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Abstract

The energy and power sector is a major value contributor to our society and our high
living standards. In recent times the power sector has gained increased complexity
while undergoing significant changes, with the increased share of renewable production
being one of the contributors. An increased portion of renewable contributors in the
power mix from, e.g., wind power, results in more volatile power production, increasing
the need for grid balancing, making the regulating power market more challenging
for power producers to participate in. The purpose of the regulating power market
is to compensate the gap between the planned production that has been settled in
the day-ahead market and the actual production and demand. The ability to forecast
the regulating power volumes and prices some hours in advance of the hour when
it is actually traded would enable power producers to balance their positions in the
market more optimally. This project exploits historical regulation data together with
different market data and weather data to train deep learning models to forecast future
regulation volumes. A thorough time-series analysis of regulating power volumes
revealed some predictive potential. Furthermore, Bidirectional LSTM showed satisfying
results when forecasting up to four hours into the future using data from 2016-to 2021.
No previous research was found that uses more than two years of data, no previous
research uses recent data, and no previous work has utilized deep learning to forecast
the Norwegian regulation market volumes. Additionally, this project did a deep analysis
of topographical weather images and transfer learning to evaluate the potential of
predicting regulating power volumes using weather images. Different weather forecasts,
actual weather, and weather uncertainties were all utilized. The weather data was
generally not found to have a considerable direct influence on regulation volumes.
However, the weather is considered to have an increasing influence in the future as more
volatile renewable power production is expected in the power markets. No previous
research has been found to investigate weather images in the context of the regulation
market.
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Chapter 1

Introduction and motivation

The power markets in Norway and Europe are undergoing changes concerning complex-
ity, technology, and market structures. One of the reasons the electrical power systems
and markets are considered complex is because power must be consumed or transported
in the same instant as it is produced. Another main reason behind the complexity is that
power supply and demand must be instantaneously balanced. Adding to the existing
complexity, a shift toward a higher fraction of renewable energy in power production
poses challenges due to their volatile nature (in particular solar and wind energy). Fur-
thermore, the power market complexity is increasing due to infrastructure integration
among the Nordic countries and Europe[4], where some of the most recent interconnec-
tions are between Norway and Germany and Norway and England. Therefore, to tackle
the changes happening to the power markets, new data-driven technology is needed.

The Nordic power sector consists of 12 bidding zones, as shown in Figure 1.1, of which
the five Norwegian zones are named NO1, NO2, NO3, NO4, and NO5. The zones are
designed to take congestion in the transmission grid into account in the market. The
price for power within each zone is determined by the balance between demand and
supply relative to the transmission constraints[5]. Each zone constitutes several markets;
day-ahead (spot), intra-day, and the regulation market.
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Figure 1.1: Bidding zones for the Nordic energy markets. Image from Nord Pool1.

In the deregulated Nordic power market, the electricity volumes for all producers and
consumers are settled 12-36 hours in advance of the operational hour in the day-ahead
market. However, neither consumption nor production can be predicted with 100% cer-
tainty. The producers can either balance their position through trade in a continuous
intraday market (such as XBID2) or settle them in the balancing market [6]. The day-
ahead, intra-day, and regulation market are presented in more detail in Subsection 2.1.1,
2.1.2, and 2.1.3. Figure 1.2 shows the Nordic and Norwegian market structure with em-
phasis on the interaction between grid operation (balancing) and the market operation
side.

The ability to forecast the manually activated tertiary reserves (regulation volume) shown
in Figure 1.2 some hours ahead of their realisation will provide the power producers with
decision support for improved production planning and strategic decisions regarding in
which market to settle potential imbalances. With the increase of non-dispatchable re-
newable sources such as solar and wind energy both in Norway and Europe, as well as
increased electrification of society, the weather significantly affects both electricity pro-
duction and consumption. Continuously updated weather forecasts may contain inform-
ation that will allow for predicting the regulation volumes some hours ahead but after
the settlement of the day-ahead market. This would give the producers a chance of op-
timising the production to the actual situation.

2https://www.epexspot.com/
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Figure 1.2: Different power markets and interactions with the transmission grid operator.
Drawing made by Pål Forr Austnes in the KoBas project 1.1. Permission to reuse the
drawing was granted.

The thesis is coupled to the KoBas project described in Section 1.1, and do not cover
the entire scope of the project. KoBas aims to develop predictive models for the power
regulation market that can aid power producers in better planning their production and
trading strategies in an increasingly competitive and challenging regulation market. In
general, one can say that detailed power production planning is like guessing the actions
of an "invisible hand," with many complex relationships and fields to consider at a mi-
cro and macro level. Thus, deviations from plans made in the day-ahead market and
the actual hourly condition of the power market are inevitable, which leads to the need
for adjustments through grid balancing. Besides complexity in modeling the regulation
market volumes, another overall motivation is that very little research have been done
on regulation volume prediction, and the power producers who are partners in KoBas do
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at the moment not use any models for predicting regulation in their daily operations.

The drivers of the power markets and the volatile nature of weather are significant topics
for the thesis. Therefore, both market data and very rich weather data are investigated to-
gether with the use of neural networks. Neural networks are powerful functional approx-
imators that can be trained to generalise over complex relationships in the data, making
the use of suitable neural network a strong candidate for forecasting future power regula-
tion volumes (timescale of hours). To fully grasp the scope of the problem and challenges
faced for the work, it is imperative to investigate and understand the available data de-
scribing the energy markets.

The power sector constitutes a multidisciplinary field, and this thesis fall into a intersec-
tion between data science, image analysis and computer vision, and energy informatics
and power markets shown in the figure 1.3.

Figure 1.3: Thesis intersection between data science, computer vision and energy
informatics

1.1 The KoBas project

The thesis is coupled to the KoBas project3 funded through the Energy-X programme
from the Research Council of Norway [7]. The KoBas project aims to create solutions
for forecasting the regulation power market volume and price for the project partners to
position themselves better in the regulating power market r4. The project is an innova-
tion project lead by Skagerak Kraft AS together with the partners Eviny AS and Equinor

3grant number 309315
4https://www.sintef.no/en/projects/2020/collective-for-balance-services-kobas/
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Energy AS. Several students have been involved in the project together with researchers
from SINTEF, jointly working on individual models that can be combined into a real-time
decision support system with better predictive powers than single models can achieve.

Some of the ideas in this thesis were motivated by the project and related work done by
other project members, but everything presented here is my own implementations unless
explicitly otherwise stated. Pål Forr Austnes was an extended summer student primar-
ily working with Urgent Market Messages (UMM). Figure 1.2 was made by Pål and is
reused in the thesis with permission. The case study that I performed on the North Sea
Link failure in Section 4.37 is influenced by a similar study performed by Pål but fitted
into the context of the thesis. Pål did a superficial study of regulation and unprocessed
temperature and wind data, whereas I use the full images with both spatial and temporal
imformation.

1.2 Research questions

Along with changes happening in the power markets, the power producers have an in-
creasing need for insight into how they can better position themselves in the markets. Un-
fortunately, the regulating power market is not much researched and is a very stochastic
market. The research questions investigated in the thesis are:

• How does the regulation market relate to other markets and are there any
significant drivers of activation of tertiary reserves volume?

• Is regulation volume predictable or just stochastic white noise?

• Weather influence on the regulating power markets in Norway

– Does weather influence the regulating power markets in Norway, and do
certain weather conditions drive the need for down or up-regulation?

– The hourly net or grid balancing is a effect of the current market situation
not going as scheduled from the day-ahead market. The plans made during
the day-ahead market is based on different types of forecasts. Therefore, it is
hypothesised that weather forecast uncertainties influence the need for grid
balancing trough the activation of tertiary volumes (regulation volumes).

– Can information from a domain with images of animals, humans, etc, be
transferred to better forecast the power regulation volumes from weather
data?

Contributions can be found in Section 3.3.
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Chapter 2

Background

This chapter introduces background theory and concepts used in thesis. The chapter
also introduces high level background information relating to the Nordic and Norwegian
power markets. The machine learning community is a vast and rapidly developing
community. Therefore, a considerable amount of information and methodology is
communicated through blog posts while other is communicated through more traditional
published articles and books. I am aware that published material is preferred due to it
being scientifically rooted. However, blog posts and GitHub repositories were frequently
used in addition to published material in order to maximise inspiration and knowledge
on how to tackle the challenges.

2.1 The Nordic and Norwegian power markets

The wording regulation market and balancing market are used interchangeably. Likewise
the regulation volume has many names that are used interchangeably; regulation
volume, balancing volume, regulating power, balancing power, and activation of tertiary
reserves. Therefore, the thesis adopts the interchangeably usage of the mentioned
wordings.

2.1.1 Day-ahead (spot) power market

In todays primary power market, the day-ahead market, the Nordic power producers
must deliver bids for how much power they plan to produce hour by hour the following
day. This bid must be delivered to the system operator within 12:00 PM the current
day, meaning that the bids are based on estimates incorporating uncertainties arising
from looking 12-36 hours into the future. Power production from certain renewable
energy sources is volatile and can vary significantly. Therefore, uncertainties stemming
from a 12-36 hour timespan can be particularly challenging for non-adjustable green and
renewable energy producers such as wind and solar. Under and over production from
non-adjustable volatile energy sources will affect the entire power marked, and deviation
from bids and expected supply of power leads to either financial losses, fluctuations in
the power markets, or power blackouts due to power shortage. Considering the financial
losses, not delivering on the supply of power placed during the bidding process in
the day-ahead market triggers certain penalties for the participant under contract from
the bidding process. These risks propose a significant threat to the society as a whole
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including; power operators, the power market, and the consumers of power.

2.1.2 Intra-day energy market

When the day-ahead market is closed at 12:00, the intra-day market (e.g. XBID) opens (at
14h) in the Nordic energy marked. In contrast to day-ahead, the intra-day market allows
for continuously trading and for trading closer to the period of delivery [8]. Looking
specifically at the Nordic power sector, if a trader wants to buy 10 MWh for a 30-minute
interval from 18:00-18:30 PM, it needs to find a seller willing to supply the power, and the
trade must be closed at 17:00 PM, 60 minutes prior to the delivery[9]. Another difference
comparing the intra-day and the day-ahead market is the pricing. Whereas pricing in
the day-ahead market is determined by the market-clearing price setting a fixed price for
the following day for all transactions within each hour, the intra-day trading1 of power
is based on continuous bilateral agreements between producers. Market participants
foremost utilize trading in the intraday market to balance their positions2 since intra-
day trading serves the purpose of minimizing power shortfalls and surpluses that may
occur after the day-ahead market is closed. Therefore, the ability to buy power from the
market to meet the contract set in the day-ahead market can be financially vital to the
participant. The added trading flexibility from intra-day trading is especially suitable for
market participants that mainly rely on energy production from renewable sources since
it enables them to adjust to sudden changes in weather conditions or other changing
circumstances.

2.1.3 Balancing power market

Plans made in the day-ahead market and the activity within the intra-day market both
intend to create a balance between consumption and production of power. However,
there will undoubtedly be events that upset the balance within a particular operating
time, Footnote 2. The Transmission System Operator (TSO) administrates the balancing
market in order to maintain a balance between demand and response (and ensure proper
frequencies). The balancing market is also market-based in the sense that market par-
ticipants can offer tertiary reserve power at a given price. However, the only trading
partner for a producer is the TSO.

As shown in Figure 1.2 grid balancing consists of three different types; primary, sec-
ondary, and tertiary reserves. The primary and secondary reserves relate to balancing
the frequency, while the tertiary reserves relate to manually activated power volumes
in MegaWatt-hour. The tertiary reserves are activated when the TSO physically calls
a power producer participating in the regulation market and asks if they can produce
more power than planned with a 15 minutes maximum response time, Footnote 2. On
the other side, the producers can receive a call from the TSO asking them not to produce
according to schedule but still get paid for not producing. The balancing conducted in
the regulation market (a part of the balancing markets) is to some degree to counter un-
expected events after the day-ahead market clearance. The events leading to balancing
are often short lived and balanced out by the TSO. Therefore, the nature of the regulation
market is "short lived", stochastic and can be highly volatile in terms of activated tertiary
power volumes.

1https://www.next-kraftwerke.com/knowledge/intraday-trading
2https://energifaktanorge.no/en/norsk-energiforsyning/kraftmarkedet/
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2.2 Machine Learning (ML) - Basic concepts

Artificial Intelligence (AI) has become increasingly popular, and today it plays a
significant role in our daily lives whether we notice its present or not. However,
AI is a rather vast and abstract term, and a subset of AI that gives it a concrete
realization is called machine learning. To get an intuition about what machine learning
is and understand what differentiates machine learning from traditional computer-based
systems, it is sensible to look at what separates the two at the highest level possible.
A computer-based systems brains are constructed by rules to tackle specific situations or
problems in traditional programming. Such a systems output consists of answers, targets
or solutions given the input data relative to the constructed rules. Therefore, a traditional
system cannot autonomously adapt to changing circumstances unless every conceivable
circumstance is already incorporated within the rule-based mechanisms. Comparing
a traditional computer-based system with Machine Learning, Machine Learning is a
computer-based system that can learn rules rather than applying rules to produce results
or answers. The primary idea of Machine Learning is to construct a system or a model
that can learn a function that maps inputs to outputs. The learning process serves the
purpose of extracting and memorize important patterns within the data. Furthermore,
the extracted information can be utilized in the decision-making process considering
new input data not previously seen by the system. Figure 2.1 below visualize the main
differences comparing a traditional computer-based system with a supervised machine
learning based system. The illustration above and figure 2.1 draws inspiration from
the datalya.com3 data science blog and from the well known American online publishing
platform medium.com4.

Figure 2.1: Traditional Programming vs Supervised Machine Learning.

For knowing when to benefit from using Machine Learning and utilize advances in data-
driven development, two deciding factors should be considered; The complexity of the
problem and the need for adaptivity[10]. Furthermore, access to data is crucial, and the
quality of training data is the most essential element to consider in machine learning for
the data-driven learning process. One of the main challenges in machine learning relates
to the quality of the data Geron[2], e.g., if information or phenomenons affecting the out-
come(answers) is not incorporated within the input data, the model will not learn the
cause or pattern that influences the outcome(answers). The lack of relationships between
input data and answers leads the model to learn a random set of rules resulting in arbit-
rary outcomes.

3https://datalya.com/blog/machine-learning/machine-learning-vs-traditional-programming-paradigm
4https://medium.com/@amjad.baba913/traditional-programming-vs-machine-learning-11c9abd51928
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There are three commonly known subcategories within the machine learning paradigm
named; Supervised Learning, Unsupervised Learning, and Reinforcement Learning,
Geron[2]. Each sub-category relate to a unique learning process for different types of
problems, data, and environments.

2.3 Supervised Learning

Out of the three mentioned sub-categories, supervised learning is the most mature and
explored learning method today. The term supervision fits nicely to an analogy where a
student(learner) learns while being guided such that the student has access to all answers
during learning. This process is often referred to as Inductive Learning where observed
truths, examples, solutions, or answers leads to knowledge behind rules, patterns, or
functions that can generalize to predict new reasonable answers given a new set of
previously unseen data[11]. In other words, examples in Inductive Learning comprise
of both the data input x and known targets or answers y. The learning process learns the
relationship between x and y and constructs a model that is able to predict y denoted as
ŷ given a function such that ŷ = f (x). However, the input data x and its relationship
to target data y is rarely a perfect fit because of noise. Therefore, a more accurately
expression of the function including the noise ε can be as follows [12]:

ŷ = f (x) + ε (2.1)

Looking further, Supervised Learning is commonly formulated either as a classification
or a regression problem. Furthermore, machine learning problems can also be tuned
for time-series or time-dependent data to preserve the adjacency of data within different
time intervals.

2.3.1 Classification

The problem of classifying or place a name tag for specific situations or conditions occurs
relatively often in our daily lives. An example of such a situation is; will the weather be
good or bad tomorrow? A similar but more complex classification problem concerning
the weather condition for tomorrow could be the following; Will it rain, snow, be cold,
be warm, cloudy, or sunny. Another essential application of classification is to predict
a medical condition of a patient. All these conditions can be viewed as different classes
because they are categorized and separated from each other. The role of a classifier in
this regard is to process new information and identify which category it belongs to. The
possible categorical outcomes of such a classifier can be either binary, the one or the other
class, or it can be of many possible classes[12].

2.3.2 Regression

The idea of regression has been around for a long time, and it has long been used in
statistical modelling for estimating quantitative measures such as size, weight, and so
forth. Regression is all about numerical values, not categorical as in classification. This
results in regression having numbers for the target data (y), and not categories[12].
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Figure 2.2: A neuron and its connection to deep learning[1]

2.4 Deep Learning

Deep learning is a rapidly evolving field which is a subset of the machine learning
field. It shares the same overall idea of learning by analyzing vast quantities of data.
The main idea behind deep learning is to mimic the functionality of the human brain.
Deep learning is inspired and built on the same concepts as neurons in the human
brain. Neurons collect and process electrical signals, and each neuron fires an electrical
signal based on how strong its input signals are. The vast network of neurons in
the brain work together, forming higher-level actions enabling humans to feel, sense
the environment, and control the body. Humans are not born with knowledge, and
knowledge must be learned. Therefore, the behavior of the majority of neurons, when
it fires and how they relate to each other, must be trained from birth. Luckily, some basic
functionality is incorporated within our DNA. In deep learning the neurons are ordered
in networks called layers, which is why deep learning is often referred to as a Artificial
Neural Network[13][1]. Figure 2.2 is taken from a medium article [1], and it shows the
connection between Real-life learning and deep learning. Figure 2.3 illustrates a neural
network having two input neurons {x1,x2} in the first input layer, 5 neurons in the hidden
intermediate layer, and 1 neuron {y1} at the output layer. As the signals flow from the
input layer to the output layer, they change. A transition from one neuron to another
changes the signals strength or signal value according to weights. The weights between
neurons represent how strong the bond is between the two, and these weight are trained
during training of the network. The resulting signal at the output neuron represents the
deep learning models predicted value.

2.4.1 Activation function

Activation functions in neural network mimics the activation of a neuron in the human
brain to some degree. The neuron calculates a weighted sum of inputs, adds a bias
and decides if it should fire on the output or not5. The activation function in a neural
network is essential since it enables the information to flow from the input to the output
depending on which neurons are fired from the activation functions. This thesis mainly

5https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
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Figure 2.3: Illustration of a artificial neural network with one hidden layer

uses the Rectified Linear Units (ReLu) activation function. This function gives x on the
output if x is positive. Otherwise, it gives out zero.

2.4.2 Dropout

Dropout is a commonly used regularization technique in neural networks that have been
successfully used to gain better generalization and increased performance [2]. The main
idea of dropout is that it gives every neuron a probability of temporally being dropped
out in the training step or epoch.

2.5 Convolutional neural networks (CNN) and Transfer Learn-
ing

The word convolution is specified by Nielsen [14] as follows: Convolution means applying
a kernel (a matrix) to a larger matrix by sliding it across the larger matrix, forming a new one.
Each element of the new matrix is the sum of element-wise multiplication of the kernel and a sub-
section of the larger matrix. In the context of convolutional neural networks, they consist
of a network of convolutional layers which incorporate several kernels sometimes called
filters or neurons. Convolutional neural networks (CNNs) emerged from the study of the brain’s
visual cortex, and they have been used in image recognition since the 1980s [2]. The CNN are
know to be good at at extracting features from images that are passed through the con-
volutional layers. The convolutional operations are extracting features such as edges and
other patterns from images6.

The pre-trained models used with transfer learning in this thesis are CNN models ini-
tially trained on a subset from the ImageNet database introduced by Deng et al. [15]. The
database incorporates millions of images and 1000 different labeled classes within the
12 following categories: mammal, bird, fish, reptile, amphibian, vehicle, furniture, mu-
sical instrument, geological formation, tool, flower, and fruit. Transfer learning works by
transferring knowledge (e.g., trained model weights) from one or several source domains
to a new target domain, where the knowledge needed in the target domain is different but
might be related to the source, Pan et al. [16]. There are several motivations for utilizing
transfer learning, and one major benefit relates to how much training data is available.
Training, e.g., deep CNN models, generally require a large number of data. However,

6https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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when common knowledge is transferred from a source to the target domain, the target
domain model can focus more on fine-tuning the target problem even with smaller data-
sets, Pan et al. [16]. This is particularly relevant to the weather forecast, and weather
forecast uncertainty images used in this thesis since only data from 2021 were created
due to the time-consuming process, Section 4.14 and Subsection 5.4.1. Additionally, the
Norwegian Meteorological Institute also deletes old weather forecasts to free up storage
space after some time, limiting the available data for download. Another benefit of using
transfer learning is that it often leads to faster training convergence since the model is re-
lived from learning parts of the knowledge needed for the domain target. Additionally,
knowledge transfer often leads to a better starting point for modeling which again may
improve the performance of the final model, Pan et al. [16]. Gao et al. [17] summarize two
common strategies that are usually considered for transfer learning; a feature extractor
and fine-tuning. For this thesis, only the fine-tuning strategy is considered. Fine-tuning
generally involves freezing some pre-trained network parts and training the remaining
layers through backpropagation and gradient descent.

2.6 Time series

Time series data is sequenced and time-dependent data. Analysis of the same type of data
observed at different timestamps is a major and important field. Data that incorporate
historical events which relate across times open up unique possibilities. Time-series data
can help us understanding how and why thing have changed. Furthermore, it enable us
to forecast the future when knowing how the data will evolve or behave based on deep
historical insight [18].

2.6.1 Crucial steps for working with time-series

In the book by Auffarth [19] seven crucial steps for working with time-series are defined:
importing the dataset, data cleaning, understanding variables, uncovering relationships
between variables, identifying trend and seasonality, prepossessing (including feature
engineering), training a machine learning model. All these steps are considered part of a
cyclic loop, which the book refers to as The time-series machine learning flywheel. The book
emphasizes the cycle being the iterative nature of working with time-series, where steps
are revisited after new discoveries are made. In the defined process, machine learning
modeling count for 1

7 of the cycle, and 3
7 of the cycle relate to time-series data analysis

as shown in Figure 2.4. Additionally, for this thesis, data download and organization are
added prior to the step named importing the data resulting in 8 steps in total. These eight
steps form the backbone in answering the research questions raised and apply to both
the market data and the image data later discussed in this thesis.
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Figure 2.4: The cycle of time-series defined by Auffarth [19] published by Packt7

2.6.2 Linear regression and Ridge regression

Both Linear regression and Ridge regression are designed to make predictions by
computing a weighted sum of the input features with the inclusion of a bias [2]. A simple
linear regression formula is as follows:

ŷ = β0 + β1x1 + ... + βnxn

Where ŷ is the predicted value, n is the number of features, x is the input data, and β is the
coefficients. The coefficients of the model linear regression model are calculated by the
Ordinary Least Squares procedure, which minimizes the sum of the squared residuals.
The squared residuals are the difference between predicted results, and the actual targets
squared relative to the regression line going through the data. The sum of all squared
errors (residuals) together is what the least-squares method minimizes [2]. The Ridge
regression is a linear regression with an additional regularization term added to the cost
function. The purpose of the regularization is to punish the model weights by forcing
them to be as small as possible. This cancels out features that do not influence the
outcome of the model to prevent them from introducing more noise [2].

2.6.3 Support Vector Regression (SVR)

The Support Vector Regression model is basically the Support Vector Machine used with
discrete values. The SVR model tries to find the best fit hyperplane among the data
with the maximum number of points within a given band. This hyperplane reflects the
relationship between data [20].

2.6.4 eXtreme Gradient Boosting (XGBOOST)

XGBOOST is a gradient boosting algorithm based on decision trees, famous for its speed
and performance. It sequentially adds predictors to an ensemble. The added ensemble
performs predictions and stores the residual error. Then a new ensemble is added,
correcting the errors of the existing predecessor [2].
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2.6.5 Recurrent Neural Network and Long Short-Term Memory

The Recurrent Neural Network (RNN) is known for its ability to model temporal de-
pendencies and behavior in data using hidden internal states. The hidden states act as
memory and pass information from previous timesteps forward in time. Through shared
weights across all times, the memory becomes universal and the RNN is therefore known
as a feedback network. The RNN belongs to a class of artificial neural networks where
connections between units form a directed cycle [21]. One significant disadvantage of the
vanilla RNN is its inability to capture long-term dependencies for long sequences of data
[2]. The Long Short-Term Memory (LSTM) model, which has been frequently used for
electricity consumption forecasting [19], extends the memory of the RNN by forget, input
and output gates. These gates are optimized during model training, and the model learns
the most significant dependencies to memorize. At the same time, the model can forget
the lesser important dependencies freeing up memory for the most significant patterns.

