
UNIVERSITY OF OSLO
Department of
Informatics

Implementing and
Testing the APEX
I/O Scheduler in
Linux

Master thesis

Andreas Jacbosen

February 1, 2007

Abstract

This thesis seeks to test an implementation of the APEX I/O scheduler
to see how it compares to modern schedulers and whether it better serves
mixed-media workloads. APEX is a scheduling framework that seeks to
provide deterministic guarantees for storage service to applications. The
implementation is done in Linux, a modern open source operating system
kernel that includes a loadable scheduler framework. The implementation
compares favorably with the existing schedulers on Linux, despite problems
inherent in the assumptions made in the design of mixed-media schedulers
about modern operating system environments.

Acknowledgements

Many thanks are due to those who have helped and supported the creation
of this work. In no particular order, they are:

My supervisors, Pål Halvorsen and Carsten Griwodz.
My friends.
My family.

Thanks.

ii

Contents

1 Introduction 1

1.1 Mixed-media Workloads . 1
1.2 Linux . 2
1.3 APEX . 3
1.4 Contributions . 4
1.5 Structure . 4

2 Overview of Modern Hardware 5

2.1 Seek Delay . 7
2.2 Access Time . 8
2.3 Internal Optimizations . 9
2.4 Summary . 10

3 Continuous Media Requirements 11

3.1 General Continuous Media Requirements 11
3.2 Speci�c Design Requirements 12
3.3 Summary . 13

4 Overview of I/O Scheduling Algorithms 15

4.1 Early Algorithms . 15
4.1.1 Suitability of Early Algorithms for Multimedia Servers 17

4.2 Deadline-Aware Algorithms 17
4.3 Stream Oriented Scheduling Algorithms 18
4.4 Mixed-Media Scheduling Algorithms 18

4.4.1 Cello . 19
4.4.2 MARS . 20
4.4.3 APEX . 21
4.4.4 Other Mixed-Media Schedulers 24

4.5 Suitability of Existing Schedulers 25
4.6 Summary . 26

iii

5 Examination of Linux I/O scheduling 27

5.1 Linux suitability . 27
5.2 The Linux Kernel . 28
5.3 The Generic Block Device Layer 30

5.3.1 Bu�er Heads . 30
5.3.2 Block I/O Units . 30
5.3.3 Requests . 31
5.3.4 Plugging . 31

5.4 Performing a Read Operation on Linux 32
5.4.1 Bu�ered I/O . 33
5.4.2 Direct I/O . 40

5.5 The Linux Elevator Interface 42
5.5.1 Switching Scheduler on a Block Device 43
5.5.2 The Elevator Interface Provided to Schedulers 43
5.5.3 The Scheduler Interface Provided to the Block Layer . 44
5.5.4 Merging . 45
5.5.5 Synchronous, Asynchronous and Metadata Prioritization 46

5.6 The Linux I/O Schedulers . 47
5.6.1 Linus Elevator . 47
5.6.2 Noop . 48
5.6.3 Deadline . 48
5.6.4 Anticipatory . 48
5.6.5 CFQ . 50

5.7 Suitability of Linux Schedulers 51
5.8 Summary . 52

6 Implementation of APEX in Linux 53

6.1 Data Structures . 53
6.2 Functions . 59

6.2.1 Functions for Handling Data Structures 67
6.3 The apex_ioprio_set System Call and the APEX I/O Pri-

ority Framework . 69
6.4 Limitations in the Implementation 73

6.4.1 Multiple Queues Per Process in Linux 74
6.4.2 Correctly Managing Admission Control 77
6.4.3 Low Latency Service Class 79

6.5 Problematic Assumptions in Mixed-Media Schedulers 80
6.6 Possible Improvements to the APEX Implementation 81
6.7 Summary . 82

iv

7 Testing and Analysis of Results 83
7.1 Hardware . 83
7.2 Operating System . 84
7.3 Applications . 84

7.3.1 Bonnie++ . 85
7.3.2 Reservation Based Reader 86
7.3.3 Background Best E�ort Reader 86

7.4 Test Scenarios . 88
7.4.1 Presentation of Results 90

7.5 Scenario 1: Bonnie++ . 91
7.5.1 Results . 91

7.6 Scenario 2 . 92
7.6.1 Results . 93

7.7 Scenario 3 . 98
7.7.1 Results . 98

7.8 Scenario 4 . 101
7.8.1 Results . 104

7.9 Scenario 5 . 105
7.9.1 Results . 105

7.10 Scenario 6 . 108
7.10.1 Results . 109

7.11 Scenario 7 . 112
7.11.1 Results . 112

7.12 Scenario 8 and 9 . 118
7.12.1 Results . 119

7.13 Scenario 10 . 121
7.13.1 Results . 122

7.14 Scenario 11 . 128
7.14.1 Results . 128

7.15 Summary . 134

8 Conclusions 135
8.1 Future Work . 135

A Source Code 137

v

List of Figures

2.1 The side view of a hard disk drive 6
2.2 The top view of a hard disk drive 6

5.1 The relationship between request, bio and bio_vec structures[23]. 32
5.2 The call graph from sys_read to submit_bio. 34
5.3 The �ow information through the VFS layer 36
5.4 The call graph for request submission 39
5.5 Reading the available and active schedulers. 43
5.6 Changing the scheduler on a block device. 43

6.1 The process speci�c APEX I/O context information. 54
6.2 The device speci�c elevator data structure. 55
6.3 The process speci�c request queue data structure. 56
6.4 Using the ops structure in elevator_type, APEX registers

the functions in the scheduler interface that it implements. . 60
6.5 . 62
6.6 The call graph for dispatching requests on APEX. 64
6.7 Adding new system call functions in the system call table . . . 70
6.8 Adding new system calls to the list of system call numbers . . 70
6.9 The Makefile for the kernel block layer 71

7.1 Pseudocode for the read loop in the reservation based reader. . 88
7.2 Scenario 2: Response times for all resource reserving readers

under each scheduler setting. 95
7.3 Scenario 3: Response times for all resource reserving readers

under each scheduler setting. 100
7.4 Scenario 4: Response times for all resource reserving readers

under each scheduler setting. 103
7.5 Scenario 5: Response times for all resource reserving readers

under each scheduler setting. 107
7.6 Scenario 6: Response times for all resource reserving readers

under each scheduler setting. 110

vi

7.7 Scenario 7: Response times for CBR and VBR readers under
APEX . 114

7.8 Scenario 7: Response times for CBR and VBR readers under
CFQ . 115

7.9 Scenario 7: Response times for CBR and VBR readers under
Anticipatory . 115

7.10 Scenario 7: Response times for CBR and VBR readers under
Deadline . 116

7.11 Scenario 8: Response times for VBR readers under APEX . . 120
7.12 Scenario 9: Response times for CBR and VBR readers under

APEX . 120
7.13 Scenario 10: Response times for reserving and best e�ort read-

ers under APEX . 124
7.14 Scenario 10: Response times for reserving and best e�ort read-

ers under CFQ . 124
7.15 Scenario 10: Response times for reserving and best e�ort read-

ers under Anticipatory . 125
7.16 Scenario 10: Response times for reserving and best e�ort read-

ers under Deadline . 125
7.17 Scenario 11: Response times for reserving and best e�ort read-

ers under APEX . 130
7.18 Scenario 11: Response times for reserving and best e�ort read-

ers under CFQ . 131
7.19 Scenario 11: Response times for reserving and best e�ort read-

ers under Anticipatory . 131
7.20 Scenario 11: Response times for reserving and best e�ort read-

ers under Deadline . 132

vii

List of Tables

4.1 Summary of disk scheduler characteristics 25

5.1 Kernel API functions for bu�ered I/O 33
5.2 Kernel data structures for bu�ered I/O 35
5.3 Kernel functions and data structures for direct I/O 41

6.1 Default values for the APEX elevator data 59

7.1 Performance details for the ST3320620A model hard disk drive 83
7.2 Parameters for Reservation Based Readers 87
7.3 The results of Bonnie++ on each scheduler, running with

4096MB worth of �les. 91
7.4 Scenario 2: Con�guration . 92
7.5 Scenario 2: Analysis of response times for APEX and CFQ

(priority 0 and 7). All results except percentile in µs. 93
7.6 Scenario 2: Analysis of response times for Anticipatory and

Deadline. All results except percentile in µs. 93
7.7 Scenario 2: Analysis of bandwidth for each resource reserving

process under APEX and CFQ (priority 0 and 7). All numbers
in KB/s. 94

7.8 Scenario 2: Analysis of bandwidth for each resource reserv-
ing process under Anticipatory and Deadline. All numbers in
KB/s. 94

7.9 Scenario 3: Con�guration . 98
7.10 Scenario 3: Analysis of response times. All results except

percentile in µs. 99
7.11 Scenario 3: Analysis of bandwidth for each resource reserving

process. All numbers in KB/s. 99
7.12 Scenario 4: Con�guration . 102
7.13 Scenario 4: Analysis of response times. All results except

percentile in µs. 102

viii

7.14 Scenario 4: Analysis of bandwidth for each resource reserving
process. All numbers in KB/s. 103

7.15 Scenario 5: Con�guration . 106
7.16 Scenario 5: Analysis of response times. All results except

percentile in µs. 106
7.17 Scenario 5: Analysis of bandwidth for each resource reserving

process. All numbers in KB/s. 106
7.18 Scenario 6: Con�guration . 108
7.19 Scenario 6: Analysis of response times. All results except

percentile in µs. 109
7.20 Scenario 6: Analysis of bandwidth for each resource reserving

process. All numbers in KB/s. 109
7.21 Scenario 7: Con�guration . 111
7.22 Scenario 7: Analysis of response times for CBR readers. All

results except percentile in µs. 113
7.23 Scenario 7: Analysis of response times for VBR readers. All

results except percentile in µs. 113
7.24 Scenario 7: Analysis of bandwidth for each CBR resource re-

serving process. All numbers in KB/s. 113
7.25 Scenario 7: Analysis of bandwidth for each resource reserving

process. All numbers in KB/s. 114
7.26 Scenario 8 and 9: Con�guration of APEX token bucket pa-

rameters . 118
7.27 Analysis of response times for CBR readers under APEX in

scenarios 7, 8 and 9. All results except percentile in µs. . . . 119
7.28 Analysis of bandwidth for the VBR resource reserving pro-

cesses under APEX in scenarios 7, 8 and 9. All numbers in
KB/s. 119

7.29 Scenario 10: Con�guration . 122
7.30 Scenario 10: Analysis of response times for resource reserving

readers. All results except percentile in µs. 122
7.31 Scenario 10: Analysis of response times for foreground best

e�ort readers. All results except percentile in µs. 123
7.32 Scenario 10: Analysis of bandwidth for each resource reserving

process. All numbers in KB/s. 123
7.33 Scenario 10: Analysis of bandwidth for each foreground best

e�ort process. All numbers in KB/s. 123
7.34 Scenario 11: Con�guration . 128
7.35 Scenario 11: Analysis of response times for resource reserving

requests. All results except percentile in µs. 129

ix

7.36 Scenario 11: Analysis of response times for foreground best
e�ort requests . All results except percentile in µs. 129

7.37 Scenario 11: Analysis of bandwidth for each resource reserving
process. All numbers in KB/s. 129

7.38 Scenario 11: Analysis of bandwidth for each foreground best
e�ort processes. All numbers in KB/s. 130

x

Chapter 1

Introduction

This work seeks to examine the suitability of available Linux I/O sched-
ulers for use with real-time applications in mixed-media environments, and
to implement and test a mixed-media scheduler in Linux. Schedulers have
been an active �eld of research since the �rst platter based hard disk drives
were introduced. Much work has focused on minimizing seek time to in-
crease throughput. More recently, work on providing deterministic guaran-
tees and varying service classes has become an active �eld of research. These
schedulers are commonly known as mixed-media schedulers. While many
mixed-media schedulers have been implemented and tested in simulations
environments, none matching the requirements presented in later chapters
have been implemented in real operating system kernels.

While early schedulers focused on work-conserving behavior to increase
overall throughput and reduce seek times, modern applications present vary-
ing I/O requirements. For some applications the prompt dispatch of I/O
operations is key. For example, interactive applications may be unable to
respond to the user until one or more I/O operations are completed. A
work-conserving scheduler may not take this into consideration when order-
ing requests for dispatch. Therefore, mixed-media schedulers seek to prior-
itize based not only on work-conserving parameters, but also to best serve
the requirements of each individual application.

1.1 Mixed-media Workloads

Applications that perform both real-time and non-real-time I/O are collec-
tively known as mixed-media applications. These applications are character-
ized by dynamically varying requirements. Other mixed-media applications
might include News-on-Demand, interactive libraries, multimedia �le servers

1

and so on. These applications are growing in number as broadband Internet
access becomes more common.

The mixed-media workload consists of a combination of ordinary I/O op-
erations and I/O operations with special requirements. Whereas an ordinary
I/O operation has no special requirements, other than that it be guaranteed
to complete at some point in the future, special requirements might be a
certain amount of bandwidth or prompt service. These requirements are tied
to the type of service the I/O operations are operating on behalf of. An
important class of services that have special I/O requirements are real-time
workloads.

A real-time workload is a workload that must corresponds to some user's
viewing or interaction, for instance a streaming video playback that must be
serviced regularly so that the playback is not interrupted due to lack of data.

An important concept when dealing with real-time workloads is the dead-
line of the I/O request. The deadline is the point in time at which the request
must be serviced in order to maintain some de�nition of value. The various
types of deadlines is examined later.

A mixed-media scheduler must be deadline-aware in that it must take into
account the deadline of real-time I/O requests. It must also manage ordinary
requests in addition to these. If bandwidth guarantees are to be made, the
scheduler must also provide some degree of isolation, so that added tra�c in
one class of requests does not disturb the bandwidth guarantees.

Providing deterministic guarantees is made di�cult by the opaque na-
ture of modern disk drives. Many modern disk drives include provisions for
transparently remapping sectors, which makes it unreliable to predict seek
directions in software. Internal scheduling algorithms are also implemented
in most modern disk drives. These are often Circular Look or other similar,
simple work-conserving schedulers.

Mixed-media applications are becoming more common, and the demand
for mixed-media platforms to service them is increasing. Therefore, the im-
plementation of a mixed-media scheduler as a general purpose scheduler in
a common OS kernel is a natural next step.

1.2 Linux

The Linux kernel is an open source OS kernel in active development[47].
The open source nature of the kernel makes it a good candidate for research
projects wishing to test new technology in a realistic environment. The Linux
kernel stands out from other open source OS kernels, such as FreeBSD1 or

1http://www.freebsd.org

2

Hurd2, in that it has an exceptionally well-developed scheduler subsystem
that implements recently researched devices.

While the schedulers in the Linux kernel follow modern research, and
even partially implement service classes, they are not suitable for use in
mixed-media environments. The I/O scheduler development in Linux has
been primarily focused on fairness and overcoming deceptive idleness[21].

The Linux scheduling framework implements a two-level scheduling hier-
archy, which is common to most mixed-media schedulers. This makes Linux
a natural choice for implementation a mixed-media scheduler.

1.3 APEX

The Adaptive Disk Scheduler for Mixed-media Workloads (APEX) is a mixed-
media scheduler designed for a Learning-on-Demand environment[25]. The
Learning-on-Demand environment consists of a client that presents the learn-
ing material and a multimedia database management system (MMDBMS)
server that provides content. The server must manage many di�erent types
of data, ranging from streaming audio or video presentations to still images
and raw text.

The original presentation implemented APEX as a part of the MMDBMS,
with full access to the disk. This specialized application is common for mixed-
media I/O schedulers[7, 26, 42], but none have been implemented as part of
a general purpose operating system (OS) kernel.

APEX details a two-level hierarchy of schedulers which act in conjunction
to prioritize and optimize the dispatch of requests. The top level scheduler
deals with the special requirements of each queue of requests, and the bottom
level scheduler performs work-conserving to optimize throughput.

The original presentation of APEX also includes elements which are not
implemented as part of this work. These include the queue manager, which
enables each process to manipulate multiple queues with di�erent require-
ments, and the admission control manager, which prevents more resources
from being allocated than the block device can service. The possible ways
to implement these on Linux are examined and found to be impeded by the
generic structure of the I/O framework.

The APEX scheduler provides improvements over the existing schedulers
in some cases, but the fundamental limitations of the low-level nature of the
Linux scheduler framework makes a complete implementation a problematic
task.

2http://www.gnu.org/software/hurd/

3

1.4 Contributions

This thesis details a partial implementation of APEX in Linux, with emphasis
on the batch builder module of the mixed-media scheduler. Various tests are
performed on the APEX implementation and other existing schedulers in
Linux. The results show that existing schedulers are not suitable for use in
mixed-media environments, and that APEX is better suited for these.

1.5 Structure

The structure of this thesis is as follows. Chapters 2 covers modern hard disk
drives in detail, explaining how they help and hinder the work of schedulers.
Chapter 3 examines the requirements presented by continuous media, which
are the focus of the real-time component of APEX. An overview of research
on schedulers is provided in chapter 4. Chapter 5 examines in detail the
Linux kernel, with focus on the I/O framework. The schedulers currently
implemented on Linux are covered in this chapter. The implementation of
APEX in Linux is covered in chapter 6. Chapter 7 covers the test setup
and evaluates the results of these. The �nal chapter o�ers a summary of the
conclusions and some ideas for future work.

4

Chapter 2

Overview of Modern Hardware

While individual models di�er in performance, modern hard disk drives have
certain features in common. As shown in �gure 2.1 on the following page
and �gure 2.2 on the next page they have one or more magnetic platters, a
head for each (or one for each side of each) platter, a separate actuator arm
for each head. The arms are mounted on a common pivot, so they move
in unison. Each platter is divided into concentric tracks, which are in turn
sectioned into sectors. Tracks are grouped by parallels on platters, which are
called cylinders.

Each sector stores a set amount of bits, usually 512 bytes. When it is
not speci�ed otherwise in this text, sector may be assumed to mean a unit
of 512 bytes. This is also the standard used internally in the Linux kernel,
regardless of actual hardware sector size. Most disks are zoned. Since their
sectors are of equal size, it is possible to �t more sectors into the outermost
tracks. Tracks with equal number of sectors are said to be in the same zone.

The platters rotate in lock-step around a central spindle, at an almost
constant speed. The rotation speed varies by model, though most comparable
models keep similar speeds. 7200 rpm is normal for desktop IDE drives, and
laptop drives are usually either 5400 rpm or 7200. SATA and SCSI drives are
often 10000 or even 15000 rpm. This speed varies slightly during operation,
but is nominally constant. The rotation frequency combined with the sector
density determines the theoretical maximum transfer speed from a device.
While older devices could not read continually from a track, modern hard
drives can do so. Therefore, the theoretical maximum, often referred to by
vendors as the media transfer rate, can be stated as in equation 2.1. (Where
M is media transfer rate, s is the number of sectors in a track and r is the
drive's rpm.)

M = s ∗ r/60 (2.1)

5

Figure 2.1: The side view of a hard disk drive[35]

Figure 2.2: The top view of a hard disk drive[35]

6

2.1 Seek Delay

When servicing a request, a hard drive must perform four actions before the
head is placed over the correct sector. First the controller must process the
request. This entails processing such as translation of the request address
from logical block addressing (LBA) format to the correct cylinder, head and
sector. Controller overhead is typically in the range of 0.3-1.0ms [35].

Next an access request causes the arm to move the heads to the correct
cylinder. The time required to perform this move is known as seek time.
Seek time is primarily dependent on the size of the platter and the material
composition of the arm. Larger platters imply longer seek times for two
reasons. One is the obvious reason, that the seek head must travel further
between tracks. To reduce seek times the arm moves very fast and has to be
able to withstand extreme acceleration. On larger platters the arms must also
be longer, thus causing more material stress. It is very important that the
arms not deform during operation, since physical contact between the head
and the platter will destroy data. Seek time may be reduced by reducing
the size of the platter or by improving the physical properties of the material
composite used for the actuator arms. Reducing the size of the platter has the
dual advantage of allowing smaller arms that better withstand acceleration
and shorter seek distances.

Decreasing the size of the platter has the disadvantage of reducing through-
put, since absolute speed is reduced for smaller circumferences, and reducing
storage space. The Seagate Cheetah 15k series is an example of a disk that
makes this trade-o�[36]. It compensates for the decreased throughput by
increasing the rotational speed to 15000rpm.

The correct head is then chosen and must be further aligned to the track.
Production di�erences in hard drives causes the tracks to have small o�sets
and imperfections that require tiny compensations by the arm to place the
head correctly. The time required to do this is settle time. Settle time
is approximately equal to the minimum seek time provided by hard drive
manufacturers.

Finally the head must wait for the platter to rotate so that the correct
sector is under it. The time this takes is known as rotational delay. In the
worst case, the sector to be read has just passed under the head and the
platter must complete a full rotation before the request can be processed.
As is obvious, worst case rotational delay is de�ned by the rotational speed
of the platters. For 5400 rpm drives, the time taken to complete one full
rotation is approximately 11ms. On a 15000 rpm drive the same can be
accomplished in approximately 4ms. While some research has been done
to reduce rotational delay[19], modern block devices are addressed logically

7

rather than by physical geometrical information, making it di�cult, if not
impossible, to know a sector's position in a track. Without this knowledge,
schedulers cannot take into account rotational delay when choosing which
request to service next.

Hard drive manufacturers usually supply three seek times for their de-
vices. These times all include seek and settle time along with rotational
delay. One is the time required for a full sweep, moving the read head from
one edge of the drive to another. The average seek time is given as the time
required to seek approximately a third of a full sweep, and is usually between
2-12ms[38, 37]. This number is sometimes achieved by dividing the time for
a full sweep by three. The third time provided is usually called track-to-track
seek. This covers requests where the seek moves to an adjacent track. This
approximates to the settle time of the device. Typical track-to-track seeks
vary between 0.2ms and 1.0ms. This might also approximate the time re-
quired to switch the active head, called a head switch. While head switches
earlier were much quicker than track-to-track seeks, cylinder alignment is be-
coming worse as track density increases. Thus the time required for a head
shift is approaching the time of a track-to-track seek.

Hard drive manufacturers often give separate, slightly lower numbers for
reads than write requests. This is because reads may be attempted from
the moment the arms are in the right cylinder, before the head is known
to be correctly aligned to the track[35]. The error checking data on the
device ensures that erroneous reads are discarded. Thus there is no penalty
for making such speculative reads. The bene�t here reduces the average
rotational delay when performing read requests.

2.2 Access Time

The actual time spent reading or writing to a single sector is negligible com-
pared to the time spent aligning the head correctly. It is a product of rota-
tional speed and the number of sectors in the track.

a = r/s (2.2)

From equation 2.2, where a is the access time for a single sector, r is the
time required for one rotation and s is the number of sectors per track, so
that a 7200 rpm disk with 400 sectors per track (a low estimate for a modern
disk), will spend approximately 20µs. Even when accessing several sectors
at a time, which is common behavior, this time is dwarfed by the seek delay.

8

2.3 Internal Optimizations

Modern hard disk drives perform many transparent operations to improve
performance. They cache data, perform prefetching and often perform in-
ternal scheduling of operations. They may also perform internal scheduling
to improve throughput and seek times. The scheduling algorithm used is
usually SCAN or a variant thereof[35].

Internal hard drive caches are growing as prices for dual-ported1 static
random access memory (RAM) continues to drop. Current drives commonly
have caches between 8-16MB. Older disks performed on-arrival read-ahead
caching. (This is sometimes referred to as �zero-latency read.�) On-arrival
caching was done by immediately beginning to read from a track before the
desired sector was under the head. Thus the entire track would be in cache
in case later requests from the host should need them. This has since been
replaced by simple read-ahead caching, in which the drive continues to read
after the last request from the host is served.

Read-ahead strategies can be aggressive, crossing track and cylinder bound-
aries. This type of policy would favor longer sequential accesses, while de-
grading random access performance. The read cache is segmented to support
caching for multiple sequential read streams.

Write caching may be done in some cases as well. For example, some
writes may simply immediately reported as complete, despite only having
been written to cache. This policy is not without risks, as power failures
may leave the �lesystem in an inconsistent state. To avoid this, certain
requests may be �agged as not allowed to be reported complete until they are
actually written to disk. Another strategy is to provide nonvolatile memory,
for example by using battery backed RAM. Current research is also focusing
on using nonvolatile �ash memory to improve caching[11], drives such as this
are referred to as hybrid drives.

Immediate reporting is bene�cial when data in the write cache is over-
written in place, a common a occurrence. The drive might also collect write
requests until they can be e�ciently scheduled so that they take less time to
perform overtime.

Using command queueing to allow a host to send multiple requests to
the disk, so that the controller may determine the best execution order, is
a common strategy. On some modern parallel ATA devices and most Serial
ATA 1.0 or SCSI devices, this is achieved with tagged command queueing
(TCQ), whereas Serial ATA II devices use native command queueing[20]

1This special type of static RAM is needed to communicate with both the disk and bus
interfaces.

9

(NCQ).

2.4 Summary

The primary consequence of the setup of modern hard drives is that they
present themselves as a black box device. While they can be relied on to be-
have as expected most of the time, they provide no performance guarantees.
This places severe limits on what a scheduler that aims to provide both sta-
tistical and absolute guarantees can achieve by mathematically manipulating
the disk geometry.

Since the black box delivers improved and more predictable behavior
amortized over several requests, a scheduler should instead perform high
level optimizations. This way the disk may perform low level optimizations
based on its intimate geometric knowledge.

APEX does this by sending requests to the hard drive in batches. By
trusting the amortized performance to maintain the batch's total deadline,
the variance in service time for single requests can safely be ignored. It is im-
portant that the scheduler supply su�ciently large batches that this variance
can be evened out. This is examined further in section 4.4 on page 18.

10

Chapter 3

Continuous Media Requirements

There are many overviews of requirements for storage systems[15, 17, 50].
This chapter reviews some of these, and then looks at the speci�c require-
ments Lund identi�es for I/O schedulers[25]. These are later used as criteria
for judging the suitability of I/O schedulers.

3.1 General Continuous Media Requirements

Continuous media (CM) applications often require that disk accesses be pro-
cessed and returned within a speci�c interval. The result of a late read is
often that the user experiences a loss of quality in the media (such as a jitter
in a video stream or a gap in audio). This can be worse than a missing frame
of video or audio, since the lag is often more noticable than the simple omis-
sion of the frame would be, given that the next frame were delivered in time.
This di�ers from standard applications that are more interested in completely
reliable reads with high throughput than speedy reads. An example of the
latter type of application might be a compiler or web server, whereas the
former might be a multimedia database management system (MMDBMS),
video streaming server, interactive environment or other CM application.

While video and audio streams di�er in presentation, they are mathe-
matically equivalent in respect to real-time requirements[15]. Some formats
might also preclude the dropping of frames, since information is not encoded
independently, but rather as the di�erence between the relevant frame and a
previous one.

Data requests that become worth less over time can be said to be as-
sociated with a deadline. Deadlines can be divided into three classes[29].
Requests with hard deadlines absolutely must be met, or catastrophic failure
occurs. Examples of this type of request could be topological data in a �ight

11

control system. Requests with �rm deadlines become worthless after the
deadline is exceeded, without causing a failure. Independent video or audio
frames in a stream are examples of this might have �rm deadlines. The �nal
class is for requests with soft deadlines. These requests are not immediately
worthless after the deadline is exceeded, but their value decreases and they
may eventually become worthless.

Halvorsen et al.[17] identify three other requirements speci�c to systems
designed for CM applications, in addition to existing OS requirements. The
system must be able to service requests with timeliness. Di�erent types
of applications may require low latency, or regular requests each to be ser-
viced within given deadlines. This requirement comes into con�ict with disk
bandwidth utilization, as seen in the implementation of EDF. The system
must also be able to handle large �le sizes and high data rates. Interactive
environments, multimedia and similar are often presented in �les orders of
magnitude larger than text or graphics. The rate of playback is often higher
as well. For example, MPEG-2 video, the format used for DVDs, has a data
rate of 15Mbit/s, which at 25 frames per second is approximately 75KB per
video frame. This is comparable to about 100 pages of plain text.

A CM application may also require multiple data streams to be available
at the same time. A system must therefore also consider strong relations
between multiple streams. An example of this is movie playback, which
might involve tightly interleaved video and audio streams.

Since CM playback is often periodic, such as videos that display a given
number of frames per second, requests can be processed in batches. Many
schedulers take advantage of this fact. Aside from scheduling policies, it is
also possible to perform data placement optimization to improve performance
in some cases[15].

3.2 Speci�c Design Requirements

The �ve basic requirements that APEX is based on are presented in [25].
These aim to provide universal requirements for mixed-media systems. APEX
is designed to ful�ll all these requirements, and these are used as the basis
for testing the implementation later.

Since CM applications often have low latency requirements, a scheduler
must ensure e�cient reads. It must not incur any signi�cant overhead,
and must also use geometry awareness to avoid causing excessive seekiness.
Where possible the scheduler should aim to avoid overhead. While this might
imply that ine�cient algorithms have no place in a scheduler, the CPU runs
so many orders of magnitude faster than hard drive requests that CPU over-

12

head is not a primary concern.
The scheduler must also support multiple service types and guarantee lev-

els. At the very least the scheduler must support both real-time and best
e�ort services. Preferably there is support for deadline guarantees, low la-
tency services, high throughput services and best e�ort. Within each of
these service types there should be prioritization. For example, low latency
applications may have di�erent hard deadlines for their requests, or high
throughput services may have di�erent bandwidth requirements. The sched-
uler should also provide support for request dropping and similarly relevant
functionality if possible. A mixed-media scheduler must be able to provide
as many of these services as possible.

For the system to be able to maintain optimum e�ciency regardless of
active services, the scheduler must be �exible. It must adapt to the current
requirements dynamically and be continually con�gurable to ensure that the
type of services active does not negatively impact performance.

The scheduler must also provide isolation so that the active requirements
of one service type may not adversely a�ect other types. Burstiness of best
e�ort tra�c should not cause failure of deadlines, throughput requirements
or other quality of service (QoS) guarantees. Similarly, best e�ort requests
should not be starved by higher classed services.

