
University of Oslo

Master thesis

DFT Calculations of Metal Oxide
Semiconductors

An Improvement of Optical and Electronic Property
Calculations

Mariel Aulie Hinderaker

May 24, 2022



Abstract

Oxide semiconductors are essential materials in optoelectronics and they will especially be impor-
tant when we move towards a net-zero gas emission society. Hence, the optical and electronic
properties of semiconductor oxides are of great interest. In this thesis the quantum mechanical
modeling of semiconductor oxides are evaluated, optimized and discussed. The thesis evaluates dif-
ferent approximations to the exchange correlation functional, different approaches for calculating
the high-frequency dielectric constant, the static dielectric constant and the tolerance parameters
for convergence of the numerical methods used in the modeling. In addition, the k · p method was
implemented in the quantum mechanical modeling software, VASP, in order to improve the accu-
racy of the calculations. Optical and electronic properties of eight different metal oxides are pre-
sented in this thesis. The materials considered are the ε- and β-phase of gallium oxide, the α-quartz
modification of silicon dioxide, tin(II)- and tin(IV)-oxide, the rutile and anatase phase of titanium
dioxide and wurtzite zinc oxide. This evaluation focuses on the main properties such as crystalline
structures, the lattice parameters, the direct and indirect band gap energies, the electronic band
structure, the density of states (DOS), the dielectric functions, the absorption coefficients, the
static dielectric constant and the high-frequency dielectric constant. The approximation that pro-
vided the overall most accurate results were the hybrid functional with an exchange-correlation
energy consisting of 30% Hartee-Fock exchange energy and 70% Perdew-Burke-Ernzerhof (PBE)
exchange energy. This approximation provided calculated lattice parameters in good agreement
with experimental values. For the calculation of the static dielectric constant, a well relaxed struc-
ture is significant. Hence, the calculations for this property were performed with the generalized
gradient approximation with PBE potential, on a hybrid functional optimized structure. The
high-frequency dielectric function is in accordance to the Moss relation inverse proportional to the
band gap value of the material considered, which was confirmed by the calculations in this project.
Hybrid functional calculations were performed for high-freqency dielectric properties, because they
are known to provide accurate bandgap values. The k · p method proved to present insufficient
eigenstates when performing this method using a Γ point calculations. However, the k · p method
is expected to provide more accurate eigenstates with the use of more reference points.
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Sammendrag

Halvlederoksider er essensielle materialer innen optoelektroniske applikasjoner. De vil spesielt være
viktige i utviklingen mot det grønne skiftet. Dette gjør at de optiske og elektroniske egenskapene
til halvelederoksider er av stor interesse. I denne oppgaven vurderes og optimaliseres den kvan-
temekaniske modelleringen av halvlederoksider. Forskjellige tilnærminger til exchange-correlation
energien, ulike tilnærminger til beregningene av de dielektriske konstantene, og toleransekriteriet
for konvergens av numeriske metoder brukt i modelleringen tas i betraktning. I tillegg imple-
menteres k · p metoden i den kvantemekaniske modelleringsprogramvaren, VASP, for å forbedre
nøyaktigheten til beregningene. Optiske og elektroniske egenskaper presenteres for åtte forskjel-
lige oksider, nemlig ε- og β-fasen av galliumoksid, α-kvarts modifiseringen av silisiumdioksid,
anatas tinnoksid, rutil tinndioksid, rutil- og anatas titandioksid og wurtzite sinkoksid. Evaluerin-
gen fokuserer p̊a følgende egenskaper som krystallstrukturer, gitterparametre, b̊andgapsenergier,
elektroniske b̊andstrukturer, tilstandstettheter, dielektriske funksjoner, absorpsjonskoeffisienter,
statiske dielektriske konstanter og høy-frekvens dielektriske konsanter. Tilnærmingen til exchange-
correlation energien som ble valgt best̊ar av 30 % Hartree-Fock exchange energi og 70 % Perdew-
Burke-Ernzerhof (PBE) exchange energi. Denne tilnærmingen resulterte i beregnede gitterkon-
stanter som samsvarer bra med eksperimentelle verdier. For å beregne den statiske dielektriske
konstanten er det nødvendig med en nøye relaksert krystall struktur. Derfor er beregningene for
denne egenskapen utført med generalisert gradient tilnærming med PBE potensial, p̊a en allerede
hybrid funksjonal relaksert struktur. Høy-frekvens dielectriske konstanter er invers proporsjonale
med b̊andgapenergien til et gitt material, ifølge Moss relasjonen. Dette ble ogs̊a observert gjen-
nom beregningene. Hybrid funksjonal beregninger ble utført for å beregne høy-frekvens dielektriske
egenskaper fordi denne funksjonalen er kjent for å beregne mer nøyaktige b̊andgapsenergier. k · p
metoden viste seg å resultere i utilstrekkelige eigentilstander ved Γ punkt beregninger. Metoden
er derimot forventet å gi mer nøyaktige eigentilstander ved bruken av flere referansepunkter i
beregningene.
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Chapter 1

Introduction

Oxide semiconductors are important materials in optoelectronics and they will especially be im-
portant when we move towards a net-zero gas emission society. In order to achieve this we need
to take advantage of abundant and non-toxic materials. Optical and electronic properties for eight
different oxides are presented in this thesis. The materials considered are the ε- and β-phase of
gallium oxide, the α-quartz modification of silicon dioxide, tin(II)- and tin(IV)-oxide, the rutile
and anatase phase of titanium dioxide and wurtzite zinc oxide.

The optical and electronic properties presented are calculated using first principles density func-
tional theory (DFT). DFT is a widely used tool for quantum mechanical modeling of materials.
It is often interesting to have theoretical values to support upon experimental values, which is the
intention of the calculations in this work. How a material responds to an applied electrical field
is important when considering possible applications in the optical and electronic region. This will
be studied closely and compared to experimental values.

DFT is a quantum mechanical approach for modeling materials, and as for quantum mechan-
ics there are still some unresolved questions. The biggest mystery is how electrons in a material
effect each other. Or to be more precise, how we can calculate the potential caused by electrons in a
material. Therefore, in DFT an ansatz, a guess, for this potential has to be made. There are many
good approximations for this potential, resulting in values in agreement with experimental value.
However, a property that repeatedly gets incorrectly estimated is the bandgap values. The type of
ansatz that will be used in the calculations in this work is known as a hybrid functional potential.
This is a potential that has proven to yield bandgap values in good agreement with experimental
values. There are different hybrid functional potential and some of these will be tested in order to
find out which one will be best suited for this work.

Another problem when it comes to calculating semiconductors is due to the integration method
used in the numerical calculations. In quantum physics and in DFT the properties of the electrons
are described by wavefunctions. The properties of the electrons and therefore also the material are
found by solving the Schrödinger equation in the reciprocal space. This will be described more in
detail in Sect. 2.2.6. For calculating electronic and optical properties with density functional the-
ory (DFT) one has to integrate over the reciprocal space. For semiconductors it is the tetrahedron
method. This method is based on linear interpolation, which therefore is dependent on small step
sizes to give sufficient approximations, especially near the valence band maximum (VBM) and the
conduction band minimum (CBM) because of the curvature of the bands. With the intention to il-
luminate this problem, optical properties near the parabolic bands will be considered and discussed.

In stead of solving the Schrödinger equation for each point in the reciprocal space to find the
energies, the energies at only one point can be exploited as a basis set and used to calculate the
energies for all the points in the reciprocal space considered. This method is known as the k · p
method and is reported to be more time efficient than the ”regular” method. It is a well known
method in semiconductor physics, but it is not well used within DFT yet. Hence, the intention of
this thesis is also to implement this method in Vienna ab initio simulation package (VASP), the
tool used for DFT calculations.
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Chapter 2

Theory

2.1 Materials

2.1.1 Semiconductors

The energies accessible to individual electrons in a crystalline material are described by continuous
functions known as energy bands [33]. These energy bands are of allowed energies, separated by
regions of forbidden energies [14], called the bandgap. The collection of occupied electronic states
at 0 K is called the valence band and the collection of unoccupied states at 0 K is called the
conduction band. The band filling is in accordance to the Pauli exclusion principle. If one or
two bands are partly filled at 0 K the material is a semiconductor. When exposed to an applied
field the electrons may be excited from the valence band to the conduction band, resulting in
electronic conduction. Their response to such an applied field will be considered in this project. In
accordance to the Fermi-Dirac distribution the probability for occupancy in the conduction bands
increase with increasing temperature. The electronic conduction is therefore also affected by the
temperature.

Wide Bandgap Semiconductors

High-power switching devices for upcoming renewable energy are vital for the green shift. Wide-
bandgap semiconductors are promising materials in this area due to their high breakdown field
[34]. Their wide bandgap provides unique properties, including the ability to absorb and emit light
in the ultraviolet (UV) region. This makes them highly suitable for UV light emitting devices,
detectors and laser diodes [17].

Another important challenge regarding how to perform the green shift is concerning abundance.
Several of the oxides considered in this work are highly abundant materials. In addition to their
potential in the optoelectronic region, they also have potential in regions such as water, food, and
dermatology.

The materials studied in this work are wide-bandgap semiconductors and some of them are even
ultra-wide bandgap semiconductors. A material with ultra-wide bandgap is defined as a material
with a bandgap larger than 4 eV, while a bandgap bigger than 3 eV is defined as a wide bandgap
[33]. In this chapter the materials studied in this work are presented.

Zinc Oxide

Zinc oxide exists in three main crystal structures, wurtzite, zinc blende and rock salt. Zinc oxide
crystallized in the wurtzite structure, w-ZnO, is the most thermodynamically stable phase and will
be considered in this project.

Zinc oxide is an earth abundant, low-cost, transparent wide-band semiconductor. It has po-
tential concerning the optoelectronic field, such as for laser diodes and light-emitting diodes in
the ultraviolet region [26]. It is already used in applications such as piezoelectric transducers,
optical waveguides, conductive gas sensors, and transparent conductive electrodes [27]. Among
non-electronic applications, it is widely used in cosmetics, paint, ceramics, sunscreen, etc [11].
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2.1.2 Silicon Dioxide

To this day there are nine known allotropic modifications of silicon dioxide [3]. This project will
focus on the crystalline quartz modification of silica, α-SiO2, which is the most important and the
most abundant silica mineral.

Silicon dioxide, also known as silica is a very abundant semiconductor material. 90% of the Earth’s
crust consists in fact of silica. With this kind of access to the material, it is natural that silica has
been used since the beginning of the human timeline. The range of areas of use are in in glass,
ceramics, tools and jewelry, among others. Today the use of silica has extended to the solar cell
industry and high-tech applications such as optical devices, quantum technology and piezo quartz
[15]. All though it is an insulator, it is also important in the semiconductor field.

