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ABSTRACT
◥

Background: The need to better understand the molecular
underpinnings of the heterogeneous outcomes of patients with
prostate cancer is a pressing global problem and a key research
priority for Movember. To address this, the Movember Global
Action Plan 1 Unique tissue microarray (GAP1-UTMA) project
constructed a set of unique and richly annotated tissue microarrays
(TMA) from prostate cancer samples obtained from multiple
institutions across several global locations.

Methods: Three separate TMA sets were built that differ by
purpose and disease state.

Results: The intended use of TMA1 (Primary Matched LN) is to
validate biomarkers that help determine which clinically localized
prostate cancers with associated lymph node metastasis have a high
risk of progression to lethal castration-resistant metastatic disease,
and to compare molecular properties of high-risk index lesions

within the prostate to regional lymph node metastases resected at
the time of prostatectomy. TMA2 (Pre vs. Post ADT) was designed
to address questions regarding risk of castration-resistant prostate
cancer (CRPC) and response to suppression of the androgen
receptor/androgen axis, and characterization of the castration-
resistant phenotype. TMA3 (CRPC Met Heterogeneity)’s intended
use is to assess the heterogeneity of molecular markers across
different anatomic sites in lethal prostate cancer metastases.

Conclusions: The GAP1-UTMA project has succeeded in
combining a large set of tissue specimens from 501 patients
with prostate cancer with rich clinical annotation.

Impact: This resource is now available to the prostate cancer
community as a tool for biomarker validation to address important
unanswered clinical questions around disease progression and
response to treatment.
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Introduction
Prostate cancer is the second most common cancer and the sixth

leading cause of cancer death worldwide in men (1, 2). Although some
prostate cancers remain clinically indolent for many years, others
progress at a variable rate to lethal metastatic castration-resistant
disease and death. The death rate from prostate cancer has decreased
in the last two decades, potentially as a result of better detection and
treatment of clinically localized disease. However, despite this progress
manymenwith tumors of low inherent aggressiveness are overtreated,
whereas others with intermediate-risk or high-risk localized disease
are undertreated (3–5). The mainstay for clinical decisions for local-
ized prostate cancer is a biopsy followed by Gleason grading of the
tumor. Gleason grading remains a powerful predictor of outcome in
the extremes and those patients with Gleason Grade Group 1 (Gleason
score 6) and some with low volume Grade Group 2 (3þ4 ¼ 7) are
forgoing immediate treatment and increasingly enrolling in active
surveillance programs. However, for those patients with clinically
localized higher risk disease (high volume cancers of Grade Group
2 and higher, and any patients with Grade Groups 4–5), a significant
fraction develop disease recurrence and progression after attempts at
definitive local treatments (6). For these patients, additional treatments
are needed, yet there are no standard adjuvant therapies for localized
prostate cancer. Further, for those patients with intermediate-risk
disease, the clinical course is quite variable and not well predicted by
Gleason grading and clinical staging.

Presently, although a number of different molecular biomarkers
have shown promise (7–9), there are no routinely employed validated
biomarkers to differentiate indolent from aggressive intermediate-risk
cases that can be used to enhance decision making. A subgroup of
patients with clinically localized disease have prostate cancerwhich has
spread to regional lymph nodes, which is often discovered incidentally
when these lymph nodes are removed during a radical prostatectomy
(RP) and examined microscopically. Interestingly, the presence of
regional lymph node metastasis does not always portend an aggres-
sive clinical course because some patients in this disease state
remain stable without overt new metastatic disease and develop-
ment of bone or soft tissue metastases for many years (10, 11).
Indeed, some patients who are treated with androgen deprivation
therapy (ADT), for either localized or metastatic disease, can have
highly prolonged responses, whereas others succumb to castration-
resistant prostate cancer (CRPC) quite quickly (12). Finally, when
untreated, only a third of patients with biochemical recurrence
(BCR) will develop clinically significant metastatic disease in a
7-year follow-up period (13), which underlines the relatively poor
performance of BCR as a surrogate marker for prostate cancer
survival outcomes. More precise biomarkers are needed to deter-
mine which of these locally treated cancers are likely to progress
and/or develop resistance to ADT.

Another clinical problem that occurs in late-stage disease, often
after several systemic therapies involving androgen signaling depri-
vation and/or chemotherapy, is disease heterogeneity (14–16) with
some lesions responding to specific systemic agents and others not.
This heterogeneity in CRPC is similar tomany other types of late-stage
metastatic cancer and improvements in deciphering its molecular
features and mechanisms require tissue sampling from multiple
metastatic sites, which is generally quite difficult outside of autopsies.
The development and validation of biomarkers that can help better
stratify risk in men with localized disease, to better understand who
may rapidly progress on ADT, and to enhance our knowledge regard-
ing the molecular features of late-stage disease heterogeneity was the

main rationale for initiating this Movember Global Action Plan 1
(GAP1) unique tissue microarray (TMA) project (GAP1-UTMA).

Although TMAs have been used in more than 2,000 publications in
prostate cancer, the majority of these studies have been carried out by
individual organizations/investigators and focused on the prognostic
value of biomarkers, often using rising serum PSA as an indicator of
poor outcome. Movember’s Global Action Plans (GAP), launched in
2011 with the GAP1 biomarker project, were established to address
critical challenges in prostate cancer research through global collab-
oration. Movember identified a need to create collections of valuable
tissue resources with clinical annotation to support the first batch of
GAP1 projects to help improve our understanding of the biology of
treatment response and resistance and validating promising prostate
cancer tissue-based biomarkers. In this GAP1 collaborative initiative,
we assembled an international teamwithmultidisciplinary expertise to
pool diverse tissue sample resources to develop a novel set of TMAs
consisting of prostate cancer tissue specimens from multiple disease
states. This robust resource could not have been assembled using
samples from any single institution.