Regular RNN and LSTM are only looking at the past and present input data during
training. However, in some cases it might be beneficial to describe relationships from
a reverse order. This has for example proven beneficial in natural language processing
domain where the last part of a sentence can carry a lot of context for the first part. The bi-
directional recurrent layer makes it possible to encode a given word with information of
the next word ahead coming from also traversing the sentence in revers order [2]. Figure
2.5 shows a high level visualization of a bidirectional recurrent layer. The arrows rep-
resents the direction the sequence is processed during training. The hidden states from
traversing the input data twice are concatenated.

Figure 2.5: Bidirectional recurrent layer inspired by Geron [2] published by O’REILLY.

The bidirectional recurrent neural network was introduced by Schuster et al. [22], and
processing sequences in both ways has proven successful for time-series by Siami et al.
[23]. They showed that Bidirectional LSTM (BiLSTM) provide better results than regular
unidirectional LSTM and ARIMA models on financial time-series data.

2.6.6 ConvLSTM

Convolutional LSTM (ConvLSTM) combines convolution with LSTM for spatial-
temporal modeling. The ConvLSTM model consists of recurrent layers just as the regular
RNN design. However, the internal weight updates are performed using convolution in-
stead of matrix multiplications. This enables the use of time-series images as input data
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over the 1-dimensional feature vector required by the regular LSTM model8.

2.7 Evaluation metric and loss function

The Mean Squared Error (MSE) is commonly used evaluation metric for regression
problems. It measures the average of the squared difference between the original and predicted
values in the data set9. This represents the variance of the residuals and it is formulated as
follows:

MSE =
1
n

n

∑
n=1

(
y− ŷ

)2 (2.2)

Where n is the number of instances in the dataset, ŷ the predicted value, and y is the
target. In this project, the MSE is used both as a evluation metric and also as a loss
function during model training.

2.8 Image statistics

The theory for this section is collected from the book by Gonzales et at.[24] published at
Pearson10.

2.8.1 Gray Level Co-ocurrence Matrices (GLCM)

First-order statistics are often used in statistical analysis. However, first-order statistics
do not describe geometry or context in a data grid or an image. Statistics relative to
geometry and context that characterize the texture in an image can be computed as
second-order statistics derived from Gray Level Co-occurrence Matrices (GLCM), an
abstract image representation. GLCM incorporates the relationship between pixel pairs
within a given image. As such, statistics derived from GLCM consider how the gray
level pixel at position i relate to the gray level pixel at position j when including the
distance d and angle θ between the pixel pairs. The pixel pairs i and j can be similar or
different, triggering different statistical properties. Additionally, the magnitude of the
pixel difference and their direction also influence the statistics. Extracting the second-
order statistics, also referred to as image features, are done by applying different weights
on the Gray Level Co-occurrence Matrix, which results in an aggregated weighted sum.
More details on how the GLCM is constructed for this project can be found in Section
7.2.3 in Appendix.

2.8.2 Second order image statistics

This subsection lists the different second order image statistics used in this thesis.
Detailed information and formulas for the different statistics can be found in Gonzales et
at.[24].

8https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7
9https://medium.com/analytics-vidhya/mae-mse-rmse-coefficient-of-determination-adjusted-r-squared-which-metric-is-better-cd0326a5697e

10https://www.pearson.com/us/higher-education/program/Gonzalez-Digital-Image-Processing-4th-Edition/
PGM241219.html
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2.8.2.1 Entropy from GLCM

Entropy is based on the value of the GLCM and it measure of how uniform the texture in
a image is. In other words, it measures the randomness of the image textures, Yang et al.
[25].

2.8.2.2 Angular Second Moment (ASM) from GLCM

The Angular Second Moment (ASM) feature measures homogeneity from the values in
the GLCM. ASM is also knows as energy, Yang et al. [25].

2.8.2.3 Inverse Difference Moment (IDM) from GLCM

The Inverse Difference Moment feature measures local homogeneity of an image from
the positions in the GLCM, Yang et al. [25].

2.8.2.4 Contrast / Inertia (INR) from GLCM

Inertia measuring the contrast (local variances in an image) from pixels-pairs from
positions in the GLCM, Yang et al. [25].

2.8.2.5 Dissimilarity (DIS) from GLCM

Dissimilarity is a feature that measures the distance between pixel-pairs using positions
in the GLCM.

2.8.2.6 Cluster Shade (SHD) from GLCM

Cluster Shade measures the skewness of the GLCM, by utilizing pixel positions in the
GLCM. A high value means the image textures are asymmetric, Yang et al. [25].

2.9 Outlier

A threshold for determining outliers can be data points above or below 1.5 times the
Interquartile range (IQR). The IQR can be seen as the length of the box in a boxplot. The
IQR can also be referred to as the middle 50%. Besides being a less sensitive measure
of the spread of a data set, the interquartile range has another important use. Due to its
resistance to outliers, the interquartile range helps identify when a value is an outlier. The
interquartile range rule is what informs us whether we have a mild or strong outlier11.

11https://towardsdatascience.com/why-1-5-in-iqr-method-of-outlier-detection-5d07fdc82097
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Chapter 3

Previous work and Research
questions

Research related to modeling the regulation volume in the Norwegian and Nordic region
regulating power markets is scarce, with only a handful of papers found. Research on
regulation volume outside the Nordic region in Europe is also limited. Research outside
the Nordic region is not considered relevant since balancing is rooted in local circum-
stances. Other European countries have different power sources and demands than the
Nordic region and base their plans on different criteria. Additionally, while the Nordic
countries are similar, what defines a bidding zone in other European countries differs
more. However, five previous research publications are considered related and used as
inspiration for the thesis work, of which four target the Norwegian markets and one the
Swedish markets. Despite being considered related, their results are not directly com-
parable with this thesis work as discussed in Section 3.1 to 3.2. In contrast, research
topics rooted in the day-ahead and partially the intra-day markets have received more
attention [26, 27]. However, compared to the wholesale electricity market, the balancing power
is a considered niche market [28]. When looking at the regulation markets, the existing re-
search mainly dealt with forecasting using traditional or conventional statistical methods
(without considering weather data) and not state-of-the-art deep learning methods. The
aforementioned indicate the novelty level in forecasting regulation volumes for the Nor-
wegian regulating power markets, especially when considering usage of advanced deep
learning methods.

Previous work is grouped into two sections; Section 3.1 is considered related work, as
mentioned above. Section 3.2 considers work that is not directly coupled to forecasting
the regulation volumes for the Norwegian or Nordic regulating markets.

3.1 Related work - Norwegian regulating power markets

3.1.1 Skytte 1999

Skytte [6] found patterns in the regulating power market from an economical and
business perspective on data from 1996. He established a relationship (correlation)
between the day-ahead price and the regulation price, named premium. He also linked
the premium to the amount of regulation for down- and up-regulation using a linear
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model. This thesis uses the words premium and delta price, ∆pr, interchangeably.

3.1.2 Jaehnert et al. 2009

Jaehnert et al. [29] built upon the work of Skytte [6] and proposed a linear statistical
model (SARIMA) for modeling the regulation volume thereby extending the linear model
by error terms. He modeled the effect of regulating volumes on electricity prices and
social welfare using 2007 data. Jaehnert et al. utilized the price difference (delta price)
between the regulation price and the day-ahead as follows:

∆pr = prreg − prspot

Where prreg is the regulation price and prspot is the day-ahead (spot) price.

Jaehnert et al. found a price delta correlation in NO1 with the regulation volume presen-
ted as:

$(volreg, ∆pr) = 0.7811

Where $ is the correlation and volreg is the regulation volume. Jaehnert et al. found a
high linear correlation between regulation volume and the ∆pr, and got relatively good
results. However, the experiment was conducted on data from 2007 on bidding zone
NO1, which was later split into two zones, NO1 and NO2. Therefore, his results are not
directly comparable to this thesis work.

3.1.3 Klæboe et al. 2015

The paper by Klæboe et al. [27] is the most extensive research found covering both
regulation price and volume forecasting in the Norwegian regulation market. The re-
search benchmark several time-series based forecasting models for regulation price and
volumes in the balancing market such as; different types of autoregressive models,
Markov models, and arrival rate models for predicting the balancing state. The main
motivation was to create and benchmark models that make forecasts related to market
pricing and volume, since producers need good forecasts for balancing market prices
to a achieve qualitative decision support when participating in the regulation market.
Good bidding strategies rely on forecasts, and for the producers it influences capacity
allocations between the day-ahead and balancing market as highlighted in the paper.
The cost and need for utilizing the balancing market become even greater given the in-
creased fraction of power from volatile renewable sources[30], which seems to enhance
the motivation of studying the balancing market. The data used in the paper are collec-
ted from the bidding zone NO2 for the period of 19.07.2010–23.12.2012 and it consists
of; balancing volumes (power regulated), overall production volumes(power produced),
balancing states, balancing prices, and day-ahead prices. Weather data was not included
in their research, and weather data was not publically accessible before 2017.

Klæboe et al. discovered that the correlation found by Jaehnert et al. [29] between delta
price and regulation volume had declined from 0.7811 on 2007 data down to 0.47 on the
2010-2012 data. The decreasing correlation is discussed further in the exploratory data
analysis chapter 4. None of the model frameworks used in Klæboe et al. leads to high
predictive power. Instead they conclude that its is hard to foresee the balancing mar-
ket before the day-ahead market is closed which was their motivation behind the work.
They specifically state the following: "The balancing market is designed to handle unforeseen
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events and fluctuation, and therefore we are not surprised by concluding that the volume and
the premium in the balancing market are random. In fact, it could be interpreted as a sign of an
efficient electricity market that it is not possible to predict the balancing market price."[27]. This
conclusion leads to the research question 3 on whether the regulation volume is predict-
able using recent publicly available data or if it just resembles random stochastic white
noise .

Lastly, it is not practical to directly compare the results from Klæboe et al. with the results
obtain in this thesis. The research takes many statistical and conventional models into ac-
count. Due to data availability it is not possible to test the models used in this thesis on
the same data range as Klæboe, and as Klæboe et al do not provide their final models,
their models cannot be tested on the same data available for this thesis work.

3.1.4 Dimoulkas et al. 2016

The work of Dimoulkas et al. [31] uses a Hidden Markov Model on the Swedish bidding
zone SE2 on 2014 market data to forecast both regulation price and volume. They got
good results on one hour ahead forecast. However, they did not get good results when
forecasting several hours ahead, and they concluded the poor results on the data being
quite random without having seasonal patterns. They did not utilize wind, solar, power
production, and consumption load but propose them for future work. The results are
not directly comparable to this thesis since it is not the Norwegian regulation market.
However, the Nordic markets are quite similar, and the way they analyze the data
serve as an inspiration for this thesis. They investigated the partial autocorrelation for
regulation volume and found the first and second lag significant, as well as significant
correlation between regulation volumes and price premiums. The project is conducted
on 2014 data and hence outside the data public available.

3.1.5 Salem et al. 2019

The work done by Salem et al. [32] is relevant in general but not directly comparable since
the work was conducted with the TSO (Statnett) as a partner that provided the project
with data that are not publicly available. They used data with a 5 minute resolution,
which is not comparable to the 1 hour resolution used in this thesis. Moreover, the project
was conducted using 2015-2016 data which is outside the range of public data used here.
The project serves as motivation for this thesis work, and it is the most recent project
focusing on forecasting regulation volume imbalances for the Norwegian markets.

The model built, a quantile forest regression model, was performing well, at least on a
very short-term horizon. The model performance was good enough to be deployed and
used as a prototype model in the Statnett control room, where only Statnett has access
to the tool. They trained the model using market prices, planned transmission flows,
production plans, and historical imbalances (lags) as features. They excluded weather
information because the features were found to not contribute to improving the results.
However, they hypothesize that weather may be influential if a model could incorporate
consumption forecasts together with temperature forecasts or if the power systems, in
general, had a greater share of renewable wind or solar production. Comparing the
effect of having a 5 min resolution versus an hour of aggregated values would have
been an interesting topic. However, the data and project remains internal to Statnett. In
comparison, the KoBas project and this thesis utilize publicly available data with lower
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quality to propose a method for forecasting the imbalances for those on "the other side,"
namely those participating in the regulation markets that the TSO governs.

3.2 Partially relevant previous work - European power markets

3.2.1 Garcia and Kirschen 2006

The work of Garcia and Kirschen [33] is the only found project that uses artificial neural
network techniques to forecast the regulation volume. The project used data for England
and Wales from 2001-2004. Both the data and its time span make the project not so
relevant for a direct comparison. However, they discovered better results using neural
networks than conventional forecasting methods when forecasting the regulation volume
due to the neural nets ability to capture non-linear relationships between variables
and influencing contributors. They used the following models: linear networks (LNs),
multilayer perceptron (MLP), radial basis function (RBF), probabilistic neural networks
(PNNs), and generalized regression networks (GRNNs). This work motivates the use of
deep learning in general when modeling the regulation volume, which makes the paper
interesting for this thesis.

3.2.1.1 Hirth et al. 2015

The work of Hirth et al. [28] looks at how variable renewable energy sources (VRE) in
Germany, such as wind and solar, and the impact of forecast errors on balancing reserve
requirements; the supply of balancing services by VRE generators; and the incentives
to improve forecasting provided by imbalance charges. The essence of their finding
is that the balancing reserves depend on many factors and that wind and solar power
forecast errors are two of several possible drivers. They also mention that other factors
are possibly more quantitatively important than VRE in influencing the balancing.

3.2.2 Aggregation of numerical market data

While some existing research focus, e.g., on one particular power plant or wind farm,
this thesis intends to utilize spatially and temporally aggregated numerical market data
for each bidding zone. Working with aggregated data has been proven beneficial in
other problems. In Miettinen and Holttinen [34], aggregation of data is shown to have a
significant benefit on minimizing day-ahead forecasting errors when working with large
geographical areas. The paper concludes that data aggregation for forecasting power
production in the Nordic region significantly reduces large forecasting errors. However,
the paper does not address aggregation benefits targeting balancing markets and regards
this as future work. Nevertheless, it is regarded as relevant for this thesis regarding
data utilization. On the other side, aggregating data may lead to a weaker relationships
between different data and features. Losing resolution in the data by aggregation may
filter out noise, but it can also make the data less descriptive for solving the problem. The
market data relevant for this thesis is mainly available at an hourly resolution. Thus, it is
unknown how the temporal aggregation has influenced the potential for forecasting the
activation of tertiary volumes.
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3.3 Contributions

In this thesis, a thorough data analysis is performed on data from 2016 to 2022. Previous
studies focus on 1-2 years of data, this is the first public study analysing and modelling
from a longer time period. Other works state that correlations between delta price (price
premiums) and regulation volume was decreasing from 2007 to 2010-2012 Klæboe et al.
[27]. It is found that the correlation is still present but it is shifted toward a more non-
linear relationship in Section 4.12.1. All the related work in Section 3.1 considered and
included day-ahead and regulation price in their modeling of regulation volume. In Sub-
section 4.9.1 it was found that both day-ahead and regulation price for NO1, NO2, and
NO5 has become non-stationary from 2020-2022 which reflects resent changes happening
in the power markets. In addition to price, the relationship between regulation volumes
and the delta between power production and production prognosis (delta production)
was studied. No previous work is found analysing this relationship and it was found to
be significantly correlated in Section 4.12.1.

We are not aware of any use of deep learning in the literature for Norwegian regulation
markets. The observed level of noise in regulation volumes motivates use of deep learn-
ing. The observed non-stationary trends of price and the non-linear relationship between
delta price and regulation volumes enhance the motivation of using deep learning. Ad-
ditionally, the observed relationship between regulation volumes and production deltas
motivates the use of power production and production prognosis as features in for mul-
tivariate modeling. Despite not having groundbreaking predictive powers, the models
derived in Section 5.3 are better than the current non-data-driven approach used by the
partners of the KoBas project, which base their decisions simply on personal experience.

We did not find any existing study of relevance targeting the relationship between
weather and regulation volumes. This motivated a thorough investigation both from an
analysis perspective and machine learning to substitute for missing research on the topic.
Extreme weather was mainly found impact the regulation volumes in a secondary man-
ner, e.g., from power blackouts and not directly from the weather in Subsection 4.13.1.
Good results were achieved when modeling using random shuffled training, validation,
and test data. However, the model was not found to generalize when the training, valid-
ation, and test data.
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Chapter 4

Data and exploratory analysis

4.1 Motivation behind the data and exploratory analysis

The lack of previous research addressing tertiary reserves activation in the Norwegian
regulation market motivates a thorough data analysis of regulation volume to under-
stand its nature and relationships with other market data such as; day-ahead price,
day-ahead volumes, regulation price, and power production, production prognosis, and
weather. Furthermore, the exploratory data analysis addresses some of the research ques-
tions raised while also serving as input for further problem-solving by suggesting appro-
priate data pre-processing and Machine Learning methods. This data and exploratory
analysis chapter is written linearly prior to the machine learning experiments in Chapter
5. However, the data analysis and experiments have been a continuous process going
back and forth between analysis and machine learning experiments following the fly-
wheel cycle described in the background subsection 2.6.1. The overall guide to working
with time-series problems shown in Figure 2.4 ensures a proper time-series problem-
solving approach with overall crucial steps intact.

A summary section named Data analysis and takeaways (Section 4.15) highlights why
machine learning is relevant to utilize on the analyzed data as well as points out relevant
experiments and machine learning approaches. Besides an observed high level of noise
for regulation volumes, the data is known to be dominated by zero values (no regula-
tion) for all zones. For example, 67.55% of the regulation volume for bidding zone NO1
is 0.0, and a significant portion of the rest is close to zero. Thus, predicting 0.0 for all
situations results in a relatively good baseline score (Mean Squared Error score) concern-
ing all zones. This adds to the motivation of reserving significant space in the thesis for
analyzing the data. If not stated otherwise, absolute values of correlation coefficients are
presented for an easier representation of relationships between variables.

4.2 Numerical data

The dataset with all numerical market data consists of data between 2016-01-01 and
2022-02-06, 53 488 hours of data in total. Around 160 different numerical data types
(features) were investigated and tested during experiments. All the different data types
are sequenced time-series data. All the data except the data from The Norwegian Energy
Regulatory Authority (NVE) is equally spaced with a frequency of one hour between
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each observation. The data from NVE (water level in Hydro reservoir) comes sampled at
weekly intervals, and the hourly resolution matching the other data was calculated using
the number of hours within a week and the slope calculated from the difference between
two consecutive weeks. Some of the data in the dataset investigated fits into the following
categories: Regulation volume, regulation price, transmission flow and capacity, day-
ahead volume, day-ahead price, delta price, production, production prognosis, delta
production, consumption, consumption prognosis, delta consumption, the water level
in Hydro reservoir, and seasonal features. Not all data were investigated in-depth, and
the data exploratory analysis highlights which data the thesis focus on.

Multiple sources were utilized to download numerical power market data; Entsoe[35],
NVE[36] and Nord pool[37]. All data is public historical data, and the data was
downloaded using an Application Programming Interface (API). A student license was
acquired for using the API to download from Nord pool and Entsoe. The NVE API
does not require any license. Several Python scripts were made to be able to download
data properly. Some of the data was provided by the KoBas project. However, python
scripts and API were locally made and maintained throughout the thesis work to be self-
sufficient in gathering the data needed at all times.

4.3 Weather forecasts and actual weather data

The Norwegian Meteorological Institute (METNO) provides 2-dimensional data grids
of actual weather and different types of weather forecasts. The weather data covering
Scandinavia and the Nordic region is categorized into two types of products; forecasts
from the MetCoOp Ensemble Prediction System (MEPS) and post-processed products.

MEPS is a convection-permitting atmosphere ensemble model 1, and the model provide un-
processed forecasts up to 60 hours into the future. The 60-hour forecast is conducted four
times every day at 00:00, 06:00, 12:00, and 18:00. The MEPS system commences several
forecasts for the same time interval using different forecasting parameters, and in 2020
METNO started using 30 ensemble predictions. The entire Nordic region covered by the
MEPS forecast incorporates a grid spacing resolution of 2.5 km pixel-wise2.

While the ensemble forecasts can be considered raw predictions, the best forecasts are
achieved from post processed products that integrate the MEPS outputs. Additionally,
the post processed product is infused with measurements from radar, weather stations,
and citizen stations, forming a weather grid having a pixel-wise grid spacing resolution
of 1 km. The dimensions of a post processed weather image is 2321 × 1796, and the
post processed products use the Lambert conformal conic coordinate reference system.
Forecasts from the post processed product are used by yr.no, and it is the post processed
products that are relevant for this thesis. The post processed product constitute both
the MET Nordic Analysis and the MET Nordic Forecast products. The analysis product,
referred to as actual weather data in this thesis, represents the weather at a particular
hour. The post processed forecast product is the most up-to-date forecast 60 hours into
the future[3]. A rich selection of weather data is made publicly available by METNO,
and this thesis focus on the following types; air pressure at sea level, air temperature 2 m

1https://drive.google.com/file/d/0B-SaEtrDE91WWEJoNkJiUm5TNzg/view?resourcekey=
0-PCe4JeYwEiWs8EU2KBGe-w

2https://github.com/metno/NWPdocs/wiki
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above ground, wind speed 10 m above ground, wind direction, relative humidity, cloud
area fraction, accumulated precipitation, down-welling shortwave flux in air with respect
to time. Figure 4.1 shows a snapshot of the 8 different types of weather conditions at the
date 2019-06-28, 20:00 PM.

(a) Air pressure
at sea level

(b) Air temperat-
ure

(c) Wind speed at
10 meters

(d) Wind direc-
tion

(e) Relative hu-
midity

(f) Cloud area
fraction

(g) Precipitation
amount

(h) Downwelling
shortwave flux in
air wrt time

Figure 4.1: 8 different actual weather conditions at 2019-06-28 20PM

Both actual weather data and weather forecasts were downloaded via an Application
Programming Interface (API) to the THREDDS Data Server (TDS)3. The weather data,
both actual weather and forecasts, were downloaded throughout the course of the
thesis work and the KoBas project work. Some years were accessible through the
metpp_rerun_v2 server, and others were available through the metpp_operational server.

The final dataset of actual weather data consists of hourly data for all aforementioned
weather types between 2016-01-01 up to 2022-01-29; 433 643 files and 82GB of data in
total.

In contrast to downloading actual weather, the data for weather forecasts are more
compound since it does not naturally fit an hour-by-hour download. As mentioned,
weather forecasts are performed four times every day. Each downloaded forecast
constitutes chunks of 60 hours of future predictions for every weather type, 48 images
in total, meaning that there are many overlapping forecasting hours since every forecast
stretches far into the future. Every downloaded forecast takes up 2.7GB of storage, which
take up 10.8GB of storage per downloaded day and 3942GB for an entire year. It is not
feasible to work with that much data, so different scripts were made to structure and
save only the images of interest that support specific Machine Learning and data analysis
experiments. Therefore, many different datasets of weather forecast images were created,

3api.met.no/product/THREDDS
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and while subsets of data forecasts were downloaded across several years, the majority
of forecasts images were downloaded from the most recent 2021 year.