Finally, work-conservation is required. Due to variable conditions, the
workload provided by CM applications can vary widely. Since it is impos-
sible to continually distribute bandwidth between all active processes, the
scheduler must ensure that work-conservation minimizes loss of e�ciency.
This way unused bandwidth can be used when available.

3.3 Summary

The common consequence of systems not designed to the requirements of
CM playback is deteriorated user experience of quality. Audio playback
might skip while video playback might not match the audio track. To avoid
these adverse consequences, systems must be built around the requirements
presented by CM applications. One part of this system framework is the I/O
scheduler.

13

14

Chapter 4

Overview of I/O Scheduling
Algorithms

Improving disk performance has been an active �eld of research for some
time. Most early work focused on improving throughput while maintaining
guarantees that requests are serviced eventually, known as fairness. As high
speed networks and in particular the Internet provide an increasingly fea-
sible frameworks for transporting information and multimedia on demand,
the need to to optimize response time in addition to throughput has become
apparent. While current scheduling algorithms provide guarantees that re-
quests are serviced eventually, there are no guarantees on actual response
times or throughput for speci�c processes.

4.1 Early Algorithms

The simplest algorithm for disk scheduling is First Come First Served (FCFS).
This naive algorithm simply services each request in the order it appeared.
The advantages of this algorithm is that it is simple to program and that
it provides guarantees for fairness in that so long as the drive continues to
process requests, any request queued is serviced in due time. A disadvantage
of FCFS is that it spends much time seeking rather than reading, leading to
poor throughput and long response times.

Shortest Seek First (SSF, sometimes called Shortest Seek Time First)
sorts the access queue by seek distance or seek time (the di�erence between
these two is non-trivial[19]). This improves throughput by ensuring that the
drive spends less time seeking and improves response times similarly. The
latter result might be considered unintuitive, since an SSF algorithm might
continually service a series of requests on one area of a disk, while starving

15

requests to other tracks that are far away. By adding a second criteria for
choosing requests, based on the age of the candidate requests. If a request
gets too old, it is automatically scheduled next, regardless of seek lengths.
These long seeks can improve disk throughput by moving the disk head from
an area where it is servicing increasingly infrequent and sparse requests, to
an area where many, geometrically close requests are queued[18].

SCAN scheduling tracks the head back and forth across the surface, pro-
cessing requests as it goes. This guarantees that each request is processed
within two sequential scans of the disk surface. Since the seek distance re-
mains the same regardless of how many requests are serviced, this greatly
increases throughput compared with FCFS. The main bene�t over SSF is
a reduction in maximum response times [39]. Since this algorithm operates
similarly to elevators, it is often called the elevator algorithm. Modern disk
drives often run SCAN scheduling or variants thereof internally.

Many variations on the elevator algorithm exist. The following are a few
which are relevant to the Linux kernel I/O scheduling layer.

Basic variations such as Circular SCAN (C-SCAN) improve fairness by
only scanning in one direction, when it reaches the end of the disk it performs
one long seek back to the other side. This improves performance for requests
at the edges of the disk, where normal SCAN spends half as much time as
on requests towards the middle.

The Look elevator optimizes SCAN by scanning only to the last request
on that edge, rather than fully to the edge of the disk. This can cause delays
for requests that arrive just as the head is turning, but gives an overall
improvement in throughput and response time[50]. The C-Look algorithm
works like C-SCAN in that it only scans in one direction. C-Look and C-Scan
improve performance not only by increasing fairness, but by exploiting the
prefetching nature of read-ahead caching policies.

VSCAN(R) seeks a compromise between SCAN and SSF, taking as a
parameter R, a real designating the weighting towards SCAN behavior. VS-
CAN(0) is equivalent to SSF and VSCAN(1.0) is the same as SCAN (or a
variant thereof) [13]. When active, the read head continues scanning in the
same direction as the last seek so long as it has a request within its SCAN
area, de�ned to be R x (total number of cylinders on the disk). Requests
outside this area are scheduled in SSF order, where requests in the current
SCAN direction have their distance reduced by the SCAN area. A good value
of R is found to be 0.2, yielding both throughput and mean response time
superior to SSF and SCAN.

16

4.1.1 Suitability of Early Algorithms for Multimedia
Servers

The series of algorithms that seek to optimize throughput and response time
without providing guarantees are, in order of optimality, increasingly use-
ful for applications such as multimedia servers. However, without providing
guarantees, they remain unsuitable. They inevitably violate deadlines, pos-
sibly consistently, in favor of applications without real-time constraints. As
an example, an application replaying a compressed audio �le to a user would
require a low amount of bandwidth compared to a compiler piecing together
a large program, but since the scheduler only guarantees fairness, the audio
player has no guarantee that the frames are delivered in any timely fashion.
The audio player can counter this by bu�ering the audio in main memory, but
this is only a stop-gap measure. It may also, in a system with low amounts
of main memory, lead to further disk accesses due to swapping.

4.2 Deadline-Aware Algorithms

Early work on deadline-aware algorithms focused on situations where the
scheduler was concerned exclusively with deadline-aware processes. A com-
mon requirement of modern systems is that they be able to deal with multiple
classes of I/O operations. Only the most basic of these are covered, focusing
on the relevant areas of developments.

The most basic deadline-aware scheduling algorithm is the Earliest Dead-
line First (EDF) algorithm[1]. This algorithm holds a priority queue ordered
by request deadline, and processes requests in this order. Since this does not
take into account read head positions, EDF spends much time seeking and
has bad drive utilization. Real-time scheduling problems have been solved
using EDF previously, but these assume preemption, and do not take seek
overhead into account[32].

Combining EDF with SCAN improves the throughput and response time
performance of EDF while making SCAN deadline-aware. This has been done
in SCAN-EDF[33] and D-SCAN[2]. In SCAN-EDF, requests are grouped by
deadline, and requests with the same deadline are processed in SCAN order.
This removes the FCFS element of EDF, improving throughput and response
times. An overview[32] comparing SCAN-EDF to C-SCAN and EDF shows
that C-SCAN can service the most concurrent streams, while also giving the
worst response time to aperiodic requests without constraints. SCAN-EDF
can service almost as many concurrent streams as C-SCAN, while maintain-
ing an aperiodic response time similar to that of EDF. This con�rms the

17

result that combining scheduler algorithms improves balance between the
various requirements. They also note that increasing request sizes increases
the number of concurrent streams servicable, while also increasing response
times.

Deadline SCAN (D-SCAN) and Feasible Deadline SCAN (FD-SCAN)[2]
service the request with the earliest deadline �rst, performing a SCAN in the
seek direction, servicing other requests as it proceeds. FD-SCAN di�ers from
D-SCAN by only takes into accounts requests with deadlines it estimates it
can meet.

4.3 Stream Oriented Scheduling Algorithms

Many schedulers exist that focus on servicing multiple continuous data streams.
To achieve this they are built around the assumption that requests are pe-
riodic at stable data rates. Stream oriented schedulers typically dispatch
requests in �xed-length rounds[25]. By focusing on fair distribution of band-
width and periodic rounds, stream oriented scheduling algorithms provide
optimizing behavior without any �rm guarantees.

A non-comprehensive list of stream oriented scheduling algorithms in-
cludes Pre-seeking Sweep[14], Grouped Sweep Scheduling (GSS)[51], YFQ[9]
and Greedy-but-Safe Earliest Deadline First (GS_EDF)[46].

4.4 Mixed-Media Scheduling Algorithms

This section provides an in-depth review of two mixed-media schedulers,
along with a presentation of APEX and an overview of other mixed-media
schedulers. It also examines how the available schedulers conform to the
requirements. The two schedulers chosen for in-depth review are those that
best conform to the requirements, Cello and MARS, and thus are most rele-
vant.

Mixed-media schedulers seek to service both real-time and best e�ort re-
quests on a type-speci�c basis. While real-time requests are treated in a
deadline-aware manner, best e�ort requests are insured against starvation.
This is usually accomplished by introducing a two-level scheduling hierar-
chy in which di�erent request types are treated discretely at the top level
and dispatched in batches to a lower level scheduler that performs work-
conservation.

18

4.4.1 Cello

The Cello disk scheduling framework[42], meant for use together with the
Symphony �lesystem[41], introduces the idea of a two-level scheduler. Since
it is tied directly to the �lesystem the Cello scheduler framework can take
advantage of extra metadata information. To assist with this, it implements
several system calls for �le handling, overriding the standard system calls. A
process can specify service requirements on opening or creating a �le, or it
can specify a deadline when performing a read or write.

Cello operates with two levels of schedulers. The class independent sched-
uler is responsible for choosing which request classes are to be serviced. The
class speci�c schedulers choose which request to service when called on by
the class independent scheduler. Each class speci�c scheduler is designed
to serve an application class. A process may be speci�ed to be part of an
application class during runtime, or a �le may be speci�ed to be part of an
application class at opening or creation.

The class independent scheduler ful�lls two functions. It distributes ac-
cess to the disk among the speci�c classes according to some weight, and it
exports an interface to the class speci�c schedulers that is used to determine
where in the scheduled queue to place newly dispatched requests. The class
independent scheduler performs rounds, operating on a coarse time scale with
the goal of providing isolation for speci�c classes. Given the standard inter-
val, each class is given a weight. This weight can be given in disk access time
or bytes accessed. The class independent scheduler visits each class speci�c
scheduler in turn, granting them access to the disk according to their weight.
To avoid seek overhead violating deadlines, this is calculated into the cost of
a request. As such, Cello relies on the ability to calculate both the seek time
and rotational latency of a request.

Cello implements a given number of queues. One scheduled queue, for
requests that are ready to be dispatched to hardware, and one pending queue
for each application class. New requests are placed into the pending queues.

The class speci�c schedulers decide which requests to choose for dispatch
from their own pending queues, and where in the scheduled queue they should
be inserted. The class speci�c schedulers must take into account the deadlines
and requirements of other requests in the scheduled queue. To accomplish
this, the class speci�c schedulers import state information of the scheduled
queue. The constraints are de�ned in terms of slack. Slack is the amount of
time a request can be delayed from dispatch and still be serviced in time for
any deadlines it is associated with.

Cello presents three class speci�c schedulers. One for interactive best
e�ort applications, throughput-intensive best e�ort and soft real-time appli-

19

cations. They suggest that the best e�ort pending queues are sent to the
scheduled queue in FIFO order. The interactive best e�ort requests should
be inserted using a slack stealing technique. It does this by inserting them
towards the beginning of the scheduled queue, but not so far towards the
beginning that deadlines are violated. To minimize seek, these batches are
sorted in SCAN or other work-conserving order. The throughput intensive
best e�ort requests are suggested inserted late in the queue, so that low la-
tency and deadline requests are not a�ected. Soft real-time requests would
be dispatched to the scheduled queue in SCAN-EDF order. Placement in the
scheduled queue would be done according to deadline.

Cello introduces several important ideas, in particular the two-level sched-
uler. It also introduces time slicing, which the Linux CFQ scheduler uses.

The use of seek time and rotational latency in calculating the request
cost is somewhat problematic as shown in chapter 2 on page 5, but it is
not unreasonable to assume that estimates can be done based on hardware
geometry and speci�cations. Cello does not, however, take speci�c advantage
of errors in dispatch time calculation.

Cello provides some work-conservation in that it redistributes unused
disk bandwidth to queues with pending requests. It speci�es multiple service
types, and class speci�c schedulers for these. However, it is not possible
to dynamically reallocate bandwidth for the queues. This also prevents the
work-conservation from being optimal, since it is also distributed according
to the weight of the queue.

4.4.2 MARS

Buddhikot et al.[10] presented MARS, a framework for modifying NetBSD1to
function in a scalable, distributed fashion to serve multimedia on demand.
MARS covers much more than just I/O scheduling, including mechanisms
for zero-copy reads from disk to network and data layout. To di�erentiate
between the MARS framework, the scheduler is referred to speci�cally as the
MARS scheduler. Like many mixed-media schedulers, the MARS scheduler
uses a two-level scheduling system. Each real-time process is associated with
a job queue, which is internally scheduled according to an arbitrary algorithm,
which may be FCFS, or a more advanced algorithm such as SCAN-EDF.
There is also a normal request queue for requests which come from processes
without real-time requirements.

1NetBSD is an implementation of 4.4 BSD, see http://www.netbsd.org. The imple-
mentation and evaluation of MARS was done with only one real-time queue with other
limitations.

20

Requests are chosen from the job queues by the job selector. After the
job selector has chosen requests, it sends the requests to the lower level
driver which orders them and dispatches. The lower level driver could use
an arbitrary scheduling algorithm, but in practice uses the elevator algo-
rithm present in the NetBSD SCSI driver. This satis�es the requirement for
e�ciency.

The job selector in MARS employs a De�cit Round Robin (DRR) queue-
ing algorithm[43]. While DRR was originally designed for network queueing,
it is appropriate for fairly distributing resources between any kind of queue.
In DRR, each queue is given a quantum service for each round. In the case of
MARS, the quantum is given as a number of bytes each queue is allotted for
requests. When servicing a queue, if the value of the quantum is greater than
the size of the request, the request is removed from the queue for dispatch
and the size is deducted from the remaining quantum. If the quantum is less
than the size of the request, the de�cit is carried over for the next round and
service of the next queue begins.

The DRR algorithm gives MARS implicit work-conservation, since it
shortens the round when there are unused service quantums. The class spe-
ci�c schedulers in MARS are not speci�ed, which makes it di�cult to apply
requirement analysis. However, the lack of �exibility, in that it only speci�es
real-time and non-real-time queues and the lack of multiple service types is
problematic.

4.4.3 APEX

APEX2 was originally presented[25] as a user-space framework for scheduling
requests from multimedia database management systems. It is based on re-
quirements presented by a Learning-on-Demand (LoD) environment. As the
most recent of the mixed-media schedulers, APEX utilizes previous results to
optimize its performance and generalizations. It is a two-level scheduler, us-
ing a variant token-bucket algorithm to treat individual queues and a simple
SCAN algorithm to optimize throughput. It aims to provide both deadline
guarantees for requests and work-conservation.

Lund presents a scenario and system architecture which together de�ne
the context for APEX's requirements. The requirements APEX is based
on are examined in chapter 3 on page 11. What follows provides a short
examination of the context. The LoD-application is an approach to providing

2In cases where it is important to di�erentiate between the original APEX as provided
by Lund, and the implementation of APEX on Linux, it is referred to as the original

presentation. The exact di�erences are summarized in section 6.4 on page 73. In this
chapter APEX may be assumed to refer to Lund's original scheduler.

21

interactive distance learning (IDL), a paradigm of instruction and learning
that attempts to overcome limitations of distance and time. It is divided into
a client and a server. The server is a centralized system which hosts teaching
content. The client is used by the content consumer, who is situated at a
remote location, to view the content provided by the server.

The LoD content can be plain text, plain text with pictures, multimedia
presentations and so on. Multimedia presentations can be video, audio or
a combination of the two. The LoD server must support both reading and
writing of all these types of content. Content providers can create new con-
tent interactively, for example in response to questions by content consumers.
The content providers must also be able to author the presentation of the
material, by specifying various metadata relations between content objects.
The server must also be able to perform content searches.

These speci�cations present a case for using a mixed-media I/O scheduler.
An alternative could be to use multiple servers, with separate servers used
for streaming multimedia content, but this provides complications of its own.
For example, increased hardware costs and complications of access control.

The LoD server is implemented as an MMDBMS. APEX is integrated
into this MMDBMS in an attempt to provide QoS guarantees to the LoD
clients. Lund[25]3 provides an extensive overview of the MMDBMS and LoD
data model, and readers with further interest in the matter may refer to that.

APEX consists of multiple components that work together to provide a
complete framework for scheduling requests for the MMDBMS. These are
the request distributor, queue scheduler, batch builder, queue manager and
bandwidth manager. This breakdown is designed so that queue management
and request management may be separated into discrete entities. Request
management is handled by the request distributor, queue scheduler and batch
builder. Queue management is handled by the queue manager and bandwidth
manager.

The queue management module handles dynamic creation and destruc-
tion of queues, which enables APEX to be transaction-aware. It provides the
admission control interface, which is used when processes wish to create new
queues or reserve bandwidth for queues. Bandwidth reservation is not done
upon queue creation, but instead deferred until a process begins a transac-
tion on a queue with bandwidth reservation speci�ed. In this way, bandwidth
does not remain unused simply because a queue has not yet begun servicing
requests.

The request management module handles treatment of individual re-
quests. Distribution of requests to the correct queues is done by the request

3In chapter 3.

22

distributor. The queue scheduler component provides a scheduling policy
speci�c to each queue. Di�erent types of queues may be given di�erent poli-
cies. The batch builder chooses requests from various queues to service based
on bandwidth reservation, reorders them based on a scheduling policy and
sends the batch to the disk driver.

The batch builder limits bandwidth usage by applying an extended token
bucket model. Token buckets[28] are commonly used for tra�c shaping and
�ow control on networks. For each connection a �ow rate r and a bucket
depth b are de�ned. The �ow rate is the number of tokens the queue is
allocated per second. The bucket depth represents a maximum number of
tokens a queue may accrue when not using all allocated tokens. In APEX
each token represents one database page of data.

When the batch builder performs a round, it visits each queue that has
reserved bandwidth in turn. It checks whether the queue has tokens available
and services a number of requests corresponding to this number of tokens.
This phase continues until the batch size is met or until no queues have
tokens left.

To ensure that best e�ort queues are not starved, the batch builder also
performs a work-conservation phase. During this phase, all queues are served
regardless of whether they have tokens available. This is an extension to the
token bucket model, which provides added throughput compared to what a
more tradition token bucket model would give. The order in which queues
are serviced during this phase may be changed in order to serve varying
priorities. The reference implementation is to serve them in the same order
as the reservation based phase, simply adding consideration of best e�ort
queues.

When building a batch, APEX chooses a round time based on the queue
with the nearest next deadline. Using this time and the estimated time it
takes to service a single request, the batch builder decides how many requests
it can at most service in this round. The estimate is deliberately left high to
insure against variance.

APEX implements a provision for low latency requests by allowing these
to be inserted into the dispatch queue after the initial batch is built. During
execution, if a new request arrives that is marked as low latency, it may
immediately be inserted into the dispatch queue if the actual time of execu-
tion so far has been lower than the time it was estimated to take. Since the
estimated time of execution is deliberately left high, this is usually the case.

23

4.4.4 Other Mixed-Media Schedulers

Cello, MARS and APEX have been given in-depth examinations, this section
provides a summary of other mixed-media schedulers. Lund[25] provides an
overview of these that this section follows.

Nerjes et al.[27] explore variations on a simple two-service scheduler. It
supports continuous and discrete requests, with disk bandwidth distributed
between the two. This is further tested and analyzed as FAMISH by Rom-
pogiannakis et al.[34]. The only parameter that can be adjusted is the band-
width distribution between the two service types, rendering the scheduler
in�exible.

The scheduler presented by Kamel et al.[22] supports an arbitrary number
of priority levels, and orders requests based on priority level and deadline. It
drops requests that will obviously violate deadlines. The scheduler maintains
a single SCAN sorted queue that new requests are inserted into under various
conditions. New requests are not allowed to violate the deadline of a already
inserted requests with higher priority, and insertion must minimize the overall
number of deadlines violated. This scheduler has issues with starvation and
isolation between classes.

In Ramakrishnan et al.[31] a scheduling and admission control algorithm
are presented. The scheduling algorithm provides two service classes, real-
time and best e�ort. The best e�ort requests are serviced in slack time. To
prevent starvation of the best e�ort requests, a portion of the bandwidth is
reserved for this class. This scheduler is not �exible, having only two service
classes without any con�gurations according to varying needs.

The Fellini multimedia storage server[26] includes a scheduler that sup-
ports real-time and best e�ort service classes. The scheduler dispatches re-
quests in �xed-length rounds, and the service classes are isolated from each
other by using set fractions of each round. Unused bandwidth from the real-
time queue is redistributed to best e�ort requests if necessary, rendering the
scheduler partially work-conserving.

The scheduler provided for the Prism �le server architecture[48], hereafter
the Prism scheduler[49], has three service classes with admission control for
each of these. The three service classes, periodic, interactive and aperi-
odic, can separately be granted throughput guarantees. The Prism scheduler
combines requests in SCAN order to improve e�ciency, but is only partially
work-conserving because it only uses unused bandwidth to service interactive
or aperiodic requests.

The ∆L scheduler[7] is a deadline-driven scheduler that provides deter-
ministic guarantees to real-time tasks. It uses slack time to service best e�ort
requests. The ∆L scheduler is similar to that presented by Ramakrishnan et

24

E�ciency
Multiple
service
types

Flexi-
bility

Isolation
Work-
conservation

[27] - (X) - X (X)
Fellini[26] (X) (X) - X (X)
Cello[40] (X) X (X) X (X)
MARS[10] X (X) (X) X (X)
[27] - (X) - X (X)
Prism[49] (X) (X) (X) X (X)
[22] (X) (X) - - (X)
∆L[7] - (X) - X (X)
DSSCAN[16] (X) (X) - - (X)

Table 4.1: Summary of disk scheduler characteristics[25]. (�-� = not sup-
ported, �(X)� = partially supported, �X� = supported)

al.[31] and has similar drawbacks.
Deadline Sensitive SCAN[16] (DSSCAN) supports periodic and aperi-

odic real-time requests, interactive requests and best e�ort requests. The
scheduler functions as SCAN, unless scheduling a request will cause another
request to violate its deadline, in which case it schedules according to EDF.
Interactive requests are supported by adding an FCFS service for them. The
priority order then becomes EDF if a deadline is in danger of being violated,
then FCFS if there are any interactive requests and �nally SCAN order to
increase throughput. While DSSCAN is work-conserving and e�cient, there
is no support for bandwidth allocation and heavy tra�c starves all but the
real-time requests so it does not provide isolation.

The various mixed-media schedulers presented provide di�erent advan-
tages and disadvantages. This overview covers a few of them in reference to
the requirements presented in chapter 3 on page 11, and provides information
about the most basic functionality of the mixed-media schedulers.

4.5 Suitability of Existing Schedulers

A comparison[25] of the mixed-media schedulers examined in this section to
the requirements outlined in chapter 3 on page 11, shows that none of the
preexisting schedulers fully provided the requirements. An overview of the
schedulers and the requirements they support can be seen in table 4.1. The
only two schedulers that partially support all �ve requirements are Cello and

25

MARS.
Aside from APEX, the mixed-media schedulers presented do not fully

support the requirements. Cello and MARS are the two of the others that
best support the requirements, but there are some shortcomings.

4.6 Summary

The early algorithms, both e�ciency-oriented and deadline-aware, are not
suitable for used in mixed-media environments. The e�ciency-oriented algo-
rithms do not take into account process-speci�c requirements. The deadline-
aware algorithms do not provide enough e�ciency, and do not redistribute
bandwidth when there is no real-time tra�c.

The mixed-media schedulers present several improvements. APEX, Cello
and MARS best suit our requirements. Cello requires very detailed knowledge
of the block device, which is not suitable for a general use OS scenario.
MARS does not support multiple service types, and is only partially work-
conserving. Therefore, APEX is the best choice for implementing a mixed-
media scheduler in a general-purpose OS kernel.

26

Chapter 5

Examination of Linux I/O
scheduling

This chapter provides an overview of the Linux block I/O architecture with
focus on the elevator subsystem. It shows that the Linux kernel implements
several I/O scheduling algorithms, known as noop, deadline, anticipatory
and CFQ scheduling. Of these, only CFQ is suitable for MMDBMS and
other real-time systems. The overview begins with a quick introduction to
Linux, continued by a look at the block device interface, then examining
each speci�c scheduler, and �nally this is tied together with the system call
interface the user sees.

5.1 Linux suitability

When choosing the OS for use in testing, it is natural to choose one of the
more common open source OSes. Of the open source Unixes, Linux is the
only to ship either a loadable elevator subsystem or a scheduler with per
process priorities by default. While a set of patches providing a pluggable
scheduler framework for FreeBSD1 exists, it is not included in the mainline
code nor is it updated for the most recent versions.

It is worth noting that the Linux elevator framework inherently supports
the two-level hierarchy most mixed-media schedulers specify. All the Linux
schedulers provide the high level, often per process, optimization. The eleva-
tor provides two API functions for schedulers to add requests to the dispatch
queue. One of these is elv_dispatch_sort, which inserts the request in
SCAN sorted order. The other is elv_dispatch_add_tail which appends
the request to the end of the dispatch queue. The scheduler may therefore

1http://www.freebsd.org

27

choose whether to perform its own ordering, or whether to defer this to the
elevator. Using TCQ or NCQ, the disk driver may then further optimize the
requests.

Since Linux already has a loadable elevator framework, only small modi-
�cations are necessary to implement a new I/O scheduler. Some data struc-
tures must be declared at compile-time. In addition, the system call interface
for reserving resources must be added. Adding new system calls to Linux is
fairly simple, requiring only adding a system call number along with the
function itself.

The open nature and active development of the Linux kernel, in particular
with reference to I/O scheduling, makes it the preferred candidate for testing
of a new I/O scheduler.

5.2 The Linux Kernel

The Linux kernel was begun as a hobby project in 1991 by Linus Torvalds
when he desired a UNIX-like system to work on at home. It was released
under the GNU public license, which enabled anyone to read the source code
and make alterations. Today Linux is fully POSIX-compliant and aims for
Single UNIX Speci�cation compliance. Linus Torvalds continues to lead the
Linux kernel development, acting as a supervisor and making the �nal call
on which patches make it into the kernel mainline. Several dozen kernel de-
velopers, both volunteers and paid employees of various companies, regularly
contribute patches and input on the various kernel subsystems. In total the
number of credited contributors to the Linux kernel is in the hundreds[47].
Several OS distributions using the Linux kernel exist, such as Redhat2, De-
bian3 and Slackware4.

The Linux kernel (hereafter the kernel or the Linux kernel) is a monolithic
kernel with the ability to load object code (modules) into kernel memory at
run time. While written in C with some assembler extensions, it implements
several object oriented interfaces. This modularity makes extension of the
kernel require little e�ort. However, since the kernel is monolithic, bugs in
modules can be just as fatal as any other bugs in the kernel.

In addition to providing a system call application programming interface
(API) exported to user-land, the kernel maintains an internal API of calls
subsystems may make to each other. Unlike the system call API, which
guarantees that once a call is implemented its visible behavior will never

2http://www.redhat.com
3http://www.debian.org
4http://www.slackware.com

28

change and that it will exist in all subsequent kernel versions, the kernel API
changes continually. This sort of incremental improvement is typical of Linux
development.

The kernel is, as of this writing, in development of version 2.6. Tradition-
ally even numbered minor versions were the stable versions of the kernel, such
as 2.2 and 2.4, with odd version numbers denoting a development version.
After version 2.5 was declared stable and incremented to begin the 2.6 series,
Torvalds decided that since the 2.5 kernel had for long periods of its devel-
opment included superior features to the 2.4 kernel while being arguably as
stable, this arrangement should be abandoned. Since then features have been
incrementally added to the 2.6 kernel, incrementing a third version number
for each stable release. In addition a fourth version number has been added
for security patches. Currently only the newest stable version of the kernel is
maintained, in addition to a branch known as the stable branch, which has
its own team. This writing assumes the changes present in the 2.6.19 version
of the kernel, which includes changes to the elevator subsystem that make it
even more well-suited for expansion than previous.

The elevator subsystem is a good example of how the kernel provides ob-
ject oriented interfaces to the higher levels that hide implementation details.
Part of the focus of kernel development during the 2.5 cycle focused on im-
proving the I/O scheduling. In this period the old Linus Elevator was phased
out and replaced by a series of new schedulers. Improvement upon these, in
particular the CFQ scheduler, has continued throughout 2.6 development.
An overview of the schedulers available just prior to the release of the 2.6
kernel is available in [4].

While the kernel is primarily written in C, there are some special limits
when programming in the kernel code-space compared to userspace. Fore-
most, the standard libraries are not available. Many of the important stan-
dard library functions have been recreated internally. The other important
limitation is that using �oating point operations is di�cult enough that it is
in practice avoided. This is because the kernel must normally catch a trap
and do something (where something is an architecture dependant action) in
response to a userspace program wishing to perform �oating point instruc-
tions. Since the kernel cannot trap itself, using �oating point in the kernel
requires manually handling the various situations that arise.

The kernel keeps time using a unit known as ji�es, the length of which
is de�ned at compile time. The value HZ, de�nes the number of ji�es per
second. The variable jiffies is updated every time the clock interrupt is
sent to the kernel and holds the current time since boot in ji�es.

Internally the Linux kernel does not di�erentiate between processes and
threads, in the sense that a thread is merely a special kind of process. Instead

29

the unit of execution is universally referred to as a task. Unless otherwise
noted, these three terms are used interchangeably.

Overall, the Linux kernel provides a mature, stable development envi-
ronment in which modern techniques can be tested. This chapter continues
with examinations of the kernel internals that interact with the scheduler
subsystem.

5.3 The Generic Block Device Layer

The kernel API interface for reading and writing to block devices is wholly
provided by the source-�le block/ll_rw_blk.c. Each block device driver
must register a queue by calling blk_init_queue which returns a request_

queue_t (which is a synonym for struct request_queue). This call regis-
ters a scheduler with the queue by making a call to elevator_init_queue.

The queue registers a few function pointers to determine heuristics for
treating the queue. The defaults for these are found in ll_rw_blk.c, but
the driver may choose to override them. These functions primarily concern
device plugging and request merging, both of which are examined below.

5.3.1 Bu�er Heads

To keep track of the relationship between bu�ered blocks in memory and
on disk, struct buffer_head objects are created. Bu�er heads were once
also the unit of I/O in the �lesystem and block layer. It has been replaced
for this purpose, but bu�er heads are still used for various other purposes.
The comments preceding their de�nition in include/linux/buffer_head.

h states that bu�er heads are used for extracting block mapping, tracking
state within a page and for wrapping block I/O submissions for backward
compatibility. The latter is provided for �lesystems that still use bu�er heads
rather than block I/O structures.

