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Abstract

Obstructive Sleep Apnea (OSA) is a common yet severely under-diagnosed
sleep disorder that causes disrupted or reduced breathing during sleep.
The gold standard and traditional way of diagnosing the disorder is with a
polysomnography. This sleep study is however expensive and resource
heavy, as it requires the patient to sleep in a laboratory with different
physiological sensors attached to the body. Additionally, a sleep expert
has to be present during the study and later scores the collected data. The
CESAR project aims to reduce the time to diagnosis by creating an initial
OSA detection at home. As smartwatches that are packed with sensors are
becoming ubiquitous and connected to smartphones with large processing
power, there are new opportunities emerging in the medical field with
consumer electronics.

Pulse oximeter is one of many sensors used in polysomnography, and
is now also located in various smartwatches. The sensor estimates blood
oxygen saturation levels (SpO2) which is relevant to OSA as reduced or
disrupted breathing is associated with lowered oxygen levels. In this thesis,
we use the Venu 2S Garmin smartwatch as test oximeter and the medical
grade sleep monitor Nox T3 as reference oximeter. We test the usability and
how Bluetooth connection losses are handled by the app for pairing and
recording data from Garmin sensors. We collect data in non-invasive lab
tests and overnight monitoring, and analyse how four Machine Learning
(ML) classifiers (signal counting, K-Nearest Neighbours (KNN), Support
Vector Machines (SVM), Random Forest (RF)) perform based on the metrics
Cohen’s Kappa (κ), accuracy, sensitivity and specificity. Lastly, we assess
Garmin’s sensor quality by the industry standard metric accuracy (Arms),
we calculate mean absolute error (MAE), and perform a Bland-Altman
analysis to get the mean bias (mean of the difference) and precision
(standard deviation of the difference).

The usability tests of the app resulted in descriptions like "easy to use",
and we uncovered some ambiguities which were later fixed. As for the
connection test, we were not able to reproduce the delay tolerance observed
in previous tests. Classification based on signal counting is outdated and
the achieved κ was the lowest of the classifiers (0.0). The best performance
was achieved with RF with κ ranging between 0.35 - 0.57 on Nox data. All
ML classifiers performed worse on Garmin data which could be attributed
to the lower data quality. The accuracy of Garmin’s sensor ranged from
1.305 to 9.883 which is a large variation (Mean = 3.01 ±1.6). The signal
quality did not meet ISO standard requirement of ≤ 3%, though not far
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off. It did, however, reflect the typical Arms specification under normal
conditions described by the FDA. For individual recordings nearly 70% had
accuracy lower than 3%. After grouping the data on different variables,
we saw that the overnight data had the worst mean metrics but least
variability, darker skin type had the worst mean and most variability,
and movement and desaturation events were not correlated with worse
accuracy.

Our classification results were affected by small samples. In the future,
more data should be collected, preferably from overnight monitoring, in
order to see more conclusive results. Despite rejecting all of our hypotheses
of variables affecting signal accuracy, we observed some trends that should
be looked into further.
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Introduction and Background
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Chapter 1

Introduction and Motivation

1.1 Background and Motivation

All living beings sleep, and sleep has been shown to be essential for our
cognition, physical and mental health [13, 59]. Not getting sufficient sleep
can adversely effect our health, possibly leading to metabolic disorders,
cardiovascular diseases and even occupational accidents [12]. While going
to bed earlier and setting proper bedtime routines could help some people
improve their sleep quality and quantity, for others the problem can be
more serious than that.

Obstructive Sleep Apnea (OSA) is a condition where breathing is
reduced or stopped involuntarily on multiple occasions throughout the
night [66]. This is the most common form of sleep apnea where the
airway has become narrowed, blocked, or floppy. These apnea episodes
are often brief and therefore tend to be unknown to the person experiencing
them, which makes it harder to detect and diagnose. Because of this, it is
estimated that 70-80% of those affected remain undiagnosed [51].

The gold standard for diagnosing OSA and other sleep disorders is
polysomnography (PSG). It utilises many different sensors for measuring
physiological data during sleep, such as electroencephalogram, electrocar-
diogram, airflow, and oximeter to name a few. Though the sleep study is
effective there are the downsides of it being quite expensive and requiring
medical staff during the study and for analysing the data afterwards. These
factors contribute to the high threshold for administering the study, which
is also reflected in the number of undiagnosed cases.

Wearable technology has become widespread in recent years, with the
most common type being smartwatches. These devices are packed with
sensors that monitor the person wearing it and their surroundings. Some
of them even have a pulse oximeter for monitoring the person’s blood
oxygen saturation. As earlier mentioned, people with OSA experience brief
reduction or a complete stop in their breathing. This would lead to reduced
oxygen saturation in the blood, which is why an oximeter is one of the
sensors used in PSG.

The CESAR project is an interdisciplinary research project (computer
science and medicine) at the University of Oslo (UiO) that aims to enable
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monitoring of OSA at home for everybody [10]. The purpose of the project
is to use low-cost consumer sensors for monitoring sleep, and in turn use
smartphones for analyzing the collected data. Machine Learning (ML)
will be used to detect desaturation events in the oximeter signals. The
resulting analysis and scoring of events will give the person an indication
of whether they should contact a physician. Furthermore, the analysis
should give the physician a better foundation to decide whether a PSG
should be performed. This process will hopefully reduce the time until
diagnosis.

As previously mentioned, OSA is a severely under-diagnosed sleep dis-
order caused in part by an expensive and resource demanding procedure
for diagnosis. The emergence of consumer electronics like smartwatches
that are equipped with low-cost oximeters open a new market of possibil-
ities in healthcare monitoring [17]. This is however not to replace the tra-
ditional PSG for diagnosis, but rather to allow for initial at-home detection
of the disorder. In a previous thesis written by Felix Griffin Halvorsen, the
use of Garmin smartwatches for initial detection was tested [26]. The res-
ults were promising, though the sample size was too small to draw any real
conclusions. Another study by Lauterbach et al. [38] evaluating the quality
of Garmin smartwatch’s oximeter also found it promising, even claiming it
to be a viable method to monitor blood oxygen saturation. This is however
just the start, and there is still much to be researched on this topic.

With this thesis we aim to continue on Halvorsen’s work by improving
the algorithm for detection of desaturation events, and further assess the
quality of Garmin’s pulse oximeter. Other work in the CESAR project
has used ML for classification [35, 36], and we will also do the same.
Furthermore, an Android app, Nidra [60], has been previously created in
the CESAR project for users to record, share, and analyze breathing data. If
Garmin’s sensor proves to be successful, then support for Garmin could be
integrated into Nidra. In the end, we hope to bring the CESAR project a step
closer on deciding whether using Garmin smartwatches in early detection
of OSA is useful.

1.2 Problem Statement

Halvorsen’s project [26] researched how to use Garmin smartwatches to
detect desaturation events as part of OSA screening at home. Most of the
focus was on implementing and testing an app for collecting data from
Garmin sensors. The data collected was also assessed for quality and
ability to detect desaturation events. There were some open problems left
after his project. For instance, a script developed by Halvorsen to detect
desaturation events needed to be reevaluated in order to be more effective.
Another approach that was not explored was using more modern methods
like ML for classification. Our thesis will therefore start where his left off
and explore it further. The overall problem statement can be summed up
in this one question:

• Can a Garmin smartwatch’s pulse oximeter be used for initial at-
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home sleep apnea detection?

The scope of this question is quite broad. We therefore break down the
statement into answering these four questions:

1. Can the results from Halvorsen’s experiments be reproduced?

2. Can using ML for classification improve event detection in Garmin
signals?

3. Are the Garmin oximeters quality good enough for at-home OSA
detection?

4. What external factors affects the quality of Garmin’s pulse oximeter
and how?

From these four questions we address three aspects related to the initial
problem statement. The first is repeating relevant tests to see if the results
can be reproduced. Since the app is the first entry into acquiring the signal
data, we need to make sure it still functions as intended and is user-friendly.
Volunteers were recruited through fellow students, project participants and
others at the department through e-mails. They then performed a breathing
experiment in the lab at the Department, and some also performed an
unattended overnight sleep monitoring. After we acquire the data, we
need to assess whether it can be used for prediction of desaturation events
and OSA. The second question addresses this as the ability to correctly
classify events in the recorded signal data. Questions three and four are
related to the quality of the Garmin pulse oximeter. Kristiansen et al.
[35] showed that the quality of the signals is important when it comes to
classifier performance. We therefore try to evaluate different factors that
could negatively impact signal quality.

1.3 Approach and Scope

Based on the outlined problem statement the main focus of this thesis is
evaluating Garmin watches ability to detect OSA. The way this will be done
is by first testing the app for usability and connection loss detection. As
there is no previously existing large database of this nature the next step,
most importantly, is acquiring data that can be analysed. We use the sleep
monitor Nox T3 from Nox Medical [62] as the reference pulse oximeter. As
a test oximeter, we use the Garmin smartwatch Venu 2S [20]. The signals of
interest are oxygen saturation and accelerometer for synchronization. We
collect data from two different methods, one of a more experimental nature
in a lab, and the other from unattended overnight monitoring.

After acquiring the data we measure ability to detect desaturation
events by using classifiers. Nox Medical has an accompanying software,
Noxturnal [46], which automatically scores events. We use these labels as
reference, and assess how the script created by Halvorsen and three ML
classifiers (K-Nearest Neighbours (KNN), Support Vector Machine (SVM),
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Random Forest (RF)) predict events. Since we collect signals from two
devices, we also test the classifiers on them separately. This allows us to
compare the performance on two different data sets.

Lastly, we assess the quality of the Garmin pulse oximeter. The
metrics we assess the quality on is accuracy calculated by Arms, which is
the industry standard for pulse oximeters. We compare this with mean
absolute error (MAE) as it is more robust when it comes to outliers. Then,
we evaluate agreement between devices by performing a Bland-Altman
analysis where we get the mean bias (mean of the difference) and precision
(standard deviation of the difference). Furthermore, we try to assess if there
are any external factors that significantly influence the accuracy. This will
be determined through hypothesis testing.

A big challenge with such a project is finding enough participants.
With the research being conducted during a pandemic it proposes a bigger
challenge in this area. It could make finding a large and diverse group of
participants more difficult. Furthermore, we do not have access to actual
SA sufferers, which would be the most representative. Another restriction
is the fact that the evaluation license we got from Garmin only allows us
to use subjects from our organization, i.e University of Oslo (UiO). This
means that it is probably not a representative sample. Preferably, more
data would be collected from unattended sleep monitoring, as it is the most
comparable to the actual use case. Because of time restrictions and limited
access to subjects, we will also collect data from simulated lab tests.

1.4 Thesis Outline

This thesis is divided into five parts consisting of 11 chapters and
appendices. An overview of the remainder of this thesis is presented in
the following:

I Introduction and Background

• Chapter 2 - Background:

This chapter gives a presentation of OSA; what it is, characteristics,
prevalence, diagnosis, etc., and also presents the theory of essential
concepts relevant in this thesis, i.e. on oximeters, desaturation events
and ML.

• Chapter 3 - Related Work:

There has been some research done on this topic before. Both within
the CESAR project and otherwise. The methods and results of some
relevant works are presented in this chapter.

• Chapter 4 - Data Acquisition and Processing:

We present in this chapter the equipment that was used, the data we
acquire from them and how they are processed.
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II Method and Implementation

• Chapter 5 - Method:

In this chapter, we present detailed information about the methods
that we use. That is, the tests which are usability test, connection
loss tests, classification testing and signal quality testing. Lastly we
present the methods for analysis.

• Chapter 6 - Implementation:

This chapter presents the implementation of the changes made to the
app, and the Python scripts used for data processing, classification
and metrics calculations.

III Evaluation

• Chapter 7 - Results:

In this chapter, the results of the several tests performed will be
presented.

• Chapter 8 - Discussion:

In this chapter, we discuss and try to make sense of the results from
the previous chapter.

IV Conclusion

• Chapter 9 - Summary of Contributions:

In this chapter, a summary of our findings and contributions will be
presented. We also address the problems stated in the introduction.

• Chapter 10 - Open Problems:

In this chapter, we discuss open problems.

• Chapter 11 - Future Work:

In this last chapter, we present future work that can be done.

V Appendices

• Appendix A - Source Code:

A link to where the code and data sets that has been used in the thesis
can be found.

• Appendix B - Consent Agreement:

The consent agreement that had to be signed by the subjects before
any data could be collected.

• Appendix C - Usability Test Guide:

The guide which was followed in conducting the usability testing of
the app.
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• Appendix D - Experiment Results:

All the results from both the sensor quality experiments and the
classification experiments. The metrics are displayed for each
recording and also mean for each category.
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Chapter 2

Background

This chapter presents an overview of the different topics relevant for the
thesis. We begin in Section 2.1 with describing what OSA is and how
it is diagnosed. The next section, Section 2.2 goes in depth on the pulse
oximeter, how it is relevant to OSA detection, different sensor types, and
their quality. Section 2.3 presents the definition of desaturation events
according to the American Academy of Sleep Medicine (AASM) and how
this can be used to detect OSA. Next, we dive into ML, what it is and how it
can be used to detect desaturation events in time-series data in Section 2.4.
Lastly, we discuss how low-cost oximeter sensors, particularly those found
in smartwatches, ties into this in today’s society in Section 2.5.

2.1 Obstructive Sleep Apnea (OSA)

Sleep apnea is a sleep disorder marked by abnormal breathing during sleep
[66]. The most common type is Obstructive Sleep Apnea (OSA) where the
upper airway has become narrowed, blocked, or floppy. The illustration in
Figure 2.1 shows how the airway can get blocked from the tongue and soft
palate sliding back. This in turn leads to disruptive breathing, which can
be described as being either reduced or shallow (hypopnea), or stopped
(apnea). These involuntary lapses in breathing are called apnea events and
occur on multiple occasions throughout the night. Additionally, after an
apnea or hypopnea event, the body’s oxygen level is lowered, also referred
to as a desaturation event. Oftentimes, the person experiencing these apnea
events awakens after around 10 seconds in order to breathe.

A study performed in Norway found that the prevalence of OSA is
around 16% for Apnea-Hypopnea Index (AHI – measurement score for the
severity of sleep apnea, defined as the number of apneas plus hypopneas
per hour of sleep [23]) ≥ 5 and 8% for AHI ≥ 15 [29], which is consistent
with the general population [23]. However, the sleep disorder often
remains undiagnosed or is diagnosed late, with an estimation of 70-80%
of those affected remaining undiagnosed. The high rate of undiagnosed
cases can be attributed to the apnea events being brief, and thus the
person experiencing them not remembering the awakenings the next day.
Furthermore, a common symptom of OSA is feeling tired during the day,

9



Figure 2.1: Illustration of a blocked airway caused by OSA [47]

which is fairly typical for many people.
Although the person suffering from OSA might not be aware of this, the

consequences of the condition can be far-reaching. The disorder reduces
the sleep quality through continuous interruptions throughout the night.
Some common symptoms that arise from this include excessive daytime
sleepiness, loud snoring, and morning headaches to name a few. On
severe cases OSA has been linked to many different health problems such
as sleep deprivation, depression, work accidents, and increased risk of
cardiovascular and metabolic disorders [51, 66]. It is therefore evident
that remaining undiagnosed can be detrimental to a person’s mental and
physical health.

2.1.1 Diagnosis

The gold standard for OSA diagnosis is the traditional laboratory study
known as polysomnography (PSG). During the study, the patient sleeps
overnight at a laboratory while various physiological parameters are being
recorded. A sleep technician will also be present monitoring the study. An
illustration of a PSG setup is given in Figure 2.2. PSG utilizes signals such
as electroencephalogram (EEG), electrooculogram (EOG), electromyogram
(EMG), electrocardiogram (ECG), and pulse oximetry, as well as airflow
and respiratory effort [55]. With the corresponding sensors, PSG is able
to record data such as sleep stages, limb movements, airflow, respiratory
effort, heart rate and rhythm, oxygen saturation, and body position.

Also in Figure 2.2 at the bottom (B), we see an example of the generated
polysomnogram from the sleep study. This polysomnogram reveals a
desaturation event in the first row immediately after a long breathing
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event in the second row. An analysis of the generated data is performed
by medical personnel. The results could reveal any underlying sleep
disorders, such as OSA, nocturnal seizures, narcolepsy, and periodic limb
movement disorder to name a few.

Figure 2.2: Illustration of a PSG (A) and accompanying polysomnogram (B) [63]

Despite PSG being the gold standard in sleep analysis, there are some
downsides to the sleep study. For instance, they are quite expensive and
require medical personnel for overnight observation and for later manual
analysis of the data. Furthermore, even though the study is non-invasive,
it can be quite uncomfortable for the patient. They would have to spend
the night in an unfamiliar environment while being monitored by various
machines and medical personnel.
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Severity Ratings

The American Academy of Sleep Medicine (AASM) has published a set
of rules for scoring respiratory events such as apnea and hypopnea in a
Manual by Berry et al. [5]. Both events are required to last at least 10
seconds, while an apnea is accompanied with a ≥ 90% drop in signal
from a respiratory sensor, and hypopnea with a ≥ 30% drop and ≥ 3%
drop in oxygen saturation. Furthermore, the AASM specify metrics for
determining the severity of SA. A common measurement is the Apnea-
Hypopnea Index (AHI) which is the number of apnea and hypopnea events
per hour of sleep. The metric further separates severity into these four
classes:

• None/Minimal: AHI < 5 per hour

• Mild: AHI ≥ 5, but < 15 per hour

• Moderate: AHI ≥ 15, but < 30 per hour

• Severe: AHI ≥ 30 per hour

This is, by consensus, summed with the respiratory effort related
arousal per hour of sleep (RERA) index to form the Respiratory Disturb-
ance Index (RDI) metric given in Equation 2.1. Another measurement is
through the Oxygen Desaturation Index (ODI) given in Equation 2.2, which
is the number of ≥ 3% arterial oxygen desaturations per hour of sleep.
These metrics (RERA, RDI, ODI) are optional.

RDI = AHI + RERA index (2.1)

ODI =≥ 3% arterial oxygen desaturations/hour (2.2)

Types of Sleep Monitors

There are different types of sleep monitors that exist which are certified
for medical use. Based on the signals that they collect and how they are
used they have been classified as Type I, II, III, or IV [71]. What is required
to be classified within each type varies between different definitions. The
first classification system was given by the AASM in 1994. However, it
is now outdated given the widespread of home sleep testing devices. We
will in the following present the definition of the type given by Center for
Medicare & Medicaid Services (CMS):

• Type I

A Type I monitor requires the sleep study to be performed in the
laboratory. A sleep technologist needs to be present overseeing the
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study. This is the category PSG falls under, and all the previously
mentioned signals required for PSG must be included along with
additional channels.

• Type II

For Type II monitoring devices, a full PSG can be performed outside
of the laboratory, like at home. The main difference from PSG is that a
technologist does not need to be present. A minimum of seven signals
are required which are EEG, EOG, ECG/heart rate, EMG, airflow,
respiratory effort, and oxygen saturation.

• Type III

Type III monitors can also be used at home unattended. The four
signals that must be included are two for respiratory effort/airflow,
ECG/heart rate and oxygen saturation.

• Type IV

Type IV monitors can also be used unattended at home. They must
include a minimum of three signals that allow direct calculation
of an AHI or RDI score through measurements of airflow or
thoracoabdominal movement. If other information is used to derive
AHI or RDI, then it must be approved.

There exists many gadgets with sensors such as pulse oximeters
accessible to consumers which can be used during sleep to monitor signals.
These gadgets are not included in the classification system as they are not
certified for medical use.

At-home Sleep Apnea Detection

From the classification of sleep monitors, it is evident that there are many
portable alternatives to PSG that allow for OSA detection at home. One
such device is the Nox T3 sleep monitor (Type III) [69] that has been
used previously in the CESAR project as the reference device [19, 26,
36, 40]. Such devices are quite expensive and are not considered as
consumer devices for the average person. In a review by Mendonça et
al. [43] they found that commercial devices can be used as an initial OSA
diagnosis tool. They should, however, not replace PSG for patients with
high comorbid medical conditions or sleep disorders, or patients over 65
years old. Additionally, there are limitations surrounding at home devices’
ability to detect OSA during REM sleep. They have a tendency to under-
diagnose cases of mild OSA and they have a higher failure rate compared
to PSG [43, 55]. Such devices should therefore not be used in place of PSG
for OSA diagnosis, but rather for initial detection.

2.2 Pulse Oximetry

As earlier mentioned, one of the many physiological signals monitored
during PSG is arterial oxygen saturation (SaO2). This is obtained through
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pulse oximetry. Pulse oximetry is a non-invasive method to estimate SaO2
by reading the peripheral oxygen saturation (SpO2). Both red and infrared
light is emitted through human tissue, and the amount of light absorbed in
the blood results in an estimate of oxygen (O2) in the blood. The method
usually measures the values through sensors attached to a finger or earlobe.
This will be elaborated further in the following section, which will be based
on the work of Wukitsch et al. [79], Tremper and Barker [70], and Nitzan,
Romem and Koppel [45].

Firstly, to better understand pulse oximetry, the technology behind
estimating SaO2 will be explained in more detail. Spectral analysis is
the ability to detect elemental composition by defining the unique light
absorption. In other words, we can detect different elements by their
absorption of light. The method is based on the Beer-Lambert law that
states that the concentration of absorbant in solution can be determined as
a mathematical function of the amount of light transmitted through the
solution. When it comes to measuring SaO2, it is possible because the
protein hemoglobin (Hb) which is found in the red blood cells, transports
oxygen (O2) to body parts that need it. Oxygenated hemoglobin (HbO2) has
a different absorption, which is referred to as extinction, than deoxygenated
hemoglobin (Hb or reduced Hb). This can be seen in their extinction curve
at red (wavelength 650 to 750 nm) and infrared (wavelength 900 to 1000
nm) light in Figure 2.3. At the red wavelengths HbO2 has less extinction
than Hb, and the reverse is true at a lesser extent for infrared wavelengths.
To summarize, we estimate SaO2 as the ratio of the difference in extinction
of red an infrared light between HbO2 and Hb. The formula for calculating
SaO2 is given in Equation 2.3.

SaO2 =
HbO2

HbO2 + Hb
(2.3)

As pulse oximetry is a non-invasive method, it is important to
understand that the light absorption is affected by skin, other tissue, and
venous blood. With this knowledge in hand, it is possible to determine
SpO2 from the level of absorption at these wavelengths, and isolating the
signals coming from arterial blood from other tissues. Light absorption in
the different tissues are constant over time (direct current (DC)), while in
pulsating arterial blood it is variable (alternating current (AC)). What we
are interested in measuring (SaO2), is in the AC. We therefore need to scale
divide the AC level by the DC level to get the corrected AC value. This
whole process is what is referred to as pulse oximetry.

Pulse oximeters are calibrated against a CO-oximeter, the gold standard
for measuring SaO2. In Figure 2.3, we see two other "types" of hemoglobin,
carboxyhemoglobin (COHb) and methemoglobin (MetHb), which are not
measured by a pulse oximeter. The CO-oximeter, in addition to measuring
Hb and HbO2, can also measure COHb and MetHb. It differs from
the pulse oximeter by being invasive, as the CO-oximeter measures the
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Figure 2.3: Hemoglobin extinction curves of Hb, HbO2, COHb and MetHb at
different light absorption [70]

aforementioned values through the absorption of light passed through a
blood sample. Being able to measure all these values along with direct
access to the blood accounts for why it gives a more accurate measure of
SaO2.

2.2.1 Measurement

A pulse oximeter consists of two light sources, red and infrared, and a
photodiode, which is a light detector. Different types of pulse oximeters
fall into two different groups, which are transmittance and reflectance. In
the transmittance group we have devices where the two light sources are
on opposite side of a photodiode with the measurement site between them.
Examples of this are the previously mentioned finger probe or ear probe.
With reflectance oximetry, both light sources and the photodiode are on
the same side, and light is reflected back to the photodiode through the
measurement site. A smartwatch with a pulse oximeter would fall into this
group.

The transmissive method for pulse oximetry is the most commonly
used, with the finger being the most used placement. In [45], they
observed conflicting results in different studies of which performed better
between reflectance oximetry with measurement site on the forehead and
transmittance oximetry. Many smartwatches are adding pulse oximeters to
their list of many sensors. According to a study performed by Lee et al. [39]
the reflective mode with the wrist as measurement site does not perform
as well as the finger probe, and the wrist is not an optimal measurement
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site. There is, despite this, promising research on the quality of Garmin
smartwatch’s oximeter with one study claiming it to be a viable method to
monitor blood oxygen saturation [38].

2.2.2 Estimating Oximeter Quality

The accuracy of pulse oximeters is determined by the difference between
the SpO2 measured by the pulse oximeter and the SaO2 measured by
a CO-oximeter. The standard metric used for calculating accuracy for
pulse oximeters is the accuracy root mean square (Arms) difference as
specified by the ISO 80601-2-61:2017 [30]. The terms Arms and accuracy
are used interchangeably for the same thing in regards to oximeter quality
assessment. The accepted accuracy for pulse oximeters in the range 70-
100% as specified by the ISO standard is ≤ 3%. Most manufacturers specify
an accuracy of about 2%. In a study by Milner and Mathews [44], of 758
sensors in use in 29 NHS hospitals in the UK, 169 (22.3%) had inaccuracies
> 4%.

The Food & Drug Administration (FDA) has in a guidance document
given recommendations on how to test oximeter accuracy in vivo under
laboratory conditions [72]. There should be an even spread of 200 or
more samples between 70-100% SaO2 from a pulse oximeter and CO-
oximeter. This should be taken from a minimum of 10 healthy subjects
varying in age and gender, where a minimum of 15% has dark skin
pigmentation. They also recommend the use of Bland-Altman plots for
visualising agreement for individual subjects and all subjects. The most
common way of achieving an even spread of SaO2 samples is through
breathing in a gas mix containing nitrogen (N2), carbon dioxide (CO2) and
O2. Varying the concentration of oxygen and nitrogen in the gas mix leads
to more stable plateaus of SaO2. The ISO also suggests the use of non-
invasive testing against another pulse oximeter that is traceable to a CO-
oximeter.

The FDA recognizes that the accuracy of a pulse oximeter is affected by
external factors such as patient characteristics, application site, and sensor
geometry [72]. They have therefore outlined typical accuracy that can be
expected between measured values (SpO2) and reference values (SaO2)
for SpO2 ranging between 70-100%. This is listed in Table 2.1. From the
expected accuracies, we see that transmittance oximetry actually gives the
best estimate of SaO2.

Sensor Type Arms

Transmittance, wrap and clip ≤ 3.0%

Ear clip ≤ 3.5%

Reflectance ≤ 3.5%

Table 2.1: Typical Arms Specification by Sensor Type [72]
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2.2.3 Limitations

There are many limitations when it comes to estimating SaO2 through pulse
oximetry, some of which have been highlighted by the FDA [50]. This spans
from the inner implementation of a specific oximeter, to environmental
factors in the particular setting it’s being used in. We will mostly focus
on those related to environment and human physiology.

Skin pigmentation has been mentioned to affect pulse oximeters ability
to measure SpO2 [79]. There has been some research on exactly how the
effect results in reality [6, 61]. Cold temperatures of the measuring site also
affects SaO2 readings, also nail polish should not be worn for a finger probe
reading. Another problem with pulse oximeters is that movement artifacts
can reduce the reliability. There are some challenges also when it comes to
measuring internal measures from a wristwatch. For instance, how tight
or loose the watch is worn, or a change of position may affect the sensor’s
performance [39]. The watch moving on the wrist is to be expected during
sleep. There is also the thickness of the skin on the wrist and the fit of the
watch.

2.3 Desaturation events

In a study performed by Gries and Brooks [25], they found that the average
oxygen saturation during sleep for healthy patients tends to be around
96%. Patients with OSA significantly differed from this with a mean SpO2
at 93.5%, and also registered values as low as 65.9%. This decrease in
blood oxygen level is a direct cause of breathing events. Oxygen saturation
above 94% during sleep is considered normal [73]. There are no generally
accepted classification of oxygen desaturation severity, though below 90%
is considered mild ranging to severe below 80% [74].

2.3.1 Desaturation Recommendations From AASM

As previously mentioned, AASM has published a set of rules for scoring
respiratory events such as apnea and hypopnea [5]. These rules also
include what classifies as a desaturation event. For an event to be classified
as a desaturation, there are three criteria that need to be met:

1. The event has to last a minimum of 10 seconds,

2. 3% SpO2 decrease compared to baseline, and

3. baseline is defined as the mean of stable breathing in the two minutes
before event onset.

(a) In the absence of stable breathing, we use the three largest
breaths in the preceding two minutes.

