
Rule-Based AI in Emergency
Response Coordination

Exploring Usage of Rule-Based AI for
Complex Emergency Response

Coordination

Markus Dreyer

Thesis submitted for the degree of
Master in Programming and System Architecture

60 credits

Informatics
Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2022

Rule-Based AI in Emergency
Response Coordination

Exploring Usage of Rule-Based AI for
Complex Emergency Response

Coordination

Markus Dreyer

© 2022 Markus Dreyer

Rule-Based AI in Emergency Response Coordination

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

One of the most significant challenges in emergency response manage-
ment is coordination across different involved agencies (Turoff & Chumer,
2004). An emergency response might rapidly increase in complexity as the
number of parties involved increases, and it may become difficult or even
impossible for a single individual to make rapid, well-informed coordin-
ation decisions. Even seemingly trivial tasks regulated by checklists are
prone to faulty coordination decisions during acute stress (Stolpe & Han-
nay, 2021). This thesis builds on the theory and concept set forth by Stolpe
and Hannay, 2021 of how AI planning can be used to solve delegation-and-
sequencing problems using Answer Set Programming (ASP). The design
science research methodology is used to develop a design concept that il-
lustrates how AI planning can augment emergency response managers’
coordination capabilities in complex, multi-agency incidents. The design
concept is evaluated with relevant candidates from Norwegian emergency
services, and their feedback forms the basis for the requirements of a tech-
nical implementation. The results of the evaluation show that the system
could help reduce the burden on the emergency response managers by
providing up-to-date incident information and improving the utilisation
of external resources.

i

ii

Contents

I Introduction and Methodology 1

1 Introduction 3
1.1 Research goals . 4
1.2 Design concept . 4
1.3 Source code . 4
1.4 Accessing the technical implementation 5

2 Methodology 7
2.1 Defining a problem . 7

2.1.1 Literature review . 9
2.1.2 Problem definition . 10

2.2 Suggestion . 10
2.3 Development . 10
2.4 Evaluation . 10

2.4.1 Extending the DSR approach 11
2.4.2 Structuring evaluation feedback 12

2.5 Conclusion . 12

II Background 13

3 Emergency response management cycles 15

4 Operations Centers 19
4.1 Police Operation Centers . 19
4.2 Logging and case management tool 20

4.2.1 Available Resources 21
4.2.2 Resource Overview . 21

iii

4.2.3 Mapping Tool . 23
4.3 Fire Operations Center . 24
4.4 Medical Operations Center 25

5 Standard operating procedures 27
5.1 Local relevance . 28

6 Delegation and sequencing problems 31
6.1 Defining a constraint satisfaction problem 31
6.2 Constraint programming . 32

6.2.1 Example problem: n-Queens 33
6.3 Solving constraint satisfaction problems 34

7 Answer set programming 37
7.1 Introduction to answer set programming 37

7.1.1 Non-monotonic reasoning 38
7.1.2 Stable model semantics 38

7.2 ASP semantics . 38
7.2.1 ASP rules . 39

7.3 Optimization . 41
7.4 Solving ASP programs . 41

7.4.1 Clingo . 42
7.5 Modelling methodology . 43
7.6 Summary . 43

III Design concept 45

8 Design concept 47
8.1 Design science approach . 47
8.2 Design concept goal . 48
8.3 Structural requirements . 48

8.3.1 Digital plans . 48
8.3.2 Causality table . 52
8.3.3 Digital asset overview 52

8.4 Behavioural requirements . 53
8.4.1 Domain . 54

8.5 Functionalities and side effects 56

iv

8.5.1 Functionality: Automatic delegation 56
8.5.2 Functionality: Intelligent redelegation 56
8.5.3 Side effect: Distribution of tasks 58
8.5.4 Side effect: Common situational picture 58

8.6 Usage . 58
8.6.1 Task types . 59
8.6.2 Understanding of time 59
8.6.3 Task assignment . 61

8.7 Summary . 62

9 Design concept evaluation 63
9.1 Candidates . 63
9.2 Results from user evaluations 64

9.2.1 Fire operations center candidate 64
9.2.2 Ambulance services candidate 65

9.3 Shortcomings . 67

IV Implementation 69

10 Modelling delegation and sequencing problems in ASP 71
10.1 Encoding delegation and sequencing problems in ASP . . . 71
10.2 Dynamic rules . 72

10.2.1 Example task: Define meeting point 72
10.3 Static rules . 73
10.4 Finding efficient plans . 74
10.5 Plan adaptation . 76
10.6 Supporting plan adaptation in Clingo 76

10.6.1 Benefits of the stateless approach 77

11 Technical implementation 79
11.1 Defining available resources 80
11.2 Defining a plan . 80
11.3 Model visualization . 81

11.3.1 Multi model visualization 81
11.3.2 Single model visualization 83

12 Technology choices 85

v

12.1 Platform agnostic and open source 86
12.2 Fast prototyping . 86

12.2.1 Testing . 88
12.3 Available remotely . 88

13 Client side specification 91
13.1 Tabular data . 92

13.1.1 Multi-select options 92
13.1.2 Tabular data component 92
13.1.3 Mapping ASP models to JavaScript 93

13.2 Model visualization . 95
13.2.1 Action card implementation 95

13.3 State management . 96
13.4 Persistence . 96

14 Server side specification 99
14.1 Middleware . 99

14.1.1 Client-server communication 99
14.1.2 Creating the API endpoints 101
14.1.3 Transforming JSON data to ASP rules 101

14.2 Clingo . 102

15 Technical evaluation 105
15.1 Tabular data . 105
15.2 Model visualization . 106
15.3 Clingo environment . 106

15.3.1 Python middleware 107

16 Conclusions 109
16.1 Summary . 109
16.2 Key findings . 109

16.2.1 Design concept findings 110
16.2.2 Technical findings . 110

16.3 Shortcomings . 111
16.3.1 Communication technology 112

16.4 Future work . 112
16.4.1 Police involvement . 112

vi

16.4.2 ASP extensions . 112
16.4.3 Serverless approach 113

A Plans 121

B Resource overview 123

C Task distribution 125

D Code 129

E Methodology 131

vii

viii

List of Figures

2.1 Model by Vaishnavi and Kuechler, 2004 which illustrates
the DSR development process. 8

2.2 Design evaluation methods (Hevner et al., 2004) 11

3.1 Mini-second and many-second coordination cycles (Chen et
al., 2008). 16

4.1 The logging part of PO (Lundgaard, 2019). 20
4.2 The resource area of PO, with the resource bar on the left

hand side (Politihøgskolen, 2016) 23

5.1 The ideal SOP process (Duncan et al., 2014). 28
5.2 Preparedness plan for car crash (‘Nakos’, 2018). 30

6.1 Example Taxonomy. 32
6.2 Valid configuration for the 8 Queen problem. 33
6.3 Invalid permutations of the 8 Queen problem. 34
6.4 Example configuration of a constraint graph of the 8 Queens

problem. Nodes {5..8} violate the constraints. 35

8.1 Excerpt of the digital PLIVO plan. 50
8.2 Master view of the design concept. Plans at the top,

Resources on the left, causality table in the bottom and a
possible delegation of resources in the middle. 55

8.3 Overview of the action plan. 57
8.4 Example task taken from Figure 8.3 showing an ordinary task. 59
8.5 Visualisation of the four task states. 60
8.6 Prompt showing the delegation options. 61

10.1 Stable model optimization comparison. 75

ix

11.1 Taxonomy designer . 80
11.2 Plan designer . 81
11.3 Example of the initial sunburst diagram 82
11.4 An excerpt from the action card section 84
11.5 The revision options of an action card 84

12.1 Services available for configuration through the Firebase CLI. 87

13.1 Custom multi-select dropdown for fast, easy and reliable
role selection. 93

14.1 Flow diagram for generating an initial action plan. 100
14.2 Flow diagram for action plan adaptations. 101

A.1 Analog PLIVO plan. 122

B.1 Police resources. 123
B.2 Police actors. 123

C.1 Example of task distribution for sierra police district in
Oslo, showing tasks assigned to each sierra patrol along
with the causality table for the ongoing incident. 125

C.2 Illustrative implementation of task distribution. 126
C.3 Illustrative implementation of action plan distribution for

common operational picture. 127

x

List of Tables

4.1 Selection of Oslo police district’s call signs. 22

8.1 An example of a PLIVO causality table. 52
8.2 An excerpt of the police resource overview, showing the

three first police resources. See the full overview in
Appendix B.1 . 53

8.3 An excerpt of the actor overview, showing the three first
police actors. See the full overview in Appendix B.2. 53

15.1 ASP runtime in different environments based on an encod-
ing of the delegation-and-sequencing problem. 107

xi

xii

Acknowledgements

I want to thank my supervisor, Dr Audun Stolpe and co-supervisor, Dr Jo
Erskine Hannay, for allowing me to work on the immensely intriguing
issue of emergency response coordination and for their guidance and
support throughout the process. I want to thank my fellow students for
all the intriguing discussions and companionship. I would also like to
thank my family for their constant support in all my pursuits. Lastly, my
girlfriend deserves a special thanks as she has always been there for me
when I have been lost or frustrated.

xiii

xiv

Part I

Introduction and Methodology

1

Chapter 1

Introduction

Emergency response coordination with multiple agencies in complex
incidents is a significant challenge. Turoff and Chumer, 2004 claims that
every careful study of emergency responses, even for non-extreme events
such as tornadoes, shows that coordination across different involved
agencies is a significant challenge. Chen et al., 2008 describes how
emergency response coordination is challenging because it involves
factoring in exigencies typical of an emergency, such as great uncertainty,
sudden and unexpected events and the risk of possible mass casualty.
Stolpe and Hannay, 2021 argues that a recurring challenge in effective
emergency management is allocating resources to a set of tasks under the
constraint of the proper ordering of these tasks. Seemingly trivial tasks
regulated by checklists are prone to failure and faulty sequencing and
delegation during acute stress. Further, Stolpe and Hannay, 2021 claims
that there is a need for an information system that can display viable
options in real-time as a crisis evolves.

This thesis will discuss the coordination challenges of remote coordinating
entities, such as emergency operations centres and discuss the distinct
phases of an emergency incident response. We will discuss the Norwegian
emergency services in detail and explain how each agency’s operation
centres operate and their responsibilities in complex incidents. Further, a
design concept based on the acquired knowledge from existing literature
and the work by Stolpe and Hannay, 2021 will be presented. The goal of
the design concept is to illustrate to the relevant subject matter experts that

3

this system can be used to intelligently delegate actions to help emergency
response managers coordinate efforts in complex, multi-agency incidents.
The feedback from the subject matter expert evaluations is used to justify
the functionality in a technical implementation that demonstrates how
non-technical emergency response managers can create ASP programs
and utilize AI planning without any prior knowledge of AI or machine
reasoning.

1.1 Research goals

1. Investigate Norwegian emergency operations centres
Investigate the responsibilities, challenges, tools, and practices of
Norwegian remote coordinating entities.

2. Design concept development
Develop a design concept to illustrate how rule-based AI can be
used to intelligently delegate actions to help emergency response
managers coordinate efforts in complex, multi-agency incidents.

4. Design concept evaluation
Evaluate the design concept with subject matter experts

5. Technical implementation
Based on the feedback from the evaluations, investigate possible
approaches to implement the design concept technically

1.2 Design concept

The design concept discussed in this thesis is available in its entirety on
Figma. Note that the design concept is in Norwegian, as the evaluations
was done with Norwegian users.

1.3 Source code

The source code for the technical implementation is available on GitHub.

4

https://www.figma.com/file/T5fDnjV66zs4bp4a0en3tB/Design-Concept?node-id=0%3A1
https://github.com/Markusdreyer/delegation-sequencing

1.4 Accessing the technical implementation

The technical implementation is available to test here. Keep in mind that
the hosting is based on a free tier with limited resource and cold starts,
meaning that the performance will be much worse than normal. If the web
page is not available anymore, an alternative is to run the project locally
from the GitHub repository mentioned in Section 1.3.

5

https://delegation-sequencing-d8ae4.web.app/

6

Chapter 2

Methodology

A central part of this thesis is to create a design concept that relevant users
may evaluate. Design Science Research (DSR) would be an appropriate
methodology for such research, as it focuses on developing novel and
innovative artefacts. This method provides the researcher with guidelines
for creating, improving, and evaluating artefacts (Weber, 2012). An
artefact is everything that is human-made and will, within DSR, be what
makes value for both people and companies (Næss & Pettersen, 2017). For
example, this thesis’ technical implementation and design concept would
be considered artefacts.

The model show in Figure 2.1 presents the five steps of DSR 1. The first step
is related to defining a problem one seeks to solve and developing one’s
understanding and formulating a definition of the problem to be solved
are important parts of this process (Baskerville et al., 2011).

2.1 Defining a problem

Certain risks are involved with defining a problem statement which
needs to be considered when defining a problem. Baskerville et al., 2011
highlights eight risks to consider:

1. Selection of a problem that lacks significance

1Some researchers, as for instance (Sonnenberg & Brocke, 2012) argue that there are
six steps. However, both models cover the same concepts

7

Figure 2.1: Model by Vaishnavi and Kuechler, 2004 which illustrates the
DSR development process.

2. Difficulty getting information about the problem

3. Different and even conflicting stakeholder interests

4. Poor understanding of the problem to be solved

5. Solving the wrong problem

6. Poor/Vague definition/statement of the problem to be solved

7. Inappropriate choice or definition of a problem according to a
solution at hand

8. Inappropriate formulation of the problem

In general, an artefact may solve an issue in an emulated environment,
where the surrounding environment is built to prove the artefact’s efficacy.
However, suppose the encompassing assumptions or problems required
for the artefact to prove valuable are never validated, then there might be
a risk that the artefact is not really valuable, or even worse, that the artefact
make things worse (Baskerville et al., 2011). Therefore, the researcher must

8

ensure that the actual problem the artefact seeks to solve is a real problem.

Sonnenberg and Brocke, 2012 describes an evaluation activity within
DSR to evaluate the problem identification for an artefact. The problem
identification activity serves the purpose of ensuring that a significant DSR
problem is selected and formulated, and the following methods could be
applied:

• Assertion

• Literature review

• Review practitioner initiatives

• Expert interview

• Focus groups

• Surveys

2.1.1 Literature review

There is already a vast body of knowledge on emergency response
management and its challenges, and a literature review to evaluate the
problem statements was chosen. Turoff and Chumer, 2004 claims that
every careful study of emergency responses, even for non-extreme events
such as tornadoes, shows that coordination is a significant problem across
different involved agencies. Chen et al., 2008 describes how emergency
response coordination is challenging because it involves factoring in
exigencies typical of an emergency, such as great uncertainty, sudden and
unexpected events and the risk of possible mass casualty. Stolpe and
Hannay, 2021 argues that a recurring challenge in effective emergency
management is allocating resources to a set of tasks under the constraint
of the proper ordering of these tasks. Seemingly trivial tasks regulated
by checklists are prone to failure and faulty sequencing and delegation
during acute stress. Further, Stolpe and Hannay, 2021 claims that an
information system that can display viable options in real-time as a crisis
evolves is worth exploring.

9

2.1.2 Problem definition

Based on the findings from the literature review, it is reasonable to
believe that emergency response coordination with multiple agencies in
complex incidents is a significant challenge and that there is a need for an
information system to better support decision-makers with coordination
support in such situations. This thesis builds on the theory and concept
of providing decision-makers with delegation and sequencing support in
existing decision support systems set forth by Stolpe and Hannay, 2021.

2.2 Suggestion

Following the definition and formulation of a problem comes the sugges-
tion step (See Figure 2.1). The suggestion is an inventive step where new
functionality is envisioned based on a novel configuration of either exist-
ing or new elements (Vaishnavi & Kuechler, 2004).

2.3 Development

In the development step, the suggestion from the previous step is
implemented. The implementation of an artefact can be primitive and
does not need to involve novelty beyond the state-of-practice for the given
artefact; the novelty is primarily in the design, not the construction of the
artefact (Vaishnavi & Kuechler, 2004).

2.4 Evaluation

Evaluation in DSR aims at determining the progress achieved by design-
ing, constructing, and using an artefact concerning the identified problem
and the design objectives. Once constructed, the artefact is evaluated ac-
cording to criteria that are always implicit and frequently made explicit in
the problem definition (Vaishnavi & Kuechler, 2004). The artefact we will
evaluate is a design concept in a specific scenario, and an appropriate eval-
uation method would be the Descriptive method in Figure 2.2, specifically
the scenario approach.

10

Figure 2.2: Design evaluation methods (Hevner et al., 2004)

2.4.1 Extending the DSR approach

Gathering user insights from the start is a software engineering way of
thinking and not an ideal approach for innovative development (Puschnig
& Tavakoli Kolagari, 2004). Instead of starting from scratch, as you usually
do with collecting user requirements, this thesis starts with a design idea.
This idea is based on requirements and literature from existing sources as
discussed in Section 2.1.1.

The design idea is taken to users as an artefact to demonstrate the
design idea. The purpose of the meetings is to gather feedback on
the design idea rather than a technical implementation and use the
design idea as an artefact to present and discuss the design idea. The
feedback from these meetings can then be used as requirements for the
technical implementation to justify what functionality needs to be present
to provide a valuable tool for Norwegian emergency services.

11

2.4.2 Structuring evaluation feedback

Conducting semi-structured interviews involves high costs regarding the
effort needed from the interviewer. Both in terms of planning, creating
interview guides, finding the suitable candidates, scheduling interviews,
and in terms structuring findings; transcribing and coding (Hove & Anda,
2005). An alternative approach to obtain structured feedback without
transcribing and coding interviews is to structure the feedback as user
stories together with the interviewee. As discussed by Hannay et al.,
2017, the system requirements in agile development are formulated as
user stories, which are specifically formulated to capture how a stakeholder
intends to use the system. They propose using this syntax to structure the
user stories and provide standard formatting. For example:

User story: As <stakeholder> In <situation> I can <perform
action> By using <functionality> To <achieve goal>

The semi-structured interview can then be summarised as user stories
together with the interviewee, ensuring that the interpretation of the
feedback is correct.