5.3.2 Block I/O Units

Each I/O request is contained in an instance of struct bio. This structure
holds information about operations that are active. It holds a list of segments
(continuous blocks of memory) which the data is copied to or from, informa-
tion on whether the request is a read or write and what device the request
concerns. The bio structure is designed to be easy and quick to perform split
and merge operations on.

30

The block device layer de�nes sectors to be units of 512 bytes, regardless
of what sector size the hardware device uses. It is the responsibility of the
device driver to translate this.

Information about bu�ers in memory that the bio's I/O is copied to is
stored in a list of struct bio_vec objects. This structure holds a pointer to
the page, the length in bytes in represents and the o�set in that page that
the bu�er resides.

5.3.3 Requests

The unit that Linux I/O schedulers deal with is the struct request, which
tracks several block I/O units. The structure is de�ned in include/linux/

blkdev.h. The information a request holds that an I/O scheduler uses in-
clude �elds for inserting the request in lists. The I/O scheduler can also
access the request's �ags, which hold information about the request type
and status. The request also holds the address of the request on the block
device and the number of sectors the request covers. In addition the structure
provides two void pointers for exclusive use by the scheduler.

The structural relationship between request and bio objects is shown
in �gure 5.1 on the next page.

While most literature on I/O scheduling deals with speci�c sector or block
accessing, one can apply most conclusions from these, since a request repre-
sents contiguous sectors. A caveat here is that these sectors are only logically
contiguous, and the block device may have remapped them. In this case the
time spent by the request is unpredictable at best. However, since the same
problems would arise in systems that handle sectors or blocks individually,
it is safe to ignore them.

5.3.4 Plugging

When accessing block devices, it can be better to wait until multiple requests
are ready, so that they can be SCAN sorted. The kernel block layer imple-
ments this with plugging and unplugging. When the device has no pending
requests, it is plugged in a manner similar to a sink or a bath tub. When a
single request arrives, the kernel checks whether the request is synchronous or
asynchronous. An asynchronous request need not be serviced immediately,
so the device remains plugged until more requests arrive or a short amount
of time passes. Hopefully more requests will arrive, so that the requests can
be serviced in optimized order. Since related synchronous requests by their
nature cannot accumulate, these immediately unplug the block device.

31

Figure 5.1: The relationship between request, bio and bio_vec structures[23].

5.4 Performing a Read Operation on Linux

This section provides an overview of the system call interface for performing
synchronous requests to block devices, along with an in-depth look at how
these requests are forwarded to the elevator layer. This section is based on
various sources[8, 24, 23] along with the 2.6.19 version of the Linux kernel
source[47].

The Linux kernel provides two di�erent ways of performing block I/O
from userspace. One is through the standard read and write system calls.
The other is by mapping the �le into memory through the mmap system call
and reading from memory, which causes page faults. The standard read/write
interface can be used in two ways, either for bu�ered or unbu�ered (direct)
I/O. The full call path of these two variations of the standard I/O interface
for reads are examined. The call path for writes is very similar, with a slightly
di�erent entry point.

Linux system calls are performed using the system call handler. Each
separate system call is denoted by a system call number, which is passed to
the kernel when the system call handler is invoked. On the x86 architecture
the system call handler is invoked using the interrupt instruction. On other
architectures, similar provisions exist.

This section examines only the execution path from the read system call,

32

Function Source �le, Line Nr.
sys_read fs/read_write.c, 356
vfs_read fs/read_write.c, 255
do_sync_read fs/read_write.c, 230
generic_file_aio_read mm/filemap.c, 1140
do_generic_file_read include/linux/fs.h, 1795
do_generic_mapping_read mm/filemap.c, 877
mpage_readpage fs/mpage.c, 427
mpage_readpages fs/mpage.c, 386
block_read_full_page fs/buffer.c, 1917
page_cache_readahead mm/readahead.c, 464
blockable_page_cache_readahead mm/readahead.c, 400
get_block_t (typedef) include/linux/fs.h, 302
do_mpage_readpage fs/mpage.c, 176
submit_bh fs/buffer.c, 2640
submit_bio block/ll_rw_block.c, 3106
generic_make_request block/ll_rw_block.c, 2998
__make_request block/ll_rw_block.c, 2832
get_request_wait block/ll_rw_block.c, 2172
get_request block/ll_rw_block.c, 2068
blk_alloc_request block/ll_rw_block.c, 1971
elv_set_request block/elevator.c, 797
add_request block/ll_rw_block.c, 2608
__elv_add_request block/elevator.c, 611

Table 5.1: The location in the source of various kernel API functions common
for bu�ered I/O, as found in the modi�ed version of the 2.6.19 kernel.

since this is representative of synchronous requests. The mmap type of I/O
is not examined explicitly, since it is inappropriate for sequential access to
large �les. It di�ers from ordinary I/O in that requests to read are performed
implicitly, by invoking page faults, rather than explicitly requesting positions
in �les. The pattern of access is similar enough that the important limitations
presented by ordinary reads still hold.

5.4.1 Bu�ered I/O

The system call to read from a �le is sys_read. It takes as arguments a
�le descriptor, a userspace address to a byte bu�er and an integer denoting

33

Figure 5.2: The call graph from sys_read to submit_bio.

34

Struct Source �le, Line Nr.
struct file include/linux/fs.h, 720
struct file_operations include/linux/fs.h, 1108
struct kiocb include/linux/aio.h, 87
struct address_space include/linux/fs.h, 430
struct file_ra_state include/linux/fs.h, 705
struct page include/linux/mm_types.h, 18
struct buffer_head include/linux/buffer_head.h, 59
struct bio include/linux/bio.h, 72
struct request_

queue (request_queue_t)
include/linux/blkdev.h, 386

struct request include/linux/blkdev.h, 249
struct request_list include/linux/blkdev.h, 151

Table 5.2: The location in the source of various kernel API structure de�ni-
tions common for bu�ered I/O, as found in the modi�ed version of the 2.6.19
kernel.

the number of bytes to read. The �le descriptor is an integer that provides
a lookup into a table of open �les for the current user. The call returns an
integer denoting the number of bytes that were actually read, or a negative
value if there is an error. The order of the functions called is shown in �g-
ure 5.2 on the facing page. A list of the functions and their location in the
source is shown in table 5.1 on page 33. Data structures and their locations
are shown in table 5.2.

Using the �le descriptor, the kernel retrieves the struct file for the
open �le. The struct file instance speci�es which operations are possible
on the open �le. The instance also holds a struct file_operations which
stores function pointers for functions speci�ed for various operations on the
�le, such as reading, writing, opening, �ushing and so on. Not all of these
are always de�ned. The function call of interest is the read function. In the
normal case, a standard �le open for sequential access, this is do_sync_read.
If the open �le is a pipe or similar special construct, the read function is a
pointer to a di�erent function.

The �le instance is then passed on to the virtual �lesystem (VFS) layer
using the vfs_read function. The VFS layer is an abstraction that provides
a uni�ed interface to all �lesystems and block devices. It hides the underlying
implementation of the �lesystem and speci�cs of the block device from the
userspace programs, so they function regardless of the underlying details.
The can be seen in �gure 5.3 on the next page. The arguments to vfs_read

35

Figure 5.3: The �ow of information between the system call interface and
the physical media goes via the virtual �lesystem before the actual �lesystem
sees it.

are the same as sys_read, in addition to the position variable.
Once the operation is veri�ed as legal, in that the user has correct permis-

sion to the �le, that the bu�er exists, that the requested position is within the
�le and so on, vfs_read either forwards the call to the read operation speci-
�ed in the struct file instance's own read operation or calls do_sync_read.
In most cases, these two are the same.

The function do_sync_read takes all the same arguments as vfs_read.
At this point, the kernel creates an I/O control block (IOCB) to handle the
request. This IOCB is represented by a struct kiocb. While kernel IOCBs
are ostensibly for asynchronous I/O, the kernel may request that they be
handled synchronously. This is done in do_sync_read. The kernel then
attempts to perform an asynchronous read operation. If this returns stating
that the operation has been queued, do_sync_read performs a wait operation
until a callback reactivates it.

The asynchronous read operation is determined in the same way as the
synchronous read operation, except that there is no default value. The �lesys-
tem must implement an asynchronous read operation, and the �le object must
have a valid function pointer stored for it. By default, and for most �lesys-
tems5, this points to generic_file_aio_read. At this point the execution
branches for requests that have been marked to bypass caches. The direct
I/O path is examined in 5.4.2 on page 40, this section continues to examine
bu�ered I/O.

The path of execution for a bu�ered read continues to do_generic_file_
read, which reformats the arguments and forwards the call to do_generic_

mapping_read. The arguments to this function are the �le object, the posi-
tion in the �le, a read descriptor and a function pointer to a function that
will copy the read data back to the userspace bu�er. In addition, it takes a
struct address_space and struct file_ra_state (�le read-ahead state),
but both of these are passed from the �le object by do_generic_file_read.

The address space struct is part of the kernel's caching mechanism. An

5That is, all �lesystems that can use the page cache directly.

36

address space is tied to an inode. A classical UNIX �lesystem element, the
inode is a descriptor that keeps track of accounting information about exactly
one �le[45]. The address space is the basic unit of the page cache. It holds
the mapping from block devices to physical pages. This can represent any
page-based object, be it a �le or memory mapping of some sort.

When a page is not cached, it is read by the �lesystem using the readpage
operation in the address space's operations structure. This function takes two
arguments, the �le object being read and the struct page that speci�es the
location in memory to put the data that is read. It is ostensibly �lesystem
speci�c, but many �lesystems simply forward this call to generic page reading
functions.

It is worth noting that the reading happens in part via the read-ahead
mechanisms in the kernel. This is invoked in do_generic_mapping_read, by
way of the page_cache_readahead function. Thus a short digression here
to explore the execution path of a read-ahead call is called for. The func-
tion page_cache_readahead controls the read-ahead window size manage-
ment and submits read-ahead I/O. The read-ahead I/O submission is sent
to blockable_page_cache_readahead, which in turn forwards the call to
__do_page_cache_readahead. This function then allocates the amount of
pages necessary to perform the I/O, then calls read_pages to perform the ac-
tual I/O. This function in turn calls the address space's relevant readpages
operation, if the �lesystem implements this function. Otherwise multiple
calls to readpage are made.

The readpages function is similar in structure to the readpage call. It
takes as its arguments a �le object, an address space, a list of pages and the
number of pages in that list. Most �lesystems that implement readpages

simply forward the call to mpage_readpages. Those that do not are typically
networking �lesystems or other specialized �lesystems. Standard block device
�lesystems de�ne readpage to either mpage_readpage or block_read_full_
page.

None of the functions mpage_readpages, mpage_readpage and block_

read_full_page accept a �le object as an argument. This presents a problem
when implementing APEX which is examined in detail in 6.4.1 on page 74. In
addition to page information, the three functions all take a function pointer
of type get_block_t as arguments. This function is �lesystem speci�c and
provides a translation from inode and �le o�set to block number on the
relevant device.

The simplest of these three functions is block_read_full_page, which
uses the get_block_t function to construct a struct buffer_head for I/O.
This list is then passed to submit_bh, which does little more than translate
the bu�er head to the newer bio, represented by a struct bio. This is

37

then passed to submit_bio. Both submit_bh and submit_bio accept two
arguments, an integer designating the type of operation along with the bu�er
head and block I/O object, respectively. This point of execution is returned
to later.

The functions mpage_readpage and mpage_readpages are very similar.
Both construct struct bio objects for submission by calls to do_mpage_

readpage. mpage_readpages di�ers by making multiple calls to create one
large bio object, whereas mpage_readpage makes only a single call. The
function do_mpage_readpage maps the disk blocks and creates the largest
possible bio for submission. If it encounters any problems, it falls back on
the bu�er head-based read function, block_read_full_pages (see above).
Problems that can cause this are a page which has bu�ers, a page which
has a hole followed by a non-hole or a page which has non-contiguous blocks.
These must be treated by the legacy code which handles bu�er heads. Either
way, the code path eventually results in one or more calls to submit_bio.

When a bio is set up and ready for I/O, it is sent to submit_bio. From
this point and downwards no code uses bu�er heads. This is part of the
generic block device interface. The task of submit_bio is to prepare re-
quests for the block device, but it defers this work to generic_make_request.
See �gure 5.4 on the facing page for an overview of call path from submit_bio

and down to the elevator.
Like �lesystems, individual block device drivers may register their own

functions for handling various situations. One of these situations is generat-
ing requests. The struct request_queue_t holds the block device's queue,
and speci�es the function for this in make_request_fn. The default for this,
which is used by standard block devices, such as physical IDE, SATA or SCSI
disks, is __make_request.

The struct bio is sent from submit_bio to generic_make_request as
the only argument to this function. The bio is then used to �nd the cor-
rect request_queue_t for the block device it refers to. Various checks are
performed to ensure that the bio refers to legal areas of the disk, that the
disk exists, that the bio is not too large for the device and so on. Finally,
the bio is sent to the block device driver's preferred make_request_fn. This
function takes as its parameters the request queue for the block device and
the bio.

Standard block devices use the generic request generation function, __
make_request. This function prepares the bio for the elevator. It �rst at-
tempts to merge the bio into a preexisting request by calling elv_try_merge.
If there are no preexisting requests, or no viable candidates for a merge, it
calls get_request_wait to allocate resources for a new struct request.

The get_request_wait �rst attempts to allocate a request through get_

38

Figure 5.4: The call graph for request submission[23].

39

request. If resource allocation fails, it is either because the queue is full
(congested), or because there is not enough memory available. Either way,
the task calls the CPU scheduler to sleep until the struct request_list

has resources freed. The struct request_list is a member of the request_
queue_t that holds the cache used to allocate requests. If the process sleeps,
it is granted special access to allocate requests to compensate for having
deferred once awoken.

A successful call to get_request involves being allowed to allocate a new
request by the request_list, then making a call to blk_alloc_request

to perform the actual allocation from the cache. In addition to allocating
memory for the struct request, the elevator may need to allocate some
resources for the request. This is done by making a call to elv_set_request.
If both these calls are successful, the request is allocated and control returns
to __make_request.

Since the bio is not mergable, the request must now be added to the
elevator for sorting and eventual dispatch. This is done by add_request,
which performs some device driver related housekeeping, then calls __elv_
add_request. In the normal case, this forwards the request to elv_insert

which uses the scheduler's custom elevator_add_request_fn to perform a
sorted insertion. Exceptions occur when special barrier requests are added,
but for the vast majority of requests this is the execution path followed. The
request is now in the scheduler, and will be dispatched to I/O when it is
deemed appropriate.

From here, the process context returns up the call stack to do_sync_read,
where it waits until the I/O is completed. An asynchronous request returns
all the way to userspace.

This is how the bu�ered synchronous I/O request from userspace is pro-
cessed, going from the high level system call, through the virtual �lesystem,
actual �lesystem, to the block device layer and �nally to the elevator. The
access is turned into a kernel I/O control block, which is broken up into
pages so that they can be accessed through the cache, and then rebuilt into
bu�er heads by the �lesystem. The bu�er heads are then turned into bios
for handling by the block device layer. These are organized into requests,
which are ordered by the elevator for dispatch. The elevator's functions are
covered in section 5.5 on page 42.

5.4.2 Direct I/O

The previous section examines the execution path of bu�ered block device
accesses. Some programs do not bene�t from the kernel cache, or bene�t
more from managing their own cache. For these programs, direct I/O o�ers

40

Function Source �le, Line Nr.
generic_file_direct_IO mm/filemap.c, 2393
ext3_direct_IO fs/ext3/inode.c, 1619
ext3_get_block fs/ext3/inode.c, 947
blockdev_direct_IO include/linux/fs.h, 1819
__blockdev_direct_IO fs/direct-io.c, 1180
direct_io_worker fs/direct-io.c, 950
do_direct_IO fs/direct-io.c, 796
dio_bio_submit fs/direct-io.c, 351
Struct Source �le, Line Nr.
struct dio fs/direct-io.c, 64

Table 5.3: The location in the source of various kernel API functions and
structure declarations related to direct I/O, as found in the modi�ed version
of the 2.6.19 kernel.

a way to bypass the kernel's caching mechanisms. It also o�ers zero-copy
I/O. This type of I/O improves performance by allowing the block device to
copy directly to userspace memory, thus freeing the CPU from performing
this task in the kernel, as would be the case in bu�ered I/O. The functions
and data structures used in direct I/O are listed in table 5.3.

Direct I/O is used in particular by DBMS applications, under the reason-
ing that the atypical pattern of essentially random accesses to large �les con-
tradicts assumptions made in kernel read/write caching strategies. They also
require better certainty that a write operation has been completed when the
kernel reports it has. Write operations are normally asynchronous, meaning
that processes can queue write operations and continue execution in parallel.
For DBMS systems, it is often more important to guarantee data integrity.
Direct I/O assists in this by returning synchronously from write calls only
after the command has been committed to the hardware block device.

To perform direct I/O on a �le in Linux, the application must open the
�le using the open system call modi�ed by the O_DIRECT �ag. On Linux,
this requires that all operations are aligned to 512-byte boundaries. It is also
possible to perform direct I/O directly on a block device. To perform raw
direct I/O on a block device, the open system call is used with the device node
as the �le. For example, open(``/dev/hda'', O_DIRECT), which opens the
hard disk drive hda.

The execution path of a read on an open �le object with the direct I/O
�ag enabled is similar to of a bu�ered until the generic_file_aio_read

function. This function checks whether the direct I/O �ag is enabled, and

41

invokes the generic_file_direct_IO function to perform the read, rather
than do_generic_file_read. This invokes the speci�c �lesystem's own di-
rect I/O call. The �lesystem's direct I/O call takes the operation as an argu-
ment, and as such is common for both read and write operations. For the ext3
�lesystem, this function is ext3_direct_IO, which in turn forwards the call
to blockdev_direct_IO which forwards the call to __blockdev_direct_IO.

There are 10 arguments passed to __blockdev_direct_IO, including the
kernel I/O control block for the access, the inode for the �le being accessed,
the struct block_device representing the block device being accessed and
the �lesystem's get_block_t function for direct I/O, which is ext3_direct_
io_get_blocks. In __blockdev_direct_IO, some of these parameters are
used to construct a struct dio, which represents the various stages of a
direct I/O access. If arguments are valid and resource allocation is successful,
the struct dio and some other arguments are forwarded to direct_io_

worker.

The direct_io_worker function takes many of the same arguments as
__blockdev_direct_IO and performs the main work for the direct I/O oper-
ation. It stores the current state of the call in the struct dio and calls do_
direct_IO with the struct dio. This function prepares the struct dio for
execution by mapping pages and device blocks to each other. This function
has various helper functions, but in the end returns to direct_io_worker,
which constructs block I/O units for the operation, and sends the dio object
to dio_bio_submit. This function performs some accounting and then calls
submit_bio.

5.5 The Linux Elevator Interface

The Linux kernel di�erentiates between the elevator and individual sched-
ulers. The elevator refers to the whole request ordering subsystem, whereas
a scheduler is the speci�c algorithm that decides request ordering. The ele-
vator interface is provided by block/elevator.c. This �le de�nes a set of
interface functions which do minimal amounts of bookkeeping, forwarding
almost all calls to relevant queue's scheduler. As of kernel version 2.6.19 it
also handles back merges.

Since the kernel API is continually changing, the information given here
may not be accurate for versions other than 2.6.19. While the kernel API is
reasonably stable, there are no guarantees provided that exported symbols
will remain available in later versions.

42

cat /sys/block/hda/queue/scheduler

noop anticipatory deadline [cfq] apex

Figure 5.5: Reading the available and active schedulers.

echo anticipatory > /sys/block/hda/queue/scheduler

cat /sys/block/hda/queue/scheduler

noop [anticipatory] deadline cfq

Figure 5.6: Changing the scheduler on a block device.

5.5.1 Switching Scheduler on a Block Device

The generic nature of the elevator implementation enables switching the ac-
tive scheduler on a block device at run-time. This is done using the sysfs
interface. The sysfs interface is designed as a special �lesystem presented as
a tree hierarchy under the /sys directory. The block subdirectory covers
block device speci�c variables, it holds one subdirectory per mounted block
device on the system. These block devices are represented by their name
under the /dev hierarchy. IDE disks are commonly represented by names
pre�xed with `hd', whereas SCSI disks are commonly pre�xed with `sd'. For
each block device that implements a queue, there is a directory queue. This
directory holds a special �le scheduler that contains information about the
scheduler active on that block device.

To see a list of available schedulers, and the currently active scheduler,
one reads the contents of the special scheduler �le. Figure 5.5 shows an
example of reading the list of available and active schedulers on the block
device hda. The active scheduler is surrounded by square brackets, in this
case it is cfq.

To set the scheduler, one writes the name of the desired scheduler to the
�le. An example is shown in �gure 5.6. In this example the scheduler on hda

is changed to Anticipatory.

5.5.2 The Elevator Interface Provided to Schedulers

The kernel elevator provides an interface to schedulers for handling requests
and registering schedulers for use. These functions primarily cover bookkeep-
ing, but two fundamental calls are provided. These are elv_dispatch_add_
tail and elv_dispatch_sort. These two take requests and add them to a
block device's dispatch queue. As the names imply, one appends the request

43

to the end of the dispatch queue, while the other performs a sorted insertion.
The appending version is provided for schedulers that perform strict SCAN
ordered dispatch, such as the Deadline scheduler.

The other functions provided perform tasks such as registering or un-
registering the scheduler for use, removing requests from the red-black tree
used for merging or querying the red-black tree to �nd logically next or last
requests. In addition, the scheduler has to perform reference counting on
struct io_context via an interface provided by the elevator.

5.5.3 The Scheduler Interface Provided to the Block
Layer

The elevator interface provides several function calls that the scheduler may
implement. Some of these are obligatory. This overview is based on the spec-
i�cation provided in the kernel documentation[6], the elevator interface code
itself, the block layer code that calls the elevator and the various schedulers
that implement it.

� elevator_merge_fn is used to query the scheduler whether there are
any requests appropriate for merge with a given bio. A scheduler must
implement this if it wishes to implement front merges.

� elevator_merge_req_fn is called when two requests are merged. One
request will not be seen again by the scheduler, so special resources
allocated must be freed. This includes removing the request from any
lists it has been added to as well as any dynamically allocated data
structures.

� elevator_merged_fn is called when a request has been involved in
a merge. This may be of interest if book keeping variables must be
updated, lists resorted or similar.

� elevator_dispatch_fn is called to move ready requests into the dis-
patch queue. An argument is given that allows schedulers to defer
moving requests to dispatch until later. Once dispatched, requests be-
long to the dispatch queue and the scheduler may no longer use them.

� elevator_add_req_fn adds a new request to the scheduler.

� elevator_queue_empty_fn checks whether the queue is empty. This
is provided to the block layer for merging purposes.

44

� elevator_former_req_fn returns the request before the given request
in SCAN sorted order. It is used by the block layer for merging pur-
poses.

� elevator_latter_req_fn similarly returns the request after the given
request in SCAN sorted order. Both these requests are implemented
by a common elevator function after kernel 2.6.19.

� elevator_completed_req_fn is called when a request has been ser-
viced by the hardware device. a

� elevator_may_queue_fn is used to allow a process to queue a new
request even if the queue is congested.

� elevator_set_req_fn allocates the scheduler speci�c data for a re-
quest.

� elevator_put_req_fn frees the scheduler speci�c data for a request.

� elevator_activate_req_fn is called by the device driver when actual
execution of a request starts.

� elevator_deactivate_req_fn is called by the device driver when it
has decided to delay a request by requeueing it. A subsequent call
to elevator_activate_req_fn will be made when it is again being
serviced.

� elevator_init_fn is called to allocate scheduler speci�c data struc-
tures when the scheduler is activated for a device.

� elevator_exit_fn is called to free scheduler speci�c data structures
when the scheduler is deactivated for a device.

� trim this undocumented method is used to clean up data structures in
the block layer when a scheduler is unloaded from kernel memory.

5.5.4 Merging

To lessen overhead, the kernel may merge two sequential requests into a
single, longer request. The two forms of merging are known as front merging
and back merging. A front merge occurs when a new request arrives that can
be added to the front of an existing request. This is rare and in most cases
does not justify the overhead of testing every existing request for viability.

45

The more common case is back merging. Back merging is when a new
request may be appended to an existing request. This case is so common
and merging so bene�cial that as of kernel version 2.6.19 the elevator layer
implements this generically. Previous to this version, all schedulers bar the
noop scheduler had their own implementations of back merging.

The implementation of back merging is done by keeping all existing re-
quests in a red-black binary tree sorted on end sector. When a new request
arrives, the elevator layer searches this red-black tree for an appropriate ex-
isting request. If one is found, a back merge is performed.

It is worth noting that unrelated merges are permitted. This might occa-
sionally cause problems in scheduler accounting where process speci�c queues
are maintained, such as CFQ and APEX.

In addition to reducing computational overhead, increasing request sizes
improves throughput[32]. The request size is in practice limited by the block
device.

5.5.5 Synchronous, Asynchronous and Metadata Prior-
itization

While much literature glosses over the di�erentiation of synchronous and
asynchronous requests, it is a much more pressing issue in actual schedulers.
Part of the reason for the rewrite of the block layer in the 2.5 kernel was due
to asynchronous requests starving synchronous requests. An asynchronous
request is a request that the issuing process does not need to block and wait
for completion on. Most commonly these are write requests, since programs
usually do not need to wait until a write request has been committed to disk
to continue execution. The opposite is true for reads, which programs most
often are dependent on to continue. (Most commonly to perform some sort
of manipulation on the data read.) Consequently, the kernel developers refer
to asynchronous requests starving synchronous requests as writes starving
reads. In some cases this may be inaccurate, for example in DBMSes which
require knowledge that writes have been committed to disk for integrity rea-
sons. Unless otherwise speci�ed reads and writes may be assumed to mean
synchronous and asynchronous requests respectively.

All the new schedulers bar Noop implement di�erentiation between syn-
chronous and asynchronous requests. This di�erentiation takes the form of
prioritizing synchronous requests. For example, an asynchronous request will
not preempt a synchronous request in CFQ. The deadline scheduler by default
provides much longer timeouts for asynchronous requests than synchronous.

As of 2.6.19, the CFQ scheduler provides an extra level of di�erentiation,

46

for requests for �lesystem metadata. These requests are usually small, but
precede larger I/O requests. Therefore they are cheap to prioritize, yet pro-
vide more e�cient I/O by causing a process to be able to read when its round
arrives instead of having to use a time-slice to read the metadata. Currently
only the ext3, ext4 and gfs2 �lesystems implement the metadata �ag. Since
CFQ is currently the default scheduler, more �lesystems can be expected to
implement this in the future. Prioritization of metadata reads is important,
since both read and write requests depend on them[24].

Results relating to asynchronous starvation of synchronous requests have
been presented[21]. These results have been applied to the Linux kernel and
are used in the Anticipatory and CFQ schedulers. This is examined further
in the next section.

5.6 The Linux I/O Schedulers

This section contains an overview of the Linux I/O schedulers, from the
Linus Elevator used in the 2.4 version of the kernel, to the most recently
implemented CFQ. These are loadable and unloadable at run-time, and have
varying advantages and disadvantages.

5.6.1 Linus Elevator

The Linus Elevator was the only I/O scheduler available in the 2.4 version
of the kernel. While it is no longer in use, it is examined here because it
provided the basis for the Deadline scheduler, which in turn was used as the
basis for the Anticipatory scheduler.

The Linus Elevator implements a C-Look algorithm with modi�cations
to prevent process starvation. It performs both front and back merging.
The request is then inserted into the queue in SCAN sorted order, unless a
request is found that is older than a given threshold, in which case the new
request is added to the tail of the queue. This is to prevent large sequences
of requests on area of the disk from starving requests to other areas. This
does not provide any guarantees, since the queue might already have very
many requests prior to the request that has reached the end of its time limit.

Several weaknesses arise from this approach. In particular, it does not
di�erentiate between synchronous and asynchronous requests. A long series
of asynchronous requests can delay a few synchronous requests, causing ap-
plications to stall as they wait for disk access. This causes particularly bad
problems when the system is swapping memory to and from the disk.

47

For these reasons the Linux Elevator was slated for replacement during the
2.5 kernel development. It was eventually replaced by a modular framework
which supports multiple, loadable schedulers.

5.6.2 Noop

The Noop scheduler, de�ned in block/noop-iosched.c performs simple
FCFS scheduling. Aside from the back merging performed by the elevator
interface, the Noop scheduler itself does no ordering or treatment of requests.
It maintains a single FIFO list, and delivers requests to the driver in the same
order in which they arrived. This scheduler is designed for block devices in
which access ordering does not make sense, such as �ash storage devices or
other random access devices, or very intelligent devices that can make better
decisions than a kernel-space scheduler.

5.6.3 Deadline

The �rst new scheduler was designed as an iterative improvement on the
Linus Elevator. The Deadline scheduler uses a C-Look queue in addition to
two FIFO queues, one for synchronous requests and one for asynchronous.
Requests in each FIFO queue are given expiration times, by default 500ms
for reads and 5s for writes. Under normal conditions, requests are dispatched
from the C-Look queue. However, if requests from either of the FIFO queues
have expired, these are served instead.

The Deadline scheduler does not make any performance guarantees, con-
trary to what the name might imply. It instead provides some preference of
reads over writes, which improves performance relative to the Linus Elevator
and prevents writes from starving reads under some circumstances.

To guarantee that writes are not starved completely by reads, the sched-
uler de�nes a maximum number of times reads can be prioritized over writes
when choosing from the FIFO queues. This ensures that the shorter expira-
tion time of read requests does not completely prevent write requests from
being serviced. The scheduler also attempts to ful�ll requests from the C-
Look queue when serving from the FIFO queues. This helps ensure that the
scheduler does not degenerate to FCFS under high loads.

