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Abstract

The aim of this thesis is to investigate the diagonals of doubly stochastic
matrices. More specifically, we have studied doubly stochastic matrices with
constant diagonal sums, and how small modifications made to these matrices
alter the diagonal sums. We have defined a specific operation in modifying these
matrices, and found some results on how this operation alters the diagonals and
diagonal sums of the matrices. Among the results, we found that the modified
diagonal sums correspond to the modifications made to the matrices. In our
work, we studied a specific class of doubly stochastic matrices with constant
diagonal sums, in addition to randomly generated matrices using Matlab.
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CHAPTER 1

Introduction

1.1 Introduction

The main topic of this thesis is diagonals of doubly stochastic matrices. More
specifically, we have studied doubly stochastic matrices with restricted constant
diagonal sums (RCDS). This entails that the sum of all diagonals which do
not contain any zeros are constant. RCDS matrices have been studied by
Brualdi & Dahl [3], and our work in this thesis is based on their article Diagonal
sums of doubly stochastic matrices (2021). The patterns of RCDS matrices are
complicated, and there does not yet exist a method to find them all. Brualdi
& Dahl [3] have provided us with algorithms to construct some of them, in
addition to certain characterizations of the matrices, which we have used in
our work. Since the diagonals we are studying do not contain any zeros, the
zero positions of matrices influence the possible diagonals that can be obtained.
Lest we procure arbitrary results, we have restricted the matrices in our work
to be fully indecomposable.

With the basis of RCDS matrices from Brualdi & Dahl [3], we have studied
the diagonals and diagonal sums of these matrices. Moreover, we have made
some modifications to the matrices, and studied how the modifications alter the
diagonals and their sums. When exploring these matrices and their diagonals,
we have used Matlab [10] to generate doubly stochastic and RCDS matrices.
This work have produced some general results which will be presented in this
thesis.

The current chapter will present preliminary theory relevant to our work.
This entails theory on linear algebra, matrix theory and majorization, which
is mainly based on the work of Brualdi [5], Dahl [7] and Marshall et al. [9].
Moreover, we will present theory on convexity and polyhedra, of which we have
studied the work by Dahl [6]. There is a close relation between matrix theory
and graph theory, and we will present some graph theory by Bondy & Murty
[2], Brualdi & Ryser [4] and Dahl [7]. Matrix diagonals can be associated to
perfect matchings in a bipartite graph and the optimal assignment problem,
which will be discussed in this thesis. In the following chapters, we will go
deeper into matrix diagonals and RCDS doubly stochastic matrices. In those
chapters, several results from Brualdi & Dahl [3] will be presented.
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1.2. Outline

1.2 Outline

The thesis is organized as follows:

Chapter 1 introduces the topic of the thesis and presents preliminaries,
including theory on convexity, graphs, permutations and doubly stochastic
matrices.

Chapter 2 introduces diagonals, fully indecomposable matrices, matrices with
restricted constant diagonal sums (RCDS), and explores the diagonals of
certain RCDS matrices.

Chapter 3 explores how modifications made to RCDS matrices alters the
diagonals and diagonal sums of the matrices.

Chapter 4 explains the Matlab codes that were used in the work of this thesis

Chapter 5 is a conclusion of the thesis.

Appendix A consists of Matlab codes that were made and used for the work
in this thesis.

1.3 Vector space

We begin by defining a vector space.

Definition 1.3.1. Let Mm,n be the space consisting of real m × n matrices.
Mm,n is a vector space if the matrices are defined under addition and
multiplication by scalars, i.e. the following conditions hold for all matrices
A = [aij ], B = [bij ] ∈Mm,n and scalars c ∈ R,

(i) A+B = C = [cij ] where cij = aij + bij

(ii) cA = [c · aij ]

In the case where m = n, we denote the vector space as Mn.

Definition 1.3.2. Let Rn be the Euclidean space consisting of real vectors of
length n. Rn is a vector space if the vectors are defined under addition and
multiplication by scalars, i.e. the following conditions hold for all vectors
u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Rn and scalars c ∈ R,

(i) u+ v = w where w = (u1 + v1, u2 + v2, . . . , un + vn)

(ii) cu = (cu1, cu2, . . . , cun)

Consider the vectors x1, x2, . . . , xn ∈ Rn. Following [11], a linear
combination is a sum of scalar multiples of these vectors, i.e. a1x1 + a2x2 +
· · · + anxn, where a1, a2, . . . , an ∈ R. The span of these vectors, denoted
Span(x1, x2, . . . , xn), is the set of all linear combinations of these vectors. If
Span(x1, x2, . . . , xn) = Rn, then the vectors (x1, x2, . . . , xn) span Rn.

2



1.4. Theory of convexity

1.4 Theory of convexity

In this section, we will introduce some basic theory of convex sets, convex
functions and polyhedra. These concepts are closely related to linear
optimization, and are relevant for further definitions and theory. All theory
and definitions presented in this chapter is cited from Dahl [6].

Definition 1.4.1. [6] Let C ∈ Rn be a set and let x1, x2 ∈ C be two points in
the set. Then C is a convex set if the line between x1 and x2 lies in C, i.e.
λx1 + (1− λ)x2 ∈ C for 0 ≤ λ ≤ 1.

The definition of a convex set uses a certain type of linear combination of x1,
x2, called a convex combination, see [6]. Consider the vectors x1, x2, . . . , xn ∈
Rn and nonnegative numbers λ1, λ2, . . . , λn such that

∑
i≤n λi = 1. Then

λ1x1 + λ2x2 + · · · + λnxn is a convex combination of x1, x2, . . . , xn. The
following is an example of convex combinations.

Example 1.4.2. Let (0, 0), (1, 0), (1, 1) be three points in R2. The point
p = (2/3, 1/3) is a convex combination of the points, since (2/3, 1/3) =
1/3 (0, 0) + 1/3 (1, 0) + 1/3 (1, 1) and 1/3 + 1/3 + 1/3 = 1. Figure 1.1 illustrates
this with a drawing in the plane. Notice that the points (0, 0), (1, 0), (1, 1)
span the convex set C = {(x1, x2) : 0 ≤ x1, x2 ≤ 1, x2 − x1 ≤ 0}, and the point
p = (2/3, 1/3) lies in C.

1

1

p

x1

x2

Figure 1.1: The convex set C and point p from Example 1.4.2

4

In Example 1.4.2 we saw a case where the convex set is closed under the
operation of taking convex combinations. In fact, this is the case for all convex
sets and convex combinations within them, which brings us to the following
result.

Proposition 1.4.3. [6, Proposition 2.1.1] A set C ∈ Rn is convex if and only
if it contains all convex combinations of its points. A set C ∈ Rn is a convex
cone if and only if it contains all nonnegative combinations of its points.

We will now move on to the last part of this section, and introduce convex
functions.

3



1.5. Linear optimization and polyhedra theory

Definition 1.4.4. [6] Let f : R→ R. Then f is a convex function if the following
inequality holds

f((1− λ)x+ λ y) ≤ (1− λ) f(x) + λ f(y) ∀ x, y ∈ R, 0 ≤ λ ≤ 1 (1.1)

Figure 1.2 illustrates a convex function f with x, y, z ∈ R. The line
segment between f(x) and f(y) is expressed by (1 − λ)f(x) + λf(y), and
f(z) = f((1−λ)x+λy). We can see in the figure that f(z) ≤ (1−λ)f(x)+λf(y)
and thus the inequality condition 1.1 for the convex function f holds.

(1− λ)f(x) + λf(y)

x

f(x)

f(y)

z

f(z)

y

f

Figure 1.2: Example of a convex function f

We will now move on to introducing linear optimization and polyhedra
theory, which is closely related to convexity theory.

1.5 Linear optimization and polyhedra theory

In this section, we will introduce theory of linear optimization and polyhedra,
following Dahl [6]. This section is closely related to convexity, which we
introduced in the previous section. In linear optimization, the goal is to
maximize (or minimize) a linear function cTx (often called an objective function)
of the vector x = (x1, x2, . . . , xn) with respect to certain constraints. This is
called a linear programming (LP) problem. A practical example is a company
which produces n products and wishes to maximize the profit for each product
x = (x1, x2, . . . , xn). Some constraints may for example be the costs of
production, transportation, raw material, or storage. Each constraint correspond
to a linear equation or inequality, such that the objective function and set of
constraints may be written as the following.

maximize c1x1 + c2x2 + . . . + cnxn
subject to a11x1 + a12x2 + . . . + a1nx1 ≤ b1

a21x1 + a22x2 + . . . + a2nx1 ≤ b2
...

an1x1 + an2x2 + . . . + annx1 ≤ bn

(1.2)

x1, x2, . . . , xn ≥ 0

4



1.5. Linear optimization and polyhedra theory

The LP problem may be written in matrix form as the following.

max cTx
subject to Ax ≤ b,

x ≥ 0
(1.3)

Each vector x ∈ Rn is feasible if it satisfies the constraints in the LP problem,
see [6]. If an LP problem may be written on the form 1.3, the feasible solutions
are x ∈ Rn such that they satisfy Ax ≤ b, x ≥ 0. Let P be the set of all feasible
solutions to the LP problem, i.e. P = {x ∈ Rn : Ax ≤ b, x ≥ 0}. If one chooses
any two distinct points x1, x2 in P , then the line segment λx1 + (1− λ)x2 also
lies in P . This can be shown as

A (λx1 + (1− λ)x2) = λAx1 + (1− λ)Ax2 ≤ λ b+ (1− λ) b = b

Thus, P is a convex set. In fact, P is a polyhedron. A polyhedron in Rn is
defined to be the set {x ∈ Rn : Ax ≤ b} where A ∈Mm,n, b ∈ Rm. Moreover,
from the previous argument we have the following result.

Proposition 1.5.1. [6, Proposition 1.4.1]] The solution set of any linear system
in the variable x ∈ Rn is a polyhedron. Every polyhedron is a convex set.

We will now give an example of an LP problem, which also illustrates
convexity and polyhedra.

Example 1.5.2. We will study the following linear programming problem.

maximize 3x1 + x2
subject to 0.3x1 + x2 ≤ 5

x1 + x2 ≤ 8
x1 − x2 ≤ 4

(1.4)

x1, x2 ≥ 0

Figure 1.3 illustrates the LP problem in the plane. One can see that the
feasible set P is a polyhedron. The objective function is represented as level
lines, 3x1 + x2 = a, where a is a constant, and which are drawn as stapled
lines. In the feasible region, the objective function attains its maximum when
x = (6, 2) which give the optimal value 3x1 + x2 = 3 · 6 + 2 = 20.

2

4

6

2 4 6

P

x1

x2

Figure 1.3: A drawing of the LP problem in Example 1.5.2

4
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1.6. Graph theory

We will now introduce an important concept in polyhedra theory, namely
the convex hull. The convex hull of a set S is the set of all convex combinations
of points in S, following [6]. In fact, is the smallest convex set containing S, as
we will see from the following proposition.

Proposition 1.5.3. [6, Proposition 2.2.1] Let S ⊆ Rn. Then conv (S) is equal to
the intersection of all convex sets containing S. Thus, conv (S) is the smallest
convex set containing S.

An illustration of the convex hull can be seen in Figure 1.4. Notice that
the feasible region in Figure 1.3 is the convex hull of the set of constraints
corresponding to the previous LP problem. Actually, the convex hull of a finite
set gives an important class of convex sets, namely polytopes. A set P ∈ Rn is
called a polytope if it is the convex hull of a finite set of points in Rn, see [6].
In fact, a set is a polytope if and only if it is a bounded polyhedron. This is
an important result in polytope theory. By consequence, if the feasible region
of an LP problem is bounded, one can solve the problem by comparing the
vertices of the feasible region (a polytope) to the objective function, as we
did in Example 1.5.2. This is the starting point of a algorithm for solving LP
problems, called the Simplex Method.

(a) S (b) conv(S)

Figure 1.4: A set S and its convex hull conv(S)

1.6 Graph theory

In this section, we will introduce graph theory from the works of Bondy &
Murty [2], Brualdi & Ryser [4], and Dahl [7]. as it is relevant to the work in
this thesis. There are various uses of graph theory, including transportation
and communication networks. A graph may, among other things, be used to
describe databases in computer science, or to represent a network of people and
their association with each other. In some cases, like transportation networks, it
is necessary to include a direction between elements of a graph. While in other
cases, for example when describing relationships in a network of people, the
relation itself has no direction. In this sense, we distinguish between directed
and undirected graphs. It is also common to make a correspondence between
certain graphs and matrices, which we will include in this section.

A graph G consists of a set of vertices V and a set of edges E. We denote
this G = (V,E). The set of edges E consists of pairs of elements of V (not
necessarily disjoint), see [7]. For example,

V = {v1, v2, v3, v4} E = {{v1, v2}, {v2, v3}, {v1, v3}}.

In some cases, we will denote an edge {vi, vj} as eij . A graph is finite if the
sets V, E are finite, see [2]. In this thesis we will only be focusing on finite
graphs, and for the remaining theory we will assume any graph G is finite.

6



1.6. Graph theory

A graph may be represented as a drawing in the plane, where vertices and
edges are drawn as points and lines. This is exemplified in Example 1.6.1. If
a graph is directed, the edges may be drawn as arrows. Note that there are
several ways to draw a graph, and the edges may be drawn by either curved or
straight lines.

Example 1.6.1. Let G = (V,E) be a graph where V = {v1, v2, v3, v4}, E =
{{v1, v2}, {v2, v3}, {v1, v3}} Then the graph may be represented as the drawings
in Figure 1.5.

4

v1

v4

v2

v3

(i) Graph G
v1 v4

v2

v3

(ii) Graph G

Figure 1.5: Two drawings of the graph G = (V,E)

For all following discussions of graph theory, graphs may be represented by
similar drawings.

We will now continue with additional standard definitions related to graph
theory, following [2]. The order of a graph is the number of vertices in the
graph. We say that an edge {vi, vj} connects the vertices vi, vj . If vi = vj , the
edge is called a loop. Two vertices are adjacent if they are connected by an
edge, and nonadjacent otherwise. For example in Figure 1.5, the vertex v1 is
adjacent to vertices v2 and v3. Moreover, the neighbors of a vertex v are the
vertices adjacent to v. In figure Figure 1.5, v2 and v3 are neighbors of v1.

As mentioned earlier, we distinguish between directed and undirected graphs.
In directed graphs, the edges are assigned an orientation and we call them arcs,
following [2]. This means we distinguish between the arcs (vi, vj) and (vj , vi)
connecting vertices vi, vj , and the pair of vertices are ordered. For an arc (vi, vj)
from vi to vj , we call vi the tail and vj the head. This is often illustrated by
an arrow in a drawing of a graph. Directed graphs are often abbreviated to
digraphs, and are denoted D = (V,E).

Let G = (V,E), H = (Ṽ , Ẽ) be two graphs, and let Ṽ ⊆ V, Ẽ ⊆ E. Then
H is a subgraph of G and we say that H is contained in G, or H ⊆ G, see [2].
This means that H can be obtained by removing vertices and/or edges of G. A
spanning subgraph of G is a graph where edges of G are removed. This means
that a spanning subgraph contains all the vertices of G, but possibly not all
edges. Figure 1.6 exemplifies subgraph and spanning subgraph.

