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ABSTRACT 

      An electronic circuit is presented that computes the visual disparity between to input images. The 
output of the circuit, combined with the specification of the sensors/stereo camera that provides the 
images, can be used to find the distance between the sensors and the object photographed. 

A neuromorphic circuit has been developed to solve the task at hand. The fresh approach of this 
circuit is to employ temporal coding. The first processing step is therefore to project the analog inputs 
into the time domain, i.e. into voltage spikes, the latency of which encodes the strength of the input. 
Thus the further comparison of pixel intensity can be done by asynchronous logic. 

In theory the chip can compute the right visual disparity given two input images/stimuli.  The actual 
aVLSI implementation has proven to have some limitations, but the chip can still compute the right 
visual disparity for most static images; after some initial fine-tuning of the biases. (The limitations are due 
to process variations in the production of the VLSI chip. Ways to reduce the effects of process variation 
are proposed.) 

The circuit was implemented as a prototype on an AMS mµ6.0  VLSI chip. The circuit takes 128 
analog inputs, representing 2 images of 64 pixels. They are delivered as frequency encoded spike trains by 
a 7-bit AER (address event representation) bus. The output consists of 65 separate spike trains, each 
representing a disparity, multiplexed in a similar 7-bit AER bus. The frequency of spikes on each 
individual train represents the probability that the train corresponds to the right disparity.  
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1 INTRODUCTION 

Extensive work has been done in neuroscience the last decades. Great advances have been made in 
the understanding of the nervous system of both animals and humans. Neuromorphic electronic systems 
try to benefit from this knowledge. 

In short terms, neuromorphic electronic systems draw their inspiration from some biological solution 
to a problem. These neuromorphic systems are predominantly analogue, as opposed to almost all other 
modern electronic information-processing systems which are digital. As the main buzzword of 
electronics since the 70’s has been “digital”, it seems like neuromorphic engineering1 is a step back in 
technology. The shear amount of digital circuits being produced keeps the prices low; and they get faster 
and more energy-efficient every day. The resolution, given in bits, steadily rises, making the circuits more 
and more accurate. So, why take the bother to develop analogue circuits?  

Even though digital technology seems to evolve towards faster and faster circuits with virtually no limit, 
it still doesn’t even come close to the efficiency and computation possibilities of the nervous system of 
even the simplest insect (Mead 1990: 1629). The dream of “artificial intelligence” that can rival the 
human brain actually seems increasingly far-fetched as we learn the possibilities and limitations of digital 
technology. Even the most efficient digital technology we can imagine today will be a factor 10 millions 
less efficient than the human brain (Mead 1990: 1629-1630). (It would require about 10 MW to process 
information at the same rate as a single human brain, which uses 1-2 W.) So, what to do? Well, we should 
not give up quite yet. The human brain has something to teach us that much are sure. 

1.1  AREAS OF USE FOR NEUROMORPHIC ENGINEERING 

Since the signals in the neuromorphic electronic systems are represented by relative values rather than 
absolute, they may not be suited for tasks like balancing check accounts. But, an ordinary desktop 
computer already brilliantly handles a task like that.  The perfect choices for neuromorphic treatment are 
systems that have ill-defined/fuzzy input(s) that needs massive processing, often in parallel, to produce 
an approximate output. This is the kind of tasks the human brain most often handles, like for instance 
computing visual disparity.  

“ The disparity problem appears in stereo-vision: Our two eyes see the same scene from a slightly different 
angle. In order to perceive depth, we have to match objects in the picture from the left eye with objects in the 
picture from the right eye. We can then know, how far that object is away from us, since we know the 
difference in angle (disparity) at which it is seen from the left and right eye.” (Häfliger 2000) 

                                                      
1 “Neuromorphic engineering” is the application of analogue CMOS VLSI technology to the fabrication of analogue electronic circuits that 
emulate real neural systems. 
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1.2 COMPUTATIONAL PRIMITIVES  

 Some aspects of the computations in the brain can be modeled with mathematical primitives like 
addition, subtraction, exponentials and integration. In digital systems these primitives are built of several 
AND, OR and NOT-gates; and the resolution of computation is limited to the number of bits in each 
value. The more bits, the more gates; and the complexity and energy dissipation grow steadily. In 
analogue electronics, Kirchoff’s law of current implements addition and subtraction. The capacitance of 
a node integrates the current into it with respect to time. By using the subtreshold region of operation of 
the transistor, we get yet another computational primitive; the exponential relation between the input 
potential/voltage (Vgs) and the output current (Ids). (Exponentials are not trivial to compute in digital 
technology). By using the transistor in the subtreshold region we also lower it’s energy dissipation to 
within the shooting range of a single neuron (Mead 1990: 1630). The long-term memory of the brain can 
be modeled by the charge on a polysilicon node, which will hold the charge for years. (This is also the 
technology used in today’s digital EPROM’s.)  

These primitives have several properties in common with the building blocks of the nervous system. 
Even though the nervous system to a great extent uses chemicals to control the conductance and gain in 
the neuron, it still is an active device that in some aspects can be modeled by the transistor. A single 
transistor operated in the subtreshold region doesn’t use much more energy than a single neuron (Mead 
1990: 1630). Since the nervous system also uses analogue electric signals, Kirchoff’s law of current is 
automatically applicable.        

A model of the brain would consist of a description of not only computational primitives, but also 
the representation of information and organizing principles. We have shown that the computational 
primitives can be found in analogue electronics. 

Carver Mead, who is a well-know scientist within the area of neuromorphic engineering, once said 
that neural computation is an emergent property of a system, which is only vaguely evident in any single 
component element (Mead 1989: 5). We actually do know a bit about the inner construction of a neuron, 
but the true genius of the brain seems to lie in the interconnection of these neurons, the so-called 
principles of organization. 

1.3 ORGANIZING PRINCIPLES 

I have not yet mentioned the actual implementation medium of the neuromorphic electronic systems, 
but that’s a neat feature as well: You can use the same VLSI processes as is used for digital circuits, the 
most popular being CMOS. The building blocks of analogue VLSI (aVLSI) are just the same as the ones 
for digital VLSI; they are just used in a different way. So even though neuromorphic engineering has not 
reached commercial viability in but a few areas up to now, we can still build our test-chips for a modest 
sum of money. 

A problem with VLSI though is the mismatch of components, that no two transistors are alike. Since 
the individual transistors are so small, there is no way the manufacturer can manage to build them exactly 
like the specification tells them to. In ordinary VLSI, the digital metaphor takes care of the problem, 
because you only have to make sure that the 1s stay close to Vdd

2 and the 0s stay close to Gnd
3. The 

                                                      
2 Supply voltage.  
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absolute value of the voltage is not an issue. In analogue circuits we have to find another solution to the 
problem.  

If we study biological “wetware”, we can see that the problem actually is much more acute there 
(Mead 1989:6). Biological systems use adaptive mechanisms to compensate for their lack of precision and 
their mismatched building blocks. This mechanism also adapts to the dynamics of the building blocks, 
for like the rest of the body the nervous system will of course go through major changes. Even though 
new cells develop and old ones die, the system as a whole has to work in much the same way all the time; 
and therefore the adaptation to the dynamics of the individual building blocks is absolutely necessary. 
There is also redundancy in the nervous system, so that the system can operate sufficiently even though 
several neurons stop working.  

We would very much like our neuromorphic systems to be as robust and indifferent to absolute 
device parameters as the nervous system, so redundancy and adaptiveness seems to be the most 
important organizing principles to implement. Combining redundancy and averaging is one way to 
implement them both: By having more transistors than is strictly necessary to make the system work, we 
can take the average over them and so level out the differences. Like the biological adaptive system, this 
neuromorphic aVLSI counterpart will tolerate faulty active devices. In comparison, a digital system will 
often stop working as soon as one single transistor breaks down. 

Of course there are many more organizing principles inherent in the nervous system; and finding out 
which, why and how is one of the biggest challenges of neuromorphic engineering. 

1.4 REPRESENTATION OF INFORMATION 

 “Conventional neural networks use large arrays of processing elements, roughly equivalent to neurons; 
each characterized by an activity level which is often a continuous variable in the range 0 – 1 “ (Thorpe 
et al. 2000: 405). Real neurons instead send a series of all-or-none pulses or spikes. (The signal is discrete 
in value, but continuous in time.) The neurons integrate their input over time and generate an output 
pulse/spike when it reaches a certain threshold. This is the “representation of information” component 
used by our model of the nervous system.  

The interconnected neurons communicate by sending such spikes. This a common denominator for 
most neuromorphic engineering approaches. The most widely accepted form of coding using such spikes 
is called “rate coding”. Varying the average firing frequency of a neuron encodes the information in 
systems using rate coding. To decode the signal the receiving neuron integrates the signal over time to 
see how many spikes were fired. 