Titanium Dioxide

Titanium dioxide exists in six known phases, whereas four of these occur naturally [38]. These
faces are known as brookite, TiO2 (B), rutile and anatase. This project will concern the rutile
phase and the anatase phase of TiO2, denoted as r-TiO2 and a-TiO2 respectively. Both of these are
stable at most temperatures, however, the rutile phase is the most stable in macroscopic sizes and
anatase is the most stable in nanoscopic sizes [29]. The anatase phase is the preferred polymorph
in the case of solar cell applications [38].

TiO2 is attractive in photocatalysis, because of its efficient photoactivity, high stability, and low
cost. It is significant in transparent electronic devices, for example; thin films, sensors, and tran-
sistors. It also has high hydrophilicity, making it useful for self-cleaning coatings.
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Tin Oxide

Tin oxide exists in two major variants. Both of these variants, tin(II) oxide, and tin(IV) oxide,
will be considered in this project. Tin(II) oxide crystallizes in an anatase structure, while tin(IV)
oxide crystallizes in an rutile structure. Hence, they will be denoted respectively as a-SnO and
r-SnO2 further in this work.

The majority of the research concerning tin oxide is based on r-SnO2 due to its wide bandgap.
This property has made the variant attractive and important in optoelectronic technologies such
as in gas sensors, thin-film transistors, photovoltaic cells, etc. [35].

Limited research are available on a-SnO. This is because of its tendency to undergo dispropor-
tionation at a specific temperature and pressure [35]. However, due to the variant’s potential to be
used in thermoelectric generators and solar cells, research performed on this variant is increasing.
a-SnO has potential for applications including oxide electronics and thermoelectrics. a-SnO could
be a good replacement for other thermoelectric materials, since the predominant thermoelectric
materials are unstable at higher temperatures and are either toxic or have deficient access. a-SnO
is among the oxide thermoelectrics that is earth-abundant and non-toxic [1].

Gallium Oxide

Gallium oxide is a transparent, ultra-wide band-gap semiconductor that is very attractive in op-
toelectronics, as solar cells, solar-blind UV photodetectors, and gas sensing devices. It can occur
in five different phases. These are denoted as α, β, γ, δ and ε. A transient phase denoted as κ has
also been reported and is often mixed with the ε-phase. The present work will provide calculated
properties regarding β- and ε-phases of gallium oxide, β- and ε-Ga2O3.

β-gallium oxide has been studied more comprehensive than the other phases, because it is the
most thermodynamically stable phase. However, because of its strong anisotropy it is interesting
to study for other phases as well.

One of the phases crystallizes into an orthorhombic structure with space group Pna2. In the
reported literature it has been designated as both κ and ε. The phase it is mistaken with crystal-
lizes in a hexagonal structure, with the space group P63mc. The κ and ε phases have very similar
structures. The hexagonal phase is constructed by the twinning of three rotational domains of the
orthorhombic phase [37]. The ε-polymorph denoted in this work will refer to the orthorhombic
structure.
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2.2 The Density Functional Theory

The calculations in this thesis are based on first-principles density functional theory (DFT) in
conjunction with the Kohn-Sham equation. Due to its computational efficiency and accuracy, this
theory is the most widely used electronic structure method. It is used for diverse modeling prob-
lems in various fields of engineering, including material sciences.

DFT describes the ground-state properties of a material by knowing the ground-state electron den-
sity. Normally, to analyze the properties of a material, it is necessary to solve the time-independent
many-particle Schrödinger equation (neglecting spin for simplicity),

HenΨen(r, R) = EenΨen(r, R). (2.1)

Where the Hamiltonian Hen, the wavefunction Ψen(r,R), and the total energy Een describe a
many-particle system, with en denoting electrons and nuclei.

There are several approximations within DFT. One important approximation is the Born-Oppenheimer
approximation (BOA), which divides the nuclei (n) and the electrons (e) into separate mathemat-
ical problems. The many-particle wavefunction, Ψen(r,R), describes all the electrons and nuclei
and is simplified by variable separation into an electron part, Ψ(r), and a nuclei part, Θ(R). The
many-particle Schrödinger equation is thereby simplified to the electronic Schrödinger equation,

HΨ(r) = EΨ(r), (2.2)

with H = He being the electronic Hamiltonian and E describing the total energy of the electrons.
By using BOA it is possible to avoid solving the Schrödinger equation for electrons and nuclei
simultaneously. Another challenge occurs regarding the Hamiltonian H. H is a single-electron
operator, which should operate on single-electron wavefunctions. The wavefunction Ψ(r) is a
many-electron wavefunction and how to express it in terms of single-electron wavefunctions ψi(r)
is not yet known. DFT approaches this problem by using the electron density in the system. The
theory states that all ground state properties of the material are determined directly from the
ground state density,

n0(r) = |Ψ(r)|. (2.3)

DFT rests on the theorem stating this. This density is found by an iterative self-consistency
method which will be described more in detail in Sect. 2.2.2. The theorem was proved by Kohn
and Hohenberg and states:

”The ground-state energy from Schrödinger’s equation is a unique functional of the electron den-
sity.” [33]

DFT rests on two fundamental mathematical theorems. The second theorem is based on a set
of equations derived by Kohn and Sham:

”The electron density that minimizes the energy of the overall functional is the true electron
density corresponding to the full solution of the Schrödinger equation.”[33]

A variational principle for the energy density functional states that E[n0] < E[n], given that
n is not the ground-state density.
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2.2.1 The Kohn-Sham Equation

If the exact ground state density n0(r) is known, then DFT states that the exact ground state total
energy E[n0] is also known. But the expression of the energy functional E[n0] is not yet resolved.
This DFT problem can instead be solved by the Kohn-Sham equation, a method for finding the
exact ground-state density, and thereby also the exact corresponding total energy.

The Kohn-Sham method approximates Ψ(r) as a product of individual single electron wave func-
tions,

Ψ(r1, r2, ..., rNe
) = ψKS

1 (r1)ψ
KS
2 (r2)...ψ

KS
Ne (rNe

). (2.4)

known as a Hartree-like wavefunction. These auxiliary wavefunctions will generate exact electron
density depsite the fact that they are not the correct single-electron wavefunctions. Ne is the
number of electrons. The density given by these auxiliary wavefunctions is then

n(r) =

Ne∑
j=1

|ψKS
j (r)|2. (2.5)

To find this density one needs to solve the Kohn-Sham equation

{− h̄
2▽2

2me
+ VH(r) + Ven(r) + Vxc(r)}ψKS

j (r) = εKS
j ψKS

j (r). (2.6)

Here the terms on the left side is respectively the electron kinetic energy, the Hartree potential
VH(r), the electron-nuclei interaction Ven(r), and the exchange-correlation potential VXC . The
right side of Eq. 2.6 consist of the j:th single-particle wavefunction and its corresponding eigen-
value εKS

j .

The exact total energy as a functional of the exact density in DFT is described by

E[n] = F [n] +

∫
Ven(r)dr = T [n] + Uee[n] + Uen[n], (2.7)

consisting of the many-electron systems kinetic energy T [n], the many-electron interaction energy
Uee[n], and the many-electron-nuclei interaction Uen[n]. T [n] and Uee[n] are not yet known. To
get around these obstacles, known functionals can be added to the energy equation

E[n] = Ts[n] + Us[n] + Uen[n] + {(T [n]− Ts[n]) + (Uee[n]− Us[n])}︸ ︷︷ ︸
Exc[n]

. (2.8)

While Ts[n], the kinetic energy of the wavefunction, Us[n], the interaction energy of the wave-
function, and Uen[n] can be calculated exactly, the remaining terms cannot. The remaining terms
can be treated as one functional, which is known as the exchange-correlation energy: Exc[n] =
(T [n] − Ts[n]) + (Uee[n] − Us[n]). The exact total energy of a many-electron system is according
to the Kohn-Sham method described by

E[n] = Ts[n] + Us[n] + Uen[n] + Exc[n]. (2.9)

This expression is exact if Exc[n] is exact. Regardless of an exact ground state density and thereby
also an exact ground state total energy, the ground state energy eigenvalues of the Kohn-Sham
Hamiltonian however, cannot be exact. This is because the Kohn-Sham auxiliary wavefunctions
are not the correct single-particle wavefunctions to the Hamiltonian described in Eq. 2.6. An exact
expression for the exchange-correlation functional will never the less give an exact expression for
the total energy. This is because the exchange-correlation energy is meant to compensate for the
error due to the untrue wavefunction.

As the expression for Exc[n] is unknown, a good approximation is required to approach the total
energy of the system, defined in Eq. 2.9.
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2.2.2 Self-consistency

The Hartree potential in Eq. 2.6 is defined as

VH(r) = e2
∫

n(r′)

|r − r′|
d3r′, (2.10)

where e is the electron charge and n is the electron density. The Hartree potential is required in
order to calculate the electron density. However, we need the electron density in order to know
the Hartree potential. This is solved by an iterative method. First an initial guess is made for
the electron density n(r). Then this density is used to solve the Kohn-Sham equation and to find
the single-particle wave functions ψ(r). These wavefunctions are used to calculate the electron
density nKS(r), and finally, the initial density is compared with the calculated density [33]. If the
densities are equal, then this is the ground state density. If not, however, the algorithm continues
until the ground state density is found. The algorithm is summarized as followed:

1. Initial guess for the electron density n(r)
2. Find the single-particle wave functions ψ(r)
3. Calculate the electron density nKS(r)
4. Compare n(r) and nKS(r)

2.2.3 VASP

Vienna ab initio simulation package, VASP, is a software package for performing first-principles ab-
initio quantum-mechanical calculations of crystalline materials using the PAW-method and plane-
wave basis set [22, 20, 21]. It calculates an approximation to the many-body Schrödinger equation.
This can be done either within density functional theory by solving Kohn-Sham equations or within
Hartree-Fock approximation, solving Roothan equations. In this project the hybrid functional will
be utilized, which is a combination of Hartree-Fock and Kohn-Sham.

2.2.4 WIEN2k

VASP was used for mostly all the calculations performed in this work. However, the implementation
of the k · pmethod involved some challenges concerning the pmatrix, which will be explained more
in detail in Sect. 4.5. A solution to this problem was to use WIEN2k to provide corresponding p
matrices. WIEN2k is also a software package for performing quantum mechanical calculations [4],
but has a basis set of full-potential (linearized) augmented plane waves.

2.2.5 Pseudopotential

The use of pseudopotential instead of exact potentials is among the most important contributions
to reducing the computational cost. To simplify the many-electron problem, valence electrons and
inner-core electrons are treated separately. This is a valid approximation for most cases because
the binding properties are almost solely determined by the valence electrons in semiconductors.