5.6.4 Anticipatory

The Anticipatory scheduler adds an anticipation heuristic, as proposed by
Iyer[21] and the Linux kernel developers[44], to the Deadline scheduler. This

48

heuristic attempts to solve the problem that arises when the Deadline sched-
uler has to deal with a small number of dependent reads while servicing a
large stream of write requests. In this situation the reads are added to the
queue and prioritized ahead of the writes. This may cause a long seek. The
scheduler then resumes serving writes, causing a similarly long seek back to
the writes. However, in most cases long sequences of reads are dependent,
that is one cannot issue a new request before the last one is serviced. For
example programs which loop over short reads, do some form of computation
on the data and then perform a new read exhibit this sort of behavior.

To avoid this situation the anticipation heuristic is used to decide whether
to wait for a new read request, or to continue processing requests. This wait
is typically short, in the order of a few milliseconds. When new requests ar-
rive, they are tested against the heuristic to see whether to continue waiting
or begin dispatching the new requests. The heuristic considers factors such as
which process the next request is from, how frequently a process has histori-
cally submitted requests or whether the next request is close geometrically on
the platter. The scheduler records average think time, the wait between sub-
mission of requests, and the average seek distance of requests. The amount
of time the scheduler waits is tunable and defaults to approximately 6.7ms
(1/150s).

To prevent reads and anticipatory delays from arbitrarily delaying write
requests, the Anticipatory scheduler performs dispatching in batches, alter-
nating between writing and reading. Both read and write batching is timed.
Once the scheduler has spent more time than allotted serving a batch, it
switches to serving the other type of requests. When serving a write batch
the scheduler continually dispatches requests until the amount of time al-
lotted for write batches expires. When serving a read batch the scheduler
submits a single read at a time, and then uses the anticipation heuristic to
decide whether to wait for a new request or continue dispatching.

Since requests are only chosen from the FIFO queues when serving the
corresponding type of batch, Piggin[30] recommends that the FIFO expira-
tion time associated with requests not exceed the expiration time associated
with batch building. Since this would regularly cause requests to wait at least
the time it takes to build the next batch (which is at least as long as the
given batch expiration time), this follows naturally. The default expiration
time of read batches is 500ms and write batches is 125ms.

When dispatching requests, if there are no expired requests on the FIFO
queue, the Anticipatory scheduler chooses the request closest to the drive
head's current position. The scheduler uses a VSCAN[13] heuristic when
deciding how to de�ne close in this context. This way the scheduler prefers
to keep serving the queue in SCAN order, but seeks backwards if it is only a

49

short distance. By default this distance is 1MB worth of sectors.

5.6.5 CFQ

Time-sliced completely fair queueing, CFQ, is a round-based scheduler that
seeks to provide every process with at least some access to the disk. It is
in many ways similar to APEX, but di�ers on certain key concepts, speci�-
cally deadlines and bandwidth allocation and implements rounds somewhat
di�erently. The CFQ scheduler implements several service classes, for more
on this see section 5.7 on the next page.

The CFQ scheduler provides each process with an exclusive queue. When-
ever a process sends a request to the scheduler, it is placed in a FIFO list in
the corresponding queue. Each queue, and therefore each process, is granted
exclusive access to the disk for a short slice of time.

The CFQ scheduler is based on the assumption that all processes touch
the disk occasionally[5]. Since it distributes disk time in equal time-slices,
even processes which are fairly idle are granted reasonably prompt access
to the disk. A single, I/O heavy process is unable to exclude requests from
processes which send only a few requests, a common problem of SCAN based
schedulers.

When called upon to dispatch requests, CFQ scheduler performs at least
a partial round, in which it visits queues and activates each of their time-
slices. As new requests arrive, a queue's time-slice may be preempted by the
arrival of a request to a queue with higher priority. In addition, if a queue
runs out of requests to serve while there is still time remaining in its slice,
an anticipation heuristic is used to decide whether or not to end the slice
and serve the next available queue. This heuristic is similar to that used in
the Anticipatory scheduler. If a new request arrives to the active while it is
waiting, it is immediately dispatched.

The exception to this is if an asynchronous request arrives while a queue
is waiting. Since queues are only set to wait on the assumption that a
synchronous request will arrive shortly, an asynchronous request implies that
this assumption is wrong. The queue's time-slice is immediately expired and
a new dispatch round is started.

As with the Anticipatory scheduler, the CFQ scheduler uses a VSCAN
algorithm for determining which request to service out of a queue. For CFQ
the default maximum backwards seek is 16MB.

time_slice = base_slice +

(
base_slice

SLICE_SCALE
∗ (4− ioprio)

)
(5.1)

50

The priorities for real-time queues determine how long the per-round
time-slice of the queue is. The formula for the time-slice is given in equa-
tion 5.1 on the facing page, where base_slice is the base slice for this type of
queue, SLICE_SCALE is a constant de�ned to 5 and ioprio is the queue's
priority. The base slice for the queue depends on whether the queue is for
synchronous or asynchronous requests. If the queue is for synchronous re-
quests the base slice is 100ms, in ji�es.

5.7 Suitability of Linux Schedulers

Of the Linux schedulers, only the CFQ scheduler is a suitable candidate for
use with CM systems. It is the only scheduler which supports prioritizing
of I/O requests. The other schedulers attempt to distribute I/O bandwidth
fairly while optimizing for throughput and to a certain extent, latency. How-
ever, without prioritization they are unable to provide any service guarantees.

CFQ provides three di�erent I/O classes and 8 levels of priority. The
classes are real-time, best e�ort and idle. A process in the real-time class is
given priority over best e�ort processes by being guaranteed a time-slice in
every round. In addition, real-time queues are allowed to preempt idle and
best e�ort queues. Unlike real-time and best e�ort queues, idle queues are
not ranked internally by priority.

CFQ also provides e�cient access in that it maintains the anticipation
heuristic when servicing reads and dispatches requests in VSCAN order.
However, CFQ does not provide actual performance guarantees. The testing
phase reviews the quality of isolation in CFQ, in addition to how di�erent
priorities within the real-time class correspond to maintenance of deadlines
and provided throughput.

CFQ also provides a low latency service, but this is only available to the
�lesystem in requesting metadata.

Reviewing the requirements as presented in chapter 3 on page 11, CFQ
provides e�cient disk reads through VSCAN request ordering. It provides
partial support for multiple service types and guarantee levels through the
ioprio interface, but lacks con�guration options for speci�c deadlines or band-
width allocation. CFQ provides �exibility by adapting the variables that
control the anticipation heuristic dynamically, and by allowing administrator
control of device-wide variables via the sysfs interface. Isolation is provided
by allowing real-time requests to preempt best e�ort time-slices and by pro-
viding the anticipation heuristic to ensure that high priority interdependent
reads are not continually interrupted by lower priority threads. However,
since there are timeout values associated with requests, total isolation is not

51

achieved as this would lead to starvation of best e�ort requests. CFQ is
work-conserving by choosing not to set aside device time for high priority
queues that do not have pending requests, instead letting them preempt
other queues if requests arrive and they still have time left in their slice.

Since CFQ does not provide any absolute guarantees, it does not perform
any admission control. Instead it aims to provide relative priorities with
graceful performance degeneration as the number of queues increases. This
is almost inevitable, since CFQ aims to provide a general scheduler that will
run out of the box on any computer capable of running Linux.

A limitation of CFQ is that the real-time class functions as a low latency
service class that is not well suited for large bandwidth processes. Enough of
these processes entirely starve best e�ort processes if they provide a continual
stream of synchronous I/O requests.

CFQ partially ful�lls the requirements. In addition, it provides several
provisions for prioritizing synchronous requests over asynchronous requests.
There are also plans to incorporate bandwidth allocation[5]. CFQ is a modern
I/O scheduler that follows the forefront of current research.

5.8 Summary

I/O Scheduling in Linux is modern and in continual development. To aid
in this development, it has a well modularized generic block device layer
with support for loadable schedulers. The schedulers deal in request struc-
tures, which hold the block I/O information that maps contiguous sectors to
memory.

The execution path of I/O on Linux provides challenges for mixed-media
schedulers that often have implicit requirements for high level information
at the scheduler layer. Some of these challenges can be overcome, but others
require substantial changes to the kernel API, some of which may not be
suitable for general purpose use.

52

Chapter 6

Implementation of APEX in
Linux

This chapter examines and justi�es the extent and implementation of the
APEX scheduler. The APEX implementation of the scheduler interface cov-
ers a bare minimum required to perform the required tests and comparisons
to the existing schedulers. The implementation is built around the batch
builder core as presented by Lund[25]. Since much of the code is necessarily
bookkeeping or Linux speci�c the APEX implementation borrows, whenever
possible, from existing kernel I/O schedulers.

6.1 Data Structures

The APEX scheduler introduces three data structures. They are the APEX
I/O context, the APEX elevator data and the APEX queue. The APEX I/O
context is de�ned as apex_io_context, as seen in �gure 6.1 on the following
page, and is a process speci�c structure found in blkdev.h. Every scheduler
that wishes to hold data on a process speci�c level must introduce a custom
I/O context structure. A pointer to one of these is then added to the general
I/O context structure and housekeeping code is added to ll_rw_blk.c to
keep this pointer in a correct state. The APEX I/O context holds a reference
to the processes's queue, along with a reference back to process's generic I/O
context. These two are used to gain access to data not immediately available
in some context. The APEX I/O context also holds a reference to the active
struct apex_data in key. Finally, for cleanup purposes the APEX I/O
contexts are valid list elements1.

1In the Linux kernel standard list implementation, a structure is made part of a list by
holding a list_head instance[24].

53

struct apex_io_context {

struct list_head list;

struct apex_queue *apex_q;

void *key;//unique identifier

struct io_context *ioc;

int class;//unused

unsigned long deadline;//unused

void (*dtor)(struct apex_io_context *);

void (*exit)(struct apex_io_context *);

};

Figure 6.1: The process speci�c APEX I/O context information.

In the original presentation of APEX, separate request queues are gen-
erated when requested by applications. Due to di�culties presented in 6.4.1
on page 74, the implementation creates one queue per process. This queue
is an instance of struct apex_queue, seen in �gure 6.3 on page 56. Each
queue holds a list of requests waiting for dispatch. It also holds a list of
these requests sorted by sector number, in a red-black tree. A link back to
the relevant device's APEX data is provided for availability in function calls
where this is not a parameter. Since the queues are allocated dynamically,
each queue is reference counted and the memory recovered when no further
references are held. In practice this is done when the process exits.

The queues are organized into several lists, one for each type of queue and
one for queues which do not currently have pending requests. To support
this, a queue holds an array of list_head structures. Whenever a queue is
emptied, it is placed on the list for waiting queues. When a new request is
added to a waiting queue, it is moved to the list of active queues correspond-
ing to its priority class. For consistency checking purposes each queue counts
the number of associated requests allocated.

The queue structure holds data related to the modi�ed token bucket
implementation. There is a count of current tokens, tokens, along with the
bucket depth, max_tokens. The token_rate is the number of ji�es between
each time a queue is to be allotted a new token. Each time a queue is
allotted a token, last_token_update is updated to re�ect the current clock
tick. The deadline and bandwidth allocated to a queue are recorded in the

54

struct apex_data {

request_queue_t *queue;

struct list_head active[APEX_NR_QUEUE_TYPES];

struct list_head apex_ioc_list;

/* Batch builder data*/

int pending;

int on_dispatch;

unsigned long next_deadline;

struct work_struct unplug_work;

struct timer_list batch_delay_timer;

int batch_delay_len;

int threshold;

int buildup;

int delayed;

int force_batch;

int batch_active;

int rnd_len;

/* Per device tunables */

unsigned long min_deadline;

unsigned long default_deadline;

/* For calculacing RQ cost, time in ms */

int average_seek;

int sectors_per_msec;

int max_batch_len;

int total_bandwidth;// (in pages/s)

int available_bandwidth;

int default_max_tokens;

};

Figure 6.2: The device speci�c elevator data structure.

55

struct apex_queue {

struct apex_data *ad;

struct list_head rq_queue;

struct rb_root sort_list;

atomic_t ref;

int flags;

struct list_head active[APEX_NR_QUEUE_TYPES];

int allocated;

int tokens;

int max_tokens;

int token_rate;//= nr of jiffies between arrival

unsigned long last_token_update;

int deadline;

int bandwidth;

int class;

};

Figure 6.3: The process speci�c request queue data structure.

56

corresponding variables. Each token represents a page worth of data, which
on the test system is 4KB. While larger page sizes are desirable, this is the
maximum page size Linux supports on the x86 architecture.

When a device registers a scheduler for use, an instance of that sched-
uler's elevator data is created. For APEX, this is struct apex_data, seen
in �gure 6.2 on page 55. This structure holds instance speci�c data. Some
of this data is speci�cally tied to the device, such as the pointer to request
queue structure associated with the device. In addition, it holds a reference
to the list of active and waiting queues, and a list of all the APEX I/O
contexts for processes that have performed I/O on this device.

For housekeeping purposes to assist with batch building, the number of
requests pending dispatch and requests currently on dispatch are counted.
The deadline (in ji�es) of the current batch being constructed is held in
next_deadline, as is the remaining round length (in milliseconds).

Since APEX tries to predict the cost in time of dispatching requests,
each device may have di�erent tunable information. Depending on the cost
of dispatching a single request, a device might require a higher minimum
deadline. This is the case when the cost of dispatching a single request is
high. In this case, the scheduler must be able to dispatch batches of at least
a few requests in size to be able to amortize the the seek times, otherwise
the batches would degenerate to EDF behavior. Requests with too short
deadlines cannot decide the controlling deadline, as the consequences are
the same. In addition to having a minimum deadline in min_deadline, a
default deadline that is considered an optimal batch size for the device is
recorded in default_deadline. Both deadlines are given in ji�es relative
to the beginning of the batch dispatch.

To calculate the cost of a request, several device speci�c variables are
presented. The average seek time on the device must be considered. This
number does not need to be entirely accurate, but should present a good
heuristic for deciding the cost of adding a request to the queue. An average
seek that is too short creates batches so large that they regularly violate
deadlines, whereas one that is too long degrades performance by creating
unnecessarily small batches. Since requests coming to the scheduler can
vary from single pages to whole tracks, the number of sectors must also be
considered to contribute to the cost of a request. The cost of a single track
is negligible, but several tracks might present a noticable delay. The variable
sectors_per_msec speci�es an estimate for how many milliseconds it will
take to read a request from disk once the seek is completed.

Regardless of cost there must be an upper limit for the length of a batch.
Otherwise, batches might become so large that requests that arrive after the
batch has started don't have a chance of meeting their deadline. This is

57

stored in max_batch_len.
To improve request cost amortization, APEX slightly delays batch build-

ing on the assumption that if a single request is ready for dispatch, more
will soon follow. If this delay is shorter than the time it takes to perform
a request, delaying will cost less than performing an incorrect choice. This
mirrors the justi�cation for waiting when anticipating further requests from
a process which has completed an I/O operation[21].

The implementation of APEX records the estimated cost of the reser-
vation class requests that are ready for dispatch in milliseconds. This cost
estimate is stored in buildup. The buildup is compared to the batch de-
lay threshold, stored in threshold. The batch delay threshold speci�es how
much buildup justi�es dispatching a new batch. To prevent starvation when
not enough requests arrive to trigger the condition, a maximum batch delay
length is kept in batch_delay_len. If a delay lasts this long, the scheduler
forces a dispatch of a new batch. This variable is currently static, but can be
made to adapt to conditions. At the simplest this would entail being tunable
by the user via the sysfs interface. It could also be made to adapt based
on program behavior, such as counting the average amount of time from the
�rst new reservation class request arrives, to the last one that was included
in the same batch. Other possibilities exist and could be examined.

The dynamic event handler struct timer_list assists with batch delay.
This batch_delay_timer is used to trigger a request to the kernel block
driver to perform dispatch when the I/O buildup is not fast enough to meet
the threshold within the maximum batch delay. The timer is created with two
parameters, the function it calls when it is triggered and the unsigned long

that it passes as argument to this function. For the batch delay timer these
are ad_batch_delay_timer and the pointer address to the APEX elevator
data.

To query the block device driver to perform dispatch, a struct work_

struct is needed. A struct work_struct is an item of work that will be
scheduled in the process context of the corresponding work list. In this case
the kernel block I/O thread, kblockd. The work unplug_work is passed
to the block device driver function kblockd_schedule_work. The work is
associated with a function, apex_kick_queue which takes a pointer with no
type as argument. The unplug_work uses the address of the block device's
request queue in this pointer.

The �ags force_batch and delayed assist with statefulness. The former
speci�es that a batch must be built the next time the block driver calls
for requests to be dispatched. The delayed �ag speci�er's whether batch
building has been delayed due to lack of buildup. If it is active the batch_

delay_timer has been started, but is not stopped yet.

58

Average Seek 10ms
Sectors per ms 20
Maximum batch length 500ms
Minimum deadline 100ms
Default deadline 500ms
Total bandwidth 10k pages
Available bandwidth 10k pages
Force Batch Building Threshold 5 requests
Maximum Batch Building Delay 25 milliseconds

Table 6.1: Default values for the APEX elevator data

While admission control is not implemented, to do so each device must
keep a record of how much bandwidth it can sustain and how much is cur-
rently reserved. This is done in the total_bandwidth and available_

bandwidth variables.
The default values for the tunable variables in the APEX elevator data

structure are shown in table 6.1. The average seek rate is slightly lower
than that provided by the manufacturer, which takes into account that most
requests will add time by being long. The sectors per millisecond value is
20. This is a high estimate. It allows for an extra seek for every 100KB or
so in a request. This ensures that even if the disk geometry is di�erent than
expected, the request should �nish within the estimated time. These two
variables can be further �ne-tuned. The maximum batch length is 500ms,
which assumes that the most common deadline will be 1s. The maximum
batch length should be half the most common expected deadline or less,
so that a request that arrives just after the batch starts will not have its
deadline violated by being scheduled in the next batch. The total bandwidth
and available bandwidth are set to 40MB, but in practice this value currently
means nothing. The force batch building threshold is set low to ensure that
batches are built promptly even when there are few running reserved service
class processes. The maximum batch building delay of 25ms approximately
represents two average seeks, one forward and one backwards, which would
be the expected cost of dispatching one request instead of waiting.

6.2 Functions

The functions the APEX implementation registers to the scheduler interface
are shown in �gure 6.4 on the next page. APEX does not implement all

59

static struct elevator_type elevator_apex = {

.ops = {

.elevator_merge_req_fn = apex_merge_requests,

.elevator_queue_empty_fn = apex_queue_empty,

.elevator_completed_req_fn = apex_completed_request,

.elevator_add_req_fn = apex_add_request,

.elevator_dispatch_fn = apex_dispatch,

.elevator_former_req_fn = elv_rb_former_request,

.elevator_latter_req_fn = elv_rb_latter_request,

.elevator_put_req_fn = apex_put_request,

.elevator_set_req_fn = apex_set_request,

.elevator_init_fn = apex_init_queue,

.elevator_exit_fn = apex_exit_queue,

.trim = apex_trim,

},

.elevator_name = "apex",

.elevator_owner = THIS_MODULE,

};

Figure 6.4: Using the ops structure in elevator_type, APEX registers the
functions in the scheduler interface that it implements.

60

the interface functions. It focuses on the minimum necessary to perform
an analysis of the batch building done in the APEX scheduler and compare
the performance of this to that of the other schedulers in the Linux kernel.
The functions not implemented are those related to customized merging of
requests, along with specialized housekeeping functions for handling requests
that are dequeued and requeued by the device driver.

The functions apex_init_queue and apex_exit_queue are called when
the scheduler is loaded and unloaded to service a device respectively. As
such, they serve as constructor and destructor functions. The constructor
allocates kernel memory for an instance of struct apex_data, initiates the
various lists and stores the default values in its member variables. In a
complete version of the scheduler it would be correct to provide an interface to
adjust these variables, preferably through the sysfs interface. The prototype
implementation only uses the scheduler for testing on a single drive and
hardcodes the desired values in the constructor. The default values are shown
in table 6.1 on page 59. The request queue for the device is passed as a
parameter to the constructor and a reference to this is stored in the APEX
elevator data.

The destructor, apex_exit_queue, calls the function kblockd_flush to
complete any ongoing dispatch of requests. It then acquires the request
queue's spinlock and cleans up the remaining APEX I/O contexts by clearing
the reference to them in the generic I/O contexts. Finally, the memory for
the APEX elevator data is freed.

The function apex_trim is part of the I/O context housekeeping done
when unloading a scheduler from memory. While this is implemented, APEX
is never unloaded from memory due to the complex handling of synchroniza-
tion necessary.

When a request is created from a bio, a call is made to allocate scheduler
speci�c resources for that request (as is seen in �gure 5.4 on page 39). In
APEX, this call is apex_set_request. The call graph for this function can
be seen in �gure 6.5 on the following page. First the APEX I/O context of the
current process is fetched using apex_get_io_context, which is described
in 6.2.1 on page 67. The APEX I/O context may have a pointer to a valid
APEX queue when it is returned to apex_set_request. If not, a call is made
to apex_alloc_queue to create a new one. Once the queue is available, the
count of requests allocated to this queue is incremented as is the reference
counter. The memory address of the I/O context and queue are stored in the
request's two special �elds for private elevator data. If memory allocation for
either the APEX I/O context or the queue fails, apex_set_request returns
an error value.

The destructor companion to apex_set_request is apex_put_request.

61

Figure 6.5:

It is called to free any scheduler speci�c resources when a request is being
freed. It uses the private elevator data �elds in the request structure to
fetch the queue and original APEX I/O context of the request, calling their
respective put functions.

After a request is initiated, a call is made to apex_queue_empty to see if
there are any candidates for merging. If the call returns false, the elevator
layer attempts to perform a back merge before it passes the request on to the
scheduler. As seen in 5.5.4 on page 45, back merging is when a new request
continues after a request that is already pending dispatch. This is done by
adding requests into a red-black tree sorted on the last sector in the request.
If a back merge is possible, the requests are merged. If not, the elevator
queries the scheduler to see if it performs a merging operation on the new
request. The implementation does not implement any extra merging to avoid
added complexity, since most merges are back merges[3]

The function apex_merge_requests performs the necessary housekeeping
on the scheduler speci�c data structures when two requests are merged. The
functions elv_rb_former_request and elv_rb_latter_request are both
for merging. Previous to the 2.6.19 version of the kernel, these functions
were speci�c to the various schedulers, and it is therefore still part of the
elevator interface.

Merges may happen to unrelated requests, that is requests that consist of

62

bios that have di�erent origins[6]. If this happens, the token count for one of
the queues is incorrectly docked for another process's request. To ameliorate
this APEX is liberal in allowing requests that exceed the current amount of
remaining tokens a queue has, providing the queue has any tokens. More on
this later.

After being checked for possible merges, a request is sent to the scheduler
for processing. This is done with apex_add_request. This function �rst
retrieves the correct queue for the request. If the queue is waiting for a
new request, it is activated by appending it to the list of active queues that
corresponds to its priority class and removing it from the waiting list.

If the queue is a resource reserving queue, then the APEX elevator data's
build-up must be updates before the request is appended to the queue's
request lists. The buildup is counted up and checked against the threshold.
If dispatch has been previously delayed and this request brings the buildup
over the threshold, then the batch delay timer is deleted and a dispatch is
scheduled by calling apex_schedule_dispatch. This function calls upon the
block layer to perform an unplugging of the relevant block device. This is
not done immediately, but instead the next time the kernel block I/O thread
is scheduled for CPU time.

Finally, the amount of pending requests is incremented, and the request is
added to the queue's SCAN sorted list of requests and to the chronologically
ordered FIFO queue. Once the request is added, it is ready for dispatch.

The call graph for APEX's batch building functions can be seen in �g-
ure 6.6 on the next page. When the device driver is unplugged by the kernel,
as described in 5.3.4 on page 31, the driver makes a call to elv_next_request
which returns a request from the elevator queue for dispatch. If the eleva-
tor queue is empty, it performs a call to __elv_next_request to notify the
scheduler to insert requests into the elevator queue. For APEX, the function
that is called is apex_dispatch, which returns the number of requests that
were sent to the elevator queue.

When called, apex_dispatch takes two arguments, the request_queue_t
for the device and the force �ag. The force �ag is used to indicate forced dis-
patch, in which case the scheduler may not defer dispatch. This is primarily
used to drain queues when unmounting a device or switching schedulers. If
the force �ag is active, APEX calls apex_force_dispatch which drains all
queues without regard to service classes or tokens. Dispatch of requests is
detailed below.

If a batch is already active, a work-conserving phase is considered. The
deadline of the batch must not have passed and there must not be re-
source reserving queues waiting for dispatch. If the conditions are met,
APEX performs a work-conserving phase, which is handled by __apex_wc_

63

Figure 6.6: The call graph for dispatching requests on APEX.

64

dispatch. The work-conserving phase is performed over multiple calls to
apex_dispatch so that the time spent is as accurate as possible. To facilitate
this accuracy, the remaining round length is recalculated for each request.
The actual phase is performed by iterating over all the active queue lists,
calling apex_queue_wc_dispatch to dispatch a single request independent
of tokens. The remaining round length is decremented by twice the request's
calculated cost. Twice the calculated cost is used to guarantee that the work-
conserving phase will �nish before predicted. The exact implementation of
the work-conserving phase is up to policy, and can be changed. As an ex-
ample, to compensate for the lack of correct deadlines the implementation
aggressively discriminates in favor of reserved resource queues.

If a batch is not already active, apex_dispatch checks whether it is ready
to begin a new batch by calling apex_ready. If there is some build-up and
the delay �ag is not active, the batch delay timer is enabled in anticipation of
more resource reserving requests arriving. Otherwise, the state is updated to
re�ect that a batch is active and being built. If buildup is over the threshold
and the batch delay timer had been activated, it is now deactivated.

When performing batch building, the APEX dispatch function begins
by calculating the controlling deadline. This is done in apex_find_next_

deadline. This function calculates the default deadline, then iterates over
all the active reservation priority queues checking if they have any controlling
requests with deadlines prior to this. If they do, this deadline becomes the
controlling deadline so long as it occurs after the minimum deadline. If it
does not, it is ignored. This is a policy decision that depends on many factors.
Another possible policy is to use the minimum deadline so that the already
late request is delayed as little as possible. Since the implementation focuses
on �rm deadlines, it follows that being late has lowered the value of the
request and the scheduler should instead seek to improve overall performance
by dispatching more requests in the batch. This leads to an improvement
in overall performance that helps �ll bu�ers which decrease the impact of
missed deadlines. While this implementation is O(n), where n is the number
of resource reserving queues, a priority queue can be maintained to lower this
cost if the CPU overhead becomes a factor.

Once apex_dispatch has the controlling deadline is found, the round
length in milliseconds is calculated. Milliseconds are used because they guar-
antee better granularity than ji�es, which may rate from 24 to over 1000 per
second. The batch building is then done by calling __apex_dispatch.

The �rst phase of batch building is performed by iterating over the list of
active reservation priority queues and calling apex_queue_token_dispatch

to perform a token-limited dispatch on that queue. The token-limited dis-
patch function �rst updates the queue's token count and then iteratively

65

dispatches requests from the queue while deducting tokens. The remaining
round length is also decremented with the estimated cost of the request (cor-
responding to t_es in the original presentation of APEX). The token-limited
dispatcher is done processing a queue when either the remaining round length
falls to 0 or below, the queue is empty or the queue runs out of tokens. As
mentioned above, APEX allows the queue to dispatch single requests which
would take it to below 0 tokens. This is both for the previously mentioned
reason of merges, and to ensure that queues with low token allotments are
allowed to dispatch requests larger than their bucket depth. If this has oc-
curred, the batch builder resets the queue's token count to 0.

There are two alternatives to resetting the the token count to 0 when a
queue acquires a token de�cit. One is to deny it service, which is imprac-
tical since the bucket depth may not be enough to handle the request. In
this situation the resource reserving queue degenerates to being serviced in
the work-conserving phase. The other is to allow the queue to accumulate
negative token counts, giving it a temporarily increased bucket depth and
corresponding number of tokens in advance to cover the cost of the request.
This is problematic since the excess of the request might represent a par-
tial read-ahead or wrong read-ahead. In the former case, the advantage of
pre-spending the tokens is lost as the process waits for the next request to
dispatch while the queue accumulates positive tokens again. In the case of a
read-ahead miss, the process never sees the data that the queue paid for and
again experiences a delay while the queue accumulates tokens.

The dispatch of a single request is done by apex_dispatch_insert, which
�rst calls apex_remove_request to remove the request from all active data
structures and, if the request is from a resource reserving queue, decrements
the cost from the build-up. The request is then sent to elv_dispatch_sort,
which inserts the request into the driver's dispatch queue in one-way elevator
sorted order.

If __apex_dispatch does not dispatch any requests, which may happen if
no resource reserving queues have tokens or if there are no pending resource
reserved requests, then a work-conserving phase is immediately run instead.

There is an inherent round robin nature in the way the implementation of
APEX builds batches. When a queue is activated, it is appended to the tail
of the active list for its class. When a batch is built, it is always built from
the beginning of the active list. When a queue is empty, it is removed from
the active list. This way, queues are guaranteed to be serviced eventually.

When the device driver is completely �nished with a request, apex_

completed_request is called. Currently, this function only decrements the
elevator data's count of requests being dispatched. However, it is conceiv-
able that this function could also kick start batch building when it sees the

66

number of dispatched requests is falling below a given threshold. This would
more correctly follow the behavior speci�ed in the original presentation of
APEX. Since the delay in building the batch is negligible compared to the
execution of the batch, this is not a major concern during testing. It is also
worth noting that the synchronous nature of read requests might adversely
come into play in this situation. There might be unnecessary delays for pro-
cesses that have not received the result of their last read request until after
the current batch is completely served. In this case, the process is not be
able to issue new read requests until after the batch is begun, when it is too
late.

6.2.1 Functions for Handling Data Structures

Since APEX I/O contexts and queues are dynamically allocated, constructor
and destructor-like functions exist to handle them. Like many similar kernel
constructs, APEX I/O contexts and queues are generated transparently on
demand. The following is a process very similar to that performed in the
other Linux schedulers that implement their own I/O contexts or their own
queues (that is, the CFQ and Anticipatory schedulers). The call graph for
allocation of APEX I/O contexts and queues can be seen in �gure 6.5 on
page 62.