There have always been alternative theories for neural coding, most notably one called temporal 
coding. Already in 1952 did MacKay & McCulloch show that the pulse trains produced by spiking 
neurons are much more efficient transmitters of information encoded in relative timings of events rather 
than numbers of events (Cariani 2001: 737). In temporal coding the information is conveyed by the time 
of firing of different neurons, not the frequency.  

                                                      
3 Ground. 

 



4 

Empirical studies have shown that a neuron on average only fires a spike every 10ms (Thorpe et al. 
2000: 405). If we wanted to code the intensity of a pixel in ten greyscale levels using rate coding it would 
take up to 100ms to send all the spikes from one neuron. By using 10 neurons in parallel we could do it 
in 10ms, but the complexity of the circuit would rise proportionally. Recent research has shown that the 
speed of image processing achieved in the primate visual system is much higher than can be achieved 
with conventional rate coding (Thorpe et al. 2000: 405). 

One solution to keeping the number of neurons low and achieve a high speed is called “1atency 
coding”. The time of firing of a simple integrate-and-fire neuron will be proportional to the intensity of 
the stimulus/input signal. Instead of coding the information as the average firing frequency, as in rate 
coding, it is encoded as the time of firing of the first spike. (In this way the intensity level is conveyed by 
one single spike, or the absence of it.) Our earlier example of coding intensity in a greyscale level can 
now be done with the continuous time scale of firing as opposed to the integration of individual spikes.  

Let’s say we want to use latency coding on an artificial retina. We connect each pixel to an integrate-
and-fire neuron and let the pixel be sensitive to intensity of light. (These “neurons” can be made from 
the computational primitives of neuromorphic engineering mentioned earlier in this text). The first 
neuron to fire corresponds to the pixel with the highest intensity, the second neuron to the pixel with the 
second highest intensity and so on. Pixels with the same intensity will fire at the same time. There are 
several important advantages to this design: 

• The circuit is fast because all happens in parallel and every neuron fires as fast as its threshold is 
reached. 

• There is only one neuron per pixel, so the complexity and energy-usage of the circuit is low. 

• Comparing intensity levels in different pixels is very easy. One just has to compare the relative 
timing of firing from individual neurons. Equality can be checked by a simple AND-gate, since 
two pixels with the same intensity will fire at the same time and therefore open the AND-gate. 
Thus the comparison of pixel intensity can be done by asynchronous logic. (This is important for 
my solution to the visual disparity problem, as I will return to later.) 

In 1989 Delbrück and Mahowald built an aVLSI chip which also sought to solve the visual disparity 
problem. The two solutions are different in almost every aspect of the practical implementation, and 
attack a slightly different problem. A comparison would require a complete description of the earlier 
approach. Thus I will concentrate on my own solution here and recommend the interested reader to 
consult the original paper (Delbrück and Mahowald 1989) on the other.  

1.5 SUMMARY 

Devoted engineers of digital systems may claim that neuromorphic engineering is a waste of time. The 
digital circuits are getting faster, smaller, cheaper and more energy-efficient all the time. Surely a DSP-
circuit must be able to solve the visual disparity problem? Well yes, but as I have shown; digital 
technology has its drawbacks like high energy-dissipation, high complexity and little robustness. As 
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mentioned earlier it is not nearly close to rivaling the performance of the nervous system of even the 
simplest animals; and working neuromorphic electronic circuits have been produced that are 100 times 
more efficient in their use of silicon, and 10000 times more energy-efficient than their digital 
counterparts (Mead 1990: 1636).  

The same engineers may claim that at least everything can be simulated with digital technology. Well, 
you might be able to simulate it; but the speed will not come close to the actual aVLSI chip. (See chapter 
6). Since we hope to build neuromorphic systems that are many times more efficient than digital chips 
built to solve the same specific problems, simulating these aVLSI chips on generic digital chips will not 
come close to the real implementation. We will have to design, manufacture and measure actual aVLSI 
chips to really see what can be accomplished with neuromorphic engineering.  

 Clearly, neuromorphic engineering may lead to efficient solutions to a number of problems; and we 
have only started to scratch the surface. The modern desktop computer can solve all the standard 
computational problems we throw at it; but as soon as you want to rival some aspect of the human 
nervous system, it falls short. To solve problems the human brain is good at, such as computing visual 
disparity, neuromorphic engineering with temporal coding seems to be a better technology.
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2 VISUAL DISPARITY 

When we view a scene there are several monocular cues that allow relative distance and 
depth to be judged. These include relative size and interposition (Hoey 1998). But it is the 
binocular cue of visual disparity that allows acute depth discrimination.  

As a result of the horizontal displacement of our two eyes they always have slightly 
different views of a scene. The two images in Figure 1 exemplify this difference. To be able 
to make a three-dimensional representation of the scene in our mind, the brain tries to pair 
similar objects in the images and measure their relative disparity. These are called conjugate 
pairs. Since the offset between the left and right camera is only horizontal, the only possible 
disparity is horizontal, as shown in Figure 2. Since our eyes have a strictly horizontal 
displacement, these pairs can only lie along what is called epipolar lines. 

 

Figure 1 The images of the left and right retinas as a result of visual disparity in stereoscopic 
vision of a scene. (Lozman et al.1997). (A monocular cue in this figure is the occlusion of one 
of the cubes in the right image, leading us to believe that the occluded cube is further away. This 
is called interposition.) 

 

Figure 2 Epipolar lines (Lozman et al. 1997)  

The circuit described later assumes input from two one-dimensional sensors, meaning 
two cameras with pixels along only one horizontal line. The epipolar line restriction is 
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therefore automatically met since we only compare pixels lying along an epipolar line. 

Figure 3 shows all the possible conjugate pairs when one considers 4 retinal projections 
of objects in each eye. If we assume that there is no shift between the two images, all the 
right conjugate pairs will lie along the horopter. 4 

 

Figure 3 Ambiguity in the retinal projections. It is assumed that the targets (closed squares) 
correspond to “matchable” descriptive elements obtained from the left and right image. In my 
implementation these elements are pixels with a continuous greyscale level. Therefore the squares 
in this figure are all pixels with the same low level of light incident upon them. The lines going 
through the lens connecting each target/pixel with the retina are lines of sight. The intersections 
of the lines of sight indicate possible matches between two different pixels. The dotted lines 
indicate possible disparity planes. In this figure, each of the four targets in one eye’s view could 
match each of the four in the other eye’s view. (Match = closed circle.) If we assume that the 
motive in the images are a plane perpendicular to the angle of sight, only one disparity can be 
right. (Of the 16 possible matches only 4 can be right, the other 12 wrong.) If there is no shift 
between the two images, the horopter is the right disparity plane. (Redrawn from Marr and 
Poggio 1976: 285).  

The example in figure 4 with four conjugate pairs has only one possibility of visual 
disparity, since all these pairs must lie along the same plane.  

Using pixels as the objects to compare from each image does not fulfill the uniqueness 
constraint (Marr and Poggio 1976: 284), which states that each item from each image may be 
assigned at most one disparity level. This means that one has to match objects that are 
unique in each image to find a conjugate pair. A practical implementation would for instance 
use edge detection to single out comparable objects in the two images. 
                                                      
4 The horopter is the locus of points in space that stimulate corresponding retinal points. One could also say that it is the 
location of objects in space that give rise to zero retinal disparity. 
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 In my implementation I have assumed that the scene viewed by the two cameras is a 
plane perpendicular to the angle of sight5. This leads to a practical solution to the problem of 
not fulfilling the uniqueness constraint: In the image of the plane, all the pixels must have 
the same visual disparity. In figure 4 that means that all the closed circles have to lie along one 
dotted line. Since there is only one possible match for each of the four pixels in figure 4, they 
all lie along one of these lines.  

 

Figure 4 As opposed to the situation in figure 3; here we have no ambiguity in the retinal 
projections. In this figure there is only 4 conjugate pairs because there are 4 different greyscale 
levels in each image. Thus each pixel in one image only matches one of the pixels in the other 
image. (Match = closed circle. No match = open circle.)  

Figure 5 shows an example of having several disparities for some of the objects/pixels. 
But since the disparity of all pixels should be the same one can assume that the disparity 
most frequently encountered is the right one.  

 

                                                      
5 I also assume that the lighting source is a point source at infinity, the surface is lambertian and that the amount of figural 
dissimilarity or distortion between the views is small. (Lane and Thacker 1996)    
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Figure 5 Lack of uniqueness in the pixels compared gives false matches. Since the images are not 
shifted in relation to each other, all the right matches lie along the horopter. (Match = closed 
circle. No match = open circle).   