A pseudopotential method is divided into two different approximations, the all-electron calcu-
lations, and the frozen core approximation. For the latter, the pseudopotential is used to replace
the electron density from the core electrons with a smoothed density. This density is pre-calculated
for the core electrons and is ”frozen”, fixed, in all subsequent calculations. Among the frozen core
approximations are the use of ultra-soft pseudopotential (USPP) and the projector-augmented-
wave (PAW) method. The latter was introduced by Blöchl and further adapted by Kresse and
Joubert for plane-wave calculations [33].
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2.2.6 Crystalline Materials

The materials considered in this project are crystalline materials, for which periodicity can be
exploited for the calculations. For each material, one can describe a primitive unit cell that can be
repeated in all directions of the crystal. The primitive unit cell is spanned by the primitive lattice
vectors a1, a2 and a3 and the lattice vectors in real space are defined as

R = n1a1 + n2a2 + n3a3, (2.11)

for any positive integer n1, n2 and n3. The potential in a perfect crystal is periodic, V (r) =
V (r + R), and thereby the Hamiltonian, H, too is periodic. This means that the periodicity also
applies to the electron density n(r). For a system with periodic potential the solution of the
Schrödinger equation can be described in terms of the Bloch function,

ψk(r) = eik·ruk(r), (2.12)

which is periodic in space. Solutions of this form are called plane waves. Many of the mathematical
problems within DFT are more convenient to solve in terms of k, rather than in terms of r. Any
vector in the continuous reciprocal space can be described as

k = m1b1 +m2b2 +m3b3, (2.13)

for any real numbers m1, m2 and m3. The primitive reciprocal lattice vectors b1, b2 and b3 are
given by

b1 =
2π

Ω
a2 × a3, b2 =

2π

Ω
a3 × a1, b3 =

2π

Ω
a1 × a2, (2.14)

and Ω = a1 · a2 × a3. The reciprocal lattice vectors are defined as

G = v1b1 + v2b2 + v3b3, (2.15)

for any positive integer v1, v2 and v3. The Blöch function is periodic in space, meaning that
uk(r) = uk(r +G). Because of the periodicity, the Blöch function can also be described as

uk(r) =
∑
G

uk+Ge
i·G·r. (2.16)

The solution to the Schrödinger equation at one single k point a summation over all the possible
reciprocal lattice vectors G has to be evaluated. This offers computational resource problems. The
plane waves have kinetic energy in the form of

E =
h̄2

2m
|k +G|2. (2.17)

The energy is expected to be more significant at the lowest energies [33]. Hence, the higher energies
can be cut off, and the size of the plane-wave basis set is limited to energies below

Ecut =
h̄2

2m
G2

cut. (2.18)

The given energy cutoff lifts the computational resource problem and limits the summation to
plane waves with kinetic energies less than the energy cutoff. The Blöch function is thereby given
by

uk(r) =
∑

|G+k|<Gcut

uk+Ge
i·G·r. (2.19)

The primitive cell defined by the primitive reciprocal lattice vectors in the reciprocal space is called
the Brillouin zone (BZ) [33]. When performing DFT calculations it is the BZ that is integrated
over, with integrals of the form

g =
Ω

(2π)3

∫
BZ

g(k)dk. (2.20)

The numerical methods for solving an integral of this type yields more accurate results with a
higher amount of k points. But they usually converge to the exact results for a certain amount
of points. Convergence tests will be performed considering both k points and energy cutoff before
starting with the calculations.
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This project involves band structure calculations, and high symmetry k points will therefore be
of use. A high symmetry k point in the Brillouin zone has site symmetry containing at least one
point symmetry operation, which is different from the symmetry of the neighboring k points [31].

Integrals of this form can be evaluated numerically and there are several methods for doing so.
The method used for BZ integration for the calculations in this work is the tetrahedron method
since it is recommended for calculations with semiconductors. The tetrahedron method uses a
finite set of discrete k points to divide the irreducible BZ into several tetrahedra, with a k point in
each corner of the tetrahedra. Thereby the tetrahedra fill the whole reciprocal space [33]. Linear
interpolation is used to obtain the remaining unknown values within each tetrahedron. Assuming
that the function to be integrated over is known at the discrete k points, the integration over the
remaining values can also be calculated [5].
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2.2.7 The k · p Method

One of the main limitations concerning DFT calculations is the computational time. For achieving
more accurate results this requires a higher number of k points to integrate over, and an increase
in k points will increase the computational time. A more efficient method for integrating over the
Brillouin zone has been developed, which is called the full-band k · p method. It is not based on a
newly discovered theory, as it has been used for 70 years already in semiconductor physics. How-
ever, it has not yet been normalized in DFT calculations. In DFT, one solves the single-particle
Kohn-Sham equation for every single k point in the Brillouin zone. With the k · p method, on the
other hand, one only needs to solve the single-particle Kohn-Sham equation for a few reference k
points. These reference k points will further be noted as k0 points. The single-particle Kohn-Sham
equation is first solved for the reference points in order to find their corresponding eigenvalues,
Ek0

. The wave functions and the energy eigenvalues at other points than the reference points are
then calculated by using the k0 eigenvalues as a basis set. This method is extremely time-efficient
compared to the traditional way [28].

Luttinger and Kohn [7] introduced a set of auxiliary functions,

χj(k, r) = ei(k−k0)·rψj(k0, r), (2.21)

which is useful in deriving this method. They fulfill the orthonormality conditions∫
χ∗
j′(k

′, r)χj(k, r)d
3r = δj′jδ(k

′ − k),
∑
j

∫
χ∗
j (k, r

′)χj(k, r)d
3k = δ(r′ − r). (2.22)

This derivation is described even more in detail by Callaways [7]. The unknown wavefunction
ψn(k, r) is expanded into the known auxiliary functions χj(k, r) as

ψn(k, r) =
∑
j

Anj(k)χj(k, r) =
∑
j

Anj(k)e
i(k−k0)·rψj(k0, r). (2.23)

Then one must solve the Schrödinger equation,

[
p2

2m
+ V (r)]ψn(k, r) = En(k)ψn(k, r). (2.24)

Inserting 2.23 into 2.24 gives:∑
j

Anj(k)[
p2

2m
+ V (r)]ei(k−k0)·rψj(k0, r)

= ei(k−k0)·r
∑
j

Anj(k)[Ej(k0) + (
h̄

m
)(k − k0) · p+ (

h̄2

2m
)(k − k0)

2]ψj(k0, r)

= En(k)e
i(k−k0)·r

∑
j

Anj(k)ψj(k0, r)

∑
j

Anj(k)[Ej(k0) + (
h̄

m
)(k − k0) · p+ (

h̄

2m
)(k − k0)

2]ψj(k0, r)

= En(k)
∑
j

Anj(k)ψj(k0, r).

Multiplying with ψ∗
l (k, r) and integrating over the reciprocal space, Ω, gives∑

j

Anj(k){[Ej(k0 − En(k)(
h̄2

2m
)(k − k0)

2]δjl + (
h̄

m
)(k − k0) · plj} = 0,

where

plj = [
(2π)3

Ω
]

∫
Ω

d3rψ∗
l (k0, r)pψj(k0, r)d

3r.

plj represents the matrix elements of the momentum operator. A non-trivial solution of these
simultaneous, linear, homogeneous equations requires the determinant of the coefficients to be
zero,

Hjl − En(k)δjl = 0,
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Hjl = [Ej(k0) + (
h̄2

2m
)(k2 − k2

0)]δjl + (
h̄

m
)(k − k0) · plj . (2.25)

En(k) is obtained by matrix diagonalization.

The accuracy of the calculated properties of a material increases with the increase in the size
of the reciprocal space they are calculated over. The full-band k · p method provides a possi-
bility to calculate the properties of a material within a large reciprocal space using much less
computational time compared to regular integration methods.
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2.3 Optical Properties

2.3.1 Dielectric Functions

The dielectric function is an important property of a material and is also related to optical absorp-
tion and electric conductivity. It describes the electronic response of a crystal to an electromagnetic
field [19]. The dielectric function consists of a real part and an imaginary part [13],

ϵ(ω) = ϵ(1)(ω) + iϵ(2)(ω). (2.26)

This is a simplification, where the local field effects are neglected. From the Kramers-Kronig
relations, when the imaginary part of the dielectric function,

ϵ
(2)
αβ(ω) =

4π2e2

Ω
limq→0

1

q2

∑
c,v,k

2wkδ(ϵck − ϵvk − ω)× ⟨µck+eαq|µvk⟩⟨µvk|µck+eβq⟩, (2.27)

is known, one can calculate the real part,

ϵ
(1)
αβ(ω) = 1 +

2

π
P

∫ ∞

0

ϵ
(2)
αβ(ω

′)ω′

ω′2 − ω2 + iη
dω′. (2.28)

In these equations describing the dielectric function e stands for the electron charge, Ω is the
primitive cell volume, v and c are respectively the valence and conducting band, α and β are
cartesian directions, and eα and eβ are unit vectors. µvk represents the periodicity in the Bloch
wave function and wk is the weight of k points. In this work the high frequency dielectric constants
will also be considered, which are the values of ϵ(1)(ω) and iϵ(2)(ω) at ω = 0. For a material the
high frequency dielectric constants are inverse related to the materials bandgap described by the
Moss relation [30],

ϵ(ω) =
A

E2
g

. (2.29)

2.3.2 Absorption

The absorption coefficient, defined in Eq. 2.30, is determined from the dielectric function,

ααβ(ω) =
2ωkαβ(ω)

c
, (2.30)

kαβ(ω) =

√
|ϵαβ(ω)| −Reϵαβ(ω)

2
. (2.31)

The electronic function is sensitively dependent on the electronic band structure of the crystal [19].
Hence, the arguments regarding error due to linear interpolation are also very accurate concerning
the approximation of the dielectric function. This also affects the absorption coefficient, since it is
completely dependent on the dielectric function, as shown in Eq. 2.30 and Eq. 2.31. The imaginary
part of the dielectric function can also be written in terms of the effective mass, showing a direct
context to the curvature of the bands [10],

ϵ
(2)
αβ(ω) = (

4πe

mω
)2|⟨v|p|c⟩|2ρcv(h̄ω)[f(Ev)− f(Ec)], (2.32)

where |⟨v|p|c⟩| couples states with the same electron wave vector in the valence and conduction
bands, ρcv(h̄ω) is the joint density of states and [f(Ev)− f(Ec)] is the Fermi functions.
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Chapter 3

Computational Details

3.1 Exchange Correlation Functional

To determine which approximation to the exchange-correlation functional would be the best in this
project, properties for the different materials were calculated using four different approximations.
The properties were calculated based on the generalized gradient approximation (GGA), one with
only the Perdew-Burke-Ernzerhof (PBE) functional describing the exchange-correlation potential
and the others based on hybrid functionals, which combines Hartree-Fock (HF) energy and PBE
energy. The PBE functional is described by the exchange-correlation functional of the local electron
density, n(r), and the gradient in the electron density, ∇n(r),

V GGA
xc (r) = VXC [n(r),∇n(r)]. (3.1)

For the hybrid functionals, the factor α specifies the amount of HF exchange energy in a hybrid
functional, as described in Eq. 3.2, [23, 16]. The different approximations for α were 0.0, 0.25,
0.30 and 0.375.