APEX I/O contexts are generated by the apex_get_io_context func-
tion. This function �rst uses get_io_context to retrieve the current generic
I/O context. If no such I/O context exists, one is be generated for the
current context transparently. If the current I/O context does not have a
valid APEX I/O context, which is always the case the �rst time the current
I/O context is retrieved by the APEX scheduler, one needs to be allocated.
The allocation function, apex_alloc_io_context, allocates a new APEX
I/O context from a cache2. If the memory is successfully allocated, it is ze-
roed out (to prevent accidental access of stale data) and key data is stored.
Speci�cally, a link to the APEX elevator data, and pointers to the functions
to free and exit the APEX I/O context. The list head is also initialized.
The destructor and exit function pointers for the APEX I/O context are set
to apex_free_io_context and apex_exit_io_context respectively. The
apex_get_io_context then sets the appropriate values for the APEX I/O
context and adds it to the APEX elevator data's list of APEX I/O contexts.
APEX I/O contexts are not reference counted, but are instead destructed
when the process exits.

2The kernel has a special cache subsystem for structures that are frequently allocated
and deallocated. For APEX these caches are allocated as part of the module initiation.

67

If the allocation was successful, the reciprocal links are stored between the
APEX I/O context and generic I/O context. The I/O context is registered
as having its I/O priority changed and the APEX I/O context is added to
the list of contexts held by the elevator data. Finally, a check is performed
to see if the �ag indicating that the I/O priority of the generic I/O context
has changed, as determined by the ioprio_changed member variable. If so,
apex_ioc_set_ioprio is called to set the priority changed �ag of APEX I/O
context's queue. The apex_ioc_set_ioprio function takes the generic I/O
context as argument, and passes the APEX I/O context to apex_changed_

ioprio to perform the actual marking of the �ag. If support for multiple
block devices were added, the apex_ioc_set_ioprio function would need to
iterate over the list of device speci�c APEX I/O contexts, but currently there
is only one APEX I/O context per generic I/O context, so this is simpli�ed.
Since the priority is set to have been changed explicitly when the context is
newly allocated, this test is always be triggered by new contexts.

APEX queues are allocated the �rst time a request is allocated in a given
context. The allocation is done in apex_alloc_queue. In this function,
memory is requested from the queue memory cache. If allocation succeeds,
the memory is reset to prevent stale data from causing unde�ned behavior.
The queue has various queues, which are all initialized. The link to the queue
in the APEX I/O context is updated, as is the link to the elevator data in
the new queue. The queue is �agged as best e�ort, and marked as having
had its priority changed. The queue is added to the waiting list.

The �nal action of queue allocation is a call to apex_init_aq_prio to
update the I/O priority for the queue. It is important that this function
is called in the context of the process that issued the I/O request, so that
the priority for the queue is set correctly. Therefore, it is only called from
apex_set_request, either directly or via the queue allocation function. It
is called directly each time a new request arrives to ensure that it is treated
correctly.

The apex_init_aq_prio function begins by checking whether the �ag
indicating that the queue has changed priority is set. If it is not set, it
returns immediately. It then copies the value of the new priority from the task
structure for the current task. Once this is done, it clears all the class �ags
for the queue. The function then updates the class speci�c data, depending
on the new class of the queue. If the queue is now a best e�ort queue, the
class �ag is updated and the queue's bandwidth is set to 0. If it is a resource
reserving queue, the class �ag is updated and the queue's deadline is set.

The bandwidth and bucket depth for the queue are updated by the
apex_update_bandwidth function. This function recalculates the available
bandwidth, and sets the queue's bandwidth and bucket depth. It also con-

68

verts the bandwidth to token rate, which is the number of ji�es between
each new token arrival for the queue.

Control then returns to apex_init_aq_prio. If the queue is active, it is
moved from its old active list to the new class's active list. Finally, the �ag
indicating that the priority has changed is cleared and the function returns.

6.3 The apex_ioprio_set System Call and the

APEX I/O Priority Framework

To manipulate the APEX scheduler settings from userspace, the apex_set_
ioprio system call is provided. This section covers how the system call is
added to Linux and its usage from userspace. It also shows why the existing
I/O priority framework is unsuited for use with APEX.

De�ning new system calls in Linux[24] is done by specifying a system
call number for the function and creating the function itself. The system
call number is architecture speci�c. The call is only implemented on the
i386 architecture, but other implementations would be analogous. Each ar-
chitecture speci�es a system call table, for i386 it is located in arch/i386/

kernel/syscall_table.S3. An excerpt from this �le is seen in �gure 6.7 on
the following page. The entry speci�es the name of the system call, which
is pre�xed by `sys_' as is convention. The system call number is implicit in
the placement. The call number is denoted in comments alongside every 5th
system call for convenience.

The next step is to de�ne the system call number explicitly for the ar-
chitecture. This is done in the architecture speci�c version of unistd.h. An
excerpt from the i386 version of this �le can be seen in �gure 6.8 on the next
page.

Finally, the system call itself is implemented. Since the system call must
always be compiled into the kernel, it must reside in the main kernel tree.
The APEX I/O priority system calls reside in the source �le block/apex_

ioprio.c, so that it is grouped with the block device layer and scheduler
sources. To ensure that the source is compiled correctly the resulting object
�le, apex_ioprio.o, is added to the Makefile for the block/ directory as
can be seen in �gure 6.9 on page 71. This way the source �le is automatically
compiled and linked into the kernel.

The actual system call is very similar to the ioprio_set system call
implemented in fs/ioprio.c. This system call is used for controlling the
existing I/O priority framework in Linux.

3For many architectures it is located in entry.S in the correspondingly same directory.

69

ENTRY(sys_call_table)

.long sys_restart_syscall /* 0 */

.long sys_exit

.long sys_fork

.long sys_read

.long sys_write

.long sys_open /* 5 */

. . .

.long sys_tee /* 315 */

.long sys_vmsplice

.long sys_move_pages

.long sys_getcpu

.long sys_epoll_pwait

.long sys_apex_ioprio_set /* 320 */

Figure 6.7: An excerpt from the i386 system call table, as found in arch/

i386/kernel/syscall_table.S. The new APEX I/O priority system call
is at the bottom with system call number 320.

#define __NR_restart_syscall 0

#define __NR_exit 1

#define __NR_fork 2

#define __NR_read 3

#define __NR_write 4

#define __NR_open 5

. . .

#define __NR_tee 315

#define __NR_vmsplice 316

#define __NR_move_pages 317

#define __NR_getcpu 318

#define __NR_epoll_pwait 319

#define __NR_apex_ioprio_set 320

Figure 6.8: An excerpt from the i386 system call numbering, as found in
include/asm-i386/unistd.h. The new APEX I/O priority system call is
at the bottom with system call number 320.

70

#

Makefile for the kernel block layer

#

obj-$(CONFIG_BLOCK) := elevator.o ll_rw_blk.o ioctl.o \

genhd.o scsi_ioctl.o

obj-y += apex_ioprio.o

obj-$(CONFIG_IOSCHED_NOOP) += noop-iosched.o

obj-$(CONFIG_IOSCHED_AS) += as-iosched.o

obj-$(CONFIG_IOSCHED_DEADLINE) += deadline-iosched.o

obj-$(CONFIG_IOSCHED_CFQ) += cfq-iosched.o

obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o

Figure 6.9: The Makefile for the kernel block layer. The apex_ioprio.c

source �le is con�gured to always be compiled.

The ioprio_set system call takes three arguments, which, who and
ioprio[12]. The which argument determines how the who argument is in-
terpreted. It can be set to specify a process ID, a process group ID or a
user ID. In the latter two cases all matching processes are modi�ed. The
ioprio parameter speci�es the scheduling class and priority that will be as-
signed to matching processes. These two are internally encoded in 16 bits
of information, with 3 set aside for class and 13 set aside for the priority
information.

The I/O priority applies for reads and synchronous write requests. Write
requests are made synchronous by passing either O_DIRECT or O_SYNC �ag
to the open system call. Asynchronous writes are issued outside the context
of the process by the pdflush daemon kernel thread and therefore process
speci�c priorities do not apply4. It also only applies to block devices using
the CFQ scheduler, since no other schedulers utilize I/O priorities.

The ioprio_set system call is divided into two functions. The wrapper
function sys_ioprio_set, which interprets the which and who, and set_

4Strictly speaking, the priorities of the pd�ush thread apply, but these are created and
destroyed dynamically, so while it is possible to set priorities for these threads, they are
not guaranteed to apply.

71

task_ioprio which sets the I/O priority for a given task5.
The wrapper function �rst extracts the class and priority from the ioprio

argument. It then checks if the calling process has high enough access to set
the real-time or idle classes. Exactly how high enough is de�ned depends on
several factors, but on a standard Linux system, this requires the process to
be owned by the superuser (root). The next step is to check the value of
which. If which designates that a single process should be adjusted, who is
either interpreted as meaning this process (for the value 0) or a process ID.
The corresponding task is looked up and if it is valid, set_task_ioprio is
called with the task and priority information as arguments.

If which is designated to mean a process group ID, a value of 0 in who

again is interpreted to mean the current process group. The function then
iterates over all tasks in that group and calls set_task_ioprio for each of
them. If who is interpreted as a user ID, a value of 0 is taken to mean the
current user. Otherwise a lookup is performed to fetch the correct user. The
function then iterates over all tasks and calls set_task_ioprio for those
owned by the given user.

The set_task_ioprio function �rst ensures that a process attempting to
modify the I/O priority for a process owned by a di�erent user is owned by
the superuser. Otherwise it returns an error value. The task is then locked,
and the member value ioprio is updated. If the task has a generic I/O
context, the ioprio_changed value is set. The rest of the update is done by
scheduler, which is covered in 6.2.1 on page 67.

It also worth noting that the Linux I/O priority framework supports
inheritance of classes and priorities. When a process is cloned or forked, the
child maintains the same class and priority as the parent.

The apex_ioprio_set system call is similar to the ioprio_set call that
it is divided into the same two parts. The APEX I/O priority framework is
also implemented by adding new �elds to the task structure. Since this is the
only structure that is guaranteed to exist for an active process6, it is where
the information must reside for processes to be able to control the class and
suchlike of other processes.

While the general purpose I/O priority framework has obvious use for
being able to set the priorities of other processes, since it is transparent
and is thus eligible for use with any program, including those which do not
implement their own I/O priority calls. That is, the program ionice enables
the user to set the priority of other processes. The assumption here is that
the user knows best what processes require the various priorities. This also

5Threads and processes are internally known as tasks in the kernel.
6I/O contexts are not generated until a process performs explicit I/O operations.

72

allows programs without provisions for using the I/O priority framework to
use it. If a process were only to control its own I/O priority, then this
information could be stored in the I/O context.

In addition to these factors, there is one more concern when deciding how
to implement the new I/O priority framework. The old framework provides
universal priorities. No matter what block device the process uses, so long as
the device uses the CFQ scheduler, it is granted the same prioritized access.
However, APEX provisions are designed to be transaction speci�c. It does
not make sense to reserve an equal number of pages from every block device
on a system.

The current implementation functions in the same manner as the original
I/O priority framework, because of the underlying limitation that there is
only one APEX I/O priority per process. As such, there is an assumption
that APEX is only actively used for one block device per process.

The APEX I/O priority stores four pieces of information in three variables
in the task structure. The class and deadline are stored in 16 bits, with the
top 3 bits specifying the class and the bottom 13 used for the deadline. In
addition, the token rate in pages per second and maximum bucket depth in
pages are stored in separate variables.

When the relevant process is found, apex_ioprio_set calls set_task_
apex_ioprio. This function then stores the above values in the task struc-
ture's variables. It also sets the process's generic I/O context's ioprio_

changed variable. This variable forces both CFQ and APEX to reread the
priority information stored in the task structure.

Since there is no way to propagate deadlines correctly along with each
access (see 6.4.1 on the following page), the scheduler must make a general
assumption based on the process's requirements. The process therefore spec-
i�es a general deadline for its requests, and the scheduler attempts to uphold
this for each arriving request. Since neither the scheduler nor the process can
know whether the �lesystem must make preceding lookups before the actual
data is requested, this only provides a heuristic for the scheduler that helps
minimize request lateness.

6.4 Limitations in the Implementation

This section explores the limitations in the current implementation of APEX
in Linux compared to the original presentation of the scheduler. It also seeks
to justify the limitations either due to the di�culties presented by the Linux
kernel internals or due to reduced relevance compared with more important
features.

73

The di�culties in implementing the APEX scheduler as presented by
Lund[25] stem primarily from the generic nature of the Linux kernel. While
APEX is designed with the availability of a combination of userspace and
block device information in mind, this does not always translate to the low
level context of kernel I/O framework. Speci�cally, APEX is designed as part
of an MMDBMS that functions on its own partition.

The implementation does not have a queue management module. This
prevents processes from performing concurrent I/O at varying priorities.
There is no admission control, since admission control is not necessary to
test feasibility of the batch builder. There is also no low latency service
class, since this has already been implemented in CFQ.

The primary limitation of the Linux scheduling framework is that it pro-
vides much less relevant metadata for each I/O request than APEX originally
assumes to be present. Since APEX is designed to provide read and write
primitives to an MMDBMS system, and simultaneously assumes direct ac-
cess to the storage device, it is free to rede�ne system calls to require as
much or as little extra information as necessary. This is not feasible in the
Linux scheduling framework. In this context the only information provided
is the logical block address and number of sectors in the request. It is not
possible to know if the request even concerns a �le I/O operation, it may be
a memory swap operation.

The consequences of not being able to pass metadata to the scheduler
is that it cannot be made transaction aware. It is also di�cult to make
provisions for dynamic creation of queues. Instead it assumes a single queue
per process. Since process creation using the clone or fork system calls is
cheap in Linux, it is still possible for processes to make some dynamic queue
provisions in userspace. Some possible ways to implement dynamic queues
are examined in 6.4.1.

APEX achieves e�cient reads by building batches and having these sorted
in SCAN order. The system call interface provided gives processes the abil-
ity to specify service requirements, for which the scheduler provides �rm
guarantees. These guarantees are weakened by the lack of admission control.

Some �exibility is achieved through a set of per device tunable variables.
While an interface to these is not as yet written, it could feasibly be imple-
mented via a new system call interface or via the sysfs interface.

6.4.1 Multiple Queues Per Process in Linux

This section explains why it is di�cult to divide work from single processes
into separate queues on Linux and present possible solutions. The problem
is that there is very little contextual information available to the I/O sched-

74

uler. Section 5.4 on page 32, 5.3.2 on page 30 and 5.3.3 on page 31 show
that the contextual information speci�c to a request when it arrives at the
scheduler is limited. The process that issued the request and information
related to the process is visible, but it is not possible to see what �le the
request is operating on.

The struct request and struct bio objects contain no valuable infor-
mation about the context as such. However, one could conceive of a situation
in which they did, allowing the scheduler to correctly sort requests into the
correct queues. For this to be meaningful, queues would have to be created
in advance and then requests tagged in some way that the scheduler could
recognize.

Assuming that there is such a way to create and manipulate queues as
the Queue Manager in the original presentation of APEX speci�es, there are
at least two conceivable ways to convey the information of what queue a
request pertains to from userspace to the scheduler. One way would be to
create a new system call that mirrors the access functions (read and write)
and allows the user to specify which queue the access should use. However
this would require adding a parameter to several function calls, which is very
invasive, and would require rewriting the entire execution path to use special
versions of the general purpose functions.

Piggybacking the information on existing data structures, with as little
invasive change to the internal call interface as possible, would provide a less
invasive way of making queue speci�c requests. The information could then
be propagated to the struct bio when this is generated.

To do so, the information would need to be available in the two func-
tions that create struct bio instances for submission to the block device
layer, which are block_read_full_page and do_mpage_readpage. Unfor-
tunately, both block_read_full_page and mpage_readpage take only two
arguments, the page in memory to read to and the get_block_t function for
the �lesystem on the device.

Thus the information must be placed under the struct page. Placing it
directly in the struct page, which represents a physical page in memory, is
out of the question. One instance of this structure exists per physical page
of memory on the system. Increasing its size would not only increase overall
kernel memory usage, but cause additional overhead on all kernel memory
operations. The page structure has two members that are candidates for
holding this information. One is the bu�er heads that might be linked in the
private member. Unfortunately, bu�er heads are not used consistently for
I/O anymore. The only remaining candidate is the struct address_space

that maps the inode's blocks to memory.
This presents some problems. A process does not always have sole owner-

75

ship over a �le's mapping. A �le's mapping is copied from the inode's map-
ping when the process opens it. This saves memory by not duplicating the
same �le in cached memory, but it means that the struct address_space

cannot be relied upon to hold the queue data. What would happen if two
processes opened the same �le using di�erent queues? One could conjecture
that they queue with the highest priority should be used, but this presents
problems since the actual demands might be entirely di�erent. One user
might wish to copy the entire contents of the �le to a di�erent �lesystem,
whereas the other user wishes to purview the media contained in it. If the
higher priority queue is used here, the user copying the data will continu-
ally exhaust the queue's tokens, potentially causing negative impact on the
playback of the media.

Assuming the aforementioned set of system calls for manipulating and
deciding which queue to currently use. These system calls would mimic
those provided by Lund[25]. The queues would be held at the scheduler
level, with one default queue always guaranteed to exist. At this point two
alternatives present themselves. One is to add an additional system call that
manipulates which queue is currently `active' so that processes may change
the queue prior to making I/O requests.

Improved performance could be achieved by creating a specialized read
system call, which takes the normal read parameters in addition to a queue
parameter. If the queue is valid, the system call would change which queue
is active for the process, and then function as a normal call to read. Once
the call returns, the queue could be reset, depending on policy. This way
reading would still only be one system call.

Furthermore, the direct I/O execution path does provide some overlap
between process speci�c �le data structures and bio creation. Speci�cally,
direct_io_worker takes a kernel I/O control block, struct kiocb, as one
of its arguments. This is the function that constructs the struct bio objects
which are sent to the block device layer. Since the kernel I/O control block
has a link to the open �le object, an extra �eld could be created in the
struct file and struct bio that holds the queue tag for accesses to �le.
If struct bio were to include a queue tag, the scheduler would need to look
through at least some of these per request to decide which queue to place
the request in. It would then need to have some way of looking up the queue
based on that tag. Several options present themselves, such as hash tables
or sorted lists.

While few applications would require this degree of control, it is for pre-
cisely these systems that APEX is designed. It is worth noting that these
changes to the system call interface would require rewriting some parts of
these applications. The applications would need to keep a data structure

76

mapping open �le descriptors to the correct queues, so that they could ac-
tivate the right queue when accessing the corresponding �les. A di�erent
option is examined in section 6.6 on page 81.

6.4.2 Correctly Managing Admission Control

It is not possible to provide correct admission control without accessing de-
vice speci�c data structures from the I/O priority system call interface. Two
options exist. One is to design a device speci�c system call that reserves the
resources when the process begins I/O, the other is to design a device speci�c
system call that immediately reserves the desired resources. What follows is
an examination of how each of these could be implemented.

The �rst option, to create a system call that stores information about the
desired resources, but waits to reserve until the process requests I/O, mir-
rors APEX's original design. In the original presentation queues are created
with speci�c bandwidth requirements, but do not actually attempt reserve
this bandwidth until a transaction is made active on that queue. If the re-
source are not available, the transaction fails to become active and an error
is returned to the user.

To do this on Linux would require a system call to specify the resources
to be reserved when the process becomes active, and an addition to the
execution path of a read that checks whether the queue's resources can in
fact be reserved. This cannot be added to the scheduler itself. The scheduler
has four points of contact with the execution path of a synchronous request.
The �rst is when a merge is attempted, but this can be discounted since
the resources used by the merged request will be deducted from the original
owner's reservations.

The second point of contact is when get_request calls elv_may_queue.
This function can return three values, ELV_MQUEUE_MAY, ELV_MQUEUE_NO and
ELV_MQUEUE_MUST. A process can be prevented from queuing a request by re-
turning ELV_MQUEUE_NO, which causes the get_request to return a failure to
get_request_wait. In this case, a failure is not returned to the process, but
the process sleeps until requests have been served and freed. This presents
a problematic situation. Assuming there are no requests currently allocated,
and the processes that have reserved the resources do not issue any further
requests, the callback to reactivate the process will never be performed. This
situation would occur if the new process were to issue its �rst request just
after all the processes which had previously reserved resources had �nished
their I/O, but not exited yet. Once any of these processes have exited, the
resources are freed, and the new process may be able to reserve the resources
it requires, but it will not be activated until an I/O operation is completed.

77

The solution to the above problem is to add a new call to reactivate
waiting queues that is performed when reserved resources are freed. The call
would be added in the following fashion. When a process sleeps due to not
being able to allocate requests, it is placed on a wait queue. This queue is
one of two wait queues stored in the block device's request_queue_t. The
request_queue_t has an internal request_list which it uses for request
allocation. The request_list holds the two wait queues, of type wait_

queue_head_t, one for processes that are issuing a read request and one for
writes. To reactivate sleeping processes on the wait queue, a call to wake_up

is made. This function takes as its parameter the address to the wait queue
from which the process is to be awoken.

A call to wake_up would need to be made when resources are freed in the
scheduler. In APEX, this is done when the reference count of an apex_queue

falls to 0. This happens in the function apex_put_queue, which calls apex_
update_bandwidth which frees the bandwidth resources previously held by
the queue. After the resources are freed, either in apex_put_queue or apex_
update_bandwidth, a call to wake_up with the correct waiting queue as a
parameter would need to be made.

The disadvantage of this form of admission control is that the process
sleeps until the resources are available, rather than returning an error imme-
diately. This presents a problem. The program is not able to alert a user
that the desired resources were not available, thus the user experiences loss
of quality. The user loses the option to attempt to view the desired item
without reservation guarantees.

The third point of contact is when blk_alloc_request attempts to
reserve scheduler speci�c resources when allocating a struct request by
calling elv_set_request, which in turn forwards the call to the speci�c
scheduler's elevator_set_req_fn. For APEX, this function is apex_set_
request. Under the current implementation, this is where a process's queue
is �rst created. If bandwidth resource reservation were done at queue cre-
ation time one could return an error value. In this case, apex_set_request
would fail and return an error value. This would cause the same behavior
in get_request_wait as returning ELV_MQUEUE_NO from elv_may_queue. In
other words, these solutions are equivalent.

The fourth and �nal point of contact is when add_request calls __elv_
add_request. This function does not return a value, so it cannot be used to
return a negative result from the admission control mechanism.

To correctly manage admission control, a user feedback mechanism must
be provided. This mechanism would warn a program attempting to reserve
unavailable resources that an error has occurred, thus allowing the program
to take some form of action based on this.

78

Reviewing the execution path of a read request as presented in section 5.4
on page 32, any function prior to generic_file_aio_read can be used to
return an error value. After this function the execution paths of bu�ered
and unbu�ered reads diverge and do not share common functions again until
submit_bio, which does not return any value. Since generic_file_aio_

read is called after the �lesystem speci�c read function, it is not actually
guaranteed to be called. Prior to the �rst �lesystem speci�c call, there are
only two calls, vfs_read and sys_read.

In both of these the information available about the open �le is given
by the struct file object associated with the �le descriptor passed to the
sys_read call. It is possible to retrieve the request queue for the block
device the �le resides on from the information given in the struct file

object. This is done by following a series of links either from the directory
entry or the VFS mount structure.

Thus it is possible to rewrite either sys_read or vfs_read to perform
the admission control, or provide a drop-in replacement for sys_read that
performs it.

6.4.3 Low Latency Service Class

The low latency service class is provided for programs that have high levels
of user interactiveness. These programs often have low bandwidth require-
ments, submitting requests only intermittently, but due to their interactive
nature bene�t from prompt handling of these requests. The framework for a
low latency class for queues is already in place in the implementation.

The low latency class is not implemented because it does not represent
original material. Under the original presentation of APEX, low latency re-
quests are inserted into active batches when the remaining slack permits. The
CFQ scheduler's treatment of �lesystem metadata requests provides similar
provisions by preempting any active time-slice to service these.

The current APEX implementation has a queue list set aside for low
latency queues. It also silently accepts the low latency class as an I/O priority.
However, they are currently given the same treatment as best e�ort requests.

Implementing support for the low latency service class could be done as
follows. Whenever a request is added to a low latency queue with apex_add_

request, a test is performed to see if a batch is currently being dispatched.
If so, the block device driver is queried to make new calls to apex_dispatch

and a �ag is set in the APEX elevator data to indicate that the next dispatch
is reserved for low latency requests. This function would then dispatch as
many low latency requests as the batch slack provides room for.

79

6.5 Problematic Assumptions in Mixed-Media

Schedulers

The design of APEX assumes more userspace context knowledge than the
Linux kernel grants schedulers. This makes it di�cult to provide a general
purpose implementation. This section examines the problematic assumptions
and what cause them to be so.

Mixed-media schedulers are often designed to use a two-level hierarchy of
schedulers. In this hierarchy, there is the high level scheduler, which chooses
which queues to service, and the low level scheduler which chooses how to
order requests. How queues get their requests can di�er from one mixed-
media scheduler to another, but this general structure holds.

The faulty assumption is that the requests the high level tier sees corre-
spond directly to the requests made by some process. Speci�cally, in APEX's
case, that a single request represents a process's concept of a media access.
For example, a process streaming continual media might attempt a read
of 100KB for 1 second worth of video frames. Ideally, this read would be
completed before a second has passed, so they can be displayed to the user
without delay (assuming there are not any bu�ers). However, by the time the
request reaches the scheduler, the generalized subsystems have disassembled
this information and reassembled the request in other terms.

On Linux, primarily three factors contribute to this. When accessing a
�le sequentially, the kernel attempts to prefetch parts of the �le so that the
next time the process attempts to read, the data is already cached. This is a
common practice in OS kernels. Thus, a request may not be associated with
a real deadline, at least not yet. If the request is treated as if it does have
a deadline, it will incorrectly preempt other requests with lower priority. If
the request is treated as if it is not associated with a deadline, it may end
up becoming delayed so much that when the process actually does need this
data, it has to wait for the now low priority request to complete. Not only
that, but if the request is granted resources, such as tokens, without the
process ever actually making use of the data, the process will have lost the
resource to speculation.

Another problem shown in section 5.4 on page 32 is that the request
structures are created only just before they are handed to the scheduler.
This means that the only reliable timestamp is created at the bottom of the
execution path. The request might have been delayed due to having to wait
for a read it depends on. In this case the delay is not insigni�cant, and it
will not be re�ected in the timestamp given on the request structure.

In some cases read accesses absolutely must be broken up into multiple

80

parts. Block devices specify limits to the size of requests they accept. In this
case, the actual requirement is for all the requests to be completed by the
�rst deadline (which is probably later than the process actually requires).
The scheduler, however, has no way to infer this. Some of the later requests
may also depend on the earlier ones, in which case the deadline delay will
propagate.

If the deadline were correct, the scheduler could still never know whether
the requests it sees are enough to present the process with all the data it
requires by the end of that deadline. So simply �nding a way to propagate
the deadline for requests correctly is not enough.

The consequence of these problems is that mixed-media schedulers are
unable to provide certain types of deadline guarantees to programs.

6.6 Possible Improvements to the APEX Im-

plementation

While the prototype of APEX implemented as part of this work contains
many important elements from the original presentation, some improvements
speci�c to the implementation are possible. Some limitations have been ex-
amined in this chapter, but this section examines the fundamental assump-
tions made in the implementation that shape the design and how they might
be di�erent.

The assumption that APEX should be a scheduler in the same way that
CFQ or Deadline is, might be incorrect. Mixed-media schedulers are often
arranged into two-tier scheduler hierarchies, and APEX is no exception to
this. The top tier scheduler often assumes access to information that the
Linux schedulers do not have access to. While it is possible to perform
changes to the internal kernel API to pass this information down to the
lowest layer, this change is not immediately compatible with the remaining
kernel.

One other possibility is to implement a high level scheduling framework as
part of the VFS layer of the kernel. With the resource information stored at
this higher level, it is easier to implement queue management and admission
control. Queues might be designated to correspond directly to open �le
objects, in which case a high degree of transparency could be achieved.

The current implementation of APEX does not assume any di�erentiation
between synchronous and asynchronous requests, since this is not speci�ed in
the original presentation. It is clear from the previous work on I/O schedulers
in the kernel that there is bene�t from prioritizing synchronous I/O over

81

asynchronous. One possibility would be to limit dispatch of asynchronous
requests to the work-conserving phase.

The batch building phase currently dispatches all its requests immedi-
ately. Since the scheduler must wait for the block device driver to call for
dispatch, this large dispatch prevents APEX from implementing a proper low
latency service class. For a low latency service class to be possible, APEX
would need to build the SCAN sorted batches internally and then dispatch
these to the block device driver queue one at a time. This way a low latency
request that arrives after a batch is built, but before it is completely serviced,
could be inserted into the SCAN sorted batch and dispatched promptly.

Building batches internally could be used to circumvent the problems of
synchronous request arrival. An anticipation heuristic that waits only when
the controlling process has available tokens could be added to provide better
service to processes that issue more than one read-ahead worth of requests
in each I/O operation.

6.7 Summary

The implementation of APEX is done as a loadable Linux module that plugs
into the elevator object of the generic block layer. It implements several
functions and data structures to assist with its task. It has an elevator data
structure, which holds the per device variables of the scheduler, and per
process queues. It provides the block device driver with batches of requests
built after the original presentation of APEX.

To assist the scheduler in correctly judging the requirements of processes,
the apex_ioprio_set system call is provided. It allows processes to state
how long deadlines for requests should be, along with their desired bandwidth
and bucket depth for the token bucket model.

A limitation of the block device layer framework is that it is isolated from
�lesystem information, such as whether a request represents a read-ahead or
data a process is immediately interested in. It is also not informed if there are
more requests waiting to be built as part of the data the process is in. This
negates some of the advantage of APEX's batch builder. It also prevents
deadlines from work correctly when a process is interested in more than a
single request.

