

SUMMAND(95) <= (OPA(4)) and OPA(15);

SUMMAND(96) <= OPA(5) and OPA(14);

SUMMAND(97) <= OPA(6) and OPA(13);

SUMMAND(98) <= OPA(7) and OPA(12);

SUMMAND(99) <= OPA(8) and OPA(11);

SUMMAND(100) <= OPA(9) and OPA(10);

SUMMAND(101) <= OPA(10);

­­ End square matrix column 20

­­ Gates in square matrix column 21

SUMMAND(102) <= (OPA(5)) and OPA(15);

SUMMAND(103) <= OPA(6) and OPA(14);
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SUMMAND(104) <= OPA(7) and OPA(13);

SUMMAND(105) <= OPA(8) and OPA(12);

SUMMAND(106) <= OPA(9) and OPA(11);

­­ End square matrix column 21

­­ Gates in square matrix column 22

SUMMAND(107) <= (OPA(6)) and OPA(15);

SUMMAND(108) <= OPA(7) and OPA(14);

SUMMAND(109) <= OPA(8) and OPA(13);

SUMMAND(110) <= OPA(9) and OPA(12);

SUMMAND(111) <= OPA(10) and OPA(11);

SUMMAND(112) <= OPA(11);

­­ End square matrix column 22

­­ Gates in square matrix column 23

SUMMAND(113) <= (OPA(7)) and OPA(15);

SUMMAND(114) <= OPA(8) and OPA(14);

SUMMAND(115) <= OPA(9) and OPA(13);

SUMMAND(116) <= OPA(10) and OPA(12);

­­ End square matrix column 23

­­ Gates in square matrix column 24

SUMMAND(117) <= (OPA(8)) and OPA(15);

SUMMAND(118) <= OPA(9) and OPA(14);

SUMMAND(119) <= OPA(10) and OPA(13);

SUMMAND(120) <= OPA(11) and OPA(12);

SUMMAND(121) <= OPA(12);

­­ End square matrix column 24

­­ Gates in square matrix column 25

SUMMAND(122) <= (OPA(9)) and OPA(15);

SUMMAND(123) <= OPA(10) and OPA(14);

SUMMAND(124) <= OPA(11) and OPA(13);

­­ End square matrix column 25

­­ Gates in square matrix column 26

SUMMAND(125) <= (OPA(10)) and OPA(15);

SUMMAND(126) <= OPA(11) and OPA(14);

SUMMAND(127) <= OPA(12) and OPA(13);

SUMMAND(128) <= OPA(13);

­­ End square matrix column 26

­­ Gates in square matrix column 27

SUMMAND(129) <= (OPA(11)) and OPA(15);

SUMMAND(130) <= OPA(12) and OPA(14);

­­ End square matrix column 27

­­ Gates in square matrix column 28
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SUMMAND(131) <= (OPA(12)) and OPA(15);

SUMMAND(132) <= OPA(13) and OPA(14);

SUMMAND(133) <= OPA(14);

­­ End square matrix column 28

­­ Gates in square matrix column 29

SUMMAND(134) <= (OPA(13)) and OPA(15);

­­ End square matrix column 29

­­ Gates in square matrix column 30

SUMMAND(135) <= (OPA(14)) and OPA(15);

SUMMAND(136) <= OPA(15);

­­ End square matrix column 30

­­ Gates in square matrix column 31

­­ End square matrix column 31

end SQUARE_BIT;
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Wallace Tree

library ieee;

use ieee.std_logic_1164.all;

entity FULL_ADDER is

port

(

DATA_A, DATA_B, DATA_C: in std_logic;

SAVE, CARRY: out std_logic

);

end FULL_ADDER;

library ieee;

use ieee.std_logic_1164.all;

entity HALF_ADDER is

port

(

DATA_A, DATA_B: in std_logic;

SAVE, CARRY: out std_logic

);

end HALF_ADDER;

library ieee;

use ieee.std_logic_1164.all;

entity WALLACE_16_16 is

port

(

SUMMAND: in std_logic_vector(0 to 136);

CARRY: out std_logic_vector(0 to 30);

SUM: out std_logic_vector(0 to 30)

);

end WALLACE_16_16;

architecture FULL_ADDER of FULL_ADDER is

signal TMP: std_logic;
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begin

TMP <= DATA_A xor DATA_B;

SAVE <= TMP xor DATA_C;

CARRY <= not((not (TMP and DATA_C)) and

(not (DATA_A and DATA_B)));

end FULL_ADDER;

architecture HALF_ADDER of HALF_ADDER is

begin

SAVE <= DATA_A xor DATA_B;

CARRY <= DATA_A and DATA_B;

end HALF_ADDER;

­­

­­ Wallace tree architecture

­­

architecture WALLACE of WALLACE_16_16 is

­­ Components used in the netlist

component FULL_ADDER

port

(

DATA_A, DATA_B, DATA_C: in std_logic;

SAVE, CARRY: out std_logic

);

end component;

component HALF_ADDER

port

(

DATA_A, DATA_B: in std_logic;

SAVE, CARRY: out std_logic

);

end component;

­­ Signals used inside the wallace trees
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signal INT_CARRY: std_logic_vector(0 to 73);

signal INT_SUM: std_logic_vector(0 to 110);

begin ­­ netlist

­­ Begin WT­branch 1

­­­­ Begin NO stage

SUM(0) <= SUMMAND(0); ­­ At Level 1

CARRY(0) <= ’0’;

­­­­ End NO stage

­­ End WT­branch 1

­­ Begin WT­branch 2

­­ An empty column!

SUM(1) <= ’0’;

CARRY(1) <= ’0’;

­­ End WT­branch 2

­­ Begin WT­branch 3

­­­­ Begin HA stage

HA_0:HALF_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(1), DATA_B => SUMMAND(2),

SAVE => SUM(2), CARRY => CARRY(2)

);

­­­­ End HA stage

­­ End WT­branch 3

­­ Begin WT­branch 4

­­­­ Begin NO stage

SUM(3) <= SUMMAND(3); ­­ At Level 1

CARRY(3) <= ’0’;

­­­­ End NO stage

­­ End WT­branch 4

­­ Begin WT­branch 5

­­­­ Begin FA stage

FA_0:FULL_ADDER ­­ At Level 1

port map
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(

DATA_A => SUMMAND(4), DATA_B => SUMMAND(5),

DATA_C => SUMMAND(6),

SAVE => SUM(4), CARRY => CARRY(4)

);

­­­­ End FA stage

­­ End WT­branch 5

­­ Begin WT­branch 6

­­­­ Begin HA stage

HA_1:HALF_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(7), DATA_B => SUMMAND(8),

SAVE => SUM(5), CARRY => CARRY(5)

);

­­­­ End HA stage

­­ End WT­branch 6

­­ Begin WT­branch 7

­­­­ Begin FA stage

FA_1:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(9), DATA_B => SUMMAND(10),