2.5 Conclusion

The conclusion step is the end of a research cycle or the finale of a specific
research effort. This step consists of writing up the findings from the
research cycle and presenting it to the reader. The finale of a research effort
is typically the result of satisficing; that is, though there are still deviations
in the behaviour of the artefact from the revised hypothetical predictions;
the results are adjudged "good enough" (Vaishnavi & Kuechler, 2004).

12

Part II

Background

13

Chapter 3

Emergency response management
cycles

To gain a better understanding of emergency response management
(ERM), an overview of the general characteristics, phases and challenges
in ERM is presented. ERM can be visualized as having three distinct
phases; pre-incident, during incident, and recovery phase (Chen et al.,
2008). The recovery phase relates to the work occurring after an incident
has been handled, such as writing reports and debriefs. For the purpose
of this thesis, we will focus on the phases before and during an incident.
As such, any phases related to the recovery phase of an incident is out of
scope.

The pre-incident phase is concerned with specifying guidelines and
protocols for how a response to a specified scenario should be conducted,
who should be involved, and who has responsibility for what. The during-
incident phase is when actions toward an ongoing emergency response are
coordinated. The during-incident phase can be further split into two parts;
the mini-second coordination cycle and the many-second coordination
cycle (see Figure 3.1). The mini-second coordination cycle pertains to the
onsite coordination entities, such as task force leaders. The onsite response
is usually reactive and is concerned with the local picture stemming
from the local scene. The many-second coordination cycle pertains to
the remote entities not directly involved with the onsite coordination
decisions, such as an emergency operations centre. The remote entities

15

Figure 3.1: Mini-second and many-second coordination cycles (Chen et al.,
2008).

typically deal with more strategic issues and work with the global picture.

It is valuable to distinguish between the mini-second and many-second
coordination cycles because there is a significant difference in the coordin-
ation capacity between the two. The remote entity acts under the many-
second coordination cycle and has a greater capacity to coordinate actions
on behalf of the mini-second onsite response actors.

For most emergency response scenarios, the coordination efforts of the
onsite emergency responders could be viewed as straightforward. The
scenarios involve actors and tasks that they had performed many times
before and required little to no coordination capacity, meaning that the
onsite responders could handle the response fully by themselves. For
more complex emergency responses where the onsite responders may not
have the capacity to coordinate anything other than the bare minimum,
the remote entity must maintain an excellent situational awareness to
assist and coordinate on behalf of the onsite responders. There might be
a need for additional emergency services, and the remote coordinating
entity usually performs the coordination between these. This coordination
effort is typical when an onsite emergency responder requests backup.
The onsite responder will usually tell the remote coordinating entity
that they require backup. The remote coordinating entity will locate
and delegate assistance based on several factors, such as proximity and
resource capabilities. Operations centres are a concrete example of a

16

remote coordinating entity and will be discussed next.

17

18

Chapter 4

Operations Centers

This chapter will focus on responsibilities, challenges, tools and practices
of remote coordinating entities. We will also provide concrete examples of
which remote coordinating entities exist in Norway.

A typical implementation of an operations centre is for emergency
services, such as fire, police or medical. Each operations centre typically
expose an emergency telephone number to call in to report incidents.
The operations centre’s job is to interpret and evaluate all incoming
messages, decide on appropriate action, and coordinate the response with
the relevant resources. The operations centres are also responsible for
resource management daily, including keeping track of units and people
on duty.

Though there is little literature on system integration in the emergency
operations centres, the next sections will discuss the publicly available
information about each of the emergency services’ operations centres,
explain how they are composed, and what authority and responsibility
they have.

4.1 Police Operation Centers

The police’s operations centres constitute the most significant part of the
emergency services in Norway and have the highest authority (‘PBS’,
2020). As discussed by Lundgaard, 2019, whenever initiatives have to

19

Figure 4.1: The logging part of PO (Lundgaard, 2019).

be coordinated between different emergency services, the police have
the highest authority and responsibility. The operations centres are
staffed by mainly two types of personnel; operators and operations
managers. The operator’s responsibilities are to continuously receive,
evaluate and prioritize messages from the police district’s operations
centres. The operations managers’ responsibilities include the same as
an operator. However, they also have decision-making responsibility and
responsibility for coordinating the response with the task leader1.

4.2 Logging and case management tool

All cases reported to the operations centre are logged in the "Politioper-
ativt system" (PO), the police’s logging and case management tool. Lun-
dgaard, 2019 explains that whenever a call is received, the operator has to
plot in the details about the incident in the logging part of PO in descend-
ing order from most to least important, with the location being at the top
and contact information about the caller at the bottom (see Figure 4.1).

1The task leader is the onsite coordinating entity

20

When the necessary details have been established, and the operator has
decided that police action is necessary, the operator will delegate and
coordinate the appropriate action with available resources. Lundgaard,
2019 emphasises the importance of the operations centre having an
overview of the patrols; which patrols are on duty, which are available
and what they are up to. The first and most apparent need for situational
awareness is that the operator must know which patrols can be sent on a
mission when something happens. Which people are on the patrols can be
critically important information and should be taken into account when
deciding on whom should be delegated to a task, as the people on patrols
might have different roles and experience.

4.2.1 Available Resources

When it comes to assessing which patrol is best suited for a mission,
Lundgaard, 2019 discuss several properties to consider, the patrol’s call
sign being one of them (see Table 4.1). The call signs are codes used
to decide which patrol to use and consist of multiple letters, followed
by a series of numbers. They provide information about the patrol’s
rank and the seniority of the officers. The letter indicates affiliation
to stations, special functions, sections or emergency resources, and the
numbers and their order indicate, among other things, seniority and
responsibility(Lundgaard, 2019). For example, one will see a car is
uniformed or civilian, passenger car or van, they can see which patrol is
the one with the highest rank in the district or that the patrol has a student.
Special patrols and functions, such as the task leader, various dog patrols,
the traffic corps, the special forces, crisis and hostage dealers, also have
distinct call signs (Lundgaard, 2019).

4.2.2 Resource Overview

Each operator has an overview of all available resources through the
resource bar of PO (see Figure 4.2). The resource bar is a separate part of
PO, a narrow window with an alphabetical list of all patrols and resources.
Lundgaard, 2019 explains that the resource bar is based on the patrols’
call signs and an abbreviation that describes their current status, such as
whether they are available, actively associated with a mission, writing a

21

Call sign Description Explanation
DELTA Tactical unit Antiterror police
MIKE Manglerud district General police patrols in

Oslo
NOVEMBER Stovner district General police patrols in

Oslo
HOTEL Port Police In winter, they often drive

H-3* or H-0* which is a car.
H-4* is a uniformed boat.
H-7* is a civilian boat

ROMEO Cavalry corps R-1* are riding / foot
patrols. R-0* can be both
car and horse. R-2* to R-9*
is car

SIERRA Centrum district General police patrols in
Oslo

TANGO Traffic corps T-6* and T-7* are motor-
cycles. T-38 is specially
equipped for management
in traffic accidents and the
like.

UNIFORM Task leader Onsite coordinating entity
VICTOR Dogpatrol V-30 to V33 are tracking

dogs. V-34 to V-37 are
combi patrols with drugs /
tracks, bomb dogs or other
specially groomed dogs.)

FOXTROT Grønland district General police patrols in
Oslo

Table 4.1: Selection of Oslo police district’s call signs.

22

Figure 4.2: The resource area of PO, with the resource bar on the left hand
side (Politihøgskolen, 2016)

report, or out for lunch. The resource bar provides an overview of the
different shifts and duration of the patrols. In order to keep an overview,
painstaking and continuous work is done to keep the resource bar up to
date. When a new shift starts, an operator will usually sign up to "update
the bar", i.e. check and maintain up-to-date the information (Lundgaard,
2019).

4.2.3 Mapping Tool

The last tool among the commonly used police operations centres is the
mapping tool, also known as Tellus. The core of Tellus is to provide
the operator with an interactive map of active patrols, their location and
their status. To find a patrol with the right competence and the shortest
possible distance to the mission, the operators will click around between
the units on the map before asking them to set course for the mission
(Lundgaard, 2019). Tellus also comes packaged with seven distinct extra
features (Inderhaug, 2018):

1. Free-sight analysis
Allows the user to see the visible area from a selected point in the
terrain.

23

2. Dispersion analysis
Allows the user to mark the point of toxic gas emission, explosion
hazard or smoke development, and wind direction and wind speed.
The system then indicates red, yellow and green zones in the
surrounding buildings.

3. Behavioural analysis
Indicates where a person may have gone by analyzing the easiest
path from a point in 16 different directions.

4. Buffer analysis
Allows the user to define a point or area and the desired distance
from this, at which point the system specifies a buffer zone around
the point/area.

5. Driving time range
Used to analyze how far a patrol car can drive in a given number of
minutes.

6. Density analysis
Provides a heat map of the density of, for example, calls received
within a given area. It can be used on historical data to identify areas
more vulnerable to crime in the future.

7. Proximity analysis
Allows the user to specify a point or address at which the system
finds nearby resources, for example, police or other emergency
services and missions.

Tellus was implemented in all police operations centres in late 2018
(Inderhaug, 2018) and superseded GeoPol. GeoPol is a 20-year old
mapping tool used by fire and police operations centres and is still used
by the fire operations centres.

4.3 Fire Operations Center

The organization and staffing of the fire service’s operations centre are
somewhat different from the police operations centre. To a greater extent,
the fire department’s preparedness is controlled by the municipalities

24

rather than by a designated directorate for the police. The municipalities
are responsible for establishing and operating the fire services operation
centres (‘DSB’, 2013). The operation centre ensures that necessary
information from callers is obtained as quickly and correctly as possible.
Furthermore, the operator provides professional guidance on what should
be done to limit further damage and secure persons. Once the location and
extent of the fire or accident have been determined, the operator will alert
relevant resources.

The police operations centres is continuously responsible for the patrols,
not just when delegating assignments. With the fire services, each patrol
takes more or less over the responsibility for the mission in its entirety.
The operations centre is then used when there is a need for more crews
or information that patrols cannot obtain on the spot themselves (Olsen,
2019).

4.4 Medical Operations Center

The emergency medical service is part of the health service’s emergency
preparedness and consists of the operations centres, often called AMK2,
and emergency centres. The medical operations centres are usually located
as a part of the hospitals. These centres are manned by health personnel,
usually nurses as medical operators, and ambulance personnel as resource
coordinators (Antonsen & Ellingsen, 2014).

The medical operators receives incoming calls, identifies the severity
of the emergency and provides first aid guidance to the caller. The
coordinator will usually listen in and coordinate a response with the
nearest ambulance according to the urgency. Along the way, the
medical operator will continue the dialog with the caller to obtain more
information about the urgency and provide medical advice on first aid
until ambulance resources are on scene.

The operators and coordinators work closely together to ensure the correct
response. Medical operators should master the tasks of the ambulance
coordinators, and vice versa. In this way, medical operators and

2Norwegian abbreviation of "Akuttmedisinsk kommunikasjonssentral"

25

ambulance coordinators can step in for each other and ensure robustness
in the event of major incidents or many simultaneous incidents (Antonsen
& Ellingsen, 2014).

26

Chapter 5

Standard operating procedures

One of the key coordination goals of the pre-incident phase is the exact
mapping from objectives to action-oriented plans with clear responsibil-
ity and accountability (Chen et al., 2008). Standard operating procedures
(SOP) are examples of products from pre-incident planning. A SOP is a
set of step-by-step instructions compiled by an organization to help em-
ployees carry out routine operations and is widely regarded as a key com-
ponent of effective and safe emergency response management (Ridenour
et al., 2005). Furthermore, SOPs provide valuable guidance during com-
plex incidents, where responders must make rapid coordination decisions
and, without the help of SOPs, would constrain their capabilities to ana-
lyze coordination problems and explore the solution domain (Chen et al.,
2008). However, a static, plan-based approach to emergency responses,
such as SOPs, relies heavily on pre-incident preparedness, and this some-
times leads to response inflexibility in the face of unexpected events (Chen
et al., 2008). There have been initiatives to deal with the inflexibility of
SOPs, such as the ‘90/10’ rule discussed by Weinschenk et al., 2008, which
states that ‘in 90% of situations, personnel are expected to comply with
their SOP specified initial tactical functions’1. Implementing the ‘90/10’
rule blindly for all SOPs might not have the desired effect. However, it
illustrates the importance of flexibility and individual judgment based on
the scenario at hand, as two emergency incidents will never be alike.

1Although the paper uses the term standard operating guidelines (SOG), in this essay,
the term SOP refers to both SOGs and SOPs.

27

Figure 5.1: The ideal SOP process (Duncan et al., 2014).

Although well-designed SOPs may provide safer and more efficient
emergency response coordination if followed carefully, they should not
be considered static and final (see Figure 5.1). It is still crucial to regularly
review and revise them to ensure that previous best practices still hold and
new emergency support tools are considered(Duncan et al., 2014).

5.1 Local relevance

The exact term "standard operating procedure" is not commonly used
among the Norwegian emergency response actors, but there are emer-
gency preparedness resources with identical or similar intended effects
as SOPs. This section relates the characteristics and effects of SOPs with
concrete Norwegian equivalents for each emergency agency.

The police department have collected their emergency preparedness
resources in a single system, ‘politiets beredskapssystem’ (PBS). This
system consists of three parts and is made available for all police districts

28

through the digital platform PBS Web.

PBS I: Police emergency preparedness guidelines
Provides guidelines for the police’s emergency preparedness work

PBS II: Police directorate management documents
The police directorate prepares management documents within the
various emergency preparedness areas. These help to form the basis
for the police districts’ plans.

PBS III: Police district’s plans
The police districts’ plans should be adapted to local conditions
based on PBS I and II guidelines. The police districts are responsible
for preparing, adapting, and revising their planning system in the
PBS Web platform according to local conditions and needs.

Together, these three parts constitute a comprehensive compilation of
decisions and guidelines for the police emergency preparedness system
(PBS). PBS can be used as a reference work for the individual service
person and is a tool for managers at all levels. It is intended to be an aid,
both for minor incidents and more complex incidents that require more
comprehensive management support (‘PBS’, 2020).

Fire and rescue services fall under the jurisdiction of the Directorate for
Civil Protection and Emergency Planning (DSB) (‘DSB’, 2013). DSB is, on
behalf of the Ministry of Justice and Emergency Preparedness, the admin-
istrative and supervisory bodies in key parts of the civil protection area.
DSB, as a fire authority, has professional management responsibility for
fire education and the municipalities’ fire and rescue service. DSB man-
ages emergency preparedness resources such as forest fire helicopters and
assistance for rescue at sea. The regional health authorities are respons-
ible for establishing and operating emergency medical communications
centres, including the emergency medical number 113.

Common for all three emergency services is that they rely on emergency
preparedness plans. These plans are typically developed on a regional
level and adapted to local conditions by each municipality. DSB also
describe a specified set of plans, namely action plans. The preparedness
plans and action plans differ in that preparedness plans are aimed at a
higher level, such as specific types of incidents (see Figure 5.2). Actions

29

Figure 5.2: Preparedness plan for car crash (‘Nakos’, 2018).

plans, on the other hand, are instead linked to specific risk objects, such as
safe and efficient entry of a burning building (‘DSB’, 2013).

The emergency preparedness plans must ensure that all resources are
mapped in advance, that routines for various incidents are described,
and the tasks are divided between different personnel and equipment
(‘DSB’, 2013). Emergency preparedness plans should exist in advance for
approximately identical incidents to be used by or coordinated with all
relevant task forces. For some incidents, it may be relevant to prepare
unique plans, possibly adapted for the individual task force (‘DSB’, 2013).

30

Chapter 6

Delegation and sequencing
problems

As previously mentioned in the introduction of this thesis, one of
the recurring coordination challenges regarding emergency response
management is the delegation and sequencing of tasks. Delegation
and sequencing problems involve multiple constraints such as role
and resource restrictions, task dependencies and response effectiveness
that must be satisfied to provide a valid and efficient response. This
chapter will discuss how the delegation and sequencing problem may
be formulated as a constraint satisfaction problem (CSP), highlight the
benefits of formulating the problem as a CSP and explain how CSPs may
be solved.

6.1 Defining a constraint satisfaction problem

CSPs are mathematical questions defined as a set of objects whose state
must satisfy several constraints or limitations. In order to define a
delegation-and-sequencing problem as a CSP, it has to lend itself to being
formulated in terms of the three components of a CSP; variables (X),
domains (D) and constraints (C):

1. X is the set of variables, {X1, ..., Xn}.

2. D is the set of domains, {D1, ..., Dn}, one for each variable.

31

3. C is the set of constraints that specify legal combinations of values.

In the context of emergency response procedures, the variables (X) can
be viewed as the set of actions inherent in a procedure. The domain
(D) may be specified as a taxonomy, which is the set of the available
resources, including their roles, for a specified scenario (see Figure 6.1).
The set of constraints (C) can be mapped in many ways, but for simplicity,
we will consider two simple constraints: role restrictions and temporal
restrictions. For example, only agents with role ‘driver’ are allowed to
drive and they can only drive one vehicle at a time.

Forest fire taxonomy

1. Attack engine crew

John Barry

driver

Frank

2. Attack engine crew

Jan Liz

driver

Kathrin

Ladder crew

Xi

driver

Lin Dahn

Figure 6.1: Example Taxonomy.

By encoding the delegation-and-sequencing problem as a constraint satis-
faction problem, it may take advantage of a powerful paradigm known as
constraint programming for formulating and solving combinatorial prob-
lems that can naturally be defined in terms of constraints (Bratko, 2011).

6.2 Constraint programming

A common way for a programmer to solve problems is to design an
algorithm and implement it in an imperative programming language
by describing each step of the algorithm. However, in constraint
programming, a declarative approach is used. Instead of describing
each step of an algorithm, the program only describes what is counted
as a solution by stating the constraints on the possible solutions for a
set of variables. The constraints differ from the common primitives
of imperative programming languages. They do not specify a step or
sequence of steps to execute but rather the properties of a solution to

32

Figure 6.2: Valid configuration for the 8 Queen problem.

be found. In addition to constraints, the program also needs to specify
a method to solve these constraints, which we will come back to in Section
6.3.