The problematic assumptions in the original presentation of APEX that
are not valid at the block device layer in Linux are not unique to that mixed-
media scheduler. It is common for mixed-media schedulers to assume that
they have full awareness of the extent and context of requests.

82

Chapter 7

Testing and Analysis of Results

This chapter examines how to test schedulers for the requirements as pre-
sented in chapter 3 on page 11 and shows the results of these tests. It presents
the framework for testing and examines how this a�ects the methodology.
The tests are performed in a series of scenarios, which each seeks to examine
di�erent aspects of the schedulers.

7.1 Hardware

Our tests are run on a consumer grade x86 machine. This type of hardware
is common and cheap. As a consequence it is popular in modern systems.
Where a single machine is not su�cient it is often cheaper to purchase multi-
ple x86 machines than to buy specialized hardware. Systems as comprehen-
sive as those that power the Google search engine have been built like this.
Performing the tests on general hardware also helps focus on the limitations
of the schedulers.

The hard disk drive used for testing is a Seagate Barracuda 7200.10. This

Size: 305 Gigabytes
Interface: UltraDMA5 IDE
Seek (min/avg): 0.8 / 11.0 ms
Rotational Latency: 8.3ms
Rotational speed: 7200rpm
Sustained throughput: 70MB/s

Table 7.1: Performance details for the ST3320620A model of the Seagate
7200.10 series hard disk drive[38].

83

is a modern IDE interface drive. The speci�cations can be seen in table 7.1
on the previous page.

7.2 Operating System

The tests must ensure that the kernel does not cache the drive data which
are being read when this is not appropriate. It would be appropriate in cases
where multiple processes are reading from the same streams, but it would
not be appropriate when it is cached due to having recently been created and
written to the drive. One way to clear this cache is to perform a hardware
reboot between tests. Another is to perform long sequences of reads on other
�les between writing the test data and beginning the tests.

The tests are run on the ext2 �lesystem, which is a non-journaling version
of the ext3 �lesystem. Since journaling is used when writing, the di�erence
is not expected to make an impact on the tests. The maximum �lesystem
block size for the ext2 �lesystem is 4KB. The only Linux �lesystem that is
not limited to 4KB, is XFS, which is limited to the size of a page.

The size of a disk block has been shown to a�ect both latency and
throughput[32] and the low �lesystem block size can be expected to neg-
atively impact the performance of real-time tasks by decreasing throughput.
CFQ and Anticipatory counter-act some of this by implicitly increasing the
request size through the anticipation heuristic.

7.3 Applications

This section examines the applications used for testing. It examines how
the requirements from chapter 3 on page 11 are best tested. Testing focuses
on various requirements under di�erent circumstances. In addition to using
an available application for testing disk drive performance, the speci�c na-
ture of the requirements and testing environment necessitates using custom
programs.

An existing �lesystem and hard disk drive benchmarking suite is used to
gain baseline information about the testing system and the schedulers. This
suite is known as Bonnie++1. It tests throughput for reads and writes, along
with seek times.

One of the factors that makes it di�cult to use existing test suites is
that the CFQ I/O priority interface is new and not commonly used. The
informal tests used by the kernel developers are also inappropriate, since

1http://www.coker.com.au/bonnie++/

84

they often focus on balancing reads against writes rather than mixed-media
requirements. Since the APEX I/O priority interface is entirely new it is
not used in any existing software. A custom program is provided which uses
both I/O priority systems.

To test the �ve requirements, the program runs several processes that
attempt to read large amounts of data at varying priority levels. The tests are
built around reservation based processes. To provide contention for the device
resources, several processes performing a sequence of synchronous best e�ort
requests are run. By varying the number of such processes, the schedulers's
isolation can be tested. These can also use these to hamper the kernel and
drive's caching facilities. The code for both the reservation based and best
e�ort processes are available on the appended CD.

7.3.1 Bonnie++

The program Bonnie++ tests the throughput e�ciency of each scheduler.
Bonnie++ is a �lesystem and hard disk drive benchmark suite based on
on Bonnie2. The tests of interest are the raw throughput test known as
sequential output and input. This test �rst creates several �les of a given
size, timing the bandwidth and CPU usage during writing. The second test
is the rewrite test, which reads a given amount of the �le then seeks back to
the beginning of the read, changes the data and writes the new data back to
the �le. The rewrite is measured in bandwidth per second and CPU usage.

The sequential input test is performed by using the read library function
to sequentially read the previously created �les. Again, bandwidth and CPU
usage are measured. The �nal test is random seeks, which is included for
completeness. This test runs several processes in parallel performing a large
number of lseek operations followed by reads. About 10% of the time, the
data is dirtied and written back to the �le. This test is designed to keep the
disk continually seeking and is measured in seeks per second and CPU usage.

Bonnie++ provides important data about the schedulers and the test
platform. In addition to testing the work-conserving abilities of the sched-
ulers, it gives an idea about the maximum achievable bandwidth of the device
and provides a baseline comparison of the schedulers.

2http://www.textuality.com/bonnie/

85

7.3.2 Reservation Based Reader

The reservation based processes are based on code used in SimStream3. The
reservation based processes use the relevant system calls to set appropriate
priorities. They then perform a series of reads while detailing reads that
violate a given deadline. The length of the deadline, size of each read and
priority information are all passed as arguments to the process. Two versions
of the reservation based reader are created, one for use with APEX and one
for use with CFQ. The source for these two versions is provided in the same
�le, with preprocessor variables determining which of the scheduler speci�c
code paths should be compiled. The reader takes a series of arguments, as
can be seen in table 7.2 on the next page.

After parsing and sanity checking the command-line options, the program
sets its own I/O priority. In the APEX version, this is done using the custom
apex_ioprio_set system call, as described in section 6.3 on page 69. The
class, deadline, bandwidth and max bandwidth are passed as arguments. In
the CFQ version, this is done using the ioprio_set system call. The class
and priority are passed as arguments.

The program then opens the relevant �les and enters a loop that reads the
given amount of data and tests whether this took shorter or longer than the
presented deadline. The pseudocode for this loop can be seen in �gure 7.1 on
page 88. If a deadline is violated, this is counted for later reference. When
the �le is read (in an amount speci�ed by the option size), the program
proceeds to log the number of violations, the amount of data read and the
total time it took to read. The total time is calculated from just before the
read loop is entered until just after it is completed.

When Anticipatory and Deadline run their tests, they use the CFQ ver-
sion of the program, which sets I/O priority. These schedulers ignore the
I/O priority of processes. Due to this, the terms greedy reader, rate-limiting
reader and randomly delayed reader are used to refer to the reservation based
reader for these schedulers. The name resource reserving reader is also used
interchangeably with reservation based reader. In some tests, the reservation
based reader is run without heightened priority, in which case it is referred
to as the foreground best e�ort reader.

7.3.3 Background Best E�ort Reader

The best e�ort processes read continually from a �le, with random sleep in-
tervals. These are meant to simulate varying levels of background activity.

3Original written by Erlend Birkedal, SimStream was used to test raw read response
times of Linux schedulers.

86

Long Option Short Option Description
chunksize c Size in KB that will be used to time

deadlines. Default is 512.
deadline d Time in microseconds for deadlines.

Default is 5000.
log�le l Name of �le to log results. Default is

�SimStream.log.�
size s Size in MB for the test �le. Default is

100MB.
vbr V Turn on variable bitrate �le reading.
delay D Turn on delay between calls to read.

A value of 0 indicates that the pro-
gram should read continually without
delay. A value of 1 indicates that de-
lays should ensure that the read rate is
maintained at approximately 1 chunk
per deadline. A value of 2 indicates
random delays between 0 and 1 sec-
ond.

class x IO priority class for use with APEX
or CFQ scheduler, the numerical value
might have di�erent meanings depend-
ing on the scheduler. Default is best
e�ort.

APEX Speci�c Options
bandwidth b Average bandwidth in 4KB pages, this

is the guarantee level forwarded to the
APEX scheduler. Default is 0.

maxbw m Maximum bandwidth (bucket depth)
to forward to the APEX scheduler.
Default is 0.

CFQ Speci�c Options
ioprio i IO priority internal to the CFQ class.

Table 7.2: Parameters for Reservation Based Readers

87

while(readsofar < totalsize){

start=now()

read chunksize amount of data

stop=now()

if(stop-start > deadline)

deadline violated, count up

if(not deadline violated and rate-limit delay)

wait until deadline

else if(random delay)

wait randomly between 0s and 1s

log read information

}

Figure 7.1: Pseudocode for the read loop in the reservation based reader.

Each read is 50KB. The background reader loops 10 times, each time per-
forming a read, and then performs a sleep randomly distributed between 0
and 1 second. While this load does not simulate any speci�c workload, it
places appropriate amounts of stress on the scheduler by providing bursty
intervals of requests that attempt to disturb the reserved bandwidth queues.

The best e�ort reader is also written in C, and follows a structure similar
to that of the reservation based reader albeit simpli�ed since there are much
fewer options, no special priorities and less bookkeeping.

The best e�ort reader takes three arguments. The �rst is the �le to read.
The second is a special �le the reader uses to determine whether it should
continue execution. The reader tests whether the �le exists before it enters
the read loop and continues execution only if it does. The last argument is
the name of a �le to log information to.

7.4 Test Scenarios

Our test scenarios are designed to test and compare various aspects of each
scheduler. Each scenario speci�es a given number of reservation based and
best e�ort readers, along with various arguments controlling their behavior.

To �nd appropriate con�gurations for the tests, a series of preliminary
tests are run, automatically pairing process priorities with deadlines and
varying numbers of foreground and background processes. Initial results con-
�rmed prior conclusions[25] that APEX, as a round-based scheduler, bene�ts
from long round times so that request service time can be amortized.

88

In all cases the reservation based processes are set to read �les 200MB
long. The best e�ort readers are con�gured to read 256MB long �les, starting
back at the beginning every time the �le is completely read. After best
e�ort readers are started there is a short wait to ensure that they clear the
�lesystem cache as thoroughly as possible. The length of the �le for the
reservation based processes is chosen to give them enough time to present a
representative pattern to the response times.

The schedulers tested are Anticipatory, Deadline, CFQ and APEX. The
Noop scheduler is not tested, since it is an FCFS scheduler designed for de-
vices that do not require scheduling. While neither Anticipatory and Dead-
line provide any explicit prioritization mechanisms, they are included for
comparison. Tests running the CFQ scheduler use the ioprio system call
interface to set real time readers to IOPRIO_CLASS_RT, with priority 0 (the
best priority).

All logging is done to a separate disk to avoid disturbing the results.
The standard size of a read is set to 150KB with a deadline of 1 sec-

ond, yielding a bitrate of 150KB/s. This bitrate is approximately that of
a compressed video of reasonable quality. The popular online video hosting
services YouTube4 and Google Video5 both support videos of this quality
and higher. Google Video recommends that video and audio together total
approximately 100KB/s6, while YouTube recommends MPEG4 format at a
resolution of 320x240 pixels7 and variable bitrate MP3 audio. Uncompressed
video at 320x240 pixels approximates about 235-280KB/s, depending on the
framerate. It is not unreasonable to assume a compression ratio of 2:1 or
better8

The read size of 150KB is also useful because it �ts into one read-ahead
window of maximum size, which is 256KB. This is important because of the
synchronous nature of reads and how the SCAN-based schedulers dispatch
requests. A read of more than a single read-ahead window is actually dis-
patched in multiple, synchronous requests. Thus a SCAN-based scheduler,
such as APEX or Deadline, has to perform two sweeps to satisfy the read.
Some of the tests run vary the size of the read to display the consequences
of these situations.

For each test, response time of each read is measured in userspace. While
it is possible to measure the response time in the kernel, it does not provide

4http://www.youtube.com
5http://video.google.com
6https://upload.video.google.com/video_faq.html
7http://www.youtube.com/t/help_cat05
8In fact, the Xvid FAQ claims to be able to achieve 200:1 ratio (http://www.xvid.

org/FAQ.14.0.html).

89

the same degree of useful information, since the read may not represent actual
data seen by any process (read-ahead miss) or it might be read from memory
(read-ahead hit). The response time in userspace is also more important,
since it is the endpoint for the data. With the response-times and read sizes,
the number of violated deadlines, bandwidth and other useful statistics can
be calculated.

The maximum delay is an important statistic, since it represents the
amount of bu�er space a continuous media program must �ll to enable gapless
playback. The amount of bu�ered data necessary is the maximum delay
divided by the deadline.

7.4.1 Presentation of Results

The results for the tests will be presented as a statistical analysis of the
response times of the reads, along with a statistical analysis of the bandwidths
of the processes run and graphs plotting relevant data, speci�cally response
times. The statistical analysis will include the mean, median and similar
basic statistics. These together with the graphs show the response time
patterns displayed by the various schedulers. The bandwidth measurements
will assist in gauging the throughput e�ciency of each scheduler.

The statistical analysis of the response times includes the maximum re-
sponse time and percentile of response times within the deadline. This latter
is included even in cases where best e�ort requests are measured for compar-
ison purposes.

Since most of the tests run 50 or more programs, presenting the band-
width of each process individually would require much space. Therefore,
similar statistical analyses of the bandwidths is presented. In addition, the
bandwidth of each process is summed into the aggregate bandwidth for the
related processes. This does not represent an actual throughput, since the
processes may not have �nished running at the same. The aggregate band-
width presents a comparison of the throughput e�ciency of each scheduler,
without saying anything about the maximum throughput possible.

The graphs show plots of the response time on the Y-axis and the total
response times on the X-axis. A limitation of this is that the X-axis does not
function as a correct comparison for programs that utilized di�erent delays.
It only functions as a time-line for comparison when none of the plotted
programs added delays of their own. This limitation is primarily a problem
in scenario 11, which directly compares rate-limiting delayed processes to
randomly delayed processes.

90

Scheduler APEX CFQ Ant. DL
Write bandwidth (in KB/s): 53593 55632 56441 56673
Write CPU usage: 38% 43% 44% 44%
Rewrite bandwidth (in KB/s): 20786 23610 26329 19696
Rewrite CPU usage: 12% 14% 17% 12%
Read bandwidth (in KB/s): 56114 51187 52005 56256
Read CPU usage: 14% 12% 13% 14%
Random seeks per second: 157 155.3 167.1 154.8
Random seek CPU usage: 0% 1% 1% 0%

Table 7.3: The results of Bonnie++ on each scheduler, running with 4096MB
worth of �les.

7.5 Scenario 1: Bonnie++

In this scenario, Bonnie++ is run with �les totalling 4096MB. The tests
Bonnie++ run are detailed in 7.3.1 on page 85.

This test shows the total bandwidth throughput of each scheduler. It also
shows some information about the seek behavior of each scheduler.

7.5.1 Results

The results of the tests are shown in table 7.3. The write bandwidth of each
scheduler is approximately the same, with APEX slightly below the rest. The
di�erence is under 6% from the highest result and further testing shows that
it is within the bounds of natural variance. The CPU usage during all the
write tests are comparable. This usage is dominated by the kernel's pdflush
daemon, which writes dirty pages back to disk.

The rewrite test shows slightly higher bandwidth for CFQ and Antici-
patory. The lower bandwidth for APEX can be explained by the lack of
prioritization of reads over writes. Since the prototype is not designed to
test optimization of synchronous and asynchronous commands, this is nat-
ural. The Deadline scheduler's performance can be explained by deceptive
idleness causing it to preemptively choose to write when it might be more ad-
vantageous to wait for a new read. It follows from this that the performance
by CFQ and Anticipatory is due to the use of the anticipation heuristic in
both cases. The higher CPU usage for these two is explained by the higher
bandwidth.

The read bandwidth, which is the focus of this scenario, shows that APEX
and Deadline have a slightly higher maximum read throughput than CFQ

91

Reservation based readers: 50
Read delay: None
Size of Read: 150KB
Deadline: 1000ms
Read delay: None
Background best e�ort readers: 50

Scheduler speci�c con�guration:
APEX

Bandwidth allocated (each client): 37 pages/s
Bucket depth (each client): 37 pages

Table 7.4: Scenario 2: Con�guration

and Anticipatory. This is explained by the non-work-conserving nature of the
anticipation heuristic. Like Deadline, APEX never delays calls to dispatch
requests when there are no resource reserving queues active. The CPU usage
again re�ects bandwidth.

The random seek test shows slightly higher performance for Anticipatory,
which can be explained by correct anticipation and delaying of writes. CFQ's
time-sliced nature works against it in this test.

Due to the variance in results, the benchmarks produced by Bonnie++
are used only has rough guidelines. The tests do not achieve the sustained
bandwidth reported by the manufacturer, which can be attributed to �lesys-
tem and kernel overhead.

Scenario 1 provides a best-case read throughput which further tests can
be measured against. It shows that the work-conserving nature of APEX
and Deadline give them higher potential read throughput.

7.6 Scenario 2

Scenario 2 is the �rst of a series of tests run using the reservation based
reader to test the real-time performance of each scheduler. The �rst test is
run with 50 reservation based readers without any read delay. Scenario 2
provides further insight into the fundamental behavior of each scheduler. It
also provides a baseline against which to compare the other scenarios in this
series. The con�guration details for the tests can be seen in table 7.4.

This test is run twice for CFQ, once each time with the reservation based
readers running at priorities 0 and 7. These are the highest and lowest
priorities, respectively. For real-time processes, the priorities determine how

92

Scheduler APEX CFQ pri0 CFQ pri7
Mean response time: 327922 107193 123848
Standard Deviation: 270203 949378 481472
1st Quartile response time: 434 1544 1523
Median response time: 510576 1595 1593
3rd Quartile response time: 545143 2830 2839
Minimum response time: 71 67 68
Maximum response time: 1219817 14635339 3513422
Percentile within deadline: 99.45% 98.76% 94.01%

Table 7.5: Scenario 2: Analysis of response times for APEX and CFQ (pri-
ority 0 and 7). All results except percentile in µs.

Scheduler Anticipatory Deadline
Mean response time: 128650 720495
Standard Deviation: 939101 592671
1st Quartile response time: 1539 426
Median response time: 1593 1110069
3rd Quartile response time: 2829 1209765
Minimum response time: 67 69
Maximum response time: 17020258 2700360
Percentile within deadline: 98.18% 40.35%

Table 7.6: Scenario 2: Analysis of response times for Anticipatory and Dead-
line. All results except percentile in µs.

long the allocated time-slice for the queue is. The formula for time-slice
length is given equation 5.1 on page 50. Following the description from 5.6.5
on page 50, the time-slice for priority 0 queues is calculated to be 180ms and
for priority 7 queues to be 40ms. Running scenario 2 once for each of these
priorities shows the e�ect of adjusting the length of the time-slice for each
request.

7.6.1 Results

Table 7.5 and table 7.6 show that APEX has the best results in Scenario 2 by
having the highest percentile of operations serviced within the deadline and
the lowest maximum response time. CFQ at priority 0 and Anticipatory show
similar performances, with high maximum response times, but at least 75%

93

Scheduler APEX CFQ pri0 CFQ pri7
Mean bandwidth: 456.94 1400.20 1208.61
Standard Deviation: 0.88 21.90 16.05
1st Quartile bandwidth: 456 1374 1197
Median bandwidth: 457 1402 1204
3rd Quartile bandwidth: 457 1422 1219
Minimum bandwidth: 456 1365 1190
Maximum bandwidth: 460 1432 1256
Aggregate bandwidth: 22847 70009 60430

Table 7.7: Scenario 2: Analysis of bandwidth for each resource reserving
process under APEX and CFQ (priority 0 and 7). All numbers in KB/s.

Scheduler Anticipatory Deadline
Mean bandwidth: 1168.40 208.01
Standard Deviation: 56.19 0.11
1st Quartile bandwidth: 1150 207
Median bandwidth: 1157 207
3rd Quartile bandwidth: 1170 208
Minimum bandwidth: 1137 207
Maximum bandwidth: 1528 208
Aggregate bandwidth: 58420 10400

Table 7.8: Scenario 2: Analysis of bandwidth for each resource reserving
process under Anticipatory and Deadline. All numbers in KB/s.

94

Figure 7.2: Scenario 2: Response times for all resource reserving readers
under each scheduler setting.

of operations serviced within a few milliseconds. CFQ at priority 7 maintains
fewer deadlines, but has a lower maximum response time. Deadline performs
worst, with the highest mean response and fewest deadlines maintained.

The plotted response times in �gure 7.2 show APEX to have response
times clustered around 400-600ms. The higher mean response time, but low
standard deviation shown by APEX are both due to the batching nature of
the scheduler. The greedy nature of the readers in this test ensures that
every batch is full.

Both priority settings of the CFQ scheduler show similar mean delay,
but higher standard deviation for priority 0. Comparing the two in �gure 7.2
shows that both tests display some requests with exceptionally high response
times, but that these are higher for the priority 0 test. This is explained by
the time-sliced nature of the CFQ scheduler. When running with priority 0,
the processes are allocated longer time-slices, giving them longer exclusive
access to the device, which the greedy nature of the reader con�guration in
this scenario ensures. The maximum delay displayed is the delay each process
experiences while the other 49 real-time processes are being serviced. This is
easily calculated. Since the time-slice is 180ms for each priority 0 process, a
round of 50 processes with take 9s to complete. This �ts very well with the

95

plotted points for the CFQ priority 0 test.
In the priority 7 test, the processes are allocated shorter time-slices, which

translates to shorter delays for the other processes. However, the processes
must stop and wait for the remaining processes more often. This is also
visible in percentile of requests that maintained the desired deadline. Here
the priority 0 processes maintained the deadline for more requests. Given
that the time-slice is 40ms for each priority 7 queue, this gives about 2s for
a complete round. Again, the cluster of points plotted around 2s �t.

The Anticipatory scheduler provides a low mean response time, but at
the cost of the longest delays. This can be explained by the anticipation
heuristic, which will strongly favor continued service of each process, since
they perform consistently sequential accesses with low `think time'. This
situation is similar to that under CFQ, but the Anticipatory scheduler does
not have the time-slicing provisions to cut o� this exclusive access. Thus the
maximum response times for Anticipatory are scattered around 6-8s

For both CFQ and Anticipatory, most (at least 75%) of the requests are
serviced in approximately 3ms or less. This is explained by the anticipation
heuristic. Each process experiences very low response time for most of its
requests, due to the greedy nature of the resource reserving reader in this
scenario. The scheduler continually rewards the process for promptly issuing
new requests each time previous requests have been serviced.

The response time for the �rst quartile of requests is much lower for APEX
and Deadline than the other schedulers. Response time as low as 426µs indi-
cates a bu�ered read. By not implementing an anticipation heuristic, APEX
and Deadline enable the �lesystem to perform more read-ahead operations,
resulting in more cache hits. During a series of anticipation reads, no other
process is given any access to the device, preventing them from performing
any action. During batched dispatch, �lesystem read-ahead commands for
many processes can be added at the same time.

Table 7.7 on page 94 and table 7.8 on page 94 show the bandwidth
granted each resource reserving process run. APEX provides approximately
equal amounts of bandwidth to each process. This is a consequence of the
round based nature of the scheduler. Since each process has the same to-
ken rate, they are granted the same share of the token-based batch building
phase. In addition, the work-conserving phase dispatches equal amounts of
requests from each queue until the expected round length is met. The round
based, scanning nature of Deadline gives it similar performance characteris-
tics, but with worse bandwidth, since it shares the bandwidth equally with
the background best e�ort readers.

The increased exclusive access provided by CFQ at priority 0 gives it
the best mean bandwidth. By avoiding seeks, the CFQ scheduler maximizes

96

the bandwidth potential of the device. The cost of this is the long response
times. CFQ at priority 7 provides high bandwidth throughput as well, but
lower than priority 0 since it seeks to satisfy other processes's requests more
often. The variation in both these cases is down to which processes complete
I/O �rst.

The bandwidth granted by Anticipatory varies more than the other sched-
ulers. The processes with most bandwidth are scheduled more often than the
remaining processes. Since Anticipatory chooses the next request by SCAN
or FIFO order when it ends anticipation, the process chosen will be biased
by the positioning on disk or request arrival.

CFQ and Anticipatory provide much better throughput than the scan-
ning schedulers. The background best e�ort requests are not counted in the
bandwidth overviews, but both CFQ and APEX completely starved the back-
ground best e�ort readers. Despite this, Anticipatory showed better through-
put for the greedy readers without any prioritization framework. This is due
to the implicit prioritization of greedy requests, since they are rewarded by
the scheduler when anticipation waits promptly receive new requests. The
improved throughput comes at the cost of the higher maximum response
time.

Disks with higher rotation rates or faster seeks will provide overall lower
response times for APEX and Deadline by increasing throughput or decreas-
ing rotational delay and seek time. The maximum delay of CFQ and An-
ticipatory would not be a�ected by this, since this is not determined by
throughput or seek time. Increased rotation rates would increase through-
put, which would provide better service to each process for the duration of it's
time-slice or exclusive access to the Anticipatory scheduler. Since CFQ and
Anticipatory both use the anticipation heuristic to avoid seeking whenever
possible, they would not bene�t as much from faster seek times.

The performance of CFQ and Anticipatory in this test is highly depen-
dant on the sequential and defragmented nature of the �les being read. Frag-
mented �les will cause the anticipation heuristic to anticipate new reads less
often leading to more seeking. It is not unreasonable to assume that �les
are defragmented on a reasonably static �lesystem, but for active �lesystems
with many small �les that are often appended to, this is not reasonable.

Scenario 2 shows that the scanning schedulers, APEX and Deadline, pro-
vide more reliable service in high contention situations than the anticipating
schedulers. CFQ and Anticipatory show themselves to be better in situa-
tions with short, bursty tra�c. This is not suited for serving large, high
bandwidth multimedia streams or �le servers, but better suited for interac-
tive situations, such as web servers or games. Both CFQ and APEX showed
they could maintain deadlines for a large number of streams, but CFQ occa-

97

Reservation based readers: 50
Read delay: None
Size of Read: 150KB
Deadline: 1000ms
Read delay: None
Background best e�ort readers: 100

Scheduler speci�c con�guration:
APEX

Bandwidth allocated (each client): 37 pages/s
Bucket depth (each client): 37 pages

Table 7.9: Scenario 3: Con�guration

sionally provided very high delays when time-slices ran out. For CFQ priority
7, which is the lowest priority, actually provided better amortized service by
seeking more often than priority 0. Anticipatory gives implicit priority to
processes that deliver continual streams of synchronous requests.

7.7 Scenario 3

Scenario 3 shows the consequences of exhausting the available resources for
the allocation of new requests. The request queue structure in the Linux
block device layer speci�es a limit to the number of requests that can be
concurrently allocated, and when that limit is met processes must wait for
further dispatches before they may queue requests. Scenario 3 shows the
consequence of reaching that limit. The con�guration of the scenario is sim-
ilar to that of scenario 2, except that the number of background readers is
increased to reach the default limit of 128 active requests. The con�guration
is shown in table 7.9.

The request limit is important because it shows how the performance of
the schedulers changes when the system is put under pressure. The request
limit is typically low to prevent situations where swapping must be done to
perform I/O, which would cause much worse deterioration in performance.

7.7.1 Results

The results for scenario 3 are shown in table 7.10 on the facing page. APEX
performs slightly worse than in scenario 2, with higher mean response times
and larger variability. More deadlines are violated and the maximum re-

98

Scheduler APEX CFQ pri0 Antic. DL
Mean response time: 568389 182186 246830 2008861
Standard Deviation: 319660 543430 956127 713584
1st Quartile response time: 292772 1721 1773 1633274
Median response time: 634301 1790 1845 1750012
3rd Quartile response time: 725856 2819 2964 1857902
Minimum response time: 74 68 67 75
Maximum response time: 2243521 3014956 11550718 5605657
Percentile within deadline: 91.44% 90.14% 93.64% 0.09%

Table 7.10: Scenario 3: Analysis of response times. All results except per-
centile in µs.

Scheduler APEX CFQ pri0 Antic. DL
Mean bandwidth: 263.82 823.05 636.97 74.63
Standard Deviation: 1.56 4.73 142.29 0.12
1st Quartile bandwidth: 262 819 503 74
Median bandwidth: 263 822 584 74
3rd Quartile bandwidth: 264 825 772 74
Minimum bandwidth: 262 819 477 74
Maximum bandwidth: 270 839 890 74
Aggregate bandwidth: 13190 41152 31848 3731

Table 7.11: Scenario 3: Analysis of bandwidth for each resource reserving
process. All numbers in KB/s.

99

Figure 7.3: Scenario 3: Response times for all resource reserving readers
under each scheduler setting.

sponse time is increased. For CFQ, the maximum response time has dropped,
re�ecting the performance of the priority 7 test in scenario 2. Anticipatory
has a higher mean response time than in scenario 2, but a lower maximum
with more deadlines violated. This change is similar to that exhibited by
CFQ. Deadline shows a higher mean response time and higher max, with
almost no deadlines upheld.

The results in scenario 3 re�ect in part a limitation provided by the block
device layer. Both CFQ and APEX changed performance pro�le, without
providing better service to the background best e�ort readers. Both CFQ
and APEX starved the background best e�ort readers while the resource
reserving processes ran in both scenario 2 and 3. However, in scenario 3 the
number of requests in the scheduler would regularly reach the limit imposed
by the block device layer. Each request queue speci�es a maximum number of
requests that it will hold. While the scheduler may override this by returning
a special value to elv_may_queue, it is not recommended to do this without
reason. CFQ does so if the concerned request is associated with a queue
anticipating new requests.

The default maximum number of requests a request queue allows is 128.
Since this test runs 150 processes all attempting synchronous I/O, this num-

100

ber will quickly be met. Since the requests are under the size of a read-ahead
window (256KB), only one request will be queued per process. Since CFQ
and APEX starve the background best e�ort readers, they will continually
hold 100 of these requests. APEX does not have any special behavior imple-
mented for full request queues, so it will be forced to dispatch suboptimal
batches. The delay for the requests causes the deadline to run down before
the scheduler can see the request. This causes batches to contain fewer re-
quests, which prevents APEX from e�ciently amortizing the request service
time.