We will now continue with some important terms in graph theory, still
following [2]. First, let G = (V,E) be a graph. If for every nonempty partition
I, J of the vertices V , there exists an edge that connects a vertex in I to a vertex
in J , the graph is connected. If this does not hold, the graph is disconnected.
The vertices in a disconnected graph can be partitioned into two nonempty sets
I, J such that there does not exist any edges connecting a vertex in I to a vertex
in J [2]. Figure 1.7 illustrates an example of a connected and a disconnected

7



1.6. Graph theory

v1

v4

v2

v3

v5

v8

v6

v7

G

v1

v4 v3

v5

v8 v7

Subgraph of G

v1

v4

v2

v3

v5

v8

v6

v7

Spanning subgraph of G

Figure 1.6: Example of graph, subgraph, spanning subgraph

graph. A path is a graph with distinct vertices which can be arranged in a
linear sequence (v1, v2, . . . , vm), such that each consecutive vertex is adjacent,
and nonadjacent otherwise [2]. The length of a path is the number of edges
in the path. For example, the disconnected graph in Figure 1.7 has two paths
of length 3 and 2. Such a path is called a cycle if the first vertex is equal to
the last vertex of the path. Figure 1.8 illustrates an example of a graph which
contains a cycle, and one which does not.

Disconnected graph Connected graph

Figure 1.7: Example of a disconnected and a connected graph

No cycle Contains a cycle

Figure 1.8: Example of a graph which contains a cycle and one which does not

In the next chapter, we will present fully indecomposable matrices. In that
regard, we will discuss strongly connected directed graphs, and will now present
relevant theory for that matter, following [4]. A walk from vertex v1 to vm is a
sequence of arcs ((v1, v2), (v2, v3), . . . , (vm−1, vm)). Put simply, one can travel
from vertex v1 to vm provided there are arcs connecting each vertex on the
walk in the direction one is traveling. As apposed to paths, a walk may include
loops. Two vertices vi, vj are strongly connected if there exists a walk from
vertex vi to vj . Finally, a digraph is strongly connected if and only if each pair
of vertices are strongly connected. Figure 1.9 illustrates an example of a graph
which is strongly connected, and one which is not.

8
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v1

v2

v3

v4

v5

v6

(a) Strongly connected digraph D

v1

v2

v3

v4

v5

v6

(b) Not strongly connected

Figure 1.9: Example of strongly connected digraph

Let D(V,E) be a digraph with vertices (v1, v2, . . . , vn). The adjacency
matrix of D is an n × n (0, 1)-matrix A(D) = [aij ] such that aij equals the
multiplicity m(vi, vj) of arcs from vertices vi to vj , for i, j ≤ n, following [4].
For example, the adjacency matrix A(D) of the strongly connected digraph D
in Figure 1.9 (a) is

A(D) =


0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0
0 0 0 0 0 1
1 1 0 0 0 0


In the next section, we will dive deeper into graph theory which is relevant

for this thesis. This entails bipartite graphs, matchings and weights in a graph.

1.7 Bipartite graphs, matchings and weights

In this section, we will introduce bipartite graphs, matchings and weights in
graphs. The theory which is presented in this section is cited from the works of
Bondy & Murty [2] and Shader [12].

If the vertices in a graph G = (V,E) can be partitioned into two disjoint
sets I, J such that each edge in G connects a vertex in I to a vertex in J , then
G is called is called a bipartite graph, following [2]. We often denote bipartite
graphs G(I, J) or G = (I, J, E) where V = I ∪ J . Moreover, if there exists
edges in G such that all vertices in I are connected to all vertices in J , then G
is a complete bipartite graph. A complete bipartite graph may be defined as the
following.

Definition 1.7.1. Let G = (I, J, E) be a graph with vertices V = I ∪ J , where
I = {i1, i2, . . . , im}, J = {j1, j2, . . . , jn}, and edges E. G is a complete bipartite
graph if the following hold

(i) I and J are disjoint sets

(ii) E = {{ik, jl}} for all k ≤ m, l ≤ n

We denote the complete bipartite graphs Km,n.

Figure 1.10 exemplifies a bipartite graph and the complete bipartite graph
K2,3.

9
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i2

i1

j3

j2

j1

A bipartite graph

i2

i1

j3

j2

j1

The complete bipartite graph K2,3

Figure 1.10: Example of a bipartite and a complete bipartite graph

A matching in a graph G is a set of edges such that no two edge share the
same vertex. If all vertices in G are covered by a matching, it is called a perfect
matching, following [2]. Notice that a perfect matching is only possible when
the number of vertices in a graph is even. Figure 1.11 illustrates a graph G
with a matching and a perfect matching.

G

some more text
Matching in G
some more text

Perfect
matching in G3

Figure 1.11: Example of matching and perfect matching

In this thesis, we will discuss matchings and perfect matchings in bipartite
graphs, and for this purpose we will introduce a few theorems.

Theorem 1.7.2 (Hall’s theorem). [2, Theorem 16.4] Let G(I, J) be a bipartite
graph, let S ⊆ I be a set of vertices and let N(S) be the set of all neighbors of
S. G(I, J) has a matching which covers every vertex in I if and only if

|N(S)| ≥ |S| for all S ⊆ I (1.5)

Inequality 1.5 is often called Hall’s criterion.

Corollary 1.7.3. [2, Corollary 16.5] Let G(I, J) be a bipartite graph, let S ⊆ I
be a set of vertices and let N(S) be the set of all neighbors of S. G(I, J) has a
perfect matching if and only if |I| = |J | and |N(S)| ≥ |S| for all S ⊆ I.

We will present some examples that illustrate the theorem and corollary.

Example 1.7.4. Let G1(I1, J1), G2(I2, J2) be two bipartite graphs drawn in
Figure 1.12. If we choose the subset S1 = {i1, i2} ⊆ I1, then |S1| = 2, N(S1) =
{j1}, |N(S1)| = 1 and thus |N(S1)| � |S1|. Hall’s criterion does not hold
for G1 and thus there is not a matching which covers each vertex in I1.
Note that G1 has matchings that do not cover all vertices in I1, for example
{{i1, j1}, {i3, j2}, {i4, j5}}.

In comparison, Hall’s criterion holds for graph G2. No matter which subset
S ⊆ I2 one chooses, |N(S)| ≥ |S| for all S. An example of a matching which
covers all vertices in I2 is {{i1, j1}, {i2, j2}, {i3, j4}, {i4, j5}}.

4
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i1

i2

i3

i4

j1

j2

j3

j4

j5
G1

i1

i2

i3

i4

j1

j2

j3

j4

j5

G2

Figure 1.12: Two bipartite graphs

We will also present an example of a bipartite graph which has a perfect
matching.

Example 1.7.5. Let G(I, J) be a bipartite graph drawn in Figure 1.13. No
matter which subset S ⊆ I of vertices one chooses, |N(S)| ≥ |S| for all S, and
thus Hall’s criterion holds. Since |I| = |J |, G has a perfect matching. An
example of a perfect matching in G is {{i1, j3}, {i2, j1}, {i3, j4}, {i4, j2}}.

i1

i2

i3

i4

j1

j2

j3

j4
G

Figure 1.13: Bipartite graph that has perfect matching

4

Among the many applications of graph theory, we have the classical optimal
assignment problem. Assume we have a certain amount of people and tasks
to fill, but not all people are qualified for all the tasks. One can construct a
bipartite graph which represents each person (the vertices in I), the tasks (the
vertices in J), and which person is qualified for which task (the edges in the
graph). Each perfect matching of this graph represents a possible assignment
of people to the different tasks such that each person is assigned a task and
each task is covered by a person. A formal definition of the optimal assignment
problem is introduced later in the thesis, under Section 2.5.

Graph theory is often used in optimization problems like the optimal
assignment problem, or other practical problems like communication and
transportation problems. In these kinds of problems, one might need to take
additional factors, like costs or profits, into account. These factors are often
represented as a real number, which we call weight w(e), associated to each edge
e of a graph, following [2]. A graph G with weights w is called a weighted graph
and is often denoted (G,w). We will often be interested in finding the sum of
all weights in a subgraph F of G, in which case one computes

∑
e∈E(F ) w(e). In
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the optimal assignment problem, the weights may represent costs corresponding
to a certain person and task, and the aim is to find the perfect matching which
gives the minimum sum of weights.

We will now introduce a correspondence between bipartite graphs and
matrices. For a bipartite graph G(I, J), where I = {i1, i2, . . . im}, J =
{j1, j2, . . . , jn}, the biadjacency matrix of G is an m× n matrix A(G) = [akl],
where akl = 1 for each edge {vk, vl}, k ≤ m, l ≤ n, and akl = 0 if there does
not exist an edge between the vertices vk, vl, see [12].

Similarly, for a weighted bipartite graph (G,w), with vertices I =
{i1, i2, . . . im}, J = {j1, j2, . . . , jn}, the biadjacency matrix of G is an m × n
matrix A(G) = [akl], where akl = w(ekl) and akl = 0 if there does not exist an
edge between the vertices vk, vl, see [12]. We will give an example of a weighted
bipartite graph and its associated biadjacency matrix.

Example 1.7.6. Let G be the weighted bipartite graph in Figure 1.14.

i3

i2

i1

j3

j2

j1
2

3

5 45

1

Figure 1.14: Weighted bipartite graph G

Then, the following matrix A(G) is the biadjacency matrix associated to G.

A(G) =

 2 3 4
0 5 0
0 5 1


Notice that the graph G in Figure 1.14 contains exactly one perfect matching,
{e11, e22, e33}. This perfect matching corresponds to the main diagonal of
matrix A(G). The weight and diagonal sum equals to 2 + 5 + 1 = 8. We will
discuss matrix diagonals, diagonal sums and their correspondence to perfect
matchings later in this thesis. 4

In the previous example, we observed a correspondence between a perfect
matching in a graph and the diagonal of the biadjacency matrix of the graph.
All possible perfect matchings in a bipartite graph correspond to the diagonals
of the biadjacency matrix after suitable permutations of its row and column
vector. In the next section, we will present theory on permutations of matrices.

1.8 Permutations

Permutations of matrices, and their diagonals, are an important aspect of our
work in later chapters. We will therefore give a brief overview over the theory
of permutations in this section. The theory presented in this section is cited
from Brualdi [5], Brualdi & Dahl [3] and Terras [14].

Let p = {p1, p2, . . . , pn} be a set of n elements. A permutation of p is any
ordered set of the elements of p. We can define a permutation as a bijective

12
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to itself, σ : {1, 2, . . . , n} → {1, 2, . . . , n} for n = 2, 3, . . ., following [14].
For example, let p = {1, 2, 3}. Then all possible permutations of p are σ1 =
(1, 2, 3), σ2 = (1, 3, 2), σ3 = (2, 1, 3), σ4 = (2, 3, 1), σ5 = (3, 1, 2), σ6 = (3, 2, 1).
Moreover, one can find the inverse σ−1 of a permutation σ by interchanging
each position with its corresponding element, i.e. for the k’th position in σ, if
σ(k) = l, then σ−1(l) = k. This is exemplified in Example 1.8.1.

Permutations may be written with matrix notation, and we call these
matrices permutation matrices. For a permutation σ = (k1, k2, . . . , kn), we
define an n × n permutation matrix Pσ = [pij ] such that pij = 1 if j = ki
for each i, and [pij ] = 0 otherwise, following [3]. Note that a permutation
matrix has exactly one entry in each row and column, and thus there are n!
permutation matrices of size n.

Example 1.8.1. Let σ = (1, 4, 2, 3) be a permutation. When finding the inverse
of the permutation, we first look at the first position σ(1) = 1. Since the position
equals the element, σ−1(1) = 1. Furthermore, σ(2) = 4 gives σ−1(4) = 2,
σ(3) = 2 gives σ−1(2) = 3, and lastly σ(4) = 3 gives σ−1(3) = 4. Thus, the
inverse σ−1 is equal to (1, 3, 4, 2). Moreover, the permutation matrices Pσ, Pσ−1

are

Pσ =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 Pσ−1 =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


Notice that Pσ−1 = PTσ . This is the case for all permutation matrices, see [5],
and will be used in the following discussion.

4

In this thesis, we will often discuss permuted matrices and their diagonals.
We can permute row and column vectors of a matrix A by left and right matrix
multiplication. Left-multiplying a matrix A by P , i.e. PA, will permute the
row vectors of A. Right-multiplying A by P , i.e. AP , will however permute the
column vectors according to the inverse permutation σ−1. The permutation
matrix Pσ−1 is equal to PT , and thus APT permutes the column vectors
according to σ. Thus, one can simultaneously permute row and column vectors
of the matrix A by PAPT , see [5]. When permuting a matrix, the positions of
the diagonals will clearly change, which will be discussed in later chapters of
this thesis.

Example 1.8.2. Let Pσ be the permutation matrix from Example 1.8.1, let
PTσ = Pσ−1 be the permutation matrix of σ−1, and let A be the following 4× 4
matrix.

Pσ =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 PTσ =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 A =


1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16


We have the following matrix products

PσA =


1 2 3 4

12 13 14 15
5 6 7 8
9 10 11 12

 APTσ =


1 4 2 3
5 8 6 7
9 12 10 11

13 16 14 15
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We can see that the row vectors in Pσ are permuted according to the permutation
σ = (1, 4, 2, 3) and the column vectors in APTσ are permuted according to the
permutation σ−1 = (1, 3, 4, 2). Lastly, the product PσAPTσ simultaneously
permutes the row and column vectors.

PσAP
T
σ =


1 4 2 3

13 16 14 15
5 8 6 7
9 12 10 11


4

1.9 Doubly stochastic matrices

We will now introduce doubly stochastic matrices, which is widely used in this
thesis. Doubly stochastic matrices are square nonnegative matrices where the
sum of each row and column vector equals to 1. These are a special kind of
matrices with many applications, one of them being the optimal assignment
problem. Since the sum of all row and column vectors equal to one, these
matrices are often found in work with statistics and probability. A useful
property of these matrices is that all permutations of doubly stochastic matrices
are also doubly stochastic. In the end of this section, we will provide a very
important theorem which states that the convex hull of all n× n permutation
matrices is indeed the n× n doubly stochastic matrices. This means that any
convex combination of doubly stochastic matrices are also doubly stochastic,
and the set of all n×n doubly stochastic matrices form a convex polytope. But
first, we give the formal definition of a doubly stochastic matrix, following [3].

Definition 1.9.1. [3] Let A be an n×n real matrix. We call A doubly stochastic
if all elements are nonnegative and each column and row sum is equal to 1, i.e.
the following conditions hold

(i) A = [aij ] ≥ 0

(ii)
∑n
i=1 aij = 1, j = 1, . . . , n

(iii)
∑n
j=1 aij = 1, i = 1, . . . , n

The definition uses the notation A ≥ 0 which means that all elements of A are
nonnegative. We denote the set of all n×n doubly stochastic matrices as Ωn, and
Ωn is a subset of the vector space Mn. In the end of this section, we will present
a theorem which states that the permutation matrices are in fact the extreme
points of Ωn. We will now present a few examples of doubly stochastic matrices,
where we also exemplify the relation between doubly stochastic matrices and
bipartite graphs as introduced previously.

Example 1.9.2. Let Pσ be the permutation matrix from Example 1.8.1
corresponding to the permutation σ = (1, 4, 2, 3).