4.4 Main sources for power production

Before studying price and aggregated volumes within the imbalance or regulation
market, it is imperative first to examine what the aggregated power production quantities
consolidate in general. While hydro-power has historically been dominating the power
production in Norway, new sources and ways of producing power emerge within each
bidding zone. The changes to the mix of power production from 2016-2022 can be
observed in figure 4.2. The magnitude of hydro-power, including both Hydro Water
Reservoir and Run-of-river and poundage, is revealed in both figures 4.2 and 4.3
considering all bidding zones (NO1-NO5). All values at the y-axis are normalized to
reflect their portion of total power production. However, both plots squeeze in 53488
hours of data spanning 2016-01-01 up to 2022-02-06, and the plots do not perfectly
visualize values fluctuation at a high frequency. Regardless, all values sum up to 1 at
each hour, even though the plots can be visually misleading.
It can be observed in figures 4.2 several newcomers from 2021-2022 within power
production from; Waste, Hydro Pumped Storage, and other renewables. Another recent
change to the energy mix is the dropout of power from Fossil Gas from 2021 for all zones
except in NO5. Wind power is showing an increase from 2016-2022 for NO2, NO3, and
NO4. NO1 got wind power production in 2019, which seems to be increasing. NO5
does not yet have wind power in its energy mix. Figure 4.3 shows the similar data as
in figure 4.2 with the different contributors stacked on top of each other. All bidding
zones indicate a reduction in the Hydro Water Reservoir portion from 2016-2022. It can
be seen in figure 4.3 that NO1 almost completely replaced Hydro Water Reservoir with
the combination of Waste (<1%), Wind Onshore and Hydro Run-of-river and poundage
in 2022. Moreover, a spike in Wind Onshore is observed for N04 in early 2022, and both
NO2 and NO3 indicate significant wind power contribution to the grid in early 2022.
This sudden increase can result from the windy weather conditions observed in early
2022, with storms hitting the country, e.g., the Gyda storm that hit Norway mid to late
January. Furthermore, the Hydro Reservoirs levels are historically low. Therefore, the
low reservoirs levels and several new energy sources and wind farms may significantly
explain the recent rapid changes in the energy mix.
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Figure 4.2: Different sources behind power production for NO1-NO5

Figure 4.3: Stacked production share for NO1-NO5
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4.5 Day-ahead and regulation markets comparisons

4.5.1 Volumes comparison

The day-ahead markets in the Nordic region are the largest in the Nordic region in terms
of power volumes. The day-ahead markets constitute the majority of available power
traded. Since the day-ahead market is the primary provider of power and electricity for
society, it follows the daily needs and trends in society to a much greater extent than
the intra-day and regulation markets. The overall nature of power volumes traded and
consumed in the day-ahead market is show in figure 4.5. The figure shows the day-
ahead volumes, the power bought, in NO5 for 20194. The day-ahead volumes are the
aggregated and overall hourly planned and bought power for the entire next day, pub-
lished to all market participants at the closing of the day-ahead market. Therefore, the
day-ahead volume is a different quantity than the aggregated actually produced power
from hour-to-hour. The hour-to-hour actual power production is more affiliated to the
hourly intra-day and regulation markets. Figure 4.5 clearly shows monthly fluctuations
and trends, having more traded and consumed power during winter than summer. The
boxplot inside figure 4.5 shows a five5 number summary of the data relative to days. Po-
tentially outliers are visually excluded from the plot for simplicity. The lower and upper
whisker represents the minimum and maximum, while the lower and upper ends of the
box represent the lower and upper quartiles. The median is the black horizontal line,
and the mean value is plotted additionally as the red dot. The boxplots for each day re-
veal a slight difference between business days and weekends for traded volumes. The
volumes do not seem to differ between business days, but the boxplot indicates slightly
less traded volumes for weekends. The hourly day-ahead plot inside figure 4.5 shows
less volumes traded for late evening and early morning. The volumes increase from
00:00 and first peek at 06:00 when most people start their day and commencing normal
household activities prior to work. The volumes show a slight decrease during normal
working hours. A new peek is reached around 18:00, which matches the end of a normal
workday and the hour when most people make dinner at home and start to consume
power for evening household activities. Both the hourly and the daily trends look to be
aligned with our daily routines and lives.

The regulation volume is shown for NO5 the same period as for the day-ahead volume in
figure 4.4. The first noticeable difference between the two is that regulation volumes can
be negative, whereas day-ahead volumes must be positive at all times. This reflects the
urgent balancing purpose of the regulation market, where power can be balanced up if it
is below a certain threshold, or it can be balanced down. Down regulation means that the
participants in the region are selling reserve power to the TSO (Statnett), which is poli-
cing the balancing by using the accessed reserves volumes to balance the grid in another
region and market. An aspect of the relationship between the day-ahead and regulation
volumes is that the regulation volume reserves are tightly connected to the hourly ac-
tual produced power for urgent grid balancing while also being rooted and related to the
planned volumes originating from the day-ahead market. In contrast to the day-ahead
volumes, the regulation volumes do not reveal similar clear patterns or relationships to
society. Visual inspection do not reveal a monthly seasonal pattern, and the data looks
like stochastic noise. The hourly regulation volume fluctuations are neither revealing

42019 is considered a normal year for power consumption due to the corona pandemic striking early 2020
5The minimum, the first quartile, median, the third quartile, and the maximum
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any clear patterns. The boxplot inside figure 4.4 shows that the data has a median at zero
and a mean value close to zero. However, the boxplot may indicate a slight difference
between business days and weekends with a slightly more positive up-regulation. Pos-
sible outliers are also here not included in the boxplot for simplicity. However, comparing
the relatively small minimum and maximum values (boxplot whiskers) to the y-axis on
the main plot indicates that regulation volumes may be subjected to a large portion of
outliers relative to the interquartile range (IQR)6. The other regulation and day-ahead
sibling markets in NO1, NO2, NO3 and NO4 shares the same characteristics as seen for
NO5 in figure 4.4 and 4.5.

Figure 4.4: Hourly regulation (imbalance) market volume in NO5 for 2019

Figure 4.5: Hourly day-ahead market volume in NO5 for 2019

4.5.2 Price comparison and business aspects

A more common signature between the day-ahead and regulation market is revealed
when comparing the power price in figure 4.6 and 4.7. Figure 4.6 shows that the price
development in the day-ahead market price is fluctuating similar to the day-ahead
volumes. The day-ahead price is lower during the summer, and the boxplot indicates
a slightly higher power price during business days, and the price peaks at around 06:00
and 18:00 within a day. When looking at the price fluctuation signature for the regulation
price in 4.7, it closely resembles the signature of the day-ahead price. However, the
regulation price is more spiky, and the spiky characteristics is inherent from the activation
of regulation volume reserves. When there is zero regulation, the regulation price is
set equal to the day-ahead price. When the need for balancing occurs, the TSO choose
which market participants to buy regulation reserves from. The TSO buy regulation
reserves based on a ascending price order, first choosing the tertiary reserves having the

6Measure of the spread of the data and statistical dispersion. IQR = Q3 – Q1. Outlier if data is outside Q3
+ (1.5 × IQR) or Q1–(1.5 × IQR)
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cheapest price[38]. Therefor, the market participants use the day-ahead price as baseline
for setting the price for regulation reserves. The business mechanisms kick in whether the
participants are willing to reserve potential power production for the potential regulation
reserves market, and how far from the day-ahead price they are willing to sell their
power for. If the participants reserve some potential production for the regulation market
and put a too high price on its volume, they may end up not selling their power and
losing profit. Contrary, navigating "correctly" relative to the regulation market and other
competitors can be profitable for participants in the power sector markets.

Figure 4.6: Hourly day-ahead market price in NO5 for 2019

Figure 4.7: Hourly regulation (imbalance) market price in NO5 for 2019

4.6 Regulation price perspectives

The power markets and the different properties are complex, and they influence each
other. Price is often the result of several different conditions and situations. Therefore,
price is examined with the motivation to investigate its relationship with grid balancing
(regulation volumes). The regulation price was briefly discussed in section 4.5.2, show-
ing its close relationship with the day-ahead price. Sharing a close relationship with the
day-ahead price also means that the regulation price is heavily influenced by the fluctu-
ations in the day-ahead market in general. Power and electricity price formation for the
day-ahead market is complex and a vast study topic. This thesis does not dive deeply
into the underlying dynamics of price formation since it is worth a thesis solely on that
topic. Therefore, this thesis regards the day-ahead price as one of the main driving forces
behind the regulation price while excluding a deep dive into the detailed underlying ori-
gin of price formation. However, some significant drivers of price are looked at besides
regarding the day-ahead price as the most significant one for setting the regulation price.
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Its known that coupling of markets leads to a price convergence between the coupled
markets[39]. Figure 4.8 shows the hourly regulation price for NO1-NO5 between 2016-01-
01 and 2022-01-29. NO1, NO2, and NO5 looks equal by visual inspection, while NO3 and
NO4 seems similar. This is most likely due to geographical locations and that NO4 only
directly interconnect with NO3 when only considering the Norwegian bidding zones.
The median, the middle quartile, is shown as the blue horizontal line in the boxplot fig-
ure 4.9. The middle 50% of the data within the inter-quartile range is represented by the
middle box. The upper and lower whiskers represent upper and lower 25% of the data
that falls outside the middle 50%. The mean value is plotted as the red dot, which falls
within the middle box and looks equal for all zones. The inter-quartile range of the data
seems equal for all the bidding zones when looking at the regulation price. The most
apparent difference between box plots is the shape of possible outliers. The distant data
points considered too far away are referred to as outliers, and the outlier threshold7 is
marked by the whiskers in the boxplot. Looking at the boxplots, the lower and upper
tails, which are market as possible outliers, seem to be equal for NO1, NO2, and NO5,
while NO3 and NO4 show a similar pattern. In general, all boxplots seem to have a re-
latively high number of points triggered as possible outliers. However, the price is real
for buyers and sellers of power, even at extreme prices. Therefore removing or excluding
possible outliers must be done with caution. Five records of a 5000 EUR/MWh price are
observed, and only those data points are excluded from the boxplot to prevent them from
dominating the figure. These data points are also excluded from figure 4.8. Based on the
visual similarities and the data range of regulation price for NO1-NO5, it may be that
investigating price for one particular bidding zone is also representative for another.

7Outlier threshold: ±1.5× IQR
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4.7 The overall nature of regulation price

Figure 4.8: Regulation price for all bidding zones

Figure 4.9: Boxplot of regulation price

4.8 Price markets relationships and drivers of price

The strong correlation between regulation price markets and how they relate to the day-
ahead price is indicated in figure 4.10. The correlation coefficient number is a measures of
how strong two variables are related across observations, e.g., between NO1 regulation
price and NO2 regulation price, and if the data in NO1 change, the data for NO2 change
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accordingly. One can say that, the higher the correlation coefficient (1.0 is max for
spearman correlation), the stronger is the relationship between two compared variables
of those shown in the matrix. When comparing a variable to it self, it has complete
resemblance to itself yielding a correlation coefficient of 1.0. Spearman correlation is used
since "The Spearman rank correlation can handle outliers and non-linear relationships much
better than the Pearson correlation coefficient"[19].
One can see from the top-left cell in figure 4.10, representing the row for NO1 regulation
price, that it has a correlation value of 0.99 when comparing NO1 regulation price with
NO2 and NO5 regulation price. Moving further in the first row of the matrix, the NO1
regulation price reveal a correlation of 0.95, 0.94, and 0.94 comparing with day-ahead
price for NO1, NO2 and NO5 respectively. Similar correlation coefficients can be seen
in the rows representing NO2, and NO5 regulations price. The figure mainly reveal
high correlations coefficients all over, but NO3 and NO4 is not equally correlated with
NO1, NO2 and NO5. However, NO3 seems to be highly correlated with NO4 and visa
versa. The Swedish, Danish, and Finnish markets that connect to the Norwegian markets
are included to show that the Norwegian bidding zones and markets are not isolated
for Norway only. Moreover, all markets are related as the power infrastructure in the
whole Nordic region is connected, which facilitates the day-ahead markets, intra-day
markets, and regulation markets in other countries to influence the Norwegian markets
and opposite. The connection to England, the Netherlands, and Germany is not included
in the matrix for simplicity.

Figure 4.10: Spearman correlations matrix between regulation price and day-ahead price
for all Norwegian bidding zones including other directly connected bidding zones in the
Nordic region

As previously mentioned, the day-ahead price forms the base level for the regulation
price, which also implies that the regulation price inherit seasonal fluctuation from the
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day-ahead price and the day-ahead market in general. Other interesting drivers behind
both day-ahead price and regulation price are general changes in the power sector,
changes in the energy mix, new inter-connected transmission cables, and the water level
in dams in Norway. The purpose of figure 4.11 is to show the influence of market
coupling and the water levels in dams on the regulation price using NO2 as an example.
The orange line in the plots shows the decomposed trend of the time-series data for
regulation price and aggregated total water level in percentage for all dams in NO2. The
day-ahead trend plot at the bottom of the figure is included only for reference. A trend is
one of the essential characteristics to consider for time-series data. "A trend is the presence
of a long-term increase or decrease in the sequence"[19]. The trend for both plots in the figure
is calculated using the python package named statsmodels8. The process of estimating
the trend can be conducted by approximating a polynomial of a certain degree for the
time-series signal. A polynomial of a lower degree than the signal itself will fit the data
with more smooth curvature and therefore capture a low-frequency trend which can be
used to point at which direction the data moves in. Figure 4.11 shows that mid-2020 up
to 2022 differentiate significantly from previous years. It is clear from the trend and the
observed water levels in dams for NO2 point toward historically low water levels from
mid 2021 to early 2022. For the same period, the trend for regulation price points to a
rapid price increase in the middle plot in the figure. Additionally, the regulation price
seems to have a denser distribution of spikes from 2021 to 2022 comparing the last 6
years. The spikes may be influenced by the change to the power mix to counter the loss
of potential cheap and stable Hydro Water Reservoir power. However, the increase in
the price trend and the frequency of the observed spikes are extreme from a historical
perspective. It can be observed that the dynamics of the regulation price changed within
the same time span as two new export transmission cables were put to use. The time at
which the two export cables were put to usage is plotted as vertical lines in the plot in
figure 4.11. The Nord Link cable going to Germany was in trial operation in late 2020.
The plot reveals an immediate spike the day they started to test it in operation. It was
in regular operation a bit later in 2021. The North Sea Link connected to England was in
operation from 2021-10-01, and new electricity price records superseded old ones after it
was put in operation. The effect of market coupling leading to market price convergence
looks to be visible in the plot. However, one could also argue that a significant portion of
the price increase stems from the low water levels in the dams. Additionally, fuel costs
and coal price in Europe is said to influence the price for power and electricity, but this
analysis is not included in the thesis. It may be that the newly installed export cables
further enhance the influence from European fuel and coal price due to a tighter market
coupling from direct connections.

8https://www.statsmodels.org/devel/generated/statsmodels.tsa.seasonal.seasonal_decompose.html
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Figure 4.11: Trends for water levels in Hydro Reservoirs and price

4.9 Global and local statistics for regulation price

Global statistics of regulation price from 2016 to February 2022 is shown in table 4.1. One
can see from the statistics that NO1, NO2, and NO5 has similar statistics while NO4 and
NO4 is relatively equal. The mean price and standard deviation in NO3 and NO4 is lower
than NO1,NO2, and NO5.

NO1 NO2 NO3 NO4 NO5
Median 31.78 31.54 29.8 26.61 31.53
Mean [µ] 37.55 37.29 30.29 28.12 37.12
Standard deviation [σ] 32.39 31.72 19.77 18.72 31.52
Variance [σ2] 1049.14 1006.11 390.94 350.57 993.60

Table 4.1: Regulation price global statistics for NO1-NO5 in unit EUR/MWh for 2016-
2022
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In time-series data, global statistics are not sufficient to understand how the data
develop over time. Therefore, time-series data is commonly analysed within overlapping
windows of a specific window size to extract statistical properties local to several time
intervals. There are different types of window functions, and figure 4.12 demonstrate
the rolling mean and rolling standard deviation window functions using a one-year
moving average and standard deviation. Each window stretch over one year of data
and the statistics are computed using a stride of one hour for each incremental shift.
These window functions create aggregated measures of the time-series data through
time. Figure 4.12 reveal slight variations in the mean and standard deviation value up
until 2021 while drastically change in all zones from 2021 after the commissioning of
the Nord Link. Further on, it seems that an additional change is occurring between late
2021 to start 2022, which is post commissioning of the North Sea Link at 2021-10-01.
This shows that the mean and standard deviation is not constant through time. The extra
added number on the x-axis for NO1, NO2, NO3, and NO4 represents wind farm facilities
in operation at that time. NO1, NO2, and NO4 steadily increase in wind farm facilities in
operation from 2016-to 2021, while NO3 seems to increase with 5 operational wind farms
between the second half in 2020 and the first half of 2021. The increase of operational
wind farms does not seem to carry the change to the price development alone. It looks
like the two transmission cables contribute significantly to bending the local statistical
properties post-2021. NO5 does not have any wind farm facilities in operation during
2016-2022.

Figure 4.12: One year moving average and standard deviation for regulation price
calculated using one hour incremental rolling from 2016 to February 2022.
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4.9.1 Statistical stationarity

Time-series analysis involves looking at several characteristics of the data relative to time.
A stationarity check is essential when analyzing the nature of time-dependent sequenced
data, and some forecasting models assume stationary data to perform. Stationarity "refers
to a property of time-series not to change distribution over time, or in other words, that the pro-
cess that produces the time-series doesn’t change with time. Time-Series that don’t change over
time are called stationary (or stationary processes)" [19]. A simple definition of stationarity is
presented as follows:

The time-series is stationary if the distibution of yt, yt+1, ..., yt+k do not depend on t for
all possible k lags [14], where t is the time-step and y is the value of the data at time-step t.

A widely used statistical method to determine if the time-series is stationary is called
the Augmented Dickey-Fuller (ADF) test. The underlying process of this method is a
hypothesis test that determines if the data or the process behind the data is stationary or
not. The null hypothesis, H0, states that the time-series incorporate a unit root9. The al-
ternative hypothesis,HA, states that a unit root is not present in the time series. In simpler
words, the setup can be viewed as follows:

H0: The data sequence incorporate a non-stationary structure

HA: The data sequence does not have a non-stationary structure

If H0 is rejected based on a given level of significance, the test recommend that the time-
series has a stationary structure as stated by HA. If the test fail to reject H0, the test
recommend that the time-series has a unique root which implies that the data has non-
stationary structure [20].

To prove if the data is stationary the evidentiary level is set to 99%, resulting in a sig-
nificance level of 0.01, which sets the strength of the test evidence to very high. Choosing
a very high significance level is based on observed complexity in power market data hav-
ing several processes influencing its characteristics. The Augmented Dickey-Fuller test is
carried out using the Python package statsmodels, the same package used for the moving
average calculations. Given the chosen level of significance, the test fails to reject H0 if the
P-value from the ADF test is greater than 0.01 indicating that the data is non-stationary.
H0 is rejected for P-values ≤ 0.01 indicating a very confident proof of the data having
stationary characteristics. Table 4.2 shows the results of the ADF test for regulation price
for all the Norwegian bidding zones between 2016-2022. The test shows all zones being
stationary. However, drastically recent changes are observed in the power sector affect-
ing several markets. Therefore, a ADF test on data from 2020-2022 were conducted. Table
4.3 tell a different story, it proves that the data from 2020-2022 has non-stationary com-
ponents for NO1,NO2 and NO5, while NO3 and NO4 is still stationary. This proves that
the regulation price is significantly trending towards a increasing prices for NO1,NO2,
and NO5, while NO3 and NO4 is regarded as stationary.

9A unit root and the mathematics behind the process is out of scope for this thesis
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Regulation price Data range Stationary P-value Significance level Reject H0
NO1 2016-2022 Yes 1.00E-07 0.01 Yes
NO2 2016-2022 Yes 6.00E-07 0.01 Yes
NO3 2016-2022 Yes 0 0.01 Yes
NO4 2016-2022 Yes 0 0.01 Yes
NO5 2016-2022 Yes 7.00E-07 0.01 Yes

Table 4.2: Statistically stationary test for regulation price for NO1-NO5 on data between
2016-2022.

Regulation price Data range Stationary P-value Significance level Reject H0
NO1 2020-2022 NO 0.0202856 0.01 NO
NO2 2020-2022 NO 0.0210839 0.01 NO
NO3 2020-2022 Yes 0 0.01 Yes
NO4 2020-2022 Yes 0 0.01 Yes
NO5 2020-2022 NO 0.0242998 0.01 NO

Table 4.3: Statistically stationary test for regulation price for NO1-NO5 on data between
2020-2022.

A similar test performed for the day-ahead price for comparison is shown in table 4.4
and 4.5. The day-ahead market has similar characteristics as seen for the regulation
market. This proves that price trends and the non-stationary characteristics in the day-
ahead market influence the regulation market price.

Day-ahead price Data range Stationary P-value Significance level Reject H0
NO1 2016-2022 Yes 2.40E-06 0.01 Yes
NO2 2016-2022 Yes 1.14E-05 0.01 Yes
NO3 2016-2022 Yes 0 0.01 Yes
NO4 2016-2022 Yes 0 0.01 Yes
NO5 2016-2022 Yes 8.30E-06 0.01 Yes

Table 4.4: Statistically stationary test for day-ahead price for NO1-NO5 on data between
2016-2022.

Day-ahead price Data range Stationary P-value Significance level Reject H0
NO1 2020-2022 NO 0.0215752 0.01 NO
NO2 2020-2022 NO 0.0273963 0.01 NO
NO3 2020-2022 Yes 0.000106 0.01 Yes
NO4 2020-2022 Yes 6.81E-05 0.01 Yes
NO5 2020-2022 NO 0.0219233 0.01 NO

Table 4.5: Statistically stationary test for day-ahead price for NO1-NO5 on data between
2020-2022.

4.9.2 Autocorrelation

Autocorrelation is another method commonly used in time-series data analysis. Its main
purpose is to give insight into how the past influence the present. Autocorrelation, also

37



known as serial correlation, measures the signal correlation between two points, the sig-
nal itself and a lagged (delayed) copy of itself. Said in other words: "Autocorrelation gives
you an idea of how data points at different points in time are linearly related to one another as a
function of their time difference" [14][40]. Additionally, autocorrelation can also help in de-
termining if the time series is mostly random stochastic data or not. If the past historical
data influences the present time, the data is not random. Autocorrelation is especially
important for univariate models since such modeling implies forecasting using only one
variable, having the same data stream as both the input and output. Therefore, exploiting
previous time-steps as a key feature in describing the present is relevant for the majority
of time-series problems.

Figure 4.13 show the autocorrelation for regulation price for bidding zone NO5. It can
be observed a strong correlation between the present price and historical lags up to 24
hours. The correlation seems to increase closer to a 24 hours lag which is most likely due
to the daily price fluctuations. The observed strong autocorrelations proves that there is
a strong linear relationship between the regulation price at time step yt and yt−1 all the
way up to yt and yt−24. The other zones had similar autocorrelation.

Figure 4.13: Autocorrelation of the regulation price for bidding zone NO5 over 2016-2021
data

4.10 Drivers of tertiary reserves volume activation

The regulation volume for NO2 investigated in subsection 4.5.1 did not reveal any clear
patterns. In addition, it has previously been claimed that regulation volume and price
premium share properties with a statistically random distribution [27] and hence will
be almost impossible to predict. Therefore, it is necessary to conduct a deeper analysis
in order to understand the nature of regulation volumes and to determine whether it is
predictable or just random stochastic white noise.

White noise is pure random data which is not considered predictable, meaning one cant
foresee the value of the next future time-steps. The criteria and data characteristics to
fulfill for a time-series to be regarded as white noise is as follows [41]:

µ = 0 and constant through time
σ = constant through time
rl = 0 for all lags

stationary = Yes
seasonal components = No

Where rl is the lagged correlation for lag l (autocorrelation).
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Figure 4.14 shows the regulation volume as time series. The figure show the overall
complex signature for of regulation volume from 2016-01-01 up to 2022-02-01 for all the
Norwegian zones. The y-axis in each subplot represents regulation volume in megawatt-
hour (MWh).