Eα
xc = αEHF

x + (1− α)EPBE
x + EPBE

c , (3.2)

where Eα
xc is the total exchange-correlation energy, αEHF

x is the fraction of HF energy, (1−α)EPBE
x

is the fraction of PBE energy, and EPBE
c is the PBE correlation energy. α = 0.0 is pure PBE ex-

change correlation energy, α = 0.25 is standard and recommended [23], and α =0.375 is commonly
used for w-ZnO calculations [16]. Because α = 0.25 resulted in many underestimated values and
α = 0.375 resulted in many overestimated values, α = 0.3 was also considered.

The properties calculated for the materials are the lattice parameters a and c (see Table 3.1)
and the bandgap (Table 3.2). The results naturally vary with the materials and the properties,
but the chosen fraction of the HF energy gives an overall good approach. More emphasis was
placed on the lattice constants, rather than the bandgap values, due to the known problem within
DFT regarding bandgap and the fact that the Kohn-Sham eigenvalues may not refer to exact
single-electron energies.

As illustrated in the data in Table 3.1 the PBE calculations overestimate the lattice parameters
slightly. A trend is evident where the lattice parameters decrease as the fraction of HF exchange
energy in the exchange-correlation energy increases. An opposite trend is seen in Table 3.2 regard-
ing the bandgap values, where the results increase along with the increase in HF exchange energy.

By comparing the calculated values with experimental values I decided to proceed with α =
0.3, exchange-correlation energy consisting of 30% HF exchange energy and 70% PBE exchange
energy. This is the approximation which is referred to whenever a hybrid functional calculation is
mentioned further in this work. All further calculations presented in this thesis are based on this
unless otherwise stated. Whenever a PBE calculation is mentioned in the text, it refers to a GGA
calculation with PBE energy.
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Table 3.1: Lattice parameters a and c in Å. The calculated values provided by the use of different
approximations to the exchange energy in addition to experimental values (Exp) are listed. The
different approximations are denoted with different α-values, which specifies the amount of HF
exchange energy in the hybrid functional calculation.

α

0.0 0.25 0.3 0.375 Exp

w-ZnO a 3.29 3.26 3.25 3.25 3.25f

c 5.29 5.23 5.22 5.20 5.21f

α-SiO2 a 5.02 4.97 4.97 4.95 4.913a

c 5.51 5.45 5.45 5.44 5.404a

a-TiO2 a 3.82 3.79 3.79 3.78 3.7842c

c 9.69 9.61 9.60 9.57 9.5146c

r-TiO2 a 4.66 4.61 4.60 4.58 4.594c

c 2.97 2.96 2.96 2.95 2.9581c

a-SnO a 3.87 3.80 3.79 3.77 3.81b

c 5.06 5.00 4.97 4.94 4.84b

r-SnO2 a 4.83 4.76 4.74 4.73 4.74e

c 3.24 3.19 3.19 3.17 3.19e

β-Ga2O3 a 12.45 12.02 12.02 11.96 12.23d

c 5.88 5.83 5.80 5.80 5.798d

ε-Ga2O3 a 5.13 5.04 5.03 5.01 5.046g

c 9.42 9.29 9.27 9.24 9.283g

aReference [3]
bReference [35]
cReference [29]
dReference [25]
eReference [32]
fReference [12]
gReference [18]
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Table 3.2: Optical bandgap energy in the unit eV for each material. The calculated values provided
by different approximations to the exchange energy in addition to experimental values (Exp) are
listed. The different approximations are denoted with different α-values, which specifies the amount
of HF exchange energy in the hybrid functional calculation.

α
0.0 0.25 0.3 0.375 Exp

w-ZnO 0.71 2.48 2.86 3.43 3.4f

α-SiO2 5.71 7.76 8.16 8.79 9.1a

a-TiO2 1.94 3.42 3.74 4.25 3.20c

r-TiO2 1.64 3.12 3.45 3.96 3.0c

a-SnO 1.92 2.66 2.82 3.07 2.8 b

r-SnO2 0.63 2.91 3.37 4.11 3.6e

β-Ga2O3 1.98 4.15 4.53 5.31 4.85 ±0.1d

ε-Ga2O3 2.05 4.39 4.74 5.45 -

aReference [3]
bReference [35]
cReference [29]
dReference [25]
eReference [32]
fReference [12]
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3.2 Convergence Tests

In order to perform numerically converged DFT calculations, it is important to check the numerical
convergence for certain properties. This was done for the static dielectric constant ε0, the high-
frequency dielectric constant ε∞ and the relative energy ERel respectively in two different ways.
The first set of tests was calculated with respect to the cutoff energy and the second set of tests
was calculated with respect to the k mesh. The significant convergence is of the relative energy,
but I thought it would be interesting to look at the convergence for ε0 and ε∞ as well, since these
properties will be calculated in this work. The convergence tests were done with PBE calculations.
The relative energy, ERel, calculations were done by comparing two slightly different configurations
of the unit cell of w-ZnO. The difference between these configurations was a small displacement
in the position for one of the atoms in the unit cell. A systematic numerical error is expected
because of the numerical integration method used in the Brillouin zone sampling. However, these
systematic numerical errors are cancelled when two structural similar configurations are compared,
because the errors are expected to be equal.

The material w-ZnO was chosen for the convergence tests, because it is known to be a chal-
lenging material. One would assume that the parameters chosen from the convergence tests of
w-ZnO are sufficient for all the materials.

Energy Cutoff

The convergence criterion for the energy cutoff in this thesis is set to be

∆ERel

∆ECutoff
<

1meV

50eV
, (3.3)

where ERel is the relative energy and ECutoff is the energy cutoff. The requirement is already
achieved with 250 eV in energy cutoff as shown in Table 3.3 and Fig. 3.1a. For the dielectric func-
tions εion and ε∞ on the other hand, seen in Fig. 3.1b and Fig. 3.1c, there are severe differences in
the resulting values in the energy range 200 to 300 eV. For the dielectric constants the numerical
convergences are achieved within approximately 400 eV.

The default energy cutoff for oxygen is 400 eV. This value is larger than the respective energy
cutoff for the cations silicon, tin, titanium, gallium, and zinc. Hence, if one were to choose the
cutoff energy without convergence tests, 400 eV would be a good choice. Regarding the relative
energy, only 250 eV should be sufficient. However, the severe non-convergence for the dielectric
constants in this energy region is unfortunate as these are the properties of interest in this thesis.
Hence, an energy cutoff of 400 eV will be used for the calculations in this work.

(a)

(b) (c)

Figure 3.1: (a) The relative energy per unit cell, (b) the high-frequency dielectric constant and (c)
the ionic part of the static dielectric constant, all with respect to the energy cutoff.
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ECutoff ERel ∆ERel ε∞,⊥ ε∞,∥ εion,⊥ εion,∥

200 −24× 10−3 6.85 7.26 9.17 11.46

250 −9× 10−6 2× 10−4 9.59 10.63 4.23 5.98

300 8× 10−5 9× 10−5 6.99 5.66 4.44 5.27

350 2× 10−5 −6× 10−5 7.11 5.84 4.54 5.43

400 3× 10−6 −1× 10−5 6.95 5.87 4.51 5.36

450 8× 10−5 7× 10−5 6.94 5.83 4.46 5.38

500 0.0 −8× 10−5 6.97 5.84 4.46 5.41

550 0.0 0.0 6.97 5.84 4.53 5.45

600 0.0 0.0 6.96 5.84 4.51 5.44

650 0.0 0.0 6.95 5.83 4.53 5.43

700 2× 10−6 2× 10−6 6.95 5.82 4.49 5.44

750 8× 10−5 8× 10−5 6.94 5.82 4.49 5.44

800 9× 10−6 −7× 10−5 6.94 5.82 4.49 5.44

850 −3× 10−6 −1× 10−5 6.94 5.82 4.50 5.47

900 −9× 10−6 −1× 10−5 6.94 5.82 4.50 5.47

Table 3.3: Relative energy, ERel, the difference in relative energy, ∆ERel, the transverse and longi-
tudinal components of the static dielectric constant ε0 and the high-frequency dielectric constant
ε∞ with respect to the energy cutoff, ECutoff, all in units of eV. ∆ERel is between ERel at the
specific ECutoff and the ERel at the previous cutoff energy listed in the table. Hence, the empty
space for ∆ERel at ECutoff=200 eV.

k Space

The requirement for convergence with respect to k points in this thesis is set to be

∆ERel

∆Nk
<

1meV

2
, (3.4)

ERel is the relative energy and Nk is the number of k points along each direction. A k mesh with
M = 4 obtains relative energies converged within 0.5 meV. However, when using M > 16 the
convergence is not as expected. For the dielectric constants, there are big differences in the M
region of 2 to 8. The longitudinal high frequency dielectric constant ε∞,⊥ is approximately four
times larger atM = 2 compared to the value atM = 8, as seen in Table 3.4. It is obvious that even
though M = 4 is sufficient considering the relative energy, a k mesh of this M value will result in
deficient dielectric constants. A k grid with M = 10 satisfies the requirements for convergence, as
illustrated in Fig. 3.2b and Fig. 3.2c. Hence, the structure relaxations will be done by integrating
over a k space of M ×M ×M with M = 4, while the calculations of the dielectric constants will
be done with M = 10. The unit cell of ε-Ga2O3 includes a number of 40 atoms, which is a much
higher number of atoms compared to the other materials considered in this thesis. w-ZnO, for
instance, has a unit cell of four atoms. Hence, it is reasonable to believe that the properties for
ε-Ga2O3 are well converged within a less amount of k points. This is also true β-Ga2O3, consisting
of 10 atoms in its unit cell. For the hybrid functional calculations of the high-frequency dielectric
functions were performed with a k mesh of 8 × 8 × 8 for β-Ga2O3 and a k mesh of 6 × 6 × 6 for
ε-Ga2O3. The DOS calculations were performed with a k mesh of 4× 4× 4 for both materials.
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M ERel ∆ERel ε∞,⊥ ε∞,∥ εion,⊥ εion,∥

2 6.7× 10−4 22.13 16.13 5.18 6.94

4 2.3× 10−4 −4× 10−4 6.95 5.86 4.51 5.40

6 2.2× 10−4 −3× 10−5 5.59 5.09 4.43 5.20

8 1.9× 10−4 −2× 10−5 5.25 4.98 4.43 5.18

10 1.9× 10−4 −9× 10−6 5.14 5.01 4.43 5.17

12 2.1× 10−4 −2× 10−5 5.10 5.04 4.40 5.16

14 2.0× 10−4 −1× 10−5 5.09 5.07 4.40 5.16

16 1.9× 10−4 −7× 10−6 5.10 5.10 4.40 5.16

18 2.8× 10−3 3× 10−3 5.10 5.12 4.40 5.16

20 −6.2× 10−3 −9× 10−3 5.10 5.13 4.40 5.15

Table 3.4: Relative energy, ERel, and difference in relative energy, ∆ERel, the transverse and lon-
gitudinal components of the static dielectric constant ε0 and the high-frequency dielectric constant
ε∞ with respect to M , in a M ×M ×M k mesh. The units of ERel and ∆ERel are eV. ∆ERel is
between ERel at the specific k mesh and ERel at the previous k mesh listed in the table. Hence,
the empty space for ∆ERel at M=2.