  

2.1 A FIRST LOOK AT A PRACTICAL IMPLEMENTATION 

My implementation’s main principle of operation can be explained by a new look at 
figure 5. A correlator with two inputs replaces each circle. Each correlator’s input is the two 
pixels given by the intersection of lines of sight. If the two pixels match, a spike is sent along 
the horizontal dotted line it is placed upon. (The horizontal dotted line represents disparity 
planes.) If they don’t match, no spike is sent. The number of spikes along each line is 
summed up and the sum of each line is compared. The line with the highest number of 
spikes represents the right visual disparity. In figure 5 this would mean that the horopter is 
chosen as the winner (, with the number 4.) In figure 6 the horopter wins again (, with the 
number 5.) In the latter figure, the wrong disparity is found.  Or actually the horopter could 
be the right answer, but so can several other disparities. The problem is that the number of 
correlators on the horopter is higher than on any other line, so it will win even though it 
might not be the right winner. This is also the case for several other input images and must 
be rectified, or else it will be very difficult for the lines with the least correlators to ever win.  
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Figure 6 An image of a pattern give rise to ambiguity. There are several possibilities for 
matching one object in the left eyes view to objects in the right eyes view.  (Match = closed 
circle. No match = open circle). There is no way of telling what the right disparity is. 

The solution is to put the same number of correlators on each line. By doing this none 
of the lines have an artificial advantage, they all have the same possibility of becoming the 
winner. Figure 7 shows this solution with the same input as in figure 6, i.e. a pattern. Clearly 
none of the possible disparities becomes the winner, their sums are the same. This reflects 
the fact that we cannot know what the right disparity is. 
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Figure 7 An image of a pattern give rise to ambiguity. There are several possibilities for 
matching one object in the left eyes view to objects in the right eyes view.  (Match = closed 
circle. No match = open circle). There is no way of telling what the right disparity is. This can 
be seen as the same number of matches on three of the horizontal lines/disparity planes. 
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3 MATERIALS AND METHODS 

The biological systems that neuromorphic engineering draws its inspiration from are all 
developed through evolution. It is this very simple, but yet incredibly powerful tool that has 
made the vast amount of biological systems so superior to the manmade imitations. 
Therefore it has been natural for me to approach the task of solving the problem of 
computing visual disparity in the same way. 

I set out to do this with the idea of harnessing the power of analogue computation and 
the idea that comparing intensity of pixels using temporal codes is less complex and more 
efficient than by rate coding. The rest has been a combination of knowledge, and trial and 
error.  

Planning a large analogue system, like the one presented in this thesis, is hard to do 
without trial and error. There are very many parameters to assess; and doing it all in one go, 
without frequent simulations, is very tough. Therefore I split the problem into small 
manageable parts, and used the following evolutionary process to solve them: 

1. Provide a mutation in the form of a new idea to solve a specific problem or 
design a particular part of the system.   

2. Do a software simulation to provide the tool for “natural selection”.  

3. Use my supervisors, my colleagues and myself as an instrument for weeding out 
the solutions that weren’t “fit”.   

First I used this method to develop the individual circuits presented in chapter 5. Then I 
used it to develop the compound circuits seen as the individual blocks of the Figure 14. 
Then I developed the total system on schematic level using the same method. Some minor 
problems led me to fine tune the individual circuits presented in chapter 5. When the total 
system on schematic level showed a satisfactory performance, as shown in chapter 6, I 
designed a matching layout. There are a number of problems inherent in the real world of 
VLSI chips, not least process variations, which is hard to simulate on computer software. So 
the ultimate test/judge would have to be real experiments on a physical chip. 

Cadence, from Cadence Design Systems, was the software that provided the whole 
package of CAD tools; from the design of schematics and analysis of these, to the layout and 
verification of this towards the schematic. The chip was to be produced by Austria Micro 
Systems in an mµ6.0 mixed-signal process, so I used their corresponding hit-kit to provide 
the right process parameters for the Cadence software.  

The final experiments on the physical chip were performed using the Matlab 
mathematical computation software package from The Mathworks INC; and a HP16500 
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Logic Analyzer. The software was run on a SUN workstation with the Solaris operating 
system, which had a network connection to the HP. 

I used the software to synthetically produce sensor stimuli for the chip. I did this partly 
because I didn’t have access to two suitable cameras that could work as the left and right 
sensor for computing visual disparity. The advantage of using synthetically produced stimuli 
was a more controlled test environment than would be the case with two cameras. Knowing 
the exact specification of the stimuli made it easy to be sure what the output of the chip due 
to the input should be.  The stimuli were in the form of a list of AER events. 

The files containing stimuli where transferred to the HP via the network connection. 
The HP had a parallel 7-bit connection to the AER on-chip receiver, plus 2 bits for standard 
acknowledge and receive signaling. It had a similar connection to the AER on-chip sender to 
store the chip output due to the some input stimuli. The output was stored in the form of a 
list of AER events similar to the stimuli file. This file was transferred to the Sun workstation 
for analysis in the Matlab software. The figures presented in chapter 8 were produced using 
this software. 
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4 IMPLEMENTATION ON FLOW CHART LEVEL 

Since the system we want to build should use spikes for the representation of 
information, lets assume that each of the pixels in the two cameras is connected to an 
integrate-and-fire-neuron. If the pixel has an output current proportional to the intensity of 
light falling upon it, the intensity will be coded in the average frequency of firing of the 
neuron.  Using this form of rate coding will require quite complicated correlators. One could 
for instance integrate the spikes on the two input channels and use the voltage on the 
capacitances to drive a transconductance amplifier. This would give a large output current 
for dissimilar pixels and none for similar pixels. 

In my implementation I use two “cameras” with 128 pixels each. This makes it possible 
to have 65 different disparity planes by using 64 correlators on each plane. This adds up to 
4160 correlators, and therefore each one of them should be quite simple to avoid making the 
circuit to complex. (By “simple” I mean having few transistors). By using temporal coding 
the correlator can be a simple AND-gate. (I will from this point on refer to the correlators as 
coincidence detectors, since a coincidence in time between to spikes corresponds to a 
correlation between the sizes of two voltages or currents.) Since the intensity of light falling 
on a pixel is encoded in the latency of firing, the coincidence detector just checks if the 
timing of the spike sent out from two pixels is the same. If the timing is the same the 
intensity of light is also the same. One also has the advantage of speed, as the coincidence 
detectors don’t have to integrate the input over time. To use this temporal coding scheme 
one has to have one-shot integrate-and-fire-neurons connected to the pixels. “One-shot” 
means that they will only fire once before being manually reset. If one were to use ordinary 
integrate-and-fire neurons the pixels with high intensity would have a higher frequency of 
firing and lead to high numbers of coincidence events dominating the summing on each 
disparity line.  

One also has to have a common time reference for all pixels when using latency coding. 
So the one-shot neurons have a manual reset driven by a clock signal.  

During the following explanation of the main principles of operation I assume a fictitious 
system with four pixels in each image as shown in fig.8.  
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Figure 8 Image of pixels with random intensities. (Match = closed circle. No match = open 
circle.)   

These images are in reality 8 channels of current fed to 8 separate input neurons. These 
neurons convert the continuous current representation of the visual sensor to a spike 
representation fed to the coincidence matrix (, see Figure 9). The latency of firing is inversely 
proportional to the size of the current.  
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Figure 9 Response of one single input neuron on the final VLSI chip (lower part) with the clock 
as source of reset (upper part). Clock frequency is 100Hz. Larger current input would make 
the spike come closer to the falling flank of the clock signal, and vice versa. (The reset is active 
high. This snapshot is taken from an oscilloscope during the final experiments on the actual 
chip).  

Figure 10 gives a simple overview of the circuit from stimuli to the coincidence matrix.  
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Figure 10 Simplified flowchart of the first three stages of the stereopsis circuit. (The left and 
right sensors are not implemented in the final VLSI chip. It uses synthetic test images provided 
through a 7-bit AER communications system (APPENDIX A: AER). The sensors are 
included here for ease of understanding). There is one separate input neuron for each pixel. 
These transform current into spikes. The spikes are then sent to a matrix of coincidence 
detectors as shown in Figure 13. This matrix implements the connections as shown in Figure 
8. 

The amount of current flowing from a coincidence detector due to an overlap in time 
between the spikes on its two inputs is not absolute. (This was a simplification done in 
chapter 2.1.) Since the coincidence detector is a simple AND-gate there will be current 
flowing as long as the two spikes are high. The total charge due to a coincidence will depend 
upon the degree of overlap in time. A simulation of different levels of coincidence, and the 
resulting current output, can be seen in Figure 11 and Figure 12.  

 



18 

 

Figure 11 Spike overlap and its effect on the total current on the corresponding disparity plane. 
Pixel 1 and pixel A are connected to the same coincidence detector on the horopter. There are 
several other coincidence events on the same disparity plane since the horopter is the right 
answer in this simulation. Therefore the current steadily rises. (We use a sinking of current, 
therefore the negative sign.) 