In a review by Rashid et al. [54] they investigated the use of
ODI for OSA diagnosis compared to AHI. Despite the many differences
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in measurement definitions between the studies, they concluded that
consideration should be given for diagnosing adult OSA with a 4% ODI of
≥ 15 events/hour and for recommending further evaluation for diagnosing
OSA with a 4% ODI ≥ 10 events/hour.

2.4 Machine Learning (ML)

ML is a subfield of Artificial Intelligence (AI) (Figure 2.4) focused on the
use of various self-learning algorithms that uses knowledge from data
to predict outcomes. The process often consists of a set of data called
training data, of which we extract features from. We then use the features to
train a model to classify the data based on those features. Afterwards, the
trained model can be used on new data. The model consists of a specified
algorithm that, in the case of classification, identifies what class the data is
based on the features. The outcome of the model is which class the data
belongs to. A real-world example which ML is often used for is spam
filtering. ML approaches have traditionally been categorised as supervised
learning (labeled), unsupervised learning (unlabeled) or reinforcement learning
(reward-based) based on the use case and available training data.

Figure 2.4: Diagram of AI and related subfields ML, DL, and NN [75]

A subset of ML is Deep Learning (DL) and Neural Networks (NN),
which is a form of ML that is inspired by the the human brain structure. It
differs from ML as it does not require human intervention for, e.g. feature
extraction and labeling, and consists of multiple layers, from input to
output and hidden layers in between. There has been much use of DL
algorithms in SA detection, and they significantly outperform traditional
ML classifiers. As these will not be used in this thesis because of the small
volume of data, we will not describe the methods any further.
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2.4.1 Supervised Learning

As previously mentioned, supervised learning is one of the main types of
ML models. It uses labeled data sets for training the algorithms that will
later be used for classification. This means that the class we want to give
the data is known before training the model. The algorithms and methods
we use in this thesis fall into this category.

2.4.2 Time Series Classification

A time series is a sequence of values or data points over a period of time. The
data points are often an observation of a feature or event that varies over
time, and the collected data points usually have evenly spaced intervals.
An example of this is the temperature of the weather in a period of a
year, sampled every day. Usually, ML with time series data is related
to identifying trends in the data, forecasting future values, or predicting
the class of a new time series based on the class labels of a set of time
series [2]. Another use of ML with time series is for labeling segments
of the data which is called period-based classification. This is a more fine-
grained approach where the individual data set is divided into periods
with class labels. In regards to SA detection, period-based classification can
be used to label oxygen saturation as either apneic or normal breathing [36].
One thesis further investigated an even finer-grained technique known as
segmentation for labeling events [32].

2.5 Low-Cost Consumer Sensors

Oximeters are available for consumers at a fair price. They are however
not a common device to have. This is not the case for smartwatches, which
are fast becoming ubiquitous. As this thesis is focusing on smartwatches,
the low-cost sensors addressed in this section will be the ones found in
smartwatches.

A smartwatch or fitness tracker is a type of non-invasive wearable tech-
nology. As other wearable devices, they are powered by microprocessors
and can be described as minicomputers that can be worn on the body [9].
Wearable devices are still fairly new in techgear, however the market for
smartwatches has grown large the last years. In 2019, the market was val-
ued at $20.64 billion (approx. 171.29 billion NOK) and will continue to
grow in the future, projected to reach $96.31 billion by 2027 (approx. 799.29
billion NOK) [67]. Some leading smartwatch brands include Apple, Sam-
sung, Fitbit, and also Garmin [64, 67].

A commonality with smartwatches is that they are packed with an
abundance of sensors. For instance, the Vivoactive 4 Garmin smartwatch
contains an accelerometer, light sensor, gyroscope, heart rate monitor, GPS,
thermometer, and even a pulse oximeter to name a few [21]. With these
sensors, the watch can monitor different aspects of health such as sleep,
stress level and heart rate. It can even alert the wearer if the values
get concerning [21]. These sensors and features make smartwatches a
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good companion for tracking fitness progress and monitoring changes in
personal health.

Smartwatches are inexpensive compared to medical grade devices
and are more accessible and accepted among consumers. Some of
them also allow for third parties to develop applications for them by
providing a REST Application Programming Interface (API) and Software
Development Kit (SDK). Furthermore, smartwatches are often paired
with smartphones through WiFi or Bluetooth which allows for offloading
heavier computation and data processing to the smartphones. This is also
the case with smartwatches automatically syncing to the cloud.

There are some challenges and limitations associated with using
wearable technology in healthcare monitoring, some of which have been
discussed in the article by Dunn et al. [17]. There is the fact that the battery
life tends to be short, which in this case, could hinder the smartwatches’
ability to monitor throughout the night. Ensuring the user’s data privacy
and security is maintained is important because of the sensitive nature
of the health data being collected. Furthermore, for these devices to be
beneficial to the user in pre-clinical health monitoring then the sensors
should be accurate.
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Chapter 3

Related Work

There has been work done related to several topics we touch upon in this
thesis. We highlight in this chapter some of the most relevant works. In
Section 3.1, we cover three articles that research the quality of low-cost
sensors, two of them specifically address watches. Section 3.2 presents two
works on ML for SA detection. Lastly, Section 3.3 presents three previous
theses written in the CESAR project which have directly influenced this
thesis.

3.1 Low-Cost Sensor Quality

The quality of pulse oximeters is heavily researched, especially in relation
to the Covid-19 pandemic [3]. We have chosen two works [27, 38] that are
the most similar, and will also later be compared to our results. The third
work presented is included as it gives some insight on quality of pulse
oximeters with the wrist as measurement site.

Lauterbach et al. [38] researched how heart rate and SpO2 measure-
ments by Garmin Fenix 5X Plus watch perform and different simulated
altitudes compared to the medical grade oximeter Nonin WristOx2. 23 sub-
jects sat in a customized environmental chamber that simulated altitudes
of 12,000; 10,000; 8,000; 6,000; and 900 ft. The mean bias calculated from
a Bland-Altman analysis was at its worst at 3.3% for the highest altitude.
For the lower altitudes the mean bias ranged between 0.7% to 0.8%. These
results are promising for Garmin’s pulse oximeter.

Harskamp et al. [27] tested the quality of ten popular low-cost pulse
oximeters. SpO2 signals from 35 patients were compared to blood samples.
The pulse oximeters were evaluated based on the metrics Arms, MAE and
the Bland-Altman analysis with mean bias. None of the oximeters met the
ISO-standard requirement of ≤ 3% Arms with the lowest being 3.9, and the
mean bias ranged from -0.6 to -4.8. Despite this, they could accurately rule
out hypoxaemia.

In the work by Phillips et al. [49] they explore the reliability of
SpO2 measurements from the wrist. This was done by creating a custom
wrist-worn pulse oximeter and testing a baseline algorithm for SpO2
calculation compared to a more advanced algorithm. Data was collected
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from 10 subjects who wore the custom wrist-worn pulse oximeter on
their dominant hand and a fingertip sensor on the other. They develop
a solution called WristO2 that selectively prunes unreliable data, as the
existing algorithms used in fingertip SpO2 sensors lead to over 90% of
readings being inaccurate in wrist sensors. With the help of ML, the model
was trained on the reliability label based on the agreement between the
devices (±2.0 percentage points agreement is classified as reliable), and
tested on the custom pulse oximeter. The final result was an order of
magnitude reduction in error at the cost of less frequent readings compared
to existing algorithms.

3.2 ML for SA Detection

A lot of work exists on ML for SA detection, however we will only highlight
two that are directly relevant to our work. The first one by Kristiansen et
al. [36], uses different combinations of 27 classifiers and four sleep signals
to evaluate classification performance and resource use. The data used
was from the A3 study which consists of more than 7,400 hours of data
from unattended sleep monitoring at home by 579 patients. The classifiers
were grouped into traditional, recurrent NN, and feed-forward NN and
hyperparameters were varied for each classifier. The models were then
tested on signals (nasal airflow (N), oxygen saturation (O), and respiratory
effort from the chest (C), and abdomen (A)) that were grouped into 60-
second periods. Each period was then labeled as either apneic or abnormal.
The results in short was that only using oxygen saturation produced as
good performance as all signals with 0.8543 accuracy (kappa: 0.7080). Also,
the NN models outperformed the others irrespective of model architecture
and size.

In another work by Kristiansen et al. [35], they investigate the classifica-
tion performance of five ML algorithms (Artificial Neural Network (ANN),
Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbor
(KNN), and Random Forest (RF)) on sleep data (respiratory signals from
the nose, abdomen, chest, and oxygen saturation). To study the impact
of data quality on classification performance, they used both high-quality
data from the Apnea-ECG database and low-quality data from the MIT-
BIH database, both hosted by PhysioNet [37]. The results show that data
quality significantly impact classification performance, as the accuracy for
the MIT-BIH data was over 90% while for the MIT-BIH data it was in the
range 60-70%. The low result for MIT-BIH was due to noise in the data,
smaller sample size, and some class imbalance.

3.3 Previous CESAR Theses

Some of the previous theses written in the CESAR project have laid the
foundation for what will be done in this thesis. Either directly or indirectly
by their results or methods. This section will highlight three of them
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by Fredrik Løberg [40], Kenneth Aune Frisvold [19] and Felix Griffin
Halvorsen [26].

3.3.1 Measuring the Signal Quality of Respiratory Effort Sensors
for Sleep Apnea Monitoring

Fredrik Løberg evaluated in his thesis the quality of two respiratory effort
sensors [40]. The two sensors under test were piezo-electric effort belt
(PZT) from BITalino and an impedance plethysmography (IP) sensor from
Shimmer. These sensors were then compared to a reference which was
Respiratory Inductance Plethysmography (RIP) sensor from Nox Medical.
A signal capture procedure was created with the purpose of collecting data
from subjects in a shorter amount of time compared to a full overnight
monitoring.

The purpose of the signal capture procedure was to acquire data
representing different forms of disrupted breathing from external subjects.
Different requirements were set in order to best simulate a representative
sleep monitoring session. For instance, the subject was required to be lying
in a bed and sleep in a supine (back) and lateral decubitus (side) positions.
When it came to the disrupted breathing, the subject was required to
perform three different breathing styles in addition to breathing stops
which represents apneic events. The styles were normal breathing, shallow
breathing representing hypoapneic events and deep breathing. Each of
these events (breathing stops, shallow and deep breathing) were to last
between 10-20 seconds in order to be detected, while normal breathing
should last longer than these. The signal capture procedure including all of
these requirements lasted around 16 minutes.

The metrics used for quality evaluation are related to the ones used by
medical personnel which are sensitivity, positive predictive value (PPV),
and clean minute proportion (CMP) for breath detection accuracy, along
with the breath amplitude accuracy metric weighted absolute percentage
error (WAPE). The work in his thesis was later published as an article [41].

3.3.2 Non-Invasive Benchmarking of Pulse Oximeters - An Em-
pirical Approach

There is an emergence of gadgets and sensors that are easily accessible to
consumers which could be used for medical purposes. Determining the
quality of these sensors can be expensive and require special expertise.
For instance, pulse oximeters traditionally require subjects to breathe in
a gas mix before the blood is analysed by a CO-oximeter. Kenneth Aune
Frisvold set out to create a non-invasive benchmarking protocol for pulse
oximeter evaluation [19]. The two low-cost pulse oximeters Cooking
Hacks MySignals (CH) and BITalino were compared to the more expensive
reference Nox T3 sleep monitor. The metrics assessed were the industry
standard for accuracy Arms, and precision and mean bias from a Bland-
Altman analysis. Lastly, an apnea detection analysis was performed with
Nox T3 as the reference.
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Frisvold’s benchmarking protocol required the subjects to follow a
breathing script slightly different from Løberg’s, which would result in
eight simulated apneas. The experiment starts with three minutes of
stabilizing calm breathing followed by breath holding for a minimum of 10
seconds then two minutes of calm breathing. The breath holding followed
by two minutes calm breathing would be repeated eight times. The results
reveal the importance of feedback to the subjects during the experiment to
make them aware of the process. Also, training beforehand is vital for the
success. The benchmarking protocol was performed by ten subjects and
the accuracy of the CH pulse oximeter was 1.29%(±0.8).

3.3.3 Garmin Smartwatches to Detect Desaturation Events as Part
of OSA Screening at Home

Felix Griffin Halvorsen wrote in his thesis about Garmin smartwatches’
ability to detect desaturation events [26]. The purpose was to investigate
the potential of consumer smartwatches, such as Garmin, for OSA
detection at home. In order to assess this it required implementing an
app for signal data collection from a Garmin watch. Furthermore, data
was collected from Garmin watches and the Nox T3 pulse oximeter as
reference simultaneously and used for classifying events and evaluating
signal quality. As our thesis can be seen as a continuation of that one,
we will give a more detailed overview of it. A total of five different tests
were performed: user testing, detecting connection loss, energy efficiency,
sensor evaluation with a breathing script and an overnight test. Four
Garmin smartwatches featuring pulse oximeters were tested, i.e., Vivosmart
4, Vivoactive 4, Venu and Fenix 6 Pro. After some preliminary tests of
the watches, only Venu and Fenix 6 Pro were included in the oximetry
experiments.

The user testing uncovered that the text might be too small for people
with poor eyesight, some improvements were needed in the paired watches
screen as well. Otherwise, the users were satisfied with the app. In testing
the app’s ability to reconnect after a connection loss, a delay tolerance
was discovered, meaning some data was buffered. The energy efficiency
test resulted in both the smartwatch and Garmin watches lasting at least
throughout the night.

The smartwatches’ pulse oximeter went under laboratory tests with the
signal capture procedure created by Løberg and overnight sleep tests. In
both tests the two smartwatches and a Nox T3 device were all worn at the
same time. A total of eight individuals performed the lab test, while the
overnight experiment only included one test subject. Values for sensitivity,
accuracy and specificity were calculated for both tests. Each 30-second
window was classified as True Positive (TP), True Negative (TN), False
Positive (FP) or False Negative (FN). The accuracy metric Arms was used
for signal quality assessment.

From the lab test the Nox T3 detected a total of 24 desaturations in all
eight tests. The overnight sleep monitoring was performed by a person
with no previous history of OSA. The test lasted 5 hours and 49 minutes,
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and the Nox T3 detected three desaturation events during that time. There
were artefacts introduced in the test, such as movement and light. The
affected part of data was removed before resampling and interpolation.

The smartwatches accurately detected some desaturation events as
could be seen from the signals. It occurred on some occasion that the
script however, did not detect all the desaturation events in the experiment
with the breathing script. The Venu watch had a more stable performance
compared to Fenix, though Venu had a high rate of FPs in the overnight
monitoring. The Fenix watch’s performance on the eight tests can be
summarised as inconsistent. The reason for this could be that the events
were not long enough or severe enough to trigger an event as defined by
the script. Furthermore, a falsely low oxygen saturation reading before a
desaturation event reduces the chances of detecting the event. There were
also many outliers and a number of false positives and false negatives.

Comparing the script to the Noxturnal software suggests that the
software uses a less strict definition than the one Halvorsen’s script is based
on. If the readings had been stable, then the script would be able to detect
all events. In reality, oxygen saturation fluctuates and the watches are not
that stable. The overnight test best represents how the smartwatches will
be used in real life. Unfortunately, this experiment was only performed
once on one subject. From the other experiment it is evident that the results
differ from test to test. Therefore, it is important to investigate further the
watches’ performance in overnight experiments with more test subjects.
Furthermore, total number of subjects in the experiments was small, which
makes it difficult to draw any conclusions.
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Chapter 4

Data Acquisition and
Processing

In this chapter, we present the equipment we use to collect data and
accompanying software (Section 4.1), and also how we process and prepare
data for analysis (Section 4.2).

4.1 Equipment and Software

4.1.1 Nox T3

Nox T3 is a portable medical grade sleep monitor produced by Nox
Medical [69]. It is categorised as a Type III monitor which means
it is certified for medical use unattended at home. The supported
sensors include dual Respiratory Inductance Plethysmography (RIP) belts,
ECG/heart rate, nasal air flow pressure, pulse oximeter, accelerometer,
snore sensor, to name a few. The device is battery-powered with a single
AA battery. It is widely used for diagnosing sleep disorders such as sleep
apnea.

(a) Nox T3 (b) Nonin WristOx2

Figure 4.1: The monitor and wrist oximeter from Nox Medical [62]

27



4.1.2 Nonin WristOx2

Nonin WristOx2 is the wireless Bluetooth connected pulse oximeter linked
to Nox T3 [78]. This device is also battery-powered by two AAA batteries.
The oximeter is worn on the wrist as seen in Figure 4.1b and a finger
is inserted into the attached finger probe. It provides pulse rate and
blood oxygen saturation signals which start recording immediately when a
finger is inserted into the probe. The device features the Nonin PureSAT
technology that removes undesirable signals and filters the signals in
challenging conditions such as low perfusion filter or motion to improve
measurement accuracy [52].

4.1.3 Wearing Nox Equipment

Figure 4.2: Nox T3 - Fully worn equipment

Figure 4.2 shows how the equipment is worn on the body. The main
monitor is placed on the patient’s chest with clips to fasten it in place.
Attached to the monitor in the pressure connector is a nasal cannula which
measures air flow pressure. The cannula is placed in the nose, fastened
behind the ears of the patient, and tightened under the chin. The two RIP
belts attached to the device are worn around the chest and waist. These
accurately determine breathing effort. Lastly, the Nonin WristOx2 is worn
on the wrist with an attached finger probe and connected to the monitor
via Bluetooth.
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This medical grade device is used as the gold standard in our studies.
While the actual pulse oximeter is the Nonin WristOx2, we refer to the pulse
oximeter and the collected data as Nox or Nox T3 data/signals. The signals
we will be using include blood oxygen saturation and accelerometer.

4.1.4 Noxturnal

The Noxturnal software system is the associated system to Nox Medical
devices [46]. Noxturnal allows a user to configure the device, download
and analyse the data. This is done by connecting the device to a computer
that has the software installed through a USB cable.

Before starting a new recording the Nox T3 device needs to be
configured. During configuration a new recording session is set up with
a patient profile where specifying either a name or a patient ID is required.
This is also where the oximeter is linked to the monitor. After a recording
is finished the data can then be uploaded to the profile on the software.
The recorded signals are automatically extracted, processed, annotated
and scored by the software’s algorithms. An AHI and ODI score is
automatically generated from the software’s algorithms, as well as other
sleep parameters like sleep stages, duration and efficiency. The data is
visualized in reports and sheets as can be viewed in Figure 4.3. This allows
for user-friendly and easy use for the clinicians. Furthermore, the clinicians
can create their own sheets, add notes and manually analyse the data.
Finally, the data can be exported to various formats such as excel or CSV.

Figure 4.3: Screenshot of recording in Noxturnal software

A downside to the software is that it can only be installed on a Windows
machine. Furthermore, the software is the only way to access the data from
the devices. The device also needs to be configured between each recording
if it is on the same day. Starting a new recording after one has ended
appends the data to the same session. This makes it slightly more difficult
to export the sessions as they will all be in the same file. It is therefore
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not possible to perform multiple recordings on the same day for the same
profile as separate sessions.

Data Acquisition

Since we want to compare the signals collected by Nox T3 to signals from
other sensors, we need the data in another format than what is provided
by the software. We therefore have to export the data in a compatible
format. As previously mentioned the data undergoes some processing
by the Noxturnal software. What this entails is unknown to us. As the
software is the only access we have to the data, this means we don’t have
direct access to the raw data from the sensors. Despite this, we refer to the
data from Noxturnal as the raw data.

We add the data we are interested in into a separate sheet. This includes
a timestamp in the format of one second per row. Of sensor data we include
accelerometer and oxygen saturation. These are in the format of the mean
of that second timestamp. We also include the three events of desaturation,
movement and artifact. The format of the events are binary, meaning for
each row there is a 1 in the column if there is an event and 0 otherwise. The
sheet is then exported as a CSV-file named as the ID of the recording.

The events are automatically scored by Noxturnal’s algorithms. Usu-
ally a specialist will also manually score the data afterwards, but this was
not done in our case. A study performed by Kristiansen et al. [34] con-
cluded that the difference in AHI was small, and the automatic scoring
classified sleep recordings with more than 90% accuracy into SA categor-
ies. Nox Medical themselves report about the great accuracy and reliability
of their respiratory analysis compared to manual scoring in recent publica-
tions [46].

4.1.5 Garmin Venu 2S

Venu 2S is the second iteration of the Venu series from Garmin [20]. The
S denotes that it is the smaller model in the series. The watch is a
advanced companion for health and exercise monitoring as it has several
sensors such as GPS, compass, thermometer, pulse oximeter, to name a
few. Additionally it has different functions for specific activities such as
running, golfing, biking, swimming, and allows for planning and analysing
the activities. A list of some of the specifications can be viewed in Table 4.1
while a comprehensive list can be viewed on the Garmin website [20].

The data that has been collected from the sensors can be viewed on
both the watch itself or on the Garmin Connect app. To access the data
outside of these two platforms access to the Garmin Companion Software
Development Kit (SDK) or Application Programming Interface (API) is
necessary.
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Features Venu 2S

Weight 38.20g

Size 40mm

Connectivity Bluetooth®, ANT+®, Wi-Fi®

Battery life

Smartwatch mode: 10 days

Battery saver mode: 11 days

GPS mode + music: 7 hrs

GPS mode - music: 19 hrs

Accelerometer Yes

Pulse oximeter Yes (spot-check, *all day and sleep)

Internal memory 200 hrs of activity data

Table 4.1: Garmin Venu 2S Specifications. * These are optional

4.1.6 Garmin Health Companion Software Development Kit
(SDK)

Garmin provides a Companion SDK which gives access to real time data
from connected devices. The Companion SDK allows developers to create
Android or iOS applications that can stream real time health data from the
sensors. We get access to the SDK through Garmin’s developer portal.
The SDK provides an example app for initial testing and getting familiar
with the setup and extensive documentation. A license key is required for
the app to work. With the SDK, an app has been implemented with the
purpose of collecting sensor data for later analysis.

4.1.7 Cesar smartwatches - Real Time App

The app Cesar smartwatches was implemented by Halvorsen [26] with the
purpose of recording and storing the sensor data recorded from the paired
watch. It is an Android app that has implemented the Garmin Health
Companion SDK. A user of the app can pair their Garmin device and start
and stop a recording session on the chosen device. The app consists of
the four activities MainActivity, PairingActivity, ShowPairedActivity
and CollectActivity, two classes and an interface which can be seen
in Figure 4.4. We will give a brief presentation of the app and its
implementation based on what each of the four activities do.

MainActivity

The MainActivity provides what is the start screen of the app. The screen
only contains a button for further navigation. Other than that the activity
checks for permissions that are required for the SDK.
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Figure 4.4: App architecture overview

PairingActivity

From the start screen we can navigate to PairingActivity. On this screen
we see a list of unpaired Garmin devices that are nearby. The items on the
list are clickable and clicking on one will pair the device to the app. The
activity displays a list containing devices scanned from the area. The list,
which is implemented as a RecyclerView gets populated with the help of
an adapter. There is also a button on this screen that takes the user to a new
activity with a list of paired devices.

ShowPairedActivity

The ShowPairedActivity screen looks mostly the same as the previous
screen with a list of clickable device names. The difference is the
listed devices are already paired. There is no separate button on this
screen but clicking a list item will take you to the next and last activity
CollectActivity.

CollectActivity

CollectActivity handles data collection. It starts with a start recording
button on the middle of the screen. Clicking this button starts a new
recording and a SensorListener class listens to the chosen sensors. At the
same time the layout switches to a screen with a button to stop recording.

Data Acquisition

We collect all the raw data from the watches sensors. This includes SpO2,
accelerometer, heart rate, heart rate variability and respiration. The data
are stored as individual CSV-files on the device. Of these we are interested
in SpO2 and accelerometer. The most important columns from the SpO2
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data set are the timestamp, duration and value which contains the signals
at 1Hz sample rate.

4.2 Processing Data

To summarize, the collected data that we use from Nox is the SpO2 signals,
accelerometer signals, and events for desaturation, artifact and movement.
From Garmin we use the SpO2 signals and accelerometer signals. There
are still some preprocessing that will need to be done with the data. For
instance, the data should be adjusted to the same length, synchronized
and preferably stored in the same file for easier use later on. What the
preprocessing fully consists of will be presented here.

4.2.1 Data Formatting

Before any analysis of the data can be done there needs to be some
formatting of the data. An obvious factor is removing outliers. For
SpO2 signals obvious outliers include values above 100% and below 0%.
Additionally the signals have to be on the same frequency if they are not
already to be comparable.

As we are comparing how two different sensors read internal values at
the same time, it is required that the data sets have the same length. This
circles back to synchronization as we are comparing how these methods
read the same internal values. If one of the sensors have recorded more
signals than the other, then those signals do not have any equivalent
values to be compared to from the other sensor. Parts of the data
sets that do not have a corresponding signal from the other sensor will
therefore be removed. An important part in the preprocessing of the
data is synchronizing the signals from the two devices. A more in depth
description of this will be presented next.

4.2.2 Synchronization

As we are comparing signals from two different pulse oximeters there is
a need for them to be synchronized first. An initial approach is to start
the recording on both devices at the same time. They do however have
different internal clocks so this is close to impossible as a synchronization
method. Additionally, from looking at the data sets the Nonin oximeter and
Venu 2S pulse oximeter tend to start picking up signals later than when the
recording immediately starts.

The methods for synchronization are based on two methods proposed
by Frisvold [19]. The devices were synchronized by aligning the peaks
in the oximeter data. If there were no peaks in the oximeter data, then
additional synchronization was done with the accelerometer. Both of these
were compared in addition to visually inspecting the plotted oximeter
graphs. Finally, we fine-tuned the shift in data that resulted in the best
accuracy in Arms.
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4.2.3 Preprocessing Steps

To summarize in a broad outline, the preprocessing steps consists of:

1. Resampling the signals to 1Hz,

2. interpolating missing data,

3. removing outliers,

4. synchronizing the signals,

5. combining columns and equalizing lengths, and

6. storing data in new CSV-file.

These steps need to be taken before any further analysis of the data can
be performed.
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Part II

Method and Implementation
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Chapter 5

Method

Halvorsen performed several tests and experiments in his thesis. Some
of these previous tests will be reevaluated to see if the results can be
reproduced and if improvements could be made. In this chapter, we
describe the methods that we use for testing and evaluation. In Section
5.1 we present the repeated app tests (usability and disconnection), how
they were previously performed and improvements we have made. Section
5.2 addresses all the methods related to testing the Garmin signals. This
includes collecting data, classification, and estimating quality. Lastly, in
Section 5.3 we address the methods we use for analysing the data.

5.1 Application Testing

The app tests performed by Halvorsen include usability testing, connection
loss detection between the smartwatch and the phone, and energy use
testing of the phone. The purpose of these tests were to see if the app
met the set requirements, both functional and non-functional. The tests
to be repeated are usability testing of the real time app and Bluetooth
connection loss detection. The goal of repeating these two tests is to see if
we can reproduce the previous results and also get more insights. The main
requirement for repeating these tests is to follow the same procedure. At
the same time, there should be room to evaluate ways that these tests can be
improved to produce new information. We list the following requirements
that should be satisfied for conducting the app tests.

• Equipment

For both tests it is required that the app, smartphone and smartwatch
work as intended. This means the equipment has enough battery, the
app is installed on the phone and it is possible to pair the phone and
start/end a recording in the app.

• Participants

A more comprehensive definition of usability and usability testing is
given in Subsection 6.1.2. In broad strokes, we will test the app on the
intended user to assess some predefined metrics. The participants
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recruited for the usability test need to be from the intended user
population. Furthermore, to ensure some representation we want
participants with different levels of technology expertise.

• Test instructor

For the usability test, we have a test instructor who will conduct
the test. The role of the test instructor is to observe the "evaluator"
when performing the tasks, assist when any problems arises and ask
questions to better understand and get feedback.

• Usability test process

To ensure consistency and comparability of the test with different
participants, there needs to be a clear guide of the process. In this
guide, the roles need to be clearly defined as well as the purpose of
the test. Everyone should be aware of what data is being collected
and how, and what is being tested which is the app and not their
performance. Lastly, they should be aware of their right to withdraw
whenever they want and have all data deleted.

5.1.1 Usability Testing

Usability is defined by ISO 9241-11:2018 as follows: “the extent to which a
system, product or service can be used by specified users to achieve specified goals
with effectiveness, efficiency and satisfaction in a specified context of use” [31].
It is also further specified that usability is not a specific attribute of the
product/system/service, but rather an outcome from interacting with it.
Usability testing is defined by the ISTQB as testing to evaluate the degree
to which the system, product or service meets the definition of usability
by ISO 9241-11:2018 [24, 58]. In other words, usability testing evaluates a
target audience’s performance on a system in the specified context based
on certain metrics. It essentially gives us an indication of the quality of the
system or product based on user feedback.