DATA_C => SUMMAND(11),

SAVE => INT_SUM(0), CARRY => INT_CARRY(0)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(1) <= SUMMAND(12); ­­ At Level 1

­­­­ End NO stage

­­­­ Begin HA stage

HA_2:HALF_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(0), DATA_B => INT_SUM(1),

SAVE => SUM(6), CARRY => CARRY(6)

);

­­­­ End HA stage

­­ End WT­branch 7
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­­ Begin WT­branch 8

­­­­ Begin FA stage

FA_2:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(13), DATA_B => SUMMAND(14),

DATA_C => SUMMAND(15),

SAVE => INT_SUM(2), CARRY => INT_CARRY(1)

);

­­­­ End FA stage

­­­­ Begin HA stage

HA_3:HALF_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(2), DATA_B => INT_CARRY(0),

SAVE => SUM(7), CARRY => CARRY(7)

);

­­­­ End HA stage

­­ End WT­branch 8

­­ Begin WT­branch 9

­­­­ Begin FA stage

FA_3:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(16), DATA_B => SUMMAND(17),

DATA_C => SUMMAND(18),

SAVE => INT_SUM(3), CARRY => INT_CARRY(2)

);

­­­­ End FA stage

­­­­ Begin HA stage

HA_4:HALF_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(19), DATA_B => SUMMAND(20),

SAVE => INT_SUM(4), CARRY => INT_CARRY(3)

);

­­­­ End HA stage

­­­­ Begin FA stage

FA_4:FULL_ADDER ­­ At Level 2
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port map

(

DATA_A => INT_SUM(3), DATA_B => INT_SUM(4),

DATA_C => INT_CARRY(1),

SAVE => SUM(8), CARRY => CARRY(8)

);

­­­­ End FA stage

­­ End WT­branch 9

­­ Begin WT­branch 10

­­­­ Begin FA stage

FA_5:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(21), DATA_B => SUMMAND(22),

DATA_C => SUMMAND(23),

SAVE => INT_SUM(5), CARRY => INT_CARRY(4)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(6) <= SUMMAND(24); ­­ At Level 1

­­­­ End NO stage

­­­­ Begin FA stage

FA_6:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(5), DATA_B => INT_SUM(6),

DATA_C => INT_CARRY(2),

SAVE => INT_SUM(7), CARRY => INT_CARRY(5)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(8) <= INT_CARRY(3); ­­ At Level 2

­­­­ End NO stage

­­­­ Begin HA stage

HA_5:HALF_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(7), DATA_B => INT_SUM(8),

SAVE => SUM(9), CARRY => CARRY(9)

);
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­­­­ End HA stage

­­ End WT­branch 10

­­ Begin WT­branch 11

­­­­ Begin FA stage

FA_7:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(25), DATA_B => SUMMAND(26),

DATA_C => SUMMAND(27),

SAVE => INT_SUM(9), CARRY => INT_CARRY(6)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_8:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(28), DATA_B => SUMMAND(29),

DATA_C => SUMMAND(30),

SAVE => INT_SUM(10), CARRY => INT_CARRY(7)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_9:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(9), DATA_B => INT_SUM(10),

DATA_C => INT_CARRY(4),

SAVE => INT_SUM(11), CARRY => INT_CARRY(8)

);

­­­­ End FA stage

­­­­ Begin HA stage

HA_6:HALF_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(11), DATA_B => INT_CARRY(5),

SAVE => SUM(10), CARRY => CARRY(10)

);

­­­­ End HA stage

­­ End WT­branch 11
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­­ Begin WT­branch 12

­­­­ Begin FA stage

FA_10:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(31), DATA_B => SUMMAND(32),

DATA_C => SUMMAND(33),

SAVE => INT_SUM(12), CARRY => INT_CARRY(9)

);

­­­­ End FA stage

­­­­ Begin HA stage

HA_7:HALF_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(34), DATA_B => SUMMAND(35),

SAVE => INT_SUM(13), CARRY => INT_CARRY(10)

);

­­­­ End HA stage

­­­­ Begin FA stage

FA_11:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(12), DATA_B => INT_SUM(13),

DATA_C => INT_CARRY(6),

SAVE => INT_SUM(14), CARRY => INT_CARRY(11)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(15) <= INT_CARRY(7); ­­ At Level 2

­­­­ End NO stage

­­­­ Begin FA stage

FA_12:FULL_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(14), DATA_B => INT_SUM(15),

DATA_C => INT_CARRY(8),

SAVE => SUM(11), CARRY => CARRY(11)

);

­­­­ End FA stage

­­ End WT­branch 12
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­­ Begin WT­branch 13

­­­­ Begin FA stage

FA_13:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(36), DATA_B => SUMMAND(37),

DATA_C => SUMMAND(38),

SAVE => INT_SUM(16), CARRY => INT_CARRY(12)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_14:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(39), DATA_B => SUMMAND(40),

DATA_C => SUMMAND(41),

SAVE => INT_SUM(17), CARRY => INT_CARRY(13)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(18) <= SUMMAND(42); ­­ At Level 1

­­­­ End NO stage

­­­­ Begin FA stage

FA_15:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(16), DATA_B => INT_SUM(17),

DATA_C => INT_SUM(18),

SAVE => INT_SUM(19), CARRY => INT_CARRY(14)

);

­­­­ End FA stage

­­­­ Begin HA stage

HA_8:HALF_ADDER ­­ At Level 2

port map

(

DATA_A => INT_CARRY(9), DATA_B => INT_CARRY(10),

SAVE => INT_SUM(20), CARRY => INT_CARRY(15)

);

­­­­ End HA stage

­­­­ Begin FA stage

FA_16:FULL_ADDER ­­ At Level 3
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port map

(

DATA_A => INT_SUM(19), DATA_B => INT_SUM(20),

DATA_C => INT_CARRY(11),

SAVE => SUM(12), CARRY => CARRY(12)

);

­­­­ End FA stage

­­ End WT­branch 13

­­ Begin WT­branch 14

­­­­ Begin FA stage

FA_17:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(43), DATA_B => SUMMAND(44),

DATA_C => SUMMAND(45),

SAVE => INT_SUM(21), CARRY => INT_CARRY(16)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_18:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(46), DATA_B => SUMMAND(47),

DATA_C => SUMMAND(48),

SAVE => INT_SUM(22), CARRY => INT_CARRY(17)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_19:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(21), DATA_B => INT_SUM(22),

DATA_C => INT_CARRY(12),

SAVE => INT_SUM(23), CARRY => INT_CARRY(18)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(24) <= INT_CARRY(13); ­­ At Level 2

­­­­ End NO stage

­­­­ Begin FA stage
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FA_20:FULL_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(23), DATA_B => INT_SUM(24),

DATA_C => INT_CARRY(14),

SAVE => INT_SUM(25), CARRY => INT_CARRY(19)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(26) <= INT_CARRY(15); ­­ At Level 3