Materials and Methods
Patients and specimen collection

Formalin-fixed paraffin-embedded prostate cancer patient speci-
mens (prostate, lymphnodes, and othermetastatic sites) used for TMA
construction were retrieved from each participating hospital’s pathol-
ogy department where patients underwent surgery, transurethral
resection of the prostate (TURP) or biopsy between 1978 and 2016.
These hospitals included the Centre hospitalier de l’Universit�e de
Montr�eal (CHUM), Johns Hopkins Hospital (JHU), Helsinki Univer-
sity Hospital (HUS), Institute of Biomedicine, University of Turku and
Turku University Hospital (TYKS), Oslo University Hospital (OUH),
University of Mississippi Baptist Medical Centre (UMBMC), Greater
Los Angeles VAHealthcare System, Durham VAHealth Care System,
Emory University, and the University of Washington. For autopsy
cases, all specimens were processed within 8 hours (University of
Washington), 14 hours (JHU), or 24 hours (Oslo University Hospital)
of death. Specimens were fixed in 10% neutral-buffered formalin and
embedded in paraffin. Bone metastases were decalcified in 10% formic
acid before embedding. The samples selected for these TMAs were
chosen to represent relatively rare clinical profiles that are difficult to
obtain for research purposes. Because the number of such samples at
each of our institutions was still relatively small, we did not impose a
statistical sampling design to select samples. Rather, these TMAs are
essentially composed of convenience samples, with uniformity of
clinical attributes across institutions.

All centers received ethical review board permission to use patient
material and conduct this study which was conducted in accordance
with ethical guidelines. The following committees approved the study:
Comit�e d’�ethique de la recherche du CHUM (CE.14.128), the Insti-
tutional Review Board of the: JHU School ofMedicine’s, the UMBMC,
the VA Greater Los Angeles (Department of Veterans Affairs PCC
#2015–040408), the Ethics Committee of Hospital District of Helsinki
and Uusimaa (84/13/03/00/2014; x3 30.01.2015), the Hospital District
of Southwest Finland (number T206/2014) National Supervisory
Authority for Welfare and Health for HUS and TYKS (VALVIRA,
8008/06.01.03/2014), the Regional Committees for Medical and
Health Research Ethics for OUH (REC 2013/1713), and Center for
Healthcare Ethics for Cedar Sinai (Pro00033387 and Pro00020577).
Written patient informed consents were obtained as required by
individual institutional ethical review boards (CHUMCE12.216,HUS,
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TYKS, and University of Washington, Cedar Sinai) or waivers were
granted by the ethic review boards (JHU, OUH, both VA Health Care
System and UMBMC).

Histology review
The hematoxylin and eosin (H&E) or Weigert van Gieson stained

sections of the whole prostates and pelvic lymph nodes from RP for
TMA1 (Primary Matched LN), biopsies, RP and TURPs for TMA2
(Pre vs. Post ADT) and prostates or metastatic lesions obtained at
autopsy for TMA3 (CRPC Met Heterogeneity) were reviewed by a
pathologist within each institution. For the RP specimens, the pathol-
ogists identified the index tumor (largest tumor or the highest grade
nodule). The grading of the primary tumor was taken from the original
diagnostic pathology reports. For other tissue types, the overall tissue
quality and regions of high-tumor content withminimal necrosis were
selected for inclusion. Of note, some of the metastases from TMA3
(CRPCMet Heterogeneity) have variably large regions of necrosis and
some metastases have very few tumor cells, such as those from
osteoblastic bones. Patient and tissue block selection were performed
using specific guidelines.

TMA design, construction, and review
TMAs were constructed according to standard operating proce-

dures (SOP) developed at each site and reviewed centrally to assure
homogeneity prior to TMA construction. To build each TMA block,
CHUM and Cedars-Sinai (Greater Los Angeles VA and Durham VA
Health Care System, Emory University) used the TMArrayer (Pathol-
ogy Devices, Inc.), whereas HUS and TYKS used Quick Ray Manual
TissueMicroarrayer Full Set (Unitma). The University of Oslo utilized
a semiautomated Beecher Instrument (TMABooster OI; Alphelys).
JHU, University ofWashington and University of Mississippi Medical
Center utilized the Estigen Tissue Science Manual Tissue Arrayer
MTA-1 (Tartu; formerly Beecher instruments).

A total of three cores from prostatic tissue (0.6 or 1 mm), two to
three cores from lymph nodes (0.6 or 1 mm) and other metastatic
lesions (0.6 or 1 mm) were transferred to a recipient TMA block in a
serial manner (nonrandomized). For some centers, adjacent benign
prostate tissue cores were also arrayed on the TMA. For biopsy tissue
from prostate or metastatic lesions (0.6 mm), at least two cores from
each specimen were also arrayed in a serial manner (nonrando-
mized) on a separate recipient TMA block. For each TMA category
(TMA 1–3), each institution constructed a Test TMA, which
consisted of a subset of the same specimens used in the full TMAs.