The system that the target audience will be evaluated on is the real
time app. It has been argued that mobile devices require some different
components for usability testing. This was introduced in the PACMAD
usability model by Harrison et al. [58]. The PACMAD model extends the
ISO standard’s three attributes (effectiveness, efficiency, satisfaction) [31]
with learnability, memorability, errors and cognitive load.

Previous usability test

The focus for the previous usability test was on measuring different
qualities of usability for a first-time user of the app. Following are the
metrics and questions that were assessed in the previous usability test:

• Efficiency - time completing the task and on each screen.

• Effectiveness - number of clicks to solve the task.
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• Errors - number of errors, experience any crash.

• Satisfaction - easy to use, responsive, satisfied with the experience,
readability.

• Learnability - easy to learn, improvement of effectiveness and
efficiency second time using.

Table 5.1 shows the results of Halvorsen’s usability test. With this test
the focus was mainly on giving the metrics a quantitative score. There
were also some follow-up questions that allowed more elaboration from
the subjects. For instance, one subject remarked that the small text in the
app could possibly be difficult for people with bad eyesight to read. This
has been improved ahead of more user testing.

Test Results

Metric Subject A Subject B Subject C Subject D

Amount of Clicks 5 6 5 5

Time spent 8s 8s 15s 11

Time per screen 1̃s 1̃s 3̃s 2̃.2s

Errors occurred 0 1 0 0

Satisfaction 5 5 5 5

Ease of use 5 5 5 5

Responsiveness 5 4 5 5

Readability 4 5 5 5

Learnability 5 5 5 5

Table 5.1: Usability results from Halvorsen [26]

Current focus

From the results of the previous usability test the app was proven to be
fairly simple and straightforward. As the app has not significantly changed
since the last round of tests, and the simple functionality of the app we
decide to take a more qualitative approach. A more qualitative approach of
the apps usability can give us different and valuable insight. For this round
of usability testing the questions will be more focused around satisfaction.

There are mainly two different actions one can currently take in the
app; pairing the device and recording data. Both of these actions are
visualised in state-transition diagrams in Figure 5.1. The diagrams show
that the device needs to be paired first before a recording can be performed.
Therefore, the tasks will be performed in this order in the usability test.

The participants will complete the two tasks while outwardly describ-
ing their actions. After each task they will get some questions pertaining to
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(a) pairing a device

(b) performing a recording

Figure 5.1: State-transition diagrams of the two tasks to be completed

their experience. Finally, they will get some time to talk about their opinion
of the app in its entirety. The questions will essentially be focused on their
impression of the app and if they see any potential improvements. The
goal is to ask open-ended questions that allows the participant to explain
their thoughts on the app. An in-depth guide can be found in Appendix C.
It will be a moderated usability test allowing for interaction with the par-
ticipant [68]. As the app is still a Minimum Viable Product (MVP) there
are some known improvements that could be made. We are interested in
uncovering some early issues that can improve the usability.

5.1.2 Connection Loss Detection

There are different scenarios in which the devices may disconnect during
recording. For instance, the user could wake up in the middle of the night
to get some water without bringing their phone with them. The range
between the smartwatch and the phone could therefore exceed what is
allowed for the Bluetooth connection. Another scenario is the body is
blocking the signals between the watch and the phone while asleep. This
could happen at certain angles of sleep and there could also be an added
barrier of thick covers.

Halvorsen tested connection loss by distance with an Android smart-
phone and a Garmin watch. After recording had started the phone was left
behind whilst the person wearing the watch went outside of communica-
tion range. According to Garmin support this range is within 10 meters of
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the device without environmental factors such as walls blocking or inter-
ference from other electronic devices [76]. The test included two different
lengths for the duration of disconnect; a short one of one minute and longer
one of one hour. These will be replicated for this round of testing. Addi-
tionally, we will test if the 10 meter distance is enough for the devices to
disconnect.

Another form of connection loss that will be tested is by blockage over a
shorter distance. This will be a simulation of the signal blockage that could
happen during sleep. The phone will be placed 1-2 meters away while the
person wearing the watch will place their body and covers over it. The goal
is to see if the watch disconnects from the phone with these barriers despite
the close proximity. This will last for five minutes.

For each test the data will then be examined for any jumps in duration
in the accelerometer data as it has the most stable sampling rate of 25Hz.

5.2 Signal Testing

Halvorsen evaluated the signal quality of both experimental data and sleep
data. He also evaluated the desaturation classification performance of
a signal counting script. In addition to these previous tests that were
performed, we have taken it a step further. For desaturation event
classification we also include the use of ML algorithms. We will compare
the performance of these algorithms to the original script, and also of the
different ML algorithms used. In the assessment of sensor quality, we
also test different hypotheses of variables that affect the measured Garmin
signal accuracy.

We collect data, analyse the quality of said data and use it to detect
events. How we define the process and the metrics we use to evaluate
our results needs to be defined beforehand. There are some requirements
set by the ISO 80601-2-61:2017 [30] regarding the sample and method for
in vivo testing of accuracy of a pulse oximeter. These requirements, and
also the FDA’s guidance document [72], set the foundation for our data
collection and quality assessment, although we are not following this to a
tee. We present in the following some requirements and also limitations for
collecting, using, and analysing the signal data.

• Limitations and scope

As we are mostly collecting data from lab tests, and none of the
data is from people with SA, it puts some limitations in regards
to classification. The lab recordings are of a shorter length, which
means even if we perform many tests it will not result in a large
quantity compared to overnight monitoring. Because of this, we can
not use algorithms such as NN, instead we will use traditional ML
algorithms.

When it comes to lab assessment of pulse oximeters, the ISO standard
requires the subject to breath in a gas mix to simulate different oxygen
saturation values. Because of lack of access, we use a breathing script
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for subjects to simulate breathing events. Furthermore, it is required
to be compared to 200 blood samples evenly from 70-100%. As we
are using another pulse oximeter as reference, we will instead set a
minimum data set size of 200 signals.

• Privacy

The participants are required to sign a consent agreement before any
data is collected. The consent agreement contains all information
about the project, including what data is being collected from the
subjects which is physiological data. The agreement can be found
in Appendix B. Furthermore, they are informed of their freedom to
withdraw any collected information at any time.

• Equipment

For signal data collection we will be using two different sets of
devices. With Nox T3 we need to have one AA battery for the
monitor and two AAA batteries for the pulse oximeter. Also the
monitor needs to be configured with a new profile before each
recording. Before recording Garmin signals we need to ensure that
the smartwatch and phone has enough battery, and that the app is
working as intended. For hygienic reasons, the nasal cannula and RIP
bands are switched for each subject, and all equipment are cleaned
with disinfectant.

• Test population

Because of restrictions put in place for using Garmin’s smartwatch
and accompanying SDK, our population will be people associated
with UiO. Within this, we have set the requirement of 15% with a
dark skin type as specified by the Fitzpatrick scale [28].

• Information comprehension

There are a lot of things that can go wrong during lab recordings
and overnight monitoring. We therefore emphasize the importance of
information comprehension by everyone involved. This is especially
important with unattended overnight monitoring where the subject
will have to handle all equipment set-up by themselves.

• Structured signal capture procedure

The process for the lab recording needs to be structured so that we can
control certain aspects and replicate for several subjects. The subjects
are required to lie down, replicating sleep. They should not be talking
to avoid introducing unnecessary artifacts, and they should lie as
still as possible unless otherwise specified. The procedure should
be easy for the subjects to follow during the test. To ensure this,
the next and/or current step should be made easily available to the
subject. Also, we want for the lab recordings to be representative of
SA while still being controlled, so they should simulate both apneic
and hypopneic events.
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• Data characteristics

The signals from the devices need to be comparable. It is therefore
important that they have the same format and that they are synchron-
ized.

In order to classify events in the SpO2 signals, it is required that there
is enough variation in the data to register as desaturation events. This
depends entirely on the ability of the subject to simulate breathing
events well enough to cause oxygen desaturation. Additionally, the
overnight monitoring sessions will be performed by subjects that, to
our knowledge beforehand, are healthy and without any signs of SA.
We can therefore not predetermine the level of oxygen saturation
in the range 70-100%, either from the lab tests or from overnight
monitoring. What we can control is that the number of desat events is
equal to the normal oxygen level events for classification. To ensure
that there is also enough data to train and test the models on, it is
required that each data set has a minimum of two desat events.

• Reproducibility of classification performance

The results and the process of producing the results needs to be
reproducible. Therefore, the classifiers and data need to be explained
and accessible to others.

• Quality metrics

Accuracy calculated in Arms is the industry standard metric for pulse
oximeters. Most pulse oximeters in use have an Arms accuracy of 2%.
The ISO standard states it should be ≤ 3% for SpO2 values between
70-100%, while the FDA specifies that for reflectance oximeters it
typically is ≤ 3.5%. We will use the ≤ 3% as the preferred accuracy
limit and the ≤ 3.5% specified by the FDA as the upper limit of
acceptable accuracy values.

5.2.1 Signal Capture Procedure

Fredrik Løberg originally created a signal capture procedure, also referred
to as a breathing script, which has later been used in several CESAR theses
[26, 40], also in different adaptations [19]. The purpose of the script was
to simulate breathing events such as apnea and hypopnea that can occur
during sleep, and the resulting desaturation event after such breathing
events. We are mostly interested in desaturation events as we are only
testing the pulse oximeter’s oxygen saturation signals. However, since we
are assessing the ability to detect OSA, we also require the data sets to be
similar to a person who has sleep apnea.

The full duration of the procedure is 15 minutes. During these minutes
the subject will lie first in a supine position and about halfway through turn
to their side. Additionally, the subjects will have to perform three different
breathing styles in addition to breathing normally. These are holding their
breath, shallow or short breaths and deep breathing. Each of these will last
for 17 seconds. The breathing script can be seen in Table 5.2.
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Position Time Style

back

min 1-2 normal

min 3 hold (17 sec)

min 4 hold (17 sec)

min 5 shallow (17 sec)

min 6 deep (17 sec)

min 7-8 normal

side

min 9-10 normal

min 11 hold (17 sec)

min 12 hold (17 sec)

min 13 shallow (17 sec)

min 14 deep (17 sec)

min 15 normal

Table 5.2: Breathing script/signal capture procedure

Every subject is asked if they are able to hold their breath for 17
seconds before the procedure. Additionally, every session starts with
a walkthrough of the procedure that will be shown to the subject as
PowerPoint presentation during the procedure. Furthermore, during
the walkthrough they are required to test shallow breathing and deep
breathing to ensure their comprehension of the styles. The procedure is
done in a laboratory at the University with the subject lying down in a
sofa. The watch will be worn three different ways during the breathing
script testing.

Lastly, there will be a test of the watch’s performance in the intended
natural setting. That is, participants will perform an unattended overnight
sleep monitoring at home. The same equipment will be worn as for the
breathing script. The difference is the participant will wear this overnight
and go to sleep as they would usually do. The watch will be worn as
the subject finds is most natural for themselves. This is the most realistic
performance measure, and will give a more accurate view of the watch’s
performance. As the subjects will be putting on the equipment and starting
the recording on both devices themselves, they will get a lesson on how to
do so correctly before the monitoring. In case anything is forgotten, they
are sent a video on Nox T3 hookup as a preventive measure. Afterwards,
the subjects will report on any significant issues regarding the equipment
or any other factors relevant to the sleep monitoring.
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5.2.2 Desaturation Event Classification

In Halvorsen’s thesis he tested a script that used a signal counting method
to score desaturation events in data sets [26]. It is based on the ODI
definition of desaturations, therefore this script is called the ODI classifier
in this thesis. This method for classification is naive and outdated with
the emergence of methods like ML and NN. We will therefore in this
thesis include other methods for classification. As there is not enough data
for extensive NN models, we have chosen to only use simple supervised
ML algorithms. The algorithms that will be tested include K-Nearest
Neighbours (KNN), Support Vector Machine (SVM) and Random Forest
(RF).

The ODI classifier and ML classifiers performance will be compared to
the analysis in Noxturnal. This will be done by running all the classifiers
on the SpO2 recorded by both Nox T3 and Venu and comparing the results
with the automatic labelling in Noxturnal. We will from this be able to
compare how these classification methods perform on data from a medical
grade device and a consumer device.

For the ML classifiers we use a hold-out test set and 10-fold Cross-
validation (CV) to estimate classification performance. For the hold-out
test set, we test individual recordings while the rest of the data is used for
training the model. We use CV as well, as it gives a better indication of
how well the model performs as it performs hold-out testing ten times on
different splits of the data set.

Despite having a breathing script where we aim to create events, there
are no guarantees that it will result in any desaturations. As for overnight
monitoring, the subjects included in this experiment had no prior SA
diagnosis. In the case where there are no desaturation events, the most
valuable information will be assessing the quality of the signals.

K-Nearest Neighbours (KNN)

K-Nearest Neighbours (KNN) is the simplest of all ML classifiers [48]. The
concept of the algorithm is easily understood by it’s name; an object is
classified based on the majority class of the k number of nearest neighbours.
For instance, if we have a fruit and want to determine whether it is an apple
or a pear, we can see which fruit the five nearest fruits placed on a two-
dimensional feature space have. The main considerations of the algorithm
is therefore distance and k. The k is the only parameter the algorithm
takes and can be varied for best predictions. Having a small k can result
in overfitting while having a larger k can lead to underfitting. Another
modification is adding weights to the neighbors.

Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised ML algorithm that tries
to find a hyperplane that best separates two classes [57]. It does this by
finding the margin that results in maximum distance between the classes.
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The algorithm uses only the points that are closest to the hyperplane, which
are called support vectors. Continuing with the fruit example, the apples
and pears are placed on a two-dimensional space based on their features.
The SVM algorithm will try to find the best hyperplane that separates the
apples and pears. We classify the fruit we have based on which side of the
hyperplane it falls. If the classes are completely separated, then we can use
a linear SVM. The more common is a non-linear SVM where we use kernel
tricks to find the best fit to separate the classes. Some common kernels are
the polynomial, sigmoid and RBF kernels.

Random Forest (RF)

The Random Forest (RF) classifier builds decision trees on different samples
and the selected class is the class which is chosen by most trees [56]. That
is, RF uses an ensemble technique that uses the decision trees algorithm to
make predictions. Decision trees are also a supervised ML algorithm. It is
a binary tree that starts from a root node and splits the data set recursively
into nodes based on conditions of each decision node. We are finally left
with leaf nodes that represents the classes. With RF we use a bagging
method to split the original data set into subsets for each decision tree. To
exemplify with the fruit again, we create decision trees with five different
subsets of the original data. The trees choose which fruit it is based on
feature conditions. If, for instance, four of the five trees classify the fruit as
an apple, then the RF algorithm lands on the fruit being an apple.

5.2.3 Sensor Evaluation

As earlier mentioned, fitness and smartwatches are not intended for
medical use. There is a high level of quality that is required of devices
that are used for diagnosis. Garmin has written a disclaimer stating that
their pulse oximeter is not intended for any medical purpose including
diagnosing, treating, curing or preventing any disease or condition [1]. We
will therefore evaluate how good the Garmin watch is compared to a Type
III device. The standard metric that is used to evaluate oximeter quality
according to ISO 80601-2-61:2017 [30] is accuracy calculated by the Arms
metric. We will calculate this along with several other metrics for each data
set. Which metrics that are used and why can be found in Subsection 6.3.2.

There are some known variables that could affect the performance of
a pulse oximeter, especially one with the measuring site on the wrist. For
instance, the physical characteristics of the user, the fit of the device, or the
placement of the watch on the wrist could affect the pulse oximeter’s ability
to read blood oxygen levels [50]. There are several different factors and we
will be testing some of them. On account of this the watch will be tested
with three different placements. The first being what the subject finds most
comfortable, the second one is tight and the last is with the sensor on the
back of the wrist. Furthermore, we will assess whether factors such as
movement, the number of desaturation events and skin type impacts the
signal accuracy.
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5.3 Data Analysis

5.3.1 Classification Performance Metrics

We use a binary classification system in order to classify desaturation
events in the data. That is, we classify sections of the data as either a
desaturation event or not a desaturation event. The data is divided into
60 second windows with SpO2 signals and one label. Each predicted label
will be compared with the actual label we get from the automatic scoring in
Noxturnal. The window can then be classified as True Positive (TP) if both
predicted and actual labels match on labelling a desaturation event, True
Negative (TN) if they both match on there not being a desaturation event,
False Positive (FP) if there is predicted a desaturation event but not an
actual event, and False Negative (FN) for the reversed. This evaluation will
be done on the data set from Nox and from Garmin, where the performance
of both will be compared afterwards.

The performance of the binary classifiers will be evaluated by the four
metrics accuracy, specificity, sensitivity, and Cohen’s Kappa (κ). The first
three metrics can be found in the confusion matrix in Figure 5.2.

Confusion Matrix

Figure 5.2: Confusion matrix

As we are using a binary classification system we can use a confusion
matrix to measure the performance of the classifiers. A confusion matrix
can be defined as a summary of prediction results on a classification
problem [8]. We predict the outcome of a classification on a set of data, and
compare this with the actual outcome. We summarize the predictions in the
aforementioned different classes of TP, TN, FP, and FN by counting each
prediction that falls under each class. From this, we can calculate several
metrics that tell us something about our classifier.
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From the confusion metrics we will use the metrics of accuracy,
specificity and sensitivity. The equations for calculating these can be seen
in Figure 5.2. To understand what the values we get are we will describe the
equations with words. Accuracy takes all correct classifications and divides
it on all classifications. Sensitivity takes all true positives, meaning actual
desaturation events that were predicted, and divides on all actual positive
values, meaning desaturation events that were predicted or not. Specificity
does the same as sensitivity but for the negative values. That is, it takes all
the true negatives and divides it on all actual negative values, those that
were predicted and those that were not.

From the confusion matrix we also see there are two types of errors that
can be made which are referred to as Type I and Type II errors. A Type I
error is falsely classifying a negative as a positive, while Type II errors are
falsely classifying a positive as a negative [8, 53]. How much we weight
making each of these errors depends heavily on the domain. For instance,
a model that continuously falsely predicts a person does not have cancer
when in reality they do (Type II) can be fatal.

Cohen’s Kappa (κ)

Cohen’s Kappa (κ) [14] is a statistic that measures inter-rater and intra-rater
reliability. It is a more robust metric than accuracy because it measures of
how well the classifier performed compared to how well it would have
performed by chance. κ is calculated as given in Equation 5.1 where Po is
the proportion of agreement and Pe is the proportion of agreement expected
to be by chance. The upper limit of κ is 1, meaning it is a perfect agreement,
while the lower can either be 0 meaning the agreement is by chance or
between 0 and -1 for less than chance agreement. Cohen suggests that a
value of κ larger than 0.0, 0.2, 0.4, 0.6, 0.8 and 0.9 should be interpreted to
indicate none, minimal, weak, moderate, strong and almost perfect degrees
of agreement, respectively [42].

κ =
(Po − Pe)

(1 − Pe)
(5.1)

κ =
2 × (TP × TN − FN × FP)

(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)
(5.2)

In regards to binary classification and the confusion matrix, κ can be
calculated as in Equation 5.2.

5.3.2 Signal Quality Metrics

Accuracy

Accuracy root mean square (Arms) is the standard metric that is used to
evaluate the quality of oximeter sensors [30]. It is expressed as the root
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mean square between the pulse oximeter under test and the reference CO-
oximeter. The formula for calculating Arms is given in Equation 5.3, which
is the same as root mean square error (RMSE). The value that we get from
this describes all the points in the data set, as opposed to just one point. The
closer the number we get is to 0 means the better accuracy as it indicates
less error between the measures. In our case the Nox is the reference sensor
while the Garmin watch is the test sensor.

Because outliers have an excessive negative effect on results of the
Arms parameter, we also assessed the mean absolute error (MAE), a
measurement that is more robust in the presence of outliers [27]. This
is because for MAE errors are weighted equally, while for RMSE they
are wighted exponentially. That is, larger errors are weighted more than
smaller errors. Willmott and Matsuura [77] also argued for the use of MAE
in place of RMSE because of the ambiguity of RMSE. A later article by
Chai and Draxsler argued against the complete avoidance of RMSE [11].
Equation 5.4 shows the formula for calculating MAE.

Arms =

√
∑n

i=1 (SpO2i − Sri)
2

n
(5.3)

MAE =
∑n

i=1 |yi − xi|
n

=
∑n

i=1 |ei|
n

(5.4)

Bland-Altman analysis

In addition to accuracy, we will also perform what is known as a Bland-
Altman analysis. In statistics when we work with two different variables
we usually use correlation coefficient to assess their relationship. A
correlation coefficient is a value between -1 and 1 which tells us the strength
and direction of the relationship between variables [15]. A common
measure is the product-moment correlation coefficient, also known as
Pearson’s r. While the correlation coefficient is used for assessing the
relationship between two variables, it was found to not be ideal for
measuring the agreement between two different measurement systems.

Martin Bland and Douglas Altman proposed what is known as
the Bland-Altman analysis that addresses the issue of comparing one
measurement to another [7]. Oftentimes when a new measurement
method is evaluated, it is compared to the established or gold standard
of measurement. If the agreement between the methods are sufficient, the
new method can be used.

The Bland-Altman analysis is a graphical method that consists of a
mean bias and upper and lower Limits of Agreement (LoA). A scatter
plot is drawn where the x-axis is the mean between the two measurements
((measurmentA +measurmentB)/2) and the y-axis is the difference between
the two measurements (measurmentA − measurmentB) [16]. The mean bias
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is the mean of the difference(y-axis), while the upper and lower LoA are
calculated by a 95% confidence interval of this bias. A complete agreement
would give a mean bias of 0.

(a) correlation example (b) bland-altman example

Figure 5.3: Examples of plots of the same data set [7]

In an article by Doğan [16] some pitfalls in Bland-Altman analysis
are addressed. For instance, there is an assumption that the differences
need to be normally distributed. If this is not met, then the data may be
logarithmically transformed. The differences should always be verified
for normal distribution first, this by drawing a histogram or performing
a Shapiro-Wilk test [22]. Another problem is that the sample size should be
large enough to be universally valid.

5.3.3 Statistical Analysis

A lot of new data is generated from both the classification evaluation and
quality evaluation of the raw data. These are in the form of metrics for
each data set and also aggregate metrics for different subsets of the data.
To make sense of the new data we use various statistical methods for
description and summary. The following subsection is based on Britannica
unless otherwise specified.

We use many different numerical measures to summarize for different
purposes. The most common and widely used statistic is the mean or
average for central tendency of a set of continuous values. We also
use Standard Deviation (SD) for the spread around the mean and a 95%
Confidence Interval (CI). To describe proportion of data in a category we
use percentage. Lastly, we use quartiles to divide the data into percentiles
of four equal parts from smallest to largest. Inter-quartile range is used to
calculate lower and upper bounds in order to remove outliers of the data.

Hypothesis Testing

Hypothesis testing is defined by Britannica [65] as a form of statistical
inference where we use data from a sample to draw conclusions about the
population it is drawn from. Hypothesis testing starts with an assumption
about the population, often called a null hypothesis (H0). We also have an
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alternative hypothesis (HA) about the same population which is different,
often opposite, from the null hypothesis. This is the hypothesis, or claim,
we want to test. The procedure requires drawing a sample from the defined
population and determining whether H0 can be rejected or not. If it is
rejected, then the conclusion drawn is that HA is true.

There is a possibility that we falsely reject H0. Correspondingly, there
is a chance of falsely accepting H0. These are called Type I and Type II
errors respectively. We set a significance level, called α for the probability
we would like to allow for making a Type I error. The common significance
levels are α = 0.05 and α = 0.01. An observed level of significance called
p-value is measured, and H0 is rejected whenever it is smaller than the
already chosen α.

Regression and Correlation

We conduct hypothesis testing in regression and correlation analysis to
determine if a relationship is statistically significant. With regression we
have a dependent variable and one ore more independent variables that we
would like to determine the relationship between. In our case with signal
quality, we assess if there is a relationship between the dependent variable
of accuracy and some external factors. This is based on correlation.

A correlation coefficient gives us a value between -1 and 1 indicating
how strong two variables are related. Either end means there is a strong
positive or negative correlation respectively, while 0 means there is no
correlation. The most common correlation coefficient is Pearson’s product-
moment correlation coefficient, otherwise known as Pearson’s r. If the
relationship is ordinal or not linear, an alternative coefficient is Spearman’s
rho. It is important to understand that correlation does not mean causation.

Statistical Tests and Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) test is a statistical procedure that is used
to compare the means of two or more groups [4, 65]. The procedure uses
a hypothesis testing in regards to the equality of the means between the
groups. There are different version of the procedure related to if there is
just one variable or multiple, and even if there are interactions between
variables. It uses an F-test to check for equality for multiple groups, or
a t-test for comparing two groups. ANOVA is a parametric test is based
on some assumptions on the data. That is, that the residuals are linear,
homoscedasticity or homogeneity of the variance between the groups and
that the observations are independent.

We can use statistical test to assess these assumptions. For linearity this
can be done with a Shapiro-Wilk test or a histogram, and homoscedasticity
can be tested with a Brown-Forsythe test. If these assumptions are not
met, we perform non-parametric tests like Wilcoxon rank sum test for
comparing two groups or Kruskal-Wallis test for more than two groups
instead of ANOVA.
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5.3.4 Graphical Analysis

We use many different plots to visualize and make sense of the data. The
plots used and their purpose are listed as follows:

Time series graph

A time series graph is a line graph where a value is plotted on a timeline.
The graphs visualize the sensors oxygen saturation recordings over time.
The level of oxygen saturation is plotted on the y-axis while the time is
represented by the x-axis. A line is drawn between the plotted SpO2 values
signifying the continuous nature. The graphs for the reference and test
oximeter are plotted in the same plot, allowing us to see where they match
and deviate and by how much. It also allows us to visually adjust the
graphs for better synchronization.

Histogram

The histogram gives a graphical representation of a data set by grouping
values in equal sized bins of a specified range. This gives a visual
representation of the frequency in each bin. As an example, we collect
signal data with values that can range between zero and 100. Plotting the
recorded signals in a histogram makes it easier to see the distribution of the
signals.

Boxplot

Another way of visualising the distribution of data is through a boxplot,
also called a box and whisker plot. A boxplot is a form of descriptive
statistics that visualizes how the values in a data set are spread and skewed.
It consists of a box which represent the 25th and 75th percentile of the data
set, also known as first and third quartile. the 50th quartile is the middle
value, also called median, in the data set and is represented by a line inside
the box. From the box there are whiskers at the top and bottom which
represent the 0th and 100th percentile of the values in the data excluding
outliers. Outliers are plotted as dots outside of the plot.

Scatter plot

A relation plot, which is commonly referred to as a scatter plot, presents the
relation between two separate sets of data. The data sets share a common
relation, often time, and are plotted with one value on the x-axis an the
other on the y-axis. In our case, the signals from the devices could be
plotted against each other, or for accuracy could be plotted against the
measured covariate e.g. movement. Scatter plots can also be used to
visualize correlation by fitting a regression line to the data.
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Bland-Altman plot

A Bland-Altman plot is a variation of a scatter plot. The difference is it plots
the agreement between two methods rather than the correlation. How the
same data set is visualized in these two plots can be seen in Figure 5.3.
The plot graphically displays the mean bias of the method or measurement
under test to the reference method. In our case the method under test is
Garmin’s pulse oximeter with Nox T3 being the reference oximeter. The
mean bias is calculated by plotting the average between the devices to the
difference. Both the upper and lower LoA are marked in the plot as well.
These limits represent the 95% confidence interval of the bias.

QQ-plot

We test the data sets for normality by plotting the data in a QQ-plot.
A QQ-plot, which stands for quantile-quantile plot, is a probability plot
that compares the distribution of two data sets by plotting their quantiles
against each other. If they are normally distributed the quantiles will lie in
a 45 degree line.
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Chapter 6

Implementation

In this chapter, we describe some of the code that is used. This includes
for the app (Section 6.1) and the scripts that were created for preprocessing
the data, classification, and signal quality calculations (Section 6.2). Some
of the code is included in this chapter while the full source code is linked
in Appendix A.

6.1 Real Time App

The full description of the app’s implementation can be found in
Halvorsen’s thesis [26]. Some changes were made to the original imple-
mentation to accommodate the updates in the Companion SDK. These
were however not extensive.

6.1.1 System Environment

The app is built in Android Studio with with the implementation written
in Java and XML for design. The app was tested on an Android 10 phone,
which was also the phone used during recording. The target SDK version
was 31 while the minimum SDK was 21.

Software Version

Android Studio Bumblebee | 2021.1.1

Gradle 7.2

Java 1.8

Companion SDK 3.0.2

Android phone 10

Table 6.1: Relevant software for the app

6.1.2 Code Updates

Halvorsen’s real time app was last updated early 2020. Since then, the
Companion SDK has undergone some updates. Because of this the app
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does not run in its current state. After inspection of the code and updates
in the Companion SDK, the change that needed to be made was removing
the RealTimeDataManager variable and adding the listener directly in the
DeviceManager.