6.2.1 Example problem: n-Queens

A famous constraint satisfaction problem is the n-Queens problem. In the
n-Queens problem, N chess queens are placed on an N×N chessboard so
that no two queens can attack each other. For example, Figure 6.2 shows a
possible configuration for an 8 Queen problem.

The larger the chessboard and queens, the more possible solutions there
are. For instance, the 8 Queen problem yields 92 distinct solutions. One
way to solve the n-Queen problem is to place all the queens systematically
and check if the arrangement is a valid solution. If not, move one of the
queens and check if the arrangement is a valid solution (see Figure 6.3).
This is known as the generate-and-test methodology. This methodology
works fine for a few queens, but as the size of the board increases, so will
the complexity of finding a valid arrangement. Let us say that we design
an algorithm that tests all possible configurations of a given n-Queen

33

Figure 6.3: Invalid permutations of the 8 Queen problem.

problem. For a 4-Queen problem, there are 256 different configurations;
however, if we double the number of queens to 8, then there will be
16,777,216 different configurations to test (88). At 16 queens, there are
18,446,744,073,709,551,616 configurations, which would take millennia to
solve on a modern machine and is not a viable approach at face value.
However, there are specific methods we can apply to the generate-and-
test methodology to exclude a large number of configurations efficiently.
If we consider the example in Figure 6.3, we can see that there is no
point in testing any configuration where there are multiple queens in the
same column. The same applies to rows and diagonals. We can use
the knowledge about the specific problem to prune large large swathes
of possible configurations by utilising a concept known as backtracking,
which will be explained in the next sections.

6.3 Solving constraint satisfaction problems

It can be helpful to visualise the search space of a CSP as a constraint
graph to understand how CSP are be solved (see Figure 6.4). The nodes
in a constraint graph correspond to the variables, in this case, the queens.
The link between any two variables represents a constraint. In this case, a
link would be between any two nodes if the queens are in the same row,

34

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Figure 6.4: Example configuration of a constraint graph of the 8 Queens
problem. Nodes {5..8} violate the constraints.

column or diagonal, i.e. An illegal placement. A valid arrangement would
then be a graph where no nodes are linked.

The first step in finding a solution for a CSP is to assign a value (Qn) to
any of the variables (nodes), then check if the assignment violates any of
the constraints. If no constraints are violated, assign a new value. The
first assignment will naturally not violate any of the constraints, but as
more values are assigned to the variables, a constraint violation will likely
occur. If a constraint violation occurs, revert the assignment that resulted
in an invalid arrangement and assign a new value. This method is known
as backtracking and allows for more efficient solving of CSPs. When a
backtrack happens, all of the invalid configurations from the subset of
the illegal move are excluded, allowing for more efficient pruning of the
search space than what is possible with standard state-space searchers.

Chapter 10 will go into more detail on how delegation and sequencing
problems can be solved with answer set programming (ASP), a form of
declarative programming oriented toward difficult search problems such
as CSPs (Lifschitz, 2008).

35

36

Chapter 7

Answer set programming

Although this thesis focuses on the usage and human interaction with
rule-based AI, a general overview of the basics of rule-based AI is helpful
in understanding its usage. Chapter 6 discussed how the delegation
and sequencing problem could be formulated as a constraint satisfaction
problem (CSP) and how such problems may be solved in an efficient way1.
In order to solve such problems, the problem has to be specified in a formal
language, which is what will be discussed in this chapter.

7.1 Introduction to answer set programming

In the late 1990s, a new programming paradigm called answer set pro-
gramming (ASP) emerged as a relatively new offshoot of the logic pro-
gramming family of languages (Felfernig et al., 2014; Lifschitz, 2008). Its
roots, on the other hand, go back a long way; it is the result of years of
research in knowledge representation, logic programming, constraint sat-
isfaction and artificial intelligence, domains in which researchers looked
for and studied declarative languages to model domain knowledge. ASP
attempts to strike a balance between expressivity, usability, and compu-
tational efficiency by drawing inspiration from each of these domains
(Brewka et al., 2011).

1Formulating a problem as a CSP does not entail efficient solving, but it may provide
a more efficient alternative than using standard state-space searchers, such as depth-first
search.

37

Before diving into the specifics of ASP, we need to familiarise ourselves
with two key concepts of logic programming that are central to ASP
programs: non-monotonic reasoning and stable model semantics.

7.1.1 Non-monotonic reasoning

Non-monotonic reasoning is a method of logical reasoning that allows for
the addition of new information that may change the conclusions that are
drawn from a given set of information. This is in contrast to monotonic
reasoning, which only allows for the addition of information that does not
change the conclusions that are drawn from a given set of information.

7.1.2 Stable model semantics

Stable model semantics provides a powerful solution for knowledge
representation and non-monotonic reasoning problems (Madrid & Ojeda-
Aciego, 2008). Stable model semantics is a way of understanding non-
monotonic reasoning that is based on the idea of answer sets. An answer
set is a set of truth values for a set of statements that is consistent with the
rules of logic, but which allows for statements to be false if they are not
explicitly stated to be true. This concept is known as negation as failure.
The key idea behind stable model semantics is that it is not always the case
that the most logical conclusion is the correct one. In some cases, it may be
more reasonable to conclude that a statement is false if it is not explicitly
stated to be true.

The stable model semantics approach is particularly useful in cases where
there is incomplete information, or when the information that is available
is contradictory (Brewka et al., 2011). In these cases, the stable model
semantics approach can help to identify the most likely truth values for
the statements in question.

7.2 ASP semantics

Answer set programming is based on the stable model semantics of logic
programming. An ASP program is comprised of atoms, literals and rules,
similar to the composition of a logic program. Atoms are propositions,

38

that is, statements that can be used to determine the truth value of a logical
expression. Literals are atoms a and their negations are ¬a. The rules are
expressions in the form of

Head← Body (7.1)

where Head is a set of literals, and Body is a set of rule elements. The
rule elements describe constraints on the set of values of the propositional
symbols that appear in the Head. The← denotes implication on the set of
values. Intuitively, a rule 7.1 is a justification to derive that Head is true, if
all literals in Body are true. For example, the rule

f ather ← is_male, has_child (7.2)

informally means that we can assert that a person is a father if he is a
male and has a child. Rules without a Body are called facts, as the Head is
unconditionally true. Rules without a body is known as constraints and
have the function of excluding models that does not satisfy the constraints.

A program is a finite collections of rules. These rules describe the
relationships between different objects in a problem domain. In ASP, the
variables of the program is mapped to an arbitrary number of values that
seek to find assignments that satisfy the constraints of the program.

7.2.1 ASP rules

Following are some concrete examples of how ASP extends the logic
programming approach. In ASP, there are two key types of rules; normal
rules, and choice rules, starting with the normal rules:

large(C) : −size(C, S1), size(no, S2), S1 > S2. (7.3)

Similarly to the logic programming example in 7.1, the normal ASP rules

39

consists of two parts, the head:

large(C)

and the body:

size(C, S1), size(no, S2), S1 > S2.

The propositional symbols, i.e. C, S1, S2 can be considered variables and
are capitalized. constants, such as no are lowercase. The size() symbol
expresses the unary properties that hold between two values, such as a
country and its population size. The :- symbol separating the head and
body denotes implication from right to left. That is, the propositional
symbol C would be considered large if C is S1, the constant no is S2 and
S1 > S2.

Choice rules

A program may generate several stable models, but one might not always
be interested in all the solutions to a problem, and this is where the choice
rules comes into play. The choice rules describe alternative ways to form a
stable model. The head of a choice rule includes an expression in braces,
for instance:

{p(a); q(b)}. (7.4)

This choice rule describes all possible ways to choose which of the atoms
p(a) and q(b) are included in the model. The model generated from rule
7.4 yields four stable models, but the rule may be extended with the use of
cardinality constraints to only generate specific instances. We can specify
an upper and lower bound by putting an integer in front (lower bound) or
at the end (upper bound). We can then specify that we are only interested
in the stable models with two atoms2:

2Cardinality constraints that have equal upper and lower bound could also be written
with two equal signs followed by the cardinality constraint, i.e. {p(a); q(b)} == 2.

40

2{p(a); q(b)}2. (7.5)

This rule would generate a single stable model, as the only stable model
with two atoms is q(b), p(a). Keep in mind that as we are dealing with
sets, the order does not matter, and p(a), q(b) would be considered the
same stable model.

7.3 Optimization

When an ASP program has several stable models, we would be interested
in finding good stable models, or even the best possible, according to some
measure of quality. It is common to limit the number of stable models
returned, as one might not always be interested in all the solutions to a
problem. This is especially true in emergency response management, as
the emergency response manager cannot evaluate hundreds of plans with
minor nuances to determine which one is best.

Clingo supports several aggregate expressions for optimization that apply
to sets, such as #count, # maximise and #minimise. For example, the

#maximize{T : p(T)} (7.6)

directive works by evaluating all the p(T) literals in a model, summing
together the values of T, and maximize this value. If there is a model
where T is greater than in another model, then that model will be
considered higher quality. A more concrete example regarding emergency
response plan optimization will be discussed in Section 10.4.

7.4 Solving ASP programs

ASP programs are purely declarative; they express the problem but not
the logic of an algorithm for computing answers (Calimeri et al., 2019).

41

The task of finding the stable models of an ASP program is deferred to
an inference engine called an answer set solver. The ASP solving process
is divided into two steps. First, a grounder is used to replace all variables
with variable-free terms systematically. Grounding is required because
current answer set solvers work on variable-free programs. Secondly,
when the grounding is completed, the solver takes the resulting variable-
free program and computes the results known as stable models(Kaufmann
et al., 2016). In this project, Clingo is used, as it combines both a grounder
and solver for our ASP programs and allows solving of ASP problems
with a single library (Gebser et al., 2018).

7.4.1 Clingo

The ASP programs can be run in a number of ways, and Clingo has a
Command Line Interface that allow Clingo to be run from the terminal
by specifying a file containing the ASP rules. For example, one could run
rule 7.4 with the Clingo Command Line Interface by saving it to a file, e.g.
choice-rule.lp

clingo choice-rule.lp

The clingo command above would run the 7.4 program and output the
following stable models:

Listing 7.1: Clingo program output running the 7.4 choice rule

Answer : 1

Answer : 2
q (b)
Answer : 3
p (a)
Answer : 4
p (a) q (b)
SATISFIABLE

Models : 4

42

7.5 Modelling methodology

The modelling methodology used by ASP closely resembles the generate-
and-test methodology touched on in Section 6.2.1. The generate part
consists of the choice rules and normal rules that specify how to generate
possible solutions to the given problem. The test part consists of the
constraints of the program, i.e. rules without any Head. These constraints
check any solutions that the normal and choice rules comes up with, and
verify that they satisfy the constraints of the problem.

7.6 Summary

The aim of this chapter has been to give a basic overview to answer set
programming and explain what an ASP program consists of and how
ASP programs can be run using Clingo to ground and solve problems
encoded in ASP. Chapter 10 will give a more detailed explanation of how
the delegation-and-sequencing problem can be modelled in ASP and how to
allow non-technical users to interface with ASP and dynamically create
ASP programs.

43

44

Part III

Design concept

45

Chapter 8

Design concept

We have named the design concept Autonomous Delegation and Se-
quencing for Emergency Response Management (ADSERM) to easier dis-
tinguish between the many different terms used to describe the design
concept. ADSERM is a generic tool that seeks to autonomously pro-
duce a concrete action plan for complex incidents involving many dif-
ferent parties. The use case we will investigate in this thesis is the util-
ity of the tool in Norwegian emergency services and challenging multi-
agency incidents such as PLIVO1, bomb threats and evacuations. AD-
SERM provides an action plan that addresses who should do what and
when and can be adjusted during the incident response to adapt the re-
sponse to local conditions. ADSERM uses ASP to assist with adapting the
action plan and makes automatic adjustments to the task assignments to
minimize response time and ensure the most efficient response possible.

8.1 Design science approach

We have used the definition of a design concept as proposed by Ralph
and Wand, 2009 as a practical approach to developing design concepts.
They define goals as the intended impact of the actions in the domain on
the external environment. The artefact’s purpose is to enable the user to
accomplish these goals more effectively and efficiently. The artefact does
this by responding to stimuli from the user in ways that will support

1Norwegian emergency procedure for ongoing life-threatening violence

47

the user in accomplishing the goals. Accordingly, requirements can be
defined as the properties that the artefact should possess to accomplish
its purpose. These requirements can be of two types: structural and
behavioural and is the fundamental building blocks of this design concept
and will be discussed in more detail in the next sections.

8.2 Design concept goal

The goal of the design concept is to illustrate to the user how rule-based AI
can be used to intelligently delegate actions to help emergency response
managers coordinate efforts in complex, multi-agency incidents. The
design concept strives to mimic a familiar environment for the user to
clearly illustrate the utility of the concept in the context of the existing
systems. The design concept is based on available information about the
police centres’ capabilities, such as resource overview and mapping tools
mentioned in Sections 4.2.2 and 4.2.3.

8.3 Structural requirements

A structural requirement is a property the design concept must possess
regardless of domain. Structural requirements are intended to assure the
artefact can match well with the other components of the domain or those
of the external environment it might interact with (Ralph & Wand, 2009).
For this design concept, two key structural requirements need to be in
place:

1. Digital plans

2. Digital resource overview

8.3.1 Digital plans

The digital plans should describe the actions that need to be taken in
a given incident, who or what is responsible (roles and assets), and in
which circumstance the action should be completed (dependencies). The
excerpt in Figure 8.1 shows a digital version adapted from the analogue
PLIVO procedure used in the police today (see Appendix A.1). The

48

tasks in the digital version are translated from the analogue plan to
resemble the analogue version as closely as possible, with supplements
from the full PLIVO document (‘Helsedirektoratet’, 2017) to fill in the
gaps. The digital plan relies on assets and roles to describe who may be
assigned to a task. The asset descriptions and role assignments belong to
the second structural requirement, the digital resource overview, which
will be discussed shortly. The quantity property determines how many
resources should be allocated to the task. The abbreviation property is
simply an abbreviation or abstraction of the task details. The abbreviation
property is also what is used to assign dependencies. The following
sections will explain what each of the properties means and how they are
all used together in conjunction with ASP on a general level to generate a
concrete action plan adapted to local conditions.

Asset property

The asset property in Figure 8.1 is the top-level abstraction of resources
and may, for example, represent agencies such as police and fire services,
but also more specific branches of an agency such as anti-terror police or
operations centres. The point is that an asset is a collection of specific
resources, such as patrols. A task is never assigned to an asset but rather
one of the resources that belongs to the specified asset, along with any role
restrictions. Furthermore, each task supports two levels of assignment
denoted by the Assignment level property, either at the resource level, e.g.
patrol, or individual level, e.g. task leader.

Role property

This Asset property is used in conjunction with the Role property; if the
task has a role restriction, only resources with this Role will be considered
for that specific task. Each task supports multiple resources and role
restrictions and will find all resources or individuals that match the
resource and role restrictions.

Quantity property

The Quantity property is used to define how many resources or individu-
als are required for the specified task. The ASP program discussed by

49

Figure
8.1:Excerptofthe

digitalPLIV
O

plan.

50

Stolpe and Hannay, 2021 used an integer to represent the required amount
of resources for a task. Any task completable by a single individual was
denoted with quantity equal to one. Any task that involved collabora-
tion was denoted with the required quantity to complete the given task.
This approach was expanded to include more abstract representations in
this design concept to allow the digital plan to scale better with the scope
of the incident. Singular and collaborative tasks are still relevant, but the
abstraction adds another alternative; asynchronous tasks. A task is asyn-
chronous if the quantity property value is either All available or All on scene.
These tasks are named asynchronous because, in contrast to the collabor-
ative tasks, which also have a quantity greater than one, the resources are
not dependent on each other so that resources may complete the task at
different times. The All on scene property value is a consequence of the
asynchronous tasks and allows for assigning only resources that are on
the scene to a task. Section 8.6 will revisit the concept of asynchronous
tasks in more detail.

Supporting quantity properties such as All available and All on scene
are especially important in the context of the PLIVO procedure, as it
specifies that all available personnel should respond to a PLIVO incident
(‘Helsedirektoratet’, 2017).

Causality property

The causality property is somewhat unique in that it allows the user
to specify branches of actions that depend on a specified contingency
to happen. It is prevalent that procedures describe different actions
depending on specific events occurring. The procedure in Figure 5.2
describes actions to take in the event of a car crash. Imagine two diverging
courses of action to take depending on the type of cargo; if the car is loaded
with dangerous goods, the fire department takes the lead and establishes
contact with domain experts and initiates an appropriate response. If there
are no dangerous goods, health services may initiate their response.

51

Causality Value
Location 60.899259, 11.148053
Number of perpetrators 1
Weapon type Axe
Description of perpetrator Blue jacket, Black pants
Number of injured 1
Police on scene 0
Health on scene 0
Fire on scene 1

Table 8.1: An example of a PLIVO causality table.

8.3.2 Causality table

The local conditions to an incident are given through the causality table,
which is a separate table of circumstances relevant to the given incident
(see Table 8.3.1). Each incident consists of several causalities used to
determine the inclusion or exclusion of tasks. The causality table consists
of two properties that identify the type of contingency and the contingency
state. The causality property in the digital plan references one of the
causalities in the causality table and, based on the state of the contingency,
will include or exclude actions. For example, the fire services may initiate
measures against a perpetrator if there are no police on the scene and no
use of firearms.

8.3.3 Digital asset overview

The resource overview in Table 8.2 describes each resource according to its
call sign (1st column). The first letters describe which group the resource
belongs to, whether it be a general police patrol, cavalry or dog patrol 2.
The call signs are more than just a name to distinguish the patrols from
each other; they also provide information about the patrol’s position and
the seniority of the officers to the other patrols in the circuit. The letters
indicate affiliation to stations, special functions, sections or emergency
resources, and the digits and their order indicate, among other things,
seniority and responsibility and whether there are students on patrol
(Lundgaard, 2019).