Figure 4.14: Regulation volume for all bidding zones

Investigating decomposed characteristics of the regulation volume may reveal possible
trends and seasonal components. For example, the regulation price had a clear trend
from 2021-2022. Figure 4.15 show the decomposed characteristics of regulation volume
for NO2, NO3, and NO5. NO1 and NO4 share similar decomposition characteristics. In
addition to the trend component investigated for the regulation price, the decomposed
seasonal and residual components are included for regulation volume. The purpose of
the seasonal component characteristic is to show seasonal patterns through time. The
residual component represents the noise or the parts of the data that can not be described
through signal decomposition. The green-colored line indicates the trend component.
The trend plots do not reveal any clear trending patterns. However, some trends seem
to be triggered in the signal decomposition. The seasonal component in the figure shows
a thick horizontal pink line clamped close to zero regulation, not revealing any seasonal
patterns. Orange residual lines dominate the plots and cover most of the observed data
in blue. This indicates that the data is significantly dominated by random noise. Whether
the Nord Link or North Sea Link cables influence the regulation volumes cant be easily
determined based on the decomposition figure.
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Figure 4.15: Signal decomposition of regulation volume for NO2,NO3 and NO5

Figure 4.16 show a boxplot of the regulation volume for each zone. The figure serves
the purpose of highlighting overall statistics and shape of the data. Looking at the
boxplot for all zones for regulation volume, many data points are located outside the
thresholds negative and positive sides (the whiskers). A significant part of the power
regulation is then considered an outlier using common statistical measures. It is common
to deal with outliers in some way since they can, in many cases, be regarded as abnormal
data points that can potentially skew the data set toward the extremes. Not dealing
with outliers, especially extreme outliers, can potentially dominate the modeling process
when expecting a model capable of approximating reasonable output signals given the
input data. However, dealing with outliers must be done with caution, and activation
of regulation reserves is considered to originate from abnormal conditions by its nature.
Further on, both the mean and median values in the distribution for each zones seems to
be close to zero. NO2 stands out having the longest upper and lower tails comparing all
zones.
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Figure 4.16: Boxplot of regulation volume for all zones

Investigating the histograms of the regulation volumes in figure 4.17 clearly show that
zero regulation is dominating the distribution for each zone looking at the high frequency
on the y-axis at zero regulation. The fraction of the data being zero for each zone is
shown table 4.6. The high zero fraction is expected since zero regulation represents
normal conditions in the power market where the power is in balance. Deviations from
normal conditions resulting in power balancing are represented by each tail seen in
the histograms, where negative values on the x-axis represent down regulation10, and
positive values represent up regulation11. The mean, µ, and standard deviation, σ, are
plotted in the histogram subplots and shown in the table. For a model to approximate
a function of the regulation volume, it must adapt to and predict similar characteristics
of the shown histograms. Adapting to the dominating zero, while also giving attention
to of both tails can prove challenging for some Machine Learning models. As previously
mentioned, the tails are constructed as part of the data pre-processsing. The distribution
does not have two tails in the data from Nordpool, since they represents two different
scenarios; one process or tail is tied to power not being produced as originally planned (a
market participant gets payed for not producing power), the other is rooted in larger
demand than planned for which is corrected with additionally power reserves being
produced. However, both cases serves the purpose of balancing the grid.
Figure 4.18 is showing the histograms zoomed in on the tails. Visually inspecting the
zoomed histogram show a distribution resembling a Laplacian distribution rather than a
Gaussian distribution considering all zones. Table 4.6 shows that all zones have a small
negative mean values which indicate the distributions are barely skewed towards down
regulation. NO2 and NO5 stands out having high variance comparing all zones in table
4.6.

10The zone is giving (selling) power to other zones
11The zone is getting (buying) power to other zones
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Figure 4.17: Regulation volume histogram for all bidding zones

Figure 4.18: Regulation volume histogram zoomed for all bidding zones

NO1 NO2 NO3 NO4 NO5
Median 0.0 0.0 0.0 0.0 0.0
Mean [µ] -5.24 -16.22 -32.31 -16.93 -16.05
Variance [σ2] 1239.33 19252.42 10156.84 9684.75 29183.59
Standard deviation [σ] 35.20 138.75 100.78 98.41 170.83
Zero fraction [%] 67.55 44.43 43.31 59.70 40.48

Table 4.6: Regulation volume global statistics for NO1-NO5 in unit MWh for 2016-2022
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4.11 Local statistics for regulation volume

When first looking at local statistics for regulation volume in figure 4.19, it reveals a
relatively unchanged µ overtime for all zones. However, σ, especially 4σ, reveal some
trends. This proves that σ change over time, as seen in the blue line in all subplots. The
numbers plotted close to the green line representing µ are the number of wind farms in
operation. The commissioning of the two export cables is plotted as vertical lines. It may
not be entirely correct to draw finite conclusions solely from this figure, but it is tempting
to view the change of direction to the 4σ slope in the context of the two export cables and
the increasing wind power contribution to the grid.

Figure 4.19: One year moving average and standard deviation for regulation volumes
calculated using one hour incremental rolling from 2016 to February 2022

4.11.1 Statistical stationarity

A similar stationary test to what was conducted for regulation price can be shown for
regulation volume in table 4.7 and 4.8. This test strongly prove that regulation volume
is stationary for both time intervals 2016-2022 and 2020-2022 with a significance level of
0.01.

43



Regulation volume Data range Stationary P-value Significance level Reject H0
NO1 2016-2022 Yes 0 0.01 Yes
NO2 2016-2022 Yes 0 0.01 Yes
NO3 2016-2022 Yes 0 0.01 Yes
NO4 2016-2022 Yes 0 0.01 Yes
NO5 2016-2022 Yes 0 0.01 Yes

Table 4.7: Statistically stationary test for regulation volume for NO1-NO5 on data
between 2016-2022.

Regulation volume Data range Stationary P-value Significance level Reject H0
NO1 2020-2022 Yes 0 0.01 Yes
NO2 2020-2022 Yes 0 0.01 Yes
NO3 2020-2022 Yes 0 0.01 Yes
NO4 2020-2022 Yes 0 0.01 Yes
NO5 2020-2022 Yes 0 0.01 Yes

Table 4.8: Statistically stationary test for regulation volume for NO1-NO5 on data
between 2020-2022.

For comparison, same test was conducted on day-ahead volumes shown in table 4.9 and
4.10. Day-ahead volumes in all zones is non-stationary in the periode 2020-2022. This
show that the non-stationarity characteristics and trending for day-ahead volumes in
the day-ahead market do not influence the stationarity for regulation volumes in the
regulation market.

Day-ahead volume Data range Stationary P-value Significance level Reject H0
NO1 2016-2022 Yes 0.0021081 0.01 Yes
NO2 2016-2022 Yes 6.00E-07 0.01 Yes
NO3 2016-2022 Yes 1.30E-06 0.01 Yes
NO4 2016-2022 Yes 2.16E-05 0.01 Yes
NO5 2016-2022 Yes 0.0033048 0.01 Yes

Table 4.9: Statistically stationary test for day-ahead volume for NO1-NO5 on data
between 2016-2022.

Day-ahead volume Data range Stationary P-value Significance level Reject H0
NO1 2020-2022 NO 0.0908841 0.01 NO
NO2 2020-2022 NO 0.0487509 0.01 NO
NO3 2020-2022 NO 0.0152289 0.01 NO
NO4 2020-2022 NO 0.1120605 0.01 NO
NO5 2020-2022 NO 0.1241714 0.01 NO

Table 4.10: Statistically stationary test for day-ahead volume for NO1-NO5 on data
between 2020-2022.
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4.11.2 Autocorrelation

How correlated the present regulation volumes are relative to lagged versions is shown
in figure 4.20. The figure shows that the present volume at hour yt has a correlation
coefficient slightly above 0.8 relative to the previous hour yt−1 for all zones. After 3
hours, the autocorrelation seems to be less significant. This indicates that autocorrelation
in the previous 1-4 hours can be a significant feature for describing the present
regulation volume. Thus, it motivates using machine learning models that can exploit
previous hours using recurrence on time-dependent sequential data. Furthermore, the
autocorrelation comprises both indirect and direct correlations between the current time
and prior time steps[42]. This means that the correlation at lag 2 can be significantly
influenced and dependent by the correlation for lag 1. The partial autocorrelation can
be used to describe a direct association between the present time step and a given lag to
cancel out the influence from other lags. "The partial autocorrelation at lag k is the correlation
that results after removing the effect of any correlations due to the terms at shorter lags." [43]

One can see from the partial autocorrelation in figure 4.21 the direct association between
the present time step and different lags. The figure shows that only the correlation at lag
k = 1 significantly describes the present time step and that lags of k > 1 not contributing
much in describing the present time step.

Figure 4.20: Autocorrelation of the regulation volumes over 2016-2021 data

Figure 4.21: Partial Autocorrelation of the regulation volumes over 2016-2021 data

4.11.3 Periodicity behind tertiary volume activation

Since the periodic and seasonal patterns in the regulation volume are vague comparing
regulation price, further investigation of periodicity is needed for regulation volume. A
commonly used method for finding and extracting features that fluctuate periodically is
the Discrete Fourier Transform (DFT). This method transforms the data from the time do-
main to the frequency domain. The data is then no longer considered a function of time,

45



and different individual frequencies may reveal periodic patterns based on the strength
of the amplitude at each frequency.

Figure 4.22 show the DFT of regulation volume and day-ahead volume for NO2 and
NO3 between 2016-2022. Day-ahead volumes are included in the plots for comparison.
The Tensorflow.signal.rfft method is used to calculate the DFT12. For both plots the amp-
litude and y-axis are normalized based on largest observed frequency spike, which is
revealed as the year frequency for all plots. Thus, a yearly periodic fluctuation is present
for both day-ahead and regulation for NO2 and NO3. The day-ahead volume for NO2
and NO3 shows two clear spikes at day and for every twelfth hour. This shows that there
is some periodicity on days, and the frequency component at every twelfth hour refers to
two high peaks observed at 06:00 and 18:00 seen in previously discussed figure 4.5. Ad-
ditionally, regulation volume for NO3 seems to have several periodic frequencies close to
the yearly frequency, and every fourth month (1/month*4) seems to trigger a spike. Weeks
may also be considered as a spike for NO3. It can be argued that day and every twelfth
hour has a small spike for regulation volume. However, the regulation volume has much
noise, and the majority of the frequencies cant be clearly distinguished from the noise
observed. Zone NO1, NO4 and NO5 share similar characteristics as the ones plotted in
the figure.

Figure 4.22: Discrete Fourier transform NO2 and NO3 for 2016-2022.

A five summary statistics of regulation volumes grouped by year is visualized in the
boxplots in figure 4.23. Outliers are excluded in the plots for easier interpretation.
The plots summarize the distribution of yearly grouped regulation volumes, and it
does not seem like the year is static for the time-span investigated when excluding the
median drawn with a black horizontal line. The mean value represents the red dot, the
minimum and maximum (lower and upper whiskers) represents the Q1 (0th percentile)

12https://www.tensorflow.org/tutorials/structured_data/time_series
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and Q4 (100th percentile), and the Q1 and Q2 represents the lower and upper sides of
the box (25th - 75th percentile). The most recent years seem to have slightly different
characteristics than 2016-2018. Thus, backing up the Fourier transform that year has, to
some degree, a periodic component when explicitly looking at NO2 and NO3.

Figure 4.23: Yearly regulation volume for NO1, NO2, NO3,NO4, NO5 from 2016-2021

Moving on to investigating monthly fluctuations for regulation volume, the boxplot
in figure 4.24 reveals that data between 2016-2021 grouped by month has a periodic
component for NO5. NO1, NO2, NO3 and NO4 are not plotted, but they show similar
monthly fluctuations.

Figure 4.24: Monthly regulation volume for NO5 from 2016-2021

Daily and hourly fluctuations are summarized in the boxplots in figure 4.25 for NO5. The
weekends (day 5 and 6 - Saturday and Sunday) seems to differ slightly from the business
days 0-4. Some periodicity can also be observed when looking at the data grouped on
hours between 2016-2021. The other zones share similar daily and hourly characteristics.
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Figure 4.25: Daily and hourly regulation volume for NO5 from 2016-2021

4.12 Sibling balancing markets and main driving force

A strong correlation between the regulation price for different zones was previously
shown. This phenomenon also applies to tertiary regulation volume activation as seen
in figure 4.26. This is mainly due to the fact that regulating down in one zone occurs
concomitantly with up regulation in another and contrary. Thus, a strong indirectly
descriptor for activation of tertiary regulation volume could be considered regulation
happening in another zone.

Figure 4.26: Spearman correlations between bidding zones for regulation (imbalance)
volume
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4.12.1 Price and production deltas

Skytte [6], Jaehnert et. al [29] and klæboe et al. [27] emphasized on price premiums
(delta price) between day-ahead and regulation price as the most evident predictor for
regulation volume. In the relatively scarce selection of previous research on tertiary
reserves activation, the regulation price delta, ∆pr surface as a obvious descriptor to
investigate. However, no recent official research has been found to investigate if ∆pr
still holds significant descriptive properties for regulation volume on recent data.

Figure 4.27 indicates that ∆pr still relates to regulation volume. The top plot in the figure
shows a randomly selected time-interval in 2021 for NO4, where both the day-ahead price
and the regulation price for 200 hours are plotted. The bottom plot shows the difference
between the regulation price and day-ahead price (∆pr) together with the regulation
volume. Price and volume have different y-axis; the left y-axis supports ∆pr while the
right y-axis supports the regulation volume for the selected time-span. One can see from
the bottom plot that activation of regulation volumes (the orange line) triggers the ∆pr
(blue line). However, the magnitude of change in ∆pr does not seem constantly linear
to how much regulation volume change. NO1, NO2, NO3, and NO5 share qualitatively
similar patterns as NO4.

Figure 4.27: Day-Ahead price, regulation price and delta price over 200 hours between
2021-01-03 at 01:00 (UTC) and 2021-01-11 at 08:00 (UTC)

Besides the constructed feature ∆pr, another strong predictor describes regulation
volume denoted ∆prod, where prod refers to production. This is the delta between actual
hourly produced power (supply) and the production prognosis (expected or forecasted
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supply) formulated as follows:

∆prod = prodactual − prodprognosis

The production delta was not investigated as potential predictor for regulation volume
by Skytte [6], Jaehnert et al. [29] and Klæboe et al.[27]. When asking domain experts,
it seems commonly known that the triggering of tertiary reserves, to a large extent,
can be viewed as the deviation between planned production and actual production or
the deviation between expected consumption and actual consumption. However, the
formulated ∆prod has not been found in newer research, where its descriptive potential
for regulation volume is investigated on recent data.

Figure 4.28 shows the relationship between actual power production, production
prognosis, ∆prod and regulation volume for the exact same time-span investigated for
∆pr in figure 4.27. One can see in the bottom plot in figure 4.28 that ∆prod follows
the regulation volume relatively precise. The difference between the hourly actual
production and the production prognosis can be seen in the top plot. The portion of
the difference between production and production prognosis can be seen in the upper
plot, and the amount of regulation volume activated seems on par with the difference in
MWh. This indicates a strong linear relationship between ∆prod and regulation volume.

Figure 4.28: Production, production prognosis, and delta production over 200 hours
between 2021-01-03 at 01:00 (UTC) and 2021-01-11 at 08:00 (UTC)

Figure 4.29 shows both the Pearson and Spearman correlation relationship between ∆pr,
∆prod, and regulation volume (volreg). As mentioned in related work, Jaehnert et al.
found in 2009 in the 2003-2007 data set that $(volreg, ∆pr) = 0.7811 for NO1. Furthermore,
Klæboe et al. [27] found that the pearson correlation coefficient had declined from 0.78 in
the 2003–2007 NO1 data set to 0.47 in the 2010–2012 NO2 dataset [27]. Klæboe et al. [27]
compared using NO2 since the current NO2 bidding zone was formerly a part of NO1.
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When looking at Pearson correlation for NO2 in 2021 data between ∆pr and regulation
volume, it computes to 0.42 in 4.29, which is lower than what Klæboe et al. [27]
found for 2010-2012 and significantly lower than what Jaehnert et al. discovered in
the 2003-2007 data set. The Pearson correlation coefficient between ∆pr and regulation
volume is shown in figure 4.29 to be 0.36 for NO1. The bottom line is that the Pearson
correlation between ∆pr and regulation volume seems to decrease over time. However,
the compared numbers may not be completely solid due to the market change for NO1
and NO2.

Moreover, looking at the ranked correlation in 4.29, the Spearman correlation, reveal
a correlation of 0.91 for NO2 in the 2021 data (∆pr vs regulation volume). This is sig-
nificantly higher than what both Jaehnert et al. and Klæboe et al. [27] found using
Pearson correlation and comparing the Pearson correlation of 0.42 in the 2021 data.
Due to the Spearman correlations ability to evaluate a monotonic relationship, the res-
ults indicate that ∆pr has adopted some non-linear attributes comparing results from
previous research and the differences between Pearson and Spearman for 2021. The
Spearman correlation coefficient seems to be consequently higher than Pearson correl-
ation when comparing the relationship between ∆pr and the regulation volume for all
zones (NO1-NO5). The Spearman correlation incorporate the same range as Pearson,
$(volreg, ∆pr) ∈ {−1.0, ..., 0, ..., 1.0}

When looking at the correlation of the relationship between ∆prod and regulation
volume, one can see from figure 4.29 that Pearson correlation yields a higher correla-
tion coefficient than Spearman for all zones. For example, NO2 has a correlation of 0.91
between ∆prod and regulation volume, while the Spearman correlation shows a correla-
tion of 0.77. This indicates that the Pearson correlation emphasizing a linear correlated
relationship is more likely to represent better the relationship between ∆prod and regu-
lation volume. The way the relationships between regulation volume and price and pro-
duction are developing over time motivates the use of deep learning for time-dependent
modeling of regulation volume.

Figure 4.29: Pearson and Spearman correlations between regulation volumes and delta
price and delta production for 2021 data.

Comparing Figure 4.30 against Figure 4.31 visualize the change in relationship between
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delta price and regulation volume comparing 2016 with 2021. The observed increased
complexity motivates to use advanced deep learning methods over the classical statistical
methods used in previous research. Methods such as deep recurrent neural networks are
able to model the changes happening over time when a lot of data is fed to the model
during training. In contrast the relationship between production delta and regulation
volume is still linear today as seen in Figure 4.32 and 4.33.

Figure 4.30: NO5 delta price against regulation volume - 2016

Figure 4.31: NO5 delta price against regulation volume - 2021

Figure 4.32: NO5 delta production against regulation volume - 2016

Figure 4.33: NO5 delta production against regulation volume - 2021
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4.13 Tertiary reserves activation - case studies

Two case studies were conducted to observe specific events and their effect on the
activation of the tertiary reserves (regulation volumes). One case observes the GYDA
storm in the context of weather influence on the grid. The other study observes an
unforeseen failure of the North Sea Link HVDC (High-Voltage Direct Current) cable
connecting England with the Norwegian markets as a disruptive market coupling event.

4.13.1 Gyda storm

The GYDA storm was swiping through Norway in the middle of January 2022, with a
wind said to occur every ten years potentially13. With todays technology, it is not diffi-
cult to tell that a storm is coming and where it will strike Norway. However, it is more
difficult to know precisely how the weather impacts locally from hour to hour. Therefore,
to some degree, the power sector can make general plans for the storm to avoid power
production, trade, or grid balancing issues, but local effects and events happening sec-
ondary to the weather is mostly not feasible to foresee.

Figure 4.34 show the activation of regulation volumes for all zones from January 15-21.
The weather prognosis from Netweather for 16-17 January is plotted inside the graph.
The image shows the wind jet-streams several kilometers up in the atmosphere14. Sev-
eral power blackouts in the grid were observed in different regions in Norway during the
storm. At 2022-01-17 03:30 CET, a major power blackout occurred in NO3. The blackout
event forced the TSO to continuously balance the grid for NO3 and NO4 until evening
2022-01-19.

Figure 4.34: GYDA storm

Figure 4.35 show the local statistics in the same duration as the power blackout. The mean
and standard deviation clearly change during the course of the event and normalizing
post the event.

13https://www.vg.no/nyheter/innenriks/i/0GOKyM/varsler-full-storm-kan-skje-hvert-tiende-aar
14https://www.netweather.tv/charts-and-data/jetstream
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Figure 4.35: Local statistics for mean and 3 standard deviations during the Gyda storm.

Figure 4.36 intends to compare January month in 2022 (the Gyda storm month) with
January over several years. No clear patterns can be seen in whether regulation volumes
in January 2019-to 2021 are significantly different from 2022 when considering events
triggered by the Gyda storm. Another extreme weather happened in the middle of
January 2021 named Frank. Characteristics of Frank were extremely strong gusts of wind.
The Gyda storm also had strong wind gusts but was primarily known for its extreme
amounts of precipitation. It is not possible to get an intuition for the degree to which
weather influence the grid directly on indirectly from a historical view shown in Figure
4.36. It may be that the weather itself is not causing the need for regulation, but rather the
deviation between the weather forecast, used for planning and strategies, and the actual
weather occurring.

Figure 4.36: Comparison of local statstics during the Gyda Strom to previous years
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4.13.2 North Sea Link failure

The previously discussed North Sea Link (NSL) cable, co-owned by Britain’s National
Grid and Statnett, experienced an unforeseen failure in 2021. A fault detected in the con-
verter at the UK end led to a power transmission malfunction15. The top plot in figure
4.37 reveal a major response to grid balancing for several zones during the event. NO4
seems to be the least affected, which is logical since NO4 is geographically furthest away
from NO2, which hosts the Norwegian connection side of the cable. NSL has a max ca-
pacity of 1400MW, representing a potential massive load connected to the grid. When
a load at this scale suddenly disappears from the grid, down balancing (regulation) on
the grid is inevitable in the regulation market. After NSL came back into operation (the
green vertical line), the cable again put a massive load to the grid resulting in grid bal-
ancing through up-regulation and changes to the power production. An Urgent Market
Message (UMM) was published by Nord pool at 19:30, one hour after the event started.
The cable is back in operation at 17:00 November 10, and a UMM was published at 15:00,
indicating that the cable will be back in operation15. A UMM is a message that is used
to present urgent market information, such as planned or unexpected events concerning;
transmission, generation, and consumption. It is hypothesized that UMM messages can
be a potential predictor for tertiary reserves activation. However, humans manually type
some messages, and utilizing UMM requires a deep dive into the Natural Language Pro-
cessing field. Therefore, UMM is out of scope for this thesis.

The middle plot in figure 4.37 shows power production with an hourly resolution. A
drop from approximately 5500MW down to about 3500MW of aggregated power pro-
duction is observed from the start of the event until early next morning, November 10th,
in NO2. This drop is a lot more than the max capacity of NSL, which reflects how sudden
events can disrupt the market. After 12:00 November 10th, a production is ramp-up can
be observed, even though the cable is not in operation. This is because the situation and
its circumstances are included in the closing of the Day-Ahead market at 12:00.

In the bottom plot in figure 4.37, both the regulation price and day-ahead price can be
observed during the event. It seems that only the regulation price in zone NO1, NO2,
and NO5 is significantly affected by the event.

15https://umm.nordpoolgroup.com/#/messages/c5e25a9c-9863-44d3-ac9d-02170ec17bbe/6
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Figure 4.37: NSL failure, UMM and market reactions
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4.14 Inaccuracy and uncertainty in weather forecasts

This section serves as a pre-study on weather forecast inaccuracy and uncertainty. The
pre-study outline in this section was initially conducted to indicate if weather forecast
uncertainties may affect regulation volumes. Furthermore, this study intends to contrib-
ute to determining if weather forecast uncertainties influence the activation of tertiary
reserves. In addition, downstream of this pre-study, an entire experiment, experiment
2 in Section 5.4 was conducted as a continuation of this pre-study. This pre-study and
experiment 2 form the foundation to test the research question hypothesis that weather
forecast uncertainties influence the need for grid balancing through the activation of ter-
tiary volumes.

The term inaccuracy is used to describe the difference between two images ∆image, e.g.,
between actual weather and weather forecast. The term uncertainty is later used to rep-
resent the image statistics computed from the ∆images. For the machine learning part
and experiment 2 in Section 5.4, only the term ∆images and uncertainty are used. Beside
the ∆image dataset created, a MAD dataset is constructed from the ∆images and consists
of data from 6 different areas within the ∆images for every type of weather image (eight
types in total). The MAD dataset is then a series of 8760 records (hours in 2021) having
6× 8 = 48 features per observed hour of 2021. Analysis of ∆images relative to regulation
volume is performed in Subsection 4.14.3, and analysis of uncertainties relative to regula-
tion volume is performed in Subsection 4.14.4. In addition to performing data analysis on
weather uncertainties, experiment 2 includes machine learning methods using calculated
image statistics (estimated uncertainties), and modelling using ∆images directly.