1 private boolean pulseOxListener(String device) {
2 DeviceManager devMgr = DeviceManager.getDeviceManager();
3 Device d = devMgr.getDevice(device);
4 listener.setStartTime(DateTime.now());
5
6 storage.putWriters();
7 storage.insertFirstRow();
8 listener.setStorage(storage);
9

10 d.samplingFrequency(TWENTY_FIVE_HERTZ);
11 //RealTimeDataManager rtMgr = devMgr.getRealTimeDataManager

(); replaced with DeviceManager
12 EnumSet enumSet = EnumSet.noneOf(RealTimeDataType.class);
13 enumSet.add(SPO2);
14 enumSet.add(HEART_RATE);
15 enumSet.add(HEART_RATE_VARIABILITY);
16 enumSet.add(RESPIRATION);
17 enumSet.add(ACCELEROMETER);
18 devMgr.addRealTimeDataListener(listener, enumSet); //

replaced with DeviceManager
19 devMgr.enableRealTimeData(device, enumSet); // replaced with

DeviceManager
20 Log.i("Listener", "Enabled");
21 return true;
22 }

Listing 6.1: Changes made in app

The code in Listing 6.1 is located in the CollectActivity with the
purpose of writing recorded data to file and enable listening to real time
data from the sensors. Other than this, the User Interface (UI) was updated
by enlarging the font size.

6.2 The scripts

The purpose of these scripts is to make analysing a large quantity of data
more efficient. The section start off with an overview of the software used
in the scripts before describing the different scripts.

6.2.1 System Environment

The scripts were implemented in Python as there are many available
libraries that have the functions that are needed. We use the Pandas
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library for all of the CSV-file and data handling, including resampling,
interpolation, and dropping of columns. With NumPy we have access
to arithmetic functions specialized for matrices. Sci-kit Learn and SciPy
are scientific libraries extensively used for ML. All the ML classifiers are
implemented with Sci-kit Learn. Matplotlib, seaborn and pyCompare are used
for plotting the data into scatter plots, histograms, boxplot, Bland-Altman
plot, to name a few. Statsmodels is used for statistical tests and models.
Table 6.2 gives an overview of the most important software and libraries
and the versions used for the scripts. All the required libraries can be found
in a ’requirements.txt’-file in the source code.

Software Version

Python 3.9

Anaconda 4.10.3

Pandas 1.4.1

NumPy 1.22.2

Sci-kit Learn 1.0.2

Matplotlib 3.5.1

Seaborn 0.11.2

SciPy 1.8.0

pyCompare 1.3.2

Statsmodels 0.13.2

Table 6.2: Software used for the scripts

6.2.2 Preprocessing

The data from both Venu 2S and Nox T3 are stored as CSV-files. A file called
"preprocessing.py" is the first step for the raw data. Running the script
requires five command-line arguments, such as the following example:
python preprocessing.py 1 0 1 -3 garmin. The three first digits refer
to the id, experiment type and iteration for the recording to be processed
respectively. This is used to open the corresponding CSV-file and read it
into a pandas dataframe. The fourth and last digit is the delay and the last
argument is which device the shift of delay will be applied on. A sample
of the "preprocessing.py"-code in which only the processing of Garmin
signals is included is given in Listing 6.2.

1 # Read oximeter CSV-files and rename columns
2 garmin = pd.read_csv(f’./data/Sub00{id}/{ex}/Sub{it}{ex}{id}

_Venu_2S_log_spo2.csv’,
3 sep=",",
4 header=0,
5 usecols=[1, 2],
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6 index_col=[’Duration’],
7 parse_dates=[0],
8 date_parser=parseNow)
9 garmin = garmin.rename(columns={’Value’: ’signal garmin’})

10
11 # Resample
12 garmin = garmin.resample("1000ms").mean()
13
14 # Interpolate
15 garmin = garmin.interpolate(method=’quadratic’)
16
17 # Remove outliers and NaN’s
18 garmin = garmin.drop(garmin[garmin[’signal garmin’] > 100].

index)
19 garmin = garmin.dropna()

Listing 6.2: Data processing of Garmin raw data

After the data is downloaded into a pandas dataframe, we first rename
the columns, resample the signals to 1Hz then we interpolate. Then outliers
are removed, which in this case is SpO2 values greater than 100, and also
NaN values are removed. All these are from functions in the pandas library.
After the SpO2 signals have been synchronised they are added to a new
dataframe where any additional signals have been trimmed away in order
to equalize the lengths of the data sets. The preprocessed data is stored
as a new CSV-file consisting of the columns ’signal garmin’, ’signal nox’,
’desat’, ’movement’ and ’artefact’ in the ’processed’ directory.

Synchronization

The SpO2 signals are synchronized by finding the delay between the peaks
in the SpO2 signals. This means we assume that the peaks in the data
reflects the same breath in real time. The script for finding the delay
between two signals originally written by Løberg [40] can be seen in
Listing 6.3. It utilizes the correlate function from SciPy that returns an
array of correlation values for all possible alignments of the signals. The
findDelay(a, b)-function returns the delay between the signals a and b as
an integer.

1 def findDelay(a, b):
2 return (len(b) - 1) - np.argmax(signal.correlate(a, b))

Listing 6.3: Finding delay between data by Halvorsen

Sometimes there are no peaks in the SpO2 data. On these occasions this
form of synchronization is not optimal. For this reason we also use the
findDelay(a, b) on the signals we have from both accelerometers. The
last method is then to visually inspect the line graphs for the SpO2 signals
and shift according to what visually matches or gives better Arms.
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6.2.3 Event Classification

Before we can use the classifiers on the data sets, there is some more
preprocessing needed. As we want the data set to be as close to
representative of SA, we want there to be a minimum of two desaturation
events in the data set. This also satisfies the requirement of a minimum of
200 signal samples. We also use a function for reshaping the signals into
60 second windows with one label. The label for the 60 second window is
based on whether any of the original labels in the 60 second window was a
desaturation event (label = 1). If it was, then the signals in that window are
stored as a list with the integer 1 as label. Otherwise the label is 0.

ODI classifier

The script for detecting desaturation events was originally written by
Halvorsen [26]. A modified version can be seen in Listing 6.4. This script is
based on the ODI definition and is therefore referred to in this thesis as the
ODI classifier.

1 def desaturation(data):
2 full = np.mean(data)
3 last = np.mean(data[len(data)-10:])
4
5 if ((full-last) >= 3):
6 return True
7 return False
8
9 def label_events(fullsignal):

10 total_desats = 0
11 ongoing = False
12 start = 0
13 events = []
14 labels = [0]*110
15
16 for i in range(len(fullsignal) - 120):
17 value = desaturation(fullsignal[i:i+120])
18 labels.append(float(value))
19 if not ongoing and value: # found start of desat event
20 start = i
21 ongoing = True
22 total_desats += 1
23 elif ongoing and not value: # found end of desat event
24 events.append((start+110, i-start))
25 ongoing = False
26
27 #print_events(events)
28 for _ in range(10):
29 labels.append(0)
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30 return labels

Listing 6.4: Modified algorithm for counting desaturation events based on the
ODI definition

The script has two functions; a short one desaturation(data) and a
longer one label_events(fullsignal). The first function takes in a 120
second window and looks for a desaturation in this window by comparing
the mean value of the full window with the mean value of the last ten
seconds. If the difference between these two is bigger than 3%, then
the function returns True. This means a desaturation event was found,
otherwise the function returns False. The longer function does four things,
first it passes 120 second intervals to desaturation(data), it keeps track
of the number of desaturation events, the length of the desaturation events
and where they occur, and lastly, it returns a list of the labels.

The longer function takes in the one parameter f ullsignal. Fullsignal
is the SpO2 recording for a given data set. There is a for-loop that moves
one second at a time across f ullsignal. The desaturation(data) function
is called within this loop and thus given a new window every second. The
value that is returned by this function is stored in the variable value and
also appended to the list labels. If desaturation(data) returns True then
a desaturation event has been found. The event is ongoing (True) until
the function returns False. When desaturation(data) returns False, that
means it’s the end of the event and it is now possible to find new events.
The event meta data is stored as a tuple in the events list.

The original script has been slightly modified in this thesis. For
instance, the longer function used to only find desaturation events. Now, it
creates and returns a list of each labelled second.

We have created a script that loops through all the processed recordings,
labels the data sets and then calculates the metrics of accuracy, sensitivity,
specificity and κ. After the data sets, both Nox and Garmin, are labelled
by the ODI classifier, they are reshaped into 60 second windows with
one corresponding label. We only use data sets that have more than
two windows of events. The prediction made by the classifier are then
compared to that of Noxturnal by the four metrics. The results from the
metrics are stored as a CSV-file in an ’output’ directory.

ML classifiers

For the ML classifiers we need to balance the data before training and
testing the data sets. This is because there is likely to be significantly more
windows without events than with events. With an imbalanced data set we
face the problem of the model always predicting the larger class, leading to
inaccurately high accuracy.

1 def balance(signals, labels):
2 numApneic = len([l for l in labels if l != 0])
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3 numNormal = len([l for l in labels if l == 0])
4 normalIndices = np.where(labels == 0)[0]
5 apneicIndices = np.where(labels != 0)[0]
6 if numApneic <= numNormal:
7 indexes = np.random.permutation(len(normalIndices))
8 normalIndicesShuffled = normalIndices[indexes]
9 normalIndices = normalIndicesShuffled[:numApneic]

10 else:
11 indexes = np.random.permutation(len(apneicIndices))
12 apneicIndicesShuffled = apneicIndices[indexes]
13 apneicIndices = apneicIndicesShuffled[:numNormal]
14
15 dataToInclude = np.sort(np.concatenate([normalIndices,

apneicIndices]))
16 signals = signals[dataToInclude]
17 labels = labels[dataToInclude]
18
19 numApneic = len([l for l in labels if l != 0])
20 numNormal = len([l for l in labels if l == 0])
21
22 return signals, labels, numApneic, numNormal, dataToInclude

Listing 6.5: Balancing data sets

The function balance(signals, labels) in Listing 6.5 takes in the
signals and labels and counts the number of labels with desaturation and
without desaturation. It balances the data for each class by random sub-
sampling of the majority class. In more detail this means that the whole of
the minority class will be included, while we choose at random the same
number of events from the majority class. The function then returns the
balanced signals and labels, the number of apneic and normal events, and
a list of the indices included in the balanced data set.

The process for ML classifiers is similar to that of the ODI classifier
although slightly different because we train a model so we can make
predictions on a data set. We use three basic ML classifiers (KNN, RF, SVM)
which are all implemented with the Sci-kit Learn library. The model is
trained on all the data sets, excluding test set, after they have been reshaped
into 60 second windows and balanced. When it comes to classifying the test
set, we use the fit function the classifiers have. The predicted label is then
compared to the actual label and we calculate the four metrics κ, accuracy,
sensitivity and specificity. Lastly, we store the results in a CSV-file.

All three classifiers in wrapper functions can be seen in Listing 6.6.
There is no hyperparameter tuning, instead the choice of hyperparameter
for the models is based on previous results of ML classification on SA data
[35, 36]. For the KNN classifier we use k = 10 for the hyperparameter and
the weights parameter is set to distance. SVM has the sci-kit learn standard
rbf as kernel and we use 200 trees in the RF classifier.
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1 from sklearn.neighbors import KNeighborsClassifier
2 from sklearn import svm
3 from sklearn.ensemble import RandomForestClassifier
4
5 def createKNearestNeighbours(hyperparams):
6 return KNeighborsClassifier(n_neighbors=hyperparams, weights

=’distance’)
7
8 def createSupportVectorMachine():
9 return svm.SVC()

10
11 def createRandomForest(hyperparams):
12 return RandomForestClassifier(n_estimators=hyperparams)

Listing 6.6: ML classifiers

Cross-Validation (CV)

We split the data into train and test sets with two different methods,
which are with a holdout test set and with a K-fold CV. For the holdout
test split we test each individual subject recording on the rest of the
data set, depending on whether the test recording is a lab or overnight
recording. The script for hold-out testing is located in the file called
"holdout_testing.py".

For K-Fold CV we use a k = 10 in the KFold function, where one
fold is the test set and the remaining nine are used for training. With
CV the holdout method is repeated k times with a different subset of
the ten as the test set. We test various subsets of the data with CV,
like the different experiment sets, all the lab recordings, and also all the
recorded data. The script for 10-fold CV testing is located in the file called
"crossval_testing.py".

6.2.4 Sensor Quality Script

For easy calculation of the metrics, we have created a script that calculates
all the metrics for each recording. The script iterates through all the
recording files after they have been processed. First, the file is opened and
read into a dataframe. Accuracy, MAE, precision, mean bias, upper and
lower LoA are calculated for the data set. In addition to these metrics, we
also add other columns. These are percentage of movement, percentage of
desaturation, skin type, experiment type and total length of the data set. We
add percentage of movement and desaturation for when we test if there is a
correlation between these variables and accuracy. The skin and experiment
type are for easy grouping of the recordings.
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1 # iterate over files in processed directory
2 for file in os.scandir(directory):
3 if file.is_file():
4 # read processed file to df
5 df = pd.read_csv(file.path, sep=’,’, header=0, index_col

=[0])
6 ex = int(file.name[3:4])
7 sub = int(file.name[4:-4])
8 length = df.shape[0]
9 skin = ’’

10 desat = round((df[’desat’].sum() / length) * 100, 3)
11 movement = round((df[’movement’].sum() / length) * 100,

3)
12
13 if file.name[:-4] not in remove:
14 all_df = pd.concat([all_df, df], axis=0)
15 if ex == 3:
16 overnight_df = pd.concat([overnight_df, df], axis

=0)
17 else:
18 script_df = pd.concat([script_df, df], axis=0)
19
20 if sub in skin_type[’dark’]:
21 skin = ’dark’
22 if sub in skin_type[’medium’]:
23 skin = ’medium’
24 if sub in skin_type[’light’]:
25 skin = ’light’
26
27 # create a list of file metrics
28 accuracy = arms(df[’signal garmin’], df[’signal nox’])
29 ma_error = mae(df[’signal garmin’], df[’signal nox’])
30 precision, bias, upper_loa, lower_loa =

bland_altman_analysis(
31 df[[’signal garmin’, ’signal nox’]])
32 file_metrics = [file.name[:-4], accuracy, ma_error,
33 bias, precision, upper_loa, lower_loa,

desat, movement, skin, experiment_type
[ex], length]

34
35 # append list to a list of metrics
36 metrics.append(file_metrics)

Listing 6.7: Excerpt of script for calculating metrics for all data sets

The code for how the file-iterating is done can be found in Listing 6.7.
There is a total of 12 columns where the first one, recording name or ID, is
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the index column. When the metrics have been calculated for all the data
sets, the list of all the metrics is first converted into a dataframe for it then
to be stored as a CSV-file in a directory named ’output’.

64



Part III

Evaluation
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Chapter 7

Results

In this chapter, we will present the results of the tests that were performed.
We begin in Section 7.1 with an introduction to the subjects that particip-
ated and their demographics. More detailed information in regards to SpO2
data collection is presented in Section 7.4. Before this, we present the res-
ults for the tests related to the app, i.e. usability testing in Section 7.2 and
the apps ability to detect connection loss in Section 7.3. This is followed
by an evaluation on the classification of desaturation events for Nox and
Garmin signals in Section 7.5. Lastly we present the results for Garmin’s
pulse oximeter’s signal quality in Section 7.6.

7.1 Subjects

A total of 15 subjects were recruited for this round of experiments. Of the
15 subjects, three of them performed usability testing of the app as well
as sensor testing. The demographics of the subjects are six of them were
female and the remaining nine were male. In regards to skin tone four
were dark, four medium and five light. More information in regards to the
experiments they performed and data collected can be found in Section 7.4.

7.2 Usability testing

With usability testing of the app we hope to uncover weaknesses that can
improve the quality of the app. This section will present the results of the
conducted tests. It will start off with a summary before going more in-
depth about participants, how the test went, the two tasks and subsequent
recommendations from the participants in findings. Lastly, some of the
suggested improvements will be implemented in the app.

7.2.1 Summary

The goal of the usability test was to see how easy or difficult the app is to
use for a first-time user of the intended audience. Additionally, we wanted
to uncover any underlying bugs that were missed, or changes that could
improve usability. A total of three participants took part in the test. The
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sessions lasted between 10 to 15 minutes where the participants where first
presented with the purpose and goal of the usability test. The sessions were
audio recorded and the participants were informed about this beforehand
along with their right to end the session whenever they wanted. They
had to complete two tasks in addition to answering some introductory
questions and questions around their experience and thoughts about the
app. A more in depth guide can be found in Appendix C. All participants
successfully completed both tasks and the overall impression of the app
was that it was simple and easy to use. There were however some
shortcomings and bugs that negatively impacted their performance.

7.2.2 Findings

Participant Age Experience

1 20s Never used a smartwatch before, but
uses phone and apps regularly

2 20s Currently has an Apple watch, previ-
ously had Garmin and Fitbit. Uses
phone regularly and has apps con-
nected to Apple watch

3 40s Never used a smartwatch before, not
that interested in apps. Uses phone
mainly for calling

Table 7.1: Summary of usability test participants

The four screens in Figure 7.1 is how the app looked for the usability
test. The size of the device name to be connected was enlarged since
previous test. All the participants were first-time users of the app.
A summary of the participants previous experience with smartwatches
and apps can be seen in Table 7.1. Participant 1 is not familiar with
smartwatches but is proficient with apps, Participant 2 is very familiar
with smartwatches and apps connected to them while Participant 3 is
not so proficient with apps or smartwatches. Participant 3 also has bad
eyesight and doesn’t always wear glasses while using the phone. All these
participants successfully completed both tasks with varying degrees of
support.

First task

For the first task the user had to pair the ’Cesar smartwatches’ app with
the Venu 2S smartwatch. All subjects made the same error on this task
which was clicking on the ’Show paired devices’ as can be seen on image b
in Figure 7.1. They did not immediately understand that the device name
was clickable and had to navigate back after voicing some confusion. For
Participant 2 and 3 there was the additional bug that the device name did
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(a) main screen (b) pairing screen (c) start recording (d) recording

Figure 7.1: Four of the screens in the app before usability test

not appear at first. The test manager had to exit and reenter the app for the
name to appear.

The task is completed when the device name is visible on the ’Show
paired devices’ screen. It takes a few seconds from the device name is
clicked until the pairing is completed. During this time the participants
clicked the ’Show paired devices’ expecting something to happen. This
was a source of confusion for all participants as there was nothing visually
confirming that pairing was happening or had finished other than the name
almost randomly appearing on the paired screen. Because of this they all
had to get verbal confirmation of the task being completed.

Second task

The second task was to start and end a recording on the app. The app is
set back to the main screen and the participant would navigate from there.
Since they had already developed some familiarity with the first part of the
app, accomplishing this task was fairly easy for all the participants. The
part that was different from the first task was choosing the paired device,
press the ’Start recording’ button and then the ’End recording’ button to
complete the task. There was no confusion around this part of the task.

Final impressions and recommendations

The general impression of the app from the subjects is that the app was easy
to use. While Participant 1 found the simplicity a good thing, Participant 2
thought that it made the app boring and less professional. They all voiced
the same sentiment that sometimes it was not clear what was supposed to
be done, however the app was so simple that a few random guesses would
complete the task. Things that were mentioned that could be improved are
listed below:
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Metric Participant 1 Participant 2 Participant 3

Errors 1: Mistaken click
of button

1: Mistaken click
of button.
2: Crashing after
device name click

1: Mistaken click
of button.
2: Crashing after
device name click

Satisfaction Did not find it
visually pleasing

Liked the simple
design, straight-
forward and easy

Nothing special

Overall Simple, easy to
learn, confusing at
times

Has the function-
ality that is re-
quired

Simple and con-
fusing at times

Table 7.2: Summary of usability results

• make it clearer that the listed device name is clickable,

• visualise the watch pairing/being paired,

• should not be possible to click the ’Show paired devices’ button when
there are no device paired,

• fix the app from crashing, and

• upgrade the design.

All in all the app should be more descriptive yet still keep the simplistic
design.

7.2.3 Implemented Improvements

Based on the feedback from the test participants the most useful improve-
ment was adding meaningful instructions to the app without causing too
much noise. A text field has been placed over the devices list on both
the pairing screen and paired devices screen instructing the user to pick a
device. A progress bar was added to visualise the pairing. When the pair-
ing is finished, a toast message will appear letting the user know if it was
successful or not. Furthermore, clicking the "Show paired devices" button
no longer leads to the next screen if no devices have been paired. The click
will instead trigger a toast message informing the user to pair a device be-
fore they can move forward. The newly implemented changes can be seen
in Figure 7.2.
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(a) pairing screen (b) no paired toast (c) progress bar (d) successful

Figure 7.2: Changes made to app after usability test

7.3 Connection Loss Detection

The purpose of this experiment was to see if the results recorded by
Halvorsen could be reproduced. A total of four experiments were done
for connection loss detection, two for short duration, one for long duration
and one testing close proximity with barrier. The length of short duration
(1 min) and long duration (1 hr) is based on the times chosen by Halvorsen
[26]. To ensure reproducibility and comparison with his results, we also use
these times. For the experiment with a short duration we also tested the
limits of the communication range. In order to measure the disconnection
time we examine the ’Duration’ column of the accelerometer data set as it
has the highest sample rate of the sensors. If there has been a disconnect,
there will be ’jump’ in the data. By this we mean a gap in time between two
timestamps.

7.3.1 Short Duration

For the short duration two different distances were tested. A shorter
distance of 13 meters which is outside the communication range but
not by far. This was included to see how sensitive the stated range is.
Additionally, the watch and the phone were in two separate rooms with
closed doors in between. For this shorter distance there was no disconnect.

The second distance was further, at approximately 20 meters, guaran-
teeing connection loss. With the longer distance there was a jump in dura-
tion. Accelerometer data was not registered between 26s and 109s during
the recording as can be seen in Table 7.3. This is a total disconnect of 83
seconds which is longer than the intended 60 seconds. The results differ
from the previously conducted test where the gap was shorter than the in-
tended disconnect period.
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TimeStamp Duration

1644415994201 26

1644415994201 26

1644416077442 109

1644416077442 109

Table 7.3: Connection loss for short duration

7.3.2 Long Duration

For the long duration the disconnected period lasted for one hour. The
experiment was conducted the same way where the recording app was left
somewhere while the smartwatch was carried outside of communication
range. The disconnection was registered between 129 and 3778 as seen
in Table 7.4. This is approximately 60 minutes which means that there is
no stored data between when the connection is lost and found again. The
results also here differ from previous tests. The internal buffer or delay
tolerance that was observed in the previous test is no longer present.

TimeStamp Duration

1646751652210 129

1646751652210 129

1646755301822 3778

1646755301822 3778

Table 7.4: Connection loss for long duration

7.3.3 Close Proximity With Barrier

For this experiment the recording was started then the phone was placed
1-2 meters away. The person wearing the watch slept underneath covers
with their body covering the wrist with the watch. A timer was set for five
minutes. There was no disconnection for the accelerometer data meaning
there was no disconnection between devices.

7.4 Data Collection

The watch could be worn three different ways for the lab tests; the
comfortable way for the user, tight and with the watch face on the palm
side of the wrist. Some performed all three while others only did one or
two, and some performed the same twice. This resulted in a total of 34
recordings with the breathing script, 16 for normal wear, ten for tight wear
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and eight for the last. The total duration of these experiments are 7 hrs,
23 min. We additionally had some overnight monitoring. A total of 12
recordings were performed lasting a total of 73 hrs, 43 min. The percentage
of desaturation events ranged from 0-27.65% (mean: 8.67±7.7) for the
lab test and from 0.1-14.36% (mean: 3.71±4.6) for overnight monitoring.
A summary of which experiment was performed by each subject can be
viewed in Table 7.5.

Normal Tight Back Overnight

Sub001 2 2 2 2

Sub002 1 1 1 2

Sub003 1 1 1 1

Sub004 1 1 1 0

Sub005 1* 1 0 1

Sub006 1 0 0 2

Sub007 1 1 1 0

Sub008 1 0 0 0

Sub009 1 1 0 1

Sub0010 1* 0 0 0

Sub0011 1 0 0 0

Sub0012 1 0 0 1

Sub0013 1 0 0 0

Sub0014 1 1 1 1*

Sub0015 1 1 1 1

Total 16 10 8 12

Table 7.5: Subjects and performed experiments. *Not included in evaluation

Each subject and recording combination is classified with the prefix
’R-’ followed by some digits after they have been preprocessed and
synchronized. The first digit denotes which recording it is as some subjects
performed more than one recording. The second digit is for the type of
experiment (normal watch wear = 0, tight wear = 1, back of the wrist = 2,
overnight = 3) while the last digit(s) represents the id of the subject.

7.4.1 Errors

For some of the data collection not everything went according to plan. We
present them here as they might have an effect on the results.

For some of the recordings the Nox oximeter and Venu watch were
worn on different arms due to some confusion. This pertains to these
recordings: first iterations for Sub001, Sub002 and Sub006, all recordings
from Sub004, Sub005, Sub007, Sub008 and Sub009. The reason for this
being an issue is that for synchronization we need to establish that the
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sensors pick up the same data. Upon further examination of the oximeter
data we see no major difference compared to the experiments where they
were worn on the same arm. No data sets were therefore excluded based
on this point.

Some subjects did not wear the nasal cannula. Since the signal we are
most interested in is oxygen saturation which is recorded by the Nonin
wrist oximeter, we assumed this would not be a problem. Additionally,
we do not know how Noxturnal identifies desaturation events and which
data it uses. Looking at the data afterwards however, we see that no events
were registered for these. The affected data sets include R-1010, R-1011
and R-1012. There might have been other reasons for there not being any
desaturation events such as individual differences, as there were other
subjects who did wear the cannula without there being any desaturation
events.

As the overnight monitoring was unattended, we relied on the subjects
self-reporting of how the recording went. For the most part all the sessions
went well, albeit some of them reported not sleeping as well as they
normally would. On other occasions some reported more extensive issues.
Subjects 1, 5 and 9 reported taking some of the equipment off during the
night. For Subject 1 the finger probe was taken off for about five minutes,
Subject 5 switched the finger the probe was on because of discomfort and
Subject 9 had to rearrange the nasal cannula. The most extensive issue was
Subject 14 not recording the signals from the smartwatch. There was some
confusion around which app to use on the phone. We therefore have no
corresponding recording for the watch from this session, only from Nox.

7.5 Desaturation Event Classification

This section presents the classification performance of four different
classifiers on SpO2 signals from Garmin and Nox. We start by first
describing the data that was used for classification and how they varied
for the four different experiment types. Then, we present the classifiers
performance for holdout testing and 10-fold CV based on the metrics
accuracy, specificity, sensitivity and κ. We visualize the performance with
boxplots and compare the spread in the data with the mean. After this,
we compare the performance of the classifiers and how it varied for the
two devices. We then use statistical tests to determine if there are any
differences between classifiers or devices. Lastly, we summarize the results
and discuss how they contribute to answering our problem statement.

7.5.1 Classification Data

The goal of these experiments is to compare the performance of signal
counting, referred to as the ODI classifier, and three ML classifiers (KNN,
SVM, RF). We compare how they perform on signals from Nox and Garmin,
and use the Noxturnal software’s automatic scoring as the actual labels.

We use all recorded data that had two or more windows of desaturation
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Data sets Apneic Total Balanced

Normal 8 41 (36.3%) 113 74

Tight 8 30 (27.0%) 111 60

Back 5 23 (34.3%) 67 46

Overnight 11 338 (7.7%) 4417 676

Total 32 432 (9.2%) 4708 856

Table 7.6: The data sets and the number of apneic events used in classification

events for training and testing the model. The training set consists of all
these data sets while the test set is each individual data set. For each
experiment the number of data sets that met this requirement were eight
for normal, eight for tight, five for back and eleven for overnight, which is
not much data. The number of windows and events for each experiment
type can be seen in Table 7.6. The data sets are relatively imbalanced,
which is the result of data being collected from subjects without SA and the
subjects not being able to simulate enough events. For the ML classifiers the
events are balanced via random sub-sampling of the majority class before
classification.

7.5.2 Holdout Test

Table 7.7 presents the means of all the metrics for each classifier and
experiment combination for both the devices. The performance for each
individual data set can be found in Appendix D. For the ODI classifier
there is no prediction being made, so the values calculated are definite. In
contrast, the ML classifiers use each data set as a holdout test set while
the rest of the data (lab recordings for lab test set, overnight recordings
for overnight test set) for training the model. The predictions made are
therefore based on the data the model is trained on.

