
The Algorithmic Composition Explorer

Using a learning environment to enable users to  
experience intrinsic feedback on musical algorithms

Stephen Gardener

Master’s programme in Music, Communication and Technology

Department of Music

Norwegian University of 
Science and Technology

Department of Musicology

University 
of Oslo

Spring 2022

Abstract

This thesis proposes a novel design for an interactive system that introduces people to
algorithmic composition. There are many libraries and environments for algorithmic mu-
sic, with little consistency in terms of programming language and software framework.
For those that have little or no programming knowledge, or those that just want to get a
tactile understanding and quick feel of a selection of different algorithmic approaches,
there are few options. To use most existing algorithmic composition tools users are still
required to carry out some implementation or integration work, which also require some
expertise in computer music frameworks. This thesis proposes a system that attempts
to fill that gap.

The primary aim is to build a system that takes a learning through practice approach,
allowing learners to get an understanding of how a particular algorithm works by exper-
imenting with its parameters and listening to the results. If a lack of technical knowl-
edge should not be a barrier to the use of the tool, the system needs to be widely avail-
able, and not requiring of any complex installation or setup. Finally, the system is de-
signed such that it can be built upon and expanded, and released as open-source
software. There are limits on what can be built as part of a thesis such as this, so the
design must provide a framework for future expansion.

Acknowledgements

I would like to thank my supervisor Stefano Fasciani for all of his help, support and ad-
vice throughout this course, for pointing me in lots of interesting directions, and for be-
ing so responsive to all of my questions. Thanks also to my fellow MCT students who
made this course, and the whole MCT programme, a lovely experience. Finally, huge
thanks to my wife Olaug and my son Emil for being patient with me during the long
coding and writing sessions of the past few months. Yes Emi, we can play Minecraft
together again now.

I dedicate this work to our brilliant dog Chilli, who passed away during the writing of
this thesis.

Thesis links

The Algorithmic Composition Explorer: https://algorithmic-composition-explorer.com

Source code: https://github.com/stega/algorithmic_composition_explorer

Blog post: https://mct-master.github.io/masters-thesis/2022/05/15/stephedg-algorith-
mic-composition-explorer.html

https://algorithmic-composition-explorer.com
https://github.com/stega/algorithmic_composition_explorer
https://mct-master.github.io/masters-thesis/2022/05/15/stephedg-algorithmic-composition-explorer.html
https://mct-master.github.io/masters-thesis/2022/05/15/stephedg-algorithmic-composition-explorer.html
https://mct-master.github.io/masters-thesis/2022/05/15/stephedg-algorithmic-composition-explorer.html

1. Introduction	
1
1.1 Aims	
2
1.2 Target Audience	
2
1.3 Key Contributions	
3
1.4 A Short Note About Computers	
3
1.5 Structure & Overview	
3

2. Background	
5
2.1 A Brief Introduction to Algorithmic Composition	
5
2.2 An Overview of Algorithmic Composition Key Techniques	
6
2.3 Algorithmic Composition Pedagogy	
10

2.3.1 Learning through practice	
10
2.3.2 Extrinsic and intrinsic feedback	
11
2.2.3 Computational thinking	
12

2.4 Related works	
13
3. Design & Methodology	
17

3.1 Languages & Frameworks	
17
3.1.1 Python	
18
3.1.2 Javascript & the Web	
19

3.2 Computer representations of music	
22
3.2.1 Representation of pitch	
23
3.2.2 Music engraving	
23

3.3 The overall design of the system	
24
3.4 Algorithm selection	
25

4. Implementation	
28
4.1 Building the Algorithmic Composition Explorer	
28
4.2 Selected Algorithms	
33

4.2.1 Guido	
33
4.2.2 Musikalisches Würfelspiel	
37
4.2.3 Markov Chains	
41
4.2.4 Tintinnabuli	
44

4.3 Extending the Algorithmic Composition Explorer	
46
4.3.1 Adding a new algorithm	
47
4.3.2 Extending the Score class	
49
4.3.3 Adding a New Instrument	
50

5. Evaluation	
51

5.1 The User Interface	
51
5.2 The Algorithms	
51
5.3 Browser compatibility	
53
5.4 Mobile performance	
54
5.5 Website performance	
55

6. Conclusion	
58
References	 60

1. Introduction

Algorithmic composition has a long and rich history, and encompasses a wide range of
approaches and techniques. It can been defined simply as the application of formal
rules to generate musical material and ideas.

While it is a well known tool for creating new music and ideas, it can also be a valuable
approach in teaching music and composition. Being able to describe music in terms of
algorithms can contribute to a learners understanding, helping focus their attention on
the structure and organisation of that music. The application of algorithmic thinking to
music can be used to understand form and style. And algorithmic composition can be
used as a vehicle for concept development, with the algorithms producing raw material
that is then edited and assigned musical meaning by the learner (Falthin, 2012).

Like algorithmic composition itself, the use of algorithmic composition techniques in
music education has a long history, and has been dated back to Guido around 1000 CE
(Neirhaus, 2009). Modern educational approaches tend to focus on learning to code, as
this offers a good opportunity to delve deeply into different algorithmic approaches, as
well as develop new ones. For those that want just a taste of what algorithmic compo-
sition can offer, or those that want to get an understanding of a selection of approaches
in order to compare the results that can be expected, there are less options available.
Comparing the output of different approaches would require bringing together and set-
ting up multiple tools, which would be difficult and potentially off-putting for a beginner.
Certainly, some of the programming environments could be set up to be used in this
way, but even setting up a programming environment can be challenging to new stu-
dents. What is needed is a tool that is accessible to anyone, without the need for in-
stalling or configuring software, and without the need for in-depth technical knowledge.
Such a tool would allow the learner to listen to a selection of algorithms and compare
their output. It would also offer the ability to manipulate selected parameters of the al-
gorithms, allowing the learner to gain a deeper understanding of how that algorithm
works. Ideally, it would also allow the user to take any generated ideas with them, so
they can incorporate them into their own work. Finally, the tool should be expandable.
By building a solid foundation that can be built upon, the tool can grow, having new al-
gorithms incorporated over time.

1

1.1 Aims

This thesis proposes and develops a proof-of-principle system for introducing a selec-
tion of algorithmic composition approaches to learners that have little or no technical
background. The system - the Algorithmic Composition Explorer - has the following at-
tributes:

• It is implemented using ubiquitous, standards-compliant technologies that allow it to
have the greatest reach, while requiring little previous technical knowledge on the part
of the user.

• It adopts a “learning through practice” approach, allowing users to manipulate and
compare different algorithmic approaches, offering a visual representation of the gen-
erated music as well as audio playback.

• It allows users to take away their generated musical ideas in the form of MIDI scores
and downloadable music notation.

• It is open-source and ready to be built upon and expanded with more algorithms, ex-
port formats, and visual representations of the music.

1.2 Target Audience

It has already been stated that a lack of technical knowledge should not be a barrier to
the use of the tool. This should not mean to exclude those that are more technically in-
clined however - setting up and experimenting with existing solutions would still require
some time and effort even for those that are more technically competent. If someone
wants to experiment with and compare a variety of algorithms with minimal effort, they
can be considered as part of the target audience.

There is also the question of musical knowledge. If a system deals with aspects of mu-
sic theory and notation, there is an assumption that a certain musical background is re-
quired. While true to a lesser extent, the aim is to build an environment where learning
happens via the interaction with the system. If intrinsic motivation and feedback is de-
signed into the system, it should be enough to try things out and observe the results.

2

This is a key element to building an experiential learning environment, and will be dis-
cussed more in Chapter 2.3.

1.3 Key Contributions

The key contributions of this thesis are the following:

• The introduction of a novel approach to building an experiential learning environment
for algorithmic music composition.

• The design and implementation of a widely accessible open-source tool for learning
about and experimenting with algorithmic composition approaches.

• The establishment of an open framework that can be further built upon and expand-
ed.

1.4 A Short Note About Computers

While this thesis proposes a software system, it’s important to note that there are many
historical and contemporary algorithmic composition techniques that do not require the
use of a computer. As one of the aims of this paper is to open up the world of algorith-
mic composition to those with little technical knowledge, it is important to convey that it
is not necessary to be a accomplished programmer or have an advanced understand-
ing of mathematics in order to apply algorithmic thinking and techniques to composi-
tion. The application of algorithmic thinking to music is an interesting and effective dis-
cipline, regardless of the involvement of computers and complex mathematical theo-
ries.

1.5 Structure & Overview

Chapter 2 presents an introduction to algorithmic composition, its history and the ped-
agogical approaches related to it. The introduction also looks at related works, how
they compare to this thesis’s proposal, and how the Algorithmic Composition Explorer
builds on and extends these current approaches. In Chapter 3, the proposed system
design is outlined, and an overview of possible approaches and tools is detailed. How

3

music can be represented digitally is also covered, as well as options for rendering of
notation. Finally, the criteria for choosing the algorithms are explained, along with the
algorithms that were finally chosen. Chapter 4 delves into the implementation details, of
the software overall, as well as how the specific algorithms were tackled. The ability to
build on and extend the software is an important part of this proposal, and so the chap-
ter ends with how new algorithms, instruments and other components can be added to
the system. Finally, Chapter 5 includes discussion on the various aspects of the project
that worked, and challenges that are yet to be addressed, for both the individual algo-
rithms, and the system as a whole. 

4

2. Background

2.1 A Brief Introduction to Algorithmic Composition

Algorithmic composition has a long and rich history, and encompasses a wide range of
approaches and techniques. At its core, algorithmic composition is a method of music
making in which music is generated based on a set of rules that the composer has de-
fined (Sweet, 2014). It is these sets of rules - a sequence of instructions - that is the al-
gorithm, the term being adopted from the field of computer science around the halfway
mark of the 20th century (Burns, 1997). Indeed, algorithmic composition is often asso-
ciated with the rise of the digital computer, but manual and analog musical algorithms
have a long history (McLean & Dean, 2018).

Some of the earliest known compositional algorithms date back to the eleventh century,
with Guido of Arezzo, a music educator and Benedictine monk, being an early pioneer.
Over the following thousand years, many more compositional systems were developed,
from games of chance using dice to arrange, combine, and compose both lyrics and
musical work, to a focus on combinatorial arithmetics and music’s close affinity with
numbers.

The digital computer was first put to compositional use in the 1950s, but many of the
pre-digital algorithms were equally applicable - the general assumption being that if the
rules of a task can be formalised, they can also be written into hardware such as pin
cylinders and punch cards (Magnusson, 2019).

This formalisation brings up an important point regarding the teaching of composition.
In the 1680s, Leibniz argued that the rules for composition are so well defined that any-
one can be instructed to compose following certain rule sets. Cope (2015) goes so far
to say that all composers use algorithms while composing whether they are aware of
doing so or not - “all composers are algorithmic composers” (Cope, 2015).

If we are all, consciously or subconsciously, composing with algorithms, it would make
sense that there would be almost as many different approaches to algorithmic compo-
sition as there are composers, and that classifying them into “methods” or “schools of
thought” is going to be a difficult undertaking. In addition, a composer may employ a

5

variety of approaches to implementing algorithms and use a combination of different
techniques in a single piece of music (Manzo, 2021). But as Manzo (2021) wrote, “a
good idea for a composition is a good idea for a composition, and a conversation about
the mechanics of realising these ideas through algorithms can be interesting and en-
riching.”