Pσ =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0
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Then, the bipartite graph G in Figure 1.15 is associated to matrix Pσ, such
that Pσ is the biadjacency matrix of G. Notice that the edges in the graph
is a perfect matching, which is the case for all bipartite graphs associated to
permutation matrices.

i4

i3

i2

i1

j4

j3

j2

j1

G

Figure 1.15: Bipartite graph G. Matrix Pσ is the biadjacency matrix of G

4

Example 1.9.3. Let B be the following doubly stochastic matrix,

B =

 0.2 0.3 0.5
0.4 0.2 0.4
0.4 0.5 0.1


Then, the weighted bipartite graph F in Figure 1.16 is associated to matrix

B, such that B is the biadjacency matrix of F . Notice that F is the complete
bipartite graph K3,3

i3

i2

i1

j3

j2

j1

F

0.2
0.3

0.5
0.4

0.2

0.4
0.4

0.5
0.1

Figure 1.16: Weighted bipartite graph F . Matrix B is the biadjacency matrix
of F

4

We will now present an important theorem within convexity theory, with
relevance to doubly stochastic matrices. Before we present it, we must give
some definitions. First, we will give a definition of an extreme point, cited from
Lay et al. [8].

Definition 1.9.4. Let C be a convex set. A point p ∈ C is called an extreme
point of C if p is not in the interior of any line segment that lies in C.

We denote the set of all extreme points of a set C as ext(C). The following
definitions are cited from Dahl [6]. A set S ∈ Rn is bounded if there exists a
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number M such that ||x|| ≤M for all x ∈ Rn. Moreover, an open ball B(a, r)
is a set with points x such that for r > 0, a ∈ Rn, the distance between x and
a is strictly less than r, i.e. B(a, r) = {x ∈ Rn : ||x− a|| < r}. A set S is open
if for each x ∈ S there exists an ε > 0 such that B(a, ε) ∈ S. A set S if closed
if its complement S = {x ∈ Rn : x /∈ S} is open. Lastly, a set is compact if it is
both closed and bounded. We are now ready to present the theorems.

Theorem 1.9.5 (Minkowski’s theorem). [6, Corollary 4.3.4] Let C ⊆ Rn
be a compact convex set. Then C is the convex hull of its extreme points, i.e.
C = conv(ext(C)).

From polyhedra theory, it is known that polytopes are both compact and
convex sets, see [6]. The Birkhoff-von Neumann theorem provides a better
understanding of the close connection between convexity, permutation matrices
and doubly stochastic matrices.

Theorem 1.9.6 (Birkhoff-von Neumann theorem). [7, Theorem 2.6] Let
Pn be the set of all n× n permutation matrices, and conv(Pn) be the convex
hull of Pn. The set of all doubly stochastic matrices Ωn is the convex hull of
the set of all permutation matrices Pn, i.e.

Ωn = conv(Pn)

Moreover, Pn is the set of vertices of Ωn. So every doubly stochastic matrix
may be written as a convex combination of permutation matrices.

Theorem 1.9.6 may be used to construct doubly stochastic matrices, which
we have done for the work in this thesis. We will therefore provide an example
of how this can be done.

Example 1.9.7. Let P1, P2, P3 be the following 3× 3 permutation matrices.

P1 =

 0 1 0
1 0 0
0 0 1

P2 =

 1 0 0
0 0 1
0 1 0

P3 =

 0 0 1
0 1 0
1 0 0


Then the convex combination 1/12P1 + 5/12P2 + 1/2P3 is a doubly stochastic
matrix.

1/12

 0 1 0
1 0 0
0 0 1

+ 5/12

 1 0 0
0 0 1
0 1 0

+ 1/2

 0 0 1
0 1 0
1 0 0



=

 5/12 1/12 1/2
1/12 1/2 5/12
1/2 5/12 1/12


4

We have written a code in Matlab which generates doubly stochastic
matrices in this way, and the code may be found in Appendix A.1. We have
used the code to generate matrices for the work in this thesis.
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Figure 1.17: Distribution of hours for student x, y

1.10 Majorization

Within the theory of doubly stochastic matrices, there is an important connection
to majorization. Majorizaton is central within linear algebra and matrix theory,
of which we will provide the formal definition of. First, we will give a simple
explanation of the concept. Consider two mathematics students who study the
same amount of hours each weak. The first student distributes their working
hours evenly throughout the week, and the second student studies minimally
on Mondays and Tuesdays, and more extensively later in the week. Let x, y be
the hours they work each day for seven days. Assume they study for a total
of 40 hours each week, and the distribution of hours for the first student is
x = (7, 8, 8, 7, 6, 2, 2), and the second student y = (1, 2, 8, 9, 9, 7, 4). Notice that
the components in vector x is more evenly spread out than the components
in vector y. Moreover, if we reorder the components such that they are in
decreasing order, i.e. x′ = (8, 8, 7, 7, 6, 2, 2), y′ = (9, 9, 8, 7, 4, 2, 1), we see that
the sum up to the i’th component in y′ is larger than in x′, for i ≤ 7. The
reordered distribution is illustrated in Figure 1.17. In this example, y majorizes
x. This can also be seen geometrically in Figure 1.17 as both curves start and
end in the same point, but otherwise one curve is below the other. We will now
give the formal definition of majorization, which is cited from Dahl [7].

Definition 1.10.1. Let x, y be vectors in Rn, and let x[i] and y[i] denote the i’th
largest elements of the vectors. We say that x is majorized by y if the following
hold

(i)
∑k
i=1 x[i] ≤

∑k
i=1 y[i] for k = 0, 1, . . . n− 1

(ii)
∑n
i=1 xi =

∑n
i=1 yj

and we write x � y.

We will present a short example of majorization.
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Example 1.10.2.

(1
2 ,

1
6 ,

1
4 ,

1
12) � (1

2 ,
1
4 ,

1
4 , 0) � (1

2 ,
1
2 , 0, 0) � (1, 0, 0, 0)

Notice that the sum of up to the i’th largest component of each vector is less
than or equal to the corresponding sum of the majorizing vector. Also, the sum
of components is equal for all vectors. 4

Now, we proceed to the connection between majorization and doubly
stochastic matrices. In fact, an n× n matrix P is doubly stochastic if and only
if xP � x for all x ∈ Rn, see [9]. We also have the following theorem which
shows the important connection between majorization and doubly stochastic
matrices, cited from Dahl [7].

Theorem 1.10.3. Let x, y ∈ Rn. Then the following are equivalent

(i) x � y

(ii) There exists a doubly stochastic matrix A such that x = Ay

(iii) For all convex functions g : R→ R, the following inequality holds

n∑
i=1

g(xi) ≤
n∑
i=1

g(yi)

We will demonstrate this theorem with an example.

Example 1.10.4. Let A ∈M4, y ∈ R4 be the following 4× 4 doubly stochastic
matrix and vector respectively.

A =


1/4 0 1/2 1/4
1/4 3/4 0 0
1/4 1/4 0 1/2
1/4 0 1/2 1/4

 y =


0
2
1
6


Then we can find a vector x such that x � y by computing the matrix product.

x = Ay = (2, 2/3, 7/2, 3)

We take a convex function g(x) = {x2 : x ∈ R} and see that

n∑
i=1

g(xi) = 22 + (2/3)2 + (7/2)2 + 39 = 25/2

≤
n∑
i=1

g(yi) = 02 + 22 + 11 + 66 = 41

4

This concludes the introduction chapter. In the next chapter, we will
introduce RCDS matrices and explore the diagonals of these matrices.
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CHAPTER 2

Diagonals of RCDS matrices

In this chapter, we will explore a class of matrices called restricted constant
diagonal sum matrices. These are often abbreviated to RCDS matrices. These
matrices have the special property that all diagonals of a given matrix, that
do not contain any zeros, have the same sum. RCDS matrices are intricate,
and there does not exist a way to find them all. However, Brualdi & Dahl [3]
have provided us with ways to construct some types of RCDS matrices. We
will introduce a few of these, and then focus of on one specific class of RCDS
matrices for the remaining thesis. We will also use Matlab to generate random
RCDS matrices in order to study them. Moreover, we will see how RCDS
matrices correspond to bipartite graphs and the optimal assignment problem.

We will start by discussing matrix diagonals and zero patterns of matrices.
In our work, we have only studied fully indecomposable matrices, which we
will provide a definition of before we move on to RCDS matrices. Later, we
will introduce a specific class of RCDS matrices and explore the diagonals and
constant diagonal sum of these matrices. This work leads us to the next chapter,
where we will proceed to make some modifications to the matrices to see how
this alters the diagonal sums.

2.1 Diagonals of matrices

Matrix diagonals are widely used in mathematics. We have previously discussed
how matrix diagonals are associated to perfect matchings in bipartite graphs,
the optimal assignment problem and permutation matrices. The diagonals of a
matrix is a main topic in this thesis, and in this section we will present some
important definitions and theory.

From linear algebra, the diagonal of an n × n matrix is usually defined
as the set of n positions {(1, 1), (2, 2), . . . (n, n)}. Recall from Section 1.8
that permutations of matrices change the the diagonals. In this thesis, we
are interested in certain diagonals of a matrix that can be obtained after all
permutations of a matrix. For an n× n matrix, we will denote the diagonal Dσ

of the matrix to be a set of n diagonal positions corresponding to a permutation
σ of the matrix. We will use the term diagonal when discussing the matrix
positions of a diagonal, and the term diagonal entries when discussing their
elements. We will now present an example of matrix diagonals.
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Example 2.1.1. Let A be the following 5× 5 matrix.

A =


a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55


Then, some examples of diagonals may be

Dσ1 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}
Dσ2 = {(4, 1), (1, 2), (2, 3), (5, 4), (3, 5)}
Dσ3 = {(3, 1), (2, 2), (1, 3), (4, 4), (5, 5)}

where σ1, σ2, σ3 correspond to permutations of A such that these diagonals are
obtained. 4

Recall that permutation matrices contain exactly one 1 in each row and
column and 0’s otherwise. Thus, the set of positions with 1-entries in
permutation matrices constitutes to a diagonal of the permutation matrix.
Two permutation matrices are pairwise disjoint if they do not have a 1 in the
same position, following [3]. Similarly, we say that their associated diagonals
are pairwise disjoint. In this thesis we will discuss diagonal sums, which are the
sums of the diagonal entries. More specifically, we are interested in studying
diagonals which do not contain any zero positions, and the sums of these
diagonals. For a matrix X, we denote the set of all zero positions ξ(X), and
we call diagonals disjoint from ξ(X) nonzero diagonals. If all diagonals of a
matrix X that are disjoint from ξ(X) have the same sum, we say the matrix
has restricted constant diagonal sums. If we have two matrices X, Y such that
ξ(X) = ξ(Y ), we say that X and Y have the same pattern. Moreover, we will
sometimes refer to zero diagonals, which entails diagonals that only consist of
zero positions. We will now introduce a few theorems which are relevant for
further discussion.

Theorem 2.1.2. [3, Thoerem 1.1] Let X ∈ Ωn, and let D = {Dσ1 , Dσ2 , . . . Dσk
}

be a set of k pairwise disjoint zero diagonals of X. Assume that every diagonal
of X that is disjoint from the diagonals in D have constant sum. Then all
entries of X that is not in any of the diagonals in D equal 1

n−k

Theorem 2.1.2 is proved by Sinkhorn [13] and Balasubramanian [1]. From
this theorem, one can construct a doubly stochastic matrix with constant
diagonal sums from certain (0, 1)-matrices. We will present an example of this.

Example 2.1.3. Let A be a 5× 5 (0, 1)-matrix with three 1’s in each row and
column.

A =


1 0 1 1 0
0 1 1 1 0
1 1 0 0 1
1 0 0 1 1
0 1 1 0 1


This matrix has k = 2 disjoint zero diagonals. We then define X such that
ξ(X) = ξ(A) and each nonzero entry of X is equal to 1

5−2 = 1
3 . Then X is a
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2.2. Total support and fully indecomposable matrices

doubly stochastic matrix with constant diagonal sums.

X =


1/3 0 1/3 1/3 0

0 1/3 1/3 1/3 0
1/3 1/3 0 0 1/3
1/3 0 0 1/3 1/3

0 1/3 1/3 0 1/3


4

The following theorem and corollary provides a useful connection between
RCDS matrices and their zero positions.

Theorem 2.1.4. [3, Theorem 1.2] Let X, Y ∈ Ωn and let ZX ⊆ ξ(X), ZY ⊆
ξ(Y ) be subsets of zero positions. Assume all diagonals of X disjoint from ZX
have constant sum α and all diagonals of Y disjoint from ZY have constant
sum β. Then the following two conditions hold

(i) If ZX ⊆ ZY , then α ≤ β

(ii) If ZX = ZY , then α = β and X = Y

Corollary 2.1.5. [3, Corollary 1.3] An n× n doubly stochastic matrix X, with
a specified set Z of zeros all of whose diagonal sums avoiding Z are equal, is
uniquely determined.

We will refer to Theorem 2.1.4 and Corollary 2.1.5 in later parts of this
thesis, in connection with some of our results.

Recall that for a weighted bipartite graph (G,w), with vertices I =
{i1, i2, . . . im}, J = {j1, j2, . . . , jn}, the biadjacency matrix associated to G
is an m× n matrix A(G) = [akl] where akl correspond to the weights in G, for
k ≤ m, l ≤ n. Moreover, recall that a perfect matching in a bipartite graph G,
when n = m, is a set of disjoint edges such that each vertex in G is contained
in the set of edges. Thus, all possible perfect matchings of a bipartite graph G
correspond to the nonzero diagonals of the matrix A(G).

In the next section, we will provide a further specification to the matrices
we are studying in this thesis, namely fully indecomposable matrices.

2.2 Total support and fully indecomposable matrices

Recall that the aim of this thesis is to explore nonzero diagonals of doubly
stochastic matrices, and the sums of these diagonals. Without certain
restrictions to the zero positions of the matrices we are studying, it may prove
difficult to find certain patterns of the matrices. We will therefore only study
fully indecomposable matrices, of which we will provide a formal definition in
this section. For this matter, we will first introduce the term total support.

A matrix A has total support if each of its nonzero elements belong to a
nonzero diagonal of the matrix, following [5]. For example, the matrix[

1 1
0 1

]
does not have total support, since the 1 in position (1, 2) only belongs to a
diagonal including a 0. For our work, this means that for matrices with total

21



2.2. Total support and fully indecomposable matrices

support, all nonzero elements will be included in the nonzero diagonals we are
studying. However, matrices with total support, along with their permutations,
may be a direct sum of fully indecomposable matrices, see [5]. When studying
the properties and diagonals of matrices, it is therefore mostly interesting to
study fully indecomposable matrices (which also have total support). Now, we
will explain what this entails.

A matrix A is partly decomposable if, after suitable permutations of rows
and columns, it obtains the form[

A1 A2
0 A3

]
(2.1)

where A1 and A3 are square nonempty matrices, following [5]. If a matrix is
not partly decomposable, then it is fully indecomposable. Notice that if a matrix
is fully indecomposable, all possible permutations are as well. Equivalently,
a matrix is fully indecomposable if it does not have a zero submatrix of size
k × (n− k) for any 0 < k < n. In other words, a fully indecomposable matrix
does not have a zero submatrix of size k × l such that k + l ≥ n. For small
matrices, one can easily check if a matrix is fully indecomposable by checking
the dimension of zero submatrices (if there are any), but this is not efficient
for larger matrices. We will provide an example of both a partly decomposable
matrix and a fully indecomposable matrix.

Example 2.2.1. Let A, B be the following 4× 4 matrices.