 

Figure 12 Lack of spike overlap and the corresponding lack of effect on the total current on the 
corresponding disparity plane. Pixel 8 and pixel D are connected to the same coincidence 
detector on disparity plane -4. This plane does not represent the right disparity, and so the 
current is quite stable throughout the period. The small peak on disparity plane -4 is noise. 
(The plot is taken from the same simulation as the one in Figure 11.). 
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We need to integrate the current on each disparity plane of the matrix to sum the 
number of coincident spikes in each period. We do this by adding a capacitance on each 
plane. (It is placed in the current mirrors of Figure 14.) 

At all times there is only one true disparity if we assume that the scene viewed by the two 
cameras is a plane perpendicular to the angle of sight. By adding a winner-take-all (WTA) 
system to the circuit we implement this constraint. The WTA will at all times suppress all the 
weakest channels, and only relay the strongest one; i.e. the one with the highest current.  

Figure 13 shows the main connection scheme of the coincidence matrix. 

 

Figure 13 Coincidence matrix. Each of the squares represents a coincidence detector with two 
inputs and one output. The matrix implements the connections shown in Figure 8. Each of the 
letter/number combinations represents an input from the corresponding neurons. So R3 is the 
output of the integrate-and-fire neuron connected to pixel number 3 in the right sensor/camera.  
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Figure 14 Simplified flowchart of the final implementation. The left and right sensors of this 
figure are added for simplicity of understanding. In reality these stimuli come from an AER 
receiver. The AER sender located after the output neurons is also omitted.   

After the WTA of Figure 14 we have simple integrate-and-fire neurons to convert the 
current output of the WTA to spikes suitable for off-chip communication through the AER 
communication standard. (The AER sender is not shown in the figure). 

 

 

 



21 

5 IMPLEMENTATION ON CIRCUIT LEVEL 

5.1 INPUT NEURON 

The one-shot integrate-and-fire neuron is built around a simple RS-latch. The latch is a 
standard design using two cross-connected NOR-gates, but unlike textbook RS-latches this 
one doesn’t have an undefined state when both R and S inputs are high. (For reference the 
truth table of this RS-latch is given in Table 1.) The simulation of the RS-latch is shown in 
Figure 15. 

Table 1 Truth table for my specific implementation of an RS-latch. The thing that sets it apart 
from textbook cases is the fact that having both R and S inputs high is not an undefined state. 
This situation will always lead to both a low Q and –Q output, as can be seen in the 
simulation of Figure 15. 

R    S Q -Q Comment

0 0 Q -Q Holds the last 
value. 

0 1 1 0 Set 

1 0 0 1 Reset 

1 1 0 0 Usually 
undefined state.

 

Figure 15 Simulation of the RS-latch. As can be seen it is stable and well defined also when 
both input R and S are high. 
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Figure 16 One-shot integrate-and-fire neuron. The neuron will integrate the current on input Iin 
and fire a spike on output Vout when a threshold is reached. It cannot fire another spike until 
it is manually reset by a high clock signal (clk). Vpulselength is a bias to control the length of 
the spike issued. By lowering the voltage the spike gets shorter. (Designed by Philipp Häfliger 
of the Microelectronic Systems Group, Dept. of Informatics, University of Oslo) 

The capacitance C1 (Figure 16) will integrate the current Iin through the T1 transistor 
while the clock (clk in Figure 16) is low. When the voltage on C1 (, the same as S in Figure 
15,) reaches 1.9V the RS-latch will start to switch. The voltage on Q rises, and it is fed back 
through capacitance C2 to pull S towards Vdd. This makes the RS-latch switch very fast; and 
Q, which is also the output (, Vout in Figure 16), goes high almost instantly (Figure 17). At 
the same time -Q goes low and this starts charging capacitance C4 through the T4 and T5 
transistors. When the voltage on input R reaches 1.9V the RS-latch will make both Q and -Q 
go low (see Figure 17.) This ends the spike on Vout, but both S and R remain high. Thus the 
neuron cannot fire again until S goes low and we have a proper reset. When the clock goes 
high the charge on C1 is drained through transistor T2. Thus the flow of input current is 
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temporarily cut off with transistor T1. Since S now goes low but R stays high the RS-latch is 
reset. This opens T3 so the charge on C4 can drain out through T3. (C3 is added to avoid 
oscillations in this stage of operation.) Now R and S is both low and the neuron is ready to 
fire again as soon as the clock goes low. So this is a one-shot integrate-and-fire neuron that 
can only fire once every clock cycle. The fact that the specific RS-latch we use has a well-
defined output when both R and S are high is a crucial fact to make this neuron work.   

Vpulselength (Figure 16) is a bias to control the length of the spike issued. A lower 
voltage will increase the current through PMOS transistors T5 and T4 when –Q is low. This 
will reduce the time it takes to charge capacitance C3 to 1.9V, thereby reducing the length of 
the spike. A shorter spike will give a smaller time window of coincidence, and this will lower 
the tolerance for pixel similarity. 

 

Figure 17 Simulation of the one-shot integrate-and-fire neuron shown in Figure 16. We feed the 
neuron with a suitable, steady current input. The input of the neuron is closed as long as the 
clock is high, but as soon as it goes low the neuron starts integrating the current on capacitance 
C1. When S, which is the voltage on the capacitance, reaches 1.9V the output Q goes high. 
This change is fed back through capacitance C2 and pulls S towards Vdd (=5V). At the 
same time the voltage R also rises, due to –Q going low, and when it reaches 1.9V the output 
Q goes low again. The time it takes R to reach 1.9V is controlled by the bias Vpulselength. 
Since both S and R stay high the neuron cannot fire until the clock has reset the circuit. 

5.2 COINCIDENCE DETECTOR 

I have described the principal construction of the coincidence detector in chapter 4. The 
only modifications to the description given there is the addition of an NMOS transistor and 
the fact that we use a NAND gate instead of an AND gate, see Figure 18.  
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Figure 18 Coincidence detector. By using temporal codes it can be made extremely simple, as this 
one. (We use a NAND gate because we want to sink current when there is a coincidence in 
time between the two input spikes.) Vcurrent-limit is a bias to control the amount of current 
due to a coincidence. By adjusting it we control the amount of smearing/integration in the 
capacitance of the following current-mirror (Figure 19). 

The NMOS transistor is added to be able to control the amount of current flowing 
during a coincidence event.  The element following the coincidence detectors of the 
coincidence matrix is a current mirror with a capacitance added, as described in chapter 5.3. 
This capacitance is used to sum the coincidence events of each disparity line. The right 
disparity is the line with the highest number of coincidence events. Each event should not 
charge the capacitance very much, because this would lead to a quite unstable output of the 
current mirror. This in turn would lead to an unstable winner-take-all circuit that changes 
rapidly between different winners.  

Since the medium of implementation is VLSI and the area is sparse, the size of each 
capacitance used is very small. (The value of capacitance is only about 160fF.) So we have to 
set the bias Vcurrent-limit low so the NMOS transistor operates in the subtreshold region of 
operation. This is also important to keep the energy dissipation of the circuit low. There are 
65 disparity planes of 32 coincidence detectors in the final implementation. This adds up to a 
total of 2080 coincidence detectors. A totally uniform picture would actually lead to a 
simultaneous coincidence event in all the coincidence detectors at the exact same time. (The 
intensity of the pixels must be high enough to make the input neurons fire during clock low.) 
This will give large energy dissipation during a short period of time; therefore we have to 
keep the current due to a single coincidence event low to keep the total energy dissipation of 
the chip low.  

The simplicity of the coincidence detector is also a large size benefit. The area of the 
chip covered by the coincidence matrix in the final implementation is about 50% of the total 
area covered by my circuit, not including the AER communication circuitry. The number of 
coincidence detectors can be found by the following formula: 
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The number of output and input neurons, current mirrors and WTA parts can be found 
by using this formula: 

PixelsPixelspartsofNumber ≈+= 1__  6 

As the two above formulas show the number of coincidence detectors grows 
quadraticaly, while the number of other parts only grows linearly, as we incorporate more 
pixels in each sensor to improve the precision of the system. So it is of utmost importance to 
keep the size of the coincidence detector as small as possible. As mentioned earlier the use 
of temporal coding facilitates the use of such simple coincidence detectors. (See Figure 18.) 

5.3 CURRENT MIRROR 

In the previous chapter I explained the reason for having a capacitance in the current 
mirror. The current mirror uses the voltage on this capacitance to give a stable current to the 
following WTA. In addition to having added a capacitance, we have also opted for having 
separate power supplies for the left and right PMOS transistor; see Figure 19.  By adjusting 
the ratio between the two supply voltages we can adjust the amount of amplification. Vdd 
right/Vdd left > 1 will give a positive amplification, and Vdd right/Vdd left < 1 will give a 
negative amplification. We tweak this amplification to obtain a suitable input for the WTA 
system. 