2.2 An Overview of Algorithmic Composition Key Techniques

This section will offer a very brief history of algorithmic composition, and an overview
some of the most important techniques and methods. Algorithmic composition can be
applied to music and sound at many levels. While there have been multiplicity of inter-
esting approaches that work with timbre, instrumentation and sonification, this thesis
will be focused on the generation of notes - of pitch and rhythm. This overview of tech-
niques will reflect that bias.

It has already been mentioned that algorithmic composition can be traced back to Gui-
do of Arezzo in the eleventh century. Guido’s vowel to pitch algorithm is the first tech-
nique implemented in the Algorithmic Composition Explorer, and will be looked at in
more detail in Chapter 4.2.1.

In the fourteenth century, composers of Ars Nova started to introduce new rules around
rhythm and pitch. Isorhythm is where a rhythmic sequence, called the talea, is mapped
onto a pitch sequence, called the colores. This technique is called isorhythm, and is
implemented as a component in the Algorithmic Composition Explorer, as can be seen
in Chapter 4.2.4.

Music evolved in the Renaissance and into the Baroque, with the rise of counterpoint
and polyphonic forms such as the canon and the fugue. The strict rules and algorithmic
nature of the styles of the time make them good candidates for automated composi-
tion, using rules-based algorithmic approaches, in computer aided composition or us-
ing techniques such as genetic algorithms (Acevedo, 2005).

During the classical period, a technique known as Ars Combinatoria became very pop-
ular. This approach of composing music using chance to arrange pre-written melodies

6

has been attributed to Mozart, and is discussed in more detail in the chapter on
Musikalisches Würfelspiel in Chapter 4.2.2.

In the twentieth century, Arnold Schoenberg built a new framework for the systematic
composition of strictly formalised music. Twelve Tone Technique or Serialism gave all
twelve chromatic tones equal importance, and by doing so, began the move away from
tonal music that had dominated traditional music up until that point. A piece of serialist
music consists of multiple rows of notes, with each row containing all twelve chromatic
notes in a certain order. Within a row, repetition of notes was not permitted, and every
note had to be used (Aschauer, 2008). Various transformation techniques can be ap-
plied to subsequent rows, including inversion, where the intervals between the notes
are reversed; retrograde, which involves reversing the whole row; and retrograde inver-
sion, where the inversion is played backwards. Serialism was taken even further by
Stockhausen when he applied serial methods not just to pitch, but also to rhythm and
dynamics, as well as introducing elements of chance into his compositional processes
(Simoni, 2003).

Chance was also explored by John Cage, who would use dice, coin flips and even div-
ination games in his compositions to introduce randomness. Cage would also use nat-
ural phenomena to determine the direction of his work. This can be seen in his Atlas
Eclipticalis (1961), which was composed by laying notation paper on top of astronomi-
cal charts and placing notes where the stars occurred (Schwartz, 1993).

Computers were first used for algorithmic composition in the middle of the twentieth
century, with Lejaren Hiller and Leonard Isaacsons Illiac Suite in 1957. Hiller, together
with Robert Baker, was also involved in the creation of MUSICOMP, one of the first au-
tomated composition systems. This was written as a library of subroutines, and allowed
the re-combination of these routines in a wide variety of ways (Alpern, 1995). This is the
principle of Modularity, a fundamental concept in engineering which says that “systems
should be built from cohesive, loosely coupled components (modules)” (The Modulariy
Principle, n.d.)

Another pioneer in the early use of computers in composition was the Greek / French
composer Iannis Xenakis (1922 - 2001). He had a keen interest in mathematics which

7

he applied to his compositions through stochastic processes, using probability theory
in the selection of musical parameters (Simoni, 2003).

As the use of computers became more widespread from the 1970s and onwards, a
range of techniques evolved that wouldn’t have been possible without their technical
assistance. In the next section, we shall look at the main categories of algorithmic
composition, including several that developed alongside the rise of the computer.

Categories of Algorithmic Composition

As stated in Chapter 2.1, attempting to classify algorithmic techniques is not an easy
task. An algorithm can be a complete approach to composing a piece of music - serial-
ism could be seen as an example of this. But more commonly a hybrid approach is tak-
en, with algorithmic music being composed using a combination of multiple different
methods. The following represents groupings that have been used to categorise algo-
rithmic compositions and approaches.

Aleatoric methods involve the use of chance or randomness. Mozarts Musikalisches
Wuerfelspiel is an early example of using chance, an approach adopted and developed
by composers such as John Cage in the twentieth century. For true aleatoric methods,
the probability of any event happening is the same for all events - there is no preference
for one result over another.

Then there are the methods which use probability. Xenakis was a pioneer here with an
approach he called stochastic music, which involves the use of randomness together
with statistical principles (Aschauer, 2008). With stochastic methods, a result is calcu-
lated using random values that are mapped to a given probability distribution. These
methods can produce discrete and continuous values, allowing us to work within the
discrete pitches of the chromatic scale, or the continuous values of velocity. Unlike
purely aleatoric methods, stochastic methods allow for more control over the output
while still working with random data. Statistics and probability are an important element
of many algorithms, including for example Markov Chains, which will be discussed in
more detail in Chapter 4.2.3.

When considering chance, there has also been made a distinction between determinis-
tic and indeterministic approaches. With deterministic approaches, the use of any

8

aleatoric elements is part of the compositional process - once the music has been writ-
ten, it is fixed and will always be played the same. Indeterministic methods on the other
hand leave elements of chance to the performance itself. For example, the composer
might provide music notation, but the arrangement of the notation is left to the per-
former.

Rules-based methods and constraint systems allow the application of certain rules to
musical material. These rules can be widely applicable, covering general music theory
models such as counterpoint and voice leading, or more targeted and focused towards
a specific idea or intention, depending on composers musical goal. The rules-based
approach is the basis of what has been called computer-aided composition. These are
software systems that allow composers to experiment with and refine their musical
ideas by applying rules that enforce particular music theories or styles.

Artificial Neural Networks are another popular approach that would not have been pos-
sible without the aid of computers. These mimic a simplified model of the human brain,
and offer the ability to learn from supplied musical examples without the need for the
creation of complex rules on the part of the composer or programmer (Aschauer, 2008).
Similarly to Markov Chains (see Chapter 4.2.3), ANNs work best when imitating the
style of the training examples, and can be put to good use developing rules for use by
other systems that rely on rules, such as genetic algorithms.

Genetic algorithms take their inspiration from the biological world. These methods imi-
tate procedures found in the evolution of life, such as selection, reproduction and muta-
tion, with the goal of allowing the exploration and evolution of, in our case, musical
ideas. Genetic methods excel at search and optimisation tasks when dealing with a
very large search space, and music composition can be understood as an optimisation
process where a composer “searches in the space of all possible music compositions
that he is able to compose, for one such that satisfies his own artistic criteria” (Dostál,
2013 p.936)

A genetic algorithm works by stepping through several stages. First, the current popu-
lation will be evaluated for fitness, and individuals will be selected according to a set of
rules set by the composer. This set of rules is called the fitness function, and is a key
component in determining the success of a genetic algorithm. The fitness function can

9

employ various techniques including those discussed above such as neural networks
and rules-based methods, in order to find the ‘fittest’, or most musical, candidates. In
the reproduction stage, the selected candidates from the previous stage are chosen
and ‘bred’ together, using a procedure called crossover to ensure a suitable mixing of
ideas. During the last stage, mutation, randomness is used to introduce subtle
changes, and the results are fed back into the cycle, allowing the process to continue
(Aschauer, 2008).

2.3 Algorithmic Composition Pedagogy

This section will look at some pedagogical theories and approaches that are particularly
relevant for the building of an Algorithmic Composition Explorer. Learning environ-
ments, learning through practice and computational thinking will be discussed in rela-
tion to learning algorithmic composition.

2.3.1 Learning through practice

Diana Laurillard (2012) has identified several ways students can learn - through acquisi-
tion, enquiry, discussion, practice and collaboration. Learning through acquisition is
when we read, listen to lecturers or podcasts, or watch videos. It’s a relatively passive
way of learning, but widely used. Learning through enquiry is where the learner makes
use of resources that provide searchable access to knowledge, data, information and
ideas. Enquiry learning is a more active form of learning, where the student can follow
their own line of enquiry. Learning through discussion is based on Vygotskys (1978)
ideas around the social aspect of learning - the idea that peer discussion plays a signif-
icant role in learning at all levels of education. Learning through collaboration can be
loosely defined as when two or more people learn something together, building a
shared public knowledge.

Finally we come to learning through practice. Learning through practice, or experiential
learning, is an essential part of the learning experience because it “invites the learner to
adapt their conceptual understanding to the task at hand, and then reflect on what the

10

experience means for how they might modulate their understanding” (Laurillard, 2012
p.162). In other words, setting up an environment in which the learner can practice al-
lows them to check and refine their current understanding based on these experiences.

In 1980, Papert identified three different use-cases for computers in education:

1. as tutorials, where the computer serves as a kind of “mechanised instructor”

2. as a tool for accomplishing a specific task

3. as a concept he called microworlds

Papert defined a microworld as an environment designed to afford the learning of some
system or set of concepts and powerful ideas (Papert, 1980). Laurillard argues “that all
forms of learning through practice require a practice environment that has this property
of affordance, so the microworld is a significant idea to make use of” (Laurillard, 2012 p.
54).

This microworld, or learning environment, provides the essence of learning through
practice, and the intrinsic feedback that it requires.

2.3.2 Extrinsic and intrinsic feedback

Extrinsic feedback, or feedback from the teacher, and intrinsic feedback, that from the
environment, play different roles in learning.

Extrinsic feedback is when a teacher provides guidance or criticism on a learners per-
formance. The learner can then choose to follow the advice in order to improve. Intrin-
sic feedback is a natural consequence of the action the learner has taken. The learner
can use intrinsic feedback to work out how to improve without teacher intervention.

Extrinsic feedback is potentially the more efficient of the two as it guides the learner to
the correct answer, while intrinsic feedback needs to be correctly interpreted. On the
other hand, extrinsic feedback that is too helpful can reduce the learners own active
reflection. Overall, intrinsic feedback, while harder to create, is more effective when de-
signed correctly (Laurillard, 2012).

11

2.2.3 Computational thinking

Deleuze (2006) states that ideas are intrinsically linked to their mode of expression,
such that “I cannot say that I have an idea in general. Depending on the techniques I am
familiar with, I can have an idea in a certain domain, an idea in cinema or an idea in phi-
losophy” (Deleuze, 2006 p.415). In our case, we are talking about musical ideas ex-
pressed as algorithms, and so according to Deleuze we would need to be familiar with
algorithmic thinking as well as music before we can express ourselves in this way.

Filimowicz and Tzankova (2017) have written about computational literacy as a two-
step process. The first step requires an ability to understand and modify code. The
second step, and often the more challenging, translates ideas and concepts into code.

Computational thinking is the second step in this process. While it has been stressed
elsewhere in this thesis that compositional algorithms have been in existence for far
longer than computers, coding can still be an ideal medium for expressing such ideas.

Computational thinking can be defined as the thought processes involved in formulat-
ing problems so their solutions can be represented as computational steps and algo-
rithms (Aho, 2012). It was a term introduced by Papert (1980), who believed that chil-
dren could learn by teaching the computer through programming. It has become a
method of formalised problem solving, and the process can be broken down into the
following four steps.

• Decomposition - This step involves breaking down data, processes, or problems into
smaller, more manageable parts.

• Pattern Recognition - Here we analyse the data and identify similarities and connec-
tions among its different parts.