A =


1 1 1 1
1 0 1 0
1 1 0 1
0 0 0 1

 B =


1 0 1 0
0 1 1 1
0 0 1 1
1 1 0 0


We can determine that A is partly decomposable since it has a 1 × 3 zero
submatrix. However, it is not possible to permute row and column vectors of B
such that it provides the same form as 2.1. One can also see that B does not
contain any zero submatrices of size k × (4− k) for any 0 < k < 4. Thus, B is
fully indecomposable.

4

In the Example 2.2.1, we could easily check if the matrices were fully
indecomposable by checking the dimensions of its zero submatrices. In general,
there is a more efficient method for this purpose which we have also used in
this thesis. We will first present two theorems for this matter.

Theorem 2.2.2. [4, Theorem 3.2.1] Let A be an n × n matrix. Then A is
irreducible if and only it its digraph D is strongly connected.

In Theorem 2.2.2, A is the adjacency matrix of digraph D.

Theorem 2.2.3. [4, Theorem 4.2.3] Let A be an n× n (0, 1)-matrix. Let A′ be
the matrix obtained from A by replacing each entry on the main diagonal with
a 1. Then, A is irreducible if and only if A′ is fully indecomposable.

For the work in this thesis, we have generated random doubly stochastic
matrices in Matlab. In this case, we have ensured that all matrices are fully
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2.3. RCDS matrices

indecomposable by first making sure that the main diagonal is nonzero, and
then checking that the associated digraph is strongly connected.

If a matrix A is fully indecomposable, then there exists a doubly stochastic
matrix with the same pattern as A, see [3]. If a doubly stochastic matrix is not
fully indecomposable, then after suitable permutations of its row and column
vectors it can obtain form in 2.1. However, since it is doubly stochastic, the
sum of all column vectors in A1 equal to 1, and thus the sum of all row vectors
also equal to one. Hence, A2 can only consist of zeros, and the matrix is a
direct sum of doubly stochastic matrices. In that case, it is more constructive
to study the matrices A1, A3 separately. For this reason, we will only study
fully indecomposable matrices.

2.3 RCDS matrices

So far, we have discussed some different kinds of matrices, namely doubly
stochastic matrices, permutation matrices, and (0, 1)-matrices. We have also
briefly discussed diagonals with constant sums, which we will discuss more
extensively in the remaining thesis. First, we give the following formal definition.

Let X ∈ Mn and let ξ(X) be the set of all 0-positions of X. If all
diagonals disjoint from ξ(X) have constant sum, we denote X to be a restricted
constant diagonal sum (RCDS) matrix, following [3]. Notice that RCDS are not
necessarily doubly stochastic, but we will primarily focus on doubly stochastic
RCDS matrices in this thesis.

For an RCDS matrix X, we have an associated weighted bipartite graph G
such that X is the biadjacency matrix of G, as discussed previously. Since all
diagonals disjoint from ξ(X) are constant, all perfect matchings of the bipartite
graph will equivalently have a constant weight sum. If such is the case for
an optimal assignment problem, all possible perfect matchings will solve the
problem.

Our goal is to investigate certain characteristics of RCDS matrices and try
to find some patterns within them. These patterns may then apply to the
associating weighted bipartite graphs, and the optimal assignment problem. So
far, there exists certain algorithms to construct these matrices but a general
method to finding them all is not yet known, see [3]. There are some patterns
that clearly are RCDS, namely all permutation matrices and the all 1-matrices.
Since the 1-matrices have RCDS pattern, we can establish that an RCDS matrix
need not have any zeros. However, from Theorem 2.1.4, we know that certain
zero patterns may give certain conditions to the diagonal sums. Moreover, we
can scale the all 1-matrices such that they are additionally doubly stochastic.
If A is an n × n all 1-matrix, and hence RCDS, then 1

nA is RCDS doubly
stochastic. We will now provide an example of an RCDS matrix.

Example 2.3.1. Let A be the following 5× 5 matrix,

A =


0 2 0 3 0
0 1 0 2 2
0 2 0 0 3
0 0 5 0 0
5 0 0 0 0
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No matter which nonzero diagonal one chooses, the diagonal sum will equal 17.
Thus, matrix A is an RCDS matrix. Each row and column vectors have sum 5,
and we can scale this matrix such that it is also doubly stochastic,

1
5 A =


0 0.4 0 0.6 0
0 0.2 0 0.4 0.4
0 0.4 0 0 0.6
0 0 1 0 0
1 0 0 0 0


4

It is worth noting that permutations of RCDS matrices are also RCDS
matrices. Recall that a permutation of a matrix may change the order of its
row and column vectors. This will however not change the possible diagonals of
the matrix, since the elements of the permuted rows and columns remain the
same. We will now give a characterization of RCDS doubly stochastic matrices.

Theorem 2.3.2. [3, Theorem 2.1] Let A = aij be a fully indecomposable
n× n (0, 1)-matrix and let R = (r1, r2, . . . , rn) and S = (s1, s2, . . . , sn) be the
row and column sum vectors of A.

(i) Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be real vectors. Define
Y = Y (u, v) = [yij ] ∈ Mn by yij = ui + vj when aij = 1, and yij = 0
when aij = 0. Assume that yij > 0 whenever aij = 1 and that all row and
column sums of Y are equal to some positive number α, i.e.

uiri +
∑

j:aij=1
vj = α (i ≤ n) (2.2)

vjsj +
∑

i:aij=1
ui = α (j ≤ n) (2.3)

Then X = (1/α)Y (u, v) is an RCDS doubly stochastic matrix of A.

(ii) Conversely, assume X is an RCDS doubly stochastic matrix of A. Then,
X = (1/α)Y (u, v), as in (i), for some vectors u, v and α is the common
line sum of Y (u, v).

We will illustrate this with an example.

Example 2.3.3. Let A be the following (0, 1)-matrix.

A =


1 0 0 0 1
0 1 0 1 1
0 1 1 0 1
1 1 0 0 0
0 0 1 1 0
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We choose vectors u = (1, 0, 0, 1, 0), v = (1, 1, 2, 2, 1) and obtain Y = [yij ] where
yij = ui + vj when aij = 1 and yij = 0 otherwise.

Y =


2 0 0 0 2
0 1 0 2 1
0 1 2 0 1
2 2 0 0 0
0 0 2 2 0


Notice that each row and column vector sum to 4. Thus, by Theorem 2.3.2, Y
is RCDS and 1/4Y is RCDS doubly stochastic. 4

This algorithm for constructing RCDS matrices is straightforward, except
for the choices of vectors u, v. However, these vectors may be found by solving
a system of linear equations. We will discuss this further in the next section.

2.4 Constructing RCDS doubly stochastic matrices from
(0, 1)-matrices

In the previous section, we presented a characterization of RCDS matrices and
constructed an example. Now, we will provide an algorithm for constructing
RCDS matrices using this characterization. The following construction is
directly cited from Brualdi & Dahl [3].

Let A be a fully indecomposable (0, 1)-matrix. Let R(A) = (r1, r2, . . . , rn)
and C(A) = (c1, c2, . . . , cn) be row and columns sum vectors of A. Then
let DR, DC be the diagonal matrices with main diagonals R(A) and C(A),
respectively. Define

Ri(A) = {j : aij = 1}, (i ≤ n) and Cj(A) = {i : aij = 1}, (j ≤ n)

Thus, ri = |Ri(A)| and cj = |Ci(A)| for each i, j. From Theorem 2.3.2 we
assume that α = 1. This gives

riui +
∑

j∈Ri(A)

vj = 1 (i ≤ n) (2.4)

cjvj +
∑

i∈Cj(A)

ui = 1 (j ≤ n) (2.5)

This is a system of linear equations with 2n variables and 2n constraints,
which we can solve to find the vectors u, v from Theorem 2.3.2 and thus construct
an RCDS matrix. The system of linear equations correspond to

Hx = e, where H =
[
DR A
AT DC

]
and x =

[
u
v

]
(2.6)

Here, e is the all 1’s vector. Following this construction, Brualdi & Dahl [3]
presented and proved the following result.

Theorem 2.4.1. [3, Theorem 2.6] Let A be an n × n fully indecomposable
(0, 1)-matrix. Then the folllowing holds,
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2.4. Constructing RCDS doubly stochastic matrices from (0, 1)-matrices

(i) There exists u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) such that (u, v)
is a solution to the system 2.6. The solution is unique up to adding a
constant to each component in u and subtracting the same constant from
each component in v.

(ii) A is the pattern of an RCDS doubly stochastic matrix if and only if
ui + vj > 0 for all (i, j) with aij = 1, where (u, v) is an arbitrary solution
of 2.6.

We have written a code in Matlab that uses this construction, which we
have used to generate random RCDS doubly stochastic matrices for the work in
this thesis. The code can be found in Appendix A.3. We will demonstrate this
construction by an example. Actually, we used this construction to find the
RCDS matrix in Example 2.3.3, so we will use the same matrix in the following
example.

Example 2.4.2. Let A be the following (0, 1)-matrix.

A =


1 0 0 0 1
0 1 0 1 1
0 1 1 0 1
1 1 0 0 0
0 0 1 1 0


First, we obtain R(A), C(A) by the row and column vector sums of A.

R(A) = (2, 3, 3, 2, 2) C(A) = (2, 3, 2, 2, 3)

The matrices DR, DC are diagonal matrices where R(A), R(C) are the elements
along the main diagonal.

DR =


2 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 2

 DC =


2 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 3


Then, we find the matrix H,

H =
[
DR A
AT DC

]
=



2 0 0 0 0 1 0 0 0 1
0 3 0 0 0 0 1 0 1 1
0 0 3 0 0 0 1 1 0 0
0 0 0 2 0 1 1 0 0 0
0 0 0 0 2 0 0 1 1 0
1 0 0 1 0 2 0 0 0 0
0 1 1 1 0 0 3 0 0 0
0 0 1 0 1 0 0 2 0 0
0 1 0 0 1 0 0 0 2 0
1 1 0 0 0 0 0 0 0 3


Lastly, we solve the system of linear equations[

DR A
AT DC

] [
u
v

]
= e, where e is the all 1’s vector
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using the code in Appendix A.3, we obtain the vectors

u = (−0.2115,−0.4615,−0.4615,−0.2115,−0.4615),
v = (0.7115, 0.7115, 0.9615, 0.9615, 0.7115)

Since the solution is unique up to adding a constant to each component in u and
subtracting the same constant from each component in v, we add and subtract
0.4615 to u and from v. We obtain u′ = (0.25, 0, 0, 0.25, 0) = 1

4 (1, 0, 0, 1, 0),
v′ = (0.25, 0.25, 0.5, 0.5, 0.25) = 1

4 (1, 1, 2, 2, 1) which are equal to the vectors
u, v from Example 2.3.3 before scaling the matrix to be doubly stochastic. 4

This algorithm for constructing RCDS matrices is based on the pattern of
the starting matrix A, which does not necessarily have an RCDS pattern. In
those cases, the algorithm does not provide an RCDS matrix. However, if there
exists an RCDS matrix X such that ξ(A) ⊆ ξ(X), i.e. there exists an RCDS
matrix which contains the zero pattern of A, then the algorithm will provide us
with this RCDS matrix. We will present a short example which demonstrates
this.

Example 2.4.3. Let A be the following (0, 1)-matrix.

A =


0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
1 1 1 0 0
0 0 0 1 0


Constructing an RCDS matrix based on A gives the following matrix X,

X =


0 0.6 0.4 0 0

0.6 0 0.4 0 0
0 0 0 0 1

0.4 0.4 0.2 0 0
0 0 0 1 0


The matrices A, X do not have the same pattern, but ξ(A) ⊆ ξ(X). Positions
(3, 1), (3, 2), (3, 4) are nonzero in A and zero in X. 4

In the next section, we will move on to a method for checking if a matrix is
RCDS doubly stochastic.

2.5 The optimal assignment problem and RCDS matrices

RCDS matrices are intricate and it may be a complicated matter to check if
a matrix is RCDS. One can use the optimal assignment problem from linear
programming to check this property, by computing the maximum and minimum
nonzero diagonal sum. If the maximum and minimum nonzero diagonal sum are
equal, the matrix is RCDS. For this purpose, will now give a formal definition
of the optimal assignment problem, which is directly cited from Vanderbei [15].

Let S be a set of n people, and T be a set of n tasks. For each i ∈ S, j ∈ T
there is a cost cij associated with assigning person i to task j. The optimal
assignment problem is to assign each person to exactly one task such that each
task is covered and the total cost of assignments is minimized.
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We let

xij =
{

1 if person i is assigned task j
0 otherwise

(2.7)

The objective function can be written as

min
∑
i∈S

∑
j∈T

cijxij (2.8)

The constraints are defined such that each person is assigned exactly one
task, and each task is covered by exactly one person,∑

j∈T
xij = 1 for all i ∈ S

∑
i∈S

xij = 1 for all j ∈ T
(2.9)

Notice that the constraints are equivalent to X = [xij ] being a permutation
matrix. Since the assumed variables xij are integral, any feasibly solution to
this problem will be integral. We will use this LP problem to find the minimum
and maximum diagonal sums of an doubly stochastic matrix B. If the optimal
minimum value equals the optimal maximum value, the matrix is RCDS.

Let B = [bij ] be a fully indecomposable doubly stochastic matrix, and
X = [xij ] a permutation matrix. We want to find the minimum diagonal sum
avoiding all zeros. Since B is fully indecomposable, such a nonzero diagonal
must exist. In order to avoid all zeros in the linear programming solution, we
replace all 0’s in B with M , where M is an large enough number. We denote
this matrix B′ = [b′ij ]. This gives the following LP problem,

min
∑
i≤n

∑
j≤n

b′ijxij

s.t.
∑
j≤n

xij = 1 for all i ≤ n

∑
i≤n

xij = 1 for all j ≤ n

(2.10)

Similarly, we want to find the maximum diagonal sum of B. In that case,
we replace all 0’s in B with −M and denote this matrix B′′. This gives the
following LP problem,

max
∑
i≤n

∑
j≤n

b′′ijxij

s.t.
∑
j≤n

xij = 1 for all i ≤ n

∑
i≤n

xij = 1 for all j ≤ n

(2.11)

We are interested in the integer solutions which give us permutation matrices
such that the 1’s indicate the positions of the elements which give the respective
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maximum and minimum diagonal sums. We will demonstrate this LP problem
with a 3× 3 doubly stochastic matrix B. For this demonstration, we will only
focus on the minimization problem.

B =

 b11 b12 b13
b21 b22 b23
b31 b32 b33


The solution of the LP problem will be a 3× 3 matrix X where the positions of
the 1’s provide the positions of B which give the minimum diagonal sum. The
system of equations looks like the following

(2.12)

We have used this LP problem to write a code in Matlab which computes
the maximum and minimum diagonal sums of a matrix. This code can be found
in Appendix A.5.

2.6 The matrix class X(r,s,n)

We will now begin to explore the number of nonzero diagonals of RCDS doubly
stochastic matrices. The number of nonzero diagonals is equal to to the number
of perfect matchings of a weighted bipartite graph associated to the matrix.
Since RCDS matrices have proven to be quite complicated, we will study a
specific class of RCDS doubly stochastic matrices in order to explore this
problem. We denote this class of matrices as X(r,s,n) and start by defining this
class. The following definition and preposition is cited from Brualdi & Dahl [3].