2See Table 4.1 for a detailed overview of the police call signs used in the Oslo district

52

Resource Type(s) Location Actors
FOXTROT-2-0 VAN,

LEADING-
UNIT

60.899241,
11.148412

FOXTROT-2-0-ALFA,
FOXTROT-2-0-BRAVO

MIKE-3-0 SEDAN,
LEADING-
UNIT

60.899223,
11.148232

MIKE-3-0-ALFA, MIKE-
3-0-BRAVO

FOXTROT-2-1 SEDAN 60.899223,
11.148232

FOXTROT-2-1-ALFA,
FOXTROT-2-1-BRAVO

Table 8.2: An excerpt of the police resource overview, showing the three
first police resources. See the full overview in Appendix B.1

Actor Role(s) Resource
FOXTROT-2-0-ALFA TASK-LEADER FOXTROT-2-0
FOXTROT-2-0-BRAVO PATROL-PERSONELL FOXTROT-2-0
MIKE-3-0-ALFA TASK-LEADER MIKE-3-0

Table 8.3: An excerpt of the actor overview, showing the three first police
actors. See the full overview in Appendix B.2.

Each of the resources is further specified with several actors (see Table 8.3).
The actors may be viewed in the context of police patrols as individuals
belonging to a specific patrol. The naming convention of the actors,
i.e. appending phonetic notation at the end of the resource name, is
the current practice used by Norwegian police. Their seat in the vehicle
determines the order.

The role property of the actor is used in conjunction with the role
restriction property of the digital plan to determine which individuals may
be assigned to that specific task. An actor may have multiple roles, and
multiple roles may complete a task.

8.4 Behavioural requirements

Behavioural requirements define the desired responses of the artefact
to stimuli from the domain generated when the domain is working to
accomplish its goals (Ralph & Wand, 2009)—the behavioural requirements
of the design concept describe in which situations and how it should be
used.

53

8.4.1 Domain

The design concept is intended for remote coordinating entities. As
discussed in Section 3, the challenges and responsibilities of remote
coordinating entities, such as operators in operations centres, are different
to that of onsite responders. The remote entity is responsible for
supporting the onsite responders and managing the involved resources
on a higher, more strategic level. It is the coordination challenges of
the remote coordinating entity that this tool concept seeks to mitigate.
Concretely, the design concept is meant to illustrate usage in complex
incidents such as PLIVO, evacuations, and bomb threats where many
different agencies and participants are involved.

Example scenario

The following scenario is loosely based on the PLIVO incident in
Kongsberg on the 14th of October 2021, where a man killed five people
in a bow and arrow attack (‘Kongsberg’, 2021).

A caller calls the police operations centre and explains that a man in the
centre of Oslo is attacking people with an axe. The operations manager
uses the master view seen in Figure 8.2 to fill in the details as they are
told; location of the incident, number of perpetrators, type of weapon,
number of wounded and a description of the perpetrator. Based on the
details provided, the operations manager decides that a PLIVO response
should be initiated. The operations manager initiates a PLIVO response by
clicking the PLIVO button in the top left corner, and a window appears of
possible resources to delegate. The resources shown in the PLIVO window
are the bare minimum resources required to provide a sufficient response.
More resources could be allocated from the resource bar on the left-hand
side if the operations manager would want, and the system would ensure
that whichever resources were selected would be given appropriate tasks
based on the type of resource and roles.

The operations manager decides that the initial delegation proposed by
the system is adequate and clicks the START RESPONSE to initiate the
response. This action presents the operations manager with a new view;
the adaptive action plan seen in Figure 8.3. This view contains all the

54

Fi
gu

re
8.

2:
M

as
te

r
vi

ew
of

th
e

de
si

gn
co

nc
ep

t.
Pl

an
s

at
th

e
to

p,
R

es
ou

rc
es

on
th

e
le

ft
,c

au
sa

lit
y

ta
bl

e
in

th
e

bo
tt

om
an

d
a

po
ss

ib
le

de
le

ga
ti

on
of

re
so

ur
ce

s
in

th
e

m
id

dl
e.

55

tasks required for the specified scenario, concrete resources or individuals
assigned the specific tasks, and the proper ordering of the tasks. A more
detailed explanation of this interface will be given in Section 8.6, but in
short, this is the interface in which the operations manager coordinates
the response.

As the incident unfolds and contingencies happen, the system can
automatically rearrange and redelegate tasks based on the contingencies
updated by the operations manager. This allows the operations manager
to focus on gathering information about the incident and provides an up
to date overview of the response that may be shared with all involved
resources.

8.5 Functionalities and side effects

We have defined two main functionalities and two side effects to describe
how this system works and how it may be useful. The functionalities
describe the tool’s capabilities, whereas the side effects describe possible
benefits as a consequence of the functionalities.

8.5.1 Functionality: Automatic delegation

Automatic delegation is the initial delegation of resources based on a
specific scenario and available resources, roles, and local conditions in
the causality table. The system finds the appropriate resources and
automatically delegates tasks to provide the operations manager with an
immediate, plausible action plan adapted to local conditions.

8.5.2 Functionality: Intelligent redelegation

There is a necessity to support deviations from the initial plan as rigid or
static plans may become increasingly irrelevant as contingencies happen.
The intelligent redelegation functionality is a way to allow for the
adaptability of the initial action plan. If a contingency happens, the system
can intelligently redelegate and rearrange tasks to accommodate necessary
changes. As an example, in the context of the axe-man scenario described
in 8.4.1, let us imagine the perpetrator pulling out a firearm from his

56

Fi
gu

re
8.

3:
O

ve
rv

ie
w

of
th

e
ac

ti
on

pl
an

.

57

backpack. The operations manager is informed about this contingency
via the caller and updates the causality table with the updated weapon
type. This change will affect the response, as the appropriate response will
change from fire and health services being able to initiate actions towards
the perpetrator to fire and health services having to wait for the police to
secure the area.

8.5.3 Side effect: Distribution of tasks

As the system has a detailed bearing on resources, actors and their
assigned tasks, it is possible to distribute this overview to the appropriate
resources as illustrated in Appendix C.1. Another effect of distributing
tasks may also be a more decentralized response, where each resource
could accept or decline task assignments themselves.

8.5.4 Side effect: Common situational picture

The current practice of incident response management heavily relies
on radio and telephone communication. Simple communications are
easily distorted, and messages might be misheard due to bad reception
or noisy conditions. Repeating messages might quickly overload the
communication channels, and information flow may quickly disintegrate
(Militello et al., 2007), leading to poor situational awareness. A shared up-
to-date incident overview, such as illustrated in Appendix C.3 and C.2,
might be distributed to all involved resources for increased situational
awareness.

8.6 Usage

The preceding sections explained the domain and specific situations in
which the design concept is intended to be used, and also the functionality
and the entailing side effects. The next sections will focus on how the user
interacts with the system.

58

Figure 8.4: Example task taken from Figure 8.3 showing an ordinary task.

8.6.1 Task types

Before diving into the details, let us get familiar with the interface and
what purpose the components have. We direct our attention back to the
action plan interface in Figure 8.3. This interface contains all the relevant
tasks based on the causalities, delegated resources (or individuals), and
the proper ordering of tasks. Each task is assigned a colour based on the
resource type to easier distinguish to which type of resource a particular
task belongs. Purple is operations centre, blue is police, red is fire services,
and green is health services. Furthermore, each task can be one of the three
following types:

1. Ordinary tasks
Tasks that require only a single resource, such as in Figure 8.4

2. Collaborative tasks
Tasks that require multiple resources simultaneously to work to-
gether to complete the task.

3. Asynchronous tasks
Tasks with multiple resources but with no dependency on each other,
meaning that the resources may complete the task at different times.

8.6.2 Understanding of time

The tool not only needs a bearing on which resources are available to
participate in an incident at a general level but also needs to know
which resources are occupied with tasks within the response itself to
redelegate and provide coordination support for the operations manager
intelligently. Consequently, the tool also needs a notion of time; what is
the current state of the response? What has already happened? What

59

Figure 8.5: Visualisation of the four task states.

are the following immediate tasks? Which tasks are in the future? If the
tool did not support temporal awareness, the tool could make adjustments
in the action plan on tasks that have already taken place, rendering the
suggestions useless. Keeping track of time and available resources are
achieved through the four task states shown in Figure 8.5.

1. Pending
Dependencies are locked, and the task is ready for delegation.

2. Locked
The task is delegated and locked.

3. Unreached
Dependencies are not locked, and the task is available for shuffling.

4. Excluded
The task is no longer relevant for the response.

For any task to achieve a particular state, external input is needed. This
input may be provided in many ways, for example, based on external
sensor data such as GPS; if a patrol is within five meters of the incident
area, the system may consider the patrol as on scene and automatically
"lock" the task. Although integrating external systems such as GPS may
provide the operations manager with helpful automatic updates, this

60

Figure 8.6: Prompt showing the delegation options.

thesis focuses on manual intervention by the operations manager.

8.6.3 Task assignment

Initially, all of the tasks in the action plan are in the unreached-state except
for the actions at the topmost level, which will be pending as they have no
dependencies. Progression through the response is achieved by "locking"
each task to transition dependent tasks from unreached to pending-state.
When a task is in the pending-state, it may be locked by clicking on the
suggested delegation. This will open a prompt showing three possible
actions to "lock" the task (see Figure 8.6):

1. Lock
Lock the currently suggested delegation.

2. Random assignment
Lock any possible resource, except for the current suggestion.

3. Redelegate
Redelegate the task to another valid resource suggested by the AI.

Suppose the user delegates a task to another resource than the system
initially suggested. In that case, this may lead to an invalid action plan,
e.g. if the selected resource was already suggested for another action at
the same time. In such cases, the system will automatically redelegate and
possibly reshuffle the affected task(s) to a later stage3 to accommodate the
changes made by the user.

3For example if there are no other available resources at the given stage

61

8.7 Summary

This chapter has presented the design concept for the thesis. The goal
of the design concept is to illustrate how rule-based AI can be used
to intelligently delegate actions to help emergency response managers
coordinate efforts in complex, multi-agency incidents. The design concept
is based on available information about the police centre’s capabilities,
such as resource overview, call signs and mapping tools to provide a
familiar environment. We have explained how the design concept relies
on digital plans and resource overviews and how the design concept
may be used in a concrete scenario to provide coordination support. The
next section will explain how the design concept was brought to domain
experts for evaluation and the following results.

62

Chapter 9

Design concept evaluation

To evaluate the design concept, we set up individual workshops with
relevant actors from the emergency services. The participants were chosen
based on their experience with emergency response coordination. At
the beginning of the workshop, the participants were familiarised with
the project through an information letter (see Appendix E) and gave
consent to participate in the project. They received a presentation on
the general problem of delegation and sequencing actions in complex
emergency responses and a rundown of how the ADSERM design concept
worked, emphasising its functionality, requirements, and intended use.
Following the presentation was a concrete demonstration of the design
concept that demonstrated how the two core functionalities of the design
concept, automatic delegation and intelligent redelegation, could be used
to provide decision support in different types of incidents such as PLIVO,
bomb threats and evacuations. After the demonstration, a semi-structured
interview was conducted to determine the utility of the design concept.

9.1 Candidates

Finding candidates for the evaluation of the design concept was a
challenge. A reference group with relevant participants that could
participate had previously been established, but the project had ended,
and the participants were no longer available. Chapter 16.3 will go into
more detail about this. The evaluation was performed with two separate

63

candidates; one with experience in the ambulance emergency services and
one with experience in the fire and police operations centres.

9.2 Results from user evaluations

The following sections outline the findings from the evaluations of each of
the participants. As discussed in Section 2.4.2, the interview feedback was
summarised in a user story format to structure the feedback.

9.2.1 Fire operations center candidate

The first candidate had extensive experience from one of the largest fire
operations centres. This operations centre was co-located with the police,
which provided the candidate with valuable experience working with the
police.

Epic 1: As an Operator in complex incidents with lack of
resources I can omit tasks related to keeping responding
resources up to date by using the automatically updated
action plan to focus on information acquisition from ongoing
incidents.

Much of the feedback was related to the cumbersome processes of keeping
resources up to date about incidents. In complex incidents where all three
agencies are involved, there were challenges with keeping resources up to
date about the incident. Information was only given over the radio and
is easily distorted. The messages might be misheard due to bad reception
or noisy conditions. The fire operations centre worked extensively with
keeping a log of the information updates from the police. This information
was then relayed to the responding fire resources. Furthermore, other
incoming calls to the operations centre might need to be handled, and
updates from the police operations centre might not be logged. The
operator would be occupied on another call, resulting in a log out of sync.

Epic 2: As an Operator in incidents where dialog with caller
might take a long time I can get an immediate suggested del-
egation of available resources by using automatic delegation
to alert resources required within the required response time.

64

The fire operations centres are required, as stated by the Norwegian
Directorate for Civil Protection (DSB), to alert the required resources
within 90 seconds of receiving a call (‘DSB’, 2022). It is common
that acquiring information from the caller to determine the appropriate
response takes up a lot of this time. Examples include language
difficulties, stressed caller and unknown address. Epic 2 indicates that the
automatic delegation functionality might be used to provide the operator
with a suggested delegation based on available resources in a timely
manner.

Epic 3: As an Operator in infrequent incidents where external
resources may be of help I can get a suggested delegation of tasks
that may be fulfilled by external resource by using automatic
delegation to get external help when necessary.

In certain types of incidents, external resources such as the civil defence,
forest fire helicopters, and the home guard would be at the disposal of the
fire services; however, they were often forgotten or underutilised. Epic 3
indicates that the automatic delegation functionality could be used to help
the operator better utilise the external resources.

Epic 4: As an onsite response manager in complex incidents
I can find up to date incident response information by using
the distributed action plan to reduce unnecessary load on the
operations centre.

The onsite response manager would typically rely on information from
the operations centres. However, this information may not always be up
to date, and information cues may be missed or misinterpreted. Epic 4
indicates that the onsite response manager could benefit from using the
distributed action plan for up to date response information. This epic is
related to the first epic but from the perspective of the onsite coordinating
entity.

9.2.2 Ambulance services candidate

The second candidate had several years of experience in health services
and experience from the ambulance services.

65

Epic 1: As an ambulance worker when driving to an incident I
can find the correct meeting point and avoid dangerous areas
by using the distributed action plan to see if any zones have
been established and where they are.

One challenge described by the ambulance candidate, which was also an
issue for the fire services candidate, was providing information about the
zoning of the incident, i.e. where fire and health services should meet
and where they should avoid. The zoning could also change, and not
picking up on this information could be critical. Epic 1 indicates that the
distributed action plan could provide helpful information about zoning.

Epic 2: As an ambulance worker when arriving on scene I
can quickly establish contact with the correct resources by
using the distributed action plan to get an overview of the
responding resources and what they are doing.

Another challenge mentioned was that it was not always clear whom
the ambulance personnel should contact when arriving on the scene,
especially in larger, more complex incidents. This challenge is also
addressed in Steen-Tveit and Munkvold, 2021, where first responders
express a desire for a way to visualise and track other agencies’ operative
resources in joint operations. Epic 2 indicates that the distributed action
plan could provide an overview by combining the action plan with a
mapping tool to display resources’ location and tasks.

Epic 3: As an ambulance worker when arriving on scene I can
see which role and tasks I am assigned by using the distributed
action plan to know which responsibilities to fulfill.

The candidate described that it is not always trivial to know which role the
ambulance personnel has when arriving on the scene. For example, the
first health resource on the scene will be the health incident commander
until the task leader for health arrives on the scene. Furthermore, if
multiple health resources are onsite but there is still no health task
leader, the incident commander role is assigned to the most senior
health personnel. Specific tasks and responsibilities are associated with
the incident commander’s role. It may not always be immediately
apparent who fills this role and its responsibilities. Epic 3 indicates that

66

the distributed action plan could provide helpful information regarding
automatic role assignment based on seniority and the presence of existing
resources and information about the responsibilities.

9.3 Shortcomings

Based on the feedback from the evaluation candidates, there is no
indication that the Intelligent redelegation functionality discussed in Section
8.5.2 is of any help. This does not necessarily mean that this functionality
is useless for all emergency services, but rather that the candidates
involved belongs to emergency services where this functionality is not
directly helpful. As discussed in Section 4.1, the police’s operations
centres constitute the most significant part of the emergency services
in Norway and have the highest authority. Furthermore, as pointed
out by Lundgaard, 2019, whenever initiatives have to be coordinated
between different emergency services, the police have the responsibility.
Meaning that the health and fire resources will be coordinated by the police
operations centres in incidents where all three agencies are involved, and
that the police operations centres would be more likely to benefit from the
Intelligent redelegation. The fact that no police candidates are involved in
the evaluation of this design concept is discussed in more detail in Section
16.3.

67

68

Part IV

Implementation

69

Chapter 10

Modelling delegation and
sequencing problems in ASP

Chapter 7 discuss the basic principles of ASP; how answer set program-
ming is a type of programming in which the programmer encodes a set of
rules that define the problem, and the system automatically derives a set
of solutions that satisfy the rules. We discussed the basic syntax of writing
rules and two key rule types; normal rules and choice rules. In this sec-
tion, we will take a deeper look at how the ASP program from Stolpe and
Hannay, 2021 is used to model and solve delegation-and-sequencing prob-
lems. We start by considering how the delegation-and-sequencing problem
is encoded as ASP rules.

10.1 Encoding delegation and sequencing prob-

lems in ASP

As discussed in Chapter 10, there are two key types of ASP rules; normal
rules and choice rules. The rules previously discussed were static in that
the programs always ran with the same input. In an emergency response,
the plan and resources continually change, and the response has to be
adapted accordingly. As a result of the dynamic nature of emergency
responses, it is also necessary to build the ASP system with this in mind.
In this thesis, the program is split into two: the dynamic and static rules.