­­­­ End NO stage

­­­­ Begin HA stage

HA_9:HALF_ADDER ­­ At Level 4

port map

(

DATA_A => INT_SUM(25), DATA_B => INT_SUM(26),

SAVE => SUM(13), CARRY => CARRY(13)

);

­­­­ End HA stage

­­ End WT­branch 14

­­ Begin WT­branch 15

­­­­ Begin FA stage

FA_21:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(49), DATA_B => SUMMAND(50),

DATA_C => SUMMAND(51),

SAVE => INT_SUM(27), CARRY => INT_CARRY(20)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_22:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(52), DATA_B => SUMMAND(53),

DATA_C => SUMMAND(54),

SAVE => INT_SUM(28), CARRY => INT_CARRY(21)

);

­­­­ End FA stage

­­­­ Begin NO stage
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INT_SUM(29) <= SUMMAND(55); ­­ At Level 1

­­­­ End NO stage

­­­­ Begin NO stage

INT_SUM(30) <= SUMMAND(56); ­­ At Level 1

­­­­ End NO stage

­­­­ Begin FA stage

FA_23:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(27), DATA_B => INT_SUM(28),

DATA_C => INT_SUM(29),

SAVE => INT_SUM(31), CARRY => INT_CARRY(22)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_24:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(30), DATA_B => INT_CARRY(16),

DATA_C => INT_CARRY(17),

SAVE => INT_SUM(32), CARRY => INT_CARRY(23)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_25:FULL_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(31), DATA_B => INT_SUM(32),

DATA_C => INT_CARRY(18),

SAVE => INT_SUM(33), CARRY => INT_CARRY(24)

);

­­­­ End FA stage

­­­­ Begin HA stage

HA_10:HALF_ADDER ­­ At Level 4

port map

(

DATA_A => INT_SUM(33), DATA_B => INT_CARRY(19),

SAVE => SUM(14), CARRY => CARRY(14)

);

­­­­ End HA stage

­­ End WT­branch 15
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­­ Begin WT­branch 16

­­­­ Begin FA stage

FA_26:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(57), DATA_B => SUMMAND(58),

DATA_C => SUMMAND(59),

SAVE => INT_SUM(34), CARRY => INT_CARRY(25)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_27:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(60), DATA_B => SUMMAND(61),

DATA_C => SUMMAND(62),

SAVE => INT_SUM(35), CARRY => INT_CARRY(26)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(36) <= SUMMAND(63); ­­ At Level 1

­­­­ End NO stage

­­­­ Begin FA stage

FA_28:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(34), DATA_B => INT_SUM(35),

DATA_C => INT_SUM(36),

SAVE => INT_SUM(37), CARRY => INT_CARRY(27)

);

­­­­ End FA stage

­­­­ Begin HA stage

HA_11:HALF_ADDER ­­ At Level 2

port map

(

DATA_A => INT_CARRY(20), DATA_B => INT_CARRY(21),

SAVE => INT_SUM(38), CARRY => INT_CARRY(28)

);

­­­­ End HA stage

­­­­ Begin FA stage
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FA_29:FULL_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(37), DATA_B => INT_SUM(38),

DATA_C => INT_CARRY(22),

SAVE => INT_SUM(39), CARRY => INT_CARRY(29)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(40) <= INT_CARRY(23); ­­ At Level 3

­­­­ End NO stage

­­­­ Begin FA stage

FA_30:FULL_ADDER ­­ At Level 4

port map

(

DATA_A => INT_SUM(39), DATA_B => INT_SUM(40),

DATA_C => INT_CARRY(24),

SAVE => SUM(15), CARRY => CARRY(15)

);

­­­­ End FA stage

­­ End WT­branch 16

­­ Begin WT­branch 17

­­­­ Begin FA stage

FA_31:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(64), DATA_B => SUMMAND(65),

DATA_C => SUMMAND(66),

SAVE => INT_SUM(41), CARRY => INT_CARRY(30)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_32:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(67), DATA_B => SUMMAND(68),

DATA_C => SUMMAND(69),

SAVE => INT_SUM(42), CARRY => INT_CARRY(31)

);

­­­­ End FA stage
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­­­­ Begin FA stage

FA_33:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(70), DATA_B => SUMMAND(71),

DATA_C => SUMMAND(72),

SAVE => INT_SUM(43), CARRY => INT_CARRY(32)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(44) <= SUMMAND(73); ­­ At Level 1

­­­­ End NO stage

­­­­ Begin FA stage

FA_34:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(41), DATA_B => INT_SUM(42),

DATA_C => INT_SUM(43),

SAVE => INT_SUM(45), CARRY => INT_CARRY(33)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_35:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(44), DATA_B => INT_CARRY(25),

DATA_C => INT_CARRY(26),

SAVE => INT_SUM(46), CARRY => INT_CARRY(34)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_36:FULL_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(45), DATA_B => INT_SUM(46),

DATA_C => INT_CARRY(27),

SAVE => INT_SUM(47), CARRY => INT_CARRY(35)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(48) <= INT_CARRY(28); ­­ At Level 3
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­­­­ End NO stage

­­­­ Begin FA stage

FA_37:FULL_ADDER ­­ At Level 4

port map

(

DATA_A => INT_SUM(47), DATA_B => INT_SUM(48), DATA_C =>

SAVE => SUM(16), CARRY => CARRY(16)

);

­­­­ End FA stage

­­ End WT­branch 17

­­ Begin WT­branch 18

­­­­ Begin FA stage

FA_38:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(74), DATA_B => SUMMAND(75),

DATA_C => SUMMAND(76),

SAVE => INT_SUM(49), CARRY => INT_CARRY(36)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_39:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(77), DATA_B => SUMMAND(78),

DATA_C => SUMMAND(79),

SAVE => INT_SUM(50), CARRY => INT_CARRY(37)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(51) <= SUMMAND(80); ­­ At Level 1

­­­­ End NO stage

­­­­ Begin FA stage

FA_40:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(49), DATA_B => INT_SUM(50), DATA_C =>

SAVE => INT_SUM(52), CARRY => INT_CARRY(38)

);

­­­­ End FA stage
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­­­­ Begin FA stage

FA_41:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_CARRY(30), DATA_B => INT_CARRY(31),

DATA_C => INT_CARRY(32),

SAVE => INT_SUM(53), CARRY => INT_CARRY(39)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_42:FULL_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(52), DATA_B => INT_SUM(53),

DATA_C => INT_CARRY(33),

SAVE => INT_SUM(54), CARRY => INT_CARRY(40)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(55) <= INT_CARRY(34); ­­ At Level 3

­­­­ End NO stage

­­­­ Begin FA stage

FA_43:FULL_ADDER ­­ At Level 4

port map

(

DATA_A => INT_SUM(54), DATA_B => INT_SUM(55),

DATA_C => INT_CARRY(35),

SAVE => SUM(17), CARRY => CARRY(17)

);

­­­­ End FA stage

­­ End WT­branch 18

­­ Begin WT­branch 19

­­­­ Begin FA stage

FA_44:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(81), DATA_B => SUMMAND(82),