 

Figure 19 A standard current mirror with a capacitance added for summing the spikes on each 
disparity plane of the coincidence matrix. There are separate power supplies for the left and 
right transistor. By adjusting the ratio between them we can adjust the amplification of the 
current mirror. 

(An in-depth explanation of a general current-mirror can be found in (Mead 1989: 39-
40). It is not given here since a current-mirror is a standard electronic circuit.) 

                                                      
6 “Pixels” are the number of pixels in each of the two sensors used to provide input for the visual disparity-computing chip. 
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5.4 WINNER-TAKE-ALL (WTA) CIRCUIT 

The WTA system used here is basically the same as the one designed by Lazzaro, 
Ryckebusch, Mahowald and Mead of the California Institute of Technology. I refer to their 
paper “Winner-take-all networks of O(n) complexity” (Lazzaro et al. 1988) for an in-depth 
explanation of the functionality of the WTA system. The basic explanation they give is the 
following: 

 

Figure 20 Schematic diagram of a two-neuron winner-take-all circuit 

The above figure shows a schematic diagram of a two-neuron winner-take-all circuit. To 
understand the behavior of the circuit, we first consider the input condition  . mIII ≡= 21

Transistors and  have identical potentials at gate and source, and are both sinking 
11T 21T

Im; thus, the drain potentials V1 and V2 must be equal. Transistors T and  have 
12 22T

identical source, drain, and gate potentials, and therefore must sink the identical current 
2/

21 CC II = CI= . In the subtreshold region of operation, the equation 
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11 21 o is a fabrication 
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Thus, for equal input currents, the circuit produces equal output voltages; this behavior is 
desirable for a winner-take-all circuit. In addition, the output voltage Vm logarithmically 
encodes the magnitude of the input current Im.  
The input condition imII1 , I2=Im, illustrates the inhibitory action of the circuit. 
Transistor 

11T  must sink iδ  more current than in the previous example; as a result, the 
gate voltage of T  rises. Transistors 1 21  share a common gate, however; thus, 

21T  T and T

δ+=

11 1

must also sink mI iδ+ . But only Im is present at the drain of 
21T . To compensate, the 

drain voltage of 
21T , ease. For small siV2, must decr δ , the Early effect serves to decrease 

the current through 
21T , decreasing V2 linearly with iδ . For large siδ , 

21T  must leave 
saturation, driving V2 to approximately 0 volts. As desired, the output associated with the 
smaller input diminishes. For large siδ , 0

2
≈cI  and cII c ≈

1
. The equation 

)/exp( ocoim VVII =+ δ  describes transistor 
11T , and the equation 

)/)exp(( 1 ooc VVII −=  describes transistor 
12TcV . Solving for V1 yields  
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The winning output encodes the logarithm of the associated input. The symmetrical circuit 
topology ensures similar behavior for increases in I2 relative to I1. (Lazzaro et al. 1988: 2-
3.) 

I have done two small modifications to their basic design. Instead of having direct 
couplin  I add 
current mirrors, as can be seen in Figure 21. This modification is done to provide current 
outputs, instead of voltage, as the following neurons take a current as input. These current 
mirrors have separate power supplies for the left and right PMOS transistors. This is done 
for 

The following AER sender multiplexes these spikes onto a bus. The bandwidth of the bus is 

g to the power supply on the sources of transistors 
12T  and 

22T (Figure 20)

the same reason as in the current mirror, to provide a means of amplification adjustment. 
The following neuron encodes the current on each disparity line in the frequency of firing. 

limited, and so there may be collisions in time. The AER sender handles this by arbitration, 
i.e. if there is a collision one of the spikes gets delayed (until the first one is handled.) To 
avoid having too many collisions one may lower the amplification of the WTA current 
mirrors. By lowering the current outputs one also lowers the frequency of firing in the 
output neurons, thus lowering the number of collisions in the AER sender. 

A simulation of the WTA with two inputs and outputs is shown in Figure 22.  The final 
implementation has 65 inputs and outputs, as there are 65 disparity planes. 
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Figure 21 The winner-take-all circuit. The “Iin distance 1” and “Iin distance 2” inputs are the 
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currents from two different disparity planes. By adjusting the voltage on Vbias one alters the 
amount of current flowing through the common wire. Larger current will mean a faster decision 
of right disparity, but it may also lead to an unstable output because of increased sensitivity to 

noise. The bias has to be tweaked for optimal performance. (You can add as many WTA 
elements as you need by connecting all the Icommon nodes to the common NMOS transistor.) 

 

Figure 22 Simula 1. (The final implementation has 65 
inputs and outputs, but is otherwise equal to the one shown here.) Current source 1 is steady 

5.5 OUTPUT NEURON 

As mentioned earlier the output neuron transforms the current output of the WTA to a 
stre

back, which pulls the voltage 

on 

tion of the WTA circuit in Figure 2

around 50nA (45 – 51nA) and current source 2 is sinus-shaped with a frequency of 100Hz 
(50nA ±  16nA). When the current of source 2 is below 1, output 1 goes high while output 2 
is effectively cut off. The reverse happens when current source 2 goes above 1.     

am of spikes suitable for encoding in the AER sender. There is one neuron per disparity 
plane. The neuron is self-resetting so it will encode the level of current in the frequency of 
firing. The neuron is a standard self-resetting integrate-and-fire neuron as shown in Figure 
23.  

The capacitance C t until the switching threshold of the 
inverter I1 is reached. This makes the output voltage of I1 sink which in turn makes the 
output voltage of I2 rise. The output of I2, which is also the output of the whole neuron, is 
fed back through capacitor C2. This makes for a positive feed

1 integrates the input curren

C1 up (, by about VVV
CC dd 5,25

221
=×=×

+
in the final implementation.) The series 

connection of the two inverters is in reality a high gain amplifier which, when the output 
voltage Vout is fed back through C2, makes the transition from low to high happen very 
fast. (For an in-depth explanation see  (M

C 12

ead 1989: 198-201.))  
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The output voltage Vout is also fed back to transistor T1 that closes the flow of input 
current. It also opens transistor T4; and this makes the charge on C1 drain out through 
transistors T3 and T4. T3 is added to control the rate of discharge, thereby allowing control 
of the length of the output pulse/spike.  

Transistor T2 is added for leakage purposes. The WTA will not suppress the wrong 
disp y planes with very low current outputs 
from the WTA might charge capacitance C1 above the threshold of inverter I1. This is a sort 
of noise we would like to suppress. By having a slight leakage of current from capacitance 

arities totally, and so after a while even the disparit

C1 we suppress these “false” outputs. 

A simulation of the circuit is shown in Figure 24.  

 

 

Figure 23. Self-resetting integrate-and-fire neuron. (Designed by Carver Mead of the 
“Computation and Neural Systems Group” at the California Institute of Technology (Mead 
1989: 198-201.))  
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F  is fed a 
suitable, steady input current. As the simulation shows the inverters of the neuron, with the 
positive feedback added, will shape the varying voltage on C1 to a stream of pulses.  

   

igure 24 Simulation of the integrate-and-fire neuron of Figure 23. The neuron
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6 SIMULATIONS 

We return again to the flowchart of Figure 14, but this time I have added all the 
appropriate biases. For understanding the total system dynamics I have also added the type 
of signal used from part to part, see Figure 25.  

 

Figure 25 Simplified flowchart of the system. The real system has 64 pixels on each sensor and 
65 disparity lines, but the principle of operation is the same. The figure include all the biases 

we can tweak to optimize system performance. 

We tweak all these biases, as described for each individual part in chapter 5, to give the 
optimal system performance. A simulation of a smaller version of the final system, without 
the AER communication circuitry, is shown in Figure 26 and Figure 27. The system 
simulated has 16 pixels in each sensor and 9 visual disparity planes, but is otherwise equal to 
the final implementation. In the figures only the two disparity planes with the most 
coincidence events are shown. Disparity plane “–4” is the right answer.  
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Figure 26 A simulation of a smaller version of the final system without the AER 
communication circuitry. (Clock period 0.32 ms). Only the two disparity planes with the 
highest number of coincidence events are shown. (The stimuli used were a set of PMOS 
transistors with random sizes of drain current.) 