The initial observation from Table 7.7 is that the classifiers perform
on average better on Nox data compared to Garmin data on all metrics.
This would be expected based on the fact of better data quality from a
medical grade sensor where noise artifacts are removed, and potential
preprocessing in Noxturnal. The same was not the case for the tight
and back experiment for KNN and tight experiment for ODI, where the
classifiers perform better on Garmin data based on κ and accuracy.

From the means we see that RF is the best performing classifier overall
for Nox data with mean κ at 42.0%, while KNN is the best in regards to
Garmin at 10.9%. A κ between 0.4 and 0.6 means the agreement is weak,
while below 0.2 indicates no agreement. KNN has minimal agreement on
Nox data with mean κ being 30%. The mean across experiments with the
ODI classifier for Nox signals is 7.3% which means there is no agreement.
SVM ranges from 17% for tight (none) to 47% κ overnight (weak). As
KNN has the best κ on Garmin data of all the classifiers, we see there is
no agreement between prediction and actual labels.
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Holdout test set

κ Accuracy Sensitivity Specificity

Classifier Data N G N G N G N G

ODI

Normal 0.03 -0.021 0.64 0.63 0.025 0.083 1.0 0.91

Tight 0.094 0.15 0.75 0.77 0.083 0.12 1.0 1.0

Back 0.14 -0.0058 0.69 0.65 0.11 0.04 1.0 0.95

Night 0.028 0.028 0.91 0.86 0.02 0.12 1.0 0.94

KNN

Normal 0.32 -0.033 0.66 0.48 0.38 0.49 0.94 0.48

Tight 0.17 0.19 0.59 0.6 0.31 0.64 0.86 0.55

Back 0.24 0.32 0.62 0.66 0.28 0.5 0.96 0.81

Night 0.47 -0.04 0.73 0.48 0.55 0.5 0.92 0.46

SVM

Normal 0.45 -0.017 0.72 0.49 0.64 0.53 0.8 0.45

Tight 0.27 0.12 0.64 0.56 0.68 0.63 0.59 0.49

Back 0.18 -0.034 0.59 0.48 0.51 0.47 0.67 0.5

Night 0.54 0.05 0.77 0.53 0.76 0.39 0.78 0.66

RF

Normal 0.25 -0.038 0.63 0.48 0.56 0.42 0.69 0.54

Tight 0.46 0.19 0.73 0.59 0.71 0.66 0.75 0.53

Back 0.46 -0.055 0.73 0.47 0.54 0.4 0.92 0.54

Night 0.51 0.11 0.76 0.55 0.72 0.58 0.79 0.53

Table 7.7: Mean of metrics for all classifiers for each experiment and device
combination. N = Nox, G = Garmin

ODI has the best mean accuracy for both Nox and Garmin data (74.8%
for Nox, 72.8% for Garmin), followed by RF on Nox data and KNN on
Garmin data. The overall worst accuracy is 47% by RF, back experiment
on Garmin data, while the best is 91% by ODI, overnight on Nox data.
The sensitivity is below 0.1 for both devices for ODI while the specificity
is above 0.9. Sensitivity tells us about how well the classifier identifies
TP, in our case that is how well it detects desaturation events. On the
other hand, specificity tells us how well it identifies TN, which is normal
saturation. With sensitivity this low and specificity that high it means
ODI accurately classifies TN while not detecting any actual events. All
classifiers display the same trend with better specificity than sensitivity,
though the discrepancy is not as big as with ODI. This trend might be due to
the lack of desaturation events in the data, or the desaturation percentages
not being that low compared to baseline.

In the following we will describe the performance of each classifier
individually. The four metrics are plotted in boxplots to visualize the
distribution of the metrics in each experiment. The boxplots are given
in Figure 7.3 for ODI classifier, Figure 7.4 for KNN, Figure 7.5 for SVM,
and Figure 7.6 for RF. For each plot we see the metric on the y-axis and
device (Garmin or Nox) on the x-axis. There is a separate boxplot for each
experiment type for both devices. It should be noted that the sample sizes
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were not that large for each experiment type.

(a) kappa (b) accuracy

(c) sensitivity (d) specificity

Figure 7.3: Boxplots of metrics for ODI classifier

(a) kappa (b) accuracy

(c) sensitivity (d) specificity

Figure 7.4: Boxplots of metrics for KNN classifier
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(a) kappa (b) accuracy

(c) sensitivity (d) specificity

Figure 7.5: Boxplots of metrics for SVM classifier

(a) kappa (b) accuracy

(c) sensitivity (d) specificity

Figure 7.6: Boxplots of metrics for RF classifier

ODI

The accuracy, specificity, sensitivity and κ metrics visualised as boxplots for
the ODI classifier is given in Figure 7.3. For each plot we see the metric on
the y-axis and device (Garmin or Nox) on the x-axis. The κ for both devices
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has the median equal to zero for all experiment variants. There is some
spread for normal, tight and overnight variant for Garmin, and the back
variant for Nox. Only the normal and overnight experiments for Garmin
spread into negative values. The accuracy is best for overnight monitoring
for both devices, while the worst is for normal experiment which also had
the largest spread (0.4 - 0.8). The sensitivity is low for all experiments
for both devices, with the experiments that had boxes and whiskers being
positively skewed (right-skew). On the other end, specificity is high for all
experiments for both devices.

Both devices were similar on the median values for all the metrics
though the results were not particularly good. The median κ was at
approximately 0.0 for all experiment types. The biggest spread was tight
experiment however it was only to 0.4. Comparing the boxplots with the
means given is the same.

ML Classifiers

A first observation for all the ML classifiers is that κ and accuracy have
the exact same spread for the corresponding experiment and devices. The
median is slightly better for Nox data than Garmin on these two metrics for
SVM and RF.

A closer look at the boxplots for KNN shows a smaller range for κ
and accuracy on Nox data, with overnight having the smallest range and
therefore best performance. The largest spread for κ and accuracy was on
the normal experiment ranging from approximately 0.0 to 0.75 for κ and
from approximately 0.5 to 0.9 for accuracy. For sensitivity, both Garmin
and Nox has large ranges in the boxplots, the worst being normal for Nox
ranging from 0.0 to 1.0 with a slight positive skew (right skew). Specificity
for Nox has a smaller range for back, normal and tight (0.8 - 1.0), though
there is some outliers. On Garmin data the range is larger, here also a data
set, tight, ranging from 0.0 to 1.0.

For SVM, the best performing experiment overall for both devices and
on accuracy and κ is overnight. The highest κ scored is approximately
0.6 compared to 1.0 for normal. However, the range between smallest to
highest value is better for overnight than normal, which makes it more
consistent. Specificity for SVM ranges from 0 to 1 for all experiments with
the exception of overnight for both devices and normal for Nox. This is
also the case for back experiment on Garmin and tight experiment for Nox
in regards to sensitivity. Such a big spread could mean that the classifier
performs poorly because of the quality of the data.

RF has the best mean based on κ for Nox data, though the smallest value
is low as 0.0 (normal and tight). The range is also smaller for Nox data than
Garmin on all metrics. The largest range at 0.8 from smallest to largest
value is for sensitivity on Garmin data (back and normal), and specificity
on Garmin data (normal).
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7.5.3 10-Fold Cross-Validation

In addition to the holdout test, we perform a 10-fold CV for subsets of the
data. This is a preferred method in ML as it gives the model opportunity to
train and test on different splits of the data. With this method we do not test
the individual recordings, which means there might be data from different
recordings in the test set. The disadvantage of this is that it no longer
reflects the real world setting of individual subject diagnosis. We still
include this as it makes it comparable with related work. We perform CV
on the whole data set in addition to the subsets of the different experiments
performed (normal, tight, back, overnight), and all the lab recordings. The
results of 10-fold CV for Garmin data are given in Table 7.8, while the Nox
results are in Table 7.9.

10-fold CV - Garmin

Classifier Data κ Accuracy Sensitivity Specificity

KNN

Normal -0.16(±0.2) 0.45(±0.1) 0.36(±0.3) 0.5(±0.3)

Tight -0.03(±0.4) 0.48(±0.2) 0.4(±0.3) 0.55(±0.3)

Back 0.02(±0.4) 0.5(±0.2) 0.68(±0.4) 0.37(±0.3)

Night 0.03(±0.1) 0.51(±0.1) 0.42(±0.1) 0.61(±0.1)

Lab 0.12(±0.2) 0.56(±0.1) 0.57(±0.2) 0.55(±0.2)

All 0.06(±0.1) 0.53(±0.1) 0.5(±0.1) 0.56(±0.1)

SVM

Normal -0.24(±0.3) 0.38(±0.1) 0.33(±0.4) 0.43(±0.4)

Tight 0.02(±0.3) 0.53(±0.1) 0.58(±0.4) 0.43(±0.3)

Back -0.12(±0.4) 0.36(±0.2) 0.45(±0.4) 0.42(±0.4)

Night 0.0(±0.2) 0.49(±0.1) 0.42(±0.2) 0.58(±0.2)

Lab 0.13(±0.3) 0.56(±0.1) 0.61(±0.2) 0.52(±0.2)

All 0.1(±0.1) 0.55(±0.1) 0.52(±0.1) 0.58(±0.1)

RF

Normal -0.24(±0.2) 0.41(±0.1) 0.44(±0.3) 0.3(±0.3)

Tight -0.15(±0.4) 0.43(±0.2) 0.28(±0.3) 0.58(±0.3)

Back 0.02(±0.3) 0.42(±0.3) NaN NaN

Night 0.1(±0.1) 0.54(±0.0) 0.55(±0.1) 0.55(±0.1)

Lab 0.04(±0.1) 0.52(±0.1) 0.5(±0.2) 0.54(±0.2)

All 0.15(±0.1) 0.58(±0.1) 0.54(±0.1) 0.61(±0.1)

Table 7.8: Mean and SD of metrics for all classifiers for different subsets of data

On Garmin data, none of the classifiers got a κ greater than 0.2, the
best being RF for the whole data set at 0.15(±0.1). The accuracy ranges
from 0.36(±0.2) (SVM back) at the worst, to 0.58(±0.1) (RF all) at best. The
results of the CV is similar to the holdout for Garmin data.
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10-fold CV - Nox

Classifier Data κ Accuracy Sensitivity Specificity

KNN

Normal 0.21(±0.2) 0.59(±0.2) 0.29(±0.3) 0.92(±0.2)

Tight 0.0(±0.3) 0.47(±0.2) 0.17(±0.2) 0.81(±0.3)

Back NaN 0.57(±0.2) NaN 0.83(±0.3)

Night 0.49(±0.1) 0.74(±0.1) 0.56(±0.1) 0.94(±0.0)

Lab 0.23(±0.2) 0.62(±0.1) 0.31(±0.2) 0.92(±0.1)

All 0.42(±0.1) 0.71(±0.0) 0.5(±0.1) 0.92(±0.1)

SVM

Normal 0.2(±0.3) 0.55(±0.2) 0.72(±0.3) 0.42(±0.4)

Tight 0.21(±0.3) 0.57(±0.2) 0.46(±0.4) 0.76(±0.4)

Back 0.27(±0.4) 0.6(±0.2) 0.62(±0.4) 0.68(±0.4)

Night 0.55(±0.1) 0.78(±0.1) 0.68(±0.1) 0.88(±0.1)

Lab 0.33(±0.2) 0.67(±0.1) 0.6(±0.2) 0.74(±0.2)

All 0.51(±0.1) 0.76(±0.0) 0.63(±0.1) 0.88(±0.1)

RF

Normal -0.08(±0.2) 0.49(±0.1) 0.37(±0.2) 0.53(±0.3)

Tight -0.17(±0.4) 0.42(±0.2) 0.35(±0.3) 0.46(±0.4)

Back 0.15(±0.3) 0.59(±0.1) 0.49(±0.3) 0.69(±0.4)

Night 0.57(±0.1) 0.79(±0.1) 0.77(±0.1) 0.82(±0.1)

Lab 0.35(±0.2) 0.68(±0.1) 0.58(±0.2) 0.78(±0.2)

All 0.52(±0.1) 0.76(±0.1) 0.74(±0.1) 0.78(±0.1)

Table 7.9: Mean and SD of metrics for all classifiers for different subsets of data

The classifiers performance is better on Nox data, the same as with the
holdout tests. Additionally, we see that κ and accuracy is better for the
larger data sets (overnight, all of lab, all the data) with the overnight data
being the best overall. The best overall results for all metrics was by RF
on overnight data. At the same time, RF also had one of the worst results
which was for tight (κ = -0.17(±0.4)).

7.5.4 Comparing Classifiers

The best performing classifier is RF based on the mean of the metrics
for holdout tests. More specifically, RF performed the best on Garmin
data while KNN performed the best on Nox data. We will now compare
the performance between the classifiers to see if there is any significant
difference in performance. Upon further look at the distribution within
each experiment type we see that many of the metrics have a large spread.
Some of them range the full spectrum between 0 and 1 (-1 and 1 for κ). This
is most likely due to the small sample sizes.

As the ODI classifier is an outdated classification method and did not
even get a κ larger than 0.2 on Nox data, we will not include this classifier
in the comparisons. Furthermore, because of the small size of samples for
each experiment type, we will look at each classifier with the whole sample.
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Based on the boxplots there seem to not be a significant difference between
the experiment types.

We first perform Shapiro-Wilk tests to assess normality of the metrics
for the holdout tests. Based on the p-values being significant (p < 0.05) for
some of the metrics, we conclude that they are not normally distributed.
For simplicity we use Wilcoxon rank sum test instead of t-test for all
metrics. None of the classifiers differed significantly (p > 0.05) for the three
metrics κ, accuracy or specificity. SVM and RF is significantly better than
KNN at p-value = 0.013 and p-value = 0.0029 respectively.

7.5.5 Comparing Devices

From the boxplots and means of the metrics we see that the classifiers
perform better on Nox data compared to Garmin. We investigate this
further by performing Wilcoxon rank sum test between the devices for
each classifier, also excluding ODI. κ, accuracy and specificity significantly
performed better on data from Nox than Garmin (p < 0.05) for the KNN
classifier while sensitivity got p = 0.44. The same was also the case for RF
though the sensitivity got p = 0.13. For the SVM classifier κ and accuracy
were significant (p < 0.05) while sensitivity got p = 0.051 and specificity
got p = 0.29. In regards to κ and accuracy for all three classifiers being
significant we can conclude that the performance on Nox data and Garmin
data are different.

7.5.6 Comparing With Related Work

There are two previous works which are directly comparable to this by
Kristiansen et al. [35, 36]. Both study the use of ML classifiers for
apnea detection based on various signals, oxygen saturation being of most
relevance here. Similarly to this, they also use 60-second periods of signals
for labelling. It should be noted that the databases used in these studies are
far larger than ours at 856 balanced periods and 4708 unbalanced.

In [35], artificial NN, SVM, decision tree, KNN, and RF were used for
classification on data from two separate databases (Apnea-ECG with 3947
minutes, MIT-BIH with 76 to 3307 minutes). The accuracy was more than
90% for all classifiers with different signal combinations for the Apnea-ECG
data, while the accuracy for the MIT-BIH data was in the range of 60-70%
due to poorer data quality in the form of noisy signals. The latter is similar
to our results on Nox data. In [36], 27 different classifiers were used on data
from the A3 study (228,018 balanced periods). SVM was the worst classifier
on oxygen saturation signals with κ of 0.31 (accuracy = 0.66), while the best
classifier was GRUS with κ of 0.71 (accuracy = 0.85).

7.5.7 Summary

The goal of the classification evaluation was to see if ML classifiers
are better at labelling desaturation events than signal counting. We
additionally want to see how good the classifiers are at classifying events
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in SpO2 signals. Furthermore, we wanted to investigate if SpO2 signals
from Garmin are as good as Nox in regards to event classification. We
have evaluated four different classifiers based on four metrics. The data
was tested by using both hold-out testing and CV. The results can be
summarized as this:

• RF is the best performing classifier.

• The worst performing classifier is ODI, even on Nox data. The
performance was poor with κ around 0.0 and is not comparable to ML
classifiers. An explanation for this could be that it is strictly based on
the definition, and it does not take into consideration that there might
be noise or normal variations in the data set.

• All the ML classifiers performed better on the Nox data than Garmin
data. This was significant based on a Wilcoxon rank sum test. The
reason for this could be due to the quality of the collected signals.
In the next section we will assess the quality of the Garmin pulse
oximeter signals.

• The overall performance of the ML classifiers on the Nox data was
similar to that seen in previous research. The same can not be said of
Garmin, with accuracy ranging from 0.1 to 1.0 and κ in minus

• Due to the small sample sizes it is difficult to draw any definite
conclusions from the results. This was especially evident from the
results of the CV as the subsets with the experiments performed
worse than the larger subsets or the whole data set.

• The most useful data collected was from overnight monitoring,
unfortunately we only had 11 samples.
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7.6 Signal Quality Evaluation

In this section, the quality of the sensor will be evaluated. The metrics they
will be assessed on include Arms for accuracy, MAE and we also perform
a Bland-Altman analysis consisting of mean bias, precision (two standard
deviations (SD) of the difference between devices), upper and lower LoA.
The metrics are calculated on the preprocessed data. Furthermore, we have
hypothesized whether some factors could explain the variation in sensor
quality. The factors tested are the way the watch was worn, skin tone of the
subject, number of desaturation events and movement in the data set. The
section will start with the overall results of the quality assessment before
the hypothesis testing.

7.6.1 Quality Results

(a) Signals from overnight (b) Signals from lab tests

(c) All signals

Figure 7.7: Histograms of the signals

Figure 7.7c shows the distribution of signal samples from all the
experiments for Garmin and Nox. The blue is the signals from Garmin and
the orange from Nox, with the gray color representing the overlap of the
two. Most of the samples came from overnight monitoring. From a total
of 291 992 SpO2 signals sampled from each device, approximately 99.9% of
the SpO2 values from Garmin are above 80%. For Nox 99.8% of the SpO2
values are above 90%. Figure 7.9a more clearly displays the distribution
of the signal values in a scatter plot. With regards to Arms the accuracy
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should be ≤ 3% according to the ISO standard for SaO2 in the range of
70%–100%. The FDA, however, has specified typical accuracy values for
reflectance oximeters as ≤ 3.5% which we will set as the upper threshold.

As we use Bland-Altman analysis for assessing agreement between
the signals we first check if the assumption of normality in the difference
between the signals are met. All signals are plotted in a histogram and a
QQ-plot in Figure 7.8. For the data to be normally distributed the quantiles
(blue dots) would lie in a 45 degree angle (red line). From Figure 7.8a we
see this is not the case for our signals. The histogram of the differences
also show that the data is not normally distributed as it is pointier than the
signature bell-curve of a normal distribution. Despite the assumption of
normality not being met we still use the Bland-Altman analysis and plot to
assess signal agreement. The reason for this is that it mostly affects the LoA
and not the mean bias.

(a) QQ-plot (b) histogram

Figure 7.8: Plots for assessing normality in signal differences

Summary Metrics

Accuracy MAE Mean Bias Precision Upper LoA Lower LoA

All 3.718 2.718 1.391 6.896 8.149 -5.366

Mean 3.01(±1.6) 2.39(±1.3) 0.62(±2.1) 4.73(±2.3) 5.26(±4.1) -4.02(±1.6)

Lab 3.363 2.308 0.361 6.688 6.915 -6.193

Mean 2.84(±1.8) 2.29(±1.4) 0.33(±2.2) 4.39(±2.5) 4.62(±4.3) -3.97(±1.7)

Overnight 3.752 2.759 1.495 6.882 8.239 -5.25

Mean 3.48(±1.2) 2.69(±1.0) 1.48(±1.7) 5.72(±1.4) 7.08(±2.8) -4.13(±1.2)

Table 7.10: Mean and SD of signal quality metrics for all recordings and the
subsets of lab and overnight recordings

The results for each separate recording sorted from best to worst
accuracy can be found in Appendix D while a summary calculation can
be viewed in Table 7.10. The table gives the calculated metrics of all the
signals in three different groups (all, recordings from lab, recordings from
overnight monitoring). Then there is the mean and SD of the individually
calculated metrics for the different groups. From this summary we see
that the overall accuracy of all signals does not meet the ISO standards
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requirement at 3.7%, or the FDA specification though not by much. The
mean of the accuracy for all the data sets at approximately 3.01%±1.6
does meet the FDA specification. Of the 43 recordings (excluding outliers),
approximately 67.4% of them had a mean accuracy lower than 3% and
79.1% was lower than 3.5%.

We have collected signals in two different ways; from a semi-controlled
environment in a lab, and from unattended overnight sleep monitoring
at the subjects home. These samples are not necessarily comparable, so
we take a further look at the metrics for these subsets which is given
in Table 7.10. Overnight is worse than the lab on all metrics, with
accuracy at 3.48% compared to 2.84% for lab. The largest difference is
with mean bias where overnight got 1.15 worse agreement score than lab.
Despite the better mean performance of lab data, it also has a greater SD
than overnight. The difference between the metrics were not statistically
significant based on Wilcoxon rank sum test.

(a) Scatter plot of signals from watch and Nox, r =0.16, p <0.0

(b) Bland-Altman plot of all recordings

Figure 7.9: Plots showing all data
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The best performance overall was by R-104 with accuracy of 1.31%. A
closer look at the data however reveals that the signals are not quite that
alike as can be seen in Figure 7.10b. Rather the low accuracy could be
because of the low variation in the SpO2 signals. This data set did not
have any desaturation events, and for more than half of the duration the
signal from Garmin read 99% oxygen saturation. Looking at the following
four recordings with the best accuracy (Figure 7.13) we see that they also
had little signal variation and did not quite match with the Nox signals.

(a) Bland-Altman plot of R-104

(b) Graph of R-104

Figure 7.10: Plot and graph of R-104

The worst performance was R-112 with an accuracy of 9.88 and mean
bias of 6.8. Looking at the graph of the recording makes it evident why
the accuracy was so bad. In this experiment, the watch was worn tight.
The SpO2 levels increased from a lower level around the halfway mark,
which is also about the time the subject switched positions from laying on
their back to side. The plotted graph and Bland-Altman plot in Figure 7.11
reveals that the part of the recording where the signals do align has good
agreement. It could be interpreted as the switch in position also impacted
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the Venu oximeter’s signal quality. This drastic contrast in SpO2 values
between positions was also seen in some other recordings.

(a) Bland-Altman plot of R-112

(b) Graph of R-112

Figure 7.11: Plot and graph of R-112

Of the following four recordings with the worst accuracy, of which
their graphs are given in Figure 7.14, three of them are from overnight
monitoring. There is large variations in the Garmin SpO2 signals compared
to Nox. It should be noted that Noxturnal processes the signals before we
export them and we do not know what this processing is. At the worst
for R-131 in the bottom left of Figure 7.14, the signals ranges between 75-
100 for Garmin while only between 93-100 for Nox. R-123 in the top left
is the last of the four recordings which is not from overnight monitoring.
The graph shows a gradual decline in the oxygen saturation measured by
Venu, starting at 97% and ending at 83%.

As some subjects performed multiple experiments, we also summarised
quality metrics for each subject which can be seen in Table 7.11. Subjects
8, 11 and 13 only performed one experiment each which was the normal
wear experiment. The metrics for these subjects are placed at the bottom.
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The subjects are sorted from best to worst on accuracy. From this table
we see that the best performing subjects are also the subjects that did not
participate in the overnight monitoring (Sub007, Sub005, Sub004). Still,
only four subjects had accuracy worse than 3%.

Metrics by Subject

Accuracy MAE Mean Bias Precision Upper LoA Lower LoA

Sub007 1.95(±0.8) 1.63(±0.8) 0.31(±1.8) 2.80(±0.9) 3.05(±2.4) -2.44(±1.3)

Sub005 2.23(±0.1) 1.72(±0.3) 0.81(±0.7) 4.03(±0.3) 4.76(±0.3) -3.14(±1.0)

Sub004 2.34(±1.3) 1.81(±0.8) -0.38(±1.2) 4.05(±3.0) 3.59(±4.1) -4.34(±1.8)

Sub0015 2.57(±1.5) 2.08(±1.1) 0.19(±2.1) 4.11(±2.2) 4.22(±4.2) -3.84(±0.4)

Sub009 2.58(±0.3) 2.02(±0.3) -0.88(±0.4) 4.81(±0.5) 3.84(±0.7) -5.59(±0.6)

Sub001 2.92(±1.1) 2.23(±0.9) 0.81(±1.7) 4.56(±1.7) 5.28(±3.0) -3.66(±1.9)

Sub0014 2.95(±0.6) 2.59(±0.6) -2.34(±0.9) 3.29(±1.3) 0.89(±2.0) -5.56(±0.8)

Sub006 3.24(±1.3) 2.58(±1.0) 0.70(±1.3) 6.05(±2.2) 6.63(±3.0) -5.23(±2.0)

Sub0012 3.68(±0.6) 2.99(±0.5) 2.48(±1.1) 5.25(±0.6) 7.62(±0.6) -2.67(±1.7)

Sub003 3.99(±2.4) 3.26(±2.0) 1.93(±3.0) 5.91(±2.3) 7.72(±5.2) -3.87(±1.2)

Sub002 4.51(±3.3) 3.48(±2.5) 2.81(±2.5) 6.95(±4.5) 9.62(±6.9) -4.01(±2.0)

Sub008 1.70 1.35 0.28 3.36 3.57 -3.02

Sub0011 1.89 1.57 -1.49 2.32 0.79 -3.77

Sub0013 2.47 2.02 0.02 4.93 4.86 -4.81

Table 7.11: Summary metrics grouped by subject, sorted from best to worst on
accuracy

We also plotted accuracy with mean bias and MAE to see their relation
of which both can be seen in Figure 7.12. Both mean bias and MAE are
strongly correlated with accuracy with r at 0.77 and 0.99 respectively. We
therefore use accuracy as the main quality metric.

(a) accuracy and mean bias - r=0.77, p≤0.00 (b) accuracy and MAE - r=0.99, p≤0.00

Figure 7.12: Correlation between accuracy and metrics mean bias and MAE
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Figure 7.13: Graphs of the best recordings

Figure 7.14: Graphs of the worst recordings
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7.6.2 Factors Affecting Sensor Quality

The reflective method for blood oxygen measurement is known to be worse
than the transmissive, and the pulse oximeters in smartwatches uses the
reflective method. Watches additionally are placed in an area where there
tends to be thicker skin and gets easily affected by movement. To better
understand the results we will assess how the accuracy of the sensors are
affected by external factors such as the way the watch is worn, skin tone
and movement.

Despite the subjects following a breathing script for the experiments,
there was not an even number of desaturations between the data sets. Some
had multiple events while others had none. There was also individual
differences in the number of desaturation events during the overnight
monitoring. We will therefore also assess if the number of desaturation
events has an impact on the Garmin watch’s accuracy. We will assess the
factors individually and also see if there is any interaction between the
included variables.

Watch Wear

We performed experiments where we tested different ways the watch was
worn on the wrist. Additionally, we performed overnight monitoring. We
include overnight monitoring in the watch wear analysis, though one could
argue against it since it does not have the same level of controlled setting.
Our initial hypothesis is that wearing the watch tight or placing the sensor
on the back of the wrist will give better accuracy than wearing it normal.
The formalised null hypothesis (H0) and the alternative hypothesis (HA) is
as follows:

H0 : ArmsN = ArmsT = ArmsB = ArmsO

HA : ArmsT, ArmsB > ArmsN , ArmsO

H0 says that there is no difference on the accuracy between the groups,
that they are all variations from the same population. HA says that wearing
the watch band tight or on the back of your wrist gives a better accuracy
than wearing it normal. The reasoning behind HA is that the reflective
method for blood oxygen measurement is not effective on the wrist because
of worse access to arteries. Wearing the watch tight removes some of the
barrier between the sensor and the skin, while wearing the watch on the
back of the wrist will place the sensor where the skin is thinner and have
better access to arteries. As the watch is worn the normal way during
overnight monitoring this is also included.

We grouped the metrics based on these criteria which can be seen in
Table 7.12. The normal wear had the best overall performance, followed by
back and tight with accuracy at 3.1 with overnight at 3.5. Already we see
that HA is false based on this table.