71

10.2 Dynamic rules

Writing ASP rules is not trivial and requires extensive knowledge of
logic and machine reasoning to encode even the of simplest problems.
For emergency response managers to utilise the potential of machine
reasoning with ASP, they need a way to interface with ASP to abstract
away the details. The digital plans discussed in Chapter 8 and illustrated
in Figure 8.1 is such an interface. This interface, or table, allows emergency
response managers to define the required rules. When an initial plan
is requested, based on the table data, the table data will be parsed into
what we will call the dynamic rules. Each row in the table data would
generate a block of rules. Section 14.1.3 will discuss in further detail how
the table data is parsed into ASP rules. The dynamic rules are regenerated
every time the response manager makes changes to the action plan. To
reiterate, the action plan is the concrete delegation and sequencing of tasks
to resources and actors (see Figure 8.3).

10.2.1 Example task: Define meeting point

Let us consider the third task defined in the digital plan in Appendix 8.1.
This task defines who should be responsible for establishing the fire and
health services meeting point1. The task defines that a single person from
the operations centre (OPS) with the OPS_LEADER role is required. The
task also states that this should occur after the emergency services have
been alerted of the incident. The following normal ASP rules describe
the task as mentioned above. First, the role and resource restrictions are
defined as shown below:

responsible(establish_meeting_point, Agent) :- property(Agent,
ops_leader), member(Agent, ops).

The normal rules consist of two parts, the head and the body, separated
by the "colon-dash" symbol, which looks a little like the arrow ← and
reads "if". Capital letters (Agent in this case) represent variables. For
any Agent to be responsible for establish_meeting_point, the Agent has to
have the ops_leader-role and be a member of the ops resource. Secondly,
the dynamic rules also need to describe resources, roles and ordering of

1Abbreviated OPM

72

tasks. Stolpe and Hannay, 2021 use unary properties that assign specific
values to an object to represent these properties. For example:

precedence(establish_meeting_point, alert_emergency_services).

This unary property describes the ordering constraint for the Establish
meeting point task, and that this task must be completed after emergency
services have been alerted. The last rule in the rule block defines what
capacity each resource has. This is also described with a unary property.
In this example, we know that one of the ops-leaders on duty is john.
We can therefore specify that john is a part of the OPS resource with the
OPS_LEADER role as shown below:

is(john, ops). property(john, ops_leader).

The three preceding rules make up a single block of rules (see Listing 10.1
that describe a single row from the digital plan. The system generates one
such block for all of the rows of the plan and combines these dynamic rule
blocks with the static rules to create a comprehensive ASP program. Keep
in mind that there will be variations to these rules depending on the table
data, and Listing 10.1 only shows one such encoding. Section 14.1.3 will
discuss other variations.

Listing 10.1: Rule block describing a single row from the digital plan.

1 r e s p o n s i b l e (es tab l i sh_meet ing_point , Agent)
2 : − property (Agent , ops_leader) , member (Agent , ops) .
3 precedence (es tab l i sh_meet ing_point ,
4 a ler t_emergency_serv ices) .
5 i s (john , ops) .
6 property (john , ops_leader) .

10.3 Static rules

The static rules can be considered the machine reasoning nucleus of the
tool concept, which does not change and describes problem knowledge
relevant to the emergency response domain. These rules describe the
overall control of the program, the different types of tasks and what each
task entails, i.e. what does it mean to be responsible for an action? These

73

static rules are entirely based on the work by Stolpe and Hannay, 2021,
and is used as the "brain" of the tool concept implementation.

The tool concept supports two types of tasks, primitive and collaborative.
Primitive tasks are tasks that are completable by a single agent, such as
hooking a hose to a hydrant. Collaborative tasks, as the name suggests,
require joint effort to be completed, such as patrol turnout or carrying a
wounded person on a stretcher. The static rules also describe membership
ascription and property assignments. The rule in the listing below is an
example of a static rule and describes ordering constraints.

:- someone_does(Ac1, T1), someone_does(Ac2, T2), not T1 < T2,
precedence(Ac2, Ac1).

This static rule uses the the precedence rule from the dynamic rules, and
verifies that if an action (Ac2) is dependent on the completeness of
another action (Ac1), all solutions must have action (Ac1) preceding action
(Ac2). Notice that this rule does not have any head, which means this is
considered a constraint.

10.4 Finding efficient plans

As discussed in Section 7.3, an ASP program may generate one or many
stable models, and we are only interested in the very best plan, according
to some measure of quality. One measure of quality could be to minimise
time. In emergency response management, time is usually of the essence,
and a slow response may, in some cases, prove fatal. A good plan should
perform as many simultaneous actions as possible while still respecting
the temporal constraints. To describe sequentially executed actions and
minimise time, we need to represent time in the program. Stolpe and
Hannay, 2021 suggest using integers to denote time, and the execution
of action will be assumed to take one unit of time. Multiple actions may
be performed at the same time, as long as they do not violate any of the
temporal constraints.

expedite(Action, Agent, Time) (10.1)

74

Figure 10.1: Stable model optimization comparison.

The rule above assigns an action to an agent at a specific time step. With
this rule, we can optimise our solutions by minimising the time steps
required with the expression below:

#minimise{Time: expedite(Action, Agent, Time)}

This expression instructs Clingo, our ASP grounder and solver, to improve
the first plan generated by reducing the time steps in a plan and keep
looking for better and better plans until the best plan is found. Clingo
supports several aggregate expressions that apply to sets, such as #count,
maximise, and in our example, # minimise. The minimise aggregate
expression is used by evaluating all the expedite atoms in a model,
summing together each time step (T), and minimising this value. If there
is a model where T is lower than in another model, that model will be
considered higher quality.

In Figure 10.1, we see two different stable models generated from the same
scenario. The plan on the left was run without time step minimisation,
whereas the right-hand plan was generated with. As we can see, the left-
hand plan has six additional time steps compared to the right plan. Both
plans have 14 actions indicated by the number x in the "accepted 0 of x"
statements. The right-hand plan performs as many simultaneous actions
as possible, reducing the time steps required.

75

10.5 Plan adaptation

Stolpe and Hannay, 2021 discuss the concept of adapting plans to an
evolving scenario and argue that it is a matter of revising an initial
plan upon learning of a deviation. An example of such an adaptation
could be if a particular agent is incapacitated or an emergency vehicle is
stuck in traffic. These events will have ramifications for the allocation
of responsibilities. Adapting plans and goals as events unfold is the
modern way of handling the uncertainty inherent in forecasting the future
(Hannay et al., 2015).

Stolpe and Hannay, 2021 presented a concept for how adaptive planning
may be implemented in Clingo by extending the basic ASP idiom known
as multishot solving.

The concept of multishot solving can be described as iterative, stateful
grounding and solving. The idea is to model evolving processes by
repeatedly grounding and solving a program in steps, accumulating
internal state in the form of known facts as one goes (Kaminski et al., 2021).
In other words, multishot solving aims to support incremental updates to a
model based on the existing facts or state.

Picture a scenario where all agents in an emergency response were given
a set of concrete tasks to complete. One of the agents was incapacitated,
and the tasks assigned to that agent would need to be covered by another
agent. ASP could generate a new plan without this agent available, but
the delegation of tasks in the new plan could differ significantly from the
previous one. All the agents and their assigned tasks might be given an
entirely new set of tasks, and the effort to coordinate this change would
be challenging and unnecessary. As Stolpe and Hannay, 2021 points out, a
plan over time should heed the maxim of minimal change. Meaning that
the plan before and after the revision should be as similar as possible.

10.6 Supporting plan adaptation in Clingo

In order to support plan adaptation, the program needs to know the
previous plan, and rules that specify what makes two plans similar.
Furthermore, the program needs to minimise the difference between the

76

previous plan and the new one.

Stolpe and Hannay, 2021 propose to solve multishot solving by leveraging
Clingo’s own built-in Python API for manipulating logic programs. Their
approach uses a continually running program, using a Python loop, that
stores the previous plan in memory. When a change to the plan is received,
the program generates new plans and compares each one to the previous
plan in memory and picks the most similar plan.

This thesis build on the approach set forth by Stolpe and Hannay, 2021
but modify the program to facilitate use in web-based applications.
We propose a stateless approach, which does not require a continually
running program. The stateful approach proposed by Stolpe and Hannay,
2021 works well if you can have a continually running program that
accepts input. However, in web-based applications, this would not be
practical as it would mean that each client would require a continually
running program that holds the state and waits for input.

Instead of having a continually running program to keep track of the
previous plan, one could pass the previous plan to the program as a state
parameter. For example, let us imagine our application is running as a
client-server model. The server contains our ASP program and is only
executed when the client initiates a request for a new action plan—the
client stores the plan and changes and requests a new plan based on the
changes. The previous plan, along with the changes, is sent to the server
as a JSON object (see Listing 10.2).

Passing state in this way is commonly known as Representational State
Transfer (REST) and is a widely accepted set of guidelines for creating
stateless, reliable web APIs. When the server receives the revision data,
the server will execute the ASP program with the changes and previous
plan as input and responds with a new plan.

10.6.1 Benefits of the stateless approach

There are several benefits to consider with the stateless approach:

Requires fewer resources
In the stateful approach, the ASP program would need to run

77

Listing 10.2: Revision JSON data.
1 {
2 "previousPlan": [
3 "previous(a,barry,1).",
4 "previous(b,jan,1).",
5 "previous(c,xi,1).",
6 ...
7],
8 "changes": [
9 "schedule(b, liz, 1)."

10 ...
11]
12 }

continuously to keep the previous plans in memory. As soon as the
program stops, the previous plan will disappear. Stateless programs
may be run on demand, freeing up resources when not needed.

Concurrent usage
The stateless approach supports multiple concurrent users. The
program is only dependent on the state of the request and not the
state of the program itself.

Decoupling
It is possible to decouple the program from a one-to-one scenario
relationship and have multiple applications run different scenarios
concurrently.

Remote computation
New plans could be generated remotely from the client and yield
several benefits, such as reducing the solving time for new plans by
running the program on hardware that is not accessible on handheld
devices.

A stateless approach is in line with the modelling and simulation as a
service (MSaaS) approach under development for civilian and military
crisis response and management (Hannay et al., 2020), in which the aim
is to specify and develop commonly shared functionality in terms of
standardised multi-user services hosted in secure clouds.

78

Chapter 11

Technical implementation

Before diving into the technical details regarding the implementation, let
us get an overview of the technical implementation of the ADSERM design
concept from a birds-eye view, highlighting the different components,
functionality and justifications for the user interface as a whole.

The primary goal of the design concept is to augment the coordina-
tion capabilities of emergency response managers during emergency re-
sponses. This is achieved by combining a digital plan that describes ac-
tions, responsibilities, temporal constraints, and available resources to
automatically create action plans that describe who should perform which
action and when. In a real-world scenario, the digital plans and available
resources would likely be external data used rather than data residing in
the tool. As mentioned in section 4.2.2, the police have an overview of
all available resources through the resource bar of their logging software.
This would be a reasonable system to integrate with to get accurate re-
source information. The digital plans could be synthesized from multiple
sources, such as from the existing analogue action plans from Appendix
A.1 or plans from the police’s emergency preparedness system. However,
integrating with existing systems is out of scope for this proof of concept,
and all the functionality needs to exist inside this proof of concept to make
it work as a standalone tool. The implementation, therefore, has function-
ality so that the user can design the plans and describe available resources
directly in the technical implementation.

79

Figure 11.1: Taxonomy designer

11.1 Defining available resources

In order to create a digital plan, we first need an overview of which
resources should be available for the specified scenario. In this technical
implementation, the resources are described through a taxonomy. The
taxonomy describes the arrangement, responsibility and relationship of
resources. These resources might intuitively represent teams but also
represent concrete resources such as vehicles and equipment. These
resources are mapped out in the taxonomy designer (see Figure 11.1). The
taxonomy designer allows the user to create new resources and assign
agents to these resources, along with many roles.

11.2 Defining a plan

When the resources are defined, the creation of a procedure may begin. As
with the digital plans from the design concept, each action describes seven
properties1:

1. The name of the action, denoting the action itself.

1This chapter will not go into detail about each of the properties, as this has already
been described in Section 8.3.1.

80

Figure 11.2: Plan designer

2. The required roles to perform the action.

3. The required resources to perform the action.

4. The number of people the action should be delegated to, e.g.
collaborative actions require multiple people to work together to
complete an action.

5. A shorthand abbreviation for the action used to specify temporal
constraints.

6. Temporal constraints

7. Action inclusion based on external contingencies.

These properties are added to the plan by simply filling in the value for
each property (see Figure 11.2).

11.3 Model visualization

When the taxonomy and procedure are in place, the user may start using
the tool concept. Requesting an initial suggested action plan will combine
the available resources based on the taxonomy and actions from the digital
plan to generate a suggested action plan.

11.3.1 Multi model visualization

Providing ASP with sufficient rules to describe the ordering constraints
of the tasks and taxonomy of the possible agents may generate several
different models that satisfy the constraints. The initial idea was that an
emergency response manager could quickly generate a reasonable course
of action based on existing plans and available resources. The initial
approach was to present each model, or plan, in a sunburst diagram,
where the actions would branch out from each other. Figure 11.3 shows

81

Figure 11.3: Example of the initial sunburst diagram

an example with three models, each as a separate sector containing a valid
model. The example scenario this sunburst diagram attempts to visualize
is rather simple. It consists of three entities, ae_crew, se_crew and lt_crew.
Each entity has to turn out, and complete a single task: rig firehose. Only
one task can occur at once, and the rig firehose task can only occur if the
entity has completed the turn out task. All of the entities have to have
completed the rig firehose task for a configuration to be considered valid.
The number of possible configurations for even such a primitive example
is quite large. A majority of the models will also be more or less identical,
as, for example, just two tasks switching places will result in a whole new
model. Similar models result in an unnecessary cognitive overhead when
the emergency response manager has to evaluate the minute differences
in each of the models. One alternative approach to solve this issue was to
limit the number of models generated and only consider the top N models,
where each model is scored based on time steps used to complete all of
the tasks in a plan. The fewer, the better. Still, with only a few models
generated, the sunburst visualization did not provide a clear distinction
between each model. Each model seemed just as good as the other, with
minute differences separating them.

82

11.3.2 Single model visualization

Because the tool-concept would support multishot solving, it would allow
the emergency response manager to adapt the initial suggested action plan
in the way that they see fit. This allows the technical implementation
to generate a single, optimum model, for which the emergency response
manager could adjust to the action plan at hand, E.g. assign a specific
person to a task or relieve another person from a task. Incrementally
adjusting the plan would allow the emergency response manager to cater
for the evolution and adaptation of the action plan during an incident,
such as relieving an incapacitated agent of their tasks (Stolpe & Hannay,
2021). To present the emergency response manager with a single, optimum
model and the options to schedule or relieve agents for specific tasks, the
concept of Action Cards is presented.

Action card visualization

The action card interface is the technical implementation of the action plan
discussed in chapter 8 and shown in Figure 8.3. The action plan from the
design concept bears a closer resemblance to a Gantt-chart visualization
than the action card concept described here. The Gantt-chart visualization
concept was conceived late in developing the design concept and was
not implemented in the technical implementation due to time constraints.
Still, the action card visualization presents the same information, albeit
less condensed.

Each action card contains the agent, action and time step. The cards are
ordered in chronological order, and tasks occurring at the same time are
put together (see Figure 11.4).

Each card support two possible actions, Accept and Revise. Accepting an
action card "locks" the action in place, meaning that the accepted card
has to exist at the given time step for any new model to be considered
valid. Revising an action presents the emergency response manager
with two options: Explicitly delegate the action to one of the possible
agents, or relieve the currently suggested agent, resulting in the delegation
to another available resource at random. Only agents that fulfil the
constraints for the task are shown. E.g. If a task requires an agent with

83

Figure 11.4: An excerpt from the action card section

Figure 11.5: The revision options of an action card

a role attribute of driver and a membership ascription to ae_crew, then only
such candidates will be shown.

84

Chapter 12

Technology choices

The requirements derived from the design concept evaluations were used
to justify the functionality of the technical implementation discussed in
this chapter. The design concept evaluations were focused on usage
and utility and did not address technical choices such as architecture,
platforms and technology. Following is a discussion regarding the
technical choices for the technical implementation.

1. Platform agnostic
The technical implementation should be accessible from various
platforms and form factors, such as police cars, handheld devices
and operation centres. The Norwegian police have widely adopted
tablets (‘Aftenposten’, 2013), which might be a relevant form factor
to consider when using the proposed tool during incidents.

2. Open source
To ensure that the project is possible to implement by whoever
wishes, the project must not depend on proprietary software in order
to work.

3. Fast prototyping
It should be possible to quickly develop and iterate over design
ideas and deploy the changes so that technical experts can access
the prototype.

4. Available remotely
The technical implementation should be accessible remotely and not

85

rely on any system that does not support remote access.

12.1 Platform agnostic and open source

A web-based application is easily deployable to many platforms and form
factors. A web-based application runs just as well on a Windows machine
as it does on macOS and Linux through its browser. It is accessible on
phones, tablets, and embedded systems, as long as they have support for
a browser. There is also an enormous amount of free, open-source libraries
and frameworks to choose from when considering web-based application
development, so picking technology that satisfies requirement 2, Open
source, would not be an issue.

Web-based applications can be categorized into two types of applications;
Static web applications and dynamic web applications. Static web
applications can be delivered directly to end users’ browsers without
the need for server-side alteration of the web page. On the other hand,
dynamic web applications rely on server-side logic to serve content for
the web application. There is a need for a server in this proof-of-concept
implementation, as ASP does not yet have robust client-side support. The
server will receive requests from the client to parse the data to ASP rules,
run the ASP program, and respond. In other words, the proof-of-concept
is a dynamic web application with the need for a dedicated server to
process the ASP data.

12.2 Fast prototyping

Ease of development was necessary. Multiple services are needed to work
together, such as the web page itself, a server running the ASP program
and a database for data to persist between sessions. A platform as a service
(PaaS) approach was used to minimize the setup of the development
environment and increase productivity. PaaS offers a comprehensive
cloud-based environment for development, testing and distribution. The
goal of using PaaS is to be able to quickly develop solutions without
having to think about the underlying infrastructure (Microsoft, 2022). The
three most prominent players in cloud services are Amazon Web Services

86

Figure 12.1: Services available for configuration through the Firebase CLI.