(a)

(b) (c)

Figure 3.2: (a) The relative energy per unit cell, (b) the high-frequency dielectric constant and (c)
the ionic part of the static dielectric constant, all with respect to M , in a M ×M ×M k mesh.
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3.3 Static Dielectric Function

The static dielectric constant is expressed as

ε0 = εion + ε∞. (3.5)

In this work the high frequency dielectric constant ε∞ is calculated by neglecting local field effects.
One way to add the ionic contribution is to do a separate calculation using density functional
perturbation theory. However, this is not supported for hybrid functional calculations. Therefore,
the local field effects were calculated with PBE.

Approaches to the Static Dielectric Constant

Since I already established that α = 0.3 calculations provides the best lattice parameters, I wanted
to investigate whether or not a mixture of a α = 0.3 relaxed structure and a α = 0.0 static calcu-
lation might give better results than the use of a full α = 0.0 calculation. In addition I wanted to
see if the use of α = 0.3 or α = 0.0 provides a more accurate high frequency dielectric constant
ε∞. Three different approximations were calculated for w-ZnO:

PBE: ε∞ calculated with α = 0.0 and εion calculated with α = 0.0 on an α = 0.0 relaxed structure.

PBE-mix: ε∞ calculated with α = 0.3 and εion calculated with α = 0.0 on an α = 0.0 relaxed
structure.

HF-mix: ε∞ calculated with α = 0.3 and εion calculated with α = 0.0 on an α = 0.3 relaxed
structure.

The different approximations are presented in Table 3.5, which reveals that the HSE-mix yields
the best results compared to the experimental values. Therefore, this is the approximation that
was used for all the materials in this thesis.

Table 3.5: Dielectric constants of w-ZnO calculated using different approximations.

PBE PBE-mix HSE-mix Exp

ε∞,⊥ 5.29 3.23 3.23 3.70a

ε∞,∥ 5.12 3.26 3.26 3.75a

εion,⊥ 4.98 4.98 4.41 4.08a

εion,∥ 5.76 5.76 5.17 4.99a

ε0,⊥ 10.27 8.21 7.64 7.78a

ε0,∥ 10.88 9.02 8.43 8.74a

aReference [11]
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Energy Change

By estimating the tolerance parameter, a picture of how close the calculated solutions are to the
exact solutions are provided. The tolerance parameter was determined to be 10−6 eV by comparing
the different results with the experimental values, shown in Table 3.6.

Table 3.6: Ionic contribution to the static dielectric constant.

Energy Change (eV) εion,⊥ εion,∥

10−3 4.31 5.17

10−4 4.340 5.20

10−5 4.40 5.16

10−6 4.40 5.15

10−7 4.40 5.15

Exp 4.08a 4.99a

aReference [11]

3.4 Numerical Optimization

The convergence tests that have been performed contributes to achieving numerically converged
results. In addition to the convergence tests, it is convenient to optimize the crystal structure of
each material. This means that the positions of the atoms in the unit cell, the size and the shape
of the unit cell are optimized in order to minimize the local energy. This is done by iterative
algorithms that minimize the interatomic forces. The number of iterations are controlled by a
tolerance parameter. The numerical optimization is called relaxation and was performed before
proceeding with the the optical and electronic calculations.

The conclusion from the convergence tests in Sect. 3.2 was to proceed with an energy cutoff
of 400 eV for the optical and electronic calculations. For the relaxation calculations, the cutoff
energy should be increased by 50%. Therefore, the relaxation calculations were performed with
an energy cutoff of 600 eV. The optimization for ε-Ga2O3 were performed with milder tolerance
parameters than the other materials.
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Chapter 4

Results and Discussion

The different results provided by the calculations of this work are presented and compared to
experimental values of the same properties. The crystalline structures, the lattice parameters,
the electronic band structure, the density of states (DOS), the dielectric functions, the absorption
coefficients, the static dielectric constant and the high-frequency dielectric constant are the prop-
erties presented for the materials considered in this work. The theoretical calculations performed
in this work are zero temperature approaches. The experiments that have provided the values for
comparison have mostly not been performed at ground state conditions. As described in section
2.1.1 the occupancy of electrons in the conduction bands increase with increasing temperature.
This affects the accuracy of the ground state calculations, compared to the experiments. However,
this influence is expected to be small.

4.1 Crystal Structures

In this chapter the crystalline properties of the materials are presented and discussed. The space
group information for each material is listed in Table 4.1, found in existing literature. The crystal
structure of a material and its symmetry operations can be found from the space group symbol
and its corresponding space group number. The Wyckoff position, describe the positions of the
atoms in a material unit cell.

ε-Ga2O3, w-ZnO and α-SiO2 are non-centrosymmetric, seen from the space groups listed in Ta-
ble 4.1. The non-centrosymmetry give rise to special dielectric properties. The materials are
piezoelectric. Hence, the material can be polarized with both an electrical field and mechanical
stress.
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Table 4.1: The crystal space group for each material with its number and Hermann Mauguin
Symbol. The Wyckoff positions for the atoms in each material is also listed and the number
indicate the number of inequivalent atoms present in the unit cell.

Material Space Group Wyckoff Position

Nr. Symbol Cation / Anion

w-ZnO 186 P63mcn 2b / 2bo

α-SiO2 154 P3221
a 3a / 6cb

a-TiO2 141 I41/amde 4a / 8ef

r-TiO2 136 P42/nmme 2a / 4fm

a-SnO 129 P4/nmmc 2c / 2ad

r-SnO2 136 P42/nmmk 2a / 4fl

β-Ga2O3 12 C2/mg 4i / 4ih

ε-Ga2O3 33 Pna21
i 4a / 4aj

aReference [2] fReference [39] kReference [9]
bReference [40] gReference [25] lReference [45]
cReference [35] hReference[41] mReference [43]
dReference [44] iReference [8] oReference [46]
eReference [29] jReference [42] nReference [24]

The calculated lattice parameters and the corresponding experimental values are listed in Table
4.2. Only the monoclinic β-Ga2O3 and the orthorhombic ε-Ga2O3 have unlike lattice parameters
a and b. For the remaining materials, a = b. The calculated values are in consistency ± 0.02 Å
for the lattice parameter a, with an exception of α-SiO2 which has a higher difference between
computation and experimental values. For the lattice parameter c, the difference between the
calculated and experimental values is also less than ±0.02 Å for the last five materials listed in
Table 4.2. a-SnO shows the largest deviation from the trend with a difference of ±0.13 Å for the
parameter c.
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Table 4.2: Lattice parameters a, b and c in units of Å for all the materials. The calculated (Calc)
values are compared with experimental (Exp) values.

a b c

Calc Exp Calc Exp Calc Exp

w-ZnO 3.25 3.25f - - 5.22 5.21f

α-SiO2 4.97 4.913a - - 5.45 5.404a

a-TiO2 3.79 3.7842c - - 9.60 9.5146c

r-TiO2 4.57 4.5937c - - 2.95 2.9581c

a-SnO 3.79 3.81b - - 4.97 4.84b

r-SnO2 4.74 4.74e - - 3.19 3.19e

β-Ga2O3 12.24 12.23d 3.04 3.037d 5.79 5.798d

ε-Ga2O3 5.03 5.046g 8.66 8.702g 9.27 9.283g

aReference [3]
bReference [35]
cReference [29]
dReference [25]
eReference [11]
fReference [12]
gReference [18]

The crystal structures in this work have been relaxed with a k mesh of 4× 4× 4. The relaxed
structures are visualised using the software Visualization of Electronic and STructural Analysis,
VESTA. These structures are used throughout this thesis.

The crystal structures of w-ZnO and α-SiO2 are presented respectively in Fig. 4.1a and Fig.
4.1b. Both materials have got hexagonal lattices, but only w-ZnO belongs to the hexagonal crystal
system. α-SiO2 has a trigonal crystal structure with three silicon atoms and six oxygen atoms per
primitive unit cell. w-ZnO has two zinc atoms and two oxygen atoms in its primitive cell.

(a) (b)

Figure 4.1: The primitive cells of (a) w-ZnO and (b) α-SiO2.

The space groups in Table 4.1 implies that a-SnO, r-SnO2, a-TiO2 and r-TiO2 all crystallizes
in tetragonal lattices. a-TiO2 has a body centered tetragonal cell as illustrated in Fig. 4.2a, while
the others have simple tetragonal cells. r-TiO2 has two titanium atoms and four oxygen atoms in
its primitive cell, which is illustrated in Fig. 4.2b.
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(a) (b)

Figure 4.2: The primitive cells of of (a) a-TiO2 and (b) r-TiO2.

a-SnO crystallizes in a simple tetragonal structure with two tin atoms and two oxygen atoms
per primitive unit cell and is presented in Fig. 4.3a. The simple tetragonal structure of r-SnO2 is
presented in Fig. 4.3b and consists of two tin oxides and four oxygen atoms.

(a) (b)

Figure 4.3: The primitive cells of of (a) a-SnO and (b) r-SnO2.

β-Ga2O3 crystallizes in a C-centered monoclinic structure, visualised in Fig. 4.4a. ε-Ga2O3

crystallizes in an orthorhombic structure, which is shown in Fig. 4.4b. The calculated β-angle for
β-Ga2O3 is 103.76◦, which is in good consistency with the experimental value of 103.7◦ [25].

(a) (b)

Figure 4.4: The primitive cells of of (a) β-Ga2O3 and (b) ε-Ga2O3.
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4.2 Electronic Properties

In this section the calculated bandgap values and band structures for the different materials are
presented. Each Brillouin zone represented in this section is constructed in accordance to the path
recommended for the specific crystal lattice [31]. The electronic band structure for a material is
calculated along the path corresponding to the materials Brillouin zone.

The estimation of bandgap energies for semiconductors using the Kohn-Sham approach in DFT
is a known challenge. Hybrid functional calculations are reported to yield a better approach to
the experimental values, compared to GGA calculations (including PBE functional). However, the
calculated bandgap values in this work, presented in Table 4.3, vary for each material whether the
resulting bandgap is overestimated or underestimated compared to the experimental values. For
w-ZnO, r-SnO2 and β-Ga2O3, the values are underestimated, while for a-SnO, r-TiO2 and a-TiO2

they are overestimated. As illustrated in Table 3.2 in Sect. 3.1, a trend exist where the bandgap
value increases with the increase of the fraction of Hartree-Fock energy in the exchange-correlation
energy. Hence, the materials with underestimated values presented in Table 4.3 might get better
bandgap calculations with a higher fraction of Hartree-Fock energy, while the opposite might show
better results for the materials with overestimated values.