For CFQ, the results are di�erent. This is the result of two factors.
When a process is denied resources when attempting to allocate a request, it
sleeps until resources are made available. When it is awoken, the block device
layer gives it special access to circumvent limitations for 20ms or 32 requests,
whichever comes �rst. This works in synergy with CFQ's time-slicing system.
However, instead of being given 180ms, the block device layer's limit of 20ms
to circumvent the request limit controls the length of the time-slices. This
causes much more seeking and performance degenerates accordingly. While
the single highest delay for CFQ is approximately 3s, there is a longer string
of response times around 2s that are not visible under the Deadline response
times in �gure 7.3 on the preceding page.

For Anticipatory and Deadline, the situation is di�erent since they do not
starve the background best e�ort readers in the same way. For Anticipatory,
the resource limit causes the anticipation heuristic to fail more often, as
background requests with random delays accumulate while the anticipating
processes dominate I/O, locking out other greedy readers.

In �gure 7.3 on the facing page, Deadline shows two separate batches,
clustered just under 2s and 4s respectively. This re�ects the resource limit
preventing Deadline from �lling e�ectively �lling the SCAN queue.

Table 7.11 on page 99 shows the bandwidth of all the schedulers is
adversely a�ected by the resource limit. This is due to the excessive seeking
caused by the request queue being �lled.

Both CFQ and APEX experienced adverse e�ects from the lack of re-
sources available in this test. Both these schedulers maintained their priori-
tization policies despite the lack of resources. When further tests demand it,
the maximum number of requests is increased through the sysfs interface.

7.8 Scenario 4

Scenario 4 tests how each scheduler handles I/O access consistently broken
into multiple request objects. The maximum request size of the disk drive

101

Reservation based readers: 35
Size of Read: 600KB
Deadline: 1000ms
Read delay: None
Background best e�ort readers: 35

Scheduler speci�c con�guration:
APEX

Bandwidth allocated (each client): 150 pages/s
Bucket depth (each client): 150 pages

Table 7.12: Scenario 4: Con�guration

Scheduler APEX CFQ pri0 Antic. DL
Mean response time: 856573 300307 351074 1894232
Standard Deviation: 192274 1297773 1242389 435029
1st Quartile response time: 705568 7676 7673 1546326
Median response time: 732186 8642 8643 1672597
3rd Quartile response time: 1050084 8957 8970 2290977
Minimum response time: 387 1520 405 382
Maximum response time: 1469137 13076693 9048994 3331697
Percentile within deadline: 62.11% 95.06% 92.83% 0.28%

Table 7.13: Scenario 4: Analysis of response times. All results except per-
centile in µs.

used is 512KB9, thus read requests of 600KB must be broken into multiple
struct request instances to be serviced. While two requests would be su�-
cient, the limit on the read-ahead window more commonly breaks operations
into requests representing 256KB.

Since admission control is not implemented, the number of readers is re-
duced so that APEX is able to maintain the necessary throughput per process
to meet the bandwidth requirement. Thirty-�ve resource reserving processes
was found to be an appropriate number for this test, with an equal number
of background best e�ort readers. The con�guration is shown in table 7.12.

102

Scheduler APEX CFQ pri0 Antic. DL
Mean bandwidth: 697.96 1989.24 1704.44 315.99
Standard Deviation: 1.19 26.74 59.83 0.23
1st Quartile bandwidth: 696 1969 1678 316
Median bandwidth: 698 1988 1692 316
3rd Quartile bandwidth: 698 2007 1706 316
Minimum bandwidth: 696 1950 1665 315
Maximum bandwidth: 698 2089 1988 316
Aggregate bandwidth: 24428 69623 59655 11059

Table 7.14: Scenario 4: Analysis of bandwidth for each resource reserving
process. All numbers in KB/s.

Figure 7.4: Scenario 4: Response times for all resource reserving readers
under each scheduler setting.

103

7.8.1 Results

As section 6.5 on page 80 predicts, APEX has di�culties coping with I/O
operations broken into multiple request objects. Table 7.13 on page 102 shows
that the mean response time is close to the deadline, at over 850ms, and only
around 60% of the deadlines are maintained. CFQ and Anticipatory maintain
their performance from previous tests. Deadline su�ers similarly to APEX,
only worse, since it is unable to prioritize.

It is visible by the clustering around 700ms and just over 1s in �gure 7.4
on the previous page that APEX services operations in two or three rounds.
Since each round represents approximately 256KB read for each process,
no operations will be completed after only a single round, but if there is
some cached data, two rounds may be enough. This is shown by the clus-
ter of responses at approximately 700ms. This is a disadvantage of APEX's
scanning nature in the context of the Linux kernel. Since read-aheads are
delivered synchronously, it cannot correctly amortize the performance of re-
quests across single operations. That is, a small number of processes that
issue large requests cause more seeking than a high number of processes that
issue small requests.

Since APEX cannot di�erentiate between the �rst and �nal request in
an I/O operation, it fails to correctly prioritize. The implemented work-
conserving policy attempts to compensate for this by not running a work-
conserving phase if there are pending resource reserved requests. This func-
tions well for the resource reserving requests since they can dispatch full
requests if they only have some tokens. While reworking these policies is
possible, they will not change the fundamental problem. One could prevent
resource reserved queues from dispatching without enough tokens, and com-
pensate by running work-conserving phases to read from resource reserved
queues �rst, but this would not improve latency.

CFQ and Anticipatory both take advantage of the sequential nature of
arriving requests, as they did in scenario 2. For CFQ, the cluster of long
delays is just over 6s, which �ts with the calculation of 180ms per process, as
34∗180ms = 6120ms. The clustering of high response times for Anticipatory
is correspondingly lowered.

Deadline gives poor performance in this test, maintaining almost no dead-
lines. Since it is a scanning scheduler, it su�ers the same problem as APEX,
that each operation takes multiple rounds to complete. This is exacerbated
by the lack of prioritization, which causes the background best e�ort readers
to prolong the rounds.

9This is reported at boot-time by the kernel hardware detection probe, and is available
at runtime via the sysfs interface.

104

Table 7.14 on page 103 shows that APEX delivers about 15% more band-
width to each process than it requires to maintain the desired throughput.
The aggregate bandwidth is slightly higher than scenario 2, which can be
explained by each process necessitating dispatch of requests to the drive for
every operation. This causes higher throughput by dispatching more requests
per scan round.

CFQ and Anticipatory maintain the approximate bandwidth throughput
from scenario 2. CFQ is distributes the bandwidth more evenly than Antic-
ipatory, since it has explicit criteria for fairness in the time-slicing system.
While both CFQ and APEX starve their background readers completely, An-
ticipatory maintains a high throughput while providing intermittent, albeit
very service to these. Thus the aggregate bandwidth reported for APEX and
CFQ represents all the bandwidth usage during the test, while Anticipatory
and Deadline are slightly under reported. Despite this, Anticipatory records
over twice the bandwidth used by APEX. This is due to the anticipation
heuristic allowing the scheduler to avoid seeking.

While the aggregate bandwidth is representative, it does not represent
any single achieved throughput, since the time the tests are recorded over
may vary. That is, some processes �nishing earlier than others will record
higher bandwidth, but the total bandwidth for the period is determined by
the process that took the longest.

The limitations provided by the read-ahead model in Linux prevents the
scanning schedulers from correctly amortizing I/O operations over 256KB in
size. CFQ and Anticipatory are designed with this in mind and therefore
perform similarly when dispatching I/O operations above and below this
limit.

7.9 Scenario 5

The goal of scenario 5 is to see how the schedulers perform when increasing
the size of each read and correspondingly increasing the deadline. The band-
width required is maintained. Table 7.15 on the next page shows the size of
the read and deadline have been doubled compared to scenario 1. The other
settings are maintained.

7.9.1 Results

The analysis of the results from scenario 5 are shown in table 7.16 on the
following page. APEX performs well, maintaining all the deadlines. CFQ
performs similar to scenario 2, with high maximum response times and most

105

Reservation based readers: 50
Size of Read: 300KB
Deadline: 2000ms
Read delay: None
Background best e�ort readers: 50

Scheduler speci�c con�guration:
APEX

Bandwidth allocated (each client): 37 pages/s
Bucket depth (each client): 37 pages

Table 7.15: Scenario 5: Con�guration

Scheduler APEX CFQ pri0 Antic. DL
Mean response time: 669103 215032 259958 1465095
Standard Deviation: 231610 1339237 1326322 504813
1st Quartile response time: 537289 3191 3192 1177017
Median response time: 562120 4325 4319 1243520
3rd Quartile response time: 610836 4624 4690 1311398
Minimum response time: 395 1561 431 391
Maximum response time: 1699660 20018519 18071166 3657985
Percentile within deadline: 100.00% 97.53% 96.40% 78.04%

Table 7.16: Scenario 5: Analysis of response times. All results except per-
centile in µs.

Scheduler APEX CFQ pri0 Antic. DL
Mean bandwidth: 447.95 1393.55 1157.31 204.71
Standard Deviation: 0.93 22.61 39.83 0.22
1st Quartile bandwidth: 447 1374 1137 204
Median bandwidth: 447 1393 1150 204
3rd Quartile bandwidth: 449 1412 1157 204
Minimum bandwidth: 447 1365 1125 204
Maximum bandwidth: 451 1432 1402 205
Aggregate bandwidth: 22397 69677 57865 10235

Table 7.17: Scenario 5: Analysis of bandwidth for each resource reserving
process. All numbers in KB/s.

106

Figure 7.5: Scenario 5: Response times for all resource reserving readers
under each scheduler setting.

requests serviced within a few milliseconds. The same holds for Anticipatory.
Deadline copes better with longer deadlines, maintaining almost 80% of the
deadlines.

APEX is able to maintain the deadline for all the requests because it can
perform the two scan sweeps needed within 2s. The I/O operations in this
test require two sweeps to service in the worst case because they are broken
into two requests. The maximum size of a read-ahead is 256KB, which is not
enough to �t the whole 300KB for the read. In most cases, parts of the read
will already be cached, which is shown by the thick clustering of response
times around 500-600ms in �gure 7.5. There is another clustering around 1s,
which is partially hidden under the Deadline response times. This clustering
is formed by operations that required two requests to service.

CFQ again shows the delay to be determined by the sum of time-slices
for the remaining processes in the same class and priority. The median
response time is, however, slightly longer than in scenario 2, re�ecting the
longer reads. Anticipatory shows similar results to CFQ. The clustering of
maximum response times is around 6-8s, which is the same as in scenario 2.
Again Anticipatory shows that it implicitly prioritizes greedy readers.

Deadline shows better results in scenario 5 than in scenario 2, primarily

107

Reservation based readers: 50
Size of Read: 75KB
Deadline: 500ms
Read delay: None
Background best e�ort readers: 50

Scheduler speci�c con�guration:
APEX

Bandwidth allocated (each client): 36 pages/s
Bucket depth (each client): 36 pages

Table 7.18: Scenario 6: Con�guration

due to the longer deadline. Figure 7.5 on the preceding page shows that
response times for Deadline are separated into two groups. The lower group,
around the 1s mark, shows the operations which are partially cached from
previous rounds. The clustering just over 2s shows the results which required
two rounds to service. The rounds are both longer than those exhibited by
APEX because Deadline cannot separate out the best e�ort requests from
the background readers.

The bandwidth shown in table 7.17 on page 106 is similar to the band-
width from scenario 2 for all four schedulers.

Scenario 5 supports the conclusions from scenario 2. The anticipation-
based schedulers provide better throughput than the scanning schedulers,
but this comes at the cost of very high maximum response times. The scan-
ning schedulers bene�t from the increased request deadline, because missed
deadlines are closer to the deadline than the anticipating schedulers. This
makes them more suited to delivering continual multimedia streams, since
less bu�ering is required to maintain continual playback.

7.10 Scenario 6

The goal of scenario 6 is to see how the schedulers respond to decreasing the
size of each read, while also decreasing the deadline. The bandwidth required
is maintained. Table 7.18 shows the size of the read and deadline have been
halved compared to scenario 1. The other settings are maintained.

The number of pages for APEX is reduced by 1 to 36 due to integer math
rounding down. Since the implementation of APEX uses token rate per ji�y
and the test machine is con�gured with HZ = 1000, this does not make any
di�erence. Both 1000/37 and 1000/36 are rounded down to 27.

108

Scheduler APEX CFQ pri0 Antic. DL
Mean response time: 175809 53540 64643 369419
Standard Deviation: 262661 672064 668683 551695
1st Quartile response time: 133 114 113 133
Median response time: 240 1401 1400 241
3rd Quartile response time: 543753 1479 1477 1119506
Minimum response time: 71 68 67 70
Maximum response time: 1075064 14439291 11651019 2333044
Percentile within deadline: 69.64% 99.37% 99.07% 68.92%

Table 7.19: Scenario 6: Analysis of response times. All results except per-
centile in µs.

Scheduler APEX CFQ pri0 Antic. DL
Mean bandwidth: 426.22 1398.68 1161.31 202.99
Standard Deviation: 0.63 22.05 40.34 0.10
1st Quartile bandwidth: 425 1374 1137 202
Median bandwidth: 425 1402 1150 202
3rd Quartile bandwidth: 426 1422 1170 202
Minimum bandwidth: 425 1365 1107 202
Maximum bandwidth: 428 1432 1383 203
Aggregate bandwidth: 21311 69933 58065 10149

Table 7.20: Scenario 6: Analysis of bandwidth for each resource reserving
process. All numbers in KB/s.

7.10.1 Results

Scenario 6 shows that APEX performs worse when dealing with shorter round
times. Almost 70% of the results violate the deadline, despite at least half
the results being serviced from the read cache. CFQ and Anticipatory both
perform better than in scenario 5, violating almost no deadlines. Deadline
performs worse than in scenario 5, but not much, since the smaller request
size allows more requests to be serviced from read-ahead.

In table 7.19 APEX shows at least half the I/O operations served from
memory. This is a natural consequence of the operation size compared to
the maximum read-ahead window. Approximately 3 operations of 75KB �t
into one read-ahead window of 256KB. Therefore, a single operation triggers
the read of enough data to service the next two. This explains the number

109

Figure 7.6: Scenario 6: Response times for all resource reserving readers
under each scheduler setting.

of deadlines maintained. Figure 7.6 shows that the bulk of requests that are
not serviced from the bu�er, are serviced around or just past the deadline.
This follows from scenario 2, since the size and number of the requests being
sent to the block device are approximately the same. The processes are only
noticing that delay in every few operations, since this is when the data must
actually be fetched from disk.

In contrast to APEX, CFQ and Anticipatory seemingly bene�t from the
lower operation size by maintaining a higher percentage of the deadlines. In
fact, the number of deadlines violated is approximately the same, but since
their violations are constrained by the scheduler rather than the request pat-
tern in this case, and there are more I/O operations, the percentage drops.
That is, CFQ is still delaying due to expiring time-slices, clustering high re-
sponse results around 9s, but since there are more operations counted per
time-slice, the percentage of missed deadlines is lower. The results for An-
ticipatory are similar. The anticipation heuristic maintains the I/O stream
for each process approximately as long, but the length of this period is the
same, more operations are processed.

Neither CFQ nor Anticipatory shows as many operations served from the
read cache as APEX or Deadline. Only the �rst quartile response time in-

110

Reservation based readers (total): 100
- CBR readers: 50
- VBR readers: 50
Read delay: Rate-limiting
Background best e�ort readers: 50
Size of Read: 150KB
Deadline: 1000ms

Scheduler speci�c con�guration:
APEX

Bandwidth allocated (each client): 37 pages/s
Bucket depth (each client): 37 pages

Table 7.21: Scenario 7: Con�guration

dicates a read from memory, whereas the median time indicates a wait for
the drive. This is due to the aggressive dispatch by the schedulers, prevent-
ing merging from building up full 256KB requests and the exclusive access
framework preventing background reads from happening while a process is
waiting.

Deadline shows a situation similar to that shown by APEX. While the
cluster of requests shown in �gure 7.6 on the preceding page is grouped
around 1s, well after the deadline, about 2/3 of the operations are serviced
from memory.

Table 7.20 on page 109 shows the bandwidth provided by each scheduler
to the processes. Again CFQ and Anticipatory deliver the most bandwidth.
While the mean response time for APEX and Deadline is lower than in
previous tests, the bandwidth is approximately the same, since the length
and number of seeks necessary to serve all the requests is about the same.

Despite providing enough bandwidth to serve all the requests, APEX
and Deadline are unable to maintain more than 70% of the deadlines due
to the length of the scaning rounds. CFQ and Anticipatory show the same
behavior as in scenarios 2, 4 and 5, which re�ects their design parameters.
The scanning schedulers are shown to bene�t from longer deadlines, which
follows from their strategy of batching as many requests as possible when
dispatching.

111

7.11 Scenario 7

Scenario 7 runs 100 resource reserving readers with the delay setting active.
The con�guration can be seen in table 7.21 on the previous page. The delay
con�gured is the type that instructs the readers to pause until the deadline
is reached. This way the readers attempt to maintain maintain their desired
bitrate with failures causing playback to be delayed. In addition, half the
resource reserving readers run with the variable bitrate setting enabled.

This scenario tests the schedulers under periodic loads. The resource
reserving requests no longer continually saturate the scheduler with requests.
Since this access pattern a�ects the results in previous tests, the new access
patterns reveal new information.

In continuous media playback situation, a violated deadline might require
that the playback software read more aggressively for a short while to replen-
ish bu�ers. This is not assumed to be the case in scenario 7. When a deadline
is violated, the reader simply proceeds to immediately issue the next request,
rather than permit any further delay.

Half the resource reserving readers are run with the VBR setting enabled.
This will regularly vary their reads from approximately half the bitrate to ap-
proximately one and a half times the bitrate. This challenges the schedulers
by making the I/O pro�le of the processes less predictable.

The number of pages allocated each process remains at 37 pages/s, with
the same bucket depth. This means the VBR processes does not have enough
pages to guarantee service during peak bandwidth. However, since the re-
quests stay within 256KB, this does not a�ect the results, as is shown by
scenarios 8 and 9 later in this chapter.

Since this test runs more than 128 processes, the maximum number of
requests the queue will allocate is increased. This increase is enough to ensure
that the results are not impacted by lack of available resources.

7.11.1 Results

Table 7.22 on the facing page and table 7.23 on the next page show that
APEX performs well for both the CBR and VBR processes, maintaining
almost all the deadlines and in fact servicing at least the third quartile of the
operations from memory. CFQ shows worse performance than in previous
tests, with under 90% of deadlines maintained. It services at least half the
requests from memory, but shows higher third quartile results, with slightly
worse results for VBR than CBR. The situation for Anticipatory is similar,
with an even higher mean response time than CFQ. Deadline performs worst
of all four, with the highest mean and fewest deadlines maintained.

112

Scheduler APEX CFQ pri0 Antic. DL
Mean response time: 31739 357791 405176 601228
Standard Deviation: 83873 520848 666529 681641
1st Quartile response time: 460 370 376 383
Median response time: 474 594 555 559226
3rd Quartile response time: 911 627772 660276 916720
Minimum response time: 109 93 91 92
Maximum response time: 1626078 3014685 5029095 3396970
Percentile within deadline: 99.95% 87.04% 81.58% 79.22%

Table 7.22: Scenario 7: Analysis of response times for CBR readers. All
results except percentile in µs.

Scheduler APEX CFQ pri0 Antic. DL
Mean response time: 32457 455313 404364 604835
Standard Deviation: 95544 621558 664103 688370
1st Quartile response time: 344 382 377 385
Median response time: 467 832 553 556989
3rd Quartile response time: 826 818079 661547 921423
Minimum response time: 117 92 92 92
Maximum response time: 2087653 3115490 5807096 3460739
Percentile within deadline: 99.88% 80.63% 81.51% 79.07%

Table 7.23: Scenario 7: Analysis of response times for VBR readers. All
results except percentile in µs.

Scheduler APEX CFQ pri0 Antic. DL
Mean bandwidth: 149.71 127.03 120.45 117.02
Standard Deviation: 0.00 1.18 0.75 0.15
1st Quartile bandwidth: 149 126 119 116
Median bandwidth: 149 126 120 117
3rd Quartile bandwidth: 149 127 120 117
Minimum bandwidth: 149 124 119 116
Maximum bandwidth: 149 128 121 117
Aggregate bandwidth: 7485 6351 6022 5851

Table 7.24: Scenario 7: Analysis of bandwidth for each CBR resource reserv-
ing process. All numbers in KB/s.

113

Scheduler APEX CFQ pri0 Antic. DL
Mean bandwidth: 134.56 121.95 120.52 116.65
Standard Deviation: 0.00 1.23 0.72 0.13
1st Quartile bandwidth: 134 121 120 116
Median bandwidth: 134 122 120 116
3rd Quartile bandwidth: 134 122 121 116
Minimum bandwidth: 134 119 119 116
Maximum bandwidth: 134 124 122 116
Aggregate bandwidth: 6728 6097 6026 5832

Table 7.25: Scenario 7: Analysis of bandwidth for each resource reserving
process. All numbers in KB/s.

Figure 7.7: Scenario 7: Response times for CBR and VBR readers under
APEX

114

Figure 7.8: Scenario 7: Response times for CBR and VBR readers under
CFQ

Figure 7.9: Scenario 7: Response times for CBR and VBR readers under
Anticipatory

115

Figure 7.10: Scenario 7: Response times for CBR and VBR readers under
Deadline

Overall, there is a slight bias against the VBR processes and in favor
of the CBR processes. This is particularly apparent in the case of APEX
and CFQ, since they perform per-process resource granting. The results for
VBR are slightly worsened because the VBR processes are started after the
CBR processes. This biases the results in favor of the CBR processes due to
them being granted time-slices or dispatch �rst. This is shown particularly
in �gure 7.7 on page 114, where there is a visible spike at the beginning
of dispatch, which is dominated by VBR operations. Once the scheduling
rounds even out, this di�erentiation disappears.

APEX provides a mean response time of around 30ms in this scenario.
While whole batches are not dispatched in 30ms, as can be seen in �gure 7.7
on page 114, the read-ahead mechanisms are given more time to perform
read-ahead operations. Since the �les are read sequentially, these operations
result in cache hits. The read-aheads bene�t from the prioritized access
provided to the resource reserving processes by APEX. The third quartile
response time in both the CBR and VBR cases shows that over 75% of the
I/O operations are satis�ed by the read-ahead cache under APEX, which
accounts for the low mean.

CFQ displays reasonably low mean delays well within the deadline for
both CBR and VBR requests, but as shown by the standard deviation and

116

the plotted response times in �gure 7.8 on page 115, there is high variabil-
ity. The anticipation heuristic and exclusive device access do not serve the
scheduler well in this case. Unlike previous cases, CFQ does not starve the
background thrashers in this scenario. Despite the increase in number of re-
source reserving readers, there are now chances for the background readers to
be picked for service when none of the resource reserving readers are active.

The results of the Anticipatory scheduler are similar, with a few major
di�erences. Since the Anticipatory scheduler does not implement prioriti-
zation, the background readers disturb the results more often. This causes
longer response times in the average cases. The worst cases are caused by
the initial series of failed anticipations, as is visible in �gure 7.9 on page 115.
This �gure shows the maximum response times are all during the �rst series
of reads. Overall, however, the starvation prevention mechanisms provide
earlier dispatch for the Anticipatory scheduler than CFQ.

In this scenario, the anticipation heuristic has a negative impact on per-
formance for CFQ and Anticipatory. The reader will delay reading after a
promptly delivered request. Since CFQ and Anticipatory both assume con-
tinuous reading, the resource reserving reader will `trick' them, by only per-
forming short bursts of reads when it has been denied disk access for a long
period of time (any period greater than or equal to the deadline). These
bursts will be promptly dispatched, but the resource reserving reader will
then wait before performing any further I/O. The read-ahead mechanisms
will cause another request to be dispatched, but once this is completed, the
CFQ and Anticipatory scheduler will both anticipate in vain. For Anticipa-
tory this period is by default 6ms, and for CFQ this is 8ms. Not every antic-
ipation will wait for this full period, since the heuristic adjusts for behavior
such as this. However, some waiting is done, and this impacts performance.

Deadline shows two SCAN batches required to dispatch all the requests
in �gure 7.10 on the facing page. The �rst batch �nishes within the deadline,
but any requests not included in this batch do not maintain the deadline.
Combined with the one round within the deadline, read-ahead ensures that
about 80% of the requests maintain the deadline.

Since the resource reserving readers issue delays, they do not attain the
desired bandwidth in under any of the schedulers. The bandwidth for the
CBR readers is shown in table 7.24 on page 113, and the VBR readers in ta-
ble 7.25 on page 114. This bandwidth is impacted every time a deadline is
violated, since the reader does not attempt to make up for time lost due to
a delay by reading more aggressively until the loss compensated for.

APEX provides the highest bandwidth throughput due to violating the
fewest deadlines. APEX causes a slight di�erentiation in bandwidth provided
to CBR and VBR requests. It does not provide worse performance for the

117

Scenario 8
Bandwidth allocated (each client): 37 pages/s
Bucket depth (CBR clients): 37 pages
Bucket depth (VBR clients): 60 pages

Scenario 9
Bandwidth allocated (CBR clients): 37 pages/s
Bandwidth allocated (VBR clients): 60 pages/s
Bucket depth (CBR clients): 37 pages
Bucket depth (VBR clients): 60 pages

Table 7.26: Scenario 8 and 9: Con�guration of APEX token bucket parame-
ters

VBR readers so much as it provides better performance for the CBR readers.
The VBR readers are able to service more requests from the read-ahead cache,
thus giving the more consistent CBR readers better access to the device when
they are inactive. When the VBR bitrate is high, so is contention for the
device. Since access is granted in a round-robin fashion, the more reliably
periodic readers come out better. More data on how long the processes slept
would be bene�cial to explain the remaining di�erence.

CFQ provides slightly higher performance for CBR requests for the same
reason. The process queues are granted their time-slices in a round-robin
system. Since the CBR requests more frequently have pending requests when
their time-slice is activated, they are serviced more promptly.

Anticipatory and Deadline provide no distinguishable di�erence between
the bandwidth allocated to either types of readers.

APEX gives the best performance for resource reserving processes when
dealing with periodic requests that �t within single read-ahead windows.
Streaming audio or low quality video servers are examples of this type of
data.

7.12 Scenario 8 and 9

The goal of scenarios 8 and 9 is to test whether the token bucket model
in APEX provides stronger guarantees for VBR processes when the bucket
depth and reserved bandwidth are increased. Both scenarios run with the
same settings as given in table 7.21 on page 111 excepting the bucket depth
and bandwidth allocation, which are seen in table 7.26. In scenario 8 only the
bucket depth is increased, so that processes are able to build up su�cient

118

Scheduler APEX in 7 APEX in 8 APEX in 9
Mean response time: 32457 34187 31757
Standard Deviation: 95544 98600 92815
1st Quartile response time: 344 342 344
Median response time: 467 466 467
3rd Quartile response time: 826 830 830
Minimum response time: 117 117 116
Maximum response time: 2087653 2048823 2079380
Percentile within deadline: 99.88% 99.88% 99.91%

Table 7.27: Analysis of response times for CBR readers under APEX in
scenarios 7, 8 and 9. All results except percentile in µs.

Scheduler APEX in 7 APEX in 8 APEX in 9
Mean bandwidth: 134.56 134.51 134.56
Standard Deviation: 0.00 0.04 0.01
1st Quartile bandwidth: 134 134 134
Median bandwidth: 134 134 134
3rd Quartile bandwidth: 134 134 134
Minimum bandwidth: 134 134 134
Maximum bandwidth: 134 134 134
Aggregate bandwidth: 6728 6725 6727

Table 7.28: Analysis of bandwidth for the VBR resource reserving processes
under APEX in scenarios 7, 8 and 9. All numbers in KB/s.

tokens to perform prompt dispatch on their highest bitrate requests. In
scenario 9 the minimum bandwidth is also increased, which should provide
deterministic guarantees for the highest bitrate requests.

Since these tests are speci�c to APEX's token bucket model, they run
only on the APEX scheduler.

7.12.1 Results

In table 7.27 the analysis of the VBR processes is shown. This table includes
the results from the VBR processes scenario 7 for comparison. The mean
delay in scenario 7 and 9 is lower than scenario 8, but the variability is so
low that it is likely just experimental variability. Though not shown, the
situation is similar in the CBR results. The response times for scenarios

119

Figure 7.11: Scenario 8: Response times for VBR readers under APEX

Figure 7.12: Scenario 9: Response times for CBR and VBR readers under
APEX

120

8 and 9, shown in �gure 7.11 and �gure 7.12 on the facing page, display
patterns very similar to that from scenario 7.

The bandwidth for the VBR results are shown in table 7.28 on page 119.
The results are almost exactly the same. Again, the results for CBR are not
shown, but they are just as similar.

Regardless of when a request arrives, APEX is likely to have tokens avail-
able for that queue. This is because requests are issued synchronously, so
there is a delay of at least one read between the last request dispatched and
the next batch building phase. Since there are several resource reserving
queues active in these scenarios, it is more likely that an entire batch round
is dispatched between request arrivals. Since new tokens arrive at a rate
of one per 27ms10 in scenario 7, there should always be at least one token
available when a request completes. Since there is always at least one token
available, the policy of APEX allowing single requests that cost more tokens
than a queue has available means that a queue is almost guaranteed to be
considered for service during every batch building phase.

The results from scenario 8 and 9 show that the policy of allowing queues
to dispatch requests that are more costly than they have tokens is improving
response times for resource reserving requests under APEX. The cost of this
policy for best e�ort requests is shown in scenario 10. These tests should
be redone with a variability that varies the number of read-ahead windows
necessary to complete an operation, but the results are not expected to illu-
minate any new facts. Operations that require multiple batches to dispatch
will have corresponding delays, regardless of the token rate, since the requests
arrive to the scheduler synchronously.

7.13 Scenario 10

Scenario 10 runs 100 reserved resource readers, but half of them are run with-
out actually reserving any resources. For the APEX and CFQ schedulers,
these processes are run at the best e�ort priority. These processes are here-
after referred to as the foreground best e�ort readers. The resource reserving
processes are set to read greedily in this test. The foreground best e�ort
readers are set to random delay after they complete a read request.