• Abstraction - abstraction is about identifying the most relevant information needed to
solve the problem, and eliminating the extraneous details.

• Algorithmic thinking - Finally, we develop a step-by-step process to solve the prob-
lem so that the work is replicable by humans or computers.

(McVeigh-Murphy, n.d.)

12

We have established the importance of computational thinking and its importance for
education today, but what is its relevance to music and composition?

Musical expectations are a core phenomenon of music cognition (Tillmann et al., 2014).
Our brains naturally build expectations based upon previously acquired knowledge of
musical rules (Zatorre & Salimpoor, 2013). For centuries, composers have taken advan-
tage of this fact to formalise compositional structures, and it has been argued that the
development of musical form naturally leads to algorithmic approaches to composition
(Edwards, 2011). So musical form grew out of how we listen to and respond to music,
and the application of computational thinking can help us deconstruct, understand and
recreate the music we listen to. By generalising our understanding of the different forms
and approaches, we can build algorithms that apply some of those rules. While the abil-
ity to emulate certain styles is arguably the least interesting aspect of algorithmic com-
position from an artistic perspective, developing the ability to express and formulate
ideas and rules in an algorithmic manner opens up a world of possibilities and musical
places to explore.

2.4 Related works

A Platform for Algorithmic Composition on p5.js by Chan Jun Shern
1

This is an interactive and explorable web tutorial using P5.js. P5.js is a Javascript inter-
pretation of Processing, built on top of the Web Audio API, and will be discussed in fur-
ther detail in Chapter 3.1.2. Chan has built a tutorial that allows the user to learn about
many different algorithmic approaches. It runs in the browser, and makes use of anima-
tions and other visualisations to explain musical principles and demonstrate algorithms.
While it covers a range of algorithms, its interactive examples stop short of letting the
user learn through practice. Instead the examples are there to support the written ex-
planation and code, rather than provide any experiential learning opportunities. This is
the opposite of the approach proposed for the Algorithmic Composition Explorer, where
the textual explanations are there to pose questions and prompt exploration of the al-

 https://junshern.github.io/algorithmic-music-tutorial/1

13

https://junshern.github.io/algorithmic-music-tutorial/

gorithm. It is this focus on the algorithm itself - on learning through practice - that is the
key aspect of the Algorithmic Composition Explorer.

How Generative Music Works by Tero Parviainen
2

Parviainens audio-visual primer on generative music is a web tutorial and presentation
he gave at Ableton Loop. It is written using Tone.js (see Chapter 3.1.2), and looks at
many common techniques of generative music. It features interactive Javascript visuali-
sations for works by composers such as Steve Reich, Terry Riley and Brian Eno. As it

 https://teropa.info/loop/#/title2

14

Figure 2.1: A Platform for Algorithmic Composition on p5.js by Chan Jun Shern

https://teropa.info/loop/#/title

was designed to be a presentation, the user must step through the algorithms and ex-
planations one by one, there is no opportunity to explore here. The visualisations are
very effective however, and work very well to aid the understanding of the concepts be-
ing explained.

Parviainens also wrote an in-depth tutorial explaining how he used Tone.js to build the 3

presentation, focusing in on three examples taken from it. The tutorial is focused on
learning Javascript, Web Audio API and Tone.js in order to make music, but also delves
into algorithmic composition, in particular the history and background of the algorithms
chosen.

The limitations I pointed out for Chans “Platform for Algorithmic Composition on p5.js”
apply here as well. It is an effective system for introducing algorithmic composition and
bringing together examples of multiple algorithms, but the options for working with the
algorithms are limited.

What is missing here is an opportunity for a user to learn about algorithmic methods
through interacting with them. For those that have worked through these tutorials, and

 https://teropa.info/blog/2016/07/28/javascript-systems-music.html3

15

Figure 2.2: How Generative Music Works by Tero Parviainen

https://teropa.info/blog/2016/07/28/javascript-systems-music.html

now want to try out some of the methods themselves, there are several large technical
hurdles that would need to be overcome. The first is the need to install and set up one
of the many excellent environments that offer algorithmic composition libraries such as
Max, Music21 or SuperCollider. The learner would need be comfortable coding / work-
ing in that environment, or have the time and motivation to become familiar with it. They
would then need to code the algorithm that they were interested in. If they were wanting
to compare several algorithms, then the motivation and effort required increases again.
For those that already have the motivation, time and technical expertise, these are ex-
cellent environments to work in and learn from. For those that just want to dip their toes
in, the cost of entry is likely to be too great.

The Algorithmic Composition Explorer bridges that gap. It takes people whose curiosity
has been piqued, perhaps by Chans or Parviainens tutorials, and lets them experiment
with a selection of algorithms. It even allows them to take the results with them, and in-
corporate them into their own compositions.

The next section looks at the design of such a system.

16

3. Design & Methodology

The three main aims for the Algorithmic Composition Explorer are:

1. To be widely available and requiring little in the way of previous technical knowl-
edge. Avoiding the need for any installation or setup to get started.

2. To allow users to experiment with and compare different algorithmic approaches,
and offers a visual representation of the generated music as well as audio playback.
Allowing users to take the generated music with them and incorporate it into their
own work.

3. To provide a platform that can be built upon and extended with new algorithms, in-
struments and components.

For the first aim, an overview of potential tools, frameworks and languages is needed
before development can begin. Choosing the most appropriate combination of lan-
guage and framework is key for this step.

The overall design of the software needs to satisfy the requirements listed in the second
aim - allowing users to experiment with, visualise and playback algorithmically generat-
ed music. Another important consideration here is pedagogy, and how the design can
take into consideration the current best practices in this field.

Finally, for extensibility, there are two aspects that need to be taken into consideration.
First is the chosen language and framework. How established is it? What are the asso-
ciated best practices? Are there official standards that need to be adhered to? Second,
there needs to be considered the potential directions the software could take. When it
comes to future development, certain design decisions could open up particular av-
enues of exploration, and shut off others. This needs to be considered and incorporat-
ed into the design of the system.

3.1 Languages & Frameworks

The considerations when approaching the choice of technology for this project are:

17

• what tools currently exist that could be used for building an algorithmic music system

• what tools satisfy the requirements for learner interaction, visualisation and playback

• what tools would best allow the result to be shared widely

• which tools offer the most potential for future expansion

This section will give an overview of the current best options I found for building an Al-
gorithmic Composition Explorer. While far from exhaustive (it focuses on only a handful
of Python and Javascript frameworks), it looks into a few promising environments that
could provide a solid base on which to work, and allow easy sharing of the results.

There are many software libraries and frameworks that focus on simplifying coding for a
particular use-case, for example - music analysis, creative coding, browser-based in-
teractive music (live-coding) and music composition. While none of those I came across
had been specifically developed for teaching algorithmic composition, all can support it
to a greater or lesser extent. As environments for learning music through coding - and
coding through music - there are many interesting approaches available.

3.1.1 Python

Python is a popular choice for learning music and programming. It is widely used, has a
simple, approachable syntax and a much shallower learning curve than many lan-
guages. At the same time, it is a powerful, well designed language, and fully object-ori-
entated. One issue for those new to programming (and this is certainly not unique to
Python) is that the initial setup and configuration of the environment can be trouble-
some for those new to programming. One option here is to use Google Colab . Google 4

Colab offers a way to write and execute Python directly in the browser, avoiding many
of the installation and configuration issues that can cause problems for beginners.
Once interest has been piqued, the individual can move over to running Jupyter Note-
book or Python directly on their computers, offering the ability to dive into the code,
and opening up the potential of the environment.

 https://colab.research.google.com/4

18

Isobar

Isobar is a Python library designed for “creating and manipulating musical patterns, de-
signed for use in algorithmic composition, generative music and sonification” (Isobar,
n.d.). It offers a rich library of tools specifically designed for algorithmic composition,
with many inspired by SuperCollider, the live coding audio synthesis platform. Its focus
is very much on composition however, and it does not generate any audio on its own.
Using Isobar would require integrating it with a separate library for audio synthesis. It
has been in development for over 10 years.

Music21

The python library Music21 (Music21: A Toolkit for Computer-Aided Musicology, n.d.) is
a “toolkit for computer-aided musicology”. The focus here is on analysing scores, but it
is a flexible tool and has been used for algorithmic composition (Shiihs, 2013). In addi-
tion, it can be used together with Avro, a library that adds various algorithmic functions
for isorhythmic constructions and minimalistic approaches (Dimitrov, 2020/2021). Mu-
sic21 is a popular, well supported and long running project, having been in active de-
velopment since 2006, with the current version 7 being released in September 2021.

3.1.2 Javascript & the Web

Javascript, the language of the Web, has been becoming more and more popular in re-
cent years, and as of 2020, was the most commonly used language, with Python com-
ing in third (Most Used Languages among Software Developers Globally 2021, n.d.).
One of the advantages of Javascript to first time programmers is that it can be run di-
rectly in the browser, reducing the potentially complex setup and configuration pro-
cesses that can hinder getting started with other languages. In addition, the ubiquity of
the Web means that Javascript runs everywhere, offering the ability to easily publish
and share creations widely, adding to its attractiveness. As a result of this popularity,
there can now be found a large number of libraries and frameworks for music, including
for algorithmic composition.

19

Web Audio API

The Web Audio API was first proposed by Chris Rogers in 2010 (Web Audio API Pro-
posal from Chris Rogers on 2010-06-15 (Public-Xg-Audio@w3.Org from June 2010),
n.d.). The Web Audio API provides a “powerful and versatile system for controlling audio
on the Web, allowing developers to choose audio sources, add effects to audio, create
audio visualisations, apply spatial effects (such as panning) and much more” (Web Audio
API - Web APIs | MDN, n.d.). While the focus is on generating and manipulating audio
itself (as apposed to providing a platform for composition), there are several frame-
works that have been built on top of the Web Audio API that make working with the API
more straightforward.

P5.js

Processing is one of the original creative coding environments. It began as a Java 5

based library, but has developed into an arts-oriented approach to learning, teaching,
and making things with code. This approach gave rise to P5.js and it’s audio library 6

P5.js-sound . P5 is a library “with a focus on making coding accessible and inclusive”, 7

and manages to be both approachable and powerful. It is a Javascript alternative to
Processing, and is supported by the Processing Foundation. Like Processing, the core
of P5 is focused on drawing and the visual arts, but there is a rich collection of libraries
that can be used to extend on this core functionality. P5.js-sound library adds Web Au-
dio functionality, building on top of the Web Audio API. The focus is weighted more to-
wards generating and manipulating audio than composition. It uses a Phrase / Part /
Score framework for creating musical sequences, which is a functional, if not optimal,
solution to composition.

 https://processing.org/5

 https://github.com/processing/p5.js6

 https://github.com/processing/p5.js-sound7

20

Tone.js

Tone.js is a Web Audio framework for creating interactive music in the browser. It sits 8

on top of and simplifies the Web Audio API, and adds components such as prebuilt
synths and effects, in addition to offering digital audio workstation features like a global
transport for synchronising and scheduling events. Javascript is a single-threaded lan-
guage, and so theres no way to guarantee that a function will be called at an exact
moment in time (JavaScript Systems Music, n.d.). Tone.js improves on the Web Audio
API by executing callbacks slightly before their scheduled triggering time, passing in
the exact time the function should be triggered. So Tone.js’s timeline can offer sample-
accurate scheduling, allowing sounds to be played at exact intervals. For composition
itself, Tone.js allows you to string sequences of notes together using the Part and Se-
quence objects. Importing MIDI files is possible, with Tone.js using its own JSON for-
mat for representing pieces of music, with scientific pitch notation (SPN) used for the
actual pitches. The JSON representation has not been designed to be easily human-
readable or writable however, and it doesn’t follow any existing notation standard such
as LilyPond or MusicXML. Regarding my own experience with Tone.js, I found it inter-
esting to work with, with a clean and expressive syntax for audio tasks. Like the Web
Audio API on which it’s built, it’s at its best best when dealing with audio, but it’s global
transport and sequencing options also make it suitable for working with algorithmic
composition.