Table 4.3: Bandgap energy in unit eV for each material. The calculated (Calc) values are compared
with experimental (Exp) values. The values describe the direct transition at the Γ-point, unless it
is an indirect transition, noted with (i).

Calc Exp

w-ZnO 3.03 3.4a

a-SiO2 8.51, 8.15 (i) 9.1b

a-TiO2 4.13, 3.71 (i) 3.20c

r-TiO2 3.70 3.0c

a-SnO 2.83, 0.73 (i) 2.8a, 0.7(i)a

r-SnO2 3.37 3.6a

b-Ga2O3 4.64 4.85 ± 0.1 (i) d

e-Ga2O3 4.75 -

aReference [11]
bReference [3]
cReference [29]
dReference [36]

A path through the high-symmetry points in the Brillouin zone belonging to the hexagonal
lattice is illustrated in Fig. 4.5a. The band structure for w-ZnO was calculated for this path, as w-
ZnO has a hexagonal lattice. The calculation for the whole path Γ-M-K-Γ-A-L-H-A is performed
with a PBE functional to provide a complete presentation of the shape of the band structure.
From the PBE band structure, Fig. 4.5b, it is obvious that w-ZnO exhibits a direct bandgap at
the Γ-point, because both the valence band maximum (VBM) and the conduction band minimum
(CBM) are located there.
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(a) (b)

Figure 4.5: (a) Brillouin zone of a hexagonal lattice with path: Γ-M-K-Γ-A-L-H-A and (b) the
electronic band structure of w-ZnO along this path.

A hybrid functional calculation for the most interesting high-symmetry points was performed
in order to take a closer look at the bands. For w-ZnO this was conducted for the path K-Γ-A,
resulting in Fig. 4.6. A very clear difference between the PBE calculated electronic band structure
in Fig. 4.5b and the hybrid functional calculated electronic band structure in Fig. 4.6 is the
bandgap between the VBM and the CBM. These figures really illustrate the significance of the
exchange-correlation energy. In all the electronic band structure calculations, the energy equal to
zero refers to the energy of the VBM for each respective material. A close study of Fig. 4.6 in the
wave vector region K−Γ in the energy range -2 to -4 reveal an error due to bandcrossing in DFT.
Figure 4.6 also shows the projected density of states (DOS) within the same energy range as for
the band structure. It reveals that it is the O-2p bands that contribute the most to the VBM and
the Zn-3d to the CBM.

Figure 4.6: Electronic band structure of ZnO for the path K-Γ-A and the corresponding density
of states for the unit cell within the energy range -6 to 6 eV.

The calculations described for w-ZnO were performed for all the materials, with respect to
their Brillouin zone. The figures of band structures containing more than three high symmetry
points are results of PBE calculations, while the figures of band structures with only three high
symmetry points and DOS are results from hybrid functional calculations. Both the PBE and the
hybrid functional calculations of the band structure were performed with a k-mesh of 4 × 4 × 4.
The DOS calculations on the other hand were calculated with a greater k mesh, 10× 10× 10. In
each DOS calculation, the total DOS is plotted, and assigned ”Total” in addition to the ”Sum”,
referring to the calculated sum of the atom projected DOS.

Another material with a hexagonal cell is α-SiO2. Unlike w-ZnO, this material does not exhibit a
direct bandgap. Figure 4.7 and Fig. 4.8 reveal that the VBM is located at the K point and the
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CBM is located at the Γ-point. The difference between the hybrid functional calculated direct and
the indirect gaps is only 0.36 eV, with the direct gap referring to a Γ-Γ transition.

Figure 4.7: Electronic band structure of α-SiO2 for the path: Γ-M-K-Γ-A-L-H-A.

Figure 4.8: The electronic band structure of α-SiO2 with a shorter path: K-Γ-A and the corre-
sponding DOS for the unit cell within the energy range -6 to 12 eV.
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(a)
(b)

Figure 4.9: (a) Brillouin zone of a body centered tetragonal lattice with path: Γ-X-Υ-Σ-Γ-Z-Σ1-
N-P-Υ1-Z and (b) the band structure of a-TiO2 along this path.

(a)
(b)

Figure 4.10: (a) Brillouin zone of a simple tetragonal lattice with path: Γ-X-M-Γ-Z-R-A-Z and (b)
the band structure of r-TiO2 along this path.

The unit cell of r-TiO2 is simple tetragonal, while a-TiO2 has a body-centered tetragonal cell.
The corresponding Brillouin zones are represented in Fig. 4.10a and Fig. 4.9a. Both polymorphs
have their CBM located in the Γ-point, as seen in Fig. 4.9b and 4.10b. r-TiO2 also has the
VBM located at this point. The VBM of a-SiO2 is located at the Z-point in the Brillouin zone
of the body-centered tetragonal lattice. Naturally, for both materials, it is the same orbitals that
contribute the most to the bands near their Fermi level. It is the Ti 3d orbitals and the O 2p
orbitals, as the DOS in the figures 4.11 and 4.12 reveals.
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Figure 4.11: Electronic band structure for the path Σ- Γ-Z for a-TiO2 and the corresponding
density of states for the unit cell within the energy range -6 to 6 eV.

Figure 4.12: Electronic band structure for the path M-Γ-Z for r-TiO2 and the corresponding density
of states for the unit cell within the energy range -6 to 6 eV.

A similar comparison can be made between a-SnO and r-SnO2 as for between a-TiO2 and
r-TiO2. From an inspection of Fig. 4.13a and Fig. 4.13b it is obvious that the anatase phases
exhibits an indirect bandgap, while the rutile ones have a direct gap at the Γ-point. a-SnO has its
VBM located at the Γ-point and the CBM located at the M-point. Both a-SnO and r-SnO2 have
the same unit cell lattice as r-TiO2, a simple tetragonal lattice, illustrated in Fig. 4.10a. The band
structures are calculated in the path corresponding to this Brillouin zone. The indirect bandgap
of a-SnO is, as the data in Table 4.3 shows, very narrow, and the orbitals contributing mostly to
is the Sn 5p orbitals. There is in general a greater DOS for r-SnO2 than for a-SnO, as seen by
comparing the figures 4.14 and 4.15, which is not suprising due to the difference in atoms in their
unit cell.
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(a) (b)

Figure 4.13: (a) The electronic band structure for r-SnO2 and (b) a-SnO along the path Γ-X-M-
Γ-Z-R-A-Z.

Figure 4.14: Electronic band structure for the path M-Γ-Z for r-SnO2 and the corresponding
density of states for the unit cell within the energy range -6 to 6 eV.

Figure 4.15: Electronic band structure for the path M-Γ-Z for a-SnO and the corresponding density
of states for the unit cell within the energy range -6 to 6 eV.
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The Brillouin zones for β-Ga2O3 and ε-Ga2O3 are illustrated in Fig. 4.16a and Fig. 4.17a
respectively. Their band structures are presented in Fig. 4.16b and Fig. 4.17b. By comparing Fig.
4.18 with Fig. ?? it is clear that ε-Ga2O3 has far more bands at the Γ point compared to β-Ga2O3.
This is as expected since ε-Ga2O3 has 40 atoms in its unit cell, contributing to the energy bands,
while β-Ga2O3 only has 10 atoms in its unit cell.

(a)

(b)

Figure 4.16: (a) Brillouin zone of an orthorhombic lattice with path: Γ-Υ-F-H-Z-I-F1-H1-Υ1-X-
Γ-N and (b) the band structure of β-Ga2O3 along this path.

(a) (b)

Figure 4.17: (a) Brillouin zone of an orthorhombic lattice with path: Γ-X-S-Υ-Γ-Z-U-R-T-Z and
(b) the band structure of ε-Ga2O3 along this path.
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Figure 4.18: Electronic band structure for the path X-Γ-N for β-Ga2O3 and the corresponding
density of states for the unit cell within the energy range -6 to 6 eV.

Figure 4.19: Electronic band structure for the path Υ-Γ-Z for ε-Ga2O3 and the corresponding
density of states for the unit cell within the energy range -6 to 6 eV.

For all the materials there is a difference in the total DOS and the sum of the atom-projected
DOS. The atomic projections do not overlap, in order for each projected DOS to not contain
contribution from other atoms. A consequence of this approach is that the interstitial states are
lost. The difference in the total DOS and the sum of the atom-projected DOS illustrates the
density of states which are delocalized. This difference increases as the energy increases.
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4.3 Dielectric Properties

Herein the calculated high frequency dielectric constants and the static dielectric constants are
presented for all the materials and compared with experimental values. Also, the dielectric func-
tions are illustrated in figures for each material. In addition the high frequency functions and
absorption coefficients are visualised in figures all together in order to achieve a better comparison
of the materials.

The calculated high-frequency dielectric constants and static dielectric constants are presented
in Table 4.4, along with the corresponding experimental values. However, some of the experimen-
tal values have not been accounted for. It seems to be a trend in underestimating the constants. All
though, the static constants of r-TiO2 are extreme examples of the opposite. A deviation of +137.45
and +171.36 is seen respectively for the transverse and the longitudinal component of the static di-
electric constant compared to the experimental values. This indicates that the crystal structure of
r-TiO2 is highly sensitive to relaxation. These calculated values are very much overestimated. The
experimental values of the high-frequency dielectric constants have to be measured at energy levels
where the ionic contribution is no longer significant. This could result in measured values for the
high-frequency dielectric constants that are larger than the real high-frequency dielectric constants.

The dielectric constants calculated for w-ZnO are in alignment with the experimental values with
an error rate of approximately 13 % for the high frequency constants and less than 3.5 % for the
static constants. w-ZnO has the smallest error rate compared to the experimental values among
the materials in this project. Therefore, it is reasonable to think that the convergence tests might
have contributed to better results if the reference material had been another than w-ZnO. The
dielectric constants are sensitive to relaxation, which was illustrated by the data listed in Table
3.5 in Sect. 4.3. A PBE-relaxed w-ZnO structure resulted in the transverse and longitudinal high-
frequency constants of 5.29 and 5.12, which is an overestimation of +1.59 and +1.86 compared to
the experimental values. An overestimation compared to experimental values are also seen for the
static constants calculated with a PBE-relaxed structure in Table 3.5. It would be reasonable to
expect that stricter convergence criterion for relaxation and self-consistency would result in better
approximations of the dielectric constants. However, this again comes at the expense of computa-
tional resources. Never the less, it was clear from Table 3.5 in Sect. 4.3 that when compared to
experimental values, the HSE calculations provided much better results than the PBE calculations.
PBE also provides poor bandgap values and from the Moss relation it is known that the dielectric
constants for a material decrease with the increase of bandgap value.

Table 4.4: The high-frequency dielectric constants, ε∞,⊥ and ε∞,∥, and the static dielectric con-
stants, ε0,⊥ and ε0,∥. The experimental (Exp) and calculated (Calc) values are listed.