For each TMA, we included control tissues provided by
Cedars-Sinai Medical Center (CSMC; human tonsil, kidney, colon,
and liver) and CHUM (xenografts containing 22rv1, PC-3, LNCaP,
and DU145 prostate cancer cell lines injected into and grown in
immunocompromised/nude mice). An institutional approval was
provided for the use of the human control tissue specimens. Mouse
xenograft experiments were performed according to institutional rules
and following approbation of the protocol by the Comit�e institutionnel
de protection des animaux. Each of the control tissues (mouse and
human) was divided into eight pieces, fixed in formalin, paraffin-
embedded, and sent to the individual institutions to include in each
TMA block. This process of using centrally processed control cell lines
and tissues provides a quality controlmeasure of TMA slide staining to
detect batch effects in staining due to tissue processing protocols
(instead of underlying biology). In addition, for many IHC stains
there is a wealth of prior information regarding phenotypic features of
these cell lines/xenografts and the common human tissues. To demar-
cate the starting X and Y coordinates (e.g., the upper left corner of the

TMA block) control tissues (human kidney or liver, depending upon
institutional preference) were arranged either outside of or just within
the main X and Y coordinates to facilitate proper orientation of each
TMA slide. Quality control of H&E-stained sections from each TMA
was performed by local and central genito-urinary pathologists.

TMA data handling
Each patient was assigned a specific code, consisting of a combined

unique deidentified Specimen ID and Institution-specific 3 letter ID.
This information was shared with the coordinating center (JHU) and
was used to enter the data into the TMAJ Database (TMAJ), an open-
source software system designed to support TMA pathology data
(http://tmaj.pathology.jhmi.edu/; refs. 17, 18). The TMAJ database
tracks the specimen ID, and institution and information for each FFPE
block (e.g., anatomic site of origin) that is used for TMA punching and
provides an export of a TMAmap that was used for all sites for quality
control. Clinical data associated with specimens were collected in a
spreadsheet containing predefined data elements (Supplementary
Table S1) with specific definitions to promote harmonization of data
between sites. No HIPAA-defined protected health information is
included in the data. These data were sent to the central repository
where they were reviewed for consistency and when inconsistencies
were identified, they were rectified by communication with the ini-
tiating site and modified if needed. Revised clinical data from each site
were collated into a unique SAS database. These data are stored on a
secure server in the central repository and are linked to the specimen
data in the TMAs using the same unique identifier (Specimen ID and
institutional ID)mentioned above. The combined clinical data from all
sites are only accessible to the study biostatistician and research
coordinator at the Coordinating Center. Each TMA slide from each
TMA block is assigned a unique ID in the TMAJ database, and data
about which stain was performed, including the site, antibody, and
experimental details are recorded.

Storage of TMAblocks, unstained slides, andwhole slide images
Each TMA block is kept at room temperature within its respective

institution due to legal and ethical restrictions. TMA blocks were
subjected to sectioning (N ¼ 20 slides) at each respective institution
and the H&E section as well as the remaining 19 unstained slides of
each TMA were sent to the coordinating center. Following reception,
the H&E slides were subjected to whole slide scanning using a
Hamamatsu Photonics NanoZoomer XR, SN 510076 instrument and
whole slide scan image files were uploaded to a web-based slide image
management system (Concentriq fromPROSCIA) and sharedwith the
other sites. The remaining unstained TMA slides are stored in a plastic
bag in a monitored �20�C freezer according to PCBN program
SOPs (18), until requested by approved investigators.

IHC and scoring
Each Test TMA slide was stained for the following: recombinant

anti-PSMA (Abcam, clone EPR 6253, rabbit monoclonal, dilution
1:300), PTEN (Cell Signaling Technology, clone D4.3 XP, rabbit
monoclonal, dilution 1:100), anti-ERG (Roche, clone EPR3864, rabbit
monoclonal, 23 mg/mL), AR (androgen receptor, Cell Signaling Tech-
nology, clone D6F11, rabbit monoclonal, dilution 1:400), prostate-
specific antigen (PSA, clone ER-PR8,monoclonal anti-mouse, dilution
1:50), andNKX3.1 [rabbit polyclonal (19), dilution 1:1,000]. The slides
were stained using the Ventana automated platform (Ventana Dis-
covery Ultra HQ-HRP Hapten Detection, Ventana Medical System).
The stained TMA sections were scanned as above for H&E slides using
the Hamamatsu NanoZoomer, stored on Consentriq (PROSCIA), and
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shared across all sites. For scoring the IHC staining, pathologists with
expertise in prostate cancer reviewed the scanned slides and scored
each spot. For every marker, staining was considered positive or
negative. Staining was considered negative if there was a complete

absence of staining in the tumor cells. Positive staining in tumor cells
was categorized as homogeneous or heterogeneous, with heterogeneity
meaning either a difference in the fraction of positive tumor cells, the
intensity of the staining across the tumor cells or both. For scoring of

Table 1. Unique tissue microarray description.

(A) Design of the TMA series

Test TMA

TMA1
(primary
matched LN)

TMA2
(pre vs. post ADT)

TMA3
(CRPC met
heterogeneity)

Sample
type

* Subset of tissue included in the
corresponding TMA (1,2,3)

* Paired untreated primary PC tissue and
LN metastasis

* Pre- and post-ADT CRPC PC
primary tissue and
metastasis

* Matched multiple metastasis sites

Subseries * Test TMA1
* Test TMA2
* Test TMA3

* TMA1a (>5 years follow-up data)
* TMA1b

* TMA2a
* TMA2b: biopsy specimens

Purpose * To preserve the full TMA
resource from wasteful use

* To evaluate if biomarkers show
consistent and adequate signal-
to-noise staining

* To identify potential site-
specific bias due to internal
tissue-processing protocols

* To compare protein expression in
primary PC and concurrent LN
metastases.

* Provide biological insights into the
mechanism of LN metastasis.

* Determine expression patterns of
biomarkers in the pre-metastatic
setting and select biomarkers of
aggressive disease

* Identify biomarkers that are associated
with further spread of the cancer
(TMA1a).

* To profile biomarker
expression in CRPC and
comparison to pre-
treatment.