The left figure shows the voltage on the capacitance of the current mirror in the two planes. There 
are several coincidence events during each period and so the voltage of each of the capacitances is 
lowered. (A coincidence event causes a drain of current.) The amount of current is proportional 
to the number of coincidence events and the timing of the correlating spikes, as explained 
earlier. Since -4 is the right disparity, this plane has the highest number of coincidence events, 
and so the voltage on its capacitance is lowered quicker than the others. When the voltage 
reaches 4.4V, during the third period, the current output of the current mirror increases 
substantially as can be seen in the right figure. (The threshold of the PMOS transistor in the 
current mirror has been reached, i.e. the Vgs < -0.6V.) After the last coincidence event during 
a clock low, the voltage on the capacitance will increase exponentially due to the current flowing 
into the capacitance from the left PMOS of the current mirror, see Figure 19. (Due to the very 
limited size of a capacitance implemented in CMOS VLSI this will happen quite fast.) 

The right figure shows the output of the current mirrors. The polarity of the current in this 
simulation is inverted compared to the current of the final implementation. (The size of the 
current though is the same.) During the fifth period the voltage on the capacitance of disparity 
plane 3 also reaches 4.4V, and so its corresponding current rises, but never above the current 
of disparity plane -4. Nonetheless, it is a task for the following WTA system to suppress all 
currents of false targets.  
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Figure 27 A simulation of a smaller version of the final system without the AER 
communication circuitry. (Clock period 0.32 ms). Only the two disparity planes with the 
highest number of coincidence events are shown. 

 The left figure shows the output of the current mirrors, the same as the right part of Figure 26. 
Both disparity planes have approximately the same current until the third period. Therefore the 
output of the WTA, shown in the right figure, is approximately the same on each line as 
explained in chapter 5.4. But, when the current of disparity plane -4 increases substantially 
during the third period the WTA suppresses all other lines and only relegates the current of 
this plane. 

Most of the preliminary simulations before the actual VLSI layout design was carried out 
on a system with 16 pixels in each sensor and 9 visual disparity lines, as the one used in 
Figure 26 and Figure 27. This is of course limited in comparison to the final implementation, 
which uses 64 pixels in each sensor and 65 visual disparity planes. As I stated already in the 
introduction (, see chapter 1.5,) the simulation of analogue VLSI circuits are very 
computation-intensive. A 2ms transient simulation of the complete final implementation, 
without the AER communication circuitry, took over 21 hours to complete on a modern 
Unix workstation7. So, the only simulations carried out on a full-scale system were the final 
rounds to ensure the system worked in full-scale.  

                                                      
7 Workstation: Sun Ultra 10 with 440MHz UltraSparc-II cpu. CPU utilization: 99,6%. Software: Cadence simulation with 
SpectreS ver.4.4.3.100.35.   
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7 VLSI CHIP LAYOUT 

The layout was made for an 84-pin chip produced with AMS mµ6.0  mixed signal process. 

The layout of the chip was done with the following factors in mind: 

• Process variation: A minimum size transistor will, according to percentage, vary 
more in size compared to a larger one due to process variations.  This means the 
drain current, with some set gate voltage, will also vary more on small transistors 
compared to larger ones. It is important to have fairly good conformity between 
different system components of the same type in this analogue system. If for 
instance a particular current mirror has a much larger output current due to some set 
voltage on its capacitance (see chapter 5.3) than any other, it is likely that the 
corresponding disparity plane will have a predisposition to be “the winning” disparity 
of the WTA system. Even though it is possibly the wrong disparity. Minimum size 
transistors are therefore only used in digital parts like the RS-latch of the input 
neuron (, see chapter 5.1), and the NAND gates of the coincidence detectors (, see 
chapter 5.2.)  As long as the transistor is used as an analogue component with 
continually variable drain current it is substantially longer than a minimum size 
transistor. I also avoid minimum size transistors wherever they are used as current 
limiters.   

• Size limitation: Every single part of the circuit is custom designed to minimize its 
size. On the final chip we end up with some area free, but this only means we could 
implement a more precise system, i.e. having more disparity planes, on a similar chip 
using the same process. (A fairly uncomplicated scaling of the present design could 
do this.) 

• Ease of routing:  Due to the parallel nature of the system it will consist of a large 
amount of cross-connected similar components, especially in the coincidence matrix. 
It is therefore of utmost importance to stress the ease of routing when designing 
each of these components.  

• Logical construction: The placement of the different components is structured and 
roughly follows the flowchart of Figure 25. The shortest route between two points is 
a straight line, and so the flowchart is a roadmap to the best routing. I have also 
wanted to make the layout as well arranged as possible for ease of later corrections 
and optimizations. (The strictly hierarchical and logical construction of the layout is 
the two key factors for making the system easy to scale up or down in size.) 

Since we use temporal coding of the latency type the clocking of the system is important. 
All input neurons must be reset at the same time to have a common time reference. Optimal 
routing of the clock signal would involve H-tree geometry, but is not done in this layout. 
The length of a spike is in the order of ms and the distribution of the clock is in the order of 
ns. Therefore it is not necessary to use H-tree geometry. For the operation of this circuit, 
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with the low clock frequencies employed here, the difference in time-of-firing between two 
input neurons with a specific input current will be approximately the same.  

Standard circuitry surrounds the presented system to provide input and output    

I have added some test nodes to be able to check the performance of the chip more 
closely than can be seen by the AER output. The test nodes are scattered throughout the 
system to be able to follow the flow of signals from the AER input to the AER output along 
the two visual disparity planes 31 and 32. I have also added some individual test circuits to 
be able to assess the performance of each individual building block of the visual disparity 
computing system (, see Appendix B: 11.2.)  . A plot of the layout is shown in Figure 28. 

 

Figure 28 The VLSI implementation in the AMS mµ6.0  mixed signal process.     
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8 MEASUREMENTS AND DISCUSSION 

In the final test runs the chip was tested with input that resembles both static and 
dynamic images. The static input was a ramp stimulus with a positive gradient as illustrated 
in Figure 29, or a negative gradient as the one used for the experiment of Figure 31. The 
figure shows the conceptual images from the left and right sensor, while the actual input to 
the chip is an AER conversion of the average frequency of the individual pixels with Poisson 
distributed spikes.  The following mapping of pixel nr to AER address is used for the 
onboard AER receiver:  

• L1 = 127, L2 = 125 … L63 = 3, L64 = 1 

• R1 = 0, R2 = 2 … R63 = 124, R64 = 126  

The AER onboard sender uses the following mapping of disparity plane (dp) to AER 
address (a): 

• dp -32 = a 64, dp –31 = a 63 …. dp -1 = a 33, Horopter = a 32, dp 1 = a 31 …. 
dp 31 = a 1, dp 32 = a 0 

 

Figure 29 Ramp stimuli with a positive gradient. The right sensor image is a shifted version of 
the left sensor image. The center of the right image is shifted 8 pixels to the left, and the left 
image is shifted 8 pixels to the right. This makes disparity plane 16 the right output from the 
chip. The image in question would be of a level surface with a linearly increasing intensity from 
left to right with a stretch of constant intensity at the left and right side. The leftmost pixel of 
the image would be quite dark while the rightmost pixel would be bright. (The average 
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frequency of firing constitutes the coding of intensity level. This rate coding is converted to 
temporal coding by the one-shot integrate-and-fire neurons of the chip.) The addresses put on 
the AER bus is Poisson distributed. (The frequencies on the y-axis are purely an example.) 

Figure 30 is a histogram of the AER output due to a ramp stimulus input. The ramp is 
identical to the one in Figure 29 except for the fact that there is no shift. AER address 32 is 
therefore the right winner, since it corresponds to the horopter. All biases have been 
tweaked for optimal performance. The chip chooses AER address 30 as the right answer.  

 

Figure 30 Histogram of the chips AER output due to a ramp stimulus with positive gradient. 
Y-axis shows number of AER events and X-axis shows AER address. The right answer is 
32. The chip comes pretty close to this by choosing 30 as the right winner with 32 as the 
runner-up.  

For most static input images, including step and ramp stimuli with different shifts, it is 
possible to tune the chip to give the right answer, or one very close to it. So the main 
principles of operation also work in a physical VLSI implementation.  

Next I tested the chip with the same set of biases but with a different input. The input 
was now a ramp stimulus with a negative gradient and no shift. AER address 32 should 
therefore still be the winner. As Figure 31 shows the chip outputs the wrong answer. 
Address 21 is the winner with 49 as the runner-up. Address 32 is only the fourth most 
frequent address on the AER output bus. This problem was also evident in other tests with 
static input; that no set of biases was optimal for different inputs. 
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Figure 31 Histogram of the chips AER output due to a ramp stimulus with negative gradient. 
Y-axis shows number of AER events and X-axis shows AER address. The right answer is 
32.  

To give a good assessment of the performance of the chip with some specific set of 
biases I tested the chip with dynamic input. The input was given as a step function, as shown 
in Figure 32. The step was itself modulated by a stair function of 25 different shifts in 5 
seconds. The output is shown in Figure 33.    
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Figure 32 Step stimulus with a positive gradient. The center of the right image is shifted 8 pixels 
to the left, and the left image is shifted 8 pixels to the right. This makes disparity plane 16 the 
right output from the chip. The image in question would be of a level surface with constant 
stretch of low intensity on the left and a constant high intensity on the right. The pixels to the 
left of the step would be quite dark while the pixels to the right would be bright. 