The Holy Grail

Python combined with Isobar or Music21 offers a lot of power together with well estab-
lished, sophisticated libraries for algorithmic composition. Combined with Google Co-
lab or Jupyter Notebook, some of the issues that can arise when setting up and running
code can be mitigated, and a Python based system would allow users to more easily
delve into the code, offering a lot more power for those that want to go deeper. This
added power does come at a cost however. Set-up is still not seamless - it requires
some effort and technical knowledge for troubleshooting any issues that come up, es-
pecially with regard to managing dependancies.

 https://tonejs.github.io/ 8

21

Javascript code lacks the user friendly nature of Python. For those that aren’t looking to
jump into the code however, a Javascript app running in a browser offers a much better
user experience. The combination of the Web Audio API’s audio synthesis and process-
ing capabilities and Javascript make for a very powerful platform. Javascript is the lan-
guage of the Web, it can be run everywhere, on any computer, smartphone or tablet.
This means that we can share not only the musical output of any system we build, but
the system itself, simply by sharing a URL. Such a Web site would require no installa-
tion or setup, and little previous technical knowledge to be used. And the popularity of
Javascript, and the Web in general, ensures a good potential for future development.
For these reasons, it was Javascript that was chosen to build the Algorithmic Composi-
tion Explorer.

3.2 Computer representations of music

Any system that supports a particular musical task will need some way to represent the
music itself. The goal of that system will necessarily dictate the nature of that represen-
tation - a system for musical analysis will have different requirements of its data than
that of a system used for outputting graphical notation. MIDI is possibly the most well
known of digital music representations, but there have been many approaches to how
the primary attributes of music - including pitch, duration, dynamics, timbre etc. - can
be represented. Selfridge-Field (1997) classifies representations as different ‘codes’,
including sound related codes, musical notation codes, codes for data management
and analysis, and representations of musical patterns and processes.

The main focus for many of the frameworks listed above was on the generation and
manipulation of sound, with the representation of music in a clear, well-defined format a
secondary consideration. There have been many attempts to solve this issue, with vari-
ous “standards” in use today, including MusicXML, Helmholtz, Scientific Pitch Notation,
ABC, Lilypond and many others. This section will discuss the different approaches that
have been taken, and their use.

22

3.2.1 Representation of pitch

The notes of the western chromatic scale can be notated using either letters or num-
bers. Helmholzt notation was proposed by Hermann von Helmholtz in 1863, and uses a
combination of the letters A-G and sub and super prime markers (‘ and ,) to designate
octave. It is still commonly used in research, as well as in notations such as ABC and
Lilypond. Scientific pitch notation (SPN) uses a combination of the letters A-G, plus a
number to indicate octave. SPN is generally seen as being easier to read than
Helmholtz, but there has been inconsistency in the number used for middle C, where
C3, C4 and C5 have all been used to denote middle C (Cakewalk - SONAR LE Docu-
mentation - Fretboard Pop-up Menu, n.d.), (Logic Pro 9 User Manual: Display Prefer-
ences in Logic Pro, n.d.). Finally there is MIDI notation, which uses the integers 0 - 127
to represent pitch. Integers offer the opportunity to apply various mathematical func-
tions to pitch, making them a good choice for use in algorithmic composition.

3.2.2 Music engraving

Being able to visualise the music was an important consideration when building the Al-
gorithmic Composition Explorer. This section lists the options I found for embedding
music notation into a Web page.

Vexflow is a very powerful engraving library for javascript and the Web. It offers a 9

depth of control over the display of the music that other libraries cannot match, but this
does come at a cost of added complexity. For example, the API has been designed so
that there is only one bar / measure per stave - a new stave needs to be created for
each bar, which would then be appended onto the previous stave.

Verovio is an engraving library which was designed for use with the Music Encoding 10

Initiative (MEI) format, but now supports multiple formats including MusicXML, Hum-
Drum, MuseData and ABC. There is a javascript app available which can be embedded
into a Web page, outputting an SVG image of the music.

 https://www.vexflow.com/9

 https://www.verovio.org/10

23

ABCjs is a library that focuses on playing and rendering music in ABC notation. It is a 11

lot more forgiving when rendering music than the other libraries, being more tolerant of
inaccurate notation such as incorrectly positioned bar-lines. I also found it easier and
quicker to get started with.

3.3 The overall design of the system

Having reviewed the language and framework alternatives and options for representing
and visualising music, the overall design of the system can now be considered.

How a codebase is structured and organised is an important consideration when deal-
ing with a system that could grow and become potentially large. Javascript and Tone.js
can be an effective combination, but don’t in and of themselves offer anything in the
way of overall structure. Javascript frameworks such as Angular and React offer more
potential for structuring a larger codebase, but these frameworks can get complex very
quickly.

The ability to modularise code is essential. Being able to compartmentalise functionality
makes for a much more easily understood codebase, allows for code re-use, and can
make the inevitable changes and introduction of new features more manageable. Build-
ing for the Web revolves around three main technologies - HTML for the page layout
and content, CSS for styling those pages, and Javascript for adding functionality. How-
ever, by itself, HTML doesn’t offer the ability to modularise its code.

There are a class of frameworks called static site generators that offer structure and
modularisation with less complexity than some of the larger Javascript frameworks.
Static site generators such as Jekyll allow you to build a Web site by combining multi-
ple smaller snippets of content into single HTML files during compile time. The resulting
output is a static website that can be run on any Web server, without requiring a sepa-
rate application server for running backend code. This keeps the website fast and re-
sponsive, and greatly simplifies deployment.

 https://abcjs.net11

24

Jekyll supports the use of partials - snippets of HTML that can be inserted into pages,
and layouts, which are page templates into which content and partials are added. Lay-
outs would give the ability to have a selected number of page templates throughout the
app giving a consistent user experience. Partials would allow the creation of re-useable
interface components, such as sliders to control parameters like BPM, and select box-
es to choose notes and scales. This modular nature would not only provide a solid plat-
form for future development, but a consistent and well organised environment for the
experience of learning through practice, and of Papert’s microworlds (see Chapter
2.3.1).

Another aim of this thesis was to build something that is widely available. Building for
the Web goes a long way in supporting this aim, but it is important to remember that
people access the Web from many different devices. If the software doesn’t work or
display well on mobile devices, then a large section of the target audience could be ex-
cluded. The Mozilla Developer Network defines responsive Web design as “a set of
practices that allows web pages to alter their layout and appearance to suit different
screen widths, resolutions, etc.” (Responsive Design - Learn Web Development | MDN,
n.d.). Fortunately, there are many CSS frameworks that support responsive Web design.
For this project, the Bootstrap CSS framework was chosen, due to its strong support
for responsive design, as well as its familiarity to the developer. Bootstraps library of
styles and components make it easy to implement a design that will look and function
consistently across different browsers, platforms and devices.

3.4 Algorithm selection

The target audience has been defined as those wanting to learn more about algorithmic
composition, but don’t have the technical knowledge to set up a development environ-
ment and start coding. With this in mind, I wanted to choose algorithms that were sim-
ple enough for learners to get an understanding of through adjusting parameters and
figuring out what’s going on under the hood. As discussed in Chapter 2.3.2, intrinsic
feedback is a natural consequence of the action the learner has taken, and needs to be
designed into the system. So there needs to be a clear relationship between the chang-

25

ing of an algorithms parameter and the results that are heard. Any instructions provided
should encourage exploration and ask questions, as apposed to simply explaining what
an algorithm is doing.

I also wanted the choice of algorithms to reflect algorithmic composition’s long history.
Presenting algorithms that either pre-date or don’t require the use of computers could
help provide an alternative and possibly more approachable view of algorithmic com-
position. And moving from simple algorithms towards the more complex provides a
smoother transition to the world of algorithmic thinking, which could otherwise be seen
as intimidating.

With this in mind, starting at the beginning made sense here. Guido of Arezzo’s vowel-
to-pitch algorithm is one of the earliest known, and while simple to comprehend, adds
an interesting relationship between the source text and music produced.

Mozarts Musikalisches Würfelspiel was an algorithm that was almost discounted, due
to the lack of control the user has over the music produced. However, it is a good ex-
ample of using randomness to generate music, and could encourage the learner to
think about form and style, and what makes the song sections work together.

Like Mozarts dice game, the Markov chains algorithm also works with previously pre-
pared music, but the algorithm itself is more complex in this instance. The underlying
concept is understandable however, and much can be learned about this algorithm
simply by varying the source material and adjusting the order.

Arvo Pärt’s Tintinnabuli takes a step back from Markov chains in terms of the complexi-
ty of the algorithm, but opens up a world of exploration. While this is an approach that
can be more easily grasped, the results are more customisable and potentially more
easily transferable to the learners own compositions.

While the time available limited this prototype to the above four approaches, several
other algorithms were considered. Likely to be the first choice in any future develop-
ment would be Cellular Automata, due to the interesting nature of the problems it pos-
es. The music generated can vary over time and can continue indefinitely, so an inter-
esting challenge could be where in the process the music is taken from. How could this
choice be presented to the user? Would using a visual representation of the resulting

26

patterns be an option for choosing the range of notes to be rendered? In addition, de-
veloping an interface that allows users to change the rules or add new rules could also
be an interesting problem to tackle.  

27

4. Implementation

This chapter details how the Algorithmic Composition Explorer is implemented, and
how related challenges have been addressed. The chapter starts with the general ap-
proach that was taken when building the software, covering the main components such
as the Score and Audio Player classes, before going into more detail around how each
algorithm was implemented. The Algorithmic Composition Explorer is available at
https://algorithmic-composition-explorer.com, while its source code is available at
https://https://github.com/stega/algorithmic_composition_explorer.

4.1 Building the Algorithmic Composition Explorer

Jekyll was chosen as the framework on which everything would be built on. As dis12 -
cussed in Chapter 3.3, Jekyll allows the building of a static website by bringing togeth-
er a combination of layouts and snippets of HTML, Javascript and CSS, offering the
ability to modularise and organise the code. This was going to be important when build-
ing a library of components that could be reused in different algorithms.

 https://jekyllrb.com/12

28

https://algorithmic-composition-explorer.com
https://https://github.com/stega/algorithmic_composition_explorer

The HTML files were split into three main directories - the layouts, the algorithms and
the partials, as shown in Figure 4.1.

The Javascript files containing functionality specific to the algorithms themselves were
kept together under the algorithms directory, separate from the shared functionality,

such as the Score class and the different instruments, as shown in Figure 4.2.

Figure 4.1: the HTML file structure

Figure 4.2: the Javascript file structure

29

Visually, the UI needed to include a list of algorithms to choose from, an area for the
description of the chosen algorithm, the instructions for using it and some code / pseu-
do code examples. The algorithm itself needed to be a HTML form, displaying the vari-
ous controls / components that would allow for the manipulating of the selected algo-
rithms various parameters. This can be seen in Figure 4.3.