4.14.1 Decisions on data gathering

Estimating inaccuracy in weather forecasts is done in two ways. One uses the differ-
ence between actual weather against the weather forecast of the same hour. The other
is by skipping the actual weather by estimating the difference between old and updated
weather forecasts of the same hour. The motivation of only using weather forecasts is
that it enables to estimate the forecast inaccuracy and uncertainty into the future, not just
for the current or historical hours. Working with only weather forecasts is more complex
in terms of data utilization and is therefore left out of the exploratory data analysis and
included as part of experiment 2 in Section 5.4.

A simplification of the problem of constructing the differentiated weather images was
made since new weather forecasts 60 hours into the future are published at 00:00, 06:00,
12:00, and 18:00 every day. Therefore, only one of the four published forecasts mentioned
was chosen, and given that forecasts contribute to planning the day-ahead market prior
to its clearing, it is logical to focus on weather forecasts performed prior to the market-
clearing at 12:00. This means that the weather forecast published at 00:00 or 06:00 is most
likely the forecast used for planning the day-ahead market. For the analysis in this sec-
tion, it was decided to focus on the 24 hours forecast starting at 00:00 (UTC) to make the
analysis more feasible since it avoids tackling hours and days with overlapping forecasts
when looking at a 24-hour sequence (one day). However, using the 00:00 weather fore-
cast over the 06:00 may be suboptimal since the 06:00 published weather forecast is closer
to the day-ahead market clearing. Therefore, the more advanced method of examining
the weather forecast in Section 5.4 is based on the 06:00 forecast.
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4.14.2 The data creation process

The constructed data set of ∆images consists of eight weather type images for each hour in
2021, a total of 69368 images (35GB of data). The difference between the weather forecast
and actual weather computed is formulated as follows:

∆W i,j
weather type,h = ∀i∀j

√
(Ai,j

weather type,h − Fi,j
weather type,h)

2 (4.1)

Where ∆W represents the difference or inaccuracy weather image also referred to as the
delta image denoted ∆image, A the actual weather image, F the weather forecast image,
and i, j represents the pixel position. h represents a given hour (date and time) in the
time-series sequence in 2021, and the weather type is defined as ∈ { air pressure at sea level,
air temperature, wind speed, wind direction, relative humidity, cloud fraction area, precipitation
amount, surface downwelling shortwave}.

A vectorized method of calculating the delta image for a given weather type at a given
hour is shown in listing 4.1.

1 def delta_image(actual_image , forecast_image):
2 return np.sqrt(( actual_image - forecast_image) ** 2)

Listing 4.1: Python calculation of delta images

Wind direction is computed differently than the other weather type images, since the
pixel values represents direction stemming from the U and V componts, where U is the
horizontal wind component towards east parallel to the x-axis (longitude), and V is the
horizontal wind component towards north parallel to the y-axis (latitude). Since the pixel
values reflects the angle of the wind direction from the components, the 8bit image range
is first converted into a range between 0− 2π. After that the sinus and cosinus of the
difference between actual and forcasted image is computed. Lastly the absolute value
of the arctan2 is computed to get the resulting pixel value in radians in positive values
only. To make the computation correct for all 4 quadrants in the unite circle and to to
avoid ambiguity in the returned value, the arctan2 function is used instead of the regular
arctan16. Lastly the computed wind direction delta or differentiated wind direction image
is converted from radians to an 8 bit unsigned image between 0-255. The code covering
the operation can be seen in listing 4.2

1 def pixel_values_in_radians(img):
2 # Pixel values scaled between 0 to 2pi
3 return img * ((2*np.pi)/255)
4

5 def delta_image_wind_direction(actual_image , forecast_image):
6 a_transformed = pixel_values_in_radians(actual_image)
7 f_transformed = pixel_values_in_radians(forecast_image)
8

9 # Sinus and Cosinus images computed
10 sinus_diff_image = np.sin(a_transformed - f_transformed)
11 cosinus_diff_image = np.cos(a_transformed - f_transformed )
12

13 # Absolute value of the invers tan2 of the sinus and cosinus image
14 return np.abs(np.arctan2(sinus_diff_image , cosinus_diff_image))

Listing 4.2: Python calculation of delta image for wind direction

16http://tornado.sfsu.edu/geosciences/classes/m430/Wind/WindDirection.html
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As previously mentioned, the estimates of uncertainties in this section were based on
the difference between weather images for the entire 2021. From the ∆image process,
the mean value and the Mean Absolute Deviation (MAD) were computed, representing
extracted first-order image statistics. MAD is used for quantifying the deviation by
measuring the dispersion of data within each region in the image. MAD uses the L1
distance (Manhattan distance) between the data (regions in the image) and the mean of
that region. MAD is chosen over standard deviation because of its robustness to outliers
since MAD calculates the absolute value while standard deviation computes the squared
value.

MAD =
1
n

n

∑
k=1

∣∣∣∣∣xk −
1
n

n

∑
k=1

xk

∣∣∣∣∣ (4.2)

Where n stand for number of pixels in the image, or sub regions of the image, x
represents the pixel value at pixel k. The MAD calculations were performed for the
entire global space of the image (NO) and locally for each bidding zone NO1-NO5. At
the same time, NO1, NO2, NO3, NO4, and NO5 were computed using latitude, and
longitude coordinates from the Norwegian Meteorological Institute projected down onto
the image using the Lambert conformal conic projection. Projecting the coordinate onto
the image constructs a non-convex polygon, forming a pixel position mask representing
each bidding area. The latitude and longitude coordinates were downloaded from
Meteorological Institute by the KoBas project as geojson files and can be found in the
Meteorological Institute data download services. The Lambert conformal conic proj4
string used as a parameter for the projection can be found in the Meteorological Institute
Github repository17. Figure 4.38 shows the polygons representing pixel positions for
each bidding zone plotted on top of a ∆images. The yellow dotted line around the image
represents the global image referred to as zone NO. MAD is computed relative to all the
areas (local and global) shown in the figure.

17https://github.com/metno/NWPdocs/wiki/Examples
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Figure 4.38: Delta image for air temperature at 2021-12-04 01:00 overlayed with polygons
covering each bidding zones projected onto the image using latitude and longitude
coordinates from the Norwegian Meteorological Institute and the Lambert conformal
conic projection [3]

If zooming in on Figure 4.38, one can see some bright orange-yellow areas in the
background through the transparent polygons. The bright pixels values represents the
mentioned inaccuracy. The MAD calculation measures the mean aggregated dispersion
for all pixels covered by the mask relative to the mean of the entire area in the background
covered by the polygon. Thus, the calculated deviation represents an aggregated
measured quantity relative to its bidding zone which is regarded as being the weather
forecast uncertainty in that area. This method is used to represent the prediction
uncertainty of the weather forecast and not the model uncertainty of the MEPS model.
Estimation of weather forecast uncertainty at a given hour using MAD is generally
formulated as follows:

weather forecast uncertainty = MAD
(
(∆Wweather type,h)

zone

)
(4.3)

Where the MAD statistics is computed relative to the area reflecting the mentioned global
or individual bidding zones specified as: zone ∈ {NO, NO1, NO2, NO3, NO4, NO5}. The
∆W, weather type and h was specified for equation (4.1).

4.14.3 Analysis of weather forecast inaccuracy

Figure 4.39 shows an example of a ∆W on the rightmost image computed from the
actual and forecasted images. Note that upper three plots in the figure represents
air temperature in 2021-12-04 01:00 (UTC), while the three lower plots represents air
temperature at 2021-12-04 01:00 (UTC). All plots are visualized using a the inferno
colormap to highlight the differences between the images. The zero value in the color
bar indicate no difference between the actual weather and the weather forecast. Brighter
colors indicate significant differences. It can be observed that the ∆W image from 2021-
12-04 16:00 has more bright areas than the ∆W image from 2021-12-04 01:00. This shows
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that the weather forecast for air temperature at 16:00 deviate a lot more from actual
weather than what is observed for 01:00, which designates hour 16:00 to comprise a
greater inaccuracy than observed for hour 01:00. Similar situation can be observed for
the wind speed ∆W image in figure 4.40. It can be visually observed that there is
zero difference between wind speed weather forecast and actual wind speed at 2021-
12-04 01:00, while 2021-12-04 01:00 revels a significant difference in the ∆W image.
Interestingly, table 4.11 reveals that activated tertiary reserve volumes at 2021-12-04 01:00
are zero for all zones. In contrast, 2021-12-04 16:00 had a lot of regulated power at
the same time as weather forecasts of several weather types deviated significantly from
actual weather. Other weather types were also investigated at hour 01:00 and 16:00
showing weather forecasts at hour 01:00 not deviating much from actual weather, while
hour 16:00 deviated significantly more. However, this observation calls for a statistical
analysis rather than an image-by-image investigation, which is done in Subsection 4.14.4.

Regulation at hour NO1 NO2 NO3 NO4 NO5
2021-12-04 01:00 0 0 0 0 0
2021-12-04 16:00 0 50 -288.2 -183.1 147

Table 4.11: Regulation volumes in MWh at 2021-12-04 01:00 and 2021-12-04 16:00.

Figure 4.39: Actual, forecast, and delta image of air temperature at 2 meters above surface
in 2021-12-04 01:00 and 2021-12-04 16:00.
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Figure 4.40: Actual, forecast, and delta image of wind speed at 10 meters above surface
in 2021-12-04 01:00 and 2021-12-04 16:00.

4.14.4 Analysis of weather forecast uncertainty

Figure 4.41 show boxplot statistics of the quantified uncertainties for air temperature
and wind speed grouped on hours. The uncertainties of wind speed forecasts seem to
be reasonably low the first three hours after the forecast conducted at hour 00:00 and
increase considerably after that. Air temperature seems to increase more gradually. It
seems that the weather forecast uncertainties reach a plateau at some point. The other
weather type are not shown, but they indicate a similar saturation of uncertainties as
observed for wind speed in figure 4.41

Figure 4.41: Weather uncertainties for air temperature, and wind speed calculated from
delta images using aggregated MAD from each zone mask and globally.

Figure 4.42 illustrates the relationship between weather forecast uncertainties and
regulation volumes. The y-axis represents the absolute Spearman correlation between
wind speed and direction. The x-axis corresponds to the weather type and the region
from which the uncertainty is calculated. The correlation coefficient value is not very
strong maxing out at a correlation of 0.25 at most. The plots in Figure 4.42 are the plots
of the two hours having the highest peak correlations found in the investigated data.
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Bidding zone NO3 had the highest correlations at hour 21 for wind speed and direction,
while other zones dominated other hours for different weather types. The power source
mix analysis in the Section 4.4 revealed that NO3 had the highest portion of power from
the onshore wind of all zones, as was shown in Figure 4.3 which may describe why NO3
has the highest correlation seen in Figure 4.42. All correlations observed were generally
low. However, given that the Spearman correlations measure a non-linear relationship
and that it is not zero, a machine learning model, particularly a deep learning model,
could potentially utilize deep associations between regulation volume and weather
forecast uncertainties. Another takeaway to consider from the wind speed plot in Figure
4.42 and other plots not included in the report was that uncertainties calculated globally
(NO) from the ∆W often had higher correlations than individual zones NO1-NO5. This
motivates a machine learning model to prioritize the entire spatial domain of the weather
image rather than single individual zones. It might be that weather and weather forecast
uncertainties occurring outside a particular bidding zone still influence the regulation
within the bidding zone. Additionally, available transmission capacity between zones
also plays a role in the regulation market since it enables power to flow. Therefore,
uncertainties must be connected and shared between zones to some degree. Weather
forecast uncertainties influencing the need for regulation in one particular zone may
indirectly trigger grid balancing in another zone through available transmission cables.

Figure 4.42: Correlation between regulation volume for every bidding zones and weather
forecast uncertainties calculated using MAD from delta images of wind speed and wind
direction.

Figure 4.43 is a high-level overview over all correlations found in the correlation analysis.
The purpose of the heatmap is to get an impression of which hour (0-23) at which weather
type that has the highest correlations. The heatmap shows hourly correlations between
uncertainties and regulation volume with the mean correlation of each individual zone
and the mean across all zones after that. Thus, the value in the heatmap is a mean
of a mean quantity and is lower than the observed peak correlations. The aggregated
correlation information in the heatmap is plotted relative to hours on the y-axis and the
weather type on the x-axis. One can see from the plot that the correlations vary between
different weather types and for different hours. This plot indicates that weather forecast
uncertainties may contribute to activating tertiary reserves differently from hours and
weather types. However, the influence of weather forecast uncertainties seems fractional
if just a single weather type at a given hour is considered. Therefore, fragments of
associations between different weather types and regulation volumes may add up to
together be a significant descriptor of tertiary reserves activation when utilizing deep
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learning methods. It was found that by computing the correlation for some specific
months (not the entire year 2021), the situation in figure 4.43 completely changes, and
air pressure, precipitation, and wind direction may not yield the highest correlation as
seen in the figure.

Figure 4.43: Mean of correlation between regulation volume and weather uncertainties
over all bidding zones and weather types, sorted by the hour of the day.
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4.15 Data analysis takeaways

This section partially concludes on some of the research questions and sets the direction
for the remaining part of the thesis. The full conclusion will be given in Section 6.1

4.15.1 Noise and stationarity

The related work and the data investigation show that the regulation volume is noisy
and very complex. The Universal approximation theorem state that, “any function can
be approximated by an appropriate neural network method” [44, 45]. However, the Universal
approximation theorem is theoretical, and the data utilized sets the boundary for what
is feasible to achieve in practice. The exploratory data analysis reveals that regulation
volume is not white noise. While the mean value is very close to being constantly zero
through time, the standard deviation is not constant, and the autocorrelation does not
equal zero when considering all lags. The regulation volume is stationary, which is a
requirement for white noise but some seasonal components were found for the regulation
volume in all zones; NO1, NO2, NO3, NO4, and NO5.

4.15.2 Outliers

In the light of regulation volume not being white noise, it can theoretically be modeled
given sufficiently informative input features, and machine learning experiments are
therefore relevant to pursue. Extreme outliers in the data may influence the model
training such that it becomes biased toward the abnormal data. In general, a good
model must be able to generalize to new, previously unseen input data without having
any strong biases towards abnormal conditions. However, defining anomalies is not
always straightforward. In the case of power regulation volumes, it is driven by
situations deviating from expected plans. Thus, the power regulation is already in
itself an abnormal condition that this thesis intends to describe using machine learning.
Therefore, removing or changing data points for regulation volume marked as outliers is
not considered an option in this case.

4.15.3 Correlations, features and model suggestions

Correlations for ∆pr and ∆prod show a strong linear relationship between ∆prod and
regulation volume on recent data, while ∆pr looks to have an increasing amount of non-
linear components in its relationship with regulation volume over time. This indicate a
gain in price complexity over time. A deep recurrent neural network e.g., LSTM is there-
fore suggested, due to its ability to capture time-dependant patterns seen in some of the
market data. Moreover, it is not advised to use ∆pr or ∆prod directly as has been tried for
∆pr in some previous work [6, 29, 27]. This is because the deltas can, in some ways, be
seen as "actual" regulation volume for the current hour and do not necessarily describe
the root cause of why the regulation volume appears both considering the current hour
and the next hour. Therefore, it is more sensible to use day-ahead price, regulation price,
actual production, and production prognosis directly such that a deep learning model
can learn how the different time series relate. The regulation volume is clearly correlated
with the previous hours but with a decreasing trend for increasing time difference. This
motivates the use of lags as features for modeling regulation volume instead of using the
computed ∆pr and ∆prod. Therefore, an experiment will be set up to include the fea-
tures from target lags together with the actual day-ahead price, regulation price, actual
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production, and production prognosis. The day-ahead market features are also known
at least 12 hours forward in time, which enables using some future market data when
forecasting regulation volumes. The impact of seasonal features is also interesting to in-
vestigate. However, given that the seasonal components found for regulation volumes
are relatively weak, it is believed that a deep learning method would still be able to make
use of the information. In addition, information regarding transmission flow and trans-
mission capacities is relevant. The market coupling and connections between markets
with the Nord Link and North Sea Link impacts the production, demand and regula-
tion. However, only the transmissions between markets internal to Norway (NO1-5) are
considered within the scope of the thesis. Additionally, the regulation volumes in the
different bidding zones were discovered to be correlated, thus motivating to forecast the
regulation volume for one specific zone while using previous hours of regulation volume
for other zones as input features. The observed strong autocorrelation for the previous
hour of regulation motivates an experiment using a univariate model that only use on
time-series variable, the regulation volume.

Regarding model selection, pursuing modeling using different Autoregressive Models
(AR) and Markov Models are considered out of scope and not relevant since this thesis
focuses on deep learning using a large amount of data. Adding to this decision is that the
power markets have changed a lot since the 2010-2012 data used by Klæboe et al. [27]
and the 2014 data used by Dimoulkas et al. [31] on the Swedish market, which rules out
the motivation for comparing the deep learning results with models used in related work
for the univariate modeling.

The investigated weather and weather uncertainties do not indicate a clear or statistically
significant relationship with tertiary volume activation. However, the correlations found
were not zero. They were computed using the non-linear spearman correlation, which
motivates the use of deep learning image models to find deep and complex patterns and
relationships.
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Chapter 5

Machine Learning experiments

5.1 Experiments overview

5 Machine Learning experiments were conducted which all are motivated by the raised
research questions. Experiment1 is the machine learning part coupled to the research
questions asking if there are any drivers of regulation volume, and to which degree
regulation volumes are predictable or not. Experiment 2-5 is coupled to the research
question about weather influence on the regulating power markets. The weather
experiments also relate to the question on whether there are any significant drivers
behind regulation volumes. The experiments and modeling mainly focus on regulation
volume for the bidding zone NO5 to simplify the experiments and the model tuning for
one particular zone. NO5 is chosen both because the partners in the KoBas project are
interested in bidding zone NO5 and since NO5 is found to be the most complex and
difficult bidding zone to model and forecast. With some tuning, the model performance
for the bidding zones NO1-NO4 is found to yield lower MSE values more easily than
what is discovered for NO5. Additionally, as was discovered in the exploratory data
analysis in figure 4.15, NO5 has more activation of tertiary reserves and noise (the
orange residuals in the figure) than the other zones making it the hardest bidding
zone to forecast. Figure 5.1, 5.2, 5.3, 5.4 show an overview over the major content
explored during experiment 1-4. Experiment 5 is shown both as an overview and in
more detail in figure 5.40. Experiment 1 is conducted using only marked and seasonal
data, while experiment 2-5 include 2-dimensional weather data. The experiments are
conducted using knowledge gained through related work and exploratory and extensive
data analysis. Previous relevant work serves as inspiration on how to approach the
problem using a different methodology using state-of-the-art methods. Experiment 1
is more comparable with previous work, while experiment 2-5 is known as completely
unexplored ways of forecasting the regulation volume. Additionally, no research
tackling NO5 in a similar manner was found, and no research was found to be directly
comparable. The experiments use the most recent available data, which no previous
research has been found to use. The experiments also serve to address further the
research question, which was also addressed during the exploratory data analysis.
Experiment1-4 is evaluated using the same validation and test data for comparability
reasons. Experiments 2 and 3 only have training data for 2021 due to storage and
download complexity, while experiments 1 and 4 include training data from 2016 to
2021. The calculated market delta values (production delta and price delta) were not
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used directly as input features to the models since target lags were used. However, the
actual data behind the deltas (day-ahead price, regulation price, actual production, and
production prognosis) were used in their original form. This choice intends not to include
delta features that are almost equal to the regulation volume lags but rather to make it up
to the models to learn the delta combinations and how it relates to the regulation volume
targets.

Figure 5.1: Overview over Machine Learning Experiment 1

Figure 5.2: Overview over Machine Learning Experiment 2
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Figure 5.3: Overview over Machine Learning Experiment 3

Figure 5.4: Overview over Machine Learning Experiment 4

5.2 Data pre-processing

5.2.1 Data cleaning

Python scripts were made in order to read in the downloaded raw data and to create
a main dataset. One process for reading and cleaning data follows each experiment.
For experiment 1, the numerical market data were read from the downloaded raw data
and processed. All market data discussed in this thesis is processed and added to the
main dataset. Empty or NaN (Not a Number) values were mainly replaced with zero
values, and some few removed. Very few record of regulation volumes had NaN, and
those found were removed instead of guessing the correct value. Seasonal features
were created directly from the hourly time stamped data. Some consumption data
were missing, and the the last hour were used to fill the missing data. Consumption
delta, production delta, price delta were calculated and added to the dataset for analysis
purpose. Some market data that were missing at NordPool were replaced from data in
the entsoe database. Missing weather forecast images and actual weather images were
marginally. Therefore, the missing weather forecasts data were note not replaced.
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5.2.2 Data scaling and handling of outliers

No outliers were removed from the regulation volume target data based on the
exploratory analysis part. Different types of scaling were investigated both for numerical
market data and for target data. The MinMax scaler from sklearn1 was finally chosen
for target scaling. The MinMax scaler scales the data within 0-1 in floating value. The
MinMax scaler is sensitive to outliers, but given that outliers constitute a significant
portion of regulation volumes, scaling the regulation volume is not considered an issue
using a MinMax scaler. Using a scaler sensitive to outliers may even be more appropriate
in this time-series context, considering that the major part of the regulation volumes
being modeled is defined as statistical outliers discovered during the exploratory data
analysis. For simplicity, the input data were also scaled using a MinMax scaler. The
standard scaler2 where the mean is subtracted from the data folllowed by a division of
the standard deviation was tried out. Standard scaling of both the input data and the
targets did not reveal any noticeable improvements over the MinMax scaling. Another
Scaler that was investigated was a scaler robust to outliers (Robust scaler)3. Scaling the
data using the Robust scaler did not show any sign of improved model performance or
faster convergence during training.

5.2.3 Sliding window and dataset creation

A windowing method named sliding window is utilized on the data to transform one
single time-series data stream into a supervised learning problem. This concept exploits
previous (historical) time steps while using subsequent time steps as targets. The benefit
of this process is that time-series data can be transformed such that both simpler standard
linear models and nonlinear models can model the data[21].

Framing a single variable or stream of data as a supervised learning problem maps the
data into a function such that an input sequence of data can be used to describe an output
sequence. Let wi and wo denote the window input and the window output at a given size.
A function that maps the inputs into outputs can then be viewed as follows:

f : Rwi → Rwo

This function represents the regression problem framed as a supervised learning problem
where the wi sequence represents the input data to learn from, and wo represents the
output data to forecast. A machine learning method can then be used to learn the
function f that models the relationship between the data in wi and wo. A sliding window
algorithm was developed to be able to model the described function and to have full
control over the windowing process. It was necessary to be able to adjust the input
window size, the output window size, and the stride. Another motivation for having
full control over the algorithm is to utilize it multiple times for different data streams to
combine several variables and form a multivariate setup. The algorithm work on one
single data stream (one single data variable) at a time, forming a univariate windowed
dataset of one single variable input into the method. The stride relates to how many data
points to slide between each time slice.

The sliding window algorithm slides through the data and constructs time-slices as
illustrated in table 5.1. In the example, the stride s is set equal to 1, and the data d is

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
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the datapoint at time t, e.g., regulation volume at a given hour. The gray-colored cells
represent the input window wi of size 4, and the blue-colored cell represents the output
window wo of size 4. Each input and output slice is stored in temporary vectors.

time 0 1 2 3 4 5 6 7 8 ... ... ... ... ... ...
data d0 d1 d2 d3 d4 d5 d6 d7 d8 ... ... ... ... ... ...

~X0 ~T0

time 0 1 2 3 4 5 6 7 8 9 ... ... ... ... ...
data d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 ... ... ... ... ...

~X1 ~T1

time 0 1 2 3 4 ... ... t-4 t-3 t-2 t t+1 t+2 t+3 t+4
data d0 d1 d2 d3 d4 ... ... dt−4 dt−3 dt−2 dt−1 dt+1 dt+2 dt+3 dt+4

~Xk ~Tk

Table 5.1: Time-series data windowing using the sliding window algorithm

The windowed processed datastream is then constructed into matrices:

X =


~X0
~X1
...
~Xk

 T =


~T0
~T1
...
~Tk


Where the input data (features) in the design matrix is X and the target matrix T
constitutes the vectors or samples from all time-slices {1, 2, 3...., k} defining the dataset
D = {X, T}. The data is then later split into training, validation, and test, where some
samples (time-slices) are reserved for training, some for validation, and some for test
data.