The overnight recording gives the most realistic performance of the
watch. The results seen here are more consistent than tight and back based
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Metrics by Experiment Type

Accuracy MAE Mean Bias Precision Upper LoA Lower LoA

Normal 2.52(±1.0) 2.04(±0.8) 0.49(±1.6) 3.96(±1.6) 4.38(±2.6) -3.39(±1.8)

Tight 3.10(±2.5) 2.45(±1.8) -0.03(±2.7) 4.78(±3.6) 4.65(±6.1) -4.71(±1.6)

Back 3.09(±1.9) 2.52(±1.6) 0.47(±2.6) 4.66(±2.4) 5.04(±4.7) -4.10(±1.4)

Overnight 3.48(±1.2) 2.69(±1.0) 1.48(±1.7) 5.72(±1.4) 7.08(±2.8) -4.13(±1.2)

Table 7.12: Mean and SD of signal quality metrics for each experiment variation

on the SDs, however the mean of the metrics are worse than the scripted
experiments. The normal group had a mean average below 3% (2.52%±1)
which means it meets the ISO standards requirement. There is complete
overlap of the accuracy from the SD’s for the different groups. This is also
reflected in the ANOVA test in Table 7.13 not being significant. Based on
these results we cannot reject H0 that the mean accuracy of the groups are
from the same population.

ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

experiment 3 5.961 1.987 0.728 0.542

Residual 39 106.511 2.731

Table 7.13: ANOVA test of different experiment groups

Skin type

Figure 7.15: Fitzpatrick skin types [18]

Our hypothesis is that the darker the pigmentation the worse the
quality of the sensor. This is based on previous research on the topic [6, 61].
The skin types are based on the Fitzpatrick classification which consists of
the six types given in Figure 7.15 [28]. The Fitzpatrick scale is commonly
used for identifying different skins reaction to UV light. In our case, we use
the descriptions of the types and not the characteristics that are assessed.
We compress these into the three categories of light (Type I, II), medium
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(Type III, IV) and dark (Type V,VI). A null hypothesis and an alternative
hypothesis have been formalized as follows:

H0 : ArmsL = ArmsM = ArmsD

HA : ArmsL > ArmsM > ArmsD

H0 states that the three groups are from the same population, meaning
the difference in accuracy is due to random sampling. HA states that the
groups are different and that lighter skin tones have better accuracy than
darker skin tones.

Metrics by Skin Type

Accuracy MAE Mean Bias Precision Upper LoA Lower LoA

Light 2.62(±1.0) 2.16(±0.8) 0.09(±1.8) 3.88(±1.5) 3.89(±3.1) -3.72(±1.4)

Medium 2.63(±0.9) 2.09(±0.7) -0.22(±1.2) 4.78(±1.8) 4.47(±2.6) -4.90(±1.5)

Dark 3.44(±2.1) 2.68(±1.6) 1.35(±2.3) 5.35(±2.9) 6.60(±4.9) -3.89(±1.7)

Table 7.14: Metrics based on skin tone

Sorted by skin tone we have 27 hrs, 6 min for light, 16 hrs, 26 min for
medium and 37 hrs, 51 min for dark. A summary of the metrics grouped for
different skin tones can be viewed in Table 7.14. From the summary we see
some variations between the three different groups. The first observation
is that the accuracy, MAE, precision and mean bias is worse for the dark
group, while light and medium is pretty much the same on accuracy but
not precision and mean bias. There is also higher variation in the dark
group compared to light and medium. From the SD of the accuracy means
we see there is complete overlap for the three groups. The p-value from
the ANOVA test is 0.265 which is not significant, though the low p-value
can be attributed to the higher mean for dark. We therefore based on this
cannot reject H0 that the means are from the same population.

ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

skin_type 2 7.221 3.611 1.372 0.265

Residual 40 105.251 2.631

Table 7.15: ANOVA test with interaction

Interaction

We have analysed how the two variables "watch wear/experiment type"
and "skin tone" affect signal quality separately, however there might be
some interaction between these variables. The reasoning behind this is that
overnight and dark got the worst mean accuracy, and the dark group also
had the largest number of overnight samples. To evaluate this further we
perform an ANOVA test for the variables skin type and watch wear.
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ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

skin_type 2 3.025 1.513 0.536 0.590

experiment 3 5.544 1.848 0.655 0.586

skin_type:experiment 6 13.171 2.195 0.778 0.593

Residual 32 90.315 2.822

Table 7.16: ANOVA test with interaction

From the ANOVA table in Table 7.16 we see that none of the individual
predictors are significant, and neither is the interaction. Despite this, we see
that the p-value for skin type got worse (p = 0.59) when both experiment
and the interaction was included. This can be interpreted as when adjusted
for experiment type, the effect of skin type disappears.

Movement

Our hypothesis is that more movement leads to worse sensor quality, while
the null hypothesis is that movement has no impact on the data. This is
based on that more movement will also lead to the Garmin watch moving
more.

H0 : movement does not impact accuracy

HA : more movement leads to worse accuracy

Nox T3 registers movement as events from the RIP bands. The number
of movement events for each recording will be counted and divided on the
total length of the recording and multiplied by 100 to get the percentage
of movement in the data set. These values will then be plotted against the
accuracy in a scatter plot and a regression line will be fitted with a 95%
confidence interval.

In Figure 7.16a all recordings are plotted. From the scatter plot there
seems to be some extreme values that are influencing the regression line.
We therefore use inter-quartile range to calculate upper and lower bounds
to uncover any outliers. For accuracy the lower bound is 0.308 while the
upper bound is 4.968. Based on this there seems to be four outliers in the
plot which are R-112 (9.883), R-123 (7.582), R-232 (5.416) and R-131 (5.135).
The scatter plot without the outliers can be seen in Figure 7.16b.

There seems to be a weak correlation between accuracy and movement,
both with (r=-0.13) and without (r=-0.26) outliers for accuracy. Furthermore
the correlation is negative, meaning the accuracy gets better with more
movement. This is the opposite of our hypothesis. However the correlation
is not significant, which means we do not reject H0 of movement not
impacting signal accuracy.

The reliability and validity of the registered movement events in the
Noxturnal software should be questioned. The signal capture procedure
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(a) with outliers - r=-0.13, p=0.40

(b) without outliers - r=-0.26, p=0.10

Figure 7.16: Correlation between accuracy and movement (%)

required the subjects to move from one position (supine) to another (back),
which means there should be some movement for all lab tests. This was
however not the case as some recordings registered no movement events.
At the same time, there was a high level of movement for some other
recordings despite the subject lying still for most of the time. In the
future another external form of assessing level of movement should be
considered, or the accuracy of Noxturnal’s labelling should be tested.

Desaturation Events

The null hypothesis is that the number of desaturation events does not
affect the sensor’s accuracy, while the alternative hypothesis is that more
desaturation events worsens the sensor’s accuracy.

H0 : desaturation does not impact accuracy
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HA : more desaturation leads to worse accuracy

The reasoning behind this hypothesis is that Garmin watches might
perform well under normal circumstances. With high level of desaturation
events in the data the Garmin watch might not be as effective. As is
already known, the accuracy for pulse oximeters varies at different ranges
according to the ISO-standard. In our case, we have seen from the
histogram of recorded signals that the majority of the signals falls in the
range 70-100%. The accuracy therefore should be ≤ 3%.

We also witnessed differences in the number of samples for SpO2 values
in the histogram in Figure 7.7c. The majority of Nox’s values was between
90% and 100% and some between 80% and 90%. On the other hand, the
watch registered values between 75% and 100% with a fuller left tail. In
this case we hope that the null hypothesis is true because it supports our
overall goal of using the watches for at-home detection.

(a) with outliers - r=0.09, p=0.56

(b) without outliers - r=0.07, p=0.67

Figure 7.17: Correlation between accuracy and desaturation event (%)
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We use the same approach as with movement which is calculating the
percentage of events in the recording. Figure 7.17a shows the scatter plot
with outliers while Figure 7.17b shows the scatter plot without. Both plots
show a weak positive correlation (with: r = -0.09, without: r = -0.07) which
are not significant (with: p = -0.56, without: p = -0.67). We can therefore not
reject H0 of desaturation does not impact signal accuracy.

7.6.3 Comparing With Related Work

There has been some studies evaluating the quality of consumer pulse
oximeters to medical grade oximeters by Frisvold[19] and Harskamp et
al. [27], some also on the pulse oximeter in smartwatches by Halvorsen
[26] and Lauterbach et al. [38]. Frisvold’s study evaluated the quality of
the consumer pulse oximeter Cooking Hacks MySignals with Nox T3 as
reference. The results were much better than ours with a mean accuracy
at 1.34% for all signals and a mean bias at 0.14% (±2.61). The worst
accuracy was 2.09%. Harskamp’s study got more similar results to ours.
10 pulse oximeters were tested and none of them met the ISO requirement
of accuracy ≤ 3%, the lowest being 3.9% and highest 7.5%. Mean bias
ranged from -0.6 to -4.8. Halvorsen’s results are directly comparable to
ours as they use both the same brand of watches and reference sensors.
The accuracy ranged from 1.6% at best to 8.2% at worst. Lauterbach
assessed Garmin Fenix 5X Plus pulse oximeter to a reference oximeter at
five different altitudes. A Bland-Altman analysis was performed an mean
bias ranged from 0.0 at the lowest altitude to 3.3 at the highest. From these
four studies we see that there is a large variability in the results.

7.6.4 Summary

With the signal quality evaluation we aim to assess whether the SpO2
signals from Garmin were as good as Nox. The results can be summarized
as follows:

• Almost 70% of the individual data sets meet the requirement of < 3%
accuracy, while almost 80% where under FDA’s typical specification
at 3.5% for reflectance pulse oximeters. The average mean bias for all
data sets was 0.62%.

• The results were slightly worse for overnight monitoring (accuracy:
3.48(±1.2), MAE: 2.69(±1.0), mean bias: 1.48(±1.7)) compared to lab
(accuracy: 2.84(±1.8), MAE: 2.29(±1.4), mean bias: 0.33(±2.2)) on all
metrics.

• The worst performing subset of data is from overnight monitoring,
which is the most realistic. However, it also had one of the smaller
SD compared to other subsets.

• All four hypotheses regarding how variables (skin type, watch wear,
movement, desaturation event) impact signal quality were rejected.
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This could be because of the small size of the samples. They should
still be investigate further because of observed trends in the data.

• There were still some interesting trends such as normal watch wear
performing the best, more movement being correlated to better
accuracy and dark skin type performing worse than medium and
light.

• The level of movement in a data set was determined by the Noxturnal
software’s scoring. The scoring did not seem to be accurate as not all
lab recordings registered movement even though all subjects moved
from lying on their back to their side. In the future, the reliability
of the scoring should be tested our an alternative way of assessing
movement should be used.

• Our results are comparable to previous work in regards to accuracy
and mean bias.
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Chapter 8

Discussion

The results we obtained will be further discussed in this chapter. We will
try to understand and make sense of the results we got by discussing
the results for the different tests we performed. For instance, our results
from the connection loss detection differed from previous tests. We try to
make sense of this in (Section 8.2). We also discuss the performance of our
classifiers (Section 8.3), the quality of our data (Section 8.4), and discuss
how they could have impacted the classification performance (Section 8.5).

8.1 Usability testing

For usability testing we had three participants perform two tasks in the
app. They vocalized their actions while the test manager observed their
performance. Questions were asked both before and after the tasks.

Of the three participants, one of them was not as representative of
the target audience as initially thought. That the particular participant,
nr. 3, was not representative was discovered during the introductory
questions. Participant 3 mentioned that they were not that interested in
using smartwatches, and is not an avid user of apps on their phone. The
results are still included as the participant represents an inexperienced user.
Despite this the participant managed to complete both tasks and did have
some relevant insight to the app. In the future, recruiting of participants
should include a more in-depth initial screening.

There seemed to be more errors in this round of usability testing
than the one performed by Halvorsen, though not by much. All three
participants in this round mistakenly passed the clicking of the device
name before showing paired devices. This error and feedback led to the
adding of a descriptive text over the listed devices. Furthermore, clicking
the button when there are no paired devices will display an error message.
We see that taking a more qualitative approach to the usability testing led
to more concrete solutions.

The app was unstable during testing with Participant 2 and 3. It crashed
during the pairing of device. This was however not fixed due to restrictions
in time. If this app were to be developed past the Minimum Viable Product
(MVP) level, then this is something that should be fixed, along with the
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other feedback on the app.

8.2 Differing Results for Connection Loss Detection

Both the experiments with short duration and the long duration were re-
peated experiments originally performed by Halvorsen. From Halvorsen’s
results there was a shorter disconnect registered in the data than the
planned disconnect duration of one minute and one hour, indicating data
being buffered. These results could not be reproduced. For both experi-
ments where we experienced disconnect, they lasted for the exact length
specified or longer. The reason for it being longer might be due to the time
it took to get back within Bluetooth range. There is a possible explanation
that the updates that were made to the Companion SDK might have af-
fected this. This theory has however not been researched so it cannot be
supported.

We also performed a second experiment for short duration where
we tested Garmin’s Bluetooth range. Garmin states the range for their
Bluetooth is 13 meters without barriers. In our test the distance was
approximately 15 meters with a wall in between. We still did not experience
any disconnect. This is a positive result as it means a scenario where the
user wakes up in the middle of the night and moves around their house
without their phone might not necessarily lead to connection loss.

The last test of close proximity with barrier also resulted in no
connection loss. This means the connection is strong enough to withstand
the user moving around throughout the night.

There is a clear weakness in the connection loss test which is we
cannot accurately determine the exact moment the device is outside of
communication range.

8.3 Classifying Desaturation Events

For desaturation event classification we tested four different classifiers
on SpO2 signals from two different devices. For holdout testing of each
individual recording we used all the lab data for training the model where
the test set was a lab recording, and when the test set was an overnight
recording we trained the model on all the overnight data. For the ODI
classifier we labelled each second before we reshape the data to 60-second
periods.

An immediate issue with the ODI classifier is that it requires 110 signals
before the first event can be detected. That is, the first desaturation event
can at earliest be detected at signal 111. This is an issue because events
that occur before this will never be detected. From our evaluation we
see that the classifier got an accuracy a high as 0.91 and there was not
much difference in performance between devices which is different from
the ML classifiers. However, the highest κ was 0.15 and the sensitivity was
nonexistent while specificity was at around 1.0. Since it is an outdated
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classification method and the performance was so poor compared to the
ML classifiers, we do not consider this method any further.

From the holdout testing of individual recordings we see that the results
are not that different compared to 10-fold CV. A factor that does seem to
largely impact performance is small data sets. The lab experiments on the
holdout test performed worse than overnight test for all classifiers. The
windows were 60 seconds, which might have been too large for such small
data sets. For future testing, overnight recordings could be included for
training the models, or use a smaller window size for smaller data sets
e.g. 30 seconds. Another possibility is to train the models on data with
better quality i.e. training the models on data from Nox then testing on
Garmin data. This has been done in an unpublished article by Kristiansen
et al. [33]. In the study, the accuracy of classifying low-quality data from a
sensor called Flow was nearly as high when training on high-quality Nox
data as the low-quality Flow data.

Because of our sample sizes being so small, we only used simple ML
classifiers. In the previous work that have been compared in this thesis,
more advanced algorithms were used such as Neural Network (NN). These
produced even better results, particularly Convolutional NN.

8.3.1 Garmin vs. Nox

It was clear from the means of the different classifiers that the performance
on Nox data was far better than on Garmin data. This was also significant
from Wilcoxon rank sum test. The κ and accuracy obtained from the
classifiers on Nox were comparable to previous work with κ at 0.4-0.5 and
accuracy at 0.6-0.8 for all the data despite the small sample. As both devices
sampled the same signals, we attribute the difference in performance to the
quality of the sensors. With this we mean the Garmin pulse oximeter has
poorer quality than the Nox T3. There is however not a direct comparison
between the two devices signals, since the signals sampled by Nox is
processed by algorithms in Noxturnal. Such processing could be removal
of noise of some sorts which we do not know.

8.4 Sensor Quality of Garmin Venu 2S

Comparing the quality results with Halvorsen’s we see the results are fairly
equal in regards to accuracy. The Venu performed better than Fenix in
his experiment while the opposite was true for the overnight test. For
both watches the best accuracy was 1.6% while the worst was 8.2%. In
comparison, for our experiments the best accuracy was 1.3% and the
worst was 9.9%. Both studies observed large variations in regards to
performance.

Frisvold also performed oximeter quality test, though not with a
smartwatch. The accuracy of the experiments were consistently between
0.5 to 1.5% with the exception of one at 2.09%. In Harskamp’s study of ten
consumer pulse oximeters, none of the oximeters got an accuracy smaller
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than 3%, ranging from 3.9-7.5%. From these results it is clear that though
the Garmin sensor can perform at the same quality as other low-cost pulse
oximeters, it is less stable and more prone to errors.

8.4.1 External Variables Impact on Signal Accuracy

We tested if the four variables movement, desaturation, watch wear and
skin type can affect Garmin signal accuracy. Even though none of the tests
were significant, we still observed some trends in the results. From the
test on skin pigmentation we saw that darker skin had worse accuracy and
larger variation on all metrics. Similarly, overnight monitoring had worse
accuracy than the lab recordings. As the results could have been affected by
the fact that the dark group had a larger number of overnight monitoring
included compared to the other two groups, we tested the interaction
between watch wear and skin type. We also see the same tendency of
subjects who performed overnight monitoring also had the worst metrics.
Though the results of the interaction was not significant, we observed that
the p-value for skin type was worse when experiment and their interaction
were included in the ANOVA model.

An interesting result was that wearing the watch normal had the
best performance of the three ways of wearing the watch. This was
unexpected as measurement site affects accuracy (transmittance compared
to reflectance), and wearing the watch tight or placing the sensor directly
on arteries would seem to improve accuracy. Due to the small sample size
and there not being any significant difference we cannot draw any definite
conclusions. This should, however, be tested further as it supports the
quality of pulse oximeters in smartwatches. In the future, this could be
assessed in overnight monitoring as well.

An observation we made was that the placement of the arm sometimes
affected the signal quality. For certain recordings we saw a difference in
signals from when the subject was lying on their back or side. That is, for
some recordings the SpO2 levels could be around 85% when the subject was
on their back, but after switching positions it could be at 95%. We believe
this is because of how the watch is laying on the arm in different positions.
Due to time constraints, this was not investigated further. In the future, this
should be assessed.

In our tests we only assessed the impact of four different variables on
accuracy. In reality there are many more variables, known and unknown,
that can affect the signal quality. From what we observed during the lab
tests, the position of the subject affects the signal. Most likely because it
affects the watches placement on the wrist. Also, the subjects varied in
the amount of hair on the wrist under the sensor. The watch fit some
subjects better than others as well. If possible, such variables should be
controlled for in future studies. Even though the variables we tested did
not significantly affect signal accuracy, there was some results that could
be explored further.
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8.4.2 Removal of Outliers

Some of the outliers were obvious that should be removed such as the
total duration being too short or oxygen saturation greater than 100%.
These were removed during preprocessing and not included in any of the
results. On the other hand, there were outliers that were extreme values
that deviate from the majority, like signals at around 60% or recordings
with accuracy at 9%. These were discovered upon further examination of
the results. Such values strongly impact the results. The question about
whether such outliers should be included or removed comes down to
whether the extreme values represent possible and realistic observations.

Upon further inspection we observe that most of the data sets with
worse accuracy were also the data sets from overnight monitoring. In
regards to the lab recordings it was the data sets where there was large
deviations between signals when the subject lied on their back compared
to on their side. For the correlation studies where we tested different
hypotheses, the outliers were removed to see if there was any difference
in the results. Scatter plots with and without the outliers were placed side
by side to visualize the difference. The differences were minimal.

8.4.3 Metrics

A total of three different metrics were used to assess signal quality. These
were Accuracy root mean square (Arms) which is the standard used for
oximeter quality, Mean absolute error (MAE) and mean bias by Bland-
Altman. There has been some discussion against the use of Root mean
square error (RMSE) which is the same formula asArms. We plotted these
measures against each other and got r = 0.99 and mean bias = 0.61.
Accuracy and mean bias were also strongly correlated with r = 0.77. The
decision of metrics to use falls on preference and what we are trying to tell
with our data.

8.5 Overall Data Quality

The majority of the collected data sets were from the breathing script. These
were of a shorter duration, and was therefore easier to perform as one can
do multiple recordings in a day with awake subjects. This is, at the same
time, also a drawback as it does not reflect the natural setting. Even though
we managed to perform many more recordings with the script, the total
duration was significantly shorter at approx. seven hours compared to
overnight monitoring at approx. 74 hours.

The benefits of the breathing script as data collection method for
quality estimation is that we can control the number of events (to a
certain degree), and the shorter length of each data set makes it easier
to analyse. Unfortunately, there were large differences in the number of
simulated events, as some subjects got none while others got up to five
events. All subjects followed the same breathing script, they tested the
breathing styles beforehand and no one struggled with them. There was
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individual differences as, for instance, Subject 7 and 4 held their breath
for as long as they could but Nox T3 still did not register a desaturation
event. Nevertheless, the lab tests had a higher percentage of events than
overnight at 32.5% compared to 7.7%. The quality on overnight monitoring
was worse than for the lab recordings which might be due to the controlled
nature of the latter. However, there was less variability in the results for
overnight monitoring.

For classification, we saw that having more data resulted in better
performance for the 10-fold CV. When tested on the separate watch wear
lab tests only, the highest κ was 0.27 (accuracy = 0.6) for SVM on back
experiment for signals from Nox. In contrast, the lowest κ for overnight
monitoring was 0.49 (accuracy = 0.74) by KNN. This trend was not present
for Garmin data where all κ ranged between -0.2-0.2 (accuracy = 0.3-0.6).
From this we see that larger data quantity does not matter if the quality
is not good. Additionally, consistency of the accuracy in the data set
seem to matter. The overnight data set performed slightly better than all
the data, even though the latter is larger. This could be attributed to the
larger variance in accuracy of the lab data, which we saw from the quality
assessment.

To summarize, there were trade-offs for both methods of data collection.
Classification benefited from the quantity from overnight monitoring,
while quality was also worse for this data. Still, the preferred data
collection method would be through overnight monitoring as it has direct
comparability to the intended use. For better results and the possibility
to draw any actual conclusions, there needs to be a larger database of
good quality and from a representative population such as subjects with
SA or other respiratory disorders to test on. The results are promising
for the Garmin pulse oximeter quality. However, it should be noted
that the Garmin signals were tested against another pulse oximeter. If
they were to be tested against a CO-oximeter, which is the recommended
method for accuracy assessment, the results would be worse. In regards to
classification, there is some uncertainty due to the low amount of data. The
results are less promising but not discouraging.
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Part IV

Conclusion
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Chapter 9

Summary of Contributions

In our introduction we define four questions that we want to investigate in
order to answer our problem statement of: Can a Garmin smartwatch’s pulse
oximeter be used for initial at-home sleep apnea detection? With these questions
in mind, we performed several test. In this chapter, we summarize the
contributions of our evaluation. We tested the usability of the app created
for collecting data from Garmin sensors. Also, we tested the boundaries
for Bluetooth connection between a smartwatch and the Garmin watch
and connection loss detection with both short and long duration (Section
9.1). Since there was no already existing signal data from both Nox T3 and
Garmin which were comparable, we also recorded the data to be analysed
(Section 9.2). For classification, we used four classifiers for labelling on both
Garmin data and Nox data (Section 9.3). We also evaluated the quality of
the Garmin signals with Nox as the reference pulse oximeter. Then, we
evaluated how four different variables affect the accuracy (Section 9.4).

9.1 Reproducing Previous Results

Of the several tests performed by Halvorsen, we repeated the usability
test and connection loss detection for the app, and classification with a
signal counting script and quality assessment for recorded signals. We
will explore more in depth about classification and quality in the following
subsection as we did many things differently. The purpose of repeating
these tests, specifically the app tests, was to evaluate reproducibility of
the results and evaluate the potential in the app with Garmin Health
Companion SDK.

The two main functions in the Cesar smartwatches app are to pair the
phone with a Garmin smartwatch and start and stop recording signals
from sensors. These two functions were tested in the usability test.
We uncovered some ambiguity in the app as all participants mistakenly
overlooked clicking the device name for pairing, and there was confusion
of whether the watch was paired or not. Performing the usability test
allowed us to better understand some issues and therefore also fix them.
We updated the app to include text over the listed devices, the "Show
paired"-button is no longer clickable if there is no already paired devices,
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there is a progress-bar for when the pairing is happening, and informative
toast messages are displayed so the user is more aware of what is
happening. An issue that was not fixed was the app crashing during
pairing. This should be fixed if the app is to be used as more than a MVP.
Other than this, the participants found the app simple and easy to use.

With connection loss detection we tested the boundaries of the
Bluetooth connection between the app and Garmin watch, and the recon-
nection implemented in the Garmin SDK. We found that the specified max-
imum range of 10 meters was inaccurate for our case. At 13 meters with
walls in between there was still no disconnect. For the tests where we ex-
perienced disconnect there was no buffered data as was seen in Halvorsen’s
tests. The disconnection lasted for as long as the specified time. We also
tested disconnect in close proximity but with barriers. This did not lead to
connection loss. From these results we see that the Bluetooth range is bet-
ter than initially specified, but there is no buffered data when the devices
disconnect.

The first research question goes as follows: Can the results from
Halvorsen’s experiments be reproduced? We see from this summary that the
usability test resulted in the app being simple and easy to use, same as
Halvorsen’s results. We were not able to reproduce the buffered data from
the connection loss tests.

9.2 Data Collection

There are existing databases of SpO2 data from medical grade devices
which have been used in previous research. The problem is, however,
that we want to compare the Nox T3 oximeter data with Garmin data,
which does not have an existing database that we know of. We therefore
had to record new data with Nox T3 and Garmin Venu 2S simultaneously.
From 15 subjects we collected a total of 46 data sets from each device,
of which 43 were used in evaluation. The collected data sets are from
two different methods, in a lab with a breathing script/procedure lasting
around 16 minutes and from unattended sleep monitoring at home. This
gives us an opportunity to compare the two quality of the two methods.
Additionally, since we use subjects without any SA diagnosis, simulating
events in a lab can give us more representative data. We got on average
32.5% apneic windows from the lab tests compared to 7.7% from the sleep
monitoring. With the lab recordings we also record with the watch worn in
three different ways which is normal, tight and with the watch face on the
back of the wrist.

9.3 Event Classification

We trained and tested three different ML models in addition to a signal
count classifier we nicknamed the ODI classifier. For the ML classifiers
KNN, SVM and RF, we used two different evaluation methods, holdout
test set and 10-fold CV.
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From both the holdout tests and CV, we see on all metrics that the
performance was better on Nox data than Garmin data, with the exception
of the ODI classifier. κ on Nox data was at its best 0.51 from holdout tests
(RF on overnight), while the best from CV was 0.57 (RF on overnight). In
comparison, the best κ on Garmin data was 0.32 (KNN on back), while
for CV it was 0.15 (RF on all data). A possible solution to improving the
performance on Garmin data is by training the model on better quality
data. We observed that the RF classifier performed the best of the ML
classifiers. Due to the small sample sizes, which proved to be detrimental
to the performance based on the CV results, we do not draw any definite
conclusions.

Another research question is the following: Can using Machine Learning
for classification improve event detection in Garmin signals? From the results
we conclude that using ML for classification does improve results overall,
as sensitivity and specificity was more balanced compared to ODI where
specificity was 1.0 and sensitivity was 0.1. Even though κ and accuracy
was at times worse or the same for the ML classifiers as the ODI classifier
for Garmin data, there is potential in fine-tuning of the models, or using a
different model altogether.

9.4 Quality Assessment

We assessed the quality of the Garmin signals with the metrics accuracy
(Arms), Mean absolute error (MAE), and mean bias with Limits of
Agreement (LoA). The accuracy of the data sets ranged from 1.305% to
9.883% with the mean at 3.01%(±1.6). Nearly 70% were under 3%, which
is the ISO-standard for oximeter accuracy. Furthermore, the accuracy was
worse for the overnight data (3.48(±1.2)) compared to lab data (2.84(±1.8)).
Even though this is unfortunate since the overnight data most accurately
represents the real setting, we see that there is less variability in the
overnight data. With more data we can get a more accurate estimate of
the accuracy of Garmin’s pulse oximeter.

In regards to sensor quality, we had the following research question: Are
the Garmin oximeters quality good enough for at-home OSA detection? Based on
the ISO-standard of ≤ 3% and the fact that we tested against a different
pulse oximeter and not a CO-oximeter, we cannot say yes. However, with
a mean at 3.48(±1.2) for overnight and 3.01%(±1.6) for all data it is not that
far off. As it would only be used for initial detection, we would say this
is acceptable if the results were more consistent. Also, it requires that we
can accurately label events in the data, which requires a lot more data and
work.

We tested whether the four variables watch wear/experiment type, skin
type, movement, and desaturation is associated with accuracy. Although
none of the hypotheses produced any conclusive results, we saw some
trends that should be highlighted. For one, wearing the watch in the
normal way which is not too tight does not negatively affect the signal
accuracy. Darker skin type had worse accuracy and mean bias compared
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to light and medium skin type, and had more variability on the metrics
measured by higher SD. Movement was actually negatively correlated
with accuracy, which means the more movement in the data lead to better
accuracy. We used movement as it was labeled in the Noxturnal software,
and later saw that it did not reflect our own observations. For this
reason, we do not consider this result as valid. Desaturation as labeled by
Noxturnal in the data was not significantly associated with worse accuracy.