DATA_C => SUMMAND(83),

SAVE => INT_SUM(56), CARRY => INT_CARRY(41)

);
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­­­­ End FA stage

­­­­ Begin FA stage

FA_45:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(84), DATA_B => SUMMAND(85),

DATA_C => SUMMAND(86),

SAVE => INT_SUM(57), CARRY => INT_CARRY(42)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(58) <= SUMMAND(87); ­­ At Level 1

­­­­ End NO stage

­­­­ Begin NO stage

INT_SUM(59) <= SUMMAND(88); ­­ At Level 1

­­­­ End NO stage

­­­­ Begin FA stage

FA_46:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(56), DATA_B => INT_SUM(57),

DATA_C => INT_SUM(58),

SAVE => INT_SUM(60), CARRY => INT_CARRY(43)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_47:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(59), DATA_B => INT_CARRY(36),

DATA_C => INT_CARRY(37),

SAVE => INT_SUM(61), CARRY => INT_CARRY(44)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_48:FULL_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(60), DATA_B => INT_SUM(61),

DATA_C => INT_CARRY(38),

SAVE => INT_SUM(62), CARRY => INT_CARRY(45)
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);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(63) <= INT_CARRY(39); ­­ At Level 3

­­­­ End NO stage

­­­­ Begin FA stage

FA_49:FULL_ADDER ­­ At Level 4

port map

(

DATA_A => INT_SUM(62), DATA_B => INT_SUM(63),

DATA_C => INT_CARRY(40),

SAVE => SUM(18), CARRY => CARRY(18)

);

­­­­ End FA stage

­­ End WT­branch 19

­­ Begin WT­branch 20

­­­­ Begin FA stage

FA_50:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(89), DATA_B => SUMMAND(90),

DATA_C => SUMMAND(91),

SAVE => INT_SUM(64), CARRY => INT_CARRY(46)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_51:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(92), DATA_B => SUMMAND(93),

DATA_C => SUMMAND(94),

SAVE => INT_SUM(65), CARRY => INT_CARRY(47)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_52:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(64), DATA_B => INT_SUM(65),

DATA_C => INT_CARRY(41),
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SAVE => INT_SUM(66), CARRY => INT_CARRY(48)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(67) <= INT_CARRY(42); ­­ At Level 2

­­­­ End NO stage

­­­­ Begin FA stage

FA_53:FULL_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(66), DATA_B => INT_SUM(67),

DATA_C => INT_CARRY(43),

SAVE => INT_SUM(68), CARRY => INT_CARRY(49)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(69) <= INT_CARRY(44); ­­ At Level 3

­­­­ End NO stage

­­­­ Begin FA stage

FA_54:FULL_ADDER ­­ At Level 4

port map

(

DATA_A => INT_SUM(68), DATA_B => INT_SUM(69),

DATA_C => INT_CARRY(45),

SAVE => SUM(19), CARRY => CARRY(19)

);

­­­­ End FA stage

­­ End WT­branch 20

­­ Begin WT­branch 21

­­­­ Begin FA stage

FA_55:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(95), DATA_B => SUMMAND(96),

DATA_C => SUMMAND(97),

SAVE => INT_SUM(70), CARRY => INT_CARRY(50)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_56:FULL_ADDER ­­ At Level 1
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port map

(

DATA_A => SUMMAND(98), DATA_B => SUMMAND(99),

DATA_C => SUMMAND(100),

SAVE => INT_SUM(71), CARRY => INT_CARRY(51)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(72) <= SUMMAND(101); ­­ At Level 1

­­­­ End NO stage

­­­­ Begin FA stage

FA_57:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(70), DATA_B => INT_SUM(71),

DATA_C => INT_SUM(72),

SAVE => INT_SUM(73), CARRY => INT_CARRY(52)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(74) <= INT_CARRY(46); ­­ At Level 2

­­­­ End NO stage

­­­­ Begin NO stage

INT_SUM(75) <= INT_CARRY(47); ­­ At Level 2

­­­­ End NO stage

­­­­ Begin FA stage

FA_58:FULL_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(73), DATA_B => INT_SUM(74),

DATA_C => INT_SUM(75),

SAVE => INT_SUM(76), CARRY => INT_CARRY(53)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(77) <= INT_CARRY(48); ­­ At Level 3

­­­­ End NO stage

­­­­ Begin FA stage

FA_59:FULL_ADDER ­­ At Level 4

port map

(
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DATA_A => INT_SUM(76), DATA_B => INT_SUM(77),

DATA_C => INT_CARRY(49),

SAVE => SUM(20), CARRY => CARRY(20)

);

­­­­ End FA stage

­­ End WT­branch 21

­­ Begin WT­branch 22

­­­­ Begin FA stage

FA_60:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(102), DATA_B => SUMMAND(103),

DATA_C => SUMMAND(104),

SAVE => INT_SUM(78), CARRY => INT_CARRY(54)

);

­­­­ End FA stage

­­­­ Begin HA stage

HA_12:HALF_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(105), DATA_B => SUMMAND(106),

SAVE => INT_SUM(79), CARRY => INT_CARRY(55)

);

­­­­ End HA stage

­­­­ Begin FA stage

FA_61:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(78), DATA_B => INT_SUM(79),

DATA_C => INT_CARRY(50),

SAVE => INT_SUM(80), CARRY => INT_CARRY(56)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(81) <= INT_CARRY(51); ­­ At Level 2

­­­­ End NO stage

­­­­ Begin FA stage

FA_62:FULL_ADDER ­­ At Level 3

port map

(
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DATA_A => INT_SUM(80), DATA_B => INT_SUM(81),

DATA_C => INT_CARRY(52),

SAVE => INT_SUM(82), CARRY => INT_CARRY(57)

);

­­­­ End FA stage

­­­­ Begin HA stage

HA_13:HALF_ADDER ­­ At Level 4

port map

(

DATA_A => INT_SUM(82), DATA_B => INT_CARRY(53),

SAVE => SUM(21), CARRY => CARRY(21)

);

­­­­ End HA stage

­­ End WT­branch 22

­­ Begin WT­branch 23

­­­­ Begin FA stage

FA_63:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(107), DATA_B => SUMMAND(108),

DATA_C => SUMMAND(109),

SAVE => INT_SUM(83), CARRY => INT_CARRY(58)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_64:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(110), DATA_B => SUMMAND(111),

DATA_C => SUMMAND(112),

SAVE => INT_SUM(84), CARRY => INT_CARRY(59)

);

­­­­ End FA stage

­­­­ Begin FA stage

FA_65:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(83), DATA_B => INT_SUM(84),

DATA_C => INT_CARRY(54),

SAVE => INT_SUM(85), CARRY => INT_CARRY(60)
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);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(86) <= INT_CARRY(55); ­­ At Level 2

­­­­ End NO stage

­­­­ Begin FA stage

FA_66:FULL_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(85), DATA_B => INT_SUM(86),