* To study the heterogeneity of
metastatic disease in patients
with lethal PC.

* To determine differences between
bone and soft tissue metastases in
the same patient.

Inclusion
criteria

* The same as the corresponding
TMA series

* Tissue samples consist of matched
untreatedPCprimaryRP specimen and
untreated LN metastasis

* Patients who developed
CRPC

* Matched tissue samples (pre
to post ADT) or CRPC
specimen

* Pre-ADT specimen being
TURP or RP

* CRPC specimen TURP or
metastatic site

* Follow-up data available

* Specimen from multiple
metastatic sites from a single
patient

* Available cancer treatment data
* Treatment-na€�ve prostate, LN, and
metastatic tissue from autopsy

* Metastasis to pelvic LN from
patients with advanced metastatic
disease

Exclusion
criteria

* The same as the corresponding
TMA series

* Biopsy specimens

* Specimen from PC patients who have
received systemic treatment

* Patient without 5-year follow-up data
(TMA1a)

* Patient with 5-year follow-up data

* Patients who received ADT
prior to RP as they do not
have CRPC

* Patients with PSA
recurrence without tissue
specimen

* Tissue from a TURP chip that
shows extensive cautery

* Tissue from autopsies performed
after 24 hours post-mortem

(B) TMA series composition

Test TMA TMA1 TMA2 TMA3
1 2 3 1a 1b 2a 2b

Number of TMA blocks 5 4 3 6 8 4 3 7
Number of centers 6 5 3 4 5 4 3 3
Specimen RP: 40

LN: 22
Pre-ADT
RP: 4
TURP: 2

CRPC
RP: 2
TURP: 24

Prostate:4
LN: 19
Bone: 25
Liver: 6
Lung: 7
Other: 1

RP: 107
LN: 107

RP: 200
LN: 200

Pre-ADT
RP: 12
TURP: 10
Met: 1

Post-ADT
RP: 3
TURP: 104
Met: 4

Pre-ADT
Pros Bx: 36

Post-ADT
Pros Bx: 4

Prostate: 45a

LN: 72
Bone: 116
Lung: 20
Liver: 36
Other: 29

aFive prostate specimens are those obtained from radical prostatectomy and the remaining from rapid autopsy.
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Table 2. Demographic and clinical variables of the Unique Tissue Microarray series.

(A) TMA 1 (primary matched LN)

Variable TMA1a TMA1b
Number of patients 107 200
Year of diagnosis, median (IQR) 2010 (2004–2013) 2012 (2009–2013)
Follow-up time, median (IQR, months) 32.8 (12.4–60)a 30.5 (12–51)a

Age at diagnosis, median (IQR, years) 63 (59–67) 63 (58–68)b

Race, n (%)
White 98 (92) 157 (79)
Black 4 (4) 27 (14)
Asian 0 (0) 2 (1)
Hispanic 2 (2) 2 (1)
Other 3 (3) 3 (2)
Missing 0 (0) 9 (5)

PSA (ng/mL) at diagnosis, median (IQR) 15.0 (8.5–32)c 12.0 (7.6–22.7)c

Clinical stage, n (%)
T1 30 (28) 58 (29)
T2 17 (16) 44 (22)
T3 16 (15) 13 (7)
Tx 44 (41) 4 (2)
Missing 0 (0) 81 (41)

Biopsy Gleason score, n (%)
6 8 (7) 11 (6)
3þ4 15 (14) 34 (17)
4þ3 25 (23) 49 (25)
8 21 (20) 34 (17)
9–10 17 (16) 62 (31)
Missing 21 (20) 10 (5)

RP Gleason score, n (%)
≤6d 0 (0) 2 (1)
3þ4 14 (13) 15 (8)
4þ3 29 (27) 63 (32)
8 14 (13) 24 (12)
9–10 50 (47) 90 (45)
Missing 0 (0) 6 (3)

Surgical margins, n (%)
Negative 38 (36) 87 (44)
Positive 66 (62) 106 (53)
Missing 3 (3) 7 (4)

Pathological findings, n (%)e

EPE 83 (78) 153 (77)
SVI 73 (68) 135 (68)
LNI 107 (100) 195 (98)

Number of positive LN, n (%)
1 53 (50) 64 (32)
2 20 (19) 38 (19)
≥3 18 (17) 38 (19)
Missing 16 (15) 60 (30)

Treatment received post-RP, n (%)
No treatment 35 (33) 71 (36)
RT 8 (7) 13 (7)
ADT 13 (12) 67 (34)
RTþADT 29 (27) 47 (24)
Chemo 0 (0) 0 (0)
ADTþChemo 5 (5) 2 (1)
ADTþRTþChemo 9 (8) 0 (0)

Recurrence, n (%)
No recurrence 23 (22) 69 (35)
Biochemical 47 (44) 85 (43)
Local 6 (6) 1 (1)
Missing 31 (29) 45 (23)

Metastasis, n (%)
No 48 (45) 136 (68)
Yes 27 (25) 20 (10)
Missing 32 (30) 44 (22)

(Continued on the following page)
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Table 2. Demographic and clinical variables of the Unique Tissue Microarray series. (Cont'd )

(A) TMA 1 (primary matched LN)

Variable TMA1a TMA1b

Vital status, n (%)
Alive 62 (58) 139 (70)
PCa death 10 (9) 10 (5)
Other cause of death 4 (4) 10 (5)
Dead unknown cause 1 (1) 0 (0)
Missing 30 (28) 41 (21)

(B) TMA2 (pre vs. post ADT)