Definition 2.6.1. Let r, s, n be positive integers such that s < r < n. We
define the matrix X(r,s,n) = [xij ] ∈Mn to be a n× n matrix with the following
elements

xij =


1/r (i ≤ r, j ≤ s)
(r − s)/(r(n− s)) (i ≤ r, s < j ≤ n)
0 (r < i ≤ n, j ≤ s)
1/(n− s) (r < i ≤ n, s < j ≤ n)

(2.13)

Proposition 2.6.2. [3, Proposition 5.2] X(r,s,n) is an RCDS doubly stochastic
matrix for each s < r < n.

Notice that that the definition of the matrix class X(r,s,n) ensures that the
matrices are fully indecomposable. Recall that a fully indecomposable matrix
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does not have a zero submatrix of size k×l such that k+l ≥ n. X(r,s,n)-matrices
have zero submatrices of size (n − r) × s. Since s < r < n, it follows that
r ≤ n− 1, s ≤ n− 2, and the largest possible zero submatrix is

(n− r) + s ≤ n− (n− 1) + (n+ 2) = n− 1

Thus X(r,s,n)-matrices are fully indecomposable. We will provide an example
of an RCDS doubly stochastic matrix X(3,2,6) and study the possible diagonals
of this matrix. This matrix was also used in an example by Brualdi & Dahl [3].

Example 2.6.3. We will consider the matrix X(3,2,6) given by

X(3,2,6) =


1/3 1/3 1/12 1/12 1/12 1/12
1/3 1/3 1/12 1/12 1/12 1/12
1/3 1/3 1/12 1/12 1/12 1/12

0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4


One can easily check that X(3,2,6) is RCDS doubly stochastic. First, we

see that all column and row vectors sum to 1. Furthermore, when choosing a
diagonal excluding zero elements, we see that we must choose 1/3 from both
the first and second column. No matter which rows we choose 1/3 from, the
remaining row will only have 1/12 as an element. We then proceed to the
bottom three rows, and they all have the same element 1/4. Thus, the constant
diagonal sum is

1
3 + 1

3 + 1
12 + 1

4 + 1
4 + 1

4 = 3
2

Using enumerative combinatorics, we can compute the number of ways to
choose diagonals of the matrix. There are three ways to choose a position from
column 1, thereafter two ways to choose a position from column 2, and then four
remaining ways to choose a position with the element 1/12. Equivalently, there
are 3 · 2 · 1 ways to choose positions with elements 1/4 in the bottom three rows.
Thus, for the matrix X(3,2,6), we can choose a diagonal in 3 · 2 · 4 · 3 · 2 · 1 = 144
ways. We may for example choose a diagonal in the following way, where the
entries are marked in bold.

X(3,2,6) =


1/3 1/3 1/12 1/12 1/12 1/12
1/3 1/3 1/12 1/12 1/12 1/12
1/3 1/3 1/12 1/12 1/12 1/12

0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4


4

In the next section, we will study the number of diagonals for general
matrices from the class X(r,s,n).

2.7 The number of diagonals of X(r,s,n)-matrices

With the results from Example 2.6.3 in the previous section, it is interesting to
further explore the number of diagonals of RCDS doubly stochastic matrices.
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Recall that there are n! permutations of an n×n matrix, and thus n! diagonals.
However, we are mainly interested in finding nonzero diagonals, and computing
the number of these can be complicated. As we have seen in the previous section,
the number of nonzero diagonals can vary by the size and zero positions of a
matrix. Nevertheless, certain classes of RCDS matrices have certain restrictions
to their zero positions which may provide a pattern of the number of their
diagonals. In this section, we will explore further the matrix class X(r,s,n) from
Definition 2.6.1 in search for a pattern in their diagonals.

We have written a code in Matlab to compute the sums of all nonzero
diagonals of a matrix, which we used to find all nonzero diagonal sums, and the
number of diagonals from which they were obtained. See Appendix A.7 for the
code. In later parts of this thesis, we will explore how minor modifications to
an RCDS matrix alters the diagonal sums, but first our goal is to find the total
number of nonzero diagonals of the matrix class X(r,s,n). When this is found,
we can use the result to find the number of diagonal sums of modified X(r,s,n)-
matrices. We begin with an example, where we used the code in Appendix A.7
to compute the number of nonzero diagonals.

Example 2.7.1. In this example, we will look at all possible X(r,s,n)-matrices
where n = 5. The number of nonzero diagonals for each matrix X is denoted
N(X).

X(2,1,5) =


1/2 1/8 1/8 1/8 1/8
1/2 1/8 1/8 1/8 1/8

0 1/4 1/4 1/4 1/4
0 1/4 1/4 1/4 1/4
0 1/4 1/4 1/4 1/4

 , N(X(2,1,5)) = 48

X(3,1,5) =


1/3 1/6 1/6 1/6 1/6
1/3 1/6 1/6 1/6 1/6
1/3 1/6 1/6 1/6 1/6

0 1/4 1/4 1/4 1/4
0 1/4 1/4 1/4 1/4

 , N(X(3,1,5)) = 72

X(4,1,5) =


1/4 3/16 3/16 3/16 3/16
1/4 3/16 3/16 3/16 3/16
1/4 3/16 3/16 3/16 3/16
1/4 3/16 3/16 3/16 3/16

0 1/4 1/4 1/4 1/4

 , N(X(4,1,5)) = 96

X(3,2,5) =


1/3 1/3 1/9 1/9 1/9
1/3 1/3 1/9 1/9 1/9
1/3 1/3 1/9 1/9 1/9

0 0 1/3 1/3 1/3
0 0 1/3 1/3 1/3

 , N(X(3,2,5)) = 36
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X(4,2,5) =


1/4 1/4 1/6 1/6 1/6
1/4 1/4 1/6 1/6 1/6
1/4 1/4 1/6 1/6 1/6
1/4 1/4 1/6 1/6 1/6

0 0 1/3 1/3 1/3

 , N(X(4,2,5)) = 72

X(4,3,5) =


1/4 1/4 1/4 1/8 1/8
1/4 1/4 1/4 1/8 1/8
1/4 1/4 1/4 1/8 1/8
1/4 1/4 1/4 1/8 1/8

0 0 0 1/2 1/2

 , N(X(4,3,5)) = 48

4

From this example, we studied the nonzero diagonals of general matrices
from the class X(r,s,n) and arrived at the following result.

Theorem 2.7.2. Let X(r,s,n) be a matrix by Definition 2.6.1. Then, the number
of nonzero diagonals is N(X) = r!

(r−s)! (n− s)!.

Proof. When finding the number of all diagonals of X(r,s,n), one can divide the
matrix into four sections.

X(r,s,n) =


1
r

r−s
r(n−s)

0 1
n−s



rn− r︸ ︷︷ ︸
s

︸ ︷︷ ︸
n−s

Each chosen diagonal will have n elements. The upper left section is an
r × s submatrix of X(r,s,n). Since s < r, a total of s positions will be chosen
from this section. When choosing diagonal positions from this section, there
are r · (r− 1) · · · (r− s+ 1) = r!

(r−s)! choices. Since s positions are chosen in the
lop left section, there remains n− s positions to choose from (n− s) columns in
the whole right section. This leaves a total of (n− s)! combinations, and thus
the total number of nonzero diagonals is r!

(r−s)! (n− s)!.

This result can be applied to the number of perfect matchings of a bipartite
graph. First, we will give the formal definition of the class of weighted bipartite
graph associated to the matrix class X(r,s,n).

Definition 2.7.3. Let r, s, n be positive integers such that s < r < n. We
define the weighted bipartite graph G(r,s,n) with disjoint sets of vertices
I = {i1, i2, . . . , in}, J = {j1, j2, . . . , jn} and edges with weights such that

w({ik, jl}) =


1/r (k ≤ r, l ≤ s)
(r − s)/(r(n− s)) (k ≤ r, s < l ≤ n)
no edge (k < i ≤ n, l ≤ s)
1/(n− s) (k < i ≤ r, s < l ≤ n)

(2.14)
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Applying Theorem 2.7.2 to the weighted bipartite graphs G(r,s,n) gives us
the following corollary.

Corollary 2.7.4. Let G(r,s,n) be a weighted bipartite graph by Definition 2.7.3.
Then, the number er perfect matchings in the graph is N(G) = r!

(r−s)! (n− s)!.

Proof. The corollary is a direct result from Theorem 2.7.2.

2.8 The constant diagonal sum of X(r,s,n)-matrices

Based on the definition of X(r,s,n)-matrices from Definition 2.6.1, one can
compute the constant diagonal sum of the matrices. Since s < r < n, there are
no zeros along the main diagonal of the matrix and we can use the main diagonal
to compute the sum. Again, we will divide the matrix onto four sections for
this computation,

X(r,s,n) =


1
r

r−s
r(n−s)

0 1
n−s



rn− r
︸ ︷︷ ︸

s
︸ ︷︷ ︸

n−s

Since s < r, there will be s elements in the top left section in the main diagonal
of X(r,s,n). Moreover, the main diagonal will contain n− r elements from the
bottom right section. This leaves n − s − (n − r) = r − s elements in the
main diagonal, which must belong in the top right section. Thus, the constant
diagonal sum of X(r,s,n)-matrices is

S(X) = s
1
r

+ (r − s) r − s
r(n− s) + (n− r) 1

n− s
= nr + ns− 2rs

r(n− s) (2.15)

From Theorem 2.1.4 we can make in interesting observation of the constant
diagonal sums of X(r,s,n)-matrices. The theorem implies that for two RCDS
doubly stochastic matrices X1, X2 with constant diagonal sums S1, S2, if
ξ(X1) ⊆ ξ(X2) then S1 ≤ S2. This means that if n is fixed, the zero positions
will influence the constant diagonal sum. Notice that the number of zero
positions of X(r,s,n)-matrices is s (n − r). More specifically, for two matrices
X(r1,s1,n), X(r2,s2,n) where n is fixed, if r1 ≥ r2 and s1 ≤ s2, then S1 ≤ S2. We
will demonstrate this with an example.

Example 2.8.1. Let n = 7, r1 = 2, r2 = 3, s1 = 6, s2 = 4. This gives the
following matrices of the class X(r,s,n).

X(6,2,7) =



1/6 1/6 2/15 2/15 2/15 2/15 2/15
1/6 1/6 2/15 2/15 2/15 2/15 2/15
1/6 1/6 2/15 2/15 2/15 2/15 2/15
1/6 1/6 2/15 2/15 2/15 2/15 2/15
1/6 1/6 2/15 2/15 2/15 2/15 2/15
1/6 1/6 2/15 2/15 2/15 2/15 2/15

0 0 1/5 1/5 1/5 1/5 1/5
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The constant diagonal sum of X(6,2,7) is S1 = 16/15.

X(4,3,7) =



1/4 1/4 1/4 1/16 1/16 1/16 1/16
1/4 1/4 1/4 1/16 1/16 1/16 1/16
1/4 1/4 1/4 1/16 1/16 1/16 1/16
1/4 1/4 1/4 1/16 1/16 1/16 1/16

0 0 0 1/4 1/4 1/4 1/4
0 0 0 1/4 1/4 1/4 1/4
0 0 0 1/4 1/4 1/4 1/4


The constant diagonal sum of X(4,3,7) is S2 = 25/15. Moreover, we see that
ξ(X(6,2,7)) ⊆ X(4,3,7), s1 ≥ s2, r1 ≤ r2 and S1 ≤ S2. 4

Keeping in mind that s < r < n, one can also see from 2.15 that the diagonal
sum will increase when s increases or when r decreases. Conversely, the sum
will decrease when s decreases or when r increases.

The results from this section can also be applied to weighted bipartite graphs
G(r,s,n). Since the nonzero diagonals of a matrix correspond to the perfect
matchings of the associated bipartite graph, the weight sum of all perfect
matchings in the weighted bipartite graphs G(r,s,n) is

S(G) = nr + ns− 2rs
r(n− s)

The sum of weights in the weighted bipartite graph is equal to the constant
solution to the optimal assignment. The optimal solution to the problem will
thus increase or decrease depending on the values of r, s.

The number of diagonals in X(r,s,n)-matrices and their sums conclude this
chapter. In the next chapter, we will make some modifications to RCDS
matrices and explore how the modifications alter the nonzero diagonals and
their respective sums.
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CHAPTER 3

Modification of RCDS doubly
stochastic matrices

In the previous chapter, we found the number of nonzero diagonals of the matrix
class X(r,s,n). These diagonals have the same sum, since they are restricted
constant diagonal sum matrices. Now, we will explore the following problem.
Let X be an n× n RCDS doubly stochastic matrix. We then proceed to make
minor changes to some of the nonzero elements in the matrix, and name the
new matrix X ′. How will these changes affect the sum of the diagonals? We
know from Corollary 2.1.5 that the diagonal sums will no longer be constant,
since RCDS matrices are uniquely determined by their zero positions.

There are of course many ways to explore this problem. For the sake of
continuity in our work, we defined an operation, ε-modification, which changes
the value of four nonzero elements in a matrix. This operation is defined in
the first section of this chapter. We then proceed to explore the diagonals of
ε-modified X(r,s,n)-matrices and randomly generated RCDS doubly stochastic
matrices from Matlab. This lead us to some results which are presented
in later sections of this chapter. Lastly, we will see how the results apply to
weighted bipartite graphs and the optimal assignment problem.

3.1 ε-modification

In this section, we will define the operation ε-modification which we used in our
work to explore the modified diagonals. First, we need to define a submatrix.
A submatrix of a matrix A is any matrix that results in deleting rows and/or
columns from matrix A, see [8]. ε-modification is an operation performed on
n× n matrices where we assume n ≥ 2, and the matrices are RCDS.

We start by defining the following 2× 2 matrix

Eε =
[

ε −ε
−ε ε

]
, ε > 0

Then, we choose a 2× 2 nonzero submatrix Y of an RCDS matrix X = [xij ],
and compute the sum Y ′ = Y +Eε. We replace the values in X, in the positions
of X corresponding to submatrix Y , with the values of Y ′, and denote the new
matrix X ′. Notice that Y ′ is a submatrix of X ′. Also, notice that adding and
subtracting ε to the same row and column in X ′ maintains the row and column
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3.1. ε-modification

sums of X. If ε is small enough, X ′ also maintains the property of being doubly
stochastic.

With the new matrix X ′, our problem is to determine the diagonal sums
of X ′, and how the diagonal sums differ from the constant diagonal sum of X.
For a general result of this problem, the submatrix Y will be chosen at random.
We illustrate this with the following matrices X, Y, Y ′, X ′,

X =



x11 · · · · · · · · · · · · · · · x1n
...

...
...

...
· · · xac · · · xad · · ·

...
...

...
...

· · · xbc · · · xbd · · ·
...

...
...

...
xn1 · · · · · · · · · · · · · · · xnn


where a, b, c, d are some integers such that 1 ≤ a, b, c, d ≤ n and

xac, xbc, xad, xbd 6= 0. Note that xac, xbc, xad, xbd may be in the corners
or outskirts of the matrix. We obtain the submatrices Y, Y ′,

Y =
[
xac xad
xbc xbd

]
Y ′ =

[
xac + ε xad − ε
xbc − ε xbd + ε

]
Lastly, we obtain the matrix X ′ by replacing the elements of X with the
elements of Y ′ in the positions corresponding to the submatrix Y .

X ′ =



x11 · · · · · · · · · · · · · · · x1n
...

...
...

...
· · · xac + ε · · · xad − ε · · ·

...
...

...
...

· · · xbc − ε · · · xbd + ε · · ·
...

...
...

...
xn1 · · · · · · · · · · · · · · · xnn


Performing ε-modification on a matrix X to obtain X ′ will be used several

times in this thesis. We will now give a formal definition of the operation.
Notice that the definition applies to RCDS matrices that are not restricted to
being doubly stochastic.