The goal of scenario 10 is to assess the performance of schedulers on both
reserving and best e�ort processes. Speci�cally by observing how prioritized,
greedy processes impact non-greedy best e�ort processes. The con�guration
is shown in table 7.29 on the following page.

101000ms/37 = 27ms

121

Reservation based readers: 50
Reader delay: None
Foreground best e�ort readers: 50
Foreground best e�ort reader delay: Random
Background best e�ort readers: 0
Size of Read: 150KB
Deadline: 1000ms

Scheduler speci�c con�guration:
APEX

Bandwidth allocated (each reservation based client): 37 pages/s
Bucket depth (each reservation based client): 37 pages

Table 7.29: Scenario 10: Con�guration

Scheduler APEX CFQ pri0 Antic. DL
Mean response time: 421034 99887 115182 793774
Standard Deviation: 346572 957338 844761 654284
1st Quartile response time: 418 1483 1498 425
Median response time: 653082 1548 1553 1235596
3rd Quartile response time: 701819 2752 2770 1319176
Minimum response time: 69 66 65 68
Maximum response time: 1559733 75770020 11758214 2792952
Percentile within deadline: 99.33% 98.73% 98.08% 40.04%

Table 7.30: Scenario 10: Analysis of response times for resource reserving
readers. All results except percentile in µs.

While neither implement prioritization, Anticipatory and Deadline are
included in this scenario to test the impact of greedy readers on non-greedy
readers.

7.13.1 Results

Table 7.30 shows that the results for the resource reserving processes are
close to those in scenario 2. This is to be expected since the scenario is
similar, with 50 resource reserving processes reading as fast as they can.

Table 7.31 on the facing page shows that the maximum response times for
the best e�ort readers under APEX and CFQ indicate complete starvation of
the processes. Apart from this, they both deliver good performances, since

122

Scheduler APEX CFQ pri0 Antic. DL
Mean response time: 482969 57271 122934 425833
Standard Deviation: 15593287 1705988 808702 507921
1st Quartile response time: 450 453 456 454
Median response time: 480 470 476 56262
3rd Quartile response time: 79736 28868 16788 880198
Minimum response time: 100 106 72 108
Maximum response time: 576718141 140948491 38470211 2992992
Percentile within deadline: 99.93% 99.98% 98.13% 80.13%

Table 7.31: Scenario 10: Analysis of response times for foreground best e�ort
readers. All results except percentile in µs.

Scheduler APEX CFQ pri0 Antic. DL
Mean bandwidth: 356.15 1506.49 1313.58 188.85
Standard Deviation: 0.63 88.11 130.36 0.25
1st Quartile bandwidth: 355 1473 1280 188
Median bandwidth: 356 1539 1312 188
3rd Quartile bandwidth: 356 1551 1347 188
Minimum bandwidth: 355 1296 1119 188
Maximum bandwidth: 358 1750 1878 189
Aggregate bandwidth: 17807 75324 65678 9442

Table 7.32: Scenario 10: Analysis of bandwidth for each resource reserving
process. All numbers in KB/s.

Scheduler APEX CFQ pri0 Antic. DL
Mean bandwidth: 153.90 274.73 244.14 163.54
Standard Deviation: 0.24 18.39 2.24 0.15
1st Quartile bandwidth: 153 282 242 163
Median bandwidth: 153 283 244 163
3rd Quartile bandwidth: 154 284 245 163
Minimum bandwidth: 153 237 238 163
Maximum bandwidth: 154 285 249 163
Aggregate bandwidth: 7694 13736 12206 8176

Table 7.33: Scenario 10: Analysis of bandwidth for each foreground best
e�ort process. All numbers in KB/s.

123

Figure 7.13: Scenario 10: Response times for reserving and best e�ort readers
under APEX

Figure 7.14: Scenario 10: Response times for reserving and best e�ort readers
under CFQ

124

Figure 7.15: Scenario 10: Response times for reserving and best e�ort readers
under Anticipatory

Figure 7.16: Scenario 10: Response times for reserving and best e�ort readers
under Deadline

125

the best e�ort readers don't contend with the resource reserving processes
once they begin execution. Anticipatory and Deadline show good perfor-
mance for the foreground best e�ort processes, with Deadline performing
better for these than for the resource reserving processes.

APEX completely starves the best e�ort readers for the execution time of
the resource reserving processes, as shown in �gure 7.13 on page 124. Since
APEX's aggregate throughput is less than CFQ's, this is a longer time. The
starvation is due to the policy of not performing a work-conserving phase
when there are pending requests on reserved queues. Since this policy is
adjustable, it is possible to reduce the amount of starvation for best e�ort
processes on APEX when there is continual reserved resource tra�c.

CFQ completely starves the best e�ort readers for the execution time of
the resource reserving processes. During logging there are some accounting
errors, and some of the foreground best e�ort processes do not begin logging
correctly until after the resource reserving processes has exited. This is shown
in �gure 7.14 on page 124, which incorrectly shows some best e�ort processes
running at the beginning of the graph. There are also some outlier response
times for resource reserving processes associated with this logging problem.

Anticipatory again shows implicit prioritization of greedy readers in �g-
ure 7.15 on the previous page. This �gure shows scattered reserved resource
reads with heightened response times, along with a tight grouping of very
low response times along the bottom. This corresponds with the third quar-
tile response time of approximately 3ms and over 98% of the reads within
the deadline. The consequences are visible in the best e�ort reads being
consistently grouped along the same high cluster, but with only intermittent
service at low response times. This is re�ected by the median response time
for the best e�ort readers, which at under 1ms shows that most reads are
done from memory. The read-ahead causes short bursts of requests for the
best e�ort processes, but once these are serviced, the processes must wait
as long as the greedy readers to again be serviced. The greedy readers are
prioritized in that they receive longer service time once they are picked for
dispatch. Once the greedy readers have completed, the response times start
dropping. This is inverted on the �gure, since the delay for the best e�ort
requests is not accounted for. There are also scatterings of higher response
time best e�ort requests for Anticipatory. These requests are simply unlucky
processes, which are seldom picked for service.

Deadline displays the response time pattern characteristic of saturated
SCAN-related schedulers in �gure 7.16 on the preceding page. The mean
response time of the foreground best e�ort reader is close to 400ms shorter
than the greedy reader. This is due to the read-ahead mechanism of the
kernel combined with the random delay to the foreground best e�ort reader.

126

The delay is randomly distributed between 0 and 1s, averaging to 500ms.
The read-ahead mechanism will issue the next read immediately following
the completion of the previous one, thus the total delay on the read will be
the same as for the greedy readers, but the foreground best e�ort readers
will not start counting until an average of 500ms after the request is issued.
In the �gure, this is visible in the tight clustering of greedy reader response
times, and the random distribution below this.

The bandwidth results for the resource reserving processes shown in ta-
ble 7.32 on page 123 show similar throughputs to scenario 2. In table 7.33 on
page 123 APEX and CFQ show low bandwidths due to completely starving
these processes for the period during which the resource reserving processes
ran. Anticipatory shows lower aggregate bandwidth for the randomly de-
layed readers than the greedy readers. This illustrates how much processes
gain by promptly issuing new reads under the Anticipatory scheduler. Dead-
line shows slightly lower bandwidth for the randomly delayed readers than
the greedy readers. While the randomly delayed readers experience lower
response times due to read-ahead, they must in actuality longer than the
greedy readers for their operations to complete.

The aggregate bandwidth in this test give some information as to how
e�cient each scheduler is relative to the maximum sustained throughput
reported for the disk used in testing. The disk was reported to have a max-
imum throughput of around 70MB/s. APEX is limited to about 18MB/s
during the run of the resource reserving processes. Deadline provides about
the same, just over 17MB/s, across both the greedy and randomly delayed
readers. Only CFQ and Anticipatory come close to the reported 70MB/s.
CFQ's reported 75MB/s is high since the processes �nish at varying times.
The aggregate bandwidth for Anticipatory is similarly higher than the maxi-
mum throughput, but it also displays a bandwidth several times higher than
APEX or Deadline.

APEX and CFQ completely starve best e�ort requests when saturated
with requests from reserved resource processes. This is inappropriate for a
mixed-media scheduler when the requirements of the reserved processes could
be met while also dispatching at least some best e�ort requests. The policy
chosen to not run APEX's work-conserving phase when there are pending
reserved requests should be reexamined if operations can be relied on to �t
within a single read-ahead window. Anticipatory rewards greedy processes
for enabling e�cient use of the block device, without delaying other processes
much more than greedy processes. Deadline provides equivalent service to
greedy and randomly delayed processes thanks to read-ahead.

127

Reservation based readers: 50
Reservation based reader delay: Rate-limiting
Foreground best e�ort readers: 50
Foreground best e�ort reader delay: Random
Background best e�ort readers: 0
Size of Read: 150KB
Deadline: 1000ms

Scheduler speci�c con�guration:
APEX

Bandwidth allocated (each client): 37 pages/s
Bucket depth (each client): 37 pages

Table 7.34: Scenario 11: Con�guration

7.14 Scenario 11

Scenario 11 is con�gured similarly to scenario 10, except that the resource
reservation readers are con�gured to use the rate-limiting delay setting. With
this setting the resource reserving readers will simulate periodic requests by
sleeping so that each request takes approximately 1 deadline, in this case
1s, to complete. The foreground best e�ort readers are still con�gured to
random delays.

This scenario examines the performance impacts of periodic resource re-
serving requests on best e�ort tra�c, and the performance of the schedulers
in servicing periodic requests with high amounts of best e�ort tra�c. The
full con�guration can be seen in table 7.34.

For Anticipatory and Deadline the resource reserving readers are be re-
ferred to as the rate-limited readers in this scenario, since they do not reserve
any resources.

7.14.1 Results

The results in table 7.35 on the facing page show that APEX performs best
for the resource reserving readers in this scenario, maintaining the deadline
for almost all the requests. CFQ and Anticipatory perform well, maintaining
around 96% of the deadlines. The Deadline scheduler holds the highest mean
and highest maximum delay. Table 7.36 on the next page shows that CFQ
provides better mean response time than APEX for best e�ort requests.
Deadline shows overall good response times for the randomly delayed best
e�ort operations.

128

Scheduler APEX CFQ pri0 Antic. DL
Mean response time: 26776 163497 125590 225965
Standard Deviation: 68230 320698 294293 369596
1st Quartile response time: 408 451 456 455
Median response time: 428 478 481 36943
3rd Quartile response time: 663 145155 55695 265778
Minimum response time: 104 103 111 102
Maximum response time: 2189359 2175784 2348360 2389587
Percentile within deadline: 99.99% 96.11% 96.21% 89.99%

Table 7.35: Scenario 11: Analysis of response times for resource reserving
requests. All results except percentile in µs.

Scheduler APEX CFQ pri0 Antic. DL
Mean response time: 614860 320553 271629 451598
Standard Deviation: 724781 372850 403638 478634
1st Quartile response time: 422 471 462 469
Median response time: 224873 182945 866 364801
3rd Quartile response time: 1196064 574907 475856 858947
Minimum response time: 73 102 109 111
Maximum response time: 4933037 2487295 2727230 35299666
Percentile within deadline: 67.78% 93.80% 91.40% 83.39%

Table 7.36: Scenario 11: Analysis of response times for foreground best e�ort
requests . All results except percentile in µs.

Scheduler APEX CFQ pri0 Antic. DL
Mean bandwidth: 149.79 148.61 148.27 147.03
Standard Deviation: 0.05 0.22 0.28 0.22
1st Quartile bandwidth: 149 148 148 146
Median bandwidth: 149 148 148 147
3rd Quartile bandwidth: 149 148 148 147
Minimum bandwidth: 149 148 147 146
Maximum bandwidth: 149 149 149 147
Aggregate bandwidth: 7489 7430 7413 7351

Table 7.37: Scenario 11: Analysis of bandwidth for each resource reserving
process. All numbers in KB/s.

129

Scheduler APEX CFQ pri0 Antic. DL
Mean bandwidth: 135.57 184.69 196.54 159.04
Standard Deviation: 0.20 1.12 2.42 0.59
1st Quartile bandwidth: 135 184 195 158
Median bandwidth: 135 184 196 158
3rd Quartile bandwidth: 135 185 197 159
Minimum bandwidth: 135 182 193 157
Maximum bandwidth: 136 186 203 160
Aggregate bandwidth: 6778 9234 9826 7951

Table 7.38: Scenario 11: Analysis of bandwidth for each foreground best
e�ort processes. All numbers in KB/s.

Figure 7.17: Scenario 11: Response times for reserving and best e�ort readers
under APEX

130

Figure 7.18: Scenario 11: Response times for reserving and best e�ort readers
under CFQ

Figure 7.19: Scenario 11: Response times for reserving and best e�ort readers
under Anticipatory

131

Figure 7.20: Scenario 11: Response times for reserving and best e�ort readers
under Deadline

Figure 7.17 on page 130 shows that APEX maintains approximately
the same service for the best e�ort requests throughout the test. While the
resource reserving processes run, they hold priority to the block device, thus
the best e�ort requests are only dispatched when there are windows available
for work-conserving phases.

The third quartile of response times for the reservation based reader under
APEX shows that at least 75% of the reservation based operations are served
by the read-ahead cache. This means that delay to the best e�ort operations
is caused by read-ahead operations.

CFQ provides better service to best e�ort readers than APEX, but at
the cost of more deadlines broken for the reserved processes. This is shown
in �gure 7.18 on the previous page. Here the distributions of the response
times for both the resource reserving and foreground best e�ort processes
show similar distributions. The best e�ort processes spend more time read-
ing, which re�ects the higher median response time. The best e�ort processes
are more often preempted by requests arriving for higher priority queues and
they delay longer between reads. The former is a consequence of CFQ's pri-
oritization mechanism, and the latter causes the anticipation heuristic to cut
o� access to the device sooner.

Real-time queues delayed by active best e�ort dispatches cause the fol-

132

lowing behavior. When no real-time queues are dispatching requests, for
example when they are sleeping because their requests are promptly dis-
patched, a real-time queue's idle slice will expire, handing over control of the
device to a best e�ort queue. This best e�ort queue will then dispatch its
one request. If a real-time request arrives just after this best e�ort request
has been dispatched, it will have to wait for the request to be completed
before CFQ grants it control of the device. This negates CFQ's anticipation
heuristic for best e�ort queues, and causes seekiness by allowing only one
request to be serviced at a time for best e�ort queues. Since the real-time
queues are issuing only a few requests before the resource reserving processes
sleep, CFQ behaves more like a prioritized round robin scheduler with more
seeky behavior than shown in previous tests.

The Anticipatory scheduler performs similarly to CFQ in this scenario,
as shown by the distribution in �gure 7.19 on page 131. The distribution
is similar to the corresponding graph for CFQ. The lack of a time-slicing
system causes Anticipatory to less often pick the randomly delayed processes
for dispatch. The anticipation heuristic biases against these in favor of the
rate-limited delay. The rate-limited delaying processes are at some point
serviced by a late response, which causes them to immediately dispatch a
new request. This behavior is rewarded by the anticipation heuristic with
continued access to the device. This goes on until the process is sleeping
and the last read-ahead completes. This way, every late response time by
Anticipatory triggers behavior that is rewarded by extra access. This extra
access denies the randomly delaying processes device time.

This test shows how Deadline can temporarily starve requests when high
amounts of tra�c to one end of the device arrive continually. The one way
elevator can get stuck on one side of the platter if there are continual streams
of requests on that side of the platter. To prevent this, Deadline implements
an expire time for requests. If a request expires, Deadline will allow seeking
backwards to satisfy it. However, if the FIFO queue is �lled with requests
on the same side of the platter, the behavior will continue to starve requests
to the other side of the platter until the FIFO is empty. This explains the
behavior in �gure 7.20 on the preceding page, where some randomly delayed
requests have response times clustered above the main SCAN belt. The single
delay at 35s is an anomaly.

Table 7.37 on page 129 shows the analysis of the bandwidth of the re-
source reserving processes. APEX manages to maintain the highest mean
bandwidth. Since this bandwidth follows the rate of deadline failure, Dead-
line delivers the lowest bandwidth. Table 7.38 on page 130 shows that CFQ
and Anticipatory gave the highest aggregate bandwidth to the randomly
delaying best e�ort readers. This is explained by the anticipation heuristic

133

increasing the throughput by avoiding seeks when read-ahead requests arrive.
APEX performs best for the reservation based readers, but there is a cost

in response times for the randomly delaying readers. CFQ and Anticipatory
provide worse throughput when dealing with programs that do not continu-
ally issue new I/O operations. APEX is better suited for providing data for
unbu�ered streams.

7.15 Summary

APEX performs well, so long as the I/O operations performed �t into a num-
ber of dispatch rounds that can be executed within the deadline. Otherwise
the synchronous arrival of requests prevent it from correctly dispatching re-
quests in one round. It has trouble with the token bucket model when the
processes issue requests continually. While the conceptual translation from
the original presentation to the implementation of APEX is problematic due
to the lack of metadata, APEX functions well as a prioritized varied-length
round-based scheduler with mixed-media capabilities. The policy for the
work-conserving phase does not provide full work-conservation, but in prac-
tice this can be adjusted by a tunable variable.

Of the existing Linux schedulers, Anticipatory and CFQ are oriented
towards providing high throughput at the cost of occasional high response
times. This is not appropriate in cases of continuous media playback, where
the minimum bu�er required and therefore also start-up delay equals the
longest response time. An admission control device allowing some sort of
limitation to the maximum response time might be appropriate for CFQ.

Since APEX relies on a scanning algorithm for e�ciency, it does not
provide e�ciency as well as Anticipatory and CFQ do in the best case. Since
it is not unreasonable to expect MMDBMS systems to order data according
to metadata requirements, such as ordering sequential data consecutively on
the disk, it is not unreasonable to assume that an anticipation heuristic would
provide better e�ciency.

134

Chapter 8

Conclusions

This thesis focuses on implementing and testing the APEX mixed-media
scheduler in the Linux kernel as a part of the elevator framework. Require-
ments for continuous media environments are presented and existing mixed-
media scheduler designs are examined for suitability. APEX is found to best
match the requirements. The Linux internals relevant to the implementation
are examined and di�culties related to implementing a high level scheduler in
the Linux kernel are examined. A partial implementation of APEX focused
on the batch builder is implemented and tested.

The tests focused on requirements of mixed-media environments, and
show that the existing Linux I/O schedulers are not suited for these types
of environments. While the implementation of APEX is better, the lack of
high level information at the scheduler makes its task di�cult. When read
operations �t into one read-ahead window, APEX behaves much like the
original implementation details. Otherwise the synchronous nature of read
operations provides a series of problems. The implementation of APEX does
not provide full e�ciency or work-conservation, and the �exibility is limited
by the lack of the queue manager.

8.1 Future Work

Implementing the high level scheduler above or as part of the virtual �lesys-
tem in Linux is a possible solution to many of the problems encountered
during the development of this work. This will make queue management
easier, in that it can exist implicit to the �le handle model. Admission con-
trol is also made possible by returning values directly from the open system
call.

Adding a token bucket model to CFQ to improve the starvation under

135

real-time loads and provide bandwidth guarantees is another possible im-
provement to current work. A new service class could also be added, which
is more suitable for periodic requests associated with deadlines, since the
current real-time class is in actuality a low latency service.

A high level scheduler could also be employed in concert with CFQ, since
the maximum delay is fairly predictable. In this case, admission control
could specify the maximum allowable response time, rather than a bandwidth
guarantee.

136

Appendix A

Source Code

The source code of the readers used in testing, the modi�ed version of Linux
and APEX module are available on the appended CD. The �le README de-
scribes the directory structure.

137

Bibliography

[1] Robert K. Abbott and Hector Garcia-Molina. Scheduling real-time
transactions: a performance evaluation. In VLDB '88: Proceedings of
the 14th International Conference on Very Large Data Bases, pages 1�
12, San Francisco, CA, USA, 1988. Morgan Kaufmann Publishers Inc.

[2] Robert K. Abbott and Hector Garcia-Molina. Scheduling i/o requests
with deadlines: A performance evaluation. In IEEE Real-Time Systems
Symposium, pages 113�125, 1990.

[3] Jens Axboe. [PATCH] block/elevator updates + deadline i/o scheduler.
Email list posting, 07 2002. http://lwn.net/Articles/5862/.

[4] Jens Axboe. Linux block io - present and future. In Proceedings of the
Ottawa Linux Symposium 2004, pages 51�61, July 2004.

[5] Jens Axboe. [PATCH][CFT] time sliced cfq ver18. Email list posting,
12 2004. http://lwn.net/Articles/116496/.

[6] Jens Axboe, Suparna Bhattacharya, and Nick Piggin. Notes on the
Generic Block Layer Rewrite in Linux 2.5, 1 2002. Documentation/

block/biodoc.txt.

[7] Peter Bosch, Cwi, peterb@cwi. nl, and Sape J. Mullender. Real-time
disk scheduling in a mixed-media �le system. In RTAS '00: Proceedings
of the Sixth IEEE Real Time Technology and Applications Symposium
(RTAS 2000), page 23, Washington, DC, USA, 2000. IEEE Computer
Society.

[8] Neil Brown et al. The Linux Virtual File-system Layer, 1.6
edition, 12 1999. http://www.cse.unsw.edu.au/~neilb/oss/

linux-commentary/vfs.html.

[9] John Bruno, Jose Brustoloni, Eran Gabber, Banu Ozden, and Abra-
ham Silberschatz. Disk scheduling with quality of service guarantees. In

138

ICMCS '99: Proceedings of the IEEE International Conference on Mul-
timedia Computing and Systems Volume II-Volume 2, page 400, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[10] Milind M. Buddhikot, Xin Jane Chen, Dakang Wu, and Guru M.
Parulkar. Enhancements to 4.4 bsd unix for e�cient networked mul-
timedia in project mars. In ICMCS '98: Proceedings of the IEEE Inter-
national Conference on Multimedia Computing and Systems, page 326,
Washington, DC, USA, 1998. IEEE Computer Society.

[11] T. Coughlin and C. Associates. Putting Portable Storage in Perspec-
tive. Time (Point above which HDDs become less expensive than Flash
Memory), 1:7.

[12] Eduardo Madeira Fleury, Michael Kerrisk, and Jens Axboe. ioprio_get,
ioprio_set - get/set I/O scheduling class and priority, 6 2006. Linux
version 2.6.13 and later.

[13] Robert Geist and Stephen Daniel. A continuum of disk scheduling al-
gorithms. ACM Trans. Comput. Syst., 5(1):77�92, 1987.

[14] D. James Gemmell and Jiawei Han. Multimedia network �le servers:
multi-channel delay sensitive data retrieval. InMULTIMEDIA '93: Pro-
ceedings of the �rst ACM international conference on Multimedia, pages
243�250, New York, NY, USA, 1993. ACM Press.

[15] D. James Gemmell, Harrick M. Vin, Dilip D. Kandlur, P. Venkat Ran-
gan, and Lawrence A. Rowe. Multimedia storage servers: A tutorial.
Computer, 28(5):40�49, 1995.

[16] K. Gopalan and T. Chiueh. Real-time disk scheduling using deadline
sensitive SCAN. Technical Report 92, Experimental Computer Systems
Labs, Dept. of Computer Science, SUNY at Stony Brook, Stony Brook,
NY, USA, Jan 2001.

[17] Pål Halvorsen, Carsten Griwodz, Vera Goebel, Ketil Lund, Thomas
Plagemann, and Jonathan Walpole. Storage system support for
continuous-media applications, part 1: Requirements and single-disk
issues. IEEE Distributed Systems Online, 05(1), 2004.

[18] Micha Hofri. Disk Scheduling: FCFS vs. SSTF Revisited. Commun.
ACM, 23(11):645�653, 1980.

139

[19] Lan Huang and Tzi cker Chiueh. Implementation of a rotation latency
sensitive disk scheduler, 2000.

[20] A. Hu�man and J. Clark. Serial ATA Native Command Queuing. 2003.

[21] Sitaram Iyer and Peter Druschel. Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in synchronous
I/O. In 18th ACM Symposium on Operating Systems Principles, Oc-
tober 2001.

[22] I. Kamel, T. Niranjan, and S. Ghandeharizedah. A Novel Deadline
Driven Disk Scheduling Algorithm for Multi-Priority Multimedia Ob-
jects. Data Engineering, 2000. Proceedings. 16th International Confer-
ence on, pages 349�361, 2000.

[23] Ravi Kiran. Linux Block Device Architecture. WWW page,
5 2006. http://www.geocities.com/ravikiran_uvs/articles/

blkdevarch.html.

[24] Robert Love. Linux Kernel Development, Second Edition. Novell Press,
2005.

[25] K. Lund. Adaptive Disk Scheduling in a Multimedia DBMS. PhD thesis,
Department of Informatics, University of Oslo, 2003.

[26] C. Martin, P. Narayanan, B. Ozden, R. Rastogi, and A. Silberschatz.
The fellini multimedia storage server, 1996.

[27] G. Nerjes, P. Muth, M. Paterakis, Y. Romboyannakis, P. Trianta�llou,
and G. Weikum. Scheduling strategies for mixed workloads in multi-
media informationservers. Research Issues In Data Engineering, 1998.
Continuous-Media Databases and Applications. Proceedings. Eighth In-
ternational Workshop on, pages 121�128, 1998.

[28] H. Ohnishi, T. Okada, K. Noguchi, and T. NTT. Flow Control Schemes
and Delay/Loss Tradeo� in ATM Networks. Selected Areas in Commu-
nications, IEEE Journal on, 6(9):1609�1616, 1988.

[29] G. Özsoyoglu and RT Snodgrass. Temporal and Real-time Databases:
A Survey. Knowledge and Data Engineering, IEEE Transactions on,
7(4):513�532, 1995.

[30] Nick Piggin. Anticipatory IO scheduler, 9 2003. Documentation/block/
as-iosched.txt.

140

[31] KK Ramakrishnan, L. Vaitzblit, C. Gray, U. Vahalia, D. Ting, P. Tzel-
nic, S. Glaser, and W. Duso. Operating System Support for a Video-
On-Demand File Service. Multimedia Systems, 3(2):53�65, 1995.

[32] A. L. Narasimha Reddy and James C. Wyllie. I/o issues in a multimedia
system. Computer, 27(3):69�74, 1994.

[33] A. L. Narasimha Reddy and Jim Wyllie. Disk scheduling in a multime-
dia I/O system. In MULTIMEDIA '93: Proceedings of the �rst ACM
international conference on Multimedia, pages 225�233, New York, NY,
USA, 1993. ACM Press.

[34] Y. Rompogiannakis, G. Nerjes, P. Muth, M. Paterakis, P. Trianta�llou,
and G. Weikum. Disk Scheduling for Mixed-media Workloads in a Mul-
timedia Server. In MULTIMEDIA '98: Proceedings of the sixth ACM
international conference on Multimedia, pages 297�302, New York, NY,
USA, 1998. ACM Press.

[35] Chris Ruemmler and John Wilkes. An Introduction to Disk Drive Mod-
eling. IEEE Computer, 27(3):17�28, 1994.

[36] Seagate Global Product Marketing. 2.5-Inch Enterprise Disc Drives:
Key to Cutting Data Center Costs. Technical Report TP-534, Seagate
Technology LLC, Feb 2005.

[37] Seagate Technology LLC. Seagate Cheetah 15K.4 SCSI Product Manual,
5 2005. Fetched December 2006.

[38] Seagate Technology LLC. Seagate Barracuda 7200.10 PATA Product
Manual, 05 2006. Fetched December 2006.

[39] M. Seltzer, P. Chen, and J. Ousterhout. Disk Scheduling Revisited. In
Proceedings of the USENIX Winter 1990 Technical Conference, pages
313�324, Berkeley, CA, 1990. USENIX Association.

[40] Prashant Shenoy and Harrick M. Vin. Cello: A Disk Scheduling Frame-
work for Next Generation Operating Systems*. Real-Time Syst., 22(1-
2):9�48, 2002. Based on preliminary version presented in the proceedings
ACM SIGMETRICS'98 conference.

[41] Prashant J. Shenoy, Pawan Goyal, Sriram Rao, and Harrick M. Vin.
Symphony: An Integrated Multimedia File System. Technical Report
CS-TR-97-09, 1, 1998.

141

[42] Prashant J. Shenoy and Harrick M. Vin. Cello: A Disk Scheduling
Framework for Next Generation Operating Systems. Technical report,
Austin, TX, USA, 1998.

[43] M. Shreedhar and George Varghese. E�cient Fair Queueing Using
De�cit Round-robin. IEEE/ACM Trans. Netw., 4(3):375�385, 1996.

[44] Je�rey B. Siegal. Re: Strange scheduling behavoir in SMP (kernel
2.2.14). Email list posting, 1 2000. http://www.cs.rice.edu/~ssiyer/
r/antsched/linux.html.

[45] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2001.

[46] Tsun-Ping J. To and Babak Hamidzadeh. Dynamic real-time scheduling
strategies for interactive continuous media servers. Multimedia Syst.,
7(2):91�106, 1999.

[47] Linus Torvalds and the Linux Kernel Developers. The Linux Kernel
(2.6.19). Source code, 1991-2006. http://www.kernel.org.

[48] Ravi Wijayaratne. Prism: A File Server Architecture for Providing
Integrated Services. PhD thesis, 2001. Chair-Ricardo Bettati and Chair-
A. L. Reddy.

[49] Ravi Wijayaratne and A. L. Narasimha Reddy. Providing QoS guaran-
tees for disk I/O. Multimedia Syst., 8(1):57�68, 2000.

[50] Bruce L. Worthington, Gregory R. Ganger, and Yale N. Patt. Scheduling
Algorithms for Modern Disk Drives. SIGMETRICS Perform. Eval. Rev.,
22(1):241�251, 1994.

[51] Philip S. Yu, Mon-Song Chen, and Dilip D. Kandlur. Design and Anal-
ysis of a Grouped Sweeping Scheme for Multimedia Storage Manage-
ment. In Proceedings of the Third International Workshop on Network
and Operating System Support for Digital Audio and Video, pages 44�55,
London, UK, 1993. Springer-Verlag.

142