The dynamic test in Figure 33 shows the same tendencies as the static test of Figure 31, 
that address 21 is very prominent. In Figure 34 only the AER addresses put on the bus while 
the clock is low are shown, i.e. when the chip is not reset. Address 21 is not so prominent 
here, and this is because it is a “natural winner”. Because of process variation the matching 
of the individual elements of the system is not very good. Therefore some of the disparity 
planes become natural winners, i.e. disparity planes that seem to have larger currents flowing 
into the WTA than other planes even though the number of coincidence events in the 
matrix is lower on this plane. This is made more evident during chip reset. The size of 
capacitances on the VLSI chip is very limited and the integration of current in the current 
mirrors is therefore not terribly good. Since the WTA also works fast it has a tendency to 
return to some natural winners/attractors when the chip is reset and there is very little 
current input from the other disparity planes.  

The rest of the AER output events seem to be the same in both Figure 33 and Figure 34. 
Among these are also some lesser attractors, most notably address 40. This attractor is 
probably due to a mismatch in some other part of the circuit than the case is for address 21. 
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The reason might for instance be that the current from each coincidence event in one of the 
coincidence detectors on disparity plane –8, is bigger than from other coincidence detectors. 
(Disparity plane –8 corresponds to the AER output address 40.)  A transistor mismatch 
could cause such a problem. A mismatch in this part of the circuit would only be evident 
when the coincidence detector in question outputs current. This will only happen when the 
right answer should be close to address 40 and the clock is low. This is the case for the lesser 
attractor with address 40. 

 

Figure 33 Chip performance with swept step stimuli with a positive gradient as input. The stair 
function shows the correct answer to the input at any time while each dot marks an actual 
AER event with a specific address at some specific time. Address 21 is “attractor” or what we 
might call natural winners. Some local attractors are also evident, most notably address 40.  
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Figure 34 Chip performance with swept step stimuli with a positive gradient as input. The stair 
function shows the correct answer to the input at any time while each dot marks an actual 
AER event with a specific address at some specific time. The figure only shows addresses put 
on the bus while the clock is low, i.e. while the chip is not reset. Address 21 is not quite so 
prominent in this figure as in Figure 33.  

I tested several different identical chips with the same input to eliminate the possibility 
of the natural winners being a result of inferior layout. None of the chips had the same 
addresses as attractors, and the strength of these attractors varied from chip to chip.  Figure 
35 shows exactly the same experiment as the one in Figure 33, but with another chip. 
Address 5 is the strongest attractor here, but clearly this chip shows a better performance. In 
Figure 36 I have again removed the events put on the bus when the clock is high. The 
frequency of firing of address 5 is now very much damped. This chip shows the best 
performance of the five tested. 
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Figure 35 Chip performance with swept step stimuli with a positive gradient as input. (Chip 
nr.2.) The stair function shows the correct answer to the input at any time while each dot 
marks an actual AER event with a specific address at some specific time. Address 5 is an 
attractor. 
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Figure 36 Chip performance with swept step stimuli with a positive gradient as input. (Chip 
nr.2.) The stair function shows the correct answer to the input at any time while each dot 
marks an actual AER event with a specific address at some specific time. The figure only 
shows addresses put on the bus while the clock is low, i.e. while the chip is not reset. Address 5 
is an attractor, but it is clear that it is most often the winner when the clock is high. (Ref: 
Figure 35.) 

Taking a look at the measurement seems to make two things quite clear:  

• Temporal coding is an efficient way to code the intensity of the pixels of an 
image and does provide an easy way to compare intensity levels. 

• The organizing principles of chapter 1.3 should be investigated further. 

It is in the implementation of the organizing principles that this chip has the biggest 
potential of performance improvement, especially in the forms of adaptiveness and 
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redundancy.  

The problem of mismatch of individual building blocks, like transistors, due to process 
variations is the most important factor that impedes the performance of this chip. By having 
more redundancy, for instance by using several current mirrors in parallel instead of one, we 
will get better matching of current between the different disparity planes. One could also do 
this by just making larger structures, as they will give better matching. I had this fact in mind 
when doing the layout, as mentioned in chapter 7, but even larger structures should be 
implemented. In the specification papers for the AMS process in use there is measurements 
of the process variation data. The data show that larger transistors will have better matching, 
even between two identical structures located close to each other in the layout (AMS 1998: 
29).  

During testing of this chip I had to tweak the biases quite a lot to get the best 
performance. When having dynamic input we have to rely on some specific set of biases, and 
as the measurements shows this is not optimal. So, adaptiveness in the form of self-
adjustment of the biases is needed. This is even more the case when using actual cameras for 
real-world image input where we have little control of the input (Mead 1989: 72). This is an 
area of extensive research because it is a general problem for many similar analogue circuits 
within the area of neuromorphic engineering.  
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9 CONCLUSION 

A visual disparity computing system implemented in analogue VLSI has been proposed, 
developed, simulated, implemented and tested. In theory it can it can compute the right 
visual disparity given two input images/stimuli.  The actual aVLSI implementation has 
proven to have some limitations, but the chip can still compute the right visual disparity for 
most static images; after some initial fine-tuning of the biases.  

Temporal coding has proven to be an efficient way for encoding the intensity level of a 
pixel in a visual sensor. It also provides an easy means for comparing the intensity levels of 
two pixels. Our goal of an effective “representation of information” (, see chapter 1.4,) has 
been reached.  

As I stated in the chapter on materials and methods (chapter 3) there are a number of 
problems inherent in the real world of VLSI chips, not least process variations, which is hard 
to simulate on computer software. So the ultimate test/judge would have to be real 
experiments on a physical chip. The attractors, being disparity planes prone to win even 
though they are not the right answer, is a result of this process variation. It did not manifest 
itself in the simulations of chapter 6. Thus the circuits of neuromorphic engineering needs to 
be implemented in analogue VLSI and exposed to physical test runs to show their true 
strengths and weaknesses. 

To heighten the level of performance and robustness of the chip, one has to look into 
ways to get better matching of each individual building block, for instance using larger 
structures, and mechanisms for adaptation to different input stimuli. Both these 
improvements sort under the “organizing principles” of the nervous system (, see chapter 
1.3.) The implementation of this chip has made it even clearer, as most research in the area 
of neuromorphic engineering has, that finding out which, why and how these organizing 
principles should be implemented is one of the biggest challenges of neuromorphic 
engineering. Since the ultimate goal of neuromorphic engineering is to produce chips that 
not only rivals, but also surpasses the performance of modern digital circuits, a better 
understanding of the organizing principles of the nervous system is essential. 
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11 APPENDIXES 

11.1 APPENDIX A: AER 

During testing of the VLSI chip one needs to have a standard of communication for input 
and output. The visual stimuli used are synthetically produced for ease of testing and 
controlled laboratory conditions. This is done by using the software package Matlab.  The 
output is analyzed by using the same software package. The input should consist of 
2*64=128 channels/axons with a variable firing frequency for providing the “images”. The 
output should consist of 65 such channels/axons. This large number of signals means we 
have to use some form of multiplexing of the signals/channels, since the VLSI chip only has 
84 pins. These 84 pins also have to be used for biases (10), test nodes (21), clock (1) and 
power supply (9). There is also another independent circuit produced on the same VLSI chip 
that use some pins (22). (Philipp Häfliger of the Microelectronic Systems Group, Dept. of 
Informatics at the University of Oslo, has designed this circuit. The two circuits have been 
produced on the same die to cut production costs.) 

 I settled on the address event representation (AER) communications standard since it has 
been specifically developed for off-chip communication of spikes. Tobi Delbrück provides 
this description of AER:   

The AER is a neuromorphic representation of signals. The idea is very simple: use the 
large bandwidth of metallic wires and silicon circuits to create a virtual bundle of biological 
axons, i.e., multiplex a large number of spike events onto a digital bus. A sender chip -- a 
silicon retina, for example -- has a bunch of neurons that can independently and 
asynchronously fire action potentials. When one of these cells want to send a spike event to 
some receiver neurons, it requests the bus. When it gets access, its address is placed on the 
bus. At the receiving end, the cells listen for when their address comes on the bus. When 
their address comes along, they give themselves a little pulse of charge simulating a 
postsynaptic potential. The important features of this communication scheme are:  

Time represents itself, meaning that there is no program counter or master clock: when a 
spike happens, its placement on the bus signals its occurrence.  

The bus capacity is efficiently utilized only to transmit "interesting" information.  