DATA_C => INT_CARRY(56),

SAVE => INT_SUM(87), CARRY => INT_CARRY(61)

);

­­­­ End FA stage

­­­­ Begin HA stage

HA_14:HALF_ADDER ­­ At Level 4

port map

(

DATA_A => INT_SUM(87), DATA_B => INT_CARRY(57),

SAVE => SUM(22), CARRY => CARRY(22)

);

­­­­ End HA stage

­­ End WT­branch 23

­­ Begin WT­branch 24

­­­­ Begin FA stage

FA_67:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(113), DATA_B => SUMMAND(114),

DATA_C => SUMMAND(115),

SAVE => INT_SUM(88), CARRY => INT_CARRY(62)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(89) <= SUMMAND(116); ­­ At Level 1

­­­­ End NO stage

­­­­ Begin FA stage

FA_68:FULL_ADDER ­­ At Level 2

port map

(

88



DATA_A => INT_SUM(88), DATA_B => INT_SUM(89),

DATA_C => INT_CARRY(58),

SAVE => INT_SUM(90), CARRY => INT_CARRY(63)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(91) <= INT_CARRY(59); ­­ At Level 2

­­­­ End NO stage

­­­­ Begin FA stage

FA_69:FULL_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(90), DATA_B => INT_SUM(91),

DATA_C => INT_CARRY(60),

SAVE => INT_SUM(92), CARRY => INT_CARRY(64)

);

­­­­ End FA stage

­­­­ Begin HA stage

HA_15:HALF_ADDER ­­ At Level 4

port map

(

DATA_A => INT_SUM(92), DATA_B => INT_CARRY(61),

SAVE => SUM(23), CARRY => CARRY(23)

);

­­­­ End HA stage

­­ End WT­branch 24

­­ Begin WT­branch 25

­­­­ Begin FA stage

FA_70:FULL_ADDER ­­ At Level 1

port map

(

DATA_A => SUMMAND(117), DATA_B => SUMMAND(118),

DATA_C => SUMMAND(119),

SAVE => INT_SUM(93), CARRY => INT_CARRY(65)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(94) <= SUMMAND(120); ­­ At Level 1

­­­­ End NO stage

­­­­ Begin NO stage
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INT_SUM(95) <= SUMMAND(121); ­­ At Level 1

­­­­ End NO stage

­­­­ Begin FA stage

FA_71:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => INT_SUM(93), DATA_B => INT_SUM(94),

DATA_C => INT_SUM(95),

SAVE => INT_SUM(96), CARRY => INT_CARRY(66)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(97) <= INT_CARRY(62); ­­ At Level 2

­­­­ End NO stage

­­­­ Begin FA stage

FA_72:FULL_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(96), DATA_B => INT_SUM(97),

DATA_C => INT_CARRY(63),

SAVE => INT_SUM(98), CARRY => INT_CARRY(67)

);

­­­­ End FA stage

­­­­ Begin HA stage

HA_16:HALF_ADDER ­­ At Level 4

port map

(

DATA_A => INT_SUM(98), DATA_B => INT_CARRY(64),

SAVE => SUM(24), CARRY => CARRY(24)

);

­­­­ End HA stage

­­ End WT­branch 25

­­ Begin WT­branch 26

­­­­ Begin FA stage

FA_73:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => SUMMAND(122), DATA_B => SUMMAND(123),

DATA_C => SUMMAND(124),

SAVE => INT_SUM(99), CARRY => INT_CARRY(68)
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);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(100) <= INT_CARRY(65); ­­ At Level 2

­­­­ End NO stage

­­­­ Begin FA stage

FA_74:FULL_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(99), DATA_B => INT_SUM(100),

DATA_C => INT_CARRY(66),

SAVE => INT_SUM(101), CARRY => INT_CARRY(69)

);

­­­­ End FA stage

­­­­ Begin HA stage

HA_17:HALF_ADDER ­­ At Level 4

port map

(

DATA_A => INT_SUM(101), DATA_B => INT_CARRY(67),

SAVE => SUM(25), CARRY => CARRY(25)

);

­­­­ End HA stage

­­ End WT­branch 26

­­ Begin WT­branch 27

­­­­ Begin FA stage

FA_75:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => SUMMAND(125), DATA_B => SUMMAND(126),

DATA_C => SUMMAND(127),

SAVE => INT_SUM(102), CARRY => INT_CARRY(70)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(103) <= SUMMAND(128); ­­ At Level 2

­­­­ End NO stage

­­­­ Begin FA stage

FA_76:FULL_ADDER ­­ At Level 3

port map

(
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DATA_A => INT_SUM(102), DATA_B => INT_SUM(103),

DATA_C => INT_CARRY(68),

SAVE => INT_SUM(104), CARRY => INT_CARRY(71)

);

­­­­ End FA stage

­­­­ Begin HA stage

HA_18:HALF_ADDER ­­ At Level 4

port map

(

DATA_A => INT_SUM(104), DATA_B => INT_CARRY(69),

SAVE => SUM(26), CARRY => CARRY(26)

);

­­­­ End HA stage

­­ End WT­branch 27

­­ Begin WT­branch 28

­­­­ Begin NO stage

INT_SUM(105) <= SUMMAND(129); ­­ At Level 2

­­­­ End NO stage

­­­­ Begin NO stage

INT_SUM(106) <= SUMMAND(130); ­­ At Level 2

­­­­ End NO stage

­­­­ Begin FA stage

FA_77:FULL_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(105), DATA_B => INT_SUM(106)

, DATA_C => INT_CARRY(70),

SAVE => INT_SUM(107), CARRY => INT_CARRY(72)

);

­­­­ End FA stage

­­­­ Begin HA stage

HA_19:HALF_ADDER ­­ At Level 4

port map

(

DATA_A => INT_SUM(107), DATA_B => INT_CARRY(71)

, SAVE => SUM(27), CARRY => CARRY(27)

);

­­­­ End HA stage

­­ End WT­branch 28
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­­ Begin WT­branch 29

­­­­ Begin FA stage

FA_78:FULL_ADDER ­­ At Level 2

port map

(

DATA_A => SUMMAND(131), DATA_B => SUMMAND(132)

, DATA_C => SUMMAND(133),

SAVE => INT_SUM(108), CARRY => INT_CARRY(73)

);

­­­­ End FA stage

­­­­ Begin NO stage

INT_SUM(109) <= INT_SUM(108); ­­ At Level 3

­­­­ End NO stage

­­­­ Begin HA stage

HA_20:HALF_ADDER ­­ At Level 4

port map

(

DATA_A => INT_SUM(109), DATA_B => INT_CARRY(72),

SAVE => SUM(28), CARRY => CARRY(28)

);