(AWS), Google Cloud Platform (GCP) and Microsoft Azure (Azure), where
the three alone make up 64 % of the market (Statista, 2022).

Although AWS has the largest market share with Azure shortly behind,
both platforms are complex systems that require a high level of expertise to
be used effectively. All three cloud providers have a vast array of services,
which are more than enough for this proof-of-concept. However, the
services may require extensive cloud computing knowledge to configure
properly. Both AWS with AWS Amplify and GCP with Firebase are
platforms built to simplify web and app development. This is done
by bundling together selected services and simplifying the development
process by minimizing setup and configuration. The platforms provide
access to Software Development Kits (SDKs), which offer ready-made
code for easy use of the services. The technical implementation is not
intended to be compliant, secure or production-ready, and the primary
justification for the choice of platform was what would give the most
significant pace of development.

Setting up the services was made easy through the Firebase Command
Line Interface (CLI), which prompts the user to select all the services
required for the task at hand (see Figure 12.1). In the case of the tool
concept, the following services as needed:

Firestore
For persisting data across sessions and allowing the data to be
distributed to all users simultaneously, providing real-time updates,
which could be a valuable feature to have in the context of
information sharing and common operational picture.

87

Functions
For running the server with the ASP program.

Hosting
To deploy the application, i.e. upload the code to a server, making
the application available for use (see Section 12.3).

Emulators
As the complexity of the application increased, Each new change
to the application would have to be tested thoroughly to ensure no
bugs were introduced. end-to-end (E2E) tests were necessary, and
they would have to be run in a different, emulated environment.

12.2.1 Testing

At the beginning of the project, verifying that changes were implemented
correctly was relatively trivial. However, as the complexity grew, verify-
ing that a change did not break some other feature became increasingly
challenging. The solution was to write E2E tests that emulated user in-
teraction. The tests could quickly and precisely run through all tests in
seconds and stop any deployments if any of the tests failed. The tests were
written using Cypress, which is a browser automation and testing tool de-
signed to allow developers to run automated tasks in browsers such as
clicking buttons, navigating pages, inputting data and verifying contents
of the web page (Cypress, 2022). With Cypress, we were able to write E2E
tests, which verified that new changes did not break the core functional-
ity of the tool concept and provided me with confidence that new features
were robust and did not break existing features.

12.3 Available remotely

It is prevalent for developers to use version control software to maintain
control over code changes during development. Git is the most common
version control software (Synopsys, 2022) and provides the developer
with a vast toolkit for working with code in a structured way. GitHub
is a platform that hosts projects running the Git version control software
and provides other services, such as Firebase, to connect to the repository

88

for the project and perform actions when new code is submitted. In order
to always have a relatively up-to-date version of the tool concept available,
the Firebase hosting configuration was set up so that each time a new
feature was pushed to the GitHub repository, a new deployment would
be made, ensuring that the remote application always was up to date.

89

90

Chapter 13

Client side specification

The client, in this case, a web page, commonly known as frontend, is the
interface in which the end-user interacts with the ASP program. Web
pages are rendered using HyperText Markup Language (HTML) for the
content and Cascading Style Sheet (CSS) for the styling of the content.
HTML and CSS by themselves do not support any interaction with the
web page, and a scripting language is required. JavaScript (JS) is the most
commonly used scripting language for web pages and also has libraries
for server-side applications (MDN, 2022).

Manually writing HTML code, styling with CSS and adding logic with
JavaScript is a time-consuming process that is prone to bugs and failures
and usually results in poor performance. Luckily, numerous frontend
frameworks intelligently render interactive content without the need for
knowledge about complicated browser rendering logic.

React is a JavaScript framework for web-based user interfaces created
and maintained by Facebook. It is one of the most prominent frontend
frameworks, with a well-established ecosystem of active developers
who actively creates new components and extensions (‘State of JS’,
2020). Competing frameworks include Vue and Angular, however for
this technical implementation, any of the major JavaScript frameworks
would suffice, and the decisions to use React was based on familiarity,
component ecosystem, and a vast developer community, allowing for
quick implement and iterations.

91

13.1 Tabular data

One of the core components of the frontend client is the table data
component. This component would be used to enter resource data
(taxonomy) and plan details. In other words, this is what is used by
the end-user to ultimately create the ASP rules. This table needed to
be flexible and dynamic, with support for nested data, such as the
taxonomy data, where individuals need to be expressed as children of
a team/agent/resource. The table needed to fetch data from multiple
sources dynamically; for example, the table needed to find all available
roles for a plan based on the available resources.

13.1.1 Multi-select options

There was a need to provide the user with a quick and easy way to specify
role and resource restrictions for tasks. The obvious choice was a form
multi-select functionality that would be populated based on available
resources. This functionality would also ensure that the user did not
enter invalid details into the plan, such as typos or unavailable roles or
resources.

13.1.2 Tabular data component

The React developer community is vast, and there are multiple libraries
for presenting tabular data. Picking a suitable library out of the many
options is not always easy and involves some investigative work into
maintenance, popularity and unsolved issues for a given library. One
promising tabular data library was material-table, a simple and powerful
table data component for React (Mehmet, 2020b). Throughout this
project, the maintenance of the library dwindled. The issues started
to pile up as an increasing portion of the library fell apart due to
dependency on deprecated React APIs (Mehmet, 2021), unresponsive user
interface (Mehmet, 2020a) issues and missing features, such as multi-select
dropdown and poor support for nested data. We were able to get by
the issues by extending the library by building custom components, such
as a multi-select dropdown (see Figure 13.1). Still, the library provided
valuable core functionality for the tool concept and was customizable

92

Figure 13.1: Custom multi-select dropdown for fast, easy and reliable role
selection.

enough to add missing features separately.

13.1.3 Mapping ASP models to JavaScript

After the server has run the ASP program with the parsed data, the server
responds with an optimal model, if any. The model from ASP is not
directly usable by the client (see Listing 13.1a), and each rule, or element,
has to be parsed into JavaScript in order to present the model in the form
of action cards.

To present the model to the client in the action card format, the
expedite rule must be mapped to the correct task from the table data.
Let us consider the first element in Listing 13.1a: expedite(aeTurnout,
palJorgensen, 1). The first parameter, aeTurnout, is the abbreviation of
the task, which needs to be mapped to the corresponding abbreviation
from the table data. To achieve this, we first have to divide the expedite
rule into each of its elements; task, resource and time step, as seen below:

const expedite = el.replaceAll(’"’, "").split(/[\(\)\s,]+/);
const abbreviation = expedite[1];
const agent = expedite[2];
const time = parseInt(expedite[3]);

Now, each of the elements of the expedite rule is accessible by specifying
the index of the element. To present the model, the abbreviation and agent

93

[
"expedite(aeTurnOut, palJorgensen, 1)",
"expedite(seTurnOut, barry, 2)",
"expedite(aeAdvanceHose, xi, 3)",
"expedite(sePumpWater, lin, 3)",

...
]

(a) Excerpt from server response with an optimal model.

(b) Action card rendered based on the the first expedite
rule.

Listing 13.1: Each of the expedite rules in 13.1a are rendered in the format
of 13.1b.

94

elements need to be parsed back to UI presentable data. Section 14.1.3
will go into more detail about how the ASP rules are created from user-
input, and why they have to be parsed, but for now, note that the model
returned from the server has to be parsed back to JavaScript. This is done
by iterating through the table data and finding the element that matches
the parsed abbreviation:

const findAction = tableData.find((el) =>
createReadableConst(el.abbreviation) === abbreviation

).action;

When we have found the matching element from the table data, we can
use this element to map the ASP expedite rules from Listing 13.1a to a
UI presentable format. The second parameter, palJorgensen, needs to be
mapped to the corresponding agent from the taxonomy table data and is
done in the same way as the action lookup, but rather than iterating over
the table data of the digital plan, we iterating over the taxonomy data to
find the agent. The last parameter, 1, indicating the time step for when the
actions should occur, does not need any parsing. When all expedite rules
are parsed into JavaScript, the model may be presented to the user.

13.2 Model visualization

As discussed in Section 11.3, multiple ways to present the action plan
to the user were implemented, but a single model visualization was
ultimately decided. The design concept uses a visualization similar to
a Gantt chart; however, due to time constraints, a more straightforward
visualization was used in the technical implementation, namely the action
card visualization. As the functionality and usage of the action cards have
already been described in Section 11.3.2, we will skip the details here and
instead focus on how it was implemented.

13.2.1 Action card implementation

When the expedite rules from the model have been mapped to the present-
able table data, then the action cards will be rendered in sections based
on the time element from the expedite rule. The revision functionality is

95

implemented by looking up the action and finding all possible resources
based on the resource and role restrictions of the action.

13.3 State management

In React, there are several ways to manage the applications state; for
example, it is typical that each component has its local state, e.g. a
dropdown menu has a boolean state variable indicating whether the
dropdown menu is closed or expanded, and another variable may hold
details about the contents of the dropdown menu. Similarly, there is a
concept of a global state which pertains to the data shared between all
components. This data can include states like the current page, global data
such as user details and any other data needed by multiple components.
In this technical implementation, we used primarily1 Redux as a global
state management library. Redux uses a central store to hold the state of
the application and can be updated from any component using defined
actions that updates the state. The global state may be defined at varying
levels of detail, and components can subscribe to specific state changes,
such as updated table data and page navigation, as seen on line 3 in Listing
13.2.

13.4 Persistence

At the beginning of the project, all the table data was loaded from a
JSON file, and changes were stored in memory. If the application were
refreshed or closed, all the table data changes would be gone. Permanent
changes would need to be manually added to the JSON files to persist
between sessions. As discussed in 12, Firebase was used as a development
platform and Firestore was used to persist the data between sessions.
Using Firestore meant that there was no need to create separate database
and server bindings and we could rely solely on the Firestore APIs to
persist and fetch data.

1Some libraries, such as Firestore discussed in the next section, use the Hooks API for
state management

96

Listing 13.2: Fetching table data from Firebase.
1 const firestore = useFirestore();
2 //Fetches the meta data of the currently viewed plan from

Redux
3 const tableMetaData = useSelector((state: RootState) =>

state.tableMetaData);
4 //Uses the meta data to fetch the plan from Firestore
5 const planRef = doc(firestore, "plans", tableMetaData.key);
6 const { data: planData } = useFirestoreDocData(planRef);

97

98

Chapter 14

Server side specification

The server, commonly known as backend, is a term used for the services
used by the client. The backend services are separated into two separate
services to easier distinguish between them: middleware and Clingo.

14.1 Middleware

The middleware is used to bridge the gap between the client and Clingo.
In this case, the middleware serves to process the data from the client to
ASP rules and send the complete rules to Clingo to compute a valid model.
When a model is returned from Clingo, the middleware will transform
the data into a format that the client may interpret. Since JavaScript was
chosen as the client-side programming language, it was also natural to
use JavaScript as the server-side language to minimize context switching
from one language to another. This is possible using Node.js, a server-side
framework for writing JavaScript applications.

14.1.1 Client-server communication

A common way to enable client-server communication is through what
is known as a Representational State Transfer Application Programming
Interface (REST API). Briefly touched on in Section 10.6, REST APIs are a
widely accepted set of guidelines for creating stateless, reliable web APIs.
In short, the REST guidelines describe five types of requests:

99

Figure 14.1: Flow diagram for generating an initial action plan.

1. GET To retrieve resource information only, and not modify it in any
way.

2. POST To create new resources.

3. PUT To update an existing resource.

4. DELETE To delete resources.

5. PATCH To perform a partial update on a resource.

The resource may have many different representations, such as YAML,
XML or JSON. In this proof-of-concept implementation, JSON is used as it
is compact, and JavaScript has built-in handlers for parsing JSON data.

Each operation for a specific resource is commonly called an endpoint.
For this proof-of-concept middleware, two endpoints were needed. The
first is a POST endpoint for creating an initial plan based on the table data
and available resources (see Figure 14.1). This endpoint returns the initial
suggested delegation of actions, also known as the action plan.

The second endpoint is also a POST endpoint and is used to perform
changes to the current action plan as described in Section 10.6. This
endpoint uses the table data, the previous action plan, and any changes
done to the action plan by the user to generate a new suggested plan
that satisfies the changes required by the user. As seen in Figure 14.2
the communication flow is similar to that of the initial suggested plan in
Figure 14.1 however, this endpoint allows for iterative, stateful grounding
and solving by repeatedly grounding and solving a program in steps,
accumulating state in the form of known facts and is what is known as
multishot solving as discussed in 10.6.

100

Figure 14.2: Flow diagram for action plan adaptations.

Listing 14.1: Express endpoint for initial suggested action plan.
1 app.post("/initial", async (req, res) => {
2 const reqBody = req.body;
3 const dynamicRules = generateDynamicRules(reqBody);
4 const control = fs.readFileSync("control.lp", "utf8");
5 const models = await clingo.run(control + dynamicRules, 1)
6 res.json(models);
7 });

14.1.2 Creating the API endpoints

The Express framework for Node was used to create the endpoints.
Express is a minimal and flexible Node.js web application framework
that provides a robust set of features for creating REST API endpoints
by providing boilerplate for handling requests and responses (Express.js,
2022).

In Listing 14.1, a stripped-down version of the endpoint for the initial
action plan is shown1. This endpoint will be executed when a POST
request is sent to the /initial path of the web-server. The endpoint will
parse the request body containing the JSON table data into the dynamic
ASP rules, run Clingo with the static and dynamic rules, and respond with
a model to the client.

14.1.3 Transforming JSON data to ASP rules

One of the challenges when providing an interface for end-users to
leverage ASP was translating table data to ASP rules. On the surface,
the data entered by the user into the table might seem trivial to translate
by just appending each piece of information into the body of a rule, and

1Error handling is removed for clarity, but the entire codebase can be found on GitHub
as discussed in 1.3

101

in some cases, it is that straightforward. However, the translation is no
longer trivial when a single task may have multiple roles and multiple
agents. For example, if a task has a role restriction for multiple roles,
e.g. both the firefighter and the smoke diver may perform venting, then
a superclass containing both roles must be created. The same applies to
agent restrictions, where, if multiple resources are selected, a superclass
needs to be created. The superclass encapsulates the relevant resources or
roles that a task can be delegated to instead of a single role or resource.
The transformation process is further complicated because the ASP rules
are encoded in such a way that commonly used characters would result
in broken rules. As such, there was a need for some helper functions to
create the ASP rules.

ASP translation helpers

Converting the JSON data to ASP rules required some domain-specific
parsing and sanitation. Firstly, the data had to be sanitized to ensure that
only supported characters were included in the ASP program. ASP uses
UTF-8 encoding, which does not support Norwegian letters such as æ, ø
and å. Secondly, the data will be converted to ASP variables, which do not
support numbers at the first position, e.g. 1st Attack Engine Crew, spaces,
dashes and most other special characters also have to be removed. In order
to ensure that all input followed the same format, a function was created
to parse the data (see Figure 14.2)

If we consider for example a task assignment to the 1st Attack Engine
Crew, the function above would parse this into firstAttackEngineCrew.
The function is not a sufficient security measure to avoid common hacker
attacks such as command injection attacks but rather a simple solution to
avoid program errors caused by invalid input.

14.2 Clingo

As discussed in Section 7.4.1, Clingo was used as a grounder and solver to
solve ASP programs. Running Clingo from the Command Line Interface
(CLI) is a simple and easy way to run programs manually, but executing
CLI commands programmatically and capturing the output from the

102

Listing 14.2: Functions to reliably parse user input to ASP variables.
1 export const createReadableConst = (input) => {
2 const readableConst = input
3 .replace(/\d.{2}/g, numberConverter)
4 .replace(/[^a-zA-Z0-9]/g, "");
5 return readableConst.charAt(0).toLowerCase() +

readableConst.slice(1);
6 };
7
8 const numberConverter = (stringNumber) => {
9 const ordinals = ["st", "nd", "rd", "th"];

10
11 if (ordinals.includes(stringNumber.slice(-2).toLowerCase()

)) {
12 return converter.toWordsOrdinal(stringNumber.slice(0,

-2));
13 }
14
15 return stringNumber.replace(/\d/g, converter.

toWordsOrdinal);
16 };

103

console is not a practical approach to computing ASP models on demand
from a client. Instead, Clingo is embedded into the NodeJS runtime
environment using clingo-wasm, a WebAssembly implementation of
Clingo. WebAssembly is a new type of code that can be run in modern web
browsers. It is a low-level assembly-like language with a compact binary
format that runs with near-native performance and provides languages
such as C/C++, C# and Rust with a compilation target so that they can
run on the web. It is also designed to run alongside JavaScript, allowing
both to work together (‘MDN’, 2022). WebAssembly applications can run
directly in browsers, and it is technically possible to run the clingo-wasm
implementation purely client-side without needing a server. However,
this was not a focus in this thesis but is discussed in Section 16.4 as an
interesting topic to consider for future work.

104

Chapter 15

Technical evaluation

The focus of the proof-of-concept implementation was mainly on testing
the feasibility of the design concept and not on creating an optimal or
efficient implementation. Therefore, the technical choices were made with
an emphasis on implementing changes quickly with familiar tools and
languages, as long as the technical choices were not in direct conflict with
the technical implementation. This chapter will address some of the core
challenges and missing features and how the proof-of-concept could be
improved.

15.1 Tabular data

As discussed in 13.1, the client needed to present table data in various
forms with nested data, dynamic data and relations. The react-table
library that was chosen for this project was not performing as anticipated
as discussed in 13.1.2 and another library to perform this task would
likely be beneficial. One alternative could be Tanstack’s react-table library
(‘NPM’, 2022). This library is maintained by a reputable company with
several widely used React libraries such as React Query, React Forms and
React Location amassing a total of 70K stars on GitHub (‘TanStack’, 2022).
Also, having a company maintain a library is likely to have a greater
capacity to maintain and follow up on issues than a single individual,
which is the case with Mehmet, 2020b. Furthermore, the TanStack react-
table library has 90% more weekly downloads as compared to Mehmet’s

105

react-table library and far fewer issues1.