For the graphical representation of the music, the ABCjs library was used. This greatly
reduced the time needed to build the prototype by providing the functionality to both
visualise and play-back any generated music that was in the ABC notation format. The
next major component that was required was somewhere to store and manage the
generated notes and music. This was to be the responsibility of the Score class. ABC

notation is based on Helmholtz pitch notation, so this was used when storing note in-
formation in the Score. Using Helmholtz notation allows for the easy conversion to
ABC, and therefore access to ABCjs’s convenient engraving and playback features. An
example of the output from ABCjs can be seen in Figure 4.4.

Figure 4.3: The main user interface

30

The Score object would also need to store the musics attributes and meta-data, includ-
ing the title, meter, base note length, tempo and key signature. The notes themselves
were initially stored in an array of strings, each denoting the pitch and duration using
Helmholtz notation. As development continued, it became apparent that this approach
to storing notes wasn’t going to be flexible enough.

While the Helmholtz approach to pitch notation is well established in research and was
an effective way to get started, it was not as intuitive to work with in code, and could
make certain musical operations difficult. In addition, while Helmholtz worked well with
ABC.js, the more flexible sound generation options that were available in libraries such
as Tone.js were preferable for this project. Tone.js uses scientific pitch notation to rep-

Figure 4.4: The Player modal, showing rendered notation and playback options

31

resent pitches, and so it made sense to store notes using this approach. Tone.js how-
ever didn’t offer the straight forward approach to sheet music engraving that ABC.js of-
fered. Both approaches would need to be supported to fulfil the requirements laid out in
Chapter 3.

Another issue was that the storage of both pitch and duration in a single string made
working with timing and rhythm more difficult than it needed to be. The note array
needed to be changed to an array of dictionaries, with each containing separate pitch
and duration fields. Chords also needed to be represented, and for this, an array of
pitches were used. In ABC notation, each note follows the last, which means that the
note onset time isn’t recorded. An alternative approach, and one taken by other solu-
tions such as MIDI, is that each note is given a start time relative to the beginning of the
score. This was added to the Score class, formatted using the toBarsBeatsSix-

teenths() method provided by Tone.js.

Finally, algorithms that generated multiple voices or parts needed to be supported. A
multi-dimensional array was used for this, so each voice could contain an array of note
event dictionaries. An example showing the final note representation object can be
seen in table 4.1.

For playing back the generated music, the ABC.js library was initially used. While this
worked well for the most part (there was an unresolved bug where playback could be
double triggered after the initial page load), it offered little flexibility when it came to
sound. For playing back audio, Tone.js synthesis and sample playback abilities were far
in advance of ABC.js. A separate AudioPlayer class was built around the Tone.js

Voice 1 { time: 0:1:0, pitch: C4,
duration: 4n }

{ time: 0:2:0, pitch: A4,
duration: 4n }

{ time: 2:0:0, pitch: G4,
duration: 2n }

Voice 2 { time: 0:1:0, pitch: G3,
duration: 2n }

{ time: 0:2:0, pitch:
[C3,E3,G3], duration:
2n }

Table 4.1: Note representation in the Score class

32

Transport object. Both the score to be played, as well as the instrument to be used,

could be passed into the AudioPlayer for playback. Functions for creating a sample-
playback instrument using piano samples, as well as a two oscillator poly synth were
written. Both can have delay and reverb effects added, and while not comprehensive,
work well and can act as a template for further developing this aspect of the applica-
tion. Expanding the player to allow for the use of different instruments for scores with
multiple voices would be a relatively simple undertaking.

ABC.js and Tone.js are just two of the third party Javascript libraries that the Algorith-
mic Composition Explorer relies on, and more will be introduced as the discussion turns
to the algorithms themselves. Managing multiple Javascript libraries for modern Web
applications can be a complex process. A build tool such as NPM can be used to man-
age external libraries, as well as to prepare them for deployment. Jekyll, being a Ruby
based tool, uses Bundler to manage its dependencies, and integrating NPM adds an
extra layer of complexity when it comes to bundling the assets. To keep things simple,
the CDN JSDeliver was used for loading any third party javascript libraries that were
needed in the code.

4.2 Selected Algorithms

4.2.1 Guido

Guido was a 10th century Italian monk, best known today for the invention of staff no-
tation which would replace neumatic notation and eventually develop into the Western
music notation that we know today. However, his work and theories in music were of a
very practical nature, designed to aid singers in the learning process. Guido’s ideas and
techniques focused on finding easier, more efficient ways to learn music, and he would
transform the way music was taught (Reisenweaver, 2012). He is also credited with cre-
ating the first algorithmic composition technique, which was introduced as an approach
to teaching composition, with the goal of transmitting creativity and sensitivity to the
learner (Miller, 1973). This combination of algorithmic approaches and pedagogy makes
Guido an ideal starting point for the Algorithmic Composition Explorer.

33

The algorithmic approach Guido developed was a method for the automatic conversion
of text into melodic phrases. The idea was that the vowels of a selected piece of scrip-
ture would be mapped to tones. The idea is an example of a translational algorithm - an
approach that takes an input and translates this into musical information based on a set
of rules. It can also be classified as a deterministic algorithm, meaning that with any
given input, it will always produce the same output.

For this implementation, each vowel would be mapped to a chosen pitch and rhythm.
Two translation tables were therefore needed, one to lookup pitch, and one to lookup

34

Figure 4.5: The Guido algorithm interface

the rhythm. As the user is to supply the pitch and rhythm information, these tables need
to be built each time the algorithm is run, using the user provided data.

The code in Figure 4.6 shows how the pitch translation table is built using user-supplied
data.

function buildPitchTable() {

 return pitchTable = {

 'a': document.querySelector('#pitch-select-a').value,

 'e': document.querySelector('#pitch-select-e').value,

 'i': document.querySelector('#pitch-select-i').value,

 'o': document.querySelector('#pitch-select-o').value,

 'u': document.querySelector('#pitch-select-u').value

 };

}

Figure 4.6.

The algorithm is then a simple matter of working through the provided text, and fetch-
ing the appropriate pitch/duration information whenever a vowel is encountered. The
note data is then appended to the score.

35

function mapPitches(text) {

 // create lookup tables for pitches and note duration

 pitchTable = buildPitchTable();

 durationTable = buildDurationTable();

 // loop through text & convert vowels to pitches/durations

 words = text.toLowerCase().split(' ');

 words.forEach(function(word, index) {

 for (let char of word) {

 if (isVowel(char)) {

 duration = durationTable[char];

 pitch = pitchTable[char];

 score.addNote(pitch, duration);

 }

 }

 });

}

Figure 4.7.

Once the algorithm was working, the code was refactored for easier readability and to
allow re-use of components - for example, the pitch and duration select options were
refactored into their own _includes files.

The BPM slider, as visible in Figure 4.5, was added after the fact to allow the user to set
the desired tempo of the resulting music. This BPM slider was developed during the
writing of the Markov Chains algorithm. Once it had been refactored out into the _in-
cludes directory, it could be re-used, and so was introduced here to allow for a little
more control over the output of the algorithm.

36

4.2.2 Musikalisches Würfelspiel

Musikalisches Würfelspiel, German for ‘musical dice game’, was a system for using
dice to randomly generate music from a set of pre-composed snippets. It was a popu-
lar game in 18th century Europe, with the most famous example (and the one used in
this algorithm) being attributed to Mozart (Zbikowski, 2002).

The game consisted of two tables: a table of numbers and a notation table which con-
tained the snippets of music (see Figure 4.8 & 4.9). For each column in the number ta-
ble, two dice would be rolled to choose a random row for that column. The number
from the chosen row would then be used to find the corresponding measure of music in
the notation table. As the player steps through each column in the table, the resulting
snippet of music would be added to the last, generating a completed piece of music
once the player reached the end of the table (Zbikowski, 2002).

37

Figure 4.8: Number table for measures 1-8 of Musikalisches
Würfelspiel

While it seems that the dice rolls mean randomness is driving this algorithm, there is
actually very little left to chance. The success of such games relied on their creators
having a good understanding of the music’s form and style, and Mozart ensured that
each set of measures would flow nicely from one to the next. (Zbikowski, 2002; Manaris
& Brown, 2014).

For this algorithm, pre-transcribed snippets from Musikalisches Würfelspiel were
sourced from a GitHub repository . The music was formatted for the notation library 13

VexFlow, and so it needed to be re-formatted to work with Tone.js, but this was a
quicker and easier task than transcribing from the original notation would have been. A
javascript object was created, with each property corresponding to a measure that
could be chosen. This was added to the _includes/music directory, with the file

then being imported into the main javascript file using Jekyll’s include directive.

As mentioned earlier in this section, while the choice of measure at a particular point in
the composition is random, the selection of measures available at that point has been
carefully crafted beforehand by the original composer. To ensure that the correct mea-

 https://github.com/timmydoza/mozart-dice-game.13

38

Figure 4.9: Extract from the notation table for Musikalisches Wür-
felspiel

https://github.com/timmydoza/mozart-dice-game

sures would be associated with the correct table number, Mozarts original table number
ordering also needed to be used. Whereas Mozart used two tables for parts 1 and 2,
and the process included a repeat of the first part, here the first part is played through
only once in order to keep things simpler for the learner to understand.

There are two main tasks for this algorithm. The first is the setting up and managing of
the grid of numbers, and the second is the assembly of the composition from the se-
lected grid numbers.

The grid numbers were provided in an array, with the grid being created dynamically on
page load, as can be seen in Figure 4.10.

By default, the top row of measures is automatically selected. Clicking any number in
the grid will select that measure. To ensure only one measure in each column could be
selected at a time, an event listener was added to de-select any already selected rows
in the same column.

A random button (see figure 4.10) was also provided to automatically choose a random
row in each column.

The second task was to create a Score object from the selected measures. This in-
volved stepping through the columns and fetching the measure that corresponded with
each selected row. For the first algorithm, Guido, the code only needed to work with a

39

Figure 4.10: the musikalisches würfelspiel interface

single melody line. Chords were not required, and the music was played by a single
voice. Mozarts composition consisted of two parts however, and each part could con-
tain chords. The Score class needed to be updated to support both chords and multi-
ple voices, as outlined in Chapter 4.1.

function arrangeTune() {

 // step through each column, and fetch the corresponding

 // measure from the noteTable

 for (col=0; col<16; col++) {

 if(col === 7){

 // use fixed ending for final measure of first section

 var measureNotes = noteTable[177]

 parseNotes(measureNotes.treble, 0)

 parseNotes(measureNotes.bass, 1)

 } else {

 // fetch the column

 column = document.querySelectorAll(`div.kol-${col}`)

 // find the selected row in the column

 column.forEach(

 function(col) {

 if(col.querySelector('.dice-num-selected')){

 // grab the number of the selected row

 num = col.querySelector('.dice-num-

selected').innerHTML

 // fetch & parse the measure from the note table

 var measureNotes = noteTable[num]

 parseNotes(measureNotes.treble, 0)

 parseNotes(measureNotes.bass, 1)

 }

Figure 4.11: building a Score from the selected measures

40

Another feature of Mozarts composition is that measure 8 only has one possibility, re-
gardless of the outcome of the dice roll. This is reflected in the code which checks for
this and loads measure 177 at that point in the composition.

Musikalisches Würfelspiel is another example of a deterministic algorithm - selecting
the same rows in the table will always result in the same output.