Definition 3.1.1. Let X be an n×n RCDS matrix where n ≥ 2, which contains
at least four nonzero entries. Let Y be any 2× 2 nonzero submatrix of X, and
let Eε be the following 2× 2 matrix

Eε =
[

ε −ε
−ε ε

]
, ε ∈ R

We define the operation ε-modification to be the procedure of replacing
the elements in the positions of X which correspond to submatrix Y with the
elements in Y ′ = Y + Eε. We denote the new matrix X ′.
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Notice that we will use Eε in all our examples and computations, but the
results would be the same if we used −Eε instead. In the next section, we will
provide an example of ε-modification.

3.2 An example of an ε-modified matrix

We will now present an example of ε-modification, and start exploring the
diagonals of the modified matrix. In this example, we will use the matrix
X(3,2,6) from Example 2.6.3.

Example 3.2.1.

X(3,2,6) =


1/3 1/3 1/12 1/12 1/12 1/12
1/3 1/3 1/12 1/12 1/12 1/12
1/3 1/3 1/12 1/12 1/12 1/12

0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4


We choose the following submatrix Y , and obtain the matrix X ′ by ε-

modification.

Y =
[
x11 x15
x31 x35

]
=
[

1/3 1/12
1/3 1/12

]

X ′ =


1/3 + ε 1/3 1/12 1/12 1/12− ε 1/12

1/3 1/3 1/12 1/12 1/12 1/12
1/3− ε 1/3 1/12 1/12 1/12 + ε 1/12

0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4


Now, the question is how this change affects the diagonal sums of matrix

X ′. We start by finding the maximum sum. In this case, we must choose both
ε-modified elements corresponding to + ε. Elements from the first three rows
must be chosen in the following way,

X ′ =


1/3 + ε 1/3 1/12 1/12 1/12− ε 1/12

1/3 1/3 1/12 1/12 1/12 1/12
1/3− ε 1/3 1/12 1/12 1/12 + ε 1/12

0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4


After elements from the first three rows are chosen, there are 3 · 2 · 1 = 6 ways
the choose elements from the bottom three rows. Thus, there are six diagonals
with sum 3/2 + 2ε. Equivalently, there are six ways to choose a diagonal with
minimum sum 3/2− 2ε.

We will now compute the number of ways to choose a diagonal with sum
3/2 + ε. This means we must choose either position (1, 1) or (3, 5) but not both.
If we choose position (1, 1) from the first column, we must choose either position
(2, 2) or (3, 2) from the second column. This gives us two further options. In
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case we choose (2, 2), we may choose between three elements on row 3 with
element 1/12 and then 3 · 2 · 1 choices for the bottom three rows. In case we
choose (3, 2), we may choose between four elements on row 2 and then 3 · 2 · 1
choices for the bottom three rows. This gives us 3 · 3 · 2 · 1 + 4 · 3 · 2 · 1 = 42
combinations so far. However, if we start by choosing position (3, 5), we must
choose the elements (1, 2) and (2, 1) from the first two columns, and as usual
there are 3 · 2 · 1 ways to choose elements from the bottom three rows. In total,
this gives us 42 + 6 = 48 ways to choose a diagonal with sum 3/2 + ε. The
computation for finding the number of ways to choose a diagonal with sum
3/2− ε is equivalent, thus the number of combinations is also 48.

Lastly, we will compute the number of ways to choose a diagonal with sum
3/2. We first note that it is not possible to choose a diagonal entry that includes
ε-modified elements corresponding to both + ε and − ε, so we are restricted
to position (2, 1) in the first column. Then there are two choices for column
2, three choices for the element 1/12 and 3 · 2 · 1 choices for the bottom three
rows. This gives us 2 · 3 · 3 · 2 · 1 = 36 combinations.

Notice that 6 + 6 + 48 + 48 + 36 = 144 which equals the total number of
ways to choose a diagonal for matrix X(3,2,6), as shown in Example 2.6.3. We
can summarize our findings in Table 3.1.

Diagonal sum Number of diagonals
3/2 36
3/2 + ε 48
3/2− ε 48
3/2 + 2ε 6
3/2− 2ε 6

Table 3.1: Possible diagonal sums for X ′

4

In the example, our findings were restricted to the case where we perform
ε-modification to elements in the indices (1, 1), (3, 1), (1, 5), (3, 5). In case we
choose other elements, the number of combinations for the different sums will
differ but the sums will be the same. We will explore this further in the following
sections.

3.3 An example of an ε-modified RCDS matrix using
MATLAB

The previous section explored how ε-modification of an X(r,s,n)-matrix altered
the diagonal sums of the matrices. We were interested in exploring this further,
especially for more general RCDS doubly stochastic matrices. We used Matlab
to generate random RCDS doubly stochastic matrices and thereafter select
random 2× 2 nonzero submatrices to proceed with ε-modification, as described
in the previous section.

We discovered the exact same changes in the diagonal sums, although
the number of diagonals varied. Moreover, not all five diagonal sums were
attainable for each matrix. Let S be the constant diagonal sum of an RCDS
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doubly stochastic matrix. Then, after performing ε-modification to the matrix,
the diagonal sums were restricted to S, S + ε, S − ε, S + 2ε, S − 2ε. We will
demonstrate this with an example from the Matlab program.

Example 3.3.1. In this example, we will generate a random RCDS matrix in
Matlab, perform ε-modification, and check the diagonal sums of the modifed
matrix. See Chapter 4 for explanations of the Matlab codes. First, we chose
the matrix dimension n = 5, and generated a random doubly stochastic matrix
using the code in Appendix A.1. This gave the following matrix A

A =


0.1941 0 0.0259 0 0.7800
0.0259 0 0 0.9741 0

0 0.8600 0.1141 0.0259 0
0 0.0259 0.8600 0 0.1141

0.7800 0.1141 0 0 0.1059


Then we used the code in Appendix A.3 to generate an RCDS matrix X

based on the pattern of matrix X. This matrix has 9 nonzero diagonals and
constant diagonal sum S = 1.8636.

X =


0.2955 0 0.3636 0 0.3409
0.4091 0 0 0.5909 0

0 0.2955 0.2955 0.4091 0
0 0.3409 0.3409 0 0.3182

0.2955 0.3636 0 0 0.3409


Now, we performed ε-modification where ε = 0.001, using the code in

Appendix A.6. The changes were made to positions (1, 1), (5, 1), (1, 5), (5, 5).
The ε-modified matrix X ′ is

X ′ =


0.2945 0 0.3636 0 0.3419
0.4091 0 0 0.5909 0

0 0.2955 0.2955 0.4091 0
0 0.3409 0.3409 0 0.3182

0.2965 0.3636 0 0 0.3399


Using the code in Appendix A.8, we found the number of diagonals and

their respective sums. The results are presented in Table 3.2

Diagonal sum Number of diagonals
1.8636 1
1.8636 + 0.001 2
1.8636− 0.001 2
1.8636 + 0.002 2
1.8636− 0.002 2

Table 3.2: Possible diagonal sums for X ′

4

The previous examples and computations lead us to a result which will be
presented in the next section.
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3.4 Diagonal sums of an ε-modified RCDS matrices

In the previous sections, we explored how the diagonals and diagonal sums
change when performing ε-modification to RCDS doubly stochastic matrices.
Using similar computations and various RCDS doubly stochastic matrices
generated from Matlab, we arrived at the following result. Notice that the
result applies to all RCDS matrices, not only RCDS doubly stochastic matrices.

Theorem 3.4.1. Let X = [xij ] be an n × n RCDS matrix, and let S be the
constant diagonal sum of X. Assume n ≥ 2. Perform ε-modification on X and
obtain X ′. Then, X ′ is not RCDS. Furthermore, X ′ has up to five distinct
diagonal sums which equal to S, S + ε, S − ε, S + 2ε, S − 2ε.

Proof. It follows from Corollary 2.1.5 that X ′ is not RCDS, since it is assumed
that X is RCDS and ξ(X ′) = ξ(X).

When selecting a diagonal of X ′ with nonzero elements, there are up to
three different cases depending on the size and zero positions of X. Let
F = {x1 + ε, x2 − ε, x3 + ε, x4 − ε} be the set of ε-modified elements in X ′.

Case 1: If possible, choose a diagonal Dσ such that Dσ ∩ F = ∅. Then the
diagonal sum will equal the constant diagonal sum of X, namely S.

Case 2: If possible, choose a diagonal Dσ which contains exactly one element
of F . This element will have a difference of either + ε or − ε from the initial
element in the same position in X. The sum of these diagonals will thus equal
either S + ε or S − ε.

Case 3: If possible, choose a diagonal Dσ which contains exactly two elements
of F . Since it is not possible to select two elements from the same row or column
for a diagonal entry, Dσ must include either {x1 + ε, x3 + ε} or {x2− ε, x4− ε}.
The sum of these diagonals will thus equal either S + 2ε or S − 2ε.

Apart from these three cases, there are no other ways to choose a nonzero
diagonal of X.

In Example 3.2.1 and Example 3.3.1, we saw cases of a matrices where all
five diagonal sums were attainable. However, ε-modified RCDS matrices may
have less than five distinct diagonal sums. We will present two examples of this.

Example 3.4.2. Let X be the following 2× 2 RCDS doubly stochastic matrix.

X =
[

0.5 0.5
0.5 0.5

]
After ε-modification, we obtain X ′,

X ′ =
[

0.5 + ε 0.5− ε
0.5− ε 0.5 + ε

]
There are only two possible diagonals for X ′, namely Dσ1 = {(1, 1), (2, 2)} and
Dσ2 = {(2, 1), (1, 2)}. These diagonals yield diagonal sums S + 2ε and S − 2ε,
where S is the constant diagonal sum of X. 4
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Example 3.4.3. Let X(3,2,6) be the RCDS doubly stochastic matrix from
Example 3.2.1.

X(3,2,6) =


1/3 1/3 1/12 1/12 1/12 1/12
1/3 1/3 1/12 1/12 1/12 1/12
1/3 1/3 1/12 1/12 1/12 1/12

0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4


We perform ε-modification in positions (1, 5), (1, 6), (2, 5), (2, 6) and obtain

X ′,

X ′ =


1/3 1/3 1/12 1/12 1/12 + ε 1/12− ε
1/3 1/3 1/12 1/12 1/12− ε 1/12 + ε
1/3 1/3 1/12 1/12 1/12 1/12

0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4


X ′ has three distinct diagonal sums, namely S, S + ε, S − ε. It is not possible
to find a nonzero diagonal with diagonal sum S ± 2ε. In order to yield the
diagonal sum including both + ε elements or both − ε elements, one has to
choose either positions (1, 5), (2, 6) or (1, 6), (2, 6) which forces a zero position
in the diagonal. 4

In the next section, we will continue to explore ε-modified X(r,s,n)-matrices
and find the number of diagonals corresponding to each diagonal sum.

3.5 The number of diagonals of ε-modified X(r,s,n)-matrices

In Chapter 2, we found the number of diagonals and constant diagonal
sums of X(r,s,n)-matrices, and in the previous section we established how
the diagonal sums change when the matrices of these class are ε-modified.
Recall that the diagonal sums of an ε-modified X(r,s,n)-matrix are a subset of
{S, S + ε, S − ε, S + 2ε, S − 2ε}. We will now finally explore the number of
nonzero diagonals that yield the different diagonal sums in ε-modified X(r,s,n)-
matrices. This was computed by hand in Example 3.2.1, but we will now find a
way to compute this in general for all matrices of the class. For this discussion,
we will again divide the matrix into four sections.

X(r,s,n) =


1
r

r−s
r(n−s)

0 1
n−s



rn− r
︸ ︷︷ ︸

s
︸ ︷︷ ︸

n−s

For ε-modified matrices of the class X(r,s,n), the number of diagonals per
diagonal sum will vary based on which of the three sections contain modified
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elements. Since there are three possible sections to perform ε-modification on,
and the modification involves two rows and columns, this gives a total of five
outcomes. We will explore one of these outcomes where the ε-modification is
performed in the top left section, i.e. on elements xij such that i ≤ r and j ≤ s.

X ′ =



1
r + ε 1

r − ε
r−s

r(n−s)
1
r − ε

1
r + ε

0 1
n−s




r

n− r︸ ︷︷ ︸
s

︸ ︷︷ ︸
n−s

In order to perform ε-modification on elements xij where i ≤ r, j ≤ s, the
section must include at least four elements. Since s < r < n, this requires
that s ≥ 2, r ≥ 3, n ≥ 4 for all matrices X(r,s,n). When counting the nonzero
diagonals of X ′, there are up to five different cases of diagonal sums depending
on which positions one chooses. Let F = {x1 + ε, x2 − ε, x3 + ε, x4 − ε} be the
set of ε-modified elements in X ′.

Case 1: Diagonal sum = S
When choosing positions in the columns of ε-modified elements that ensures
diagonal sum equal to S, one must avoid all elements in F and thus there are
(r− 2) (r− 2− 1) = (r− 2) (r− 3) choices. When choosing among the remaining
positions in the top left section, there are (r− 2) · (r− 3) · · · (r− s+ 1) = (r−2)!

(r−s)!
possible combinations. Furthermore, when choosing diagonal positions from
the top right and bottom right section, there are (n − s)! choices, by the
same argument as in the proof in Theorem 2.7.2. This results in a total
of (r − 2) (r − 3) (r−2)!

(r−s)! (n − s)! combinations. In the special case where
s = 2, r = 3, n = 4, it is not possible to avoid at least one element from
F , and thus it is not possible to attain any diagonal sum equal to S.

Case 2: Diagonal sum = S + ε
When choosing diagonal positions from the top left section that ensures
diagonal sum equal to S + ε, one must choose exactly one element from F
which corresponds to an ε-modified element of + ε. Thus there are 2 (r − 2)
choices when choosing positions in the columns of ε-modified elements. When
choosing among the remaining positions in the top left section, there are
(r−2) · (r−3) · · · (r− s+ 1) = (r−2)!

(r−s)! possible combinations. Furthermore, when
choosing diagonal positions from the top right and bottom right section, there
are (n− s)! choices, by the same argument as in the proof in Theorem 2.7.2.
This results in a total of 2 (r − 2) (r−2)!

(r−s)! (n− s)! combinations.
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Case 3: Diagonal sum = S − ε
This case follows the same argument as in case 2, except one must choose
exactly one element from F which corresponds to an ε-modified element of − ε.
Like case 2, this results in a total of 2 (r − 2) (r−2)!

(r−s)! (n− s)! combinations.

Case 4: Diagonal sum = S + 2ε
When choosing diagonal positions from the top left section that ensures diagonal
sum equal to S + 2ε, one must choose both elements from F which corresponds to
ε-modified elements of + ε. Thus there is only one choice when choosing positions
in the columns of ε-modified elements. When choosing among the remaining
positions in the top left section, there are (r− 2) · (r− 3) · · · (r− s+ 1) = (r−2)!

(r−s)!
possible combinations. Furthermore, when choosing diagonal positions from
the top right and bottom right section, there are (n − s)! choices, by the
same argument as in the proof in Theorem 2.7.2. This results in a total of
(r−2)!
(r−s)! (n− s)! combinations.

Case 5: Diagonal sum = S − 2ε
This case follows the same argument as in case 4, one must choose both elements
from F which corresponds to ε-modified elements of − ε. Like case 4, this results
in a total of (r−2)!