The last research question is the following: What external factors affects
the quality of Garmin’s pulse oximeter and how? Based on the four variables
tested, we can say that experiment type, or more accurately, data collection
method (lab, overnight) and skin type affects Garmin signal accuracy. Both
variables affected accuracy even though they were not significant. The
results are still important as the lab vs. overnight monitoring sheds light on
how the results in a controlled setting differs from a normal setting, while
the skin type shows how quality may vary based on individual differences.
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Chapter 10

Open Problems

Through our research we discovered some limitations in our methods, or
areas that could be improved. Because of the restricted time frame, some of
these were not directly addressed. For a large part of the project there were
still restrictions in place due to the pandemic, which prevented us from
collecting data from a planned group of subjects. Because of this, we were
not able to recruit participants that actually have breathing disorders. This
heavily affected the sample size and quality of our data, and also played a
part in our choice of traditional classifiers.

From the data sets we saw in some of them that the signal quality
differed from when the subject was on their back compared to on their
side. We did not however evaluate what impact this had on the accuracy.
The reason for this is that we could not clearly define the time the subject
switched positions in the data.

We hypothesised that more movement leads to worse signal accuracy.
However, we saw that the event labelling of movement as it was done
in Noxturnal did not accurately reflect what we ourselves observed.
Furthermore, the accelerometer is located in the main unit placed on the
subjects chest. This will record different movements from the Garmin
watch’s accelerometer on the subjects wrist. Because of lack of time, we
did not look into this any further. In the future, movements should be
classified by the watches accelerometer, or observed externally during the
lab tests.

Our method for synchronization is still not optimal as it relies too
much on visual inspection of the graphs. Using the accelerometer for
synchronization is not valid as the watch’s sensor is placed on the wrist
while for the Nox it is on the chest. In the future, a more reliable and
valid method should be used in conjunction with they delay finding in the
oxygen data.

Our ODI classifier estimates the baseline as the mean of the oxygen
saturation of stable breathing in the two minutes preceding an event. This
assumes that the preceding two minutes are stable, which is not always the
case. In the occasion when the breathing pattern is not stable, the AASM
suggest the use of the mean amplitude of the three largest breaths in the
two preceding minutes instead. Our classifier has not implemented this as
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we cannot detect breath amplitude in oxygen saturation data.
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Chapter 11

Future Work

There are many opportunities in future work related to investigating
performance of Garmin smartwatches’ pulse oximeters, in regards to
quality and classification. The main question is, despite our varied results,
is the use of Garmin watches still promising? If the answer is yes, then
some of the future work to be done for classification is presented in Section
11.1 and for signal quality in Section 11.2.

11.1 Classification

The biggest drawback in our evaluation was the lack of data. In the
future, more data needs to be collected, preferably from overnight sleep
monitoring from SA subjects. If this is done, then we can use more
advanced algorithms for classification, and also there will be less need for
balancing the data sets. Another opportunity to improve results would be
by training the model on better quality data than the test set. That is, we
could train the model on data from Nox and test it on data from Garmin.
Data from the A3 study that has been used in the CESAR project could be
used for training the model for testing on Garmin data.

For event detection we focused mainly on scoring/labeling events in
fixed 60-second periods in the time series data. The periods in reality are
not this fixed, they might vary in length, start and end time. In the future,
the focus should be on finding the beginning and end of each event period.
In a recent thesis by Guðmundur Jónsson [32] this was investigated. With
this approach, we can also more accurately count the number of events per
hour according to the Oxygen Desaturation Index metric. Another option
for classification could be to classify severity based on comparing different
time series data with each other.

11.2 Signal Quality

There is potential in the quality of the Garmin pulse oximeter, but more
testing is needed. Furthermore, our analysis compares the raw data
from Garmin with processed data from Nox T3 which does not make the
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comparison equal. Nonin also describes the removal of noise artifacts from
their oximeter signals to improve accuracy [52]. In the future, a similar
approach should be taken with the Garmin signals. That being removal of
noise and other forms of preprocessing of the signals.

What is most interesting is how different variables affect signal
accuracy, and should be tested further. In addition to the variables tested
in this thesis, future work should also include other variables such as
temperature and position of the arm. This should also be tested in
overnight sleep monitoring to see if the variables have an effect in a
natural setting. An important factor to consider is that even if the Garmin
oximeter’s quality is up to standard, it does not matter if the data is not
good enough for classifiers to make sufficiently good predictions.

11.3 App

If the plan is to move forward with Garmin, then data analysis should
be added to the app. The CESAR project currently only has a research
license for the Garmin Health Companion SDK. They will need to acquire
a commercial license if they were to continue collecting Garmin signals.
Integration of this app with the Nidra app previously created in the CESAR
project [60] would also be the next step if Garmin watches are to be used.
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[16] Nurettin Özgür Doğan. ‘Bland-Altman analysis: A paradigm to un-
derstand correlation and agreement’. In: Turkish Journal of Emergency
Medicine 18 (2018), pp. 139–141. DOI: 10.1016/j.tjem.2018.09.001.

[17] Jessilynn Dunn, Ryan Runge and Michael Snyder. ‘Wearables and the
medical revolution’. In: Personalized Medicine 15.5 (2018), pp. 429–448.
DOI: 10.2217/pme-2018-004.

[18] Fitzpatrick Scale. URL: https://emergetulsa.com/wp-content/uploads/
2021/10/fitzpatrick-scale-1-800x268-1.png. (Accessed: 15.05.2022).

[19] Kenneth Aune Frisvold. ‘Non-Invasive Benchmarking of Pulse
Oximeters- An Empirical Approach. Procedures, Considerations and
Limitations of Testing Health Sensor Platforms’. MA thesis. Re-
prosentralen: University of Oslo, 2018.

[20] Garmin Venu 2S. URL: https://www.garmin.com/en-US/p/707572#
specs. (Accessed: 25.04.2022).

[21] Garmin vivoactive 4. URL: https ://buy.garmin . com/nb- NO/NO/p/
643382#specs. (Accessed: 25.04.2021).

[22] Davide Giavarina. ‘Understanding Bland Altman Analysis’. In:
Biochemia Medica 25.2 (2015), pp. 141–151. DOI: 10.11613/BM.2015.
015.

[23] Daniel J. Gottlieb and Naresh M. Punjabi. ‘Diagnosis and Manage-
ment of Obstructive Sleep Apnea A Review’. In: JAMA 323 (2020),
pp. 1389–1400. DOI: 10.1001/jama.2020.3514.

[24] Dorothy Graham, Rex Black and Erik van Veenendaal. Foundations
of Software Testing: ISTQB Certification. 4th ed. Cengage Learning
EMEA, 2020.

[25] Robert E. Gries and Lee J. Brooks. ‘Normal Oxyhemoglobin Satur-
ation During Sleep: How Low Does It Go?’ In: Chest 110.6 (1996),
pp. 1489–1492. DOI: 10.1378/chest.110.6.1489.

116

https://doi.org/10.5194/gmd-7-1247-2014
https://www.uptodate.com/contents/insufficient-sleep-definition-epidemiology-and-adverse-outcomes
https://www.uptodate.com/contents/insufficient-sleep-definition-epidemiology-and-adverse-outcomes
https://doi.org/10.1371/journal.pbio.0060216
https://doi.org/10.1177/001316446002000104
https://www.scribbr.com/statistics/correlation-coefficient/
https://www.scribbr.com/statistics/correlation-coefficient/
https://doi.org/10.1016/j.tjem.2018.09.001
https://doi.org/10.2217/pme-2018-004
https://emergetulsa.com/wp-content/uploads/2021/10/fitzpatrick-scale-1-800x268-1.png
https://emergetulsa.com/wp-content/uploads/2021/10/fitzpatrick-scale-1-800x268-1.png
https://www.garmin.com/en-US/p/707572#specs
https://www.garmin.com/en-US/p/707572#specs
https://buy.garmin.com/nb-NO/NO/p/643382#specs
https://buy.garmin.com/nb-NO/NO/p/643382#specs
https://doi.org/10.11613/BM.2015.015
https://doi.org/10.11613/BM.2015.015
https://doi.org/10.1001/jama.2020.3514
https://doi.org/10.1378/chest.110.6.1489


[26] Felix Griffin Halvorsen. ‘Garmin smartwatches to detect desaturation
events as part of OSA screening at home’. MA thesis. Reprosentralen:
University of Oslo, 2020.

[27] Ralf E. Harskamp et al. ‘Performance of popular pulse oximeters
compared with simultaneous arterial oxygen saturation or clinical-
grade pulse oximetry: a cross-sectional validation study in intensive
care patients’. In: BMJ Open Respiratory Research 8 (2021), e000939.
DOI: 10.1136/bmjresp-2021-000939.

[28] Marjorie Hecht. What Are the Fitzpatrick Skin Types? URL: https : / /
www.healthline . com/health/beauty - skin - care/fitzpatrick - skin - types.
(Accessed: 18.04.2022).

[29] Harald Hrubos-Strøm et al. ‘A Norwegian population-based study
on the risk and prevalence of obstructive sleep apnea’. In: Journal of
Sleep Research 20 (2010), pp. 162–170. DOI: 10.1111/j.1365-2869.2010.
00861.x.

[30] Medical electrical equipment — Part 2-61: Particular requirements for basic
safety and essential performance of pulse oximeter equipment. Standard.
Geneva, CH: International Organization for Standardization, 2017.

[31] Ergonomics of human-system interaction — Part 11: Usability: Definitions
and concepts. Standard. Geneva, CH: International Organization for
Standardization, 2018.

[32] Guðmundur Jónsson. ‘Investigating the Application of Semantic
Segmentation for Detecting Sleep Apnea in Polygraphy Data’. MA
thesis. Reprosentralen: University of Oslo, 2021.

[33] Stein Kristiansen et al. ‘A Clinical Evaluation of a Low-Cost Strain
Gauge Respiration Belt and Machine Learning to Detect Sleep
Apnea’. Unpublished. 2021.

[34] Stein Kristiansen et al. ‘Comparing manual and automatic scoring of
sleep monitoring data from portable polygraphy’. In: Journal of Sleep
Research 30 (2020), e13036. DOI: 10.1111/jsr.13036.

[35] Stein Kristiansen et al. ‘Data Mining for Patient Friendly Apnea
Detection’. In: IEEE Access 6 (2018), pp. 74598–74615. DOI: 10.1109/
ACCESS.2018.2882270.

[36] Stein Kristiansen et al. ‘Machine Learning for Sleep Apnea Detection
with Unattended Sleep Monitoring at Home’. In: Association for
Computing Machinery 2.2 (2021). DOI: 10.1145/3433987.

[37] Laboratory for Computational Physiology. URL: https : / / lcp .mit . edu /
physionet. (Accessed: 25.05.2022).

[38] Claire J. Lauterbach et al. ‘Accuracy and Reliability of Commercial
Wrist-Worn Pulse Oximeter During Normobaric Hypoxia Exposure
Under Resting Conditions’. In: Research Quarterly for Exercise and
Sport (2020), pp. 1–10. DOI: 10.1080/02701367.2020.1759768.

117

https://doi.org/10.1136/bmjresp-2021-000939
https://www.healthline.com/health/beauty-skin-care/fitzpatrick-skin-types
https://www.healthline.com/health/beauty-skin-care/fitzpatrick-skin-types
https://doi.org/10.1111/j.1365-2869.2010.00861.x
https://doi.org/10.1111/j.1365-2869.2010.00861.x
https://doi.org/10.1111/jsr.13036
https://doi.org/10.1109/ACCESS.2018.2882270
https://doi.org/10.1109/ACCESS.2018.2882270
https://doi.org/10.1145/3433987
https://lcp.mit.edu/physionet
https://lcp.mit.edu/physionet
https://doi.org/10.1080/02701367.2020.1759768


[39] Hooseok Lee, Hoon Ko and Jinseok Lee. ‘Reflectance pulse oximetry:
Practical issues and limitations’. In: ICT Express 2.4 (2016). Special
Issue on Emerging Technologies for Medical Diagnostics, pp. 195–
198. DOI: 10.1016/j.icte.2016.10.004.

[40] Fredrik Løberg. ‘Measuring the Signal Quality of Respiratory Effort
Sensors for Sleep Apnea Monitoring. A Metric Based Approach’. MA
thesis. Reprosentralen: University of Oslo, 2018.

[41] Fredrik Løberg, Vera Goebel and Thomas Plagemann. ‘Quantifying
the Signal Quality of Low-cost Respiratory Effort Sensors for Sleep
Apnea Monitoring’. In: 3rd International Workshop on Multimedia for
Personal Health and Health Care 3 (2018), pp. 1–9. DOI: 10 . 1145 /
3264996.3264998.

[42] Mary L McHugh. ‘Interrater reliability: the kappa statistic’. In:
Biochemia Medica 22.3 (2012), pp. 276–282. DOI: 10.5194/gmd-7-1247-
2014.

[43] Fábio Mendonça et al. ‘Devices for home detection of obstructive
sleep apnea: A review’. In: Sleep Medicine Reviews 41 (2018), pp. 149–
160. DOI: 10.1016/j.smrv.2018.02.004.

[44] Q. J. W. Milner and G. R. Mathews. ‘An assessment of the accuracy of
pulse oximeters’. In: Anaesthesia 67 (2012), pp. 396–401. DOI: 10.1111/
j.1365-2044.2011.07021.x.

[45] Meir Nitzan, Ayal Romem and Robert Koppel. ‘Pulse oximetry:
fundamentals and technology update’. In: Medical Devices: Evidence
and Research 7 (2014), pp. 231–239. DOI: 10.2147/MDER.S47319.

[46] Noxturnal Sleep Study Software – Sleep Software for Sleep Studies. URL:
https : / / noxmedical . com / products / noxturnal - software/. (Accessed:
09.03.2022).

[47] OSA blockage. URL: https : / / www . clevelandclinic . org / healthinfo /
ShowImage.ashx?PIC=4403&width=450. (Accessed: 26.05.2022).

[48] Sai Patwardhan. Simple understanding and implementation of KNN
algorithm! URL: https : / / www . analyticsvidhya . com / blog / 2021 /
04 / simple - understanding - and - implementation - of - knn - algorithm/.
(Accessed: 28.04.2022).

[49] Caleb Phillips et al. ‘WristO2: Reliable Peripheral Oxygen Saturation
Readings from Wrist-Worn Pulse Oximeters’. In: 2021 IEEE Interna-
tional Conference on Pervasive Computing and Communications Work-
shops and other Affiliated Events (PerCom Workshops). 2021, pp. 623–629.
DOI: 10.1109/PerComWorkshops51409.2021.9430986.

[50] Pulse Oximeter Accuracy and Limitations: FDA Safety Communication.
URL: https ://www.fda.gov/medical - devices/safety- communications/
pulse - oximeter - accuracy - and - limitations - fda - safety - communication.
(Accessed: 16.04.2022).

118

https://doi.org/10.1016/j.icte.2016.10.004
https://doi.org/10.1145/3264996.3264998
https://doi.org/10.1145/3264996.3264998
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.1016/j.smrv.2018.02.004
https://doi.org/10.1111/j.1365-2044.2011.07021.x
https://doi.org/10.1111/j.1365-2044.2011.07021.x
https://doi.org/10.2147/MDER.S47319
https://noxmedical.com/products/noxturnal-software/
https://www.clevelandclinic.org/healthinfo/ShowImage.ashx?PIC=4403&width=450
https://www.clevelandclinic.org/healthinfo/ShowImage.ashx?PIC=4403&width=450
https://www.analyticsvidhya.com/blog/2021/04/simple-understanding-and-implementation-of-knn-algorithm/
https://www.analyticsvidhya.com/blog/2021/04/simple-understanding-and-implementation-of-knn-algorithm/
https://doi.org/10.1109/PerComWorkshops51409.2021.9430986
https://www.fda.gov/medical-devices/safety-communications/pulse-oximeter-accuracy-and-limitations-fda-safety-communication
https://www.fda.gov/medical-devices/safety-communications/pulse-oximeter-accuracy-and-limitations-fda-safety-communication


[51] Naresh M. Punjabi. ‘The Epidemiology of Adult Obstructive Sleep
Apnea’. In: Proceedings of the American Thoracic Society 5.2 (2008),
pp. 136–143. DOI: 10.1513/pats.200709-155MG.

[52] PureSAT® Advantage. URL: https : / / www . nonin . com / wp - content /
uploads / 2018 / 09 / PureSAT - Advantage - Brochure . pdf. (Accessed:
22.05.2022).

[53] Allison Ragan. Taking the Confusion Out of Confusion Matrices. URL:
https://towardsdatascience.com/taking-the-confusion-out-of-confusion-
matrices-c1ce054b3d3e. (Accessed: 28.04.2022).

[54] Nur H. Rashid et al. ‘The Value of Oxygen Desaturation Index
for Diagnosing Obstructive Sleep Apnea: A Systematic Review’. In:
Laryngoscope 131 (2021), pp. 440–447. DOI: 10.1002/lary.28663.

[55] Jessica Vensel Rundo and Ralph Downey 3rd. ‘Polysomnography’.
In: Journal of Sleep Research 160 (2019), pp. 162–170. DOI: 10 . 1016 /
B978-0-444-64032-1.00025-4.

[56] Anshul Saini. An Introduction to Random Forest Algorithm for beginners.
URL: https://www.analyticsvidhya.com/blog/2021/10/an-introduction-
to-random-forest-algorithm-for-beginners/. (Accessed: 28.04.2022).

[57] Anshul Saini. Support Vector Machine(SVM): A Complete guide for
beginners. URL: https : / / www . analyticsvidhya . com / blog / 2021 /
10 / support - vector - machinessvm - a - complete - guide - for - beginners/.
(Accessed: 28.04.2022).

[58] Ashraf Saleh, Roesnita Binti Isamil and Norasikin Binti Fabil. ‘Ex-
tension of PACMAD Model For Usability Evaluation Metrics Using
Goal Question Metrics (GQM) Approach’. In: Journal of Theoretical and
Applied Information Technology 79.1 (2015), pp. 90–100.

[59] Jerome M. Siegel. ‘Sleep viewed as a state of adaptive inactivity’. In:
Nature Reviews Neuroscience 10 (2009), pp. 747–753. DOI: 10 . 1038 /
nrn2697.

[60] Jagat Deep Singh. ‘Nidra: An Extensible Android Application for
Recording, Sharing and Analyzing Breathing Data. An Engineering
Approach’. MA thesis. Reprosentralen: University of Oslo, 2019.

[61] Michael W. Sjoding et al. ‘Racial Bias in Pulse Oximetry Measure-
ment’. In: The New England Journal of Medicine 383.25 (2020), pp. 2477–
2478. DOI: 10.1056/NEJMc2029240.

[62] Sleep Diagnostics | Sleep Monitoring Devices | Nox Medical. URL: https:
//noxmedical.com/. (Accessed: 25.02.2022).

[63] Sleep studies. URL: https://commons.wikimedia.org/wiki/File:Sleep_
studies.jpg. (Accessed: 22.05.2022).

[64] Threadcurve Editorial Staff. 14 Top Smartwatch Brands You Need to
Know About. URL: https : / / threadcurve . com / smartwatch - brands/.
(Accessed: 25.04.2021).

[65] statistics | Hypothesis testing. URL: https : / / www . britannica . com /
science/statistics/Hypothesis-testing. (Accessed: 14.04.2022).

119

https://doi.org/10.1513/pats.200709-155MG
https://www.nonin.com/wp-content/uploads/2018/09/PureSAT-Advantage-Brochure.pdf
https://www.nonin.com/wp-content/uploads/2018/09/PureSAT-Advantage-Brochure.pdf
https://towardsdatascience.com/taking-the-confusion-out-of-confusion-matrices-c1ce054b3d3e
https://towardsdatascience.com/taking-the-confusion-out-of-confusion-matrices-c1ce054b3d3e
https://doi.org/10.1002/lary.28663
https://doi.org/10.1016/B978-0-444-64032-1.00025-4
https://doi.org/10.1016/B978-0-444-64032-1.00025-4
https://www.analyticsvidhya.com/blog/2021/10/an-introduction-to-random-forest-algorithm-for-beginners/
https://www.analyticsvidhya.com/blog/2021/10/an-introduction-to-random-forest-algorithm-for-beginners/
https://www.analyticsvidhya.com/blog/2021/10/support-vector-machinessvm-a-complete-guide-for-beginners/
https://www.analyticsvidhya.com/blog/2021/10/support-vector-machinessvm-a-complete-guide-for-beginners/
https://doi.org/10.1038/nrn2697
https://doi.org/10.1038/nrn2697
https://doi.org/10.1056/NEJMc2029240
https://noxmedical.com/
https://noxmedical.com/
https://commons.wikimedia.org/wiki/File:Sleep_studies.jpg
https://commons.wikimedia.org/wiki/File:Sleep_studies.jpg
https://threadcurve.com/smartwatch-brands/
https://www.britannica.com/science/statistics/Hypothesis-testing
https://www.britannica.com/science/statistics/Hypothesis-testing


[66] Eric Suni. Sleep Apnea. URL: https://www.sleepfoundation.org/sleep-
apnea. (Accessed: 03.11.2019).

[67] Divyanshi Tewari and Asavari Patil. Smartwatch Market Outlook -
2027. URL: https://www.alliedmarketresearch.com/smartwatch-market.
(Accessed: 25.04.2021).

[68] The Beginner’s Guide to Usability Testing [+ Sample Questions]. URL:
https : / / blog . hubspot . com / marketing / usability - testing. (Accessed:
13.01.2022).

[69] The Nox T3s - Next Generation HST Device. URL: https://noxmedical.
com/noxt3s/. (Accessed: 09.03.2022).

[70] Kevin K. Tremper and Steven J. Barker. ‘Pulse Oximetry’. In:
Anesthesiology 70 (1989), pp. 98–108. DOI: 10 . 1097 / 00000542 -
198901000-00019.

[71] Type I, Type II, Type III Sleep Monitors, CMS AASM Guidelines. URL:
https://clevemed.com/cms-aasm-guidelines-for-sleep-monitors-type- i-
type-ii-type-iii/. (Accessed: 26.05.2022).

[72] U.S. Department of Health and Human Services et al. ‘Pulse Oxi-
meters - Premarket Notification Submissions [510(k)s]: Guidance for
Industry and Food and Drug Administration Staff’. In: Center for
Devices and Radiological Health (2013).

[73] Understanding a Pulse Oximeter Report. URL: https : / / www .
beverlyhillstmjheadachepain .com/sleep- apnea/pulse - oximeter - report/.
(Accessed: 30.05.2021).

[74] Understanding the Results. URL: https : / / healthysleep . med . harvard .
edu / sleep - apnea / diagnosing - osa / understanding - results. (Accessed:
29.05.2022).

[75] What is machine learning? URL: https://www.sap.com/insights/what-is-
machine-learning.html. (Accessed: 29.05.2022).

[76] What Is the Maximum Bluetooth Range of My Garmin Watch or Edge
Device? URL: https : / / support . garmin . com / en - US / ?faq =
cRPwF2hIIv0hFYl35tj7T8. (Accessed: 25.04.2021).

[77] Cort J. Willmott and Kenji Matsuura. ‘Advantages of the mean
absolute error (MAE) over the root mean square error (RMSE) in
assessing average model performance’. In: Climate Research 30 (2005),
pp. 79–82. DOI: 10.3354/cr030079.

[78] WristOx2® Model 3150 with Bluetooth® Low Energy. URL: https : / /
www.nonin.com/products/wristox2-model-3150-with-ble/. (Accessed:
09.03.2022).

[79] Michael W. Wukitsch et al. ‘Pulse oximetry: analysis of theory,
technology, and practice’. In: Journal of clinical monitoring 4.4 (1988),
pp. 290–301. DOI: 10.1007/BF01617328.

120

https://www.sleepfoundation.org/sleep-apnea
https://www.sleepfoundation.org/sleep-apnea
https://www.alliedmarketresearch.com/smartwatch-market
https://blog.hubspot.com/marketing/usability-testing
https://noxmedical.com/noxt3s/
https://noxmedical.com/noxt3s/
https://doi.org/10.1097/00000542-198901000-00019
https://doi.org/10.1097/00000542-198901000-00019
https://clevemed.com/cms-aasm-guidelines-for-sleep-monitors-type-i-type-ii-type-iii/
https://clevemed.com/cms-aasm-guidelines-for-sleep-monitors-type-i-type-ii-type-iii/
https://www.beverlyhillstmjheadachepain.com/sleep-apnea/pulse-oximeter-report/
https://www.beverlyhillstmjheadachepain.com/sleep-apnea/pulse-oximeter-report/
https://healthysleep.med.harvard.edu/sleep-apnea/diagnosing-osa/understanding-results
https://healthysleep.med.harvard.edu/sleep-apnea/diagnosing-osa/understanding-results
https://www.sap.com/insights/what-is-machine-learning.html
https://www.sap.com/insights/what-is-machine-learning.html
https://support.garmin.com/en-US/?faq=cRPwF2hIIv0hFYl35tj7T8
https://support.garmin.com/en-US/?faq=cRPwF2hIIv0hFYl35tj7T8
https://doi.org/10.3354/cr030079
https://www.nonin.com/products/wristox2-model-3150-with-ble/
https://www.nonin.com/products/wristox2-model-3150-with-ble/
https://doi.org/10.1007/BF01617328


Part V

Appendices

121





Appendix A

Source Code

Following is a link to the repository containing all the work related to
this thesis: https://github.uio.no/franceal/francesca-master. A README-file
describes the project contents and how to run the different scripts.
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Appendix B

Consent Agreement

The consent agreement that had to be signed by the subjects before any
data could be collected. There is a Norwegian and English version of the
agreement.
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CESAR samtykkeerklæring for datainnsamling av
fysiologiske data

Evaluering av Garmin smartklokkers evne til å detektere obstrukt-
ivt søvnapne gjennom desaturasjon hendelser

Bakgrunn: I CESAR-prosjektet (finansert fra Norges forskningsråd) utfører
vi tverfaglig forskning (informatikk og medisin) for å kunne monitorere
obstruktivt søvnapne (Obstructive Sleep Apnea - OSA) hjemme for alle
pasienter. OSA blir i økende grad anerkjent som en viktig årsak
(sykdom) til medisinsk sykelighet og dødelighet. OSA er en relativt vanlig
søvnforstyrrelse som er karakterisert ved gjentatte episoder med delvis
eller fullstendig kollabering av de øvre luftveier under søvn. Det er
estimert at omkring 70-80% av OSA-tilfeller ikke blir diagnostisert. Men
også for de som blir diagnostisert tar det ofte for lang tid før en anbefaler
en klinisk utredning for OSA fordi symptomene som pasientene beskriver
kan ha mange ulike årsaker. Videre er terskelverdien for å starte en OSA-
diagnoseprosess veldig høy.

Diagnosen blir vanlighvis gjennomført i et søvnlaboratorium på syke-
hus ved bruk av polysomnogrrafiinstrumenter med spesielle tester som
er ukomfortable for pasienten og som er veldig kostbare (fordi de krever
mange ressurser).

Moderne smarttelefoner og billige helsesensorer utgjør en lovende
plattform for å samle inn OSA-relatert data hjemme. Målet er å gjøre
det enkelt for vanlige brukere å få en pekepinn på om man burde
kontakte fastlege for å vurdere om en OSAutredning bør gjennomføres.
Formålet er å starte diagnoseprosessen så tidlig som mulig uten å
overdiagnostisere pasientene. For å oppnå dette skal vi utvikle ny
programvare som bruker maskinlæring og dagens konsumerelektronikk
med egnede sensorer for å supplere klassisk polysomnografi. Vi skal
undersøke anvendeligheten av veiledet og ikke veiledet maskinlæring for
å identifisere viktige/interessante mønster i dataene som kan generere ny
kunnskap i OSA-forskningen og for å utvikle verktøy for on-line analyse.
Metodene for å designe verktøy for on-line analyse skal være anvendbare
også for personer med lite IT-kunnskap slik at de kan gjøre tilpasninger
som muliggjør personspesifisk OSA-analyse.

Datainnsamling: Følgende fysiologiske data blir samlet inn for bruk i vår
studie: kjønn, hudtype som definert av Fitzpatrick skalaen, oxygenmetning
og akselerometer data.

Frivillig deltakelse: All deltagelse er frivillig, og du kan trekke deg når som
helst. Du kan når som helst avslutte datainnsamling eller trekke tilbake
informasjon som er gitt under observasjon.