Number of patients 114
Year of diagnosis 1998 (1993–2002)
Follow-up months, m (IQR) 90 (50–128)
Age at diagnosis, median (IQR, years) 67 (60–75)
Race, n (%)

White 96 (84)
Black 14 (12)
Hispanic 2 (2)
Other 1 (1)
Missing 1 (1)

PSA at diagnosis, ng/mL, median (IQR) 29.3 (13.0–73.0)f

PSA pre-ADT, ng/mL, median (IQR) 33.0 (13.0–91.0)f

PSA post-ADT (CRPC), ng/mL, median (IQR) 31.5 (7.5–102.3)f

Pre-ADT Specimen Gleason Sumg

≤6d 11 (10)
7 32 (28)
8 17 (15)
9 22 (19)
10 2 (2)
Missing 30 (26)

First-line treatment, n (%)
ADTh 77 (68)
ADTþRT 11 (10)
RT 7 (6)
RP 13 (11)
Neoadjuvant ADT- RP 0 (0)
Other 6 (5)

Subsequent treatment, n (%)
No subsequent treatment 52 (46)
ADT 56 (49)
RT 1 (1)
ADTþRT 5 (4)

Recurrence, n (%)
Biochemical 82 (72)
Local 14 (12)
Distant 18 (16)

Metastasis, n (%)
No 15 (13)
Yes 99 (87)

Metastasis site, n (%)
None 17 (15)
Lymph node 3 (3)
Bone 43 (38)
Visceral 15 (13)
Lymph node and bone 8 (7)
Bone and visceral 21 (18)
Lymph node, bone, and viscerali 7 (6)

CRPC treatment, n (%)
No ADT 77 (68)
ADT one line 9 (8)
ADT 2 lines 8 (7)
Missing 20 (18)

Vital status, n (%)
Alive 15 (13)
PCa death 87 (76)
Other cause death 8 (7)
Missing 4 (3)

(Continued on the following page)
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(C) TMA3 (CRPC met heterogeneity)

Number of patients 81
Age at diagnosis, median (IQR) 64 (60–73)j

Year of diagnosis, median (IQR) 1997 (1992–2002)j

Follow-up time months, median (IQR) 79 (39–135)j

Race, n (%)
White 57 (70)
Other 7 (9)
Missing 17 (21)

PSA at Dx, ng/mL, median (IQR) 12 (7.0–64.6)j

Biopsy Gleason score, n (%)
≤6d 3 (4)
7 14 (17)
8 10 (12)
9 15 (19)
10 2 (2)
Missing 37 (46)

Primary treatment, n (%)
None 6 (7)
RP 15 (19)
RT 1 (1)
ADT 38 (47)
Other 6 (7)
Missing 15 (19)

Metastatic treatments, n (%)
None 7 (10)
1 10 (12)
2 5 (6)
3 6 (7)
4 10 (12)
≥5 28 (35)
Missing 15 (19)

Metastatic treatment type, n (%)e

ADT 59 (73)
RT 25 (31)
Ketaconazole 28 (35)
Taxotere 37 (46)
Taxol 17 (21)
Carboplatin 17 (21)
Estramustine (Emcyt) 10 (12)
Mitoxantrone 16 (20)
Cytoxanþ5FU 1 (1)
Abiraterone 2 (2)
Enzalutamide 1 (1)
Bisphosphonate 45 (56)
Missing 15 (19)

CRPC, n (%)
No 7 (9)
Yes 59 (73)
Missing 15 (19)

Months from Dx to CRPC, median (IQR) 54 (21–91)j

Abbreviations: ADT, androgen deprivation therapy; EPE, extraprostatic extension; LNI, lymph node involvement; n/a, not applicable; OC, organ confined; PCa,
prostate cancer; RP, radical prostatectomy; SVI, seminal vesicle involvement; RT, radiation.
aBased on 78 “1a” patients, 158 “1b” patients.
bBased on 191 “1b” patients.
cBased on 101 “1a” patients, 192 “1b” patients.
dBased on initial pathology report.
eCategories are not mutually exclusive, so total is more than 100%.
fBased on 90 patients with PSA at diagnosis data, 97 with pre-ADT PSA data, and 112 with post-ADT PSA data.
gThe pre-ADT Gleason score was based on prostatectomy Gleason score unless only biopsy Gleason score was available. One patient for TMA2 has the variable
“preadt_gs” ¼ missing, but also had the variable “rp_gs” ¼ 7, so this patient was included as Gleason 7, not missing.
hThis included 26 patients with primary orchiectomy and 4 patients with adjuvant orchiectomy.
iThese patients were coded “4,5”which had been assigned as a separate category, so BT created a category that combined category 4 (lymph node and bone) and
category 5 (visceral and bone).
jAge at diagnosis and year of diagnosis both based on 66 patients; follow-up time based on 48 patients; PSA at diagnosis based on 42 patients; months from Dx to
CRPC based on 47 patients.

Table 2. Demographic and clinical variables of the Unique Tissue Microarray series. (Cont'd)
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PTEN and ERG, if there was a complete absence of staining in tumor
cells and surrounding stromal cells, then that given TMA spot was
considered inadequate for scoring and was not included. PTEN
staining was considered ambiguous and was not scored when negative
staining in the tumor was associated with only very weak positive, or
negative staining in surrounding stromal cells. Similar methods for
PTEN staining and scoring have been published previously (20, 21).
TMA data were recorded at each site by the study pathologist for each
marker by using a google sheet with pull-down menus for diagnoses
and scoring. For each test-TMA stained slide, the data was then
consolidated into a larger excel spreadsheet for initial data tabulation
in SAS and separately in STATA 15.