15.2 Model visualization

The model visualisation is implemented differently than what the design
concept used due to time constraints. However, the action card approach
is not too far off and is missing one key property: the Gantt-like
branching of dependencies and states. The Gantt-chart approach could be
implemented using a visualisation library such as Highcharts. Highcharts
is one of the leading actors in web visualisation frameworks and is used by
companies such as StackOverflow, The Guardian and Visa (‘Highcharts’,
2019). That said, Highcharts is proprietary and requires payment for
commercial use. An open-source alternative could be Google’s react-Gantt
chart library (‘Google’, 2021).

15.3 Clingo environment

NodeJS was chosen as the server runtime environment as it was both
familiar and had Clingo support. However, it could have been appropriate
to implement the server with Python instead. Clingo also has an
implementation in Python and a library called Clorm, which provides
an Object Relational Mapping (ORM) interface with Clingo. This library
could simplify the process of translating JSON table data to ASP rules
and back as discussed in sections 14.1.3, 13.1.3. Furthermore, runtime
analysis of the different environments indicates a significant performance
difference between the NodeJS and the Python implementations of Clingo
(see Table 15.1). The ASP program that was run to produce this data was
an encoding of a concrete delegation-and-sequencing problem based on the
ASP program outlined by Stolpe and Hannay, 2021. Each test was run for
100 iterations, and the runtime was averaged across all runs. Furthermore,
the tests were run in a virtual machine emulating hardware of varying
capabilities to test how the implementations were affected. The findings
indicate that the fastest runtime of the Python Clingo implementation is
175% faster than the fastest NodeJS implementation. Interestingly, the

12 vs 38 issues at the time of writing.

106

RAM CPUs Capacity Environment Avg. Runtime (seconds)
6GB 4 100 Python 0.32
2GB 1 100 Python 0.37
1GB 1 50 Python 0.86
6GB 4 100 NodeJS 0.88
2GB 1 100 NodeJS 1.08
1GB 1 50 NodeJS 2.41
6GB 4 100 Client 1.27
2GB 1 100 Client 1.38
1GB 1 50 Client 3.76

Table 15.1: ASP runtime in different environments based on an encoding
of the delegation-and-sequencing problem.

client-side Clingo implementation, which uses the same implementation
as the NodeJS environment, is 30% slower in the best-case scenario.

15.3.1 Python middleware

Python offers several frameworks for creating APIs in the same way as
Express, such as Flask, Django and FastAPI (‘RapidAPI’, 2020). Although
switching server-side programming languages will require some technical
changes, the general client-server architecture discussed in Section 14.1.1
will remain the same. The client will send JSON table data; the Python
middleware will parse the table data into ASP rules, run the ASP program,
and return a model.

107

108

Chapter 16

Conclusions

16.1 Summary

This thesis have presented how coordination in complex, multi-agency
incidents is a significant challenge for remote coordinating entities
focusing on Norwegian operations centres. We have explained how the
delegation-and-sequencing problem is one of the core recurring tasks of
incident coordination and how AI planning with ASP may be used to solve
such problems. We derived a design concept based on the functionality
discussed in Stolpe and Hannay, 2021 to evaluate the utility of AI-based
decision support for delegation and sequencing of tasks. The design
concept was evaluated in workshops with relevant actors from different
emergency services. The results indicated that the design concept could be
helpful in complex, multi-agency incidents. Specifically, the participants
found that the system could help reduce the burden on the operations
centre by providing up-to-date incident information and improving the
utilisation of external resources.

16.2 Key findings

As this thesis comprises two different artefacts, i.e. the design concept and
the technical implementation, it is helpful to divide the findings into their
respective artefacts.

109

16.2.1 Design concept findings

The design concept evaluations indicated a challenge in information
sharing between the police operations centres and fire and health services.
Their systems were not integrated with the police’ systems, which led to
cumbersome and error-prone processes to keep their onsite resources up-
to-date on the incident. These processes involved operators needing to
relay information from the police to their respective onsite resources and
keep a log of the information shared to keep good situational awareness.
These processes sometimes failed; for example, if the operators relaying
the information had to respond to other calls and information cues from
the police were missed, resulting in onsite resources being out of sync. The
onsite resources would also communicate with their respective operations
centres for information about the incident. This information would be
provided by a log that each operations centre maintained about the
incident. Even though the police might have a single log of the incident,
this was not shared with the other agencies. Multiple, independent logs
could result in a poor common operational picture and unnecessary load
on the operations centres by having to keep a redundant up-to-date log
about the incident.

The user stories from the design concept indicated that the system could
be used to distribute a centralised, up-to-date overview of the incident
that shows not only a log of what has happened but also what is suggested
to happen. This overview could reduce the chance of operations centres
being out of sync due to missed information cues, as the information
would always be present, in contrast to radio communication. This
overview could also alleviate some of the pressure on the operations
centres by removing the need to keep an individual log up-to-date.

16.2.2 Technical findings

The technical implementation was intended as a first foray into how the
design concept could be implemented technically and what languages and
tools could be used. The working technical implementation demonstrates
that it is possible to create an interface that allows non-technical users to
create ASP programs and generate action plans without prior knowledge

110

in AI or machine reasoning. However, some implementation details could
make the development and usage of ASP interfaces more accessible. For
example, using Clorm, an Object Relational Mapping (ORM) interface
with Clingo available in Python, the translation of user input to ASP
rules could be simplified and more robust. Furthermore, runtime
analysis of Clingo implementations in different environments indicated
that the Python Clingo implementation was 175% faster than the NodeJS
implementation.

The technical implementation also implemented the usage of stateless
multishot-solving without the need for a continually running program to
keep track of state. Instead, the previous state is passed along with
changes to allow incremental updates to a model based on the existing
facts. This approach provides several benefits, such as fewer resource
requirements and concurrent usage, as the server does not need to be
continually running to keep the state in memory.

16.3 Shortcomings

The design concept evaluation should have been performed on more
participants and ideally with multiple iterations, but this was not possible
due to limited access to relevant participants. The limited number
of participants resulted from several factors, such as hard to come
by participants, COVID, and the war in Ukraine. A reference group
with relevant participants that could participate had previously been
established, but the project had ended, and the participants were no
longer available. Finding new participants for evaluation was challenging,
and regular involvement was not feasible. This meant that the artefacts
were built further from the users and were likely to have a less
familiar environment than if the users had been involved throughout
the whole process. Another significant shortcoming is the lack of police
involvement. The police have a crucial role in Norwegian emergency
response coordination and act as the coordinating entity when multiple
agencies are involved. Several attempts were made to involve police
resources, but unfortunately, due to the war in Ukraine and reduced case
management capacity thereof, the police could not participate.

111

16.3.1 Communication technology

As discussed in sections 8.5.4, 9.2.1 and 16.2.1, the emergency services
coordination capabilities relies on voice communication through the
emergency communication network. The emergency network has support
for data transfer at speeds of 3-12 kbit/s mainly intended for small packets
of data, such as text messages and position data (‘DSB’, 2020) 1. The
limited capacity of the emergency communication could have an effect on
the usability of the technical implementation, but is out of scope for this
thesis.

16.4 Future work

16.4.1 Police involvement

As discussed in Section 16.3, the police were not involved in the
evaluation of the design concept, and future work could be to evaluate
the design concept with relevant actors from the police operations centres.
Specifically, as discussed in Section 16.2.1, there was a lack of information
sharing from the police to the other agencies. It would be interesting
to evaluate whether this design concept provided valuable coordination
support and could be used to help the police share the up-to-date incident
overview with the other agencies.

16.4.2 ASP extensions

The existing ASP program provides a limited set of capabilities. Some core
functionality would have to be implemented to be of value in a real-world
situation. Below is an ordered list with what we deem to be the most to
least important extensions that would have to be in place.

Location & proximity
Location and proximity are essential to picking the right resource
for a task, coupled with role and capability reasoning; it may prove
helpful for an emergency response manager. This may be solved

1For context, the median data transfer speed in Norway was reported by ‘Ookla’, 2022
to be 104 mbit/s, which is a significant increase of 866567 % from the best case scenario
of 12 kbit/s.

112

by combining the Directions API from Google to get the distance to
the scene from each resource based on their GPS coordinates and
ASP using a minimised aggregate function to pick the closest, valid
resource.

Quantity
Although the technical implementation already supports a quantity
property, this property would likely be better represented at a higher
level of abstraction than single digits. For example, some tasks may
require a specific number of individuals, but many will require as
many as possible.

Dynamic roles
There is a need for dynamic roles in contexts where it is impossible to
know who will fill the role in advance. For example, the first health
resource on the scene will have the responsibilities of the health task
leader until the actual health task leader is on the scene.

Prioritised tasks
Providing some priority property for each task would allow the
system to prioritise more intelligently, moving "unimportant" tasks
to a later step. This allocation is random as long as the new
assignment satisfies all the constraints and heeds the maxim of
minimal change.

Assignment level
It does not make sense to allocate all tasks at the same level, i.e.
some tasks are natural to assign at an individual level, e.g. specific
leader should take some strategic decision. Other tasks make sense
to assign at a more general level, such as patrol should turn out to the
incident. It should be possible to specify the assignment level in the
table data and ASP rules to determine how far the delegation should
be assigned in the taxonomy.

16.4.3 Serverless approach

The technical implementation could be a serverless application, assuming
that the client is running as a browser. This is possible as ASP
programs can be run using the WebAssembly implementation of Clingo.

113

However, in complex emergency responses with multiple involved
agencies and feedback from the design concept evaluations indicating a
lack of information sharing, running the ASP program client-side without
syncing other clients would be counterintuitive. However, the clients
could be synced using a peer-to-peer alternative, such as WebSockets,
instead of relying on a central server to provide the updates.

114

Bibliography

Aftenposten. (2013). Retrieved May 13, 2021, from https : / / www .
aftenposten.no/norge/i/6nXrQ/politiet-satser-paa-nettbrett-i-felt

Antonsen, Y. & Ellingsen, M.-B. (2014). RASKERE OG RIKTIGERE NØD-
HJELP - Evaluering av samhandling i mellom politiets, brannvesenets
og helsevesenets nødmeldingssentraler i casene SAMLOK, SPREDT og
NÆR.

Baskerville, R., Pries-Heje, J. & Venable, J. (2011). A Risk Management
Framework for Design Science Research. 26, 1–10. https://doi.org/
10.1109/HICSS.2011.27

BBC. (2021). BBC News. Retrieved April 22, 2022, from https://www.bbc.
com/news/world-europe-58906165

Bratko, I. (2011). Prolog Programming for Artificial Intelligence (4th edition).
Pearson Education Canada.

Brewka, G., Eiter, T. & Truszczyński, M. (2011). Answer set programming
at a glance. Communications of the ACM, 54(12), 92–103. https://doi.
org/10.1145/2043174.2043195

Calimeri, F., Perri, S. & Zangari, J. (2019). Optimizing Answer Set Compu-
tation via Heuristic-Based Decomposition [Publisher: Cambridge
University Press]. Theory and Practice of Logic Programming, 19(4),
603–628. https://doi.org/10.1017/S1471068419000036

Chen, R., Sharman, R., Rao, H. R. & Upadhyaya, S. J. (2008). Coordination
in emergency response management. Communications of the ACM,
51(5), 66–73. https://doi.org/10.1145/1342327.1342340

Cypress. (2022). Why Cypress? Retrieved February 17, 2022, from https:
//docs.cypress.io/guides/overview/why-cypress

DSB. (2013). Retrieved May 13, 2021, from https : / / www . dsb . no /
lover/brannvern- brannvesen- nodnett/veiledning- til - forskrift/

115

https://www.aftenposten.no/norge/i/6nXrQ/politiet-satser-paa-nettbrett-i-felt
https://www.aftenposten.no/norge/i/6nXrQ/politiet-satser-paa-nettbrett-i-felt
https://doi.org/10.1109/HICSS.2011.27
https://doi.org/10.1109/HICSS.2011.27
https://www.bbc.com/news/world-europe-58906165
https://www.bbc.com/news/world-europe-58906165
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1017/S1471068419000036
https://doi.org/10.1145/1342327.1342340
https://docs.cypress.io/guides/overview/why-cypress
https://docs.cypress.io/guides/overview/why-cypress
https://www.dsb.no/lover/brannvern-brannvesen-nodnett/veiledning-til-forskrift/veiledning-til-forskrift-om-organisering-og-dimensjonering-av-brannvesen/#organisering-og-dimensjonering-av-forebyggende-oppgaver
https://www.dsb.no/lover/brannvern-brannvesen-nodnett/veiledning-til-forskrift/veiledning-til-forskrift-om-organisering-og-dimensjonering-av-brannvesen/#organisering-og-dimensjonering-av-forebyggende-oppgaver
https://www.dsb.no/lover/brannvern-brannvesen-nodnett/veiledning-til-forskrift/veiledning-til-forskrift-om-organisering-og-dimensjonering-av-brannvesen/#organisering-og-dimensjonering-av-forebyggende-oppgaver
https://www.dsb.no/lover/brannvern-brannvesen-nodnett/veiledning-til-forskrift/veiledning-til-forskrift-om-organisering-og-dimensjonering-av-brannvesen/#organisering-og-dimensjonering-av-forebyggende-oppgaver

veiledning- til- forskrift-om-organisering-og-dimensjonering-av-
brannvesen/#organisering-og-dimensjonering-av-forebyggende-
oppgaver

DSB. (2020). Retrieved May 13, 2022, from https :/ /www.nodnett .no /
siteassets/bibliotek/brukerveiledninger/nodnett-i-bruk-2020.pdf

DSB. (2022). Retrieved May 3, 2022, from https : / / www . dsb .
no / globalassets / dokumenter / veiledere - handboker - og -
informasjonsmateriell / veiledere / veiledning - til - forskrift - om -
organisering - bemanning - og - utrustning - av - brann -- og -
redningsvesen-og-nodmeldesentralene.pdf

Duncan, M. D., Littau, S. R., Kurzius-Spencer, M. & Burgess, J. L. (2014).
Development of Best Practice Standard Operating Procedures for
Prevention of Fireground Injuries. Fire Technology, 50(5), 1061–1076.
https://doi.org/10.1007/s10694-013-0342-9

Express.js. (2022). Express - Node.js web application framework. Retrieved
February 18, 2022, from https://expressjs.com/

Felfernig, A., Hotz, L., Bagley, C. & Tiihonen, J. (2014). Knowledge-Based
Configuration: From Research to Business Cases [Google-Books-ID:
fSqSAgAAQBAJ]. Newnes.

Gebser, M., Kaminski, R., Kaufmann, B. & Schaub, T. (2018). Multi-shot
ASP solving with clingo [arXiv: 1705.09811]. arXiv:1705.09811 [cs].
Retrieved May 7, 2022, from http://arxiv.org/abs/1705.09811

Google. (2021). Retrieved May 8, 2022, from https://developers.google.
com/chart/interactive/docs/gallery/ganttchart

Hannay, J. E., Brathen, K. & Hyndøy, J. (2015). On How Simulations Can
Support Adaptive Thinking in Operations Planning [Publisher:
NATO Science and Technology Organization].

Hannay, J. E., Brathen, K. & Mevassvik, O. M. (2017). Agile requirements
handling in a service-oriented taxonomy of capabilities. Require-
ments Engineering, 22(2), 289–314. https://doi.org/10.1007/s00766-
016-0244-8

Hannay, J. E., van den Berg, T., Gallant, S. & Gupton, K. (2020). Modeling
and Simulation as a Service infrastructure capabilities for discovery,
composition and execution of simulation services [Publisher: SAGE
Publications]. The Journal of Defense Modeling and Simulation, 18(1),
5–28. https://doi.org/10.1177/1548512919896855

116

https://www.dsb.no/lover/brannvern-brannvesen-nodnett/veiledning-til-forskrift/veiledning-til-forskrift-om-organisering-og-dimensjonering-av-brannvesen/#organisering-og-dimensjonering-av-forebyggende-oppgaver
https://www.dsb.no/lover/brannvern-brannvesen-nodnett/veiledning-til-forskrift/veiledning-til-forskrift-om-organisering-og-dimensjonering-av-brannvesen/#organisering-og-dimensjonering-av-forebyggende-oppgaver
https://www.dsb.no/lover/brannvern-brannvesen-nodnett/veiledning-til-forskrift/veiledning-til-forskrift-om-organisering-og-dimensjonering-av-brannvesen/#organisering-og-dimensjonering-av-forebyggende-oppgaver
https://www.dsb.no/lover/brannvern-brannvesen-nodnett/veiledning-til-forskrift/veiledning-til-forskrift-om-organisering-og-dimensjonering-av-brannvesen/#organisering-og-dimensjonering-av-forebyggende-oppgaver
https://www.dsb.no/lover/brannvern-brannvesen-nodnett/veiledning-til-forskrift/veiledning-til-forskrift-om-organisering-og-dimensjonering-av-brannvesen/#organisering-og-dimensjonering-av-forebyggende-oppgaver
https://www.nodnett.no/siteassets/bibliotek/brukerveiledninger/nodnett-i-bruk-2020.pdf
https://www.nodnett.no/siteassets/bibliotek/brukerveiledninger/nodnett-i-bruk-2020.pdf
https://www.dsb.no/globalassets/dokumenter/veiledere-handboker-og-informasjonsmateriell/veiledere/veiledning-til-forskrift-om-organisering-bemanning-og-utrustning-av-brann--og-redningsvesen-og-nodmeldesentralene.pdf
https://www.dsb.no/globalassets/dokumenter/veiledere-handboker-og-informasjonsmateriell/veiledere/veiledning-til-forskrift-om-organisering-bemanning-og-utrustning-av-brann--og-redningsvesen-og-nodmeldesentralene.pdf
https://www.dsb.no/globalassets/dokumenter/veiledere-handboker-og-informasjonsmateriell/veiledere/veiledning-til-forskrift-om-organisering-bemanning-og-utrustning-av-brann--og-redningsvesen-og-nodmeldesentralene.pdf
https://www.dsb.no/globalassets/dokumenter/veiledere-handboker-og-informasjonsmateriell/veiledere/veiledning-til-forskrift-om-organisering-bemanning-og-utrustning-av-brann--og-redningsvesen-og-nodmeldesentralene.pdf
https://www.dsb.no/globalassets/dokumenter/veiledere-handboker-og-informasjonsmateriell/veiledere/veiledning-til-forskrift-om-organisering-bemanning-og-utrustning-av-brann--og-redningsvesen-og-nodmeldesentralene.pdf
https://doi.org/10.1007/s10694-013-0342-9
https://expressjs.com/
http://arxiv.org/abs/1705.09811
https://developers.google.com/chart/interactive/docs/gallery/ganttchart
https://developers.google.com/chart/interactive/docs/gallery/ganttchart
https://doi.org/10.1007/s00766-016-0244-8
https://doi.org/10.1007/s00766-016-0244-8
https://doi.org/10.1177/1548512919896855

Helsedirektoratet. (2017). Retrieved May 10, 2022, from https : / / www.
helsedirektoratet.no/tema/akuttmedisin/pagaende-livstruende-
vold-plivo

Hevner, A., R, A., March, S., T, S., Park, Park, J., Ram & Sudha. (2004).
Design Science in Information Systems Research. Management
Information Systems Quarterly, 28, 75.