Modeling using different input and output window sizes was tried. However, it was
standardized using an output window of 4 since the KoBas project desired a 4-hour fore-
cast horizon. When forecasting 4 hours into the future, it is logical to have an input win-
dow size of 4 or more. The size of the input window relates to historical data or lags. As
investigated in the exploratory data analysis, lag1 is highly correlated with the next hour
of regulation volume, while lag2 and below are marginally correlated with the next hour.
Having a larger input window size than 4 may not be suitable since it may invoke even
more noise in the modeling process. However, a 4-hour historical input window was
used as a benchmark when modeling using other sizes for the input window (lags) were
investigated. The sliding window algorithm is designed to take in a pandas dataframe
and a key representing the column, the data, to apply the windowing process to. The re-
turned dataframe is the processed data where the columns represent the different input
window features and columns represent the output window to be used as target values.
A prefix with the name Lag1, Lag2, Lag3, Lag4, up to LagN is used in the column to reflect
the time t− 1, t− 2, t− 3, t− 4, ..., t− N. Similary a prefix t1,t2,t3,t4 upto tM is introdiced
to the columns representing targets into the future t+ 1, t+ 2, t+ 3, t+ 4, ..., t+ M. Where
N and M represent the size of the input and output window. Note that using the slid-
ing window method with an input window of size 4 makes it impossible to forecast the
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first 4 hours in the data stream since a input window of 4 records must be used in order
to forecast the fifth, sixths, seventh, and eight output in the output sequence. An input
window size of 4 means that the new windowed dataset is shifted equally to the input
window size compared the unprocessed data.

The process above is an example of a univariate setup using, e.g., only the regulation
volume of NO5. This method is directly used for the univariate modeling in experiment1
- step1.2. Furthermore, several streams of time-series data must be included for a mul-
tivariate setup. This is done by using the sliding window method first on the regulation
volume to generate a dataset of lags and target values of the regulation volume. Addi-
tionally, the sliding window is used on other data streams that are concatenated with the
dataset constructed from regulation volume. The final dataset then can be described as:

Dfinal = {(Xother market features, Xseasonal features, Xreg. volume lags), Treg. volume targets}

Note that only the target matrix T for regulation volume is included as a target since the
output sequence of the other data streams is not considered a target for modeling. To
align the data for all data streams, they must be processed with the same input window
size, such that hours are aligned and matched for all the window processed data streams,
given the shift in hours that the input window introduces to the windowed regulation
volume targets. Moreover, using a window size of 4 to process, e.g., a seasonal feature
result is 4 features with prefix Lag1, Lag2, Lag3, and Lag4. One could use lagged versions
of the input data for all other features. However, only the previous hour (Lag1) is kept to
reduce the overall number of additional features in the multivariate setup.

The data into the future is already known for day-ahead price and the power production
prognosis data since they both originate from the day-ahead market clearing. Therefore
the next hour columns, the target1 (t1) from the T matrix from the data windowing
process is added to the X matrix only for day-ahead price and power production
prognosis. This feeds the model with some known future data for the features rooted
in the day-ahead market. Giving the model only some future information from the day-
ahead market and no future data of the regulation market results in giving the model
only parts of valuable future information relevant for the regulation volume forecasts.
However, the motivation for including future hours from the day-ahead market is to help
the model learn how the day-ahead data trends into the future. Ideally, this also helps
the model learn how the regulation market may trend when having historical day-ahead
data, historical regulation market data, and some added information on future day-ahead
data. The siding window process was also used for picking the correct images during
spatial-temporal modeling. Furthermore, a significant work in hours was put into both
downloading and organization of images for modeling, see Section 7.2.2 in Appendix.

5.2.3.1 Data for RNN and LSTM models

Recurrent Neural Networks, such as the LSTM model, require data to have a specific
dimensional form. The LSTM model expects the training, validation, and test data to
be structured as a 3D array on the form (batch size, sequence length, features), where
the batch size is the number of samples, the sequence length is the number of historical
time steps, and features is the number of features used. Therefore, the data created as
described in the sliding window section is reshaped to be compatible with the LSTM
model. This is done by grouping several time steps into a batch. The number of time
steps (the sequence length) used for each batch represents how many time steps back
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into the past the LSTM model looks when it learns how to forecast the future. The most
optimal sequence length both for the univariate and the multivariate LSTM was found
during a grid search covered in the multivariate modeling section.

5.2.4 Image normalizations and transformation

The image normalization is performed on the fly from the dataloader iteration. The pixel
values are first normalized to be within the range 0-1 in floating-point value. After that,
the images are scaled by subtracting a global mean value followed by a division of a
globally calculated standard deviation according to the method:

Standardized image =
Image− µ̂

σ̂

Where µ̂ and σ̂ is the sample mean and standard deviation estimated from a sample size
of 40% of all images within each individual weather type (8 estimated µ̂ and σ̂ values in
total). This results in the images being standardized equally relative to the given weather
type. The calculation of µ̂ and σ̂ is done prior to model training, and the estimated
statistics are fed to the dataloader prior to the modeling process.
Gaussian blur was also added as part of the image transformation process. However,
whether or not to include Gaussian blur was included as a parameter to measure
the effect with and without. The motivation behind introducing Gaussian blur is to
apply image noise reduction as a low pass filter to filter out high-frequency noise.
Another motivation was to see if the effect on Gaussions blur and its impact on spatial
relations when the images are sequenced as time-series data. The kernel size of the
Gaussian blur filter was set to default as a 3x3 kernel while also leaving an additional
parameter enabling filter size adjustments during experiments. Image augmentations
was considered not relevant. Augmentation can be used both to increase the size of the
training data and by augmenting the images with the purpose of generalize better during
training. It was decided not to augment the weather images during training to stay true
to the nature of weather and its topographical location relative to each bidding zone.
Another motivation not to augment the images is that the weather images are created
artificially from the MEPS models (not by a camera) and incorporate underlying physics
related to weather.

5.2.5 image resize and loss of statistical image properties

In the computer vision field, computationally available resources or the image size of
what pre-trained image models are trained on often sets the bar for which image size
to use for modeling. During the exploratory data analysis, the relationship between
regulation volume and weather uncertainties, and weather in general, were found to be
complex. When all 8 weather types are used for modeling, the original images must
be significantly resized to have a computationally feasible problem. Standard image
analysis techniques were utilized to compute image statistics for different image sizes.
The motivation for this is to know how much the statistical properties within each
weather type are affected when downscaling the images and which size that is suitable
during modeling. The images size of 96 × 96 were found to be a optimal image size
considering both the loss of image properties and computationally demands. Bicubic
interpolation was used for the image resizing. See Section 7.2.1 in Appendix for more
information.
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5.3 Experiment1

Experiment1 contribute to answering the research questions that are not directed towards
the influence of weather. Figure 5.5 outlines experiment1 and the different sub steps
from baseline models and predictions in step 1.1 up to time-series modelling. Substep
1.2 trains univariate data models with the last 4 historical target lags as the only input
features. Both the univariate and multivariate modelling use the sliding window method
to construct the time-series data in a windowed manner. The best univariate models
(BiLSTM and XGBOOST) are carried over to multivariate modelling in step 1.3. The
linear regression model is replaced by ridge regression in step 1.3 as the increase number
of features calls for regularization. The features used in the multivariate models are listed
under substep 1.3 in Figure 5.5. Investigating feature importance is an essential part of
the machine learning process to give the model optimal conditions for learning patterns
and relationships. The global importance was investigated for a range of features using
SAGE (Shapley Additive Global importancE)4. SAGE was used to determine global
feature importance since the coefficients from e.g., Ridge regression and the local feature
importance function of XGBOOST measure model-specific feature importance. SAGE
measures a global data-oriented feature contribution to the model [46]. The grid search
conducted under step 1.3 serves to find optimal hyperparameters primarily aimed at
the more complicated multivariate BiLSTM model. However, the hyperparameters also
improved the performance of the univariate model, as well as other BiLSTM models. In
experiments 1.4 and 1.5 the best univariate BiLSTM and multivariate BiLSTM models
trained on 2021 data were re-trained on data from 2016-2021 to see if model performance
increases or decreases with additional data, considering the inherent stochastic noise in
the regulation volume data. The seasonal feature "year" is added for the multivariate
BiLSTM in step 1.5 since the data spans several years. Lastly, the univariate and
multivariate models are pushed to their limit in experiments 1.6 to 1.8 using a forecasting
horizon of 10 hours into the future. In experiment 1.8, the target lags are excluded to
see if the features found during the exploratory data analysis carries enough information
without the dominating information in target lags. Other power market related features
than those listed were tried but were not included since they did not improve the models.

4https://iancovert.com/blog/understanding-shap-sage/
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Figure 5.5: Machine Learning Experiment1

5.3.1 Step 1.1 - Baselines

Figure 5.6 shows the normalized MSE performance of the considered baseline models.
The baseline models only predict one hour ahead. The Figure 5.6 shows the MSEs of
regulation volumes for NO1-NO5 evaluated on the last 800 hours of observations in 2021
for the Zero, Mean, Lag1-4, and multiple linear regression models with lag1-4 as input
features.

5.3.1.1 Results - Step 1.1 Baselines

Figure 5.6: Performance of baseline models for regulation volume for all bidding zones
predicting one hour into the future: Fixed predictions and multiple linear regression
(lag1-4 as features)
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5.3.1.2 Discussion - Step 1.1 Baselines

The baselines were all evaluated on the last 800 hours of 2021 to have a reference for
other models when evaluated over the same time span. The normalized MSE in Figure
5.6 show that the multiple linear regression (MLR) model is comparable to lag1 of
regulation volume for all zones NO1-NO5. This is expected due to the significant partial
autocorrelation for lag 1 (Figure 4.21). One can see from Figure 5.6 that predicting zero
or the mean of the target for every predicted hour is a decent baseline. This stems from
the nature of the regulation volume (Section 4.10), where a significant portion of the data
is zero for all zones (Table 4.6).

5.3.2 Step 1.2 - Univariate modeling

This univariate step is the first step in modeling the regulation volume four hours into
the future. In the univariate modelling setting only one regulation volume variable is
utilized. The modeling process was repeated for all each of the five zones NO1-NO5.
Modeling all five zones is time-consuming, and it was decided for the other sub-steps in
experiment 2 and for all other experiments to focus solely on modeling regulation volume
for NO5. The initial intention for step 1.2 was to find a good univariate forecasting
model that could be carried over to the multivariate modeling, which uses multiple
market features as input. Four baselines were carried over to the univariate step from
the initial baseline step 1.1 in Subsection 5.3.1; zero, mean, and lag1 prediction, and
the multiple linear regression (MLR). In addition, a Support Vector Regression (SVR),
eXtreme Gradient Boosting (XGBOOST), and Bidirectional Long short-term memory
(BiLSTM) models were added. Four models were trained for each of the MLR, SVR, and
XGBOOST models, one model for each future hour for each model type. The BiLSTM
model was made as a sequence-to-sequence model where all four hours are predicted
using a single model. All models were fed with lag1, lag2, lag3, and lag4 as input
features. The BiLSTM is designed for processing sequences of data and was created using
a sequence length of 6, having four lags (features) of historical regulation volumes for
each sequence. The sequence length is considered a hyperparameter, and several lengths
were tried, with 6 being the most optimal length found during the grid search in step
1.3 (Subsection 5.3.3). Additional hyperparameters were found during an extensive grid
search in step 1.3 - multivariate modeling in Subsection 5.3.3. The best hyperparameters
and the best BiLSTM architecture found in step 1.3 in Subsection 5.3.3 and shown in
Figure 5.3 turned out to also perform well in the univariate setting. Therefore, the
univariate modeling step was redone using the same configuration from the multivariate
modeling, except that the univariate modeling only uses one regulation volume variable
without extra market data. Several BiLSTM architectures were investigated, and the best
model used for both the univariate modeling and the multivariate modeling in step 1.3
is shown in Figure 5.7. The hyperparameters for the SVR and the XGBOOST are not
discussed due to the superior performance of the BiLSTM. However, some tuning was
done for the SVR and XGBOOST, which did not improve their performance much.
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Figure 5.7: The univariate BiLSTM model with 930604 trainable parameters.

5.3.2.1 Results - Step 1.2 Univariate modeling

Figure 5.8 shows the performance of the univariate modeling on the 2021 data modeled
using regulation volume for NO5. The figure shows the normalized MSE for all models,
including the baselines, four hours into the future. Figure 5.9 shows a qualitative plot
of the second forecasted hour from the MLR for 200 predictions in the test data. Figure
5.10 shows a qualitative plot for the forecasted second hour from the BiLSTM model
evaluated on the same data as the MLR model.

Figure 5.8: Univariate performance over 4 future hours for Multiple Linear Regression
(MLR), Support Vector Regression (SVR), XGBOOST, and BiLSTM trained on 2021 data
on bidding zone NO5
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Figure 5.9: Univariate results at hour 2 for Multiple Linear Regression trained on
regulation volume for NO5 using the 2021 data.

Figure 5.10: Univariate results at hour 2 for the Bidirectional Long short-term memory
BiLSTM model trained on regulation volume for NO5 using the 2021 data.

5.3.2.2 Discussions - Step 1.2 Univariate modeling

The performance in Figure 5.8 of the MLR, SVR, and XGBOOST models are almost sim-
ilar to predicting the mean value at hour4. The LSTM (which is the Bidirectional LSTM),
has a significantly lower normalized MSE value for all four hours. The MSE value for
hour4 from the LSTM model is significantly lower than the hour2 forecast from the other
models. Using Lag1 for hour3 results in an MSE score equal to setting the mean value.

One significant characteristic for the MLR model in Figure 5.9 is the temporal shift in
the predictions relative to the target data. This behavior stems from the input data being
the previous lags of the target. Thus, the model predictions are biased toward the lagged
hours of regulation volume and repeat something similar to what was known from re-
cent history. However, the MLR model consistently predicts a value closer to zero than
what was known in the previous lags. It seems that the model has learned that the spikes
from regulated power always go back to zero after some hours. This reflects the nature
of the regulation volume, where the effect of activating regulating power volumes results
in the grid being balanced, and eventually, zero regulating power is attained. Forecast-
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ing further into the future resulted in more predictions around zero regulation volume.
Comparing the MSE from the MLR model in Figure 5.9 with the BiLSTM model in Fig-
ure 5.10, the normalized MSE from the MLR model is almost 2.3 times higher than the
BiLSTM model. One can see from Figure 5.10 that the BiLSTM model corrects much of
the temporal shift seen from the MLR model in Figure 5.9. The LSTM model, in general,
is designed to process sequences of temporal data, which makes it more potent at learn-
ing the signature of regulation volume fluctuations over time. In addition, during model
training, the bidirectional LSTM model was trained on the time series in both forwards
and reverse order, learning the signature of regulating power events even better.

5.3.3 Step 1.3 - Multivariate modeling

In addition to using historical regulation volumes to model future regulation volumes,
the multivariate modeling takes in additional market data with the intention of improv-
ing the results from the univariate modeling. The setup for the multivariate modeling
is listed in 1.3. Multivariate modeling in Figure 5.5. All features have the unit Mega-
Watt hour [MWh] except for the day-ahead price, imbalance price, and seasonal features.
Analysis of cross-border transmission flow and capacities was not presented in the ex-
ploratory data analysis in Chapter 4. However, an investigation of correlations between
regulation volumes and flow revealed some relationships. It is logical to include cross-
border flow between bidding zones since activation of regulation reserves may involve
transmitting or receiving power via available transmission cables in the grid. The calcu-
lated delta flow takes the day-ahead planned flow and subtract the hourly intraday flow.

The Zero and Mean baselines are carried over for benchmark purposes. The same XG-
BOOST model and BiLSTM model from the univariate modeling is used for the mul-
tivariate modeling. Additionally, the Ridge regression model is included over the linear
regression model due to the high number of predictors or features and to give the model
the ability to regularize coefficients to achieve better predictions. Different architectures
of the BiLSTM model were investigated, and the final architecture used is the same model
presented in the univariate modeling in Figure 5.7. However, the InputLayer dimension
is increased to take 42 features instead of the 4 features used for the univariate BiLSTM
in Figure 5.7. The hyperparameter space used in the grid search can be seen in Table 5.2,
and the most optimal parameters from the grid search can be seen in Table 5.3.

Learning rate RNN Units Batch size Sequence Length Target lags Regularization
0.0001 64 100 3 4 1.e-07
0.0005 88 200 4 5 1.e-05
0.001 128 300 6 1.e-03
0.005 224 400 1.e-01
0.01 300 1.e+01

Table 5.2: Grid Search parameters for the BiLSTM model

Learning rate RNN Units Batch size Sequence Length Target lags Regularization
0.0005 300 100 6 4 1.e-07

Table 5.3: The best found combination of parameters for the BiLSTM model

79



5.3.3.1 Results - Step 1.3 Multivariate modeling

The global feature importance described by SAGE5 can be seen for the forecasted hour1
and hour4 in Figure 5.11 and Figure 5.12.

Figure 5.11: Feature importance at hour1 using SAGE on Ridge Regression on data from
2021 on regulation volume for bidding zone NO5

Figure 5.12: Feature importance at hour4 using SAGE on Ridge Regression on data from
2021 on regulation volume for bidding zone NO5

Figure 5.13 shows the performance of the performance on the 2021 data modeled using
regulation volume for NO5. The figure shows the normalized MSE for all models,
including the baselines for zero and mean predictions, four hours into the future. Figure
5.14 shows a qualitative plot of the second forecasted hour from the multivariate BiLSTM
evaluated on the same test data as the univariate models.

Figure 5.13: Multivariate performance over 4 future hours for Ridge Regression (Ridge),
XGBOOST, and BiLSTM trained on 2021 data on bidding zone NO5

5https://iancovert.com/blog/understanding-shap-sage/
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Figure 5.14: Multivariate performance at hour 2 for the Long short-term memory BiLSTM
model trained only on 2021 data on bidding zone NO5

5.3.3.2 Discussions - Step 1.3 Multivariate modeling

The global feature importance for the first forecasted hour in Figure 5.11 reveals the dom-
inating influence from lag1 of NO5 (Lag1_NO5) regulation both for the training and test
data. The feature importance on the fourth forecasted hour in Figure 5.12 reveals that
lag1 of NO5 regulation volume is significantly less influential. The lagged features con-
tribute less when forecasting further into the future. In the absence of the lagged features
dominating the feature space, other features get more room for influencing the modeling,
as seen in Figure 5.12 when compared with hour1 in Figure 5.11.

Figure 5.13 shows that the BiLSTM overall performance is significantly better than the
Ridge regression and XGBOOST model. However, none of the multivariate models beats
the results from the univariate BiLSTM in Figure 5.8. The regularization parameter for
the BiLSTM layers turned out to be very small, as seen in Table 5.3. Therefore, I dis-
carded the regularization of the BiLSTM layers. The performance was indistinguishable
with and without the weight regularization of the BiLSTM model. The predictions for
hour2 in Figure 5.14 reveal that the predicted results from the multivariate BiLSTM are
not better than the predicted results from the univariate BiLSTM in Figure 5.10. Thus, so
far the univariate BiLSTM model from Figure 5.8 trained and tested on 2021 is the best
performing model baseline when increasing the data range (2016-2021) in step 1.4 and
step 1.5 in Subsection 5.3.4.

5.3.4 Step 1.4 and 1.5 Uni and multivariate on 2016-2021 data

Step1.4 and step1.5 consist of re-modelling two previous univariate and multivariate
models (steps1.2 and step1.3) using data (2016-2021) while keeping the same test data
from step1.2 and step1.3 for evaluation. Comparing the results from modeling using
data for one year versus several years was not found in previous work (Section 3.1),
which serves as a motivation for this subsection.

5.3.4.1 Results - Step 1.4 and 1.5 Uni and multivariate on 2016-2021 data

Figure 5.15 shows the performance of the univariate models from step1.4, and Figure 5.16
shows the performance of the multivariate models from step1.5. Table 5.4 summarize
the performance of all BiLSTM models from step1.2-step1.5. Model performance during
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training is shown in Figure 5.17 and Figure 5.18 for the best univariate and multivariate
BiLSTM models. The Figures 5.19, 5.21, 5.20, show some representative forecasts for
hour1 and hour2 for the univariate and multivariate BiLSTM from step 1.4 and step1.5.
The performances of the best univariate and multivariate BiLSTM models are shown in
Figure 5.22 with confidence intervals for each forecasted hour.

Figure 5.15: Step1.4 results (step1.2 with more data): Univariate performance from MLR,
XGBOOST and BiLSTM trained on 2016-2021 data on bidding zone NO5.

Figure 5.16: Step1.5 results (step1.3 with more data): Multivariate performance from
Ridge, XGBOOST and BiLSTM trained on 2016-2021 data on bidding zone NO5.

BiLSTM performance MSE hour1 MSE hour2 MSE hour3 MSE hour4
Univariate on 2021 0.001683 0.002623 0.003778 0.005163
Univariate on 2016-2021 0.00105 0.001935 0.002944 0.004353
Multivariate on 2021 0.002715 0.003716 0.005025 0.006023
Multivariate on 2016-2021 0.001677 0.002525 0.003617 0.004942

Table 5.4: MSE comparisions between using 2021 or 2016-2021 data for both univariate
and multivariate BiLSTM.
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Figure 5.17: Step 1.4 - Training evaluation for univariate BiLSTM.

Figure 5.18: Step 1.5 - Training evaluation for multivariate BiLSTM.

Figure 5.19: Results from step 1.4 - univariate BiLSTM: forcast of hour 1.

Figure 5.20: Results from step 1.5 - mulitvariate BiLSTM: forcast of hour 1.
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Figure 5.21: Results from step 1.4 - univariate BiLSTM: forcast of hour 4.

Figure 5.22: The best performing BiLSTM models from experiment 1.4 and 1.5 trained
and evaluated on data from 2016-2021. Median MSE with 95% confidence interval
centered around the median.

5.3.4.2 Discussion - Step 1.4 and 1.5

When using more data, the Figures 5.15 and 5.16 reveals that the LSTM model (BiLSTM)
significantly outperforms the other models both in the univariate and multivariate
settings. This rules out all other models but the BiLSTM in pursuit of the best performing
model. Table 5.4 summarizes the performance of all BiLSTM models, and it shows that
both the univariate and multivariate models trained on data from 2016-2021 outperform
the models that are only exposed to the 2021 data. Considering the MSE score for all
four hours, the best performing BiLSTM model is the univariate model trained on data
from 2016-2021. Figure 5.17 and 5.18 show the training evaluation for the univariate and
multivariate models exposed to the 2016-2021 data. All BiLSTM models are trained using
validation data for learning rate reduction.

The learning rate is reduced on plateau6 with the patience set to 3 epochs. The learn-
ing rate is reduced if the MSE on the validation data is not improving after 3 epochs to
prevent overfitting and to guide the model into possible better generalization and per-

6https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ReduceLROnPlateau
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formance. One can see from the training of the univariate model in Figure 5.17 that the
training goes rather smooth until the loss converges. One can see in Figure 5.17 the learn-
ing rate reduction at epoch 16 after not improving on the validation loss since epoch 13,
and this guides the model into a lower validation loss from epoch 17. In Figure 5.18 one
can see that the multivariate model struggles slightly in the optimizing process, which is
most likely due to the higher number of features and it needs to take several relationships
into account when updating weights through the backpropagation process. Upon con-
verging, the training and validation loss for both the univariate and multivariate training
seems to be at the lowest value and stable, indicating that the models do not overfit to
the training data.