Spike latency is minimized. This feature goes along with the idea that precise spike timing 
is important.  

No spikes are lost to collisions. If multiple spikes happen simultaneously, they are 
transmitted as rapidly as possible in sequence. (Delbrück 2000) 

We are left with 21 free pins on the VLSI chip for the AER input and output circuitry.  
This is enough for a 7-bit address representation, enough for 128 channels of input and 
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output, plus the necessary signaling. (The signaling is a standard “4-phase handshake” 
receive and acknowledge system for both the sender and receiver AER circuits, a total of 4 
bits.) 3 pins are left unconnected in the final implementation).   

The AER receiver integrates each channel and has a current as output for each channel. 
This is due to the fact that we assume that each pixel of an actual sensor would have a 
current output that varies according to the intensity of light.  
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11.2 APPENDIX B: PIN LISTS 

For reference purposes I have included these two pin lists. The first one, Table 2, shows 
all pins relevant for testing the complete system described in this paper. Table 3 shows pins 
connected to separate test circuits.  

The test circuits have been included on the chip to be able to assess the performance of each 
individual building block of the visual disparity computing system.  If the system as a whole 
did not work, these test circuits were meant to be used to pinpoint the source of the 
problem. This has not been necessary since the system as a whole roughly performs as 
simulated. Our largest problem (, see chapter 8,) of mismatches due to process variations 
cannot be studied using these test circuits. The test circuits are: 

• One input neuron. PMOS used as current source. Pins: 3, 19, 46, 61 and 77. 

• Two current mirrors and a WTA connected for assessment of WTA performance. 
NMOS used as current sources for the two current mirrors. Pins: 4,5,11 and 12.  

• One output neuron. PMOS used as a current source. Pins: 17 and 48.  

• One coincidence detector. Pins: 18, 59 and 60. 

All test circuits use the same supply voltages and biases as the similar circuits in the main 
system except for the input neuron, which has its own bias for controlling the length of the 
spikes issued (Pin 46.) Each test circuit is identical to its match in the main system. 

PIN NAME IN LAYOUT   NR   PIN NAME IN SCHEMATIC   DESCRIPTION                                 
ANALOG<0>                     2  rec_gain+                                 Supply for right PMOS of the current mirror of each 

pixel in the AER receiver.          

ANALOG<1>                     3  Vpulselength                             Bias controlling the duration of the pulses/action 
potentials from the input neurons. 

CONTROL<1>                  6  Vbias                                     Bias controlling max total current flowing in the common 
wire of the WTA section.  

DATA<0>                          7  L33                                       Test pin. Voltage on the first input of a coincidence 
detector on disparity plane 32.     

DATA<1>                         8  R1                                        Test pin. Voltage on the second input of a coincidence 
detector on disparity plane 32.    

DATA<2>                         9  Vcap_mirror_d31                        Voltage on the capacitance in the current mirror of 
disparity plane 31. 

DATA<3>                         10  Vcap_mirror_d32                        Voltage on the capacitance in the current mirror of 
disparity plane 32. 

DATA<6>                         13  Vcap_n_d31                              Voltage on the input capacitance of the output neuron 
of disparity plane 31.                     

DATA<7>                         14  Vcap_n_d32                              Voltage on the input capacitance of the output neuron 
of disparity plane 32.                   

DATA<8>                         15  Vout_d31                                 Voltage on the input of the AER output circuit of 
disparity plane 31.                                      

DATA<9>                         16  Vout_d32                                 Voltage on the input of the AER output circuit of 
disparity plane 32.                                    

AER_OUT<0>                   23  snd_bit<0>                               AER sender: Bit 0                                                              
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AER_OUT<1>                   24  snd_bit<1>                               AER sender: Bit 1                                                              

AER_OUT<2>                   25  snd_bit<2>                               AER sender: Bit 2                                                              

AER_OUT<3>                   26  snd_bit<3>                               AER sender: Bit 3                                                              

AER_OUT<4>                   27  snd_bit<4>                               AER sender: Bit 4                                                             

AER_OUT<5>                   28  snd_bit<5>                               AER sender: Bit 5                                                              

AER_OUT<6>                   29  snd_bit<6>                               AER sender: Bit 6                                                              

AER_OUT_REQ     31  snd_req                                   AER sender: Request                                                       

AER_OUT_ACK  32  snd_ack                                   AER sender: Acknowledge                                               

AER_OUT_PU                  33  snd_pu_bias                              AER sender: Pull-up bias 

AER_OUT_PD                  34  snd_pd_bias                              AER sender: Pull-down bias 

ANALOG<4>                     47  Vleakage                                 Bias controlling leakage from the individual output 
neurons. 

ANALOG<6>                     49  WTA_vdd_right                          Voltage supply for right pmos of all current mirrors in 
the WTA circuit.                    

ANALOG<7>                     50  WTA_vdd_left                            Voltage supply for left pmos of all current mirrors in the 
WTA circuit.                     

ANALOG<8>                     51  CM_vdd_right                            Voltage supply for right pmos of all current mirrors.          

ANALOG<9>                     52  CM_vdd_left                              Voltage supply for left pmos of all current mirrors.  

ANALOG<10>                   53  foll-bias                                 Bias for a number of op-amp line drivers.                         

vdd!                            54  vdd!                                            Global voltage supply.  

gnd!                            55  gnd!                                           Global ground connection.                                                

PVDD                            57  PVDD                                      Power supply for the pads of the chip.                              

ANALOG<11>                   58  V_current_limit                          Bias controlling the max current from each individual 
coincidence detector in the coincidence matrix.  

CONTROL<4>                  62  rec_timeconst                            Current limiter for the integrator in the AER input circuit.

AER_IN<6>                       66  rec_bit<6>                               AER receiver: Bit 6                                                            

AER_IN<5>                       67  rec_bit<5>                               AER receiver: Bit 5                                                            

AER_IN<4>                       68  rec_bit<4>                               AER receiver: Bit 4                                                            

AER_IN<3>                       69  rec_bit<3>                               AER receiver: Bit 3                                                            

AER_IN<2>                       70  rec_bit<2>                               AER receiver: Bit 2                                                            

AER_IN<1>                       71  rec_bit<1>                               AER receiver: Bit 1                                                            

AER_IN<0>                       72  rec_bit<0>                               AER receiver: Bit 0                                                            

AER_IN_REQ      73  rec_req                                   AER receiver: Request                                                      

AER_IN_ACK       74  rec_ack                                   AER receiver: Acknowledge                                              

AER_IN_PU             75  rec_pulse_length                       Bias controlling length of demuxed pulses sent to the 
individual current mirrors of each pixel   

AER_IN_PD                 76  rec_gain-                                 Supply for left pmos of the current mirror of each pixel 
in the AER receiver.          

AER_SERIAL_IN   77 clk! Clock  

Table 2 Pin list. All pins relevant for making the whole visual disparity computing system work 
are listed. Both the names used in the layout and schematics of the chip are liated for reference. 
The description gives a quick overview of the purpose/task of the pin in question  
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PIN NAME IN LAYOUT  NR   PIN NAME IN SCHEMATIC DESCRIPTION                                 
ANALOG<2>                      4  Iin2_Mirror_WTA_test               Controls amount of current flowing out of the second 

current mirror in the CM/WTA circuit. (Gate of NMOS 
transistor.) 

CONTROL<0>                    5  Iin1_Mirror_WTA_test                Controls amount of current flowing out of the first 
current mirror in the CM/WTA circuit. (Gate of NMOS 
transistor.) 

DATA<4>                         11  Iout2_Mirror_WTA_test             Output from line 2 of CM/WTA test circuit.                        

DATA<5>                         12  Iout1_Mirror_WTA_test             Output from line 1 of CM/WTA test circuit.                        

DATA<10>                        17  Vout_on_test                             Vout of output neuron.                                                       

DATA<11>                        18  Iout_CD_test                             Current output of the test copy of a coincidence 
detector.                                             

DATA<12>                        19  Vout_in_test                             Vout inputneuron test                                                        

ANALOG<3>                      46  Vpulselength2                            Same function as Vpulselength but for the test copy of 
the input neurons.  

ANALOG<5>                      48  Iin_on_test                               Current input for test copy output neuron.                      

ANALOG<12>                    59  Vin2_CD_test                            Voltage input 2 for the test copy of a coincidence 
detector.  

ANALOG<13>                    60  Vin1_CD_test                            Voltage input 1 for the test copy of a coincidence 
detector. 

CONTROL<5>                    61  Iin_in_test                                Gate of a PMOS transistor used as a current source for 
the test copy of the input neuron.    

Table 3 Pin list. Only pins for the extra test circuits of the chip are listed. Both the names used 
in the layout and schematics of the chip are listed for reference. The description gives a quick 
overview of the purpose/task of the pin in question.  

 