(r−s)! (n− s)! combinations.

The results are summarized in Table 3.3, and gives us the following theorem.

Diagonal sum Number of nonzero diagonals

S (r − 2) (r − 3) (r−2)!
(r−s)! (n− s)!

S + ε 2 (r − 2) (r−2)!
(r−s)! (n− s)!

S − ε 2 (r − 2) (r−2)!
(r−s)! (n− s)!

S + 2ε (r−2)!
(r−s)! (n− s)!

S − 2ε (r−2)!
(r−s)! (n− s)!

Table 3.3: Possible diagonal sums for X ′ when ε-modification is performed on
elements xij such that i ≤ r, j ≤ s. These diagonal sums are attainable when
s ≥ 2, r ≥ 3, n ≥ 4.

Based on the discussion above, we arrived at the following result.

Theorem 3.5.1. Let X(r,s,n) be a matrix by Definition 2.6.1. Assume s ≥ 2, r ≥
3, n ≥ 4. Perform ε-modification on X = [xij ] restricted to elements xij such
that i ≤ r, j ≤ s. Then, the number of nonzero diagonals and their respective
diagonal sums are presented in Table 3.3.

Proof. See the discussion of the five cases above for a proof of this theorem.

For the purpose of further discussion of the number of diagonals, we will
denote them N(S), N(S + ε), N(S − ε), N(S + 2ε), N(S − 2ε). First, notice
that the sum of number of diagonals in Table 3.3 is equal to the total number
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3.5. The number of diagonals of ε-modified X(r,s,n)-matrices

of distinct diagonal positions in Theorem 2.7.2, N .

N(S) +N(S + ε) +N(S − ε) +N(S + 2ε) +N(S − 2ε)

= (r − 2)!
(r − s)! (n− s)!

(
(r − s) (r − 3) + 4(r − 2) + 2

)
= (r − 2)!

(r − s)! (n− s)!
(
r (r − 1)

)
= r!

(r − s)! (n− s)

= N(X)

From Table 3.3, we also notice that r is the only variable that impacts the
difference between the number of diagonals. For example, when r = 3, then
N(S) = 0 and N(S + 2ε), N(S − 2ε) are strictly less than N(S + ε), N(S − ε).
When r = 4 or r = 5, we will also obtain special cases, but when r > 5, then
N(S+2ε), N(S−2ε) are strictly less than N(S+ε), N(S−ε) which are strictly
less than N(S). All cases of how the diagonal sums depend on r is presented in
Table 3.4.

r Comparison of number of diagonals

r = 3 N(S) = 0 < N(S + 2ε) = N(S − 2ε) < N(S + ε) = N(S − ε)

r = 4 N(S + 2ε) = N(S − 2ε) < N(S) < N(S + ε) = N(S − ε)

r = 5 N(S + 2ε) = N(S − 2ε) < N(S) = N(S + ε) = N(S − ε)

r > 5 N(S + 2ε) = N(S − 2ε) < N(S + ε) = N(S − ε) < N(S)

Table 3.4: A comparison of number of diagonals depending on the value of r

We will now present some examples of X(r,s,n)-matrices with the number of
their nonzero diagonals and their respective diagonal sums. The examples will
include cases where r = 3, r = 5 and r > 5.

Example 3.5.2. Let X(3,2,4) be a matrix from the class X(r,s,n) where
r = 3, s = 2, n = 4.

X(3,2,4) =


1/3 1/3 1/6 1/6
1/3 1/3 1/6 1/6
1/3 1/3 1/6 1/6

0 0 1/2 1/2


The matrix has 12 nonzero diagonals, and the constant diagonal sum is 4/3.
For any ε-modified matrix of X, where the modified elements are restricted to
xij such that i ≤ 3, j ≤ 2, the number of nonzero diagonals and their respective
sums are summarized in Table 3.5.

4
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Diagonal sum Number of diagonals
4/3 0
4/3 + ε 4
4/3− ε 4
4/3 + 2ε 2
4/3− 2ε 2

Table 3.5: Diagonal sums for ε-modified X(3,2,4) restricted to elements xij such
that i ≤ 3, j ≤ 2

Example 3.5.3. Let X(5,4,7) be a matrix from the class X(r,s,n) where
r = 5, s = 4, n = 7.

X(5,4,7) =



1/5 1/5 1/5 1/5 1/15 1/15 1/15
1/5 1/5 1/5 1/5 1/15 1/15 1/15
1/5 1/5 1/5 1/5 1/15 1/15 1/15
1/5 1/5 1/5 1/5 1/15 1/15 1/15
1/5 1/5 1/5 1/5 1/15 1/15 1/15

0 0 0 0 0 1/3 1/3
0 0 0 0 0 1/3 1/3


The matrix has 720 nonzero diagonals, and the constant diagonal sum is 23/15.
For any ε-modified matrix of X, where the modified elements are restricted to
xij such that i ≤ 5, j ≤ 4, the number of nonzero diagonals and their respective
sums are summarized in Table 3.6.

Diagonal sum Number of diagonals
23/15 216
23/15 + ε 216
23/15− ε 216
23/15 + 2ε 36
23/15− 2ε 36

Table 3.6: Diagonal sums for ε-modified X(5,4,7) restricted to elements xij such
that i ≤ 5, j ≤ 4

4

Example 3.5.4. Let X(8,5,10) be a matrix from the class X(r,s,n) where
r = 8, s = 5, n = 10.

X(8,5,10) =



1/8 1/8 1/8 1/8 1/8 3/40 3/40 3/40 3/40 3/40
1/8 1/8 1/8 1/8 1/8 3/40 3/40 3/40 3/40 3/40
1/8 1/8 1/8 1/8 1/8 3/40 3/40 3/40 3/40 3/40
1/8 1/8 1/8 1/8 1/8 3/40 3/40 3/40 3/40 3/40
1/8 1/8 1/8 1/8 1/8 3/40 3/40 3/40 3/40 3/40
1/8 1/8 1/8 1/8 1/8 3/40 3/40 3/40 3/40 3/40
1/8 1/8 1/8 1/8 1/8 3/40 3/40 3/40 3/40 3/40
1/8 1/8 1/8 1/8 1/8 3/40 3/40 3/40 3/40 3/40

0 0 0 0 0 1/5 1/5 1/5 1/5 1/5
0 0 0 0 0 1/5 1/5 1/5 1/5 1/5
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The matrix has 806,400 nonzero diagonals and the constant diagonal sum is 5/4.
For any ε-modified matrix of X, where the modified elements are restricted to
xij such that i ≤ 8, j ≤ 5, the number of nonzero diagonals and their respective
sums are summarized in Table 3.7.

Diagonal sum Number of diagonals
5/4 432, 000
5/4 + ε 172,800
5/4− ε 172,800
5/4 + 2ε 14,400
5/4− 2ε 14,400

Table 3.7: Diagonal sums for ε-modified X(8,5,10) restricted to elements xij
such that i ≤ 8, j ≤ 5

4

The previous three examples demonstrated how the comparison of number
of diagonals N(S), N(S + ε), N(S − ε), N(S + 2ε), N(S − 2ε) vary based on
the the value r.

So far in this chapter, we have seen how ε-modified RCDS matrices have
changed the diagonal sums, and we have counted the number of diagonals which
yield each sum for ε-modified X(r,s,n)-matrices. In the final section of this
chapter, we will see how that results apply to weighted bipartite graphs and
the optimal assignment problem.

3.6 ε-modification on weighted bipartite graphs

We have previously discussed the correspondence between matrices and weighted
bipartite graphs. The results from ε-modified RCDS matrices also apply to
equivalent changes made to weighted bipartite graphs associated to the matrices.
Before we present these results, we will give a formal definition of ε-modified
weighted bipartite graphs.

Definition 3.6.1. Let (G,w) be a weighted bipartite graph associated to an
RCDS matrix. Let I = {i1, i2, . . . , in}, J = {j1, j2, . . . , jn} be the sets of vertices
in (G,w). Assume (G,w) has a complete bipartite subgraph of order m ≥ 4. We
define the operation ε-graph modification to be the procedure of choosing two
indices k, l ≤ n such that there exists edges {ik, jk}, {ik, jl}, {il, jk}, {il, jl} in
(G,w), and make the following changes to the weights

w′({ik, jk}) = w({ik, jk}) + ε

w′({ik, jl}) = w({ik, jl})− ε
w′({il, jk}) = w({il, jk}) + ε

w′({il, jl}) = w({il, jl})− ε

(3.1)

With these changes, we denote the graph (G′, w′).

Figure 3.1 shows an illustration of ε-graph modification of weighted bipartite
graphs.
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i1

ik

il

in

j1

jk

jl

jn

(G′, w′)

w(ekk) + ε

w(ekl)− ε

w(elk)− ε
w(ell) + ε

Figure 3.1: ε-graph modification of a weighted bipartite graph

We will now present how the results from this chapter applies to weighted
bipartite graphs. The first is a corollary following from Theorem 3.4.1.

Corollary 3.6.2. Let (G,w) be a weighted bipartite graph associated to an
RCDS matrix. Let S be the constant weight sum of the perfect matchings
in G, and assume (G,w) has a complete bipartite subgraph of order m ≥ 4.
Perform ε-graph modification on (G,w) and obtain (G′, w′). Then, the perfect
matchings in (G′, w′) have up to five distinct weight sums which equal to
S, S + ε, S − ε, S + 2ε, S − 2ε.

The proof follows from the proof of Theorem 3.4.1. Furthermore, if we
study weighted bipartite graphs of the form G(r,s,n), we can find the numbers
of perfect matchings corresponding to each sum. From Theorem 3.5.1, we have
the following corollary.

Corollary 3.6.3. Let G(r,s,n) be a weighted bipartite graph by Definition 2.7.3
with vertices I = {i1, i2, . . . , in}, J = {j1, j2, . . . , jn}. Assume s ≥ 2, r ≥
3, n ≥ 4. Perform ε-graph modification on G(r,s,n) restricted to edges
{{ik, jl} : k ≤ r, l ≤ s} and obtain G′. Then, the number of perfect matchings
and their respective weight sums are presented in table Table 3.8.

The proof follows from the proof of Theorem 3.5.1. These corollaries have
possible applications for the optimal assignment problem. In the case where all
feasible solutions to the optimal assignment problem yield the constant optimal
value S, ε-modification will decrease the optimal value by 2ε. However, it is
more likely that the feasible solutions of the assignment problem do not yield a
constant value. In that case, ε-modification of a bipartite graph will alter the
weight sum of a varied number of perfect matchings by ± ε and ± 2 ε.

3.7 Further work on the diagonals of RCDS matrices

In this thesis, we have have made some modifications to RCDS matrices and
established how the modifications alter the diagonal sums. However, the converse
problem could also be an interesting study. For some doubly stochastic matrices
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Weight sum Number of perfect matchings

S (r − 2) (r − 3) (r−2)!
(r−s)! (n− s)!

S + ε 2 (r − 2) (r−2)!
(r−s)! (n− s)!

S − ε 2 (r − 2) (r−2)!
(r−s)! (n− s)!

S + 2ε (r−2)!
(r−s)! (n− s)!

S − 2ε (r−2)!
(r−s)! (n− s)!

Table 3.8: Possible weight sums for (G′, w′) when ε-modification is performed
on edges edges {{ik, jl} : k ≤ r, l ≤ s}. These weight sums are attainable when
s ≥ 2, r ≥ 3, n ≥ 4.

which have almost constant diagonal sum, which modifications could be made
in order for the matrices to obtain the RCDS property?

In Matlab, we generated 10,000 random doubly stochastic matrices and
computed the difference δS between their maximum and minimum nonzero
diagonal sum Smax, Smin. We were interested in the number of doubly
stochastic matrices which had approximately constant diagonal sums, and
found the number of matrices where the relative difference between maximum
and minimum diagonal sum, δS / Smin, was less than 5 %. We found that this
applied to 2.17 % of the 10,000 doubly stochastic matrices. In order to gather
an overview over the general diagonal difference δS of these 10,000 matrices,
we computed some of the percentiles. These are summarized in Table 3.9.

Percentile Relative diagonal sum difference, δS/Smin
5 7.5%
25 19.1%
50 30.5%
75 47.9%
95 104%
99 234%

Table 3.9: Overview over the relative difference between maximum and minimum
diagonal sums of doubly stochastic matrices, divided into percentiles

For further work, it would be interesting to see which modifications one
could make to matrices with a small relative difference in diagonal sums in
order for them to obtain the RCDS property.

This concludes the chapter, and the results from this thesis. In the next
chapter, we will present an explanation of the work we have done in Matlab.
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CHAPTER 4

Explanations of the work in
MATLAB

For the work done in this thesis, we have written several codes in Matlab [10]
to support us in our investigation in doubly stochastic matrices, RCDS matrices,
and their diagonals. In this chapter, we will provide some brief explanations to
the codes we used, and how they contributed to our work. All codes that have
been used in the work of this thesis can be found in Appendix A

4.1 Generate a random doubly stochastic matrix

For many of our investigations, we needed random doubly stochastic matrices.
To generate these, we used Birkhoff-von Neumann theorem (Theorem 1.9.6), by
computing convex combinations of permutation matrices. First, one chooses
the order n of the desired matrix. Then, we need to decide how many terms
the convex combination shall have. In general, a larger number of terms will
give less zero positions in the matrix. In our work, we decided it was most
beneficial to let the number of zero positions vary. We therefore decided to let
the number of terms be chosen at random between 2 and n. If there is only 1
term, the resulting matrix would be a permutation matrix, which would provide
an insignificant result.

Moreover, the code generates n nonnegative numbers such their sum equals
1, which are to be used as the coefficients in the convex combination. Lastly, it
computes the convex combination of randomly generated permutation matrices
and the coefficients. Notice that this code does not necessarily generate fully
indecomposable doubly stochastic matrices, although it turned out to be highly
likely. In our work, we very rarely came across partly decomposable matrices
using this code. However, we wrote a code that took this into account, which is
presented in the next section. For the purpose of determining if the matrix is
fully indecomposable, we ensured that the main diagonal is nonzero by letting
the first permutation matrix in this code be the identity matrix.

In the code, we have used Matlab functions randi, rand zeros, sum,
eye, and randperm [10].
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4.2 Generate a random fully indecomposable doubly
stochastic matrix

This code takes in a randomly generated doubly stochastic matrix and
determines if it is fully indecomposable. Recall that a matrix is fully
indecomposable if its main diagonal consists only of nonzero elements, and
the associated digraph is strongly connected. The construction of random
doubly stochastic matrices in the previous code ensures that the main diagonal
in nonzero. Thus, it remains to determine if the associated digraph is
strongly connected. If the associated digraph is not strongly connected, the
code generates a new doubly stochastic matrix until it arrives at a fully
indecomposable doubly stochastic matrix.

In the code, we have used Matlab functions size, digraph, and
conncomp [10].

4.3 Generate an RCDS matrix based on a (0, 1)-matrix

The aim of this code is to generate random RCDS matrices based on randomly
generated (0, 1)-matrices. In most of our work, we generated the RCDS matrices
based on doubly stochastic matrices generated from the previous codes, since
their zero positions proved more likely to generate a matrix with RCDS pattern.
In that case, the code first replaces all nonzero elements with 1. The code uses
the algorithm explained in Section 2.4 and solves the linear system of equations,

Hx = e, where H =
[
DR A
AT DC

]
and x =

[
u
v

]
(4.1)

and computes the RCDS matrix using vectors u, v and the pattern of initial
matrix A.