Statistical analyses
In this studywe performed IHC staining for six different biomarkers

in the Test TMAs, primarily for quality control and proof of concept
purposes. For each Test TMA, we obtained descriptive summary
statistics of the proportion of cases staining negatively, and positively
(homogeneous and heterogeneous) for well characterized biomarkers.
In addition, for all three Test TMAs we compared the percentage of
patients with PTEN loss between those with ERG positive versus ERG
negative tumors. All statistical analyses were carried out using SAS v9.4
(SAS Institute).

Although the current report focuses primarily on the Test TMAs,
the full TMAs are powered to detect differences in biomarker propor-

tions of 15 to 20 percentage points. Power calculations were performed
with PASS v. 21 (NCSS Software, Inc.).

Data availability statement
The data generated in this study are available upon request from the

corresponding author.

Results
Brief descriptions of TMAs and demographics

The main objective of the GAP1 Unique TMAs was to create a
TMA-based resource to address three outstanding questions. The
purpose of each TMAs and their intent of use as well as the details
regarding the inclusion and exclusion criteria are presented
in Table 1A. The TMA composition including number of TMA
blocks, specimens, tissue type specification, and tissue core numbers
are described in Table 1B. Demographic and clinico-pathologic data
for each TMA series are presented in Table 2.

Landmark PC markers
In this study, as proof of concept, we used the Test TMAs that will be

provided, as a first assay control, to all researchers with approved TMA
requests. These TMAs consist of a subset of cases included in the full
TMAs. Test TMAs of each series were stained at a single institution for
six IHC-based biomarkers. These markers were chosen because they

Figure 1.

Representative low-power view of staining of TMA cores from Test TMA1 (Primary Matched LN). Each row shows staining from a single adjacent TMA core chosen
from either a primary tumor or lymph node metastatic site from the indicated institutions.
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are either selectively expressed in prostate cancer compared with most
other cancer types (e.g., PSA, NKX3.1, PSMA, ERG, and AR), are
known to be associated with disease progression (e.g., PTEN), or are a
prostate cancer drug target (AR; refs. 22–24). Furthermore, well-
validated assays exist that can be performed using automated IHC
staining, which are generally robust when considering variables rel-
evant to this study such as wide variability in tissue block age, tissue
fixation extent, tissue handling, processing, and storage (e.g., for
PTEN, see ref. 21). Figure 1 shows an example of IHC and H&E
staining for each of the six IHC markers across Test TMA1 (Primary
Matched LN). Representative images from Test TMAs 2 and 3 are
shown in Fig. 2A and B. All xenograft tissues stained as expected for
each marker (Supplementary Table S2), providing excellent quality
assurance for the IHC staining. For example, LNCaP and CWR22rv1
were positive for AR, NKX3.1, and PSMA and PC-3 and DU145 were
negative for these markers. All xenografts were negative for ERG,

LNCa and PC-3 were negative for PTEN, and DU145 and 22Rv1 were
positive for PTEN.

Table 3 shows the results for the fraction of TMA spots that were
scored in each category as negative, positive-heterogeneous, positive-
homogeneous (for ERG, AR, PSA, NKX3.1, and PSMA), or, for PTEN
as positive, loss-heterogeneous or loss-homogeneous. For Test TMA1
(Primary Matched LN), using the primary tumors and metastatic
lymph nodes only (e.g., without the xenografts included), as expected
most tumors were positive for AR, PSA, and NKX3.1 and PSMA
(Table 3). Also, as seen in a number of prior studies, primary
tumors or lymph node metastases that were ERG-positive more
commonly had PTEN loss (65.1% of cases with any ERG-positive
staining had any PTEN loss) than such tumors that were ERG-
negative cases (42.1% of cases with any ERG negative staining had
any PTEN loss; Table 4, P ¼ 0.037).

Table 3 also shows the staining and scoring results for Test TMA2
(Pre vs. Post ADT), which consisted of tissue samples from RP, TURP,
as well as the control tissues and xenografts. Excluding the xeno-
grafts, most cases of carcinomas stained adequately, and most were
positive for the four prostate-enriched biomarkers (AR, PSA,
NKX3.1, and PSMA). ERG was positive in at least a fraction of
tumor cells in 42% of cases and PTEN was lost homogeneously in
47% of cases and lost heterogeneously in one additional case. PTEN
loss was again more common in ERG-positive cases (55% of cases
with any ERG-positive staining had any PTEN loss vs. 44.8% of
ERG-negative cases had any PTEN loss), although this was not
statistically significant (P ¼ 0.48).

Test TMA3 (CRPCMetHeterogeneity) consists ofmetastatic tumor
tissues from autopsies from three institutions as well as a small number
of primary prostate carcinomas from one of the sites and the control
xenograft tissues. Focusing on the metastatic autopsy tumor spots, the
majority (84%)had at least somepositive staining for PSMA (84%),AR
(84%), and PSA (68%). NKX3.1 was positive in 48.3% of metastatic
TMA cores. This relatively low fraction of cases staining positively
using the NKX3.1 antibody may relate to either less frequent presence
of NKX3.1 protein in these very late stage disease tissues, or, poor
preservation of its protein target as a result of prolonged warm
ischemic time. Deciphering which of these alternatives may be correct
is difficult and represents an inherent limitation of using autopsy tissue
for some biomarkers (see Discussion). ERG was positive in 28% and
PTEN was lost in 90.5% of metastatic cores in test TMA3 (CRPC Met
Heterogeneity). Themajority ofmetastatic TMA cores with PTEN loss
showed homogeneous loss (86%). This rate of PTEN loss is remarkably
high and it will be interesting to determine if this rate of loss holds in
the full GAP1 TMAs when PTEN is evaluated in those. Unlike in test
TMAs 1 and 2, the fraction of ERG-positive cases with PTEN loss was
lower than in ERG-negative cases in Test TMA3 (CRPC Met Hetero-
geneity; P < 0.0001).