Highcharts. (2019). Retrieved May 8, 2022, from https://www.highcharts.
com/blog/posts/use-cases/

Hove, S. & Anda, B. (2005). Experiences from conducting semi-structured
interviews in empirical software engineering research [ISSN: 1530-
1435]. 11th IEEE International Software Metrics Symposium (MET-
RICS’05), 10 pp.–23. https://doi.org/10.1109/METRICS.2005.24

Inderhaug, E. (2018). Mapping tool. Retrieved November 12, 2021, from
https://www.politiforum.no/na-far-operasjonssentralene-nytt-
kartsystem/148804

Kaminski, R., Romero, J., Schaub, T. & Wanko, P. (2021). How to build your
own ASP-based system?! [arXiv: 2008.06692]. arXiv:2008.06692 [cs].
Retrieved January 15, 2022, from http://arxiv.org/abs/2008.06692

Kaufmann, B., Leone, N., Perri, S. & Schaub, T. (2016). Grounding and
Solving in Answer Set Programming. AI Magazine, 37(3), 25–32.
https://doi.org/10.1609/aimag.v37i3.2672

Lifschitz, V. (2008). What is answer set programming? Proceedings of the
23rd national conference on Artificial intelligence - Volume 3, 1594–1597.

Lundgaard, J. M. (2019). Kritisk kunnskap: Meningsdannelse og beslutnings-
prosesser ved politiets operasjonssentral (Doctoral dissertation) [Series:
Doktoravhandlinger forsvart ved Det juridiske fakultet Volume: nr.
142]. Institutt for kriminologi og rettssosiologi, Juridisk fakultet,
Universitetet i Oslo. Oslo.

Madrid, N. & Ojeda-Aciego, M. (2008). Towards a Fuzzy Answer Set
Semantics for Residuated Logic Programs. 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology, 260–264. https://doi.org/10.1109/WIIAT.2008.357

MDN. (2022). Retrieved May 7, 2022, from https : / / developer. mozilla .
org/en-US/docs/WebAssembly

MDN. (2022). JavaScript | MDN. Retrieved February 18, 2022, from https:
//developer.mozilla.org/en-US/docs/Web/JavaScript

117

https://www.helsedirektoratet.no/tema/akuttmedisin/pagaende-livstruende-vold-plivo
https://www.helsedirektoratet.no/tema/akuttmedisin/pagaende-livstruende-vold-plivo
https://www.helsedirektoratet.no/tema/akuttmedisin/pagaende-livstruende-vold-plivo
https://www.highcharts.com/blog/posts/use-cases/
https://www.highcharts.com/blog/posts/use-cases/
https://doi.org/10.1109/METRICS.2005.24
https://www.politiforum.no/na-far-operasjonssentralene-nytt-kartsystem/148804
https://www.politiforum.no/na-far-operasjonssentralene-nytt-kartsystem/148804
http://arxiv.org/abs/2008.06692
https://doi.org/10.1609/aimag.v37i3.2672
https://doi.org/10.1109/WIIAT.2008.357
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript

Mehmet, B. (2020a). Catastrophic freeze in infinite loop when updating
table context · Issue #2404 · mbrn/material-table. Retrieved Febru-
ary 18, 2022, from https : / / github . com / mbrn / material - table /
issues/2404

Mehmet, B. (2020b). Material-table. Retrieved February 18, 2022, from
https://material-table.com/#/

Mehmet, B. (2021). Pull requests · mbrn/material-table. Retrieved Febru-
ary 18, 2022, from https://github.com/mbrn/material-table

Microsoft. (2022). Types of Cloud Services. Retrieved February 17, 2022,
from https : / / docs . microsoft . com / en - us / learn / modules /
%20principles-cloud-computing/5-types-of-cloud-services

Militello, L. G., Patterson, E. S., Bowman, L. & Wears, R. (2007). Informa-
tion flow during crisis management: Challenges to coordination in
the emergency operations center. Cognition, Technology & Work, 9(1),
25–31. https://doi.org/10.1007/s10111-006-0059-3

Næss, H. E. & Pettersen, L. (2017). Metodebok for kreative fag.
Nakos. (2018). Retrieved November 5, 2021, from https://www.nakos.

no/mod/resource/view.php?id=23436&lang=sv
NPM. (2022). Retrieved May 7, 2022, from https : / / www. npmjs . com /

package/clingo-wasm
Olsen, V. S. (2019). Akutte og tidskritiske situasjoner ved en 110 og

112 sentral – hvordan fattes beslutningene? [Accepted: 2019-09-
30T12:09:35Z]. 101. Retrieved October 29, 2021, from https://hiof.
brage.unit.no/hiof-xmlui/handle/11250/2619394

Ookla. (2022). Retrieved May 13, 2022, from https://www.speedtest.net/
global-index

PBS. (2020). https : / / www. politiet . no / globalassets / 05 - om - oss / 03 -
strategier-og-planer/pbsi.pdf

Politihøgskolen. (2016). Operasjonssentralen. Retrieved November 5,
2021, from https://www.youtube.com/watch?v=onFZL8s6Amo

Puschnig, A. & Tavakoli Kolagari, R. (2004). Requirements engineering
in the development of innovative automotive embedded software
systems [ISSN: 1090-705X]. Proceedings. 12th IEEE International
Requirements Engineering Conference, 2004., 328–333. https : / / doi .
org/10.1109/ICRE.2004.1335691

118

https://github.com/mbrn/material-table/issues/2404
https://github.com/mbrn/material-table/issues/2404
https://material-table.com/#/
https://github.com/mbrn/material-table
https://docs.microsoft.com/en-us/learn/modules/%20principles-cloud-computing/5-types-of-cloud-services
https://docs.microsoft.com/en-us/learn/modules/%20principles-cloud-computing/5-types-of-cloud-services
https://doi.org/10.1007/s10111-006-0059-3
https://www.nakos.no/mod/resource/view.php?id=23436&lang=sv
https://www.nakos.no/mod/resource/view.php?id=23436&lang=sv
https://www.npmjs.com/package/clingo-wasm
https://www.npmjs.com/package/clingo-wasm
https://hiof.brage.unit.no/hiof-xmlui/handle/11250/2619394
https://hiof.brage.unit.no/hiof-xmlui/handle/11250/2619394
https://www.speedtest.net/global-index
https://www.speedtest.net/global-index
https://www.politiet.no/globalassets/05-om-oss/03-strategier-og-planer/pbsi.pdf
https://www.politiet.no/globalassets/05-om-oss/03-strategier-og-planer/pbsi.pdf
https://www.youtube.com/watch?v=onFZL8s6Amo
https://doi.org/10.1109/ICRE.2004.1335691
https://doi.org/10.1109/ICRE.2004.1335691

Ralph, P. & Wand, Y. (2009). A Proposal for a Formal Definition of the
Design Concept. In K. Lyytinen, P. Loucopoulos, J. Mylopoulos
& B. Robinson (Eds.), Design Requirements Engineering: A Ten-Year
Perspective (pp. 103–136). Springer. https://doi.org/10.1007/978-
3-540-92966-6_6

RapidAPI. (2020). Retrieved May 8, 2022, from https ://rapidapi .com/
blog/best-python-api-frameworks/

Ridenour, M., Noe, R., Proudfoot, S., Jackson, J., Hales, T. & Baldwin, T.
(2005). Fire Fighter Fatality Investigation and Prevention Program:
Leading Recommendations for Preventing, 56.

Sonnenberg, C. & Brocke, J. v. (2012). Evaluation Patterns for Design
Science Research Artefacts, 71–83. https://doi.org/10.1007/978-3-
642-33681-2_7

State of JS 2020: Front-end Frameworks. (2020). Retrieved May 16, 2021,
from https://2020.stateofjs.com/en-US/technologies/front-end-
frameworks/

Statista. (2022). Infographic: Amazon Leads $180-Billion Cloud Market.
Retrieved February 17, 2022, from https : / / www. statista . com /
chart / 18819 / worldwide - market - share - of - leading - cloud -
infrastructure-service-providers/

Steen-Tveit, K. & Munkvold, B. E. (2021). From common operational
picture to common situational understanding: An analysis based
on practitioner perspectives. Safety Science, 142, 105381. https : / /
doi.org/10.1016/j.ssci.2021.105381

Stolpe, A. & Hannay, J. E. (2021). On the adaptive delegation and
sequencing of actions., 12.

Synopsys. (2022). Compare Repositories - Open Hub. Retrieved February
17, 2022, from https://www.openhub.net/repositories/compare

TanStack. (2022). Retrieved May 8, 2022, from https : / / github . com /
TanStack

Turoff, M. & Chumer, M. (2004). THE DESIGN OF A DYNAMIC EMER-
GENCY RESPONSE MANAGEMENT INFORMATION SYSTEM
(DERMIS), 37.

Vaishnavi, V. & Kuechler, B. (2004). Design Science Research in Informa-
tion Systems. Association for Information Systems.

119

https://doi.org/10.1007/978-3-540-92966-6_6
https://doi.org/10.1007/978-3-540-92966-6_6
https://rapidapi.com/blog/best-python-api-frameworks/
https://rapidapi.com/blog/best-python-api-frameworks/
https://doi.org/10.1007/978-3-642-33681-2_7
https://doi.org/10.1007/978-3-642-33681-2_7
https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/
https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://doi.org/10.1016/j.ssci.2021.105381
https://doi.org/10.1016/j.ssci.2021.105381
https://www.openhub.net/repositories/compare
https://github.com/TanStack
https://github.com/TanStack

Weber, S. (2012). Comparing Key Characteristics Of Design Science
Research As An Approach And Paradigm, 14.

Weinschenk, C., Nicks, R. & Ezekoye, O. A. (2008). Analysis of Fireground
Standard Operating Guidelines/Procedures Compliance for Austin
Fire Department. Fire Technology, 44(1), 39–64. https://doi.org/10.
1007/s10694-007-0025-5

120

https://doi.org/10.1007/s10694-007-0025-5
https://doi.org/10.1007/s10694-007-0025-5

Appendix A

Plans

121

Figure A.1: Analog PLIVO plan.

122

Appendix B

Resource overview

Figure B.1: Police resources.

Figure B.2: Police actors.

123

124

Appendix C

Task distribution

Figure C.1: Example of task distribution for sierra police district in Oslo,
showing tasks assigned to each sierra patrol along with the causality table
for the ongoing incident.

125

Figure
C

.2:Illustrative
im

plem
entation

oftask
distribution.

126

Fi
gu

re
C

.3
:I

llu
st

ra
ti

ve
im

pl
em

en
ta

ti
on

of
ac

ti
on

pl
an

di
st

ri
bu

ti
on

fo
r

co
m

m
on

op
er

at
io

na
lp

ic
tu

re
.

127

128

Appendix D

Code

Listing D.1: Javascript encoding of the n Queens problem.

1 const has_conflict = (columns) => {
2 let len = columns.length,
3 last = columns[len - 1],
4 previous = len - 2;
5 while (previous >= 0) {
6 if (columns[previous] === last) return true;
7 if (last - (len - 1) === columns[previous] - previous) {
8 return true;
9 }

10 if (last + (len - 1) === columns[previous] + previous) {
11 return true;
12 }
13 previous--;
14 }
15 return false;
16 };
17
18 const place_next_queen = (total, queens, columns) => {
19 if (queens === 0) return columns;
20 columns = columns || [];
21 for (let column = 0; column < total; column++) {
22 columns.push(column);

129

23 if (!has_conflict(columns) &&
24 place_next_queen(total, queens - 1, columns)) {
25 return columns;
26 }
27 columns.pop(column);
28 }
29 return null;
30 };

130

Appendix E

Methodology

131

Informasjonsskriv 1

Informasjonsskriv
Bruk av regelbasert AI som støtteverktøy under kompleks
krisehåndtering

Dette er et spørsmål til deg om å delta i et prosjekt hvor formålet er å studere hvordan
regelbasert AI kan bistå krise og beredskapsledere med å koordinere oppgaver og
initiativ på tvers av etater i komplekse hendelser. I dette skrivet gis det informasjon om
målene for prosjektet og hva deltakelse vil innebære for deg.

Formål
Prosjektet er en masteroppgave i programmering og systemarkitektur ved Universitetet i
Oslo, institutt for informatikk.

Formålet med prosjektet er å studere hvordan regelbasert AI kan bistå krise og
beredskapsledere med å koordinere oppgaver og initiativ på tvers av etater i komplekse
hendelser. Sentralt i denne oppgaven er evalueringen av et design konsept som er
ment å evalueres med relevante aktører innenfor krise og beredskapsledelse. Design
konseptet er ikke tiltenkt som en helhetlig løsning for å løse koordineringsproblemer i
krisehåndtering, men forsøker heller å fokusere på en smal del av krisehåndtering som
vi definerer som delegering- og sekvenserings problemer.

Hvem er ansvarlig for prosjektet?
Prosjektansvarlig og student er Markus Dreyer, tlf 48048783

Veiledere for prosjektet er:

Seniorforsker ved Simula, Jo Erskine Hannay

Seniorforsker ved Norsk Regnesentral, Audun Stolpe

Hvorfor får du spørsmål om å delta?

Informasjonsskriv 2

Deltakerne er valgt ut på bakgrunn av deres stilling innenfor krise og
beredskapsledelse.

Hva innebærer det for deg å delta?
I dette prosjektet ønsker jeg å holde én til én intervjuer. I disse intervjuene ønsker jeg å
samle informasjon om meninger knyttet til hvordan design konseptet kan brukes,
svakheter ved design konseptet og mulige utvidelser som kan utvikles. Notatene vil
være anonymisert.

Det er frivillig å delta
Det er frivillig å delta i prosjektet. Hvis du velger å delta, kan du når som helst trekke
samtykket tilbake uten å oppgi noen grunn. Det vil ikke ha noen negative konsekvenser
for deg hvis du ikke vil delta eller senere velger å trekke deg.

Ditt personvern – hvordan vi oppbevarer og bruker dine
opplysninger
Vi vil bare bruke opplysningene om deg til formålene vi har fortalt om i dette skrivet. Vi
behandler opplysningene konfidensielt og i samsvar med personvernregelverket.
Deltakerne i prosjektet vil ikke være gjenkjennelige i selve oppgaven.

Samtykkeerklæring
Jeg har mottatt of forstått informasjonen om prosjektet, har fått anledning til å stille
spørsmål og samtykker til å delta i prosjektet.

Prosjektdeltaker, sted, dato

	I Introduction and Methodology
	Introduction
	Research goals
	Design concept
	Source code
	Accessing the technical implementation

	Methodology
	Defining a problem
	Literature review
	Problem definition

	Suggestion
	Development
	Evaluation
	Extending the DSR approach
	Structuring evaluation feedback

	Conclusion

	II Background
	Emergency response management cycles
	Operations Centers
	Police Operation Centers
	Logging and case management tool
	Available Resources
	Resource Overview
	Mapping Tool

	Fire Operations Center
	Medical Operations Center

	Standard operating procedures
	Local relevance

	Delegation and sequencing problems
	Defining a constraint satisfaction problem
	Constraint programming
	Example problem: n-Queens

	Solving constraint satisfaction problems

	Answer set programming
	Introduction to answer set programming
	Non-monotonic reasoning
	Stable model semantics

	ASP semantics
	ASP rules

	Optimization
	Solving ASP programs
	Clingo

	Modelling methodology
	Summary

	III Design concept
	Design concept
	Design science approach
	Design concept goal
	Structural requirements
	Digital plans
	Causality table
	Digital asset overview

	Behavioural requirements
	Domain

	Functionalities and side effects
	Functionality: Automatic delegation
	Functionality: Intelligent redelegation
	Side effect: Distribution of tasks
	Side effect: Common situational picture

	Usage
	Task types
	Understanding of time
	Task assignment

	Summary

	Design concept evaluation
	Candidates
	Results from user evaluations
	Fire operations center candidate
	Ambulance services candidate

	Shortcomings

	IV Implementation
	Modelling delegation and sequencing problems in ASP
	Encoding delegation and sequencing problems in ASP
	Dynamic rules
	Example task: Define meeting point

	Static rules
	Finding efficient plans
	Plan adaptation
	Supporting plan adaptation in Clingo
	Benefits of the stateless approach

	Technical implementation
	Defining available resources
	Defining a plan
	Model visualization
	Multi model visualization
	Single model visualization

	Technology choices
	Platform agnostic and open source
	Fast prototyping
	Testing

	Available remotely

	Client side specification
	Tabular data
	Multi-select options
	Tabular data component
	Mapping ASP models to JavaScript

	Model visualization
	Action card implementation

	State management
	Persistence

	Server side specification
	Middleware
	Client-server communication
	Creating the API endpoints
	Transforming JSON data to ASP rules

	Clingo

	Technical evaluation
	Tabular data
	Model visualization
	Clingo environment
	Python middleware

	Conclusions
	Summary
	Key findings
	Design concept findings
	Technical findings

	Shortcomings
	Communication technology

	Future work
	Police involvement
	ASP extensions
	Serverless approach

	Plans
	Resource overview
	Task distribution
	Code
	Methodology