4.2.3 Markov Chains

With Musikalisches Würfelspiel, the algorithm itself is based on a simple dice roll. What
makes the system work is that a human composer has put together a collection of suit-
able phrases beforehand. If dice rolls were used to randomly pick individual notes, the
result is unlikely to be very musical. There are ways to use randomness and probabili-
ties to generate scores that are much more likely to be musical however. One approach
is to use stochastic methods, as discussed in Chapter 2.2. Markov chains are another
approach.

Markov chains use probability, but unlike stochastic methods, the probability of a par-
ticular event happening is based on the previous event, or state. For each change in
state of a system, the probability of what that next state will be is calculated. In a musi-
cal context, the algorithm could analyse a set of songs and calculate the probability of
any particular note following another in those songs. So the state transitions in this
case could be the seen as the change from one note to the next.

Markov chains also have an order parameter. The order sets the size of the chunk of
musical information the algorithm is dealing with at each step - the larger the chunk, the
larger phrases it looks at when predicting the next note. Larger chunks, or n-grams, re-
sult in music that sounds closer to the source material that was used to train the algo-
rithm.

When developing this algorithm, it made sense to find a Markov chains library rather
than spending too much time reinventing the wheel. For this, the Javascript library js-

41

markov was used. It works with numerical and text data, and has a simple API for 14

adding states, setting the order and training.

Before the js-markov library can be used, a formatter is needed that prepares the music
for analysis. The pitch and duration of each note will be considered together by the al-
gorithm, so the formatter would need to group each note event into a string containing
information about both. Each note event could then be considered as a ‘word’ by the
Markov algorithm.

The user would start by selecting one or more songs for processing (see Figure 4.12).
To keep things simple, a selection of songs from two unrelated genres of music were
found. The first set were traditional Welsh folk songs, and the second were taken from
video games. Limiting the musical choices and offering two distinct sets was a deliber-
ate choice to help the learner get a better understanding of how the algorithm works,
and what it can be good for. The learner can compare the results between choosing
songs from a single genre verses mixing between the two, seeing which produces the
most musical output.

The selected songs were retrieved from the ABC Notation website . The six chosen 15

songs were added to a file in the _includes/music/ directory and made available

using the Jekyll include tag. Importing the ABC-formatted music required writing a

set of functions to parse Helmholtz notation and convert it to a Tone.js compatible for-
mat, which uses scientific pitch notation. As the importer was likely only needed for this
algorithm, the code was eventually extracted into a Javascript MixIn that could then be
mixed-in to the Score object only when required. This kept the Score class more read-
able and focused while still keeping the import functionality available when needed. In
addition, this mix-in approach provides a framework for adding importers for other for-
mats, such as MIDI or MusicXML, at a later date.

Each song can be previewed, allowing the user to hear what is being sent into the
Markov chain in order to compare it with the generated output. As mentioned previous-
ly, the Markov algorithm also requires an order parameter which is used for dividing the
songs into n-grams. A slider was added (see Figure 4.12) to allow the user to set this to

 https://github.com/EdThePro101/js-markov 14

 https://abcnotation.com/tunes15

42

a value between 3 and 9, with higher values producing output with longer phrases tak-
en from the inputted songs.

As the songs are in different keys, the output could get very un-musical. A function to
align all generated notes to a particular scale was needed. Tonal.js is a Javascript li16 -
brary for music theory. Among its many functions is a method for fetching all the notes
from a particular scale. An applyKey() method was added to the Score class. This

 https://github.com/tonaljs/tonal16

43

Figure 4.12: the Markov Chains interface

steps through the notes in the score, checking if the note is contained in the scale
fetched from Tonal. For those notes that lie outside of the scale, the note is sharpened
or flattened until it is in key. A key-chooser component was then created in the _in-

cludes directory, which would allow the user to select the scale and scale type that

would be sent into the applyKey() method.

4.2.4 Tintinnabuli

Arvo Pärt is an Estonian composer who developed a compositional technique called
Tintinnabuli, introduced in Für Alina in 1976. Tintinnabuli, from the Latin word for bells,
has been characterised as serene and enigmatic, sounding both modern and ancient at
the same time (Zivanovic, 2012).

There are two elements that work together in the tintinnabuli style. The M-part repre-
sents a melodic line, often moving stepwise through a scale. The second part, the T-
part, consists of a note taken from a major or minor triad. The triad can be placed
above or below the M-part, or even alternating between the two (Chikinda, 2011).

The basics of the algorithm are relatively straight forward. Step through the notes of a
scale, while playing a random note from the scales triad (e.g. notes 1, 3 and 5) under-
neath. There can be many permutations however. For the M-part, the scale notes can
traversed in an ascending, descending, or ascending and descending fashion. They
could also just be stepped through at random. The T-part could be played an octave
below, or an octave above, the M-part. The chord tones could be extended to include
the 7th, 9th or 13th notes.

The interface designed for the tintinnabuli algorithm can be seen in Figure 4.13. For the
initial generation of the scale, the key-chooser component created for the Markov

Chains algorithm (see Chapter 4.2.3) was used together with the Tonal.js library to re-
trieve the corresponding notes. Once the scale notes have been stored in an array, they
can be manipulated using Javascript’s built-in array functions such as reverse(), or

by writing custom functions.

44

For many pieces, Pärt introduced a rhythmic element to the music. To allow for these
rhythmic variations in the Algorithmic Composition Explorer, a sequencer component
was created. This consists of a series of steps that can be activated or deactivated,
defining a repeated rhythmic pattern for the generated music. Each step corresponds
to the note division set in the Score objects noteLength attribute, set to a quarter note
by default. To give the possibility of generating more interesting rhythmic patterns, plus
and minus buttons were added to the sequencer component, allowing the user to de-
termine the length of the rhythmic sequence. At the same time, the M-part will be step-
ping through it’s eight notes independently of the programmed rhythmic pattern. This
technique of applying a rhythmic pattern to a pitch sequence is called isorhythm. The
incorporation of odd pattern lengths combined with different combinations of active
steps allows for the creation of interesting patterns, where the rhythm repeats at a dif-
ferent point than that of the melodic contour.

45

Figure 4.13: The Tintinnabuli interface

After setting the BPM (which has been constrained to a lower range of between 30 and
100, to reflect the natural calmness of much tintinnabuli music), the user can then work
with the parameters of the M and T parts. The direction of the M-part can be set to as-
cending, descending, ascending/descending or random. This was mostly implemented
using standard array methods, although Javascript doesn’t have a built in function to
randomise an array, so this needed to be coded. The T-part can be placed an octave
above or below the M-part, and can use extended chord tones. The transpose method
provided by Tonal.js was used for the former. The latter a function that would step
through the chosen chord flavour (triad, 7th, 9th, etc.), extracting the notes required
from the given scale.

// takes a scale, and returns the chord tones

// flavour defines notes required - [1,3,5] etc.

function generateChordTones(scale, octave, flavour) {

 var chordTones = []

 flavour.forEach(i => {

 note = Tonal.Note.transpose(scale[i-1], octave)

 chordTones.push(note)

 })

 return chordTones

}

Figure 4.14: generating chord notes

4.3 Extending the Algorithmic Composition Explorer

One of the aims of this thesis was to build a platform which can be built upon and
added to over time. The main way the system can be extended is by expanding on the
core functionality of the application - adding new algorithms. In addition, there is much
scope for adding new instruments and developing the sound capabilities of the system.
Another potential avenue of development could be the inclusion of new export options
or visualisations. As discussed in Chapter 3.3, the organisation and modular nature of
the code makes it easier to build upon and support any future development. This sec-

46

tion will detail how a new algorithm, instrument or component can be added to the sys-
tem.

4.3.1 Adding a new algorithm

To add a new algorithm, the following steps would be required:

Step 1: Add the algorithms page to the sites navigation menu. The _data/algorith-

m_nav.yml file contains a list of the page links and names used by the site menu.

Adding a new entry here is as simple as adding the following code

- name: Twelve-tone Method & Serialism

 link: /algorithms/serialism.html

Step 2: Add the HTML page for the new algorithm to the /algorithms/ directory.

Jekyll uses Front Matter to set parameters, so the HTML file needs to begin with the
following code:

layout: default

title: Twelve-tone Method & Serialism

js: serialism

The layout parameter defines which layout file, contained in the /_layouts/ directory,

should be used for this algorithm. There are currently two layouts - default and

one_col. The default layout consists of the algorithms description and its interface

(a HTML form) in the first row, and a code example in the second. The one_col layout

is for algorithm interfaces that require the full width of the page. The second row then
contains the algorithms description and code example. New layouts can be created as
needed, but consideration should be given to providing a consistent experience for the
user. See https://github.com/stega/algorithmic_composition_explorer/blob/main/_lay-
outs/default.html for how layout files are constructed.

47

https://github.com/stega/algorithmic_composition_explorer/blob/main/_layouts/default.html
https://github.com/stega/algorithmic_composition_explorer/blob/main/_layouts/default.html
https://github.com/stega/algorithmic_composition_explorer/blob/main/_layouts/default.html

The title parameter is used to set the page title.

The js parameter needs to be set to the name of the Javascript file that will be created
in step 3 below. The system uses this parameter to load the required Javascript for the
algorithm, avoiding the need to load unnecessary scripts.

As mentioned when describing layouts above, there are three sections in the HTML file:

• the algorithms interface, consisting of a HTML form

• the description of the algorithm, and instructions for use

• a code / pseudo-code example

A Jekyll plugin called ContentBlocks allows the separation of the sections so they can 17

be inserted into the correct places in the layout file. Two contentfor blocks are used

- {% contentfor algorithm_description %} and {% contentfor code %}.

Placing the appropriate content in each block will ensure it’s inserted into the correct
location on the page. See https://github.com/stega/algorithmic_composition_explorer/
blob/main/algorithms/guido.html for a complete example of this.

Finally, the notation viewer and audio player are displayed in a modal window. The code
for this is found in the player-modal.html file in the /_includes/ directory. Use

the {% include player-modal.html %} directive to add it to the page. The modal

can be triggered using a HTML button as shown in Figure 4.15.

 https://github.com/rustygeldmacher/jekyll-contentblocks17

48

https://github.com/stega/algorithmic_composition_explorer/blob/main/algorithms/guido.html
https://github.com/stega/algorithmic_composition_explorer/blob/main/algorithms/guido.html
https://github.com/stega/algorithmic_composition_explorer/blob/main/algorithms/guido.html

<!-- GENERATE NOTES BUTTON -->

 <div class='row my-4 px-3'>

 <div class='col-12 text-end'>

 <button class="btn btn-primary"

 id="genNotes"

 data-bs-toggle="modal"

 data-bs-target="#playerModal">

 Generate!

 </button>

 </div>

 </div>

{% include player-modal.html %}

Figure 4.15: Button to trigger the Audio Player modal

Step 3: Create the algorithms main Javascript file in the /assets/js/algorithms/

directory. This is a plain Javascript file, using window.addEventListener(‘load’)

to register callbacks for the GUI components. The generateNotes() function can be

used to build out the score. Notes can be added to the Score using the addNote()

method, and calling render() on the score object will display the score as notation in

the Audio Player modal window.