Material ε∞,⊥ ε∞,∥ ε0,⊥ ε0,∥

Calc Exp Calc Exp Calc Exp Calc Exp

w-ZnO 3.23 3.70a 3.26 3.75a 7.64 7.78a 8.44 8.74a

α-SiO2 2.18 - 2.19 - 4.31 4.6 4.51 4.51

a-TiO2 4.84 5.8b 4.79 5.4b 47.03 45b 24.15 23b

r-TiO2 4.97 6.8b 5.73 8.4b 223.45 86b 241.36 170b

r-SnO2 3.26 3.8b 3.54 4.2b 12.17 14b 8.28 9.6b

a-SnO 6.06 7.8c 5.28 7.25c 16.86 - 10.73 -

aReference [11]
bReference [9]
cReference [35]
dReference [36]
eReference [6]

β-Ga2O3 and ε-Ga2O3 exhibit anisotropy in all directions, hence, the dielectric constants for

37



these are presented in Table 4.5.

Table 4.5: The high-frequency dielectric constants ε∞,i for the tensor components i = xx, yy, zz
and the static dielectric constants ε0,i for i = xx, yy, zz for β-Ga2O3. The experimental (Exp) and
calculated (Calc) values are listed.

β-Ga2O3 ε-Ga2O3

Calc Exp Calc Exp

ε∞,xx 3.10 - 2.25 -

ε∞,yy 3.19 - 2.15 -

ε∞,zz 3.15 - 2.15 -

ε0,xx 10.11 9.9-10.2a 14.38 -

ε0,yy 9.37 - 13.25 -

ε0,zz 13.07 13.9a 17.46 -

aReference [36]

The dielectric functions are presented in the figures 4.20 to 4.26 for w-ZnO, α-SiO2, a-TiO2,
r-TiO2, a-SnO, r-SnO2, β-Ga2O3, and ε-Ga2O3 respectively. The figures are separated in a real
part (a) and an imaginary part (b) of the dielectric function. The longitudinal and the transverse
frequency dependent functions without local field effects are visualized as ε ⊥ and ε ∥. The local
field effects are added to the figures and denoted as εi,⊥ and εi, ∥. The ionic contribution is only
significant at low energy levels. In order to study the ionic contribution better, the figures are
zoomed in at the energy range 0 to 0.2 eV. The direct bandgap and indirect bandgap values are
also outlined in the figures and denoted as EG and EGi respectively, in order to study the electronic
response in light of the bandgap.

α-SiO2 shows ionic polarization at several energy levels, seen by the many peaks in the energy
range 0 to 0.1 eV in Fig. 4.21b, meaning that the ions in α-SiO2 are sensitive to an applied field at
these energy levels. While w-ZnO only show a wider peak at approximately 0.05 eV, in Fig. 4.20b.
With only one peak it is reasonable to conclude that there are stronger intermolecular forces in
the w-ZnO crystal than in the α-SiO2 crystal. Considering the imaginary part of the dielectric
function for α-SiO2 shown in Fig. 4.21b, both the direct and indirect bandgap are located below
electronic polarization. This indicates that a transition from VBM to CBM is forbidden.

(a) (b)

Figure 4.20: (a) The real part and (b) the imaginary part of the dielectric function for w-ZnO.
The figures are separated in two parts with different energy steps. This has been done to give a
better presentation of the ionic contribution to the dielectric functions in the energy range of 0 to
0.2 eV.
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(a)
(b)

Figure 4.21: (a) The real part and (b) the imaginary part of the dielectric function for α-SiO2.
The figures are separated in two parts with different energy steps. This has been done to give a
better presentation of the ionic contribution to the dielectric functions in the energy range of 0 to
0.2 eV.

a-TiO2 and r-TiO2 have quite similar dielectric functions. For a-TiO2 the anisotropy is seen
near the CBM for the imaginary part of the dielectric function in Fig. 4.22b. Only the transverse
component of the high frequency dielectric function show polarization at the direct bandgap energy
level. The same anisotropy is not seen for r-TiO2 in Fig. 4.23b. However, r-TiO2 does not
have corresponding location for the polarization and the direct bandgap value, indicating that a
transition from VBM to CBM is forbidden. r-TiO2 shows a strong ionic polarization in the range
of 0 to approximately 0.04 eV, hence the material might absorb infrared radiation in this energy
region.

(a) (b)

Figure 4.22: (a) The real part and (b) the imaginary part of the dielectric function for a-TiO2.
The figures are separated in two parts with different energy steps. This has been done to give a
better presentation of the ionic contribution to the dielectric functions in the energy range of 0 to
0.2 eV.

(a) (b)

Figure 4.23: (a) The real part and (b) the imaginary part of the dielectric function for r-TiO2.
The figures are separated in two parts with different energy steps. This has been done to give a
better presentation of the ionic contribution to the dielectric functions in the energy range of 0 to
0.2 eV.
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The dielectric functions for a-SnO and r-SnO2 are presented in Fig. 4.24 and Fig. 4.25 re-
spectively. r-SnO2 has three distinct peaks showing the ionic polarization at these energy levels,
while a-SnO only has two. a-SnO has a small indirect gap at 0.72 eV, listed in Table 4.3 in Sect.
4.2. By studying the imaginary part of the dielectric function in Fig. 4.24b it is clear that this
value does not correspond to the location of the electronic response. The direct bangap however,
is more consistent with the polarization. As for r-TiO2 and α-SiO2, a small deviation between the
polarization and the estimated bandgap value exist for r-SnO2, and is illustrated in Fig. 4.25b.
The magnitude of electronic polarizability is greater for a-SnO than for r-SnO2, which leads to
the conclusion that the intermolecular forces are weaker within the a-SnO crystal than within the
r-SnO2 crystal.

(a)
(b)

Figure 4.24: (a) The real part and (b) the imaginary part of the dielectric function for a-SnO. The
figures are separated in two parts with different energy steps. This has been done to give a better
presentation of the ionic contribution to the dielectric functions in the energy range of 0 to 0.2 eV.

(a) (b)

Figure 4.25: (a) The real part and (b) the imaginary part of the dielectric function for r-SnO2.
The figures are separated in two parts with different energy steps. This has been done to give a
better presentation of the ionic contribution to the dielectric functions in the energy range of 0 to
0.2 eV.

β-Ga2O3 shows a strong ionic polarization, illustrated by all the peaks in the energy region 0
to 0.2 eV in Fig. 4.26. It is the yy-component that shows the greatest magnitude in electronic
polarization, seen by the peak in Fig. 4.26b at approximately 12 eV. However, it is the xx- and zz
components that contribute to absorption closest to the CBM at approximately 5 eV. The ionic
polarization seen in Fig. 4.27 for ε-Ga2O3 is even stronger than observed for β-Ga2O3. However, as
described in Sect. 3.4, the relaxation for ε-Ga2O3 was performed with milder tolerance parameters
compared to the other materials. This might contribute to a stronger polarization for ε-Ga2O3 as
the ionic contribution is highly dependent on the relaxation of the structures.
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(a) (b)

Figure 4.26: (a) The real part and (b) the imaginary part of the dielectric function for β-Ga2O3.
The figures are separated in two parts with different energy steps. This has been done to give a
better presentation of the ionic contribution to the dielectric functions in the energy range of 0 to
0.2 eV.

(a) (b)

Figure 4.27: (a) The real part and (b) the imaginary part of the dielectric function for ε-Ga2O3.
The figures are separated in two parts with different energy steps. This has been done to give a
better presentation of the ionic contribution to the dielectric functions in the energy range of 0 to
0.2 eV.

The Moss relations states that the high frequency dielectric constants are inversely proportional
to the a materials bandgap. This trend is seen within the same material. However, it would
be interesting to evaluate if this trend also applies when comparing different materials. Hence,
the high-frequency dielectric constants with respect to the bandgap energies for each material is
presented in Fig. 4.28. The figure reveals that there is no clear trend to observe. Never the less, it
comfirms the Moss relation. By comparing a-SnO with r-SnO2 , r-TiO2 with a-TiO2 and β-Ga2O3

with ε-Ga2O3 it is obvious that the phase with the lowest bandgap energy also has the highest
high-frequency dielectric constant.

Figure 4.28: The geometric average of high-frequency dielectric constant, ε∞ = (ε∞,xx + ε∞,yy +
ε∞.zz)/3 for a material with respect to its bandagap energy.
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a-SnO, r-TiO2, and a-TiO2 have a similar trend in their response to an electromagnetic field.
Their dielectric functions are presented in Fig. 4.29 and Fig. 4.30 along with the other materials
considered in this project. These three materials show the strongest responses in the range 0 to 6
eV. This might not be too surprising since they have approximately the same lattice arrangement.
a-SnO has its response peak at approximately 1 eV lower in energy than r-TiO2 and a-TiO2, which
have their peaks located at the same energy. r-TiO2 shows a stronger response than a-TiO2, and
can be seen by the height of the peaks. For the TiO2-polymorphs it is the rutile phase that exhibits
the strongest response, while for the tin oxides it is the anatase phase. However, it is important to
keep in mind that a-SnO and r-SnO2 have different ratios of elements in their respective unit cells.
β-Ga2O3 and ε-Ga2O3 also show a similar trend to one another, but β-Ga2O3 show the strongest
response among these two oxides. Due to its very large bandgap, α-SiO2 shows a peak in dielectric
response at approximately 11.5 eV. At lower energy levels than this, α-SiO2 shows the weakest
response among all the materials. This result was as anticipated since it is an insulator and not a
semiconductor like the rest of the materials. The electrons in α-SiO2 are more localized than in
the semiconductors. w-ZnO also shows an overall weak response compared to the other materials.
However, as most of the materials have a varying response, w-ZnO keeps it more or less steady,
with a response at approximately ε(1) = 3 at 0 eV and ε(1) = 2 at 15 eV. The dielectric functions
in Fig. 4.29 and Fig. 4.30 are calculated excluding local field effects. These field effects are instead
shown for each individual material in the dielectric function figures 4.20 to 4.26.

Figure 4.29: The geometric average of real part of the dielectric function, ε1 = (ε1xx+ ε
1
yy + ε

1
zz)/3,

for the respective materials considered in this work.

Figure 4.30: The geometric average of imaginary part of the dielectric function, ε1 = (ε1xx + ε1yy +
ε1zz)/3, for the respective materials considered in this work.

The absorption coefficient for all the materials are presented in Fig. 4.31. These calculations
are dependent on the dielectric functions, hence, these calculations do not include local field effects
either. Materials with a significant amount of crystal vibrations, phonons, for example ε-Ga2O3,
β-Ga2O3 and α-SiO2, will absorb infrared radiation in the energy region 0 to 0.1 eV. The region
of visible light extends up to 3.26 eV. By evaluating the absorption coefficients in Fig. 4.31 in the
energy region around 3.26 eV, it is clear that only a-SnO and w-ZnO might absorb visible light.
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However, this is not much. Hence, all the materials are expected to be transparent, which is due
to their large bandgap energies. All the materials are expected to show absorbance of ultraviolet
(UV) radiation, for energies higher than 3.26 eV.