Anonymitet: Opptakene (datasett) vil bli anonymisert. Det vil si at ingen
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andre enn prosjektmedlemer vil vite hvem som er blitt monitorert, og
informasjonen vil ikke kunne tilbakeføres til deg. Før opptakene begynner
ber vi deg om å samtykke i deltagelsen ved å undertegne på at du har lest
og forstått informasjonen på dette arket og ønsker å delta.

Samtykke: Jeg har lest informasjonen ovenfor og samtykker i at de nevnte
opplysningene registreres i CESAR-OSA databasen og gjøres tilgjengelig
for forskning i CESAR prosjektet.

Navn, sted, dato og signatur
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CESAR agreement for physiological data collection

Evaluating Garmin Smartwatches Ability to Detect Obstructive
Sleep Apnea (OSA) Through Desaturation Events

Background: The CESAR project (financed by the Norwegian Research
Council) performs interdisciplinary research (computer science and medi-
cine) to enable monitoring of Obstructive Sleep Apnea (OSA) at home for
everybody. OSA is being increasingly recognized as an important cause of
medical morbidity and mortality. It is a relatively common sleep disorder
that is characterized by recurrent episodes of partial or complete collapse
of the upper airway during sleep. It is estimated that about 70-80% of OSA
cases are not diagnosed. Proper sleep is crucial for maintaining good phys-
ical and mental health.

Diagnosing OSA is usually done by hospitalization in sleep laboratories
with polysomnographic instruments with multi-parametric tests. The
overall process of diagnosing OSA is on the one hand rather uncomfortable
for the patients and on the other hand it is very resource demanding in
terms of costs of specialized equipment, hospital space, staff for patient
support, and expert assessment of polysomnography results. Modern
smart phones and low-cost medical/health sensors are a promising
platform to collect OSA related data at home. We aim to make it easier
for the average user to be able to get an idea if she/he should contact
a physician for to perform an OSA examination. To achieve this we
will develop new software solutions using machine learning techniques
to bridge state-of-the-art consumer electronic devices with appropriate
sensors to supplement the classical polysomnography. We will investigate
the usefulness of supervised and unsupervised learning (data mining)
techniques to identify interesting data patterns that might lead to new
knowledge in OSA research and to support the design and engineering of
the on-line analysis tool. The design of the on-line analysis tool is driven
by the goal to enable individuals with limited computing skill to customize
and personalize the on-line analysis.

Collected data: We collect the following physiological data to be used in
our research: gender, skin type as defined by the Fitzpatrick scale, oxygen
saturation, and accelerometer.

Voluntary participation: All participation is voluntary. You can terminate
your participation in the physiological data collection at any time. You can
withdraw your information (demand the deletion of your data) at any time.

Anonymity: Your registered data will be anonymized, that means only
the project members will know who is monitored, and your information
can not be linked to your person. Before the data registration can start,
you need to read, understand and sign this agreement that you want to
participate in this study.
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Agreement: I have read the information above and I agree that the described
physiological data will be registered in the CESAR-OSA database and that
the information will be used for research in the CESAR project.

Name, place, date and signature
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Appendix C

Usability Test Guide

This usability test guide was used for conducting the usability tests of the
Cesar smartwatches app.
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C.1 Welcome and Purpose

Thank you so much for wanting to participate in this usability test. I
wanted to give you a little information about what you will be doing and
give you time to ask any questions you might have before we get started.

You will serve as an evaluator of an app and complete a set of tasks. Our
goal is to see how easy or difficult you find the app to use and if there are
any improvements that could be made. I am here to record your experience
and comments about the app. During this session, I would like you to think
aloud as you work to complete the tasks. I may ask you to clarify what you
have said or ask you for information on what you were looking for or what
you expect to have happen.

You will have to wear this Garmin Venu 2S smartwatch and the app to
be evaluated is called Cesar Smartwatches and can be found on this Android
phone. You are going to perform the two main tasks that can be done in
the app and tell me how easy or difficult they were to perform. There is
no right or wrong answers so please use the app as you normally would
any other app. If you have any questions, comments or areas of confusion
while you are working, please let me know. Try to work through the tasks
based on what you see on screen, but if you reach a point where you are
not sure what to do then you can ask for assistance.

We will be doing an audio recording of this session for reference if
needed. Your name will not be associated or reported with data or findings
from this evaluation and you are free to end the session whenever you like.
The session will start with some background questions about your phone
and app use. I may ask you other questions as we go and we will have
wrap up questions at the end.

132



C.2 Introductory Questions

• Are you familiar with smartwatches? Do you currently own/use a
smartwatch? Have you previously used/owned a smartwatch?

• If yes, do you often use apps connected to the watch?

• How would you describe your phone use, especially apps on your
phone?

C.3 Tasks

• First task: Subject has to pair the Venu 2S watch with the app.

Figure C.1: State-transition diagram of pairing a device

– What was this experience like?

– Did you find it easy or difficult to pair the watch?

– Is there something that was confusing/didn’t understand?

• Second task: Subject has to start and end a new recording.

Figure C.2: State-transition diagram of performing a recording

– What was this experience like?

– Did you find it easy or difficult to record?

– Is there something that was confusing/didn’t understand?
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C.4 Exit Questions/Final User Impressions

• What is your overall impression of the app?

• What did you like best about the app?

• What did you like least about the app?

• What would you like to improve with the app if you had the
opportunity?

• Is there anything that you feel is missing on the app?

• Do you have any other final comments or questions?

• Are you interested in taking part in a follow-up test with a later
version of the app?
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Appendix D

Experiment Results

The results of the classification performance metrics for each recording
for all classifiers, and all signal quality metrics for each recording. The
recordings are sorted from best to worst for the quality metrics table.
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D.1 Classification Performance Results

ODI - Normal

Device κ Accuracy Sensitivity Specificity

R-101
Garmin -0.119 0.667 0.0 0.909

Nox 0.0 0.733 0.0 1.0

R-102
Garmin -0.256 0.5 0.0 0.778

Nox 0.243 0.714 0.2 1.0

R-103
Garmin 0.025 0.538 0.167 0.857

Nox 0.0 0.538 0.0 1.0

R-106
Garmin -0.037 0.429 0.125 0.833

Nox 0.0 0.429 0.0 1.0

R-109
Garmin -0.125 0.6 0.0 0.9

Nox 0.0 0.667 0.0 1.0

R-1013
Garmin 0.34 0.643 0.375 1.0

Nox 0.0 0.429 0.0 1.0

R-1014
Garmin 0.0 0.786 0.0 1.0

Nox 0.0 0.786 0.0 1.0

R-1015
Garmin 0.0 0.857 0.0 1.0

Nox 0.0 0.857 0.0 1.0

Mean
Garmin -0.021(±0.2) 0.63(±0.1) 0.083(±0.1) 0.91(±0.08)

Nox 0.03(±0.09) 0.64(±0.2) 0.025(±0.07) 1.0(±0e+00)

Table D.1: Performance metrics for ODI on normal
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ODI - Tight

Device κ Accuracy Sensitivity Specificity

R-211
Garmin 0.0 0.769 0.0 1.0

Nox 0.755 0.923 0.667 1.0

R-1115
Garmin 0.44 0.857 0.333 1.0

Nox 0.0 0.786 0.0 1.0

R-117
Garmin 0.0 0.786 0.0 1.0

Nox 0.0 0.786 0.0 1.0

R-1114
Garmin 0.0 0.857 0.0 1.0

Nox 0.0 0.857 0.0 1.0

R-115
Garmin 0.323 0.786 0.25 1.0

Nox 0.0 0.714 0.0 1.0

R-111
Garmin 0.0 0.571 0.0 1.0

Nox 0.0 0.571 0.0 1.0

R-112
Garmin 0.0 0.714 0.0 1.0

Nox 0.0 0.714 0.0 1.0

R-119
Garmin 0.462 0.786 0.4 1.0

Nox 0.0 0.643 0.0 1.0

Mean
Garmin 0.15(±0.2) 0.77(±0.09) 0.12(±0.2) 1.0(±0e+00)

Nox 0.094(±0.3) 0.75(±0.1) 0.083(±0.2) 1.0(±0e+00)

Table D.2: Performance metrics for ODI on tight

ODI - Back

Device κ Accuracy Sensitivity Specificity

R-1214
Garmin 0.0 0.769 0.0 1.0

Nox 0.435 0.846 0.333 1.0

R-123
Garmin 0.103 0.643 0.2 0.889

Nox 0.243 0.714 0.2 1.0

R-122
Garmin -0.132 0.467 0.0 0.875

Nox 0.0 0.533 0.0 1.0

R-121
Garmin 0.0 0.643 0.0 1.0

Nox 0.0 0.643 0.0 1.0

R-221
Garmin 0.0 0.727 0.0 1.0

Nox 0.0 0.727 0.0 1.0

Mean
Garmin -0.0058(±0.08) 0.65(±0.1) 0.04(±0.09) 0.95(±0.06)

Nox 0.14(±0.2) 0.69(±0.1) 0.11(±0.2) 1.0(±0e+00)

Table D.3: Performance metrics for ODI on back
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ODI - Overnight

Device κ Accuracy Sensitivity Specificity

R-1315
Garmin 0.128 0.859 0.412 0.876

Nox 0.0 0.962 0.0 1.0

R-139
Garmin 0.038 0.912 0.077 0.958

Nox 0.0 0.948 0.0 1.0

R-1312
Garmin 0.124 0.97 0.333 0.975

Nox 0.0 0.993 0.0 1.0

R-136
Garmin -0.083 0.641 0.1 0.828

Nox 0.0 0.744 0.0 1.0

R-135
Garmin 0.006 0.889 0.018 0.986

Nox 0.0 0.9 0.0 1.0

R-131
Garmin 0.096 0.836 0.164 0.923

Nox 0.0 0.886 0.0 1.0

R-132
Garmin -0.022 0.948 0.0 0.963

Nox 0.0 0.985 0.0 1.0

R-133
Garmin 0.066 0.917 0.2 0.933

Nox 0.178 0.98 0.1 1.0

R-236
Garmin -0.006 0.667 0.042 0.954

Nox 0.148 0.719 0.117 0.996

R-231
Garmin -0.027 0.873 0.029 0.948

Nox -0.013 0.911 0.0 0.992

R-232
Garmin -0.014 0.938 0.0 0.945

Nox 0.0 0.992 0.0 1.0

Mean
Garmin 0.028(±0.07) 0.86(±0.1) 0.12(±0.1) 0.94(±0.05)

Nox 0.028(±0.07) 0.91(±0.1) 0.02(±0.04) 1.0(±0.003)

Table D.4: Performance metrics for ODI on overnight
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KNN - Normal

Device κ Accuracy Sensitivity Specificity

R-1015
Garmin 0.0 0.5 0.5 0.5

Nox 1.0 1.0 1.0 1.0

R-1014
Garmin 0.0 0.5 0.333 0.667

Nox 0.0 0.5 0.0 1.0

R-1013
Garmin -0.167 0.417 0.667 0.167

Nox 0.333 0.667 0.333 1.0

R-102
Garmin -0.2 0.4 0.6 0.2

Nox 0.2 0.6 0.2 1.0

R-103
Garmin 0.333 0.667 0.5 0.833

Nox 0.167 0.583 0.333 0.833

R-101
Garmin 0.0 0.5 0.25 0.75

Nox 0.5 0.75 0.5 1.0

R-106
Garmin 0.167 0.583 0.667 0.5

Nox 0.333 0.667 0.667 0.667

R-109
Garmin -0.4 0.3 0.4 0.2

Nox 0.0 0.5 0.0 1.0

Mean
Garmin -0.033(±0.2) 0.48(±0.1) 0.49(±0.2) 0.48(±0.3)

Nox 0.32(±0.3) 0.66(±0.2) 0.38(±0.3) 0.94(±0.1)

Table D.5: Performance metrics for KNN on normal
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KNN - Tight

Device κ Accuracy Sensitivity Specificity

R-211
Garmin 0.0 0.5 1.0 0.0

Nox 0.333 0.667 0.333 1.0

R-1115
Garmin 0.333 0.667 0.667 0.667

Nox 0.333 0.667 0.333 1.0

R-117
Garmin 0.333 0.667 1.0 0.333

Nox 0.0 0.5 0.0 1.0

R-1114
Garmin 0.5 0.75 0.5 1.0

Nox 0.0 0.5 0.5 0.5

R-115
Garmin 0.25 0.625 0.5 0.75

Nox 0.0 0.5 0.25 0.75

R-111
Garmin 0.167 0.583 0.333 0.833

Nox 0.5 0.75 0.5 1.0

R-112
Garmin -0.25 0.375 0.5 0.25

Nox 0.0 0.5 0.0 1.0

R-119
Garmin 0.2 0.6 0.6 0.6

Nox 0.2 0.6 0.6 0.6

Mean
Garmin 0.19(±0.2) 0.6(±0.1) 0.64(±0.2) 0.55(±0.3)

Nox 0.17(±0.2) 0.59(±0.1) 0.31(±0.2) 0.86(±0.2)

Table D.6: Performance metrics for KNN on tight

KNN - Back

Device κ Accuracy Sensitivity Specificity

R-1214
Garmin 0.667 0.833 0.667 1.0

Nox 0.667 0.833 0.667 1.0

R-123
Garmin 0.0 0.5 0.4 0.6

Nox 0.2 0.6 0.2 1.0

R-122
Garmin 0.714 0.857 0.857 0.857

Nox 0.143 0.571 0.143 1.0

R-121
Garmin 0.2 0.6 0.6 0.6

Nox 0.2 0.6 0.4 0.8

R-221
Garmin 0.0 0.5 0.0 1.0

Nox 0.0 0.5 0.0 1.0

Mean
Garmin 0.32(±0.4) 0.66(±0.2) 0.5(±0.3) 0.81(±0.2)

Nox 0.24(±0.3) 0.62(±0.1) 0.28(±0.3) 0.96(±0.09)

Table D.7: Performance metrics for KNN on back
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KNN - Overnight

Device κ Accuracy Sensitivity Specificity

R-1315
Garmin 0.118 0.559 0.588 0.529

Nox 0.588 0.794 0.765 0.824

R-139
Garmin 0.115 0.558 0.577 0.538

Nox 0.615 0.808 0.654 0.962

R-1312
Garmin 0.0 0.5 0.667 0.333

Nox 0.333 0.667 0.333 1.0

R-136
Garmin -0.2 0.4 0.4 0.4

Nox 0.5 0.75 0.6 0.9

R-135
Garmin 0.109 0.555 0.545 0.564

Nox 0.4 0.7 0.436 0.964

R-131
Garmin 0.164 0.582 0.545 0.618

Nox 0.418 0.709 0.436 0.982

R-132
Garmin -0.4 0.3 0.2 0.4

Nox 0.2 0.6 0.2 1.0

R-133
Garmin 0.0 0.5 0.7 0.3

Nox 0.5 0.75 0.5 1.0

R-236
Garmin 0.083 0.542 0.425 0.658

Nox 0.425 0.712 0.55 0.875

R-231
Garmin 0.235 0.618 0.471 0.765

Nox 0.471 0.735 0.529 0.941

R-232
Garmin -0.667 0.167 0.333 0.0

Nox 0.667 0.833 1.0 0.667

Mean
Garmin -0.04(±0.3) 0.48(±0.1) 0.5(±0.1) 0.46(±0.2)

Nox 0.47(±0.1) 0.73(±0.07) 0.55(±0.2) 0.92(±0.1)

Table D.8: Performance metrics for KNN on overnight
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SVM - Normal

Device κ Accuracy Sensitivity Specificity

R-1015
Garmin -0.5 0.25 0.5 0.0

Nox 1.0 1.0 1.0 1.0

R-1014
Garmin -0.333 0.333 0.333 0.333

Nox 0.0 0.5 0.333 0.667

R-1013
Garmin -0.333 0.333 0.5 0.167

Nox 0.333 0.667 1.0 0.333

R-102
Garmin 0.0 0.5 1.0 0.0

Nox 0.2 0.6 0.2 1.0

R-103
Garmin 0.333 0.667 0.5 0.833

Nox 0.667 0.833 0.667 1.0

R-101
Garmin 0.0 0.5 0.0 1.0

Nox 0.5 0.75 0.5 1.0

R-106
Garmin 0.5 0.75 1.0 0.5

Nox 0.667 0.833 0.833 0.833

R-109
Garmin 0.2 0.6 0.4 0.8

Nox 0.2 0.6 0.6 0.6

Mean
Garmin -0.017(±0.4) 0.49(±0.2) 0.53(±0.3) 0.45(±0.4)

Nox 0.45(±0.3) 0.72(±0.2) 0.64(±0.3) 0.8(±0.2)

Table D.9: Performance metrics for SVM on normal
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SVM - Tight

Device κ Accuracy Sensitivity Specificity

R-211
Garmin 0.0 0.5 1.0 0.0

Nox 0.667 0.833 0.667 1.0

R-1115
Garmin 1.0 1.0 1.0 1.0

Nox 0.333 0.667 1.0 0.333

R-117
Garmin 0.667 0.833 1.0 0.667

Nox 0.0 0.5 0.0 1.0

R-1114
Garmin 0.0 0.5 0.5 0.5

Nox 0.0 0.5 0.5 0.5

R-115
Garmin -0.5 0.25 0.25 0.25

Nox 0.75 0.875 1.0 0.75

R-111
Garmin 0.0 0.5 0.167 0.833

Nox 0.167 0.583 1.0 0.167

R-112
Garmin 0.0 0.5 0.5 0.5

Nox 0.25 0.625 0.25 1.0

R-119
Garmin -0.2 0.4 0.6 0.2

Nox 0.0 0.5 1.0 0.0

Mean
Garmin 0.12(±0.5) 0.56(±0.2) 0.63(±0.3) 0.49(±0.3)

Nox 0.27(±0.3) 0.64(±0.1) 0.68(±0.4) 0.59(±0.4)

Table D.10: Performance metrics for SVM on tight

SVM - Back

Device κ Accuracy Sensitivity Specificity

R-1214
Garmin 0.0 0.5 0.333 0.667

Nox 0.0 0.5 0.667 0.333

R-123
Garmin 0.4 0.7 1.0 0.4

Nox 0.6 0.8 0.6 1.0

R-122
Garmin -0.571 0.214 0.0 0.429

Nox 0.143 0.571 0.143 1.0

R-121
Garmin 0.0 0.5 1.0 0.0

Nox -0.2 0.4 0.8 0.0

R-221
Garmin 0.0 0.5 0.0 1.0

Nox 0.333 0.667 0.333 1.0

Mean
Garmin -0.034(±0.3) 0.48(±0.2) 0.47(±0.5) 0.5(±0.4)

Nox 0.18(±0.3) 0.59(±0.2) 0.51(±0.3) 0.67(±0.5)

Table D.11: Performance metrics for SVM on back
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SVM - Overnight

Device κ Accuracy Sensitivity Specificity

R-1315
Garmin 0.059 0.529 0.588 0.471

Nox 0.647 0.824 0.882 0.765

R-139
Garmin 0.115 0.558 0.654 0.462

Nox 0.577 0.788 0.654 0.923

R-1312
Garmin 0.333 0.667 0.667 0.667

Nox 0.667 0.833 0.667 1.0

R-136
Garmin 0.2 0.6 0.6 0.6

Nox 0.6 0.8 0.8 0.8

R-135
Garmin 0.0 0.5 0.073 0.927

Nox 0.491 0.745 0.618 0.873

R-131
Garmin 0.145 0.573 0.491 0.655

Nox 0.382 0.691 0.455 0.927

R-132
Garmin -0.4 0.3 0.0 0.6

Nox 0.6 0.8 0.8 0.8

R-133
Garmin 0.0 0.5 0.5 0.5

Nox 0.4 0.7 1.0 0.4

R-236
Garmin 0.1 0.55 0.583 0.517

Nox 0.533 0.767 0.875 0.658

R-231
Garmin 0.0 0.5 0.147 0.853

Nox 0.353 0.676 0.588 0.765

R-232
Garmin 0.0 0.5 0.0 1.0

Nox 0.667 0.833 1.0 0.667

Mean
Garmin 0.05(±0.2) 0.53(±0.09) 0.39(±0.3) 0.66(±0.2)

Nox 0.54(±0.1) 0.77(±0.06) 0.76(±0.2) 0.78(±0.2)

Table D.12: Performance metrics for SVM on overnight
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RF - Normal

Device κ Accuracy Sensitivity Specificity

R-1015
Garmin 0.5 0.75 0.5 1.0

Nox 0.5 0.75 1.0 0.5

R-1014
Garmin -0.333 0.333 0.333 0.333

Nox 0.0 0.5 0.333 0.667

R-1013
Garmin -0.167 0.417 0.667 0.167

Nox 0.167 0.583 0.5 0.667

R-102
Garmin 0.0 0.5 0.8 0.2

Nox 0.4 0.7 0.4 1.0

R-103
Garmin 0.0 0.5 0.167 0.833

Nox 0.5 0.75 0.667 0.833

R-101
Garmin -0.5 0.25 0.0 0.5

Nox 0.25 0.625 0.5 0.75

R-106
Garmin 0.0 0.5 0.5 0.5

Nox 0.0 0.5 0.667 0.333

R-109
Garmin 0.2 0.6 0.4 0.8

Nox 0.2 0.6 0.4 0.8

Mean
Garmin -0.038(±0.3) 0.48(±0.2) 0.42(±0.3) 0.54(±0.3)

Nox 0.25(±0.2) 0.63(±0.1) 0.56(±0.2) 0.69(±0.2)

Table D.13: Performance metrics for RF on normal
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RF - Tight

Device κ Accuracy Sensitivity Specificity

R-211
Garmin 0.333 0.667 1.0 0.333

Nox 0.667 0.833 0.667 1.0

R-1115
Garmin 0.333 0.667 0.667 0.667

Nox 0.667 0.833 0.667 1.0

R-117
Garmin 0.667 0.833 1.0 0.667

Nox 0.0 0.5 0.0 1.0

R-1114
Garmin 0.0 0.5 0.5 0.5

Nox 0.0 0.5 1.0 0.0

R-115
Garmin 0.25 0.625 0.5 0.75

Nox 0.75 0.875 1.0 0.75

R-111
Garmin 0.167 0.583 0.5 0.667

Nox 0.5 0.75 0.833 0.667

R-112
Garmin -0.25 0.375 0.5 0.25

Nox 0.5 0.75 0.5 1.0

R-119
Garmin 0.0 0.5 0.6 0.4

Nox 0.6 0.8 1.0 0.6

Mean
Garmin 0.19(±0.3) 0.59(±0.1) 0.66(±0.2) 0.53(±0.2)

Nox 0.46(±0.3) 0.73(±0.1) 0.71(±0.3) 0.75(±0.3)

Table D.14: Performance metrics for RF on tight

RF - Back

Device κ Accuracy Sensitivity Specificity

R-1214
Garmin 0.0 0.5 0.333 0.667

Nox 0.667 0.833 0.667 1.0

R-123
Garmin 0.0 0.5 0.8 0.2

Nox 0.6 0.8 0.6 1.0

R-122
Garmin -0.143 0.429 0.286 0.571

Nox 0.143 0.571 0.143 1.0

R-121
Garmin 0.2 0.6 0.6 0.6

Nox 0.2 0.6 0.6 0.6

R-221
Garmin -0.333 0.333 0.0 0.667

Nox 0.667 0.833 0.667 1.0

Mean
Garmin -0.055(±0.2) 0.47(±0.1) 0.4(±0.3) 0.54(±0.2)

Nox 0.46(±0.3) 0.73(±0.1) 0.54(±0.2) 0.92(±0.2)

Table D.15: Performance metrics for RF on back
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RF - Overnight

Device κ Accuracy Sensitivity Specificity

R-1315
Garmin 0.118 0.559 0.588 0.529

Nox 0.706 0.853 0.941 0.765

R-139
Garmin 0.038 0.519 0.654 0.385

Nox 0.577 0.788 0.692 0.885

R-1312
Garmin 0.0 0.5 0.667 0.333

Nox 0.333 0.667 0.333 1.0

R-136
Garmin -0.3 0.35 0.5 0.2

Nox 0.5 0.75 0.8 0.7

R-135
Garmin 0.218 0.609 0.636 0.582

Nox 0.564 0.782 0.727 0.836

R-131
Garmin 0.218 0.609 0.636 0.582

Nox 0.473 0.736 0.636 0.836

R-132
Garmin 0.2 0.6 0.4 0.8

Nox 0.8 0.9 1.0 0.8

R-133
Garmin 0.5 0.75 0.9 0.6

Nox 0.5 0.75 0.8 0.7

R-236
Garmin 0.175 0.588 0.575 0.6

Nox 0.392 0.696 0.808 0.583

R-231
Garmin 0.0 0.5 0.441 0.559

Nox 0.441 0.721 0.824 0.618

R-232
Garmin 0.0 0.5 0.333 0.667

Nox 0.333 0.667 0.333 1.0

Mean
Garmin 0.11(±0.2) 0.55(±0.1) 0.58(±0.2) 0.53(±0.2)

Nox 0.51(±0.1) 0.76(±0.07) 0.72(±0.2) 0.79(±0.1)

Table D.16: Performance metrics for RF on overnight
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D.2 Signal Quality Results

Accuracy MAE Mean Bias Precision Upper LoA Lower LoA

R-1010* 0.975 0.733 0.353 1.817 2.134 -1.427

R-104 1.305 1.133 -0.720 2.178 1.414 -2.854

R-117 1.315 1.025 -0.966 1.784 0.782 -2.715

R-1015 1.519 1.340 -0.794 2.589 1.744 -3.332

R-201 1.647 1.304 -0.117 3.285 3.103 -3.336

R-127 1.682 1.356 -0.416 3.260 2.779 -3.611

R-108 1.701 1.349 0.276 3.356 3.565 -3.014

R-1215 1.849 1.624 -1.376 2.471 1.046 -3.797

R-114 1.854 1.587 -1.369 2.500 1.081 -3.819

R-1011 1.889 1.566 -1.490 2.324 0.787 -3.767

R-211 2.008 1.141 0.069 4.013 4.002 -3.863

R-136 2.017 1.560 0.728 3.762 4.415 -2.959

R-1115 2.094 1.676 -0.252 4.158 3.823 -4.327

R-122 2.120 1.686 1.204 3.489 4.624 -2.215

R-135 2.159 1.487 0.337 4.265 4.517 -3.842

R-109 2.279 1.685 -0.551 4.423 3.784 -4.885

R-115 2.291 1.956 1.280 3.799 5.003 -2.442

R-101 2.348 2.101 2.091 2.137 4.185 -0.004

R-113 2.349 1.974 -1.157 4.087 2.848 -5.163

R-1214 2.357 2.073 -1.611 3.441 1.761 -4.983

R-102 2.383 1.560 0.661 4.578 5.148 -3.825

R-1013 2.465 2.016 0.024 4.931 4.856 -4.808

R-221 2.468 2.190 1.178 4.337 5.428 -3.073

R-139 2.679 2.209 -1.370 4.605 3.142 -5.883

R-132 2.769 2.278 1.683 4.396 5.992 -2.625

R-119 2.788 2.176 -0.704 5.395 4.583 -5.992

R-121 2.827 2.294 -2.183 3.594 1.339 -5.705

R-107 2.852 2.516 2.306 3.357 5.596 -0.984

R-133 2.870 2.251 0.809 5.507 6.206 -4.589

R-111 2.937 2.333 -0.661 5.724 4.948 -6.270

R-1014 3.065 2.413 -2.097 4.472 2.286 -6.479

R-236 3.146 2.528 -0.588 6.181 5.469 -6.645

R-103 3.155 2.616 2.039 4.815 6.758 -2.680

R-1312 3.286 2.632 1.667 5.664 7.218 -3.883

R-1114 3.441 3.298 -3.298 1.963 -1.373 -5.222
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R-124 3.851 2.703 0.959 7.459 8.269 -6.351

R-231 3.983 2.487 2.255 6.566 8.689 -4.180

R-1012 4.079 3.339 3.284 4.839 8.026 -1.459

R-106 4.552 3.637 1.972 8.206 10.014 -6.071

R-1315 4.823 3.670 3.189 7.237 10.281 -3.904

R-131 5.135 3.952 3.850 6.796 10.510 -2.810

R-232 5.416 4.506 3.671 7.964 11.476 -4.134

R-105** 5.609 5.515 5.515 2.038 7.512 3.518

R-123 7.582 6.206 6.015 9.231 15.062 -3.031

R-112 9.883 7.359 6.806 14.332 20.851 -7.240

Mean 3.01(±1.6) 2.39(±1.3) 0.62(±2.1) 4.73(±2.3) 5.26(±4.1) -4.02(±1.6)

Table D.17: Signal quality metrics for all experiments. Light gray → normal
experiment, medium → tight experiment, dark → back of the wrist and white →
overnight monitoring. *Venu 2S recorded only 150 SpO2 signals, not included.
**No variation in oximetry data detected by Venu 2S, not included
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