Investigating Figure 5.19 and 5.20 reveals some predicted results for hour 1 for the uni-
variate and multivariate BiLSTM. It is previously mentioned that all models are evaluated
on the same test data, the last 800 observations in 2021. However, a detailed presentation
of actual predictions is done using the first 200 predictions of the test data, while the MSE
value is from the whole test data. The univariate predictions in Figure 5.19 generally fol-
low the target but struggle to reach some of the peaks, e.g., the largest peak close to hour
25 on the x-axis. The multivariate predictions had a higher MSE value than the univariate
as summarized in table 5.4. The multivariate BiLSTM occasionally managed to forecast
some peak values better than the univariate BiLSTM model e.g. around hour 25 in Figure
5.20. In comparison, the univariate model was not able to forecast the same peak value
in Figure 5.19. Figure 5.21 show the fourth forecasted hour of the best univariate BiL-
STM model. It is seen that the predictions are generally closer to zero compared with the
hour1 forecast from the univariate and the multivariate. However, the univariate model
still captures some peak values when forecasting four hours into the future.

Figure 5.22 shows the best performing univariate and multivariate models with a com-
puted 95% confidence interval for each forecasted hour. The median MSE of 30 trained
and evaluated models are shown with a band corresponding to the confidence inter-
val. The confidence interval is computed by bootstrapping the 30 evaluated MSE values
100000 times and then calculating the upper and lower percentile corresponding to a 95%
confidence interval of the bootstrapped MSE values. The calculated confidence intervals
shown in the figure reveal that both the univariate and multivariate models perform
consistently. In addition, Figure 5.22 also shows the two univariate and multivariate BiL-
STM trained on only using the fourth future hour as the target. It reveals that BiLSTM
performs equally on the fourth forecasted hour when only trained on hour4 compared to
the entire output sequence of hour1 up to hour4.

5.3.5 Step 1.6 and 1.7 - Uni and multivariate with 10 hour forecast

The best univariate and multivariate BiLSTM models are considered the two superior
models in this thesis for forecasting regulation volumes. These two models were
stretched to forecast 10 hours into the future to investigate their potential. The univariate
and multivariate modelling steps (step 1.4 and step1.5 in Subsection 5.3.4) on data from
2016-2021 was redone using a 10-hour forecast.

5.3.6 Step 1.8 - Multivariate BiLSTM with target lags excluded

The BiLSTM performance with target lags excluded was measured in step1.8. This step
serves to measure how the BiLSTM can utilize the other features without the dominating
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lagged target features. This test was conducted using the same BiLSTM architecture as in
the uni and multivariate setup with the same hyperparameter combination. Additionally,
another BiLSTM architecture, including convolution, was testet to see the effect of
using a 1-dimensional convolution across time-series to further extract features from
the processed time-series sequence coming from the bidirectional LSTM layer. The
BiLSTM architecture including convolution is visualized in figure 5.23. For simplicity, the
best-found hyperparameter combination from the grid search was used for the BiLSTM
architecture that includes convolution. Other parameters were manually investigated,
but the combination from the grid search turned out to supersede those that were
manually tested 5.3. The results with or without the added convolution can be seen in
figure 5.24. Due to increased complexity, the regularization parameter was included in all
the convolutional BiLSTM model layers to ensure some weight punishment. The model
with convolutional layers has 2604904 trainable parameters. However, the regularization
parameter from the grid search (model without convolution) was used and resulted in a
relatively good option out of the manually randomly tried out parameters.

Figure 5.23: The multivariate BiLSTM with convolution having 2604904 trainable
parameters.

5.3.7 Results - Step 1.6, 1.7 and 1.8

The resulting performance from step1.6 - step1.8 is shown in Figure 5.24 with a 95%
confidence interval.
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Figure 5.24: Results from step 1.6-1.8. Univariate BiLSTM (step1.6), multivariate
BiLSTM(step1.7), multivariate BiLSTM without lags(step1.8), and multivariate BiLSTM
with convolution(step1.8) pushed to its limits with 10 hour forecast using mean
prediction as common reference. Bidding zone: NO5 - Data: 2016 to 2021.

5.3.8 Discussions - Step 1.6, 1.7 and 1.8

All the models in Figure 5.24 outperform the mean prediction baseline up to the ninth
forecasted hour. In contrast, the Ridge regression and XGBOOST in Figure 5.13 were
close to the mean predicted MSE at hour 4. The univariate model in Figure 5.24 is
best when forecasting up to about hour 5 or 6. After that, the other multivariate
models perform slightly better than the univariate model. This shows that the extra
features used in the multivariate modeling affect forecasting longer into the future. This
is aligned with the investigated SAGE plots in Figure 5.11 and 5.12, which showed
the extra features gaining room to influence the forecast when the lagged features
were less dominating for the fourth forecasted hour. Moreover, the BiLSTM models
trained without including lags performed poorly as expected and can be seen in Figure
5.24. However, training completely without lags supersedes the univariate model in
performance when forecasting the seventh hour into the future.

5.4 Experiment2

Experiment 2 and its sub steps are carried out as shown in Figure 5.25. The experiment is
a continuation of the exploratory data analysis part that looks at uncertainties in weather
forecasts in Section 4.14. Experiment 2 intends to investigate weather forecast uncer-
tainty further to better determine its influence on regulation volume forecasts and test
the hypothesis that weather forecast uncertainties influence the need for grid balancing.
This experiment takes a different approach in estimating the forecast uncertainties than
what was conducted in the exploratory data analysis. Instead of subtracting the actual
weather data, this experiment subtracts from the 24 hour forecast the updated forecasts
within each day. The intraday forecasts that are made available at 00:00, 06:00, 12:00 and
18:00 are than substituted with the actual weather data used in the exploratory data ana-
lysis. The motivation for this approach is that by working solely with weather forecasts,
one have access to future data which in short-term (a 6 hours time span) is considered
relatively similar to actual weather. Another significant difference between the data ana-
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lysis and this experiment is that the 24-hour lead weather forecast is taken from the 06:00
published weather forecast and not the 00:00 as was done in the exploratory data ana-
lysis. Experiment 2 consists of several substeps as shown in Figure 5.25 which will be
described in the subsequent subsections. All steps involving machine learning uses reg-
ulation volume for NO5 as target with December 2021 being reserved for test similar to
what was used in experiment 1 5.3.

Based on the weather analysis and numerous testing in experiment2, it was standard-
ized using all 8 weather types simultaneously merged into images with 8 channels. Both
the analysis and tests performed indicated that all weather types contribute differently
to different situations. The results showed that merging all weather types into 8 chan-
nels made slightly more sense, and it is believed that both global conditions and local
circumstances contribute differently from different weather types for different hours.

Figure 5.25: Machine Learning Experiment2

5.4.1 Step 2.0 and 2.1

Download and ∆images creation for experiment 2 is the second method already
mentioned in the Decision on data gathering Subsection 4.14.1. Details on the more
advanced creation of ∆images is moved to Section 7.3 in Appendix to leave space and
focus on for machine learning and analysis.
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5.4.2 Step 2.2, 2.3, 2.4

In step2.2, image statistics were derived from the created ∆images from step 2.1. The
image statistics listed in step2.2 in figure 5.25 were used and computed for each bidding
zone, as well as for the entire global image, similar to what was done in the exploratory
data analysis part. Additionally to what was done in the exploratory data analysis
(mean and MAD statistics), some second-order statistics were derived using the Gray-
Level Co-Occurrence Matrix. The second order statistics were derived from the GLCM
representation of the entire global ∆image for each weather type. In addition to the MAD
which were shown in equation (4.3), the second order statistics are computed as follows:

weather forecast uncertaintyINR = INR

(
GLCM

(
(∆Wweather type,h)

NO

))
(5.1)

Where INR is an example on one of the used second order statistics computed from the
GLCM representation of the entire global ∆image for each weather type.

Correlation analysis was performed between the derived statistics and the regulation
volume in step2.3, and in step2.4 the multivariate BiLSTM model from experiment 1 was
used directly on the derived statistics to predict the regulation volume.

5.4.2.1 Results - Step 2.3

The Figures 5.26 show the results with the two highest observed correlations between
regulation volume and estimated weather uncertainties found when computed using
January-March data. The highest correlation observed in the right plot reflects the cor-
relation between regulation volume for NO5(the purple bar) and Entropy on the global
∆image (NO) of air temperature. The highest correlation observed in the left plot reflects
the correlation between regulation volume NO1(the blue bar) and MAD on the global
∆image (NO) of surface downwelling.

Figure 5.27 show the correlations for the same weather types with correlations computed
using all twelve months in 2021.

Figure 5.26: Correlation between regulation volume for every bidding zones and weather
forecast uncertainties from radiation from the sun and temperature. Both plots shows the
highest correlation found using data for January to March from 2021.
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Figure 5.27: Correlation between regulation volume for every bidding zones and weather
forecast uncertainties from radiation from the sun and temperature. Both plots shows the
correlations computed using all twelve months in 2021.

5.4.2.2 Discussions - Step 2.3

The correlations are generally observed to be higher when using the more advanced
method of computing uncertainties than what was done in the exploratory data analysis
in Subsection 4.14.4. Comparing the results between correlation for January-March and
using all twelve months, one can see that the correlation drops significantly using a
sample size of the entire year. Additionally, it was discovered that using a sample size of
only one month further increases the correlations, and some months are significantly
more correlated than others. The highest observed correlation was between 0.4 - 0.5
from surface downwelling when correlations were computed using only January month.
Upon investigating correlations for single months only, it was revealed that different
weather types had the highest correlations for different months. There is no clear pattern
as to which weather type is most correlated with regulation volume for spesific months.
However, further analysis on one month only is not considered relevant since the entire
year is considered for modeling, not single months. It is believed that the loss in
correlation using more data is related to more noise being introduced and that regulation
varies slightly between different months for different weather types.

5.4.2.3 Results - Step 2.4

Figure 5.28 shows results when using the Ridge, XGBOOST, and BiLSTM models from
multivariate modeling Subsection 5.3.3 with all the extracted image uncertainties as input
features, 144 features in total.

Figure 5.28: Multivariate model performance on delta weather statistics on NO5
regulation volume
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5.4.2.4 Discussions - Step 2.4

Numerous tries were made to enhance the performance when modeling the regulation
volume for NO5 were none gave good results. Figure 5.28 shows that all models perform
close to the blue mean prediction line in terms of normalized MSE value. Presenting
statistics on the MSE results were not considered since the results were generally poor.
The figure shows that the BiLSTM model had a marginally lower MSE value than the
other models. However, the model performances are considered indistinguishable from
predicting a fixed mean value for all hours.

5.4.3 Step 2.5

In step2.5, the derived image statistics are formulated as an image problem by creating
Recurrence plot images, Markov Transition fields images, and 2D wavelet images directly
from the numerical and fed into a CNN model. Reformulating time series data into an
image problem using recurrence plot and 2D wavelet representations has been proved
fruitful in other domains, e.g., Bordvik et al. [47], which serves as motivation for trying
it on weather forecast uncertainties. Figure 5.29 shows an example of the constructed
images. The images are made directly, on the fly, from the one-dimensional numerical
data by the dataloader during training, validation, and test phases. Each constructed
image has the dimensions of 100 × 100, and the three images are merged into one
image having three channels. The 2D wavelet transformation image incorporates a 2D
wavelet transformation of the regulation volume for NO5 over a window of the last
100 regulation volume observations and therefore captures temporal information from
historical regulation volumes of NO5. The Recurrence Plot images are made using
100 weather uncertainty features along the x-axis and the last 100 historical weather
uncertainties along the y-axis. The patterns reflect conditions or states that reoccur in
the data. The idea behind the Recurrence Plot is similar to the Markov Transition Field
image. However, the Markov Transition Field image is based on the first-order Markov
chain and incorporates floating-point pixel values, while the Recurrence Plot image is an
image with binary values. The images were fed into a pre-trained CNN model, and a
simple custom-built model was also briefly investigated.

Figure 5.29: 2D wavelet representation of regulation volume and Recurrence Plot and
Markov Transition Field representation of weather uncertainties.

The pre-trained model used is a version of the EfficientNet model pre-trained on
the imagenet dataset. Additional layers were added at the output of the pre-trained
model. Figure 5.30 show the pre-trained EfficientNet model with the added layers. The
EfficientNet model is made without its top, and the final output layer is substituted by
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the layers shown below the EfficientNet model. Details on the EfficientNet model is
excluded and can be found in the EfficientNet paper by Tan et al [48].

Figure 5.30: Pre-trained EfficientNet version2 small with additional layers added

5.4.3.1 Results - Step 2.5

Figure 5.31 shows predicted results from the spatial model that uses images constructed
from one-dimensional data of regulation volume, and weather uncertainties.

Figure 5.31: Results after training convergence. One hour predictions of NO5 regulation
volume using estimated weather uncertainties formulated as an image analysis problem
using constructed recurrence plot, Markov transition fields, and 2d wavelet images. The
x-axis represents the first 200 hours in the test set used
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5.4.3.2 Discussions - Step 2.5

The model only predicts one hour into the future and seems to perform worse than the
first hour of forecast from the models that predicted only using one-dimensional data in
the previous sub-step 2.4. Several tries using different hyper-parameters, e.g., learning
rate, batch size, and dropout percentage, were tested. The prediction observed for this
method mainly resembles noise around zero regulation. From the plot in figure 5.31 and
the tests performed, it was not possible to determine if the model had learned anything.
Thus this approach was not considered for further investigation. Since this experiment
sub-step did not yield good results, the details on constructing the images were kept to a
minimum to reduce thesis content. More information on recurrence plots and 2D wavelet
representations images can be found in the paper by Bordvik et al. [47]. Additional
theory and examples on converting sequenced one-dimensional data into an image of
two dimensions can be found on the codestudyblog.com7. Besides the results using the
EfficientNet version 2 small, some smaller and lightweight versions of the EfficienetNet
architecture were tried out. However, they did not perform any differently from the
model presented.

5.4.4 Step 2.6 - spatial modeling

Besides the deep investigation of extracted image statistics, spatial modeling using the
∆images directly using transfer learning is done in this step. The transfer learning part
is enabled by fine-tuning (re-training) an already pre-trained model as was done in step
2.5 in Subsection 5.4.3. The pre-trained EfficientNet model was introduced in Figure 5.30.
Pre-trained ResNet models (ResNet18 and ResNet50) was also tried were the ResNet [49]
substitutes the EfficientNet box in Figure 5.30.

5.4.4.1 Results - Step 2.6

Figure 5.32 shows the 300 next hour predictions when using ∆images as input to the pre-
trained EfficientNet model using a learning rate of 0.001 and dropout procentage of 40%
in the dropout layer in Figure 5.30.

Figure 5.32: Predictions of NO5 regulation volume using delta weather forecast images

7https://www.codestudyblog.com/cs2201py/40119155307.html
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5.4.4.2 Discussions - Step 2.6

The performance of the pre-trained model using ∆images directly has a higher normal-
ized MSE value than what was discovered in the previous steps, step2.4 and step2.5. The
MSE value shown in 5.32 is 0.017441, which is higher than all other models in Experi-
ment1 and Experiment2. Regardless of the high MSE value, some predicted peaks, e.g.,
at around 300, indicate that the model has learned something. However, the level of noise
in the predictions makes it challenging to analyze to which degree the model has learned
anything. Based on the observed situations in Figure 5.32 which looks like the model
has learned something, the model seems less greedy in optimizing only for the lowest
possible MSE value and that it has sacrificed a lower MSE over the ability to follow some
patterns. This is likely due to a better generalization from using a dropout probability
of 40% before the output layer. Without the dropouts, the predictions were found to be
more flat and close to zero. Predicting values close to zero or the mean was discussed
in the data analysis as a relatively decent prediction, given that the data is dominated by
zero values and the mean being close to zero.

I investigated the difference of fine-tuning only the added layers (all pre-trained layer
locked) versus fin-tuning all pre-trained and added layers. This played out differently
in therm of model performance. When the pre-trained part is locked, the model seems
to converge faster but towards a more flat prediction close to zero or the mean value.
Pre-trained models that have all the pre-trained layers locked during fine-tuning were
generally found to struggle with predicting regulation volume fluctuations and spikes. It
was found to be slightly more successful in fine-tuning all layers.

The image types in the imagenet dataset are generally very different from topograph-
ical weather data. Additionally, the pre-trained models are pretrained on a classification
problem with categorical labeled target values. In many ways, classification problems
and classified data are thresholded values representing the probability of an input be-
longing to a certain label or class. In contrast, stochastic regression problems have con-
tinuous floating targets. It is therefore believed that when modeling using the weather
data on regulation volumes the pre-trained part requires some additional adjustments
to weights and filters to capture more details of different weather scenarios and their
relationship to floating target values. For example, it may be that one hour and the
next subsequent hour must describe totally different regulation volumes since regula-
tion volumes can spike one hour and have almost zero regulation volumes the next hour.
Therefore, subtle differences in the weather data must be captured, and it was decided to
standardize fine-tuning all layers.

5.4.5 Step 2.7 - spatial-temporal modeling

Since the images are sequenced in time, modeling the images using a spatial-temporal
approach is also done in step 2.7, where a Convolutional LSTM (ConvLSTM [50]) is
used. The idea of modeling the sequence of images is to capture the spatial-temporal
correlations between image frames and regulation volumes in time. In step 2.7, the delta
images are treated as a video stream (sequences of time-series delta images). Inputting
a single weather type and multiple weather types in different channels were tried out.
Two architectures of the ConvLSTM was used, one simple made from scratch using
Keras8 in Figure 5.33 and another proven and advanced ConvLSTM presented in an

8https://keras.io/
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medium.com blog post9. Figure 5.34 shows the advanced model, which was slightly
modified to fit the weather data used. The advanced model does support multiple heads,
e.g., one head per target for multiple targets or labels, and this part was not put to use. It
was also necessary to change the order of dimensions since the initial architecture used
channels first, while I have designed all dataloaders for weather data to have channels
as the last dimension. Both models were tried using different hyperparameters. The
hyperparameters presented in Table 5.5 represents the parameters used for the results
presented in the results Subsection 5.4.5.1.

Figure 5.33: Simple ConvLSTM model used

9https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7
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Figure 5.34: Advanced ConvLSTM model based on a modified version of a medium.com
blog post10

Learning rate RNN Units Batch size Sequence Length image size
0.0001 64 100 4 80x80

Table 5.5: ConvLSTM parameters used for the simple model
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5.4.5.1 Results - Step 2.7

Figure 5.35 shows predicted result for hour1 forecast from the spatial-temporal modeling
using ∆images and the advanced ConvLSTM model architecture in Figure 5.34.

Figure 5.35: Predictions from convLSTM of NO5 regulation volume using delta weather
forecast images. Trained using 60 epochs

5.4.5.2 Discussions - Step 2.7

After comparing two poorly performing models, it was concluded that the results from
the advanced ConvLSTM model5.34 looked slightly more interesting. However, the
model is not able to find spatial-temporal relationships between ∆images and regulation
volume for NO5. It does not come as a surprise that the model is not able to relate spatial-
temporal patterns with regulation volume, given the weak descriptive power generally
found from ∆images and for the estimated weather forecast uncertainties.
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5.5 Experiment3

Experiment 3 intends to model using the weather forecast images directly. Figure 5.36
outlines the experiment conducted. Only results and discussions are included since
the modeling is done by re-using the setup from the spatial and spatial-temporal steps
experiment 2, Section 5.4.4 and Section 5.4.5. Only results and discussions are included.

Figure 5.36: Machine Learning Experiment3

5.5.1 Results - Step 3.1

Figure 5.37 shows the 300 next hour predictions when using weather forecast images as
input to the pre-trained EfficientNet model using a learning rate of 0.001 and dropout
procentage of 40% in the dropout layer in Figure 5.30.

Figure 5.37: Predictions of NO5 regulation volume using weather forecast images

5.5.2 Discussions - Step 3.1

Modeling using weather forecast images does not reveal promising results in Figure 5.37.
Other tries with different hyperparameters were neither promising. When comparing the
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predicted results from the ∆images in Figure 5.32 to the weather forecast images in Fig-
ure 5.37, the prediction using weather forecast images has a lower MSE value. However,
the prediction using weather forecast images seems to be less noisy and closer to a zero
prediction than for the ∆images. It may be that ∆images are slightly more correlated with
the regulation volume of NO5 than the weather forecast images. Moreover, this consid-
eration may not hold since the predictions from both models are generally very noisy,
and no statistical confidence interval is computed on the results. It is infeasible compu-
tationally wise to crate statistics on predictions using weather data since it can take 1-2
working days to train one model.

A modeling trade-off is discovered when using transfer learning for predicting regula-
tion volume. Due to the low influence from the weather features and images in general,
the modeling often struggled to prioritize between a greedy optimization towards the
lowest possible MSE over the few situations where weather plays some part. Optimizing
for the lowest possible MSE using transfer learning often results in a more flat prediction
that centers around the zero or mean value of the regulation volume target. Introducing
techniques to generalize more during modeling comes at the cost of a higher MSE and a
more noisy prediction where some rare predictions seem to follow the target value.

5.5.3 Results - Step 3.2

Figure 5.38 shows predicted result for hour1 forecast from the spatial-temporal modeling
using weather forecast images and the ConvLSTM model.

Figure 5.38: Spatial-temporal predictions of NO5 regulation volume using weather
forecast images. Predictions show predictions one hour into the future.

5.5.4 Discussions - Step 3.2

Similar to the spatial-temporal modeling on ∆images in Section 5.35, modeling using
weather forecast images does not show promising results when forecasting hour1 in
Figure 5.38.
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5.6 Experiment4

This experiment is outlined in Figure 5.39. Results and discussions from experiment
4 were excluded from the report since it did not contribute to additional insight for
answering the research question. In addition, step 4.1 was found to overlap with the
spatial modeling in experiment 3, and step 4.2 was found to overlap with the spatial
modeling done in experiment 5.

Figure 5.39: Machine Learning Experiment4
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5.7 Experiment5

Figure 5.40 outlines experiment 5. Experiment 5 is framed as an experiment in the report
but was not planned and structured as an experiment. Experiment 5 is rather a "sandbox"
or a summary of many things that were tested and investigated using actual weather data
and market data from 2016-to 2021. Therefore, it was decided to keep the work done in
experiment 5 separated from the other experiments and to prioritize space in the report
for experiments 1-2. All modeling in experiment 5 was done using Pytorch, whereas
TensorFlow was used for the other experiments.

Figure 5.40: Machine Learning Experiment5

5.7.1 Classification

The classification tests done on actual weather data were performed using three classes.
Up, down and zero regulation with thresholded values of regulation volume. The results
of the classification was unsatisfying even using weighted loss for the different classes.
The results from the classification test resulted in not pursuing a path of classifying the
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regulation volumes.

5.7.2 Spatial-temporal modeling

The spatial-temporal tests performed during experiment 5 were done using a ConvLSTM
model and the MetNet[51] model, which is primarily built as a Neural Weather Model
for precipitation forecasting. The model was cloned from a GitHub repository11 and then
configured to forecast regression values instead of new weather forecast images. The
training of the model looked relatively normal. However, the model was strongly biased
towards predicting zero values for any tried parameters. Furthermore, the ConvLSTM12

used did neither perform well on the actual weather data.

5.7.3 Spatial modeling

Several state-of-the-art models were tried out on the actual weather data. Two vision
transformer models were investigated; ConViT and the Swin transformers. The ConVit
model was released June 2021 by Dascoli et al. [52], and the Swin in August 2021 by Liu
et al. [53]. Modeling using the vision transformers was a tedious process and was found
to be relatively difficult to use for modeling the weather data. When the models were
trained on randomly sampled data, the performance of the vision transformer models
was sub-par the split-attention network ResNeSt200 by Zhang et al. [54] published
April 2020. It may be that the ResNet type model with attention mechanismn[54] and
the inherent inductive bias13 of being a CNN model outshines the vision transformers
using the weather data. The vision transformer model must learn inductive biases[52],
such as translation invariance in images and pixel localities, while CNN models already
have these mechanisms intact from the convolutional operator. The vision transformers
require much more data than CNN models to overcome the lack of inherent inductive
bias [52]. The vision transformer and CNN models were utilized with image 8-channels
and as pre-trained transfer learning models.

5.7.3.1 Results

All results shown come from the fin-tuning of the pre-trained ResNeSt200 model using
all weather types (8 channels) with image size 96× 96. The model is fine-tuned using the
Adam optimizer[2] with the following hyperparameters: learning rate = 0.001, weight
decay regularization = 1e−6, and batch size = 200. Figure 5.41 shows the prediction of
NO5 regulation volume where training, validation, and test data is randomly sampled
from the 2016-2021 dataset of actual weather images. The results shown are predictions
one hour into the future. Figure 5.42 show the same predicted hours as in Figure 5.41
sorted from the lowest target value to the highest. Figure 5.43 shows how the weights in
different layers (bias excluded in the figure) have changed from before the fine-tuning.