Resource available for PC community: process
The process to access the UTMA resource is outlined in Supple-

mentary Fig. S1. As part of a collaboration, the biomarker proposal
form will be located on the Prostate Cancer Biorepository Network
(PCBN; ref. 25) website (www.prostatebiorepository.org). Because the
ultimate objective of the UTMA GAP1 program is to identify bio-
markers and combinations thereof that would be helpful for clinicians
to refine patient management, end users are required to agree to return
their raw results (scoring results and protocols) back to the GAP1
coordinating center either after publication, or after 6 months from
scoring completion, whichever is sooner.

Figure 2.

Representative images of histologic stainings from Test TMA2 (Pre vs. Post
ADT) and TMA3 (CRPC Met Heterogeneity). Low-power images from (A)
Test TMA2 (Pre vs. Post ADT) and (B) Test TMA 3 (CRPC Met Heterogeneity).
Each row shows staining from a single adjacent TMA core from the indicated
institutions.
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Discussion
Tissue microarrays represent an efficient format to profile biomar-

kers from many different tumors at the same time. However, most
studies use either a small number of samples or only include cases from
a single institution. With the vision of building a unique resource for

prostate cancer researchers, Movember brought together 19 principal
investigators from 13 institutions based in different continents.
Through the development of specific guidelines, model documents
for TMA design, and clinical data collection using an harmonized
dictionary, we successfully created a unified resource representing
different disease states of prostate cancer.

Table 3. Staining results for Test TMAs 1, 2, and 3.

Test TMA1
(primary matched LN)

Test TMA2
(pre vs. post ADT)

Test TMA3a

(CRPC met heterogeneity)
Tissue type Tissue type Tissue type

Biomarker Primary LN Met Xenograft RP/TURP Xenograft Primary Metastasis Xenograft

PSMA staining, n (%)
Negative 0 (0) 1 (3.1) 11 (50) 2 (4) 7 (50.0) 1 (12.5) 24 (16) 5 (41.7)
Positive heterogeneous 19 (27.9) 4 (12.5) 4 (18.1) 13 (26.0 2 (14.3) 3 (37.5) 24 (16) 2 (16.7)
Positive homogeneous 49 (72.1) 27 (84.4) 7 (31.8) 35 (70) 5 (40.0) 4 (50) 102 (68) 5 (41.7)
Total 68 32 22 50 14 8 150 12

PTEN staining, n (%)
Positive 35 (54.2) 13 (34.6) 8(40) 26 (48.2) 8 (57.1) 0 (0) 14 (9.3) 5 (35.7)
Loss heterogeneous 2 (2.8) 2 (7.7) 1 (5) 1 (1.9) 1 (7.1) 2 (25) 7 (4.7) 2 (14.4)
Loss homogeneous 31 (43) 15 (57.7) 11(55) 24 (44.4) 5 (35.7) 6 (75) 127 (84.6) 7 (50)
Cannot determineb 0 (0) 0 (0) 0 (0) 3 (5.6) 0 (0) 0 (0) 2 (1.3) 0 (0)
Total 68 30 20 54 14 8 150 14

ERG staining, n (%)
Negative 39 (54.9) 22 (68.9) 21 (95.2) 29 (54.7) 13 (100.0) 7 (87.5) 105 (70.0) 12 (85.7)
Positive heterogeneous 7 (9.9) 5 (15.6) 0 (0) 9 (17.0) 0 (0) 1 (12.5) 21 (13.9) 2 (14.3)
Positive homogeneous 25 (35.2) 5 (0) 0 (0) 12 (22.6) 1 (7.1) 0 (0) 19 (12.6) 0 (0)
Cannot determineb 0 (0) 0 (0) 0 (0) 3 (5.7) 0 (0) 0 (0) 6 (4) 0 (0)
Total 71 32 21 53 14 8 151 14

AR staining, n (%)
Negative 0 (0) 1 (3.1) 10 (47.6) 0 (0) 6 (42.9) 5 (62.5) 24 (16) 9 (64.3)
Positive heterogeneous 13 (18.3) 6 (18.8) 3 (14.3) 1 (1.9) 2 (14.3) 2 (25) 19 (12.7) 0 (0)
Positive homogeneous 58 (81.7) 25 (78.1) 8 (38.1) 51 (98.1) 6 (42.9) 1 (12.5) 107 (71.3) 5 (35.7)
Total 71 32 21 52 14 8 150 14

NKX3.1 staining, n (%)
Negative 2 (2.8) 4 (12.5) 10 (47.6) 3 (5.6) 6 (46.2) 7 (87.5) 75 (51.7.0) 8 (61.5)
Positive heterogeneous 21 (29.6) 5 (15.6) 7 (33.3) 16 (29.6) 6 (46.2) 1 (12.5) 35 (24.1) 2 (15.3)
Positive homogeneous 48 (67.6) 23 (71.9) 4 (19.1) 35 (64.8) 1 (7.7) 0 (0) 35 (24.1) 3 (23.1)
Total 71 32 21 54 13 8 145 13

PSA staining, n (%)
Negative 1 (1.3) 2 (6.3) 8 (15.1) 2 (25) 48 (32.4)
Positive heterogeneous 30 (41.7) 5 (15.6) NAc 20 (37.7) NAc 2 (25) 42 (28.4) NAc

Positive homogeneous 41 (56.9) 25 (78.1) 23 (43.4) 4 (50) 58 (39.1)
Total 72 32 51 8 148

aThere are six metastatic tissues each from 20 patients from UW, four each from 5 patients from JHU, and two to four metastatic sites from each of 4 patients from
OUH, and two samples of matched prostates from each of these patients from OUH.
bIf therewas a complete absence of staining in tumor cells and surrounding stromal cells, then that givenTMAspotwas considered inadequate for scoring andwasnot
included.
cThe anti-mouse antibody used for PSA is unable to be assessed on mouse xenografts.