4.3.2 Extending the Score class

When adding a new algorithm, it might be that the Score class also needs to be updat-
ed. For functionality that can be used across algorithms, adding new methods to the
Score is the recommended approach. However, for functionality that pertains to a spe-
cific algorithm, or for functions that make logical sense to be grouped together, the
code can be written in a separate Javascript mixin file. A mixin provides methods that
implement a certain behaviour, but these are not used alone, they are used to add their
behaviour to other classes (Mixins, n.d.). This approach keeps the core functionality of
the Score class in one place, resulting in a more focused and easier to manage class,

49

and yet still gives us the opportunity to extend that class with new functionality when
required. A mixin was used to add ABC notation importing functionality to the Score
class for the Markov Chains algorithm. That particular mixin can be viewed at https://
github.com/stega/algorithmic_composition_explorer/blob/main/assets/js/mixins/im-
port-abc-mixin.js. Mixins can be used by using the Object.assign() method, as

show in Figure 4.16.

// add import ABC functionality to Score

Object.assign(Score.prototype, importAbcMixin);

var score = new Score("Markov Chains”);

Figure 4.16: Adding a mixin to the Score class

4.3.3 Adding a New Instrument

Adding a new instrument requires the following steps:

Step 1: Add a new instrument file to /assets/js/instruments/ Instruments are

plain Javascript files that consist of a single function that returns a Tone.js instrument.
The existing instruments have some reverb applied, and accept an optional delay pa-
rameter, in order to provide a basic demonstration how effects can be used. While it
was out of scope for this thesis, Tone.js allows for the building of very sophisticated in-
strument and effect chains, and there is much potential here for future development.

Step 2: Add the instrument to the instrument-chooser.html component in the

includes directory. This component is used to select between instruments, and an

option for the new instrument needs to be added here. The instrument-chooser com-
ponent also allows the passing in of an instruments name as a parameter, so an algo-
rithm can be set to use a particular instrument by default.

Step 3: Finally, the new instrument needs to be added as an option in the getInstru-

ment() function in /assets/js/app.js. This function instantiates and returns the

instrument the user has selected using the instrument-chooser component. 

50

https://github.com/stega/algorithmic_composition_explorer/blob/main/assets/js/mixins/import-abc-mixin.js
https://github.com/stega/algorithmic_composition_explorer/blob/main/assets/js/mixins/import-abc-mixin.js
https://github.com/stega/algorithmic_composition_explorer/blob/main/assets/js/mixins/import-abc-mixin.js
https://github.com/stega/algorithmic_composition_explorer/blob/main/assets/js/mixins/import-abc-mixin.js

5. Evaluation

This chapter considers the various technical challenges encountered while building the
Algorithmic Composition Explorer. It discusses the implementation approach taken for
the different algorithms, as well as looking at various performance metrics and consid-
erations.

5.1 The User Interface

For the stated use case, the system works well and I believe meets the aims set out at
the beginning. I deliberately focused on the functionality and spent little time on the vis-
ual presentation, aside from that which was required to make the application usable.
The result is something which works, but aesthetically it falls behind what could be ex-
pected of a modern Web app. This aspect of the software could certainly be improved
by someone with a greater knowledge of UX and graphic design.

5.2 The Algorithms

Guido of Arezzo

Starting with Guido’s text-to-notes algorithm made sense, offering a simple and easy to
comprehend approach. It is a novel approach to generate random musical ideas, and
the ability to tie pitches and note durations to vowels offer some interesting opportuni-
ties to try and sculpt the music generated. The output is very much at the mercy of the
inputted text however, and as such it is a difficult algorithm to control or predict. Re-
peated attempts could certainly produce interesting and usable ideas however.

One interesting aspect of this algorithm is that the integral nature of the text to the out-
putted results can imbibe the generated music with meaning. If the words have mean-
ing for the learner, the generated ideas will perhaps have an extra significance. As well
as providing an easily understandable introduction to algorithmic composition, Guido’s
algorithm could also encourage thinking about what else could be used as source ma-

51

terial for generating ideas. Phone numbers, car number plates and weather reports
from Mars could all be put to use as idea generators when applying such an algorithm,
with each idea generated having a special connection with its source.

Musikalisches Wuerfelspiel

Mozarts Musikalisches Wuerfelspiel offers something a little different. The pre-written
nature of the music makes it harder to incorporate into the learners own work. However,
as a way of shifting focus from individual notes to phrases, there is a lot that can be
learned. Randomness can be an effective tool regardless at which level of abstraction it
is applied. Questions such as how can chunks of music be re-combined, the role the
form or style of music plays in what works and what doesn’t are important considera-
tions and learning opportunities for the user.

A question I had when developing this algorithm was how would it work if the user was
allowed to upload their own snippets of music? Could this be used in conjunction with
the other algorithms, where their output could be added to the grid? Columns could be
then assigned different scales or even tempos, giving the phrases either some continu-
ity, or allowing the transposition of ideas as the song progresses. This approach shares
much with the digital audio workstation Ableton Live, which can also be configured to
randomly trigger a collection of phrases arranged in a grid.

Markov chains

Compared to the previous algorithms, Markov chains are potentially a little harder to
understand for the user. They are known for their ability to re-create existing styles of
music, but creating something original using this algorithm can be harder. I wanted to
bring the learners attention to this aspect of Markov chains by providing two distinct
styles of music that can be used as source material, and allowing the mixing and
matching of the different songs.

Regarding the development, while using the markov-js library made this aspect of the
algorithm quick to develop, there were other parts that were more time-consuming and
technically challenging. Writing the ABC importer for the songs that were to be used in
the algorithm required a lot of iterations, as each song would introduce new set of ABC

52

notation features that hadn’t been considered, or introduce issues that needed to be
handled by the importer. The importer as it stands covers only aspects of the ABC
standard, enough for this particular use case, but it is likely to fail reasonably quickly if
opened up to allow user uploads of ABC files.

This implementation with its fixed set of source music, while interesting from a learning
perspective, is limited for those that want to use it to generate ideas for their own mu-
sic. The logical next step for this algorithm would be to add the ability for the user to
upload their own songs. As discussed above, the current ABC importer would need to
be more thoroughly tested before being used in this way. The development of other im-
porters for formats such as MIDI would also open up opportunities for this algorithm.
Another option could be to make use of Tone.js’s MIDI functionality, and allow the
learner to use a MIDI keyboard to play notes that can then be used as source material.

Tintinnabuli

Tintinnabuli is probably the algorithm that offers the most when it comes to giving the
user control over the output. Despite this, the algorithms intrinsic nature will always
shine through, and it is capable of creating some beautiful and beautifully simple re-
sults. While could be seen as a deterministic algorithm, some randomness has been
introduced in the T-part with regard to the chord tone that is chosen at any particular
step. Even with the parameters left unchanged, running this algorithm multiple times
can generate scores with a noticeably different feel.

Aside from the algorithm itself, the sequencer was a new component that was added to
introduce some variation. The idea is that this encourages the user to think about the
interplay between rhythm and melody, and the interesting effects that can be created
when they don’t line up.

5.3 Browser compatibility

The CSS framework Bootstrap was used for styling and layouts in the Algorithmic
Composition Explorer. This is a widely used and mature framework, having been in de-
velopment for 10 years, and has built in cross-browser support for its layout and UI

53

components. To check the constancy of the user interface across browsers, I ran tests
in the following desktop browsers:

• Safari 15

• Chromium 89

• Firefox 100

• Opera 86

• Edge 101

In terms of the user interface, the app displayed as expected across all browsers.

Web Audio API support includes all browsers with the exception of Internet Explorer. In
Safari however, I noticed that the audio output was lower than in the other browsers.
Safari was mainly used during development, and when testing in other browsers, the
synthesiser instrument was distorting. Tone.js instruments have a volume parameter
which is set to 0dB by default, and lowering this prevented the distortion.

5.4 Mobile performance

During development, I was mainly using the Safari browser on the desktop. I would
check that page layout scaled down to mobile dimensions at regular intervals using the
Responsive Design Mode built into Safari. Once the app had been uploaded to the
Web, it was tested on an iPhone 8 and an iPhone X.

In terms of functionality, the app works well - it successfully generates and plays back
audio, and the synthesiser, piano and effects are working as they should.

The notation rendering provided by ABC.js could be improved. It currently scales the
score to the width of the container, and on a mobile device, this results in a score that is
scaled down to the extent that is becomes difficult to read. There are options for wrap-
ping notation offered by ABC.js that requires a predefined width. One improvement that
could be made here is to use the Javascript screen.availWidth property to fetch

the current screen width, and pass this into the ABC.js render function. Bars per line
and note spacing could all be adjusted to improve notation display on mobile devices.
The downside of this approach is that the same layout will be used when using the

54

download score functionality. So any notation PDFs created on the phone will not read
very well when subsequently viewed on larger screens.

Generally speaking, layout and styling on mobile devices can be difficult to get right.
Bootstrap helps here, offering options for hiding selected content on certain screen
sizes, and adjusting parameters like padding and margins depending on the device.
These options have been used judiciously throughout development to retain the usabili-
ty on devices with smaller screens. Using a responsive approach will always be a com-
promise however, as layouts and forms that work well on one particular screen size will
often be less suitable on another. The alternative is to build specifically for each device,
but this can greatly increase the amount of development time and expertise needed,
and can shackle further development.

5.5 Website performance

I ran the Algorithmic Composition Explorer through website audit tests from two
providers - Geekflare and Dotcom-Tools . These are tools that help you test your 18 19

website from multiple locations and on different devices with various levels of network
performance. I used the page for the Tintinnabuli algorithm in the tests, and tested for
desktop performance, as well as mobile, which simulates a slightly slower 4G network.
The results can be seen in Figures 5.1 to 5.4.

Geekflare showed an average page load time of 0.5 seconds for both desktop and mo-
bile. Dotcom Tools showed an average page load time of 0.73 seconds on desktop,
and 0.88 seconds on mobile phone. Geekflare measured the first contentful paint, a
measure of how quickly content is displayed, as higher than the page load. This sug-
gests that while the files are downloading quickly, the page rendering is slower than it
could be. Dotcom Tools results show the opposite however - there the first contentful
paint has been measured at 0.5 seconds, a lower value than the 0.73 second page load
time that it measured. Nevertheless, these results are under the 3 seconds load time
recommended as best practice by Google (An, 2018).

 https://geekflare.com/website-audit18

 https://www.dotcom-tools.com/website-speed-test19

55

56

Figure 5.3: Dotcom Tools desktop performance

Figure 5.4: Dotcom Tools mobile performance (4G)

Figure 5.1: Geekflare desktop performance

Figure 5.2: Geekflare mobile performance (4G)

HTTP Archive is an open source project that collects a series of reports on Web per-
formance. Their findings show that the median page load times are 3.7 seconds for
desktop, and 9.1 seconds for mobile (HTTP Archive, 2022). When measured against
their data, the Algorithmic Composition Explorer performs significantly faster than the
average.

57

6. Conclusion

For this thesis I proposed and set out to build a proof-of-principle system for introduc-
ing a selection of algorithmic composition approaches to learners that have little or no
programming knowledge. I wanted to emphasis experiential learning, and build an in-
teractive environment that focused on learning through practice and experimentation.

To have the most impact, it needed to be widely available, and any barriers to entry
needed to be minimised. By building for the browser, the system is widely available.
Good page load times, cross browser compatibility and mobile support means that the
system is accessible by anyone with an Internet-connected device.

Finally, the system needed to provide a solid foundation for further development. The
language and tools used were chosen not only due to their open-source nature, but
also because they were popular, well established and supported, based for the most
part on standards such as the Web Audio API. With much of the work having gone into
the foundations and core structure, the system has been designed to be easy to ex-
pand and build upon. The systems modular nature mean that developers interested in
adding a new algorithms will not have to consider functionality beyond what they want
to work on. The provided Score class, the instruments, audio player and rendering
functions, as well as the structure and framework of the whole Web site, all work to-
gether to provide a platform on which new ideas can be implemented easily.