­­­­ End HA stage

­­ End WT­branch 29

­­ Begin WT­branch 30

­­­­ Begin NO stage

INT_SUM(110) <= SUMMAND(134); ­­ At Level 2

­­­­ End NO stage

­­­­ Begin HA stage

HA_21:HALF_ADDER ­­ At Level 3

port map

(

DATA_A => INT_SUM(110), DATA_B => INT_CARRY(73),

SAVE => SUM(29), CARRY => CARRY(29)

);

­­­­ End HA stage

­­ End WT­branch 30

­­ Begin WT­branch 31

­­­­ Begin HA stage

HA_22:HALF_ADDER ­­ At Level 2

port map
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(

DATA_A => SUMMAND(135), DATA_B => SUMMAND(136),

SAVE => SUM(30), CARRY => CARRY(30)

);

­­­­ End HA stage

­­ End WT­branch 31

end WALLACE;
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DBLC adder

library ieee;

use ieee.std_logic_1164.all;

entity INVBLOCK is

port

(

GIN,PHI:in std_logic;

GOUT:out std_logic

);

end INVBLOCK;

library ieee;

use ieee.std_logic_1164.all;

entity XXOR1 is

port

(

A,B,GIN,PHI:in std_logic;

SUM:out std_logic

);

end XXOR1;

library ieee;

use ieee.std_logic_1164.all;

entity XXOR2 is

port

(

A,B,GIN,PHI:in std_logic;

SUM:out std_logic

);

end XXOR2;

library ieee;

use ieee.std_logic_1164.all;

entity BLOCK0 is

port

(

A,B,PHI:in std_logic;

POUT,GOUT:out std_logic
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);

end BLOCK0;

library ieee;

use ieee.std_logic_1164.all;

entity BLOCK1 is

port

(

PIN1,PIN2,GIN1,GIN2,PHI:in std_logic;

POUT,GOUT:out std_logic

);

end BLOCK1;

library ieee;

use ieee.std_logic_1164.all;

entity BLOCK2 is

port

(

PIN1,PIN2,GIN1,GIN2,PHI:in std_logic;

POUT,GOUT:out std_logic

);

end BLOCK2;

library ieee;

use ieee.std_logic_1164.all;

entity BLOCK1A is

port

(

PIN2,GIN1,GIN2,PHI:in std_logic;

GOUT:out std_logic

);

end BLOCK1A;

library ieee;

use ieee.std_logic_1164.all;

entity BLOCK2A is

port

(

PIN2,GIN1,GIN2,PHI:in std_logic;
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GOUT:out std_logic

);

end BLOCK2A;

library ieee;

use ieee.std_logic_1164.all;

entity PRESTAGE_32 is

port

(

A: in std_logic_vector(0 to 31);

B: in std_logic_vector(0 to 31);

CIN: in std_logic;

PHI: in std_logic;

POUT: out std_logic_vector(0 to 31);

GOUT: out std_logic_vector(0 to 32)

);

end PRESTAGE_32;

library ieee;

use ieee.std_logic_1164.all;

entity DBLC_0_32 is

port

(

PIN: in std_logic_vector(0 to 31);

GIN: in std_logic_vector(0 to 32);

PHI: in std_logic;

POUT: out std_logic_vector(0 to 30);

GOUT: out std_logic_vector(0 to 32)

);

end DBLC_0_32;

library ieee;

use ieee.std_logic_1164.all;

entity DBLC_1_32 is

port

(

PIN: in std_logic_vector(0 to 30);

GIN: in std_logic_vector(0 to 32);

PHI: in std_logic;

POUT: out std_logic_vector(0 to 28);

GOUT: out std_logic_vector(0 to 32)
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);

end DBLC_1_32;

library ieee;

use ieee.std_logic_1164.all;

entity DBLC_2_32 is

port

(

PIN: in std_logic_vector(0 to 28);

GIN: in std_logic_vector(0 to 32);

PHI: in std_logic;

POUT: out std_logic_vector(0 to 24);

GOUT: out std_logic_vector(0 to 32)

);

end DBLC_2_32;

library ieee;

use ieee.std_logic_1164.all;

entity DBLC_3_32 is

port

(

PIN: in std_logic_vector(0 to 24);

GIN: in std_logic_vector(0 to 32);

PHI: in std_logic;

POUT: out std_logic_vector(0 to 16);

GOUT: out std_logic_vector(0 to 32)

);

end DBLC_3_32;

library ieee;

use ieee.std_logic_1164.all;

entity DBLC_4_32 is

port

(

PIN: in std_logic_vector(0 to 16);

GIN: in std_logic_vector(0 to 32);

PHI: in std_logic;

POUT: out std_logic_vector(0 to 0);

GOUT: out std_logic_vector(0 to 32)

);

end DBLC_4_32;
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library ieee;

use ieee.std_logic_1164.all;

entity XORSTAGE_32 is

port

(

A: in std_logic_vector(0 to 31);

B: in std_logic_vector(0 to 31);

PBIT, PHI: in std_logic;

CARRY: in std_logic_vector(0 to 32);

SUM: out std_logic_vector(0 to 31);

COUT: out std_logic

);

end XORSTAGE_32;

library ieee;

use ieee.std_logic_1164.all;

entity DBLCTREE_32 is

port

(

PIN:in std_logic_vector(0 to 31);

GIN:in std_logic_vector(0 to 32);

PHI:in std_logic;

GOUT:out std_logic_vector(0 to 32);

POUT:out std_logic_vector(0 to 0)

);

end DBLCTREE_32;

library ieee;

use ieee.std_logic_1164.all;

entity DBLCADDER_32_32 is

port

(

OPA:in std_logic_vector(0 to 31);

OPB:in std_logic_vector(0 to 31);

CIN:in std_logic;

PHI:in std_logic;

SUM:out std_logic_vector(0 to 31)

);

end DBLCADDER_32_32;
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­­ Architectures for the DBLC­tree

architecture INVBLOCK_regular of INVBLOCK is

begin

GOUT <= not GIN;

end INVBLOCK_regular;

library ieee;

use ieee.std_logic_1164.all;

architecture BLOCK1_regular of BLOCK1 is

begin

POUT <= not(PIN1 or PIN2);

GOUT <= not(GIN2 and (PIN2 or GIN1));

end BLOCK1_regular;

library ieee;

use ieee.std_logic_1164.all;

architecture BLOCK2_regular of BLOCK2 is

begin

POUT <= not(PIN1 and PIN2);

GOUT <= not(GIN2 or (PIN2 and GIN1));

end BLOCK2_regular;

library ieee;

use ieee.std_logic_1164.all;

architecture BLOCK1A_regular of BLOCK1A is

begin

GOUT <= not(GIN2 and (PIN2 or GIN1));

end BLOCK1A_regular;

library ieee;

use ieee.std_logic_1164.all;

architecture BLOCK2A_regular of BLOCK2A is

begin
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GOUT <= not(GIN2 or (PIN2 and GIN1));

end BLOCK2A_regular;

library ieee;

use ieee.std_logic_1164.all;

architecture XXOR_regular of XXOR1 is

begin

SUM <= (not (A xor B)) xor GIN;

end XXOR_regular;

library ieee;

use ieee.std_logic_1164.all;

architecture XXOR_true of XXOR2 is

begin

SUM <= (A xor B) xor GIN;

end XXOR_true;

library ieee;

use ieee.std_logic_1164.all;

architecture BLOCK0_regular of BLOCK0 is

begin

POUT <= not(A or B);