In the code, we have used Matlab functions size, zeros transpose,
linsolve, and sum [10].

4.4 Generate X(r,s,n)-matrix

This code uses Definition 2.6.1 to generate an X(r,s,n)-matrix. Here, one only
needs to enter values for r, s, n and the code will generate a matrix X = [xij ]
of the form

xij =


1/r (i ≤ r, j ≤ s)
(r − s)/(r(n− s)) (i ≤ r, s < j ≤ n)
0 (r < i ≤ n, j ≤ s)
1/(n− s) (r < i ≤ n, s < j ≤ n)

(4.2)

In the code, we have used Matlab function zeros [10].

4.5 Using linear programming to check if a matrix is RCDS

The aim of this code is to check if a given matrix is an RCDS matrix. This is
done by using linear programming as explained in Section 2.5. The following
linear programs are to be solved
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min
∑
i≤n

∑
j≤n

b′ijxij

s.t.
∑
j≤n

xij = 1 for all i ≤ n

∑
i≤n

xij = 1 for all j ≤ n

(4.3)

max
∑
i≤n

∑
j≤n

b′′ijxij

s.t.
∑
j≤n

xij = 1 for all i ≤ n

∑
i≤n

xij = 1 for all j ≤ n

(4.4)

The code takes in a matrix C, and finds the maximum and minimum
diagonal sums of the matrix. It also provides the positions in C which gives
the respective maximum and minimum diagonal sums.

In the code, we have used Matlab functions reshape, ones, zeros,
permute, and linprog [10].

4.6 ε-modification of a matrix

This code takes in a matrix A, and finds a random nonzero submatrix of
A. Then, it performs ε-modification on A with a chosen ε. For most of our
computations, we used RCDS matrices, and chose ε = 0.001 to ensure that the
ε-modified matrix remained doubly stochastic.

In the code, we have used Matlab functions size and randsample [10].

4.7 Finding number of diagonals and their sums of a matrix

This code computes the number of nonzero diagonals of a matrix, and the
diagonal sums. After it takes in a matrix, it checks all possible permutations
of the matrix and finds each nonzero diagonal. This is clearly not as efficient
as using linear programming, but it provided us with each distinct diagonal
sum which was useful in our work. Since we only worked with relatively small
matrices, it was adequate.

In the code, we have used Matlab functions size, reshape flipud,
perms, factorial, diag, sum, unique, sort, accumarray [10].

4.8 Finding number of diagonals and their sums of an
ε-modified matrix

This code is almost equivalent to the previous, except it finds the nonzero
diagonals of two matrices simultaneously. We used this code when we were
interested in comparing the nonzero diagonals of a matrix and a corresponding
ε-modified matrix.

51



4.9. Gathering some statistics on the diagonals of doubly stochastic matrices

In the code, we have used Matlab functions size, reshape flipud,
perms, factorial, diag, sum, unique, sort, accumarray [10].

4.9 Gathering some statistics on the diagonals of doubly
stochastic matrices

The aim of this code is to gather some statistics of the diagonal sums of doubly
stochastic matrices. The code generates a number of doubly stochastic matrices,
and computes the maximum and minimum diagonal sums. Then, it finds the
relative difference in diagonal sums of the matrices. We used 10× 10 matrices,
and thus scaled the results by 10. The code also finds the number of matrices
which have a relative difference in diagonal sums of less than 5 %, and some
percentiles.

In the code, we have used Matlab functions zeros and prctile [10].
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CHAPTER 5

Conclusion

In this thesis, we have studied the nonzero diagonals of doubly stochastic
matrices with constant diagonal sums. With the basis of the work by Brualdi
& Dahl [3], we constructed some of these matrices and used them in our work.
More specifically, we have studied the matrix class X(r,s,n), and obtained the
constant diagonal sum and number of diagonals of these matrices. RCDS
matrices are intricate, and it could be useful to further explore the diagonals
of other RCDS matrices, and possibly find more patterns that may lie within
them.

Furthermore, we defined an operation, ε-modification, where one adds and
subtracts a nonnegative number ε to four of the matrix elements in a specific
way. We established that the constant diagonal sums are altered by these
modificatons, and the changes are restricted to ± ε and ± 2 ε. We also found
the number of diagonals of X(r,s,n)-matrices which correspond to each diagonal
sum, where the modifications were made to a restricted submatrix of X(r,s,n).
By ε-modification, four values of the matrix are modified. However, it could
prove beneficial to make modifications to more values, and establish how the
diagonal sums alter with these modifications. Additionally, it could be useful
to explore the converse problem, by studying doubly stochastic matrices which
have approximately constant diagonal sums. One could possibly determine
which modifications could be made to these matrices in order for them to obtain
the RCDS property.
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APPENDIX A

MATLAB codes

A.1 Generate a random doubly stochastic matrix

1 % This program generates a random doubly stochastic matrix using convex
% combinations of permutation matrices

3
function[A] = genererDSmatrise()

5
% decide the dimension of the permutation matrix

7 n = 10;

9 % N is the number of terms in the convex combination
% coeff is a vector with coeffictient for the convex combination

11 % coeff is scaled such that all elements sum to 1
N=randi([2,n]);

13 coeff = zeros(1,N);
for i = 1:N

15 coeff(i) = rand();
end

17 coeff = (1/sum(coeff))*coeff;

19
% generate convex combination of permutation matrices

21 I = eye(n);
% the first term of the convex combination uses the identity matrix

23 A = coeff(1)*I;
% the remaining terms uses random permutation matrices

25 for i = 2:N
A = A + coeff(i)*I(randperm(n),:);

27 end

29 end

A.2 Generate a random fully indecomposable doubly
stochastic matrix

1 % This code determines if a matrix is fully indecomposable, by checking
% if the associated graph is strongly

3 % connected. If it is not strongly connected, it provides a new
% DS matrix which is.

5
function[A] = fullyindecomposable()

7 A = genererDSmatrise();
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[n,n] = size(A);
9
% define the digraph G and find strongly connected subgraphs

11 G = digraph(A);
subg = conncomp(G);

13
% check that G is strongly connected. If not, generate a new DS matrix

15 % until we have a fully indecomposable matrix
for i = 1:n

17 if subg(i) == 1
i = 2;

19 else
A = genererDSmatrise4;

21 G = digraph(A);
subg = conncomp(G);

23 i = 1;
end

25 end

A.3 Generate an RCDS matrix based on a (0, 1)-matrix

% This program takes a DS matrix and uses the pattern to
2 % generate a RCDS matrix when possible

4 % generate a random (0,1)-matrix
% n = 4;

6 % A = zeros(n,n);
% for i = 1:n

8 % for j = 1:n
% A(i,j) = randi([0 1],1);

10 % end
% end

12
% use fully indecomposable DS matrix, and change nonzero elements to 1

14 function[Y] = fraDStilRCDS()
A = fullyindecomposable();

16 [n m] = size(A);
for i = 1:n

18 for j = 1:n
if A(i,j) > 0

20 A(i,j) = 1;
end

22 end
end

24
% compute the vectors r, c

26 r = zeros(n, 1);
c = zeros(m, 1);

28 for i = 1:n
for j = 1:m

30 if A(i,j) == 1
r(i) = r(i) + 1;

32 c(j) = c(j) + 1;
end

34 end
end

36

38 % defining the diagonal matrices Dr and Dc
DR = zeros(n,n);
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40 DC = zeros(n,n);

42 for i = 1:n
DR(i,i) = r(i);

44 DC(i,i) = c(i);
end

46

48 % defining H
H = [DR A; transpose(A) DC];

50
% Solving the system of linear equations

52 e = ones(2*n,1);
% w = linsolve(H,e);

54 w = H\e;

56 % adjustment of u av v such that they are nonnegative
u = zeros(n,1);

58 v = zeros(n,1);
for i = 1:n

60 u(i) = w(i) ;
v(i) = w(i+n) ;

62 end

64 % computing the RCDS matrix
Y = zeros(n,n);

66 for i = 1:n
for j = 1:n

68 if A(i,j) == 1
Y(i,j) = u(i) + v(j);

70 end
end

72 end
SumCol = sum(Y)

74 SumRow = sum(Y,2)
end

A.4 Generate X(r,s,n),-matrix

1 function[A] = generer_rsn_RCDSmatrise()

3 s = 3;
r = 3;

5 n = 6;
A = zeros(n);

7 for i = 1:n
for j = 1:n

9 if i <= r && j <= s
A(i,j) = 1/r;

11 elseif i <= r && s <= j <= n
A(i,j) = (r-s)/(r*(n-s));

13 elseif r <= i <= n && j <= s
A(i,j) = 0;

15 else
A(i,j) = 1/(n-s);

17 end
end

19 end
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A.5 Using linear programming to check if a matrix is RCDS

1 % The program generates a random DS-matrix and finds both min and max
% of the diagonals

3
% Max and min values differ by changing the signs of

5 % the array c
% the variable M

7 % the variable optimum
% where max has negative sign, and min has positive sign

9

11 % define a DS matrix for diagonal computation
C1 = epsilon_2x2();

13
C2 = C1;

15 [n m] = size(C1);
%C1 is the matrix for finding the maximum (negative M)

17 %C2 is the matrix for finding the minimum (positive M)

19 % Replace 0’s with arbitrary large number
M1 = -10;

21 for i=1:n
for j = 1:n

23 if C1(i,j) == 0
C1(i,j) = M1;

25 end
end

27 end

29 M2 = 10;
for i=1:n

31 for j = 1:n
if C2(i,j) == 0

33 C2(i,j) = M2;
end

35 end
end

37

39 % Convert elements of matrix C to array c
% c1 is the vector for finding the maximum (negative elements)

41 % c2 is the vector for finding the minimum (positive elements)
c1 = -reshape(C1, 1, []);

43 c2 = reshape(C2, 1, []);

45 %vector b consists of 2n elements equal to 1
b = ones(2*n,1);

47
% creates the top half of matrix A

49 A1 = zeros(n,n,n) ;
for i = 1:n

51 A1(i,:,i) = ones(n,1) ;
end

53 A1 = reshape(permute(A1,[1,2,3]),size(A1,2),[]);

55
% creates the bottom half of matrix A

57 A2 = zeros(n,n*n);
for i = 1:n

59 for j = 0:n-1
for k = 1:n
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61 A2(i,i+j*n) = 1;
end

63 end
end

65
% combine A1 and A2 to create matrix A

67 A = [A1; A2];

69 % Solving the LP problem
% x1 finds the maximum

71 % x2 finds the minimum
x1=linprog(c1, [], [], A, b, zeros(size(c1)), ones(size(c1)));

73 x2=linprog(c2, [], [], A, b, zeros(size(c2)), ones(size(c2)));

75
% Converts optimal solution from vector til matrix, in order to see

77 % the positions of the diagonal elements
% Y1 shows the positions of the maximum

79 % Y2 shows the positions of the minimum
Y1 = reshape(x1,n,[]);

81 Y2 = reshape(x2,n,[]);

83 % Compute the optimum
% optimum1 is the maximum value

85 % optimum2 is the minimum value
optimum1 = 0;

87 optimum2 = 0;

89 for i = 1:n^2
optimum1 = optimum1 + c1(i)*x1(i);

91 end
% change sign of optimum1

93 optimum1 = -optimum1;

95 for i = 1:n^2
optimum2 = optimum2 + c2(i)*x2(i);

97 end

99 if optimum1 == optimum2
disp(’The matrix is RCDS’)

101 else
disp(’The matrix is not RCDS’)

103 end

105 optimum1
optimum2

107 diff = abs(optimum2 - optimum1)
end

A.6 ε-modification of a matrix

% this function takes an nxn matrix and adds/subtracts epsilon to four
2 % elements from two rows/colums

4 function[A] = epsilon_2x2()

6 % define an RCDS matrix or generate from defined function
A = fraDStilRCDS();

8 [n,n] = size(A);
epsilon = 0.001;
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10
a = randsample(n,1);

12 b = randsample(n,1);
c = randsample(n,1);

14 d = randsample(n,1);

16 while (A(a,c) == 0 || A(b,c) == 0 || A(a,d) == 0 || A(b,d) == 0 )
|| (a == b || c == d)

18 a = randsample(n,1);
b = randsample(n,1);

20 c = randsample(n,1);
d = randsample(n,1);

22 end

24 A(a,c) = A(a,c) + epsilon;
A(b,c) = A(b,c) - epsilon;

26 A(a,d) = A(a,d) - epsilon;
A(b,d) = A(b,d) + epsilon;

A.7 Finding number of diagonals and their sums of a matrix

1 % define the matrix
X = generer_rsn_RCDSmatrise()

3 [n,n] = size(X);

5 %find all permutations of A
B = reshape(X(:,flipud(perms(1:n)).’),n,n,factorial(n));

7
% compute diagonal sums with only nonzero elements of X and store

9 % values in dgnl
dgnl = [];

11 for i = 1:factorial(n)
if all(diag(B(:,:,i))~=0)

13 dgnl = [dgnl,sum(diag(B(:,:,i)))];
end

15 end

17 % count the number of unique diagonal sums
[~,~,ix] = unique(dgnl);

19 C = [sort(unique(dgnl)); accumarray(ix,1).’]

A.8 Finding number of diagonals and their sums of an
ε-modified matrix

1 % use function from other algorithms to produce RCDS matrix and an
% epsilon-modified version of the matrix

3
% X is RCDS, X_ is epsilon-modified of X

5 [X, X_] = epsilon_2x2()
[n,n] = size(X_);

7
%find all permutations of X and X_

9 B = reshape(X(:,flipud(perms(1:n)).’),n,n,factorial(n));
B_ = reshape(X_(:,flipud(perms(1:n)).’),n,n,factorial(n));

11
% compute diagonal sums with only nonzero elements of X and store
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13 % values in dgnl
dgnl = [];

15 for i = 1:factorial(n)
if all(diag(B(:,:,i))~=0)

17 dgnl = [dgnl,sum(diag(B(:,:,i)))];
end

19 end
dgnl;

21
% compute diagonal sums with only nonzero elements of X_ and store

23 % values in dgnl_
dgnl_ = [];

25 for i = 1:factorial(n)
if all(diag(B_(:,:,i))~=0)

27 dgnl_ = [dgnl_,sum(diag(B_(:,:,i)))];
end

29 end
dgnl_;

31
% count the number of unique diagonal sums and store them in

33 % matrices C, C_
[~,~,ix] = unique(dgnl);

35 [~,~,ix_] = unique(dgnl_);
C = [sort(unique(dgnl)); accumarray(ix,1).’]

37 C_ = [sort(unique(dgnl_)); accumarray(ix_,1).’]

A.9 Gathering some statistics on the diagonals of doubly
stochastic matrices

1 N = 10000;
relative = zeros(1,N);

3 delta = zeros(1,N);
max_ = zeros(1,N);

5 min_ = zeros(1,N);
for i=1:N

7 [diff, optimum1, optimum2] = LPnxn_maxmin();
delta(i) = diff;

9 max_(i) = optimum1;
min_(i) = optimum2;

11 relative(i) = diff/optimum2;
end

13
x = 1:N;

15 delta = (1/10)*delta;
max_ = (1/10)*max_;

17 min_ = (1/10)*min_;
relative = (1/10)*relative;

19 tol = 0.05 ;
x5 = 0;

21 for i = 1:N
if relative(i) < tol

23 x5 = x5 + 1;
end

25 end

27 p = [5 25 50 75 95 99]
P = prctile(relative, p)
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