Future work

Due to the limited timeframe of this thesis, there are many aspects of the software I
would have liked to have developed further. Implementing more algorithms is perhaps
an obvious one. As discussed in Chapter 3.4, Cellular Automata would be an interesting
algorithm to tackle next. There are also many improvements that could be made to the
existing algorithms. For example, allowing the user to upload songs to the Markov
Chains algorithm, or even being able to populate the Musikalisches Würfelspiel grid
with user-created phrases.

58

The ABC importer works, but it requires further testing if users are to be allowed to up-
load their own ABC music. An importer for MIDI was also looked into, as was imple-
menting some of the functionality offered by Tone.js/MIDI. Being able to input notes us-
ing a MIDI controller would be an interesting way to feed the Markov Chains algorithm
with data, or add phrases to Musikalisches Würfelspiel.

Regarding the rendering of notation using ABCjs, there is room for improvement. While
an alternative like VexFlow is more complex to work with, it produces more accurate
notation and would be a superior choice.

Aside from the technical improvements, user evaluation is also necessary to further
support the validity of the learning-through-practice approach.

During development I found myself wanting to take ideas generated and incorporate
them into my own compositions. This lead to several brainstorming sessions where I
explored how to adapt the system more for this purpose. I have spoken much about
the modularisation of the code, but this is an approach that would be interesting to take
with the interface as well. Creating a ‘playground’, where different algorithmic compo-
nents can be combined in order to build a customised algorithm without the need for
coding would be an interesting next step. In some ways, this could be seen as moving
the focus away from learning about different algorithmic composition approaches and
more towards creating an environment for algorithmic composition itself. This thesis
has very much been focused on the learning through practice approach, and I believe
learners could only benefit from more opportunities to do just that.

To summarise, the Algorithmic Composition Explorer is a novel experiential learning en-
vironment for algorithmic composition. It is a widely accessible, browser-based tool for
experimenting with different algorithmic composition approaches. Finally, it is a frame-
work that can be further built upon and expanded.

My hope is that the Algorithmic Composition Explorer creates a spark for people curi-
ous about this fascinating subject, helping them realise the creative potential of the ap-
plication of algorithms in creating new musical ideas, and inspiring them to dig deeper.

59

References

Acevedo, A. (2005). Fugue Composition with Counterpoint Melody Generation Using
Genetic Algorithms. 3310, 96–106. https://doi.org/10.1007/978-3-540-31807-1_7

Aho, A. V. (2012). Computation and Computational Thinking. Computer Journal, 55(7),
832–835. https://doi.org/10.1093/comjnl/bxs074

Alpern, A. (1995). Techniques for Algorithmic Composition of Music.

An, D. (2018). Think with Google. Retrieved 14 May 2022, from https://www.thinkwith-
google.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-
benchmarks/

Aschauer, D. (2008). Algorithmic composition [Thesis]. https://repositum.tuwien.at/han-
dle/20.500.12708/11036

Cakewalk—SONAR LE Documentation—Fretboard pop-up menu. (n.d.). Retrieved 1
April 2022, from https://www.cakewalk.com/Documentation?
product=SONAR%20LE&language=3&help=Notation.07.html

Chikinda. (2011). Pärt's Evolving Tintinnabuli Style. Perspectives of New Music, 49(1),
182–206. https://doi.org/10.7757/persnewmusi.49.1.0182

Deleuze, & Lapoujade, D. (2006). Two regimes of madness : texts and interviews
1975-1995 (p. 415). Semiotext(e) ; Distributed by MIT Press.

Dimitrov, G. (2021). Arvo [Python]. https://github.com/georgesdimitrov/arvo (Original
work published 2020)

Dostál. (2013). Evolutionary Music Composition. In Handbook of Optimization (pp. 935–
964). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30504-7_37

Editor, T.-B. T. (2018, December 13). If Curious, Then Learn: A Brief Intro to Algorithmic
Thinking. Tech-Based Teaching: Computational Thinking in the Classroom. https://

60

medium.com/tech-based-teaching/if-curious-then-learn-a-brief-intro-to-algorithmic-
thinking-ba683bf44994

Edwards, M. (2011). Algorithmic composition: Computational thinking in music. Com-
munications of the ACM, 54(7), 58–67. https://doi.org/10.1145/1965724.1965742

Falthin. (2012). Creative structures or structured creativity. Examining algorithmic com-
position as a learning tool. Norges musikkhøgskole. http://hdl.handle.net/11250/172357

Fernandez, J. D., & Vico, F. (2013). AI Methods in Algorithmic Composition: A Compre-
hensive Survey. Journal of Artificial Intelligence Research, 48, 513–582. https://doi.org/
10.1613/jair.3908

Filimowicz, M., & Tzankova, V. (Eds.). (2017). Teaching Computational Creativity. Cam-
bridge University Press. https://doi.org/10.1017/9781316481165

HTTP Archive: Loading Speed. (2022). Retrieved 14 May 2022, from https://
httparchive.org/reports/loading-speed

Isobar. (n.d.). Retrieved 5 May 2022, from http://ideoforms.github.io/isobar/

JavaScript Systems Music. (n.d.). Retrieved 31 March 2022, from https://teropa.info/
blog/2016/07/28/javascript-systems-music.html#understanding-timing-in-tone-js

Knuth, D. E. (1974). Computer Science and Its Relation to Mathematics. The American
Mathematical Monthly, 81(4), 323–343. https://doi.org/10.2307/2318994

Laurillard, D. (2012). Teaching as a Design Science: Building Pedagogical Patterns for
Learning and Technology (1st ed.). Routledge. https://doi.org/10.4324/9780203125083

Logic Pro 9 User Manual: Display Preferences in Logic Pro. (n.d.). Retrieved 1 April
2022, from https://help.apple.com/logicpro/mac/9.1.6/en/logicpro/usermanual/in-
dex.html#chapter=44%26section=6%26tasks=true

Manaris, & Brown, A. R. (2014). Making Music with Computers. Chapman and Hall/
CRC. https://doi.org/10.1201/b15104

61

McVeigh-Murphy, A. (n.d.). Computational Thinking, Algorithmic Thinking, & Design
Thinking Defined. Retrieved 25 March 2022, from https://equip.learning.com/computa-
tional-thinking-algorithmic-thinking-design-thinking

Miller. (1973). Guido d'Arezzo: Medieval Musician and Educator. Journal of Research in
Music Education, 21(3), 239–245. https://doi.org/10.2307/3345093

Mixins. (n.d.). Retrieved 1 May 2022, from https://javascript.info/mixins

Most used languages among software developers globally 2021. (n.d.). Statista. Re-
trieved 7 March 2022, from https://www.statista.com/statistics/793628/worldwide-de-
veloper-survey-most-used-languages/

music21: A Toolkit for Computer-Aided Musicology. (n.d.). Retrieved 7 March 2022,
from https://web.mit.edu/music21/

Papert, S. (1980). /Mindstorms: Children, computers, and powerful ideas/. Basic Books.

Papert, S. (1980). Mindstorms, children, computers, and powerful ideas. New York, NY:
Basic Books.

Reisenweaver. (2012). Guido of Arezzo and His Influence on Music Learning. Musical
Offerings, 3(1), 37–59. https://doi.org/10.15385/jmo.2012.3.1.4

Responsive design—Learn web development | MDN. (n.d.). Retrieved 4 May 2022, from
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Responsive_Design

Selfridge-Field, E. (1997). Beyond MIDI: The handbook of musical codes. MIT Press.

Shapiro, I., & Huber, M. (2021). Markov Chains for Computer Music Generation. Journal
of Humanistic Mathematics, 11(2), 167–195. https://doi.org/10.5642/
jhummath.202102.08

Shiihs. (2013, August 24). A touch of music: Algorithmic composition: generating tonal
canons with Python and music21. A Touch of Music. http://a-touch-of-mu-
sic.blogspot.com/2013/08/algorithmic-composition-generating.html

62

Simoni, M. (2003). Algorithmic Composition: A Gentle Introduction to Music Composi-
tion Using Common LISP and Common Music. SPO Scholarly Monograph Series.
https://doi.org/10.3998/spobooks.bbv9810.0001.001

Tabesh, Y. (2017). Computational thinking: A 21st century skill. Olympiads in Informat-
ics, 11(2), 65–70. doi:10. 15388/ioi.2017.special.10

The Modulariy Principle. (n.d.). Retrieved 7 May 2022, from http://www.cs.sjsu.edu/fac-
ulty/pearce/modules/lectures/ood/principles/Modularity.htm

Tillmann, B., Poulin-Charronnat, B., & Bigand, E. (2014). The role of expectation in mu-
sic: From the score to emotions and the brain. WIREs Cognitive Science, 5(1), 105–113.
https://doi.org/10.1002/wcs.1262

Vygotskij, Cole, M., John-Steiner, V., Scribner, S., & Souberman, E. (1978). Mind in soci-
ety : the development of higher psychological processes (p. 159). Harvard University
Press.

Web Audio API - Web APIs | MDN. (n.d.). Retrieved 7 March 2022, from https://devel-
oper.mozilla.org/en-US/docs/Web/API/Web_Audio_API

Web Audio API Proposal from Chris Rogers on 2010-06-15 (public-xg-audio@w3.org
from June 2010). (n.d.). Retrieved 31 March 2022, from https://lists.w3.org/Archives/
Public/public-xg-audio/2010Jun/0010.html

Zatorre, R. J., & Salimpoor, V. N. (2013). From perception to pleasure: Music and its
neural substrates. Proceedings of the National Academy of Sciences of the United
States of America, 110(Suppl 2), 10430–10437. https://doi.org/10.1073/
pnas.1301228110

Zbikowski. (2002). Conceptualizing Music. Oxford University Press. https://doi.org/
10.1093/acprof:oso/9780195140231.001.0001

Zivanovic. (2012). Arvo Part's Fratres and his tintinnabuli technique. Universitetet i
Agder; University of Agder. http://hdl.handle.net/11250/138506

63

	1. Introduction
	1.1 Aims
	1.2 Target Audience
	1.3 Key Contributions
	1.4 A Short Note About Computers
	1.5 Structure & Overview

	2. Background
	2.1 A Brief Introduction to Algorithmic Composition
	2.2 An Overview of Algorithmic Composition Key Techniques
	2.3 Algorithmic Composition Pedagogy
	2.3.1 Learning through practice
	2.3.2 Extrinsic and intrinsic feedback
	2.2.3 Computational thinking

	2.4 Related works

	3. Design & Methodology
	3.1 Languages & Frameworks
	3.1.1 Python
	3.1.2 Javascript & the Web

	3.2 Computer representations of music
	3.2.1 Representation of pitch
	3.2.2 Music engraving

	3.3 The overall design of the system
	3.4 Algorithm selection

	4. Implementation
	4.1 Building the Algorithmic Composition Explorer
	4.2 Selected Algorithms
	4.2.1 Guido
	4.2.2 Musikalisches Würfelspiel
	4.2.3 Markov Chains
	4.2.4 Tintinnabuli

	4.3 Extending the Algorithmic Composition Explorer
	4.3.1 Adding a new algorithm
	4.3.2 Extending the Score class
	4.3.3 Adding a New Instrument

	5. Evaluation
	5.1 The User Interface
	5.2 The Algorithms
	5.3 Browser compatibility
	5.4 Mobile performance
	5.5 Website performance

	6. Conclusion
	References