GOUT <= not(A and B);

end BLOCK0_regular;

library ieee;

use ieee.std_logic_1164.all;

architecture PRESTAGE of PRESTAGE_32 is

component BLOCK0

port

(

A,B,PHI: in std_logic;

POUT,GOUT: out std_logic

);

end component;

component INVBLOCK

port

(

GIN,PHI:in std_logic;

GOUT:out std_logic

);
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end component;

begin ­­ PRESTAGE

U1:for I in 0 to 31 generate

U11: BLOCK0 port map(A(I),B(I),PHI,POUT(I),GOUT(I+1));

end generate U1;

U2: INVBLOCK port map(CIN,PHI,GOUT(0));

end PRESTAGE;

­­ The DBLC­tree: Level 0

library ieee;

use ieee.std_logic_1164.all;

architecture DBLC_0 of DBLC_0_32 is

component INVBLOCK

port

(

GIN,PHI:in std_logic;

GOUT:out std_logic

);

end component;

component BLOCK1

port

(

PIN1,PIN2,GIN1,GIN2,PHI:in std_logic;

POUT,GOUT:out std_logic

);

end component;

component BLOCK1A

port

(

PIN2,GIN1,GIN2,PHI:in std_logic;

GOUT:out std_logic

);

end component;

begin ­­ Architecture DBLC_0

U1: for I in 0 to 0 generate

U11: INVBLOCK port map(GIN(I),PHI,GOUT(I));

end generate U1;
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U2: for I in 1 to 1 generate

U21: BLOCK1A port map(PIN(I­1),GIN(I­1),GIN(I),PHI,

GOUT(I));

end generate U2;

U3: for I in 2 to 32 generate

U31: BLOCK1 port map(PIN(I­2),PIN(I­1),GIN(I­1),

GIN(I),PHI,POUT(I­2),GOUT(I));

end generate U3;

end DBLC_0;

­­ The DBLC­tree: Level 1

library ieee;

use ieee.std_logic_1164.all;

architecture DBLC_1 of DBLC_1_32 is

component INVBLOCK

port

(

GIN,PHI:in std_logic;

GOUT:out std_logic

);

end component;

component BLOCK2

port

(

PIN1,PIN2,GIN1,GIN2,PHI:in std_logic;

POUT,GOUT:out std_logic

);

end component;

component BLOCK2A

port

(

PIN2,GIN1,GIN2,PHI:in std_logic;

GOUT:out std_logic

);

end component;

begin ­­ Architecture DBLC_1

U1: for I in 0 to 1 generate
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U11: INVBLOCK port map(GIN(I),PHI,GOUT(I));

end generate U1;

U2: for I in 2 to 3 generate

U21: BLOCK2A port map(PIN(I­2),GIN(I­2),GIN(I),PHI,

GOUT(I));

end generate U2;

U3: for I in 4 to 32 generate

U31: BLOCK2 port map(PIN(I­4),PIN(I­2),GIN(I­2),

GIN(I),PHI,POUT(I­4),GOUT(I));

end generate U3;

end DBLC_1;

­­ The DBLC­tree: Level 2

library ieee;

use ieee.std_logic_1164.all;

architecture DBLC_2 of DBLC_2_32 is

component INVBLOCK

port

(

GIN,PHI:in std_logic;

GOUT:out std_logic

);

end component;

component BLOCK1

port

(

PIN1,PIN2,GIN1,GIN2,PHI:in std_logic;

POUT,GOUT:out std_logic

);

end component;

component BLOCK1A

port

(

PIN2,GIN1,GIN2,PHI:in std_logic;

GOUT:out std_logic

);

end component;
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begin ­­ Architecture DBLC_2

U1: for I in 0 to 3 generate

U11: INVBLOCK port map(GIN(I),PHI,GOUT(I));

end generate U1;

U2: for I in 4 to 7 generate

U21: BLOCK1A port map(PIN(I­4),GIN(I­4),GIN(I),PHI,

GOUT(I));

end generate U2;

U3: for I in 8 to 32 generate

U31: BLOCK1 port map(PIN(I­8),PIN(I­4),GIN(I­4),

GIN(I),PHI,POUT(I­8),GOUT(I));

end generate U3;

end DBLC_2;

­­ The DBLC­tree: Level 3

library ieee;

use ieee.std_logic_1164.all;

architecture DBLC_3 of DBLC_3_32 is

component INVBLOCK

port

(

GIN,PHI:in std_logic;

GOUT:out std_logic

);

end component;

component BLOCK2

port

(

PIN1,PIN2,GIN1,GIN2,PHI:in std_logic;

POUT,GOUT:out std_logic

);

end component;

component BLOCK2A

port

(

PIN2,GIN1,GIN2,PHI:in std_logic;

GOUT:out std_logic

);
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end component;

begin ­­ Architecture DBLC_3

U1: for I in 0 to 7 generate

U11: INVBLOCK port map(GIN(I),PHI,GOUT(I));

end generate U1;

U2: for I in 8 to 15 generate

U21: BLOCK2A port map(PIN(I­8),GIN(I­8),GIN(I),PHI,

GOUT(I));

end generate U2;

U3: for I in 16 to 32 generate

U31: BLOCK2 port map(PIN(I­16),PIN(I­8),GIN(I­8),

GIN(I),PHI,POUT(I­16),GOUT(I));

end generate U3;

end DBLC_3;

­­ The DBLC­tree: Level 4

library ieee;

use ieee.std_logic_1164.all;

architecture DBLC_4 of DBLC_4_32 is

component BLOCK1

port

(

PIN1,PIN2,GIN1,GIN2,PHI:in std_logic;

POUT,GOUT:out std_logic

);

end component;

component BLOCK1A

port

(

PIN2,GIN1,GIN2,PHI:in std_logic;

GOUT:out std_logic

);

end component;

begin ­­ Architecture DBLC_4

GOUT(0 to 15) <= GIN(0 to 15);

U2: for I in 16 to 31 generate

U21: BLOCK1A port map(PIN(I­16),GIN(I­16),GIN(I),PHI,
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GOUT(I));

end generate U2;

U3: for I in 32 to 32 generate

U31: BLOCK1 port map(PIN(I­32),PIN(I­16),GIN(I­16),

GIN(I),PHI,POUT(I­32),GOUT(I));

end generate U3;

end DBLC_4;

library ieee;

use ieee.std_logic_1164.all;

architecture XORSTAGE of XORSTAGE_32 is

component XXOR1

port

(

A,B,GIN,PHI:in std_logic;

SUM:out std_logic

);

end component;

component XXOR2

port

(

A,B,GIN,PHI:in std_logic;