11https://github.com/tcapelle/metnet_pytorch
12https://github.com/KimUyen/ConvLSTM-Pytorch
13https://towardsdatascience.com/vision-transformers-or-convolutional-neural-networks-both-de1a2c3c62e4
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Figure 5.41: Spatial predictions on random sampled data of actual weather images.
Target is regulation volume for NO5

Figure 5.42: Spatial predictions on random sampled data of actual weather images. The
plot is sorted from lowest to highest NO5 regulation volume target
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Figure 5.43: Mean change in trained model weights relative to before training starts

5.7.3.2 Discussions

When training, validation, and test images were randomly sampled, the predicted res-
ults were relatively good for all the spatial models that were tried out. This was demon-
strated in Figure 5.41 using the pre-trained ResNeSt200 model. With the images split into
fixed sequences, the performance became very noisy and unsatisfying, and the predic-
tions were similar to what was shown for the weather forecast modeling in Figure 5.37.
The weather images used in this thesis are time-series images. This means that the res-
ults presented in Figure 5.41 and 5.42 must be taken with a grain of salt since the correct
approach for time-dependent modeling images is by first sampling the images in fixed
continuous sequences. Figure 5.42 is included to show a different view of the predictions
in Figure 5.41 with emphasis on the tails (down-regulation and up-regulation).

The weather images are very dissimilar in structure to the ImageNet images. However,
deep learning models trained on images learn features similar to well-known image-
processing filters. This is interpreted as the first layers describing general information
and the last layers being task specific [55]. Hence it is expected that a pre-trained model
will converge faster than a model trained from scratch. It is interesting to study the
transfer learning process. In Figure 5.43 I compare the average of the weights (within
all layers) for the original pre-trained model with the average of the fine-tuned (transfer
learned) model. Post fine-tuning, one can see that the initial layers change less than the
end-layers as supported by theory.

104



Chapter 6

Conclusion and future work

6.1 Conclusion

The data analysis in Section 4 demonstrated the complexity of the power market
and identified the challenges with predicting power regulation several hours ahead
in time. Additionally, the lack of previous comparable work influenced the decision
on thoroughly analysing the data and to search for possible drivers behind regulation
volumes. The exploratory data analysis revealed much of the complexity in regulation
volumes for the Norwegian regulation market, and gave an indication on the level of
noise inherent in the data. This thesis focused only on modelling regulation for the
bidding zone NO5, but the applied methods are directly transferable to the other bidding
zones.

6.1.1 How does the regulation market relate to other markets and are there
any significant drivers of activation of tertiary reserves volume?

It is evident that the regulating market serves its own purpose of balancing, and
the balancing volumes are significantly different from the traded volumes in the day-
ahead market and the hourly actual produced power. However, the difference between
hourly actual power production and production prognosis is strongly linearly correlated
with the regulation volume, making power production and production prognosis
essential features in a machine learning setting, Subsection 4.12.1. Furthermore, it has
been suggested that the relationship between regulation volume and the difference
between the price in the day-ahead market and price in the regulation market has been
decreasingly correlated Klæboe et al. [27]. However, that study showed this only using
the linear Pearson correlation. I used Spearman correlation and it revealed a strong
relationship between the regulation volume and delta price in Subsection 4.12.1, which
proves that the relationship has developed non-linear attributes over the years. The
exploratory data analysis showed that regulation volumes relate to day-ahead volumes
differently than how regulation price relates to the day-ahead price. Therefore, the
relationship between the regulation market and the day-ahead market is compounded.
The most influential force behind regulation volume at a given hour was found to be the
regulation volume at the hour before. However, it can be debatable if lags of regulation
volume are a driver for regulation volume or if it is more a subject for exploitation to
enhance regulation volume forecasts.
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6.1.2 Is regulation volume predictable or just stochastic white noise?

The data analysis takeaways Section 4.15 concluded that the regulation volume is not
purely random or stochastic white noise and that modeling can benefit from using a
suitable machine learning model with emphasis on deep learning. Experiment 1 in
Section 5.3 further proves that regulation volume is predictable while also indicating how
predictable it is. Predicting just zero values or the mean value of regulation volume were
found to be good baselines since a major part of the data is zero and centered around a
mean value close to zero, chapter 4. Therefore, all models were measured according to
just using zero and the mean value as a fixed prediction. In terms of the predictability of
regulation volumes, experiment 1 in Section 5.3 showed it being predictable both using
data for one year (2021) and when using data over several years (2016-2021), which no
other research has previously investigated.

6.1.2.1 Univariate modeling

In the univariate modeling, the models are only fed with historical regulation volumes
limiting the models only to exploit information in the historical observed regulation
volume. The motivation behind this was to exclude other input data, and possible
extra added noise, thereby focusing the model on the signature of regulation volume
fluctuations. Investigating a univariate setup was inspired by the exploratory data
analysis that revealed a high autocorrelation of the previous regulation hour (lag1) in
Figure 4.21.
Using only 2021 data revealed a significant leap in improved performance by the
bidirectional LSTM model relative to the linear regression, the Support Vector Regression,
and the XGBOOST models. The last four lags were used as input features in all models
to forecast 4 hours into the future. No more than four lags were considered based on
the partial autocorrelation from the data analysis showing only a strong correlation for
lag1. The other lags are weakly correlated. However, it was logical to use at least
four lags when forecasting 4 hours. All models were evaluated on the same test data,
December 2021. The BiLSTM model significantly outperformed the other models with a
lower MSE value at the fourth forecasted hour than the other models when forecasting
the second hour 5.8. The MSE score alone does not necessarily reveal all about the
model performance, and qualitative plots revealed that all models except the BiLSTM
had a right-shifted offset in the predictions (figure 5.9 and 5.10). The BiLSTM generally
performed better due to its strong ability to learn sequences that are both linear and non-
linear. Additionally, the bidirectional BiLSTM architecture was able to correct much of
the temporally shifted offset of other models by learning the regulation volume signature
both in a forward and reverse order during training. Figure 5.15 shows the results from
the univariate modeling trained on data from 2016-2021. The MSE is lower than for 2021
only data 5.8 indicating that more data further improved the results of the BiLSTM. The
other models did not show significant improvement gains using more data.

6.1.2.2 Multivariate modeling

The multivariate models followed similar architectures to the univariate but with addi-
tional input features. The multivariate BiLSTM model did not outperform the univariate
model for any of the four forecasting hours when trained on the 2021 data or the 2016-
2021 data. Both cases were evaluated on the last 800 observations in 2021. The multivari-
ate BiLSTM had a slightly higher MSE score. However, the multivariate model seemed
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to be better at high peak predictions for some situations investigated. An example is seen
around hour 25 in figure 5.19 versus 5.20.

The best models were the univariate and multivariate models trained on the 2016-2021
data. The models performed consistently over many random initializations, as seen in
Figure 5.22. For the best models, I explored the capabilities for forecasting up to 10
hours. For the forecasted hours 6-10, the multivariate model outperformed the univariate
model (Figure 5.24). The univariate BiLSTM best exploits historical lags when forecasting
near future hours hour1-5 while forecasting longer into the future results in the historical
lags becoming more distant and less useful. Therefore, from hours 6-10 the multivariate
model is preferred since it draws on the additional features to influence the predictions
positively. The shift in feature importance was investigated using SAGE plots in Subsec-
tion 5.3.3.1, where Figure 5.12 shows the additional feature still contributing at hour4. At
the same time, lags have decreased compared with the hour1 Figure 5.11.

6.1.3 Does weather influence the regulating power markets in Norway, and do
certain weather conditions drive the need for down or up-regulation?

The case study on the Gyda storm in January 2022 revealed unusual activities in regulat-
ing power activation for the duration of the storm, which was also seen during the brief
investigation of the Frank storm occurring in January 2021 (Subsection 4.13.1). The two
events influenced the regulating power markets in a secondary manner, meaning that
extreme weather may lead to events, e.g., power blackouts, which again leads to grid
balancing, which adds another stochastic event to the regulating power data.

Besides what has been tested in this thesis and the KoBas project, no published work was
found to use similar 2-dimensional weather images to forecast regulation volumes. In
experiment5 5.7, modeling using weather images of actual weather data was conducted
in two ways; one using random shuffled image selection and one using fixed sequences
for training, validation, and testing. Using randomly shuffled data resulted in a relat-
ively good performance 5.41, indicating some associations in the data. However, it was
not possible to generalize these associations when the test data was not correlated with
the training data when the data was split into fixed continuous sequences. This indicates
that the relationship between weather and regulation volumes was more complex than
we had data available to describe in the KoBas project. Thus it is not possible to draw a
hard conclusion on whether the regulation can be related to specific weather conditions.
It is believed that more data would have improved the modeling when using temporal
cutoffs to splitting the data into training, validation and test samples

Combining weather and market data was explored during weather data modeling in ex-
periment5 (Section 5.7) and was briefly tested in the other weather experiments. Model
performance of the weather models in experiment5 with or without the added market
data features is indistinguishable when the model was evaluated on continuous inter-
vals of unseen test data. The performance when data is not shuffled did not reveal a
noteworthy direct influence on regulation volume from weather or when the weather
was combined with market data. Examples of market features that were combined with
weather are; power production, production prognosis, consumption, consumption pro-
gnosis, day-ahead price, and day-ahead volumes.
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6.1.4 Does weather forecast uncertainties influence the need for grid balan-
cing trough the activation of tertiary volumes?

No significant relationship was found between weather forecast uncertainties and ter-
tiary volume activation in Subsection 5.4.2.1 and 4.14.4. Even though the analysis showed
low correlations, the Spearman correlations were not zero. The correlation analysis in
Experiment 2 in Subsection 5.4.2.1 showed slightly higher correlations than what was
discovered in the data analysis chapter in Subsection 4.14.4. This indicates that the 06:00
published weather forecast is more likely used in the day-ahead planning than the 00:00
forecast since 06:00 is closer to day-ahead market clearing. Furthermore, the work done
in experiment2 in Subsection 5.4.2 show that it is possible to estimate weather forecast
uncertainties into the future only by using old and updated weather forecasts.

The machine learning experiments on ∆images in Subsections 5.4.4 and 5.4.5 revealed
that weather forecast inaccuracies (the ∆images specifically) did not significantly influ-
ence the activation of regulation volume in general. However, the modeling results in
5.4.4 indicated that the ∆images play a role in some rare occasions. Moreover, extracting
these situations through modeling is found to come at the cost of more noisy predictions
in general, resulting in overall worse performance with a higher overall MSE score, Fig-
ure 5.32. It is believed that the noise level overshadows the few situations where weather
forecast inaccuracies contribute to grid balancing and that more data is needed to better
model the relationship.

6.1.5 Can information from a domain with images of animals, humans, etc,
be transferred to better forecast the power regulation volumes from
weather data?

This research question heavily depends on the initial potential in forecasting regulation
volume using weather data. Weather in general or weather forecast uncertainties was not
found to be significantly influential. However, I plotted how the layers change before and
after fine-tuning a pre-trained model in Figure 5.43. This plot revealed some unchanged
layers and weights, meaning some information being kept, especially those describing
general information at the beginning of the architecture. I also experimented with
loading in default weights instead of the pre-trained, resulting in worse performance.
The models that were not available for transfer learning generally performed poorly for
different hyperparameters. These models are ConvLSTM, MetNet, and the custom-built
CNN. In conclusion, some general information can be transferred from other domains
for marginally improved modeling of power regulation volumes using weather images.
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6.2 Future work

I was not able to get satisfying results by modeling the regulation volume using weather
data and weather forecast uncertainties. Therefore, further investigations using weather
data is proposed for future work. In the long term power marked analysis forecast
for 2021-20401 conducted by the Norwegian Energy Regulatory Authority NVE2 the
power markets are considered to become more weather dependent. Thus the potential
in weather data to forecast power regulation volumes may increase. However, it may be
that weather forecast accuracy improve in the future, making the potential for forecasting
regulation volumes using weather data uncertain, and a topic for future work.

Due to the demanding work of modeling the relationship between regulation volumes
and marked and weather data, an autonomous system that uses the models to give fore-
casts for grid balancing autonomously was placed out of scope for this thesis. Therefore,
this part is reserved for future work and is an overall goal of KoBas.

1https://publikasjoner.nve.no/rapport/2021/rapport2021_29.pdf
2https://www.nve.no/energi/analyser-og-statistikk/langsiktig-kraftmarkedsanalyse/
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Chapter 7

Appendix

7.1 Delta consumption

The delta consumption (prognosis - actual) correlation with regulation volume is show
in figure 7.1

Figure 7.1: Spearman correlation heatmap of regulation volume predictors

7.2 Weather data

7.2.1 Image resize and statistics

For the modeling using PyTorch, the package torchvision was used. Listing 7.1 represents
the image transformations utilized. In the listing, one can also see a list of several
interpolation methods that were investigated for the resize transformation. The bicubic
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interpolation is generally considered to produce high-quality results at the cost of a
high computationally complexity1, which impacts the training time. However, it was
concluded to use bicubic interpolation at the cost of some training time to preserve image
quality. Preserving the image quality and statistics was considered important since the
images at their original shape of 2321× 1796 had to be significantly resized down to make
it feasible to train all 8 images types using 8 channels in a deep learning model.

1 from torchvision import transforms
2

3 interp = [transforms.InterpolationMode.NEAREST ,
4 transforms.InterpolationMode.BILINEAR ,
5 transforms.InterpolationMode.BICUBIC ,
6 transforms.InterpolationMode.BOX ,
7 transforms.InterpolationMode.HAMMING ,
8 transforms.InterpolationMode.LANCZOS ][2]
9

10 def get_transforms(img_size =[96,96] , mean =0.5, std=0.5,
11 interpolation=interp ,
12 kernel_size=P["kernel_size"],
13 apply_low_pass=P["apply_low_pass"]):
14

15 if apply_low_pass:
16 print("Gaussian lowpass is enabled")
17 transform_1D = transforms.Compose ([
18 transforms.Resize(size=img_size , interpolation=interp),
19 transforms.GaussianBlur(kernel_size=kernel_size ,
20 sigma =(0.1, 2.0)),
21 transforms.ToTensor (),
22 transforms.Normalize(mean=[mean ,], std=[std ,])])
23 else:
24 transform_1D = transforms.Compose ([
25 transforms.Resize(size=img_size , interpolation=interp),
26 transforms.ToTensor (),
27 transforms.Normalize(mean=[mean ,], std=[std ,])])
28 return transform_1D

Listing 7.1: Image normalization and transformation

Figure 7.2 show the effect on the computed image statistics for all weather types for
different image dimensions. The computed image statistics are mean, variance, entropy,
Angular Second Moment (ASM), Inertia/Contrast, Dissimilarity, Inverse Difference
Moment (IDM), and Cluster Shade (SHD). Most of the pre-trained image models utilized
are pre-trained on images of dimensions 256x256 or 224x224. The image statistics are
normalized. Some changes in the statistics after downscaling the images from their
reference (original size) can be seen in the figure. A minor change in Dissimilarity and
Inertia can be seen for Cloud area fraction in 7.2c from 256x256 down to 96x96. However,
it is not known if Dissimilarity and Inertia are important for Cloud area fraction during
model training. The overall look does not indicate major changes in the image statistics
from 256x256 downwards. This indicates that the statistical properties of an image at,
e.g., 96x96 are not significantly changed over 256x256, making the image size 96x96 a
potential candidate after the commonly used 256x256 and 224x224. Going below 96x96
leads to the images being less complex to model, which may invoke more complex image
models to overfitting at early epochs, thus making 96x96 a reasonable compromise to
try out. The statistics are calculated from a sample size of 8000 (∼ 20%) randomly
selected timestamps between 2016-2021 from the actual weather images. Another effect

1https://en.wikipedia.org/wiki/Bicubic_interpolation
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of resizing images besides what is computationally suitable is that images resized down
into a lower dimension results in greater distances between pixels for different images,
which may lead to a better generalization during modeling.

(a) Air pressure at sea level resized
statistics

(b) Air temperature 2m resized statist-
ics

(c) Cloud area fraction resized statistics (d) Precipitation amount resized stat-
istics

(e) Relative humidity 2m resized stat-
istics (f) Wind speed 10m resized statistics

(g) Wind direction 10m resized statist-
ics

(h) Integral of surface downwelling
shortwave flux in air wrt time resized
statistics

Figure 7.2: Global weather image statistics for different downscaled sizes

7.2.2 Organizing weather images for modeling

The weather images for actual weather, weather forecasts, and ∆weather are all located
in folders named according to their date and time YYYYMMDDHH; where YYYY
represents the year, MM the month, DD the day, and HH for an hour. The naming
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of the folders is done during the download of the data. Each folder includes weather
images for all the 8 weather types for that particular hour. The image data is organized
such that the folder name must match the hour of regulation volume to align the images
with the regulation volumes at an hour-by-hour resolution. Aligning of all market data
utilized and the path at which the images for all 8 weather types are located are made
using a dedicated python script. 3 different scripts create 3 different datasets; one for the
actual weather images, weather forecast images, and the ∆images. The market data used
is similar for all the 3 datasets. This process results in datasets that include the directory
and its path for all relevant images for a given hour. The dataset created is then fed
into custom-built dataloaders, which iterate the dataset during training, validation, and
testing. This process is necessary to pick the right image paths, read images, apply image
transformations, and collect regulation volume and other desired features on the fly
during training, validation, and testing. The dataloader for the spatial models considers
the hourly snapshots of weather and regulation volumes. The dataloader for spatial-
temporal models utilizes the sliding window method to correctly create sequences (input
windows) of image paths aligned with the correct regulation volumes to predict.

7.2.3 Image statistics - More details

The GLCM matrix is squared, and each dimension is equal to the number of gray level
values. For 8 bit images, the GLCM matrix is then a 256× 256 matrix. Constructing the
GLCM matrix is done by looping through a source image, and for every iteration, pixel
pairs are matched starting at a pixel i. The paired destination pixel j is then at a distance
d with a direction θ from pixel i. The number of times the pixel pair at gray level i and j
has occurred is counted. By counting the number of times, two considered neighboring
pixels change (or do not change) from an intensity value x in pixels i to an intensity value
y in pixels j in the image, the spatial relationship between these grayscale intensity pairs
is stored.

For second order image statistics, they are derived from the Gray-Level Co-Occurrence
Matrix (GLCM). The GLCM is calculated using four different angles since the weather
data in the image grid stems from measurements having latitude and longitude coordin-
ates. Weather is not bound to a specific direction, and considering statistics and pixel
relations covering the span of 360 degrees is therefore relevant. Thus, a resolution us-
ing four angles covering the span of 360 degrees is used. Computing GLCM using four
angles results in four different GLCMs, and since it is not practical to evaluate four dif-
ferent GLCMs, the mean value between all four matrices is calculated as the final GLCM.
Moreover, the averaging of all GLCMs results in a Isotropic GLCM where the image tex-
ture is considered equal in all directions where θ ∈ [0, π

4 , π
2 , 3π

4 ]. Contrary, if the textures
in the weather images had fixed orientation for all images, the angle θ should have been
selected in allignment to the static texture orientation. Additionally, the GLCM is com-
puted as a symmetric GLCM. A symmetric GLCM regard the two pixel pairs in both
direction. For a given angle and distance, the counting part is done both for P(i, j) and
P(j, i), which regard not only the pixels relations, but also the pairwise relations.
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Only the closest neighbouring pixels are considered when computing the GLCM, res-
ulting in a distance between the two pixel pairs to be d = 1. Furthermore, in addition to
compute the GLCM as a symmetric matrix, the GLCM is also normalized.
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(a) GLCM relative humidity 2m image size 2321

(b) GLCM relative humidity 2m image size 224

(c) GLCM relative humidity 2m image size 96

(d) GLCM relative humidity 2m image size 32

Figure 7.3: Relative humidity example image, its GLCM, and some globally aggregated
statistics
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(a) GLCM wind speed 2m image size 2321

(b) GLCM wind speed image size 224

(c) GLCM wind speed 2m image size 96

(d) GLCM wind speeed 2m image size 32

Figure 7.4: Wind speed example image, its GLCM, and some globally aggregated
statistics
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(a) Air pressure at sea level statistics (b) Air temperature 2m statistics

(c) Cloud area fraction statistics (d) Precipitation amount statistics

(e) Relative humidity 2m statistics (f) Wind speed 10m statistics

(g) Wind direction 10m statistics (h) Integral of surface downwelling
shortwave flux in air wrt time statistics

Figure 7.5: Global mean weather image statistics for the original sized image
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Weather type
Mean
[µ]

Standard
deviation
[σ]

Air pressure at sea level 0.5580 0.2137
Air temperature 2m 0.6592 0.1409
Cloud area fraction 0.7307 0.3197
Integral of surface downwelling
shortwave flux in air wrt time

0.2042 0.1419

Precipitation amount 0.0073 0.0217
Relative humidity 2m 0.6986 0.1881
Wind direction 10m 0.5253 0.2138
Wind speed 10m 0.2955 0.1742

Table 7.1: Mean and sigma statistics used for normalization of images of 96 × 96
dimensions

7.3 Delta images for experiment2

Prior to creating the delta images the 00:00, 06:00, 12:00, and 18:00 forecasts were
downloaded separatly as illustraded in the green, blue, red, and gray-colored forecast
images boxes in figure 7.6. The day-ahead market aligned weather forecast was
downloaded from the 06:00 the day before as illustrated from the black time-line in the
figure. The yellow boxes and hours above the black time-line represents the regulation
volume hour in UTC within the current day. The 6 hours of intra-day weather forecasts
in the green, blue, red, and gray-colored forecast images boxes are considered "actual"
weather shown in figure 7.6. These weather forecast images are substituted over the
actual weather images that were used in the exploratory data analysis part. The process
of calculating the delta images is described under the exploratory data analysis part and
the calculation is done similarly using only forecast images. Referring to the code in
listing 4.1 and 4.2, it takes in the actual weather image and the weather forecast image.
In experiment2, the intra-day weather forecasts (00:00, 06:00, 12:00, and 18:00) replace
the actual weather image input parameter of the function, while the weather forecast
is considered the black timeline in figure 7.6. The black timeline covers the day-ahead
planning schedule. As previously mentioned, the day-ahead market closes at 12:00. The
most relevant weather forecasts for the day-ahead planning stem from the 06:00 forecast
and cover the forecasts for the next day. The black time-line indicates this in figure 7.6.
This process aligns the closing of the day-ahead market with the most relevant weather
forecasts for the next day performed at 06:00. Additionally, the updated weather forecasts
within the day measure how much the day-ahead-based weather forecast misses relative
to the more accurate recent weather forecast. In short summary; short-term weather
forecasts are used to determine how inaccurate the long-term weather forecasts are when
the long term-forecasts are aligned with the day-ahead power market.
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Figure 7.6: Download and creation of delta weather images

Figure 7.7 shows a resulting example of the process of calculating a wind direction delta
image solely from weather forecasts. The plot is from the same hour as the regulation
shown in the exploratory data analysis, where hour 01:00 had zero regulation in all zones
at hour 01:00 and hour 16:00 had some regulation in table 4.11. The leftmost images in
figure 7.7 is titled Actual but in this case it represents the intra-day weather forecast,
where hour 01:00 is the hour 1 image from the 00:00 forecast (the green box in 7.6) and
the hour 16:00 is the hour 4 image from the 12:00 forecast (the red box in 7.6). The images
titled forecasted image in 7.7 is the day-ahead aligned weather forecast (the black timeline
in figure 7.6). The rightmost images are the calculated ∆wind direction. One can see the
highlighted differences between the forecasted images in the ∆wind direction at hour 16
to be significant comparing the hour 1 image. This proves that it is possible to estimate
weather forecast uncertainties solely using old and updated weather forecasts.
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Figure 7.7: Intraday forecasted weather image ("actual weather"), day-ahead aligned
forecast, and delta image of wind direction at 10 meters above surface in 2021-12-04 01:00
and 2021-12-04 16:00
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