Table 4. Correlation between PTEN loss and ERG status.

ERG status

Biomarker Negative
Positive
heterogeneous

Positive
homogeneous P valuea

PTEN status, n (%)
Loss heterogeneous 4 (7.0) 0 (0.0) 0 (0) 0.037
Loss homogeneous 20 (35.0) 9 (75.0) 17 (59.0) —

Positive homogeneous 33 (58.0) 3 (25.0) 12 (41.0) —

Total 57 12 29 —

aChi-squared test.
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Demographics of the TMA series showed that the cohorts are
representative of patients with prostate cancer in terms of age at
diagnosis. The majority of the patients in the cohort are white.
Therefore, the generalizability of these TMA resources are limited
somewhat in terms of race. The serum PSA level at diagnosis was
generally lower than expected for TMA1 (PrimaryMatched LN), given
that only 10% of patients within the PSA range of TMA1 (Primary
MatchedLN)have LNIbased on commonly usedpredictive tables (26).
However, this may be partially explained by half of the patients having
only one or two positive LN. The other clinico-pathologic variables
such as Gleason score, staging, and pathologic findings aremore in line
withwhat would be expected for this cohort. TMA2 (Pre vs. Post ADT)
and TMA3 (CRPC Met Heterogeneity) cohorts are composed
of patients diagnosed with PC more than two decades ago and
clinico-pathologic data are representative of the type of disease
included in this series. In addition, treatment provided reflects the
reality of limited therapeutic options for patients with advanced/
CRPC during this period.

Although these results are preliminary because of small sample sizes
in the test TMAs, biomarker expression patterns and frequencies were
mostly as expected based on prior work. Although some of the findings
were somewhat unexpected, such as the very high rate of PTEN loss in
the autopsy samples (86%), current studies by our group are ongoing in
which we are examining these markers in the full TMAs and details
regarding themwill be published separately. In concurrent preliminary
analyses of PTEN and ERG, we found that any PTEN loss was more
common in cases with ERG expression in Test TMAs 1 and 2 as has
been seen previously (8), but present at an even rate between ERG-
positive and ERG-negative specimens in the CRPC autopsy samples in
Test TMA 3. Taken together, these results indicate that the staining for
the biomarkers employed were robust in various types of tissues
processed separately at multiple institutions and that the staining
results are consistent with previous reports.

Some limitations of our study should be noted. Because of the
relative paucity of well-annotated samples representing the clinical
attributes chosen for these TMAs, the samples essentially represent
convenience samples. We recognize this may introduce bias. For our
planned follow-up study with the full TMAs (as opposed to the test
TMAs reported here), we will compare clinical characteristics of
patients at each institution for whom samples were used in the TMAs
to those of patients for whom samples were unavailable. This will allow
us to identify and potentially correct for any systematic differences in
the TMA patients, or conduct sensitivity analyses to determine the
impact of any differences. In addition, the resource is composed
entirely of samples punched from older FFPE specimens, including
various tissue types such as biopsies, TURP, prostatectomy, and
metastatic lesions in which tissue handling varied across institutions
in terms of time of fixation and protocols.We recognize that this could
introduce variability into biomarker assessment. In addition, given the
variation in block age this could be a limitation for RNA in situ
hybridization (RNA-ISH) because it is known that RNA-ISH signals
decrease over time (18) and hence this, as withmany other TMAs,may
not be highly suitable for ISH studies for RNA in general. Furthermore,
a common concern of the use of TMAs is whether a small sampled area
can accurately capture heterogeneity in the wider specimen. Although
this issue is always a factor in all biomarker studies of tissues, including
using biopsy specimens, this was accounted for to a certain extent in
TMA design by selecting multiple TMA cores per specimen. Further-
more, a number of prior studies have addressed this issue and have
generally reported that TMAs are often quite robust to tissue hetero-

geneity, especially when multiple replicates are included (27–29). An
additional limitation is that complete pathology or follow-up clinical
data were not available for all patients. Finally, rapid autopsy tissue has
limitations. One limitation is that the time between death and tissue
fixation is variable and can be from several hours up to 24 hours in this
study. Although some biomarkers may be retained fully with such
post-mortem intervals in which vascular tissues were studied (30), it
cannot be known which others may not be robustly retained without
experimental data on that given biomarker. In addition, bone lesions at
autopsy underwent decalcification, generally in formic acid. Although
prior studies by one of our groups have not identified negative effects of
decalcification on expression of the analytes in prior studies using
similar samples (31–35), analytes that we have not studied, such as
phosphoproteins, could potentially be altered. Another limitation of
these specimens is that theywere collected frompatientswithCRPCno
later than 2013, before late generation androgen deprivation therapy
was widely used. Consequently, only two of the 50 patients received
modern anti-androgens (abiraterone or enzalutamide) for a significant
time during their treatment.

In summary, we have developed a set of TMAs from a multi-
institutional initiative supported by the Movember Foundation.
This effort focused on rare but clinically important samples made
possible through an international collaboration. It required leverag-
ing existing institutional resources and multidisciplinary prostate
cancer expertise across multiple continents to provide a unique
resource that will serve the wider prostate cancer research com-
munity to support discovery based research and enhance the overall
impact of biomarker validation studies.
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