SUM:out std_logic

);

end component;

component BLOCK2A

port

(

PIN2,GIN1,GIN2,PHI:in std_logic;

GOUT:out std_logic

);

end component;

begin ­­ XORSTAGE

U2:for I in 0 to 15 generate

U22: XXOR1 port map(A(I),B(I),CARRY(I),PHI,SUM(I));

end generate U2;

U3:for I in 16 to 31 generate

U33: XXOR2 port map(A(I),B(I),CARRY(I),PHI,SUM(I));

end generate U3;

U1: BLOCK2A port map(PBIT,CARRY(0),CARRY(32),PHI,COUT);
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end XORSTAGE;

­­ The DBLC­tree: All levels encapsulated

library ieee;

use ieee.std_logic_1164.all;

architecture DBLCTREE of DBLCTREE_32 is

component DBLC_0_32

port

(

PIN: in std_logic_vector(0 to 31);

GIN: in std_logic_vector(0 to 32);

PHI: in std_logic;

POUT: out std_logic_vector(0 to 30);

GOUT: out std_logic_vector(0 to 32)

);

end component;

component DBLC_1_32

port

(

PIN: in std_logic_vector(0 to 30);

GIN: in std_logic_vector(0 to 32);

PHI: in std_logic;

POUT: out std_logic_vector(0 to 28);

GOUT: out std_logic_vector(0 to 32)

);

end component;

component DBLC_2_32

port

(

PIN: in std_logic_vector(0 to 28);

GIN: in std_logic_vector(0 to 32);

PHI: in std_logic;

POUT: out std_logic_vector(0 to 24);

GOUT: out std_logic_vector(0 to 32)

);

end component;

component DBLC_3_32
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port

(

PIN: in std_logic_vector(0 to 24);

GIN: in std_logic_vector(0 to 32);

PHI: in std_logic;

POUT: out std_logic_vector(0 to 16);

GOUT: out std_logic_vector(0 to 32)

);

end component;

component DBLC_4_32

port

(

PIN: in std_logic_vector(0 to 16);

GIN: in std_logic_vector(0 to 32);

PHI: in std_logic;

POUT: out std_logic_vector(0 to 0);

GOUT: out std_logic_vector(0 to 32)

);

end component;

signal INTPROP_0: std_logic_vector(0 to 30);

signal INTGEN_0: std_logic_vector(0 to 32);

signal INTPROP_1: std_logic_vector(0 to 28);

signal INTGEN_1: std_logic_vector(0 to 32);

signal INTPROP_2: std_logic_vector(0 to 24);

signal INTGEN_2: std_logic_vector(0 to 32);

signal INTPROP_3: std_logic_vector(0 to 16);

signal INTGEN_3: std_logic_vector(0 to 32);

begin ­­ Architecture DBLCTREE

U_0: DBLC_0_32 port map(PIN=>PIN,GIN=>GIN,PHI=>PHI,

POUT=>INTPROP_0,GOUT=>INTGEN_0);

U_1: DBLC_1_32 port

map(PIN=>INTPROP_0,GIN=>INTGEN_0,PHI=>PHI,POUT=>INTPROP_1,

GOUT=>INTGEN_1);

U_2: DBLC_2_32 port

map(PIN=>INTPROP_1,GIN=>INTGEN_1,PHI=>PHI,POUT=>INTPROP_2,

GOUT=>INTGEN_2);

U_3: DBLC_3_32 port

map(PIN=>INTPROP_2,GIN=>INTGEN_2,PHI=>PHI,POUT=>INTPROP_3,

GOUT=>INTGEN_3);
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U_4: DBLC_4_32 port map(PIN=>INTPROP_3,GIN=>INTGEN_3,

PHI=>PHI,POUT=>POUT,GOUT=>GOUT);

end DBLCTREE;

library ieee;

use ieee.std_logic_1164.all;

architecture DBLCADDER of DBLCADDER_32_32 is

component PRESTAGE_32

port

(

A: in std_logic_vector(0 to 31);

B: in std_logic_vector(0 to 31);

CIN: in std_logic;

PHI: in std_logic;

POUT: out std_logic_vector(0 to 31);

GOUT: out std_logic_vector(0 to 32)

);

end component;

component DBLCTREE_32

port

(

PIN:in std_logic_vector(0 to 31);

GIN:in std_logic_vector(0 to 32);

PHI:in std_logic;

GOUT:out std_logic_vector(0 to 32);

POUT:out std_logic_vector(0 to 0)

);

end component;

component XORSTAGE_32

port

(

A: in std_logic_vector(0 to 31);

B: in std_logic_vector(0 to 31);

PBIT: in std_logic;

PHI: in std_logic;

CARRY: in std_logic_vector(0 to 32);

SUM: out std_logic_vector(0 to 31);

COUT: out std_logic

);
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end component;

signal INTPROP: std_logic_vector(0 to 31);

signal INTGEN: std_logic_vector(0 to 32);

signal PBIT:std_logic_vector(0 to 0);

signal CARRY: std_logic_vector(0 to 32);

begin ­­ Architecture DBLCADDER

U1: PRESTAGE_32 port map(OPA,OPB,CIN,PHI,INTPROP,INTGEN);

U2: DBLCTREE_32 port map(INTPROP,INTGEN,PHI,CARRY,PBIT);

U3: XORSTAGE_32 port map(OPA(0 to 31),OPB(0 to 31),PBIT(0),

PHI,CARRY(0 to 32),SUM,open);

end DBLCADDER;
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Testbench

Library IEEE;

use IEEE.Std_Logic_1164.all;

use Std.textio.all;

use IEEE.numeric_std.all;

Entity TEST_SQ is

end TEST_SQ;

architecture TESTBENCH of TEST_SQ is

Component SQ

port

(

X: in std_logic_vector(15 downto 0);

CLK: in std_logic;

P: out std_logic_vector(31 downto 0)

);

end Component;

signal A: std_logic_vector(15 downto 0);

signal Q: std_logic_vector(31 downto 0);

signal LOGIC_ZERO: Bit;

signal CLK: std_logic :=’0’;

begin

­­Instantierer "Unit Under Test"

UUT : SQ

port map

(
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X => A,

P => Q,

CLK => CLK

);

­­ Handle input and output files

read_in : process

file in_vec: text open read_mode is "M:\New Folder\input.txt";

file out_vec: text open write_mode is "out.txt";

variable ILine,OLine : line;

variable A_in : natural;

variable Q_out : bit_vector (31 downto 0);

begin

STIMULI :

while not endfile(in_vec) loop

readline(in_vec, ILine);

read(ILine, A_in);

A <= std_logic_vector(to_unsigned(A_in,16));

wait for 100 ns;

Q_out:=to_bitvector(Q);

write(OLine, Q_out);

writeline(out_vec,OLine) ;

end loop;

file_close(in_vec);

file_close(out_vec);

end process;

end TESTBENCH;
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