Figure 4.31: The geometric average of absorption coefficient, α1 = (α1
xx + α1

yy + α1
zz)/3, for the

respective materials considered in this work.

43



4.4 Brillouin Zone Integration

The purpose of this section is to demonstrate how the DOS and other optical properties are
effected by the integration method recommended for calculating the properties of semiconductors.
The work presented in this section is performed with PBE calculations. Hence, the DOS and the
imaginary dielectric function for r-TiO2 near the conduction band with respect to the k mesh will
be considered closely. The DOS is given by

g(E) = 2

∫
dk

(2π)3
δ(E − ε(k)). (4.1)

The CBM and VBM are located in parabolic bands. The energy for an electron very close to the
CBM is expected to be

εc = Eg +
h̄2k2

2m
, (4.2)

where m is the effective mass and h̄ is the Planck constant [19]. Inserting εc into Eq. 4.1 and
integrating, g(E) is written as

g(E) =

√
2m3

π2h̄3
√
E. (4.3)

A quadratic function is illustrated in Fig. 4.32. This function simulates how the CBM is expected to
look in two dimensions, assuming that the CBM is located at a parabolic band in three dimensions.
The trend of linear interpolation is also presented in this figure. This is presented to illustrate the
deviation from the quadratic function. The integration method recommended for semiconductors
includes linear interpolation, as described in detail in Sect. 2.2.6. The parabolic band is described
in terms of a sum of linear functions, rather than a quadratic function, the energy at the conduction
band is proportional to the k points rather than the squared k points. Then ε ∝ k and Eq. 4.3
should be rewritten as

g(E) ∝ E2, (4.4)

in each k point interval.

Figure 4.32: The trend of a quadratic function and the linear interpolation between some discrete
points in the quadratic function.

In order to illustrate the dependency of the k mesh, DOS calculated with different k meshes are
shown in Fig. 4.33. This figure shows how the estimation of DOS centered near the conduction band
edge is a better approach to the DOS expected for a parabolic band as the set of k points increases.
The derivation resulting from Eq. 4.3 is based on an assumption of a quadratic energy function,
resulting in a square root DOS function with respect to the energy. Equation 4.4 on the other hand
is based on the knowledge of error due to linear interpolation used in the integration method of
the Brillouin zone, hence based on linear energy functions. This results in a DOS proportional to
a quadratic function with respect to the energy, rather than a square root function. It is obvious
from Fig. 4.33 that the approximation of the DOS calculated with a smaller amount of k points
results in a function similar to a quadratic function. To illustrate the difference of trend between
a quadratic function and a square root function, an arbitrary quadratic function and an arbitrary
square root function are presented in Fig. 4.34 As the number of k points increases, so does the
DOS similarity to a square root function, shown in Fig. 4.33. Naturally, a greater number of k
points, hence also a smaller step size for the linear interpolation, results in a better estimation.
Nevertheless, the graph representing the DOS forM = 30 is not as similar to a square root function
as it should be, based on the assumption of the proportionality in Eq. 4.4.
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Figure 4.33: The DOS calculated for r-TiO2, focused at the conduction band edge. The different
graphs represent different values of M in M ×M ×M k points.

Figure 4.34: The trend of a quadratic function and a square root function, whereas the quadratic
function is scaled with a parameter 0.01, with the intention to magnify the difference between the
two trends.

Figure 4.35: The imaginary part of the dielectric function, ε(2) centered around the CBM for r-
TiO2. The different graphs represent different values of M in M ×M ×M k points.

The dielectric function is as mentioned above very sensitive to the electronic band structure. It
can also be directly linked to the effective mass, as shown in Eq. 2.32 in Sect. 2.3.2. It is reason-
able to expect flaws near the parabolic bands, due to the tetrahedron method, for this property.
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Figure 4.35 reveals that r-TiO2 shows a stronger electronic response as the number of k points
increases. Nevertheless, it is most likely that the lack of density of states has impact for almost all
the properties of the material near the CBM. It is reasonable to believe that this might contribute
to a small deviation between the polarization and the estimated bandgap value.

It can be concluded that the larger the reciprocal space to be integrated over, the better the
approximation. Sadly, this comes at the expense of computational time. The deceptive approx-
imations trending as quadratic functions will result in poorer results of other properties of the
material near the conduction band edge, such as the dielectric function and the absorption of the
material. However, it is important to notice that the consequential error is small, in the meV region.

The k · p method is reported to provide results using much less computational resources. This
computational efficiency could be exploited to use more k points in order to get more accurate
calculations near the conduction band edge.
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4.5 The k · p Method

With the intention of improving the calculations of semiconductor oxides, the k · p method was
implemented in a VASP subroutine. This subroutine is triggered when optical properties are cal-
culated. The ambition was to implement the whole routine in VASP, in order to provide accurate
results using less computational resources. The plan was to use the overlap matrix p generated
by VASP, but there were some problems regarding this matrix. Eventually a p matrix generated
by WIEN2k calculated with the corresponding potential and lattice parameters was used in stead.
This was done in order to decide whether it was the program or the VASP p-matrix that was the
problem. The VASP calculation in combination with the WIEN2k p-matrix provided better results.

As described in Sect. 2.2.7, eigenvalues at the reference points k0 are first calculated by using
standard methods. Then these eigenvalues are used as basis sets for the calculations of the eigen-
values at k points other than the reference points. The initial idea of this work was to only use one
reference point k0, which would be located at the Γ point. The intention was to make a program
that performs a Γ point calculation to provide the eigenvalues at the reference point. A Γ point
calculation is a calculation with only one k point, namely the Γ point. The initial idea was to start
with only one reference point, and then expand to the use of additional reference points if there
were any spare time.

In order to get the programming correct, testing was necessary to perform and the chosen mate-
rial for this testing was r-SnO2. A good indicator for whether or not the k · p provides sufficient
results is the band structure. Hence, the energy levels will be studied in the form of band structures.

In Fig. 4.36 the electronic band structure of r-SnO2 provided by a regular PBE calculation with
a k mesh of 4× 4× 4 is presented.

Figure 4.36: The electronic band structure of r-SnO2 for the path Γ-X-M-Γ-Z-R-A-Z.

The most interesting properties of r-SnO2 are located around the Γ-point. Therefore, the same
calculation was performed along a smaller path, from M-Γ-Z and is presented in Fig. 4.37. This
will be the reference structure that the k · p calculated band structures will be compared to.
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Figure 4.37: The electronic band structure of r-SnO2 for the path M-Γ-Z.

The k · p with a p matrix generated from WIEN2k provided the band structure presented in
Fig. 4.38. At first glance there is one significant deviation compared to Fig. 4.37. The bandgap
at the Γ-point is very narrow. Even though PBE calculations provide insufficient bandgap values,
the gap presented in Fig. 4.38 is even worse. The energy bands at the Γ point should be more or
less located at the same levels as with the standard calculation. The equation for calculating the
energies at k points, Ek, other than at the reference point k0 was presented in the theory Sect.
2.2.7 in Eq. 2.25. At the Γ point k and k0 are the same, therefore, the eigenvalues at this point
should be equal to Ek0 . By further investigation, it is clear that the eigenvalues at the reference
point are the source of the problem. As these eigenvalues form the basis for Ek calculations, the
consequential error becomes severe.

Figure 4.38: The electronic band structure of r-SnO2 for the path M-Γ-Z.

A standard calculation with a k including more than only one k point provides more accurate
Γ point eigenstates than a Γ point calculation does. The accuracy of the numerical method for
solving the Brilliouin zone integration increase with an increase of k mesh. That would be the
reason for the insufficient values provided by the Γ point calculation. The use of Γ point eigenvalues
provided by a standard calculation with a k mesh of 8× 8× 8 as the basis set resulted in the band
structure presented in Fig. 4.39. These energy levels are in much better agreement with the ones
in Fig. 4.37, compared to the energy levels in Fig. 4.38.
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Figure 4.39: The electronic band structure of r-SnO2 for the path M-Γ-Z.

This demonstrates the importance of accurate eigenstates at the reference point. The idea of
using a Γ point calculation to generate the reference point eigenvalues was essentially based on
trying to reduce computational time. However, this type of calculation is clearly not sufficient, at
least not for this material.

The bandgap energy in the band structure in Fig. 4.39 are similar to the bandgap in the band
structure in Fig. 4.37. Hence, it is reasonable to assume that these calculated Γ point eigenvalues
are sufficient. By closer examination of the band structure in Fig. 4.39, it is clear that the energy
bands at the k-points furthest away from the Γ point deviate from energy bands at the same
k-points in Fig. 4.37. Many of the bands calculated with the k · p method cross with other bands
in the location near the M point and the Z point. However, this is not seen in the band structure
provided by a regular PBE calculation.

Persson and Ambrosch-Draxl demonstrated in their article, [28], how the eigenvalues calculated at
k points closer to the reference point resulted in more accurate results than eigenvalues calculated
at k points further from the reference point. They also presented the increasing accuracy of eigen-
values due to increasing number of reference points. This could be the explanation for the crossing
of energy bands seen in Fig. 4.39 and not in Fig. 4.37.
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Chapter 5

Concluding Remarks

5.1 Conclusion

In this thesis the metal-oxides w-ZnO, α-SiO2, a-TiO2, r-TiO2, a-SnO, r-SnO2, β-Ga2O3, and
ε-Ga2O3 were considered. Their optical and electronic properties were investigated by using first-
principles DFT in conjunction with the Kohn-Sham equation.

In order to improve the accuracy of the calculations, four different approximations to the exchange-
correlation functional were considered. For each approximation the lattice parameters a and b and
the bandgap energies for the materials evaluated in this work were compared with experimental
values. The approximation that provided the overall most accurate results were the hybrid func-
tional with an exchange-correlation energy consisting of 30% HF exchange energy and 70% PBE
exchange energy. This hybrid functional approximation was therefore used for the optical and elec-
tronic calculations presented in this work. However, not all types of calculations support the use
of hybrid functional. Therefore, the calculations of the ionic contribution to the dielectric function
had to be performed with PBE calculations. To optimize the accuracy of the calculated static di-
electric constants, three different approaches for calculating this were tested. This evaluation made
it clear that the ionic contribution is highly dependent on the relaxation of the crystal structure.
The conclusion was that a HSE-relaxed structure would provide the best results, compared to the
experimental values. In addition to evaluating the static dielectric constants, the high-frequency
dielectric constants was also considered with these different approaches. By comparing the high-
frequency dielectric constant provided by a PBE calculation and a hybrid functional calculation
with experimental values, it was clear that the hybrid functional calculation provides more ac-
curate results than the PBE calculation does. PBE calculations provide poor bandgap energies,
while hybrid functional calculations provide bandgap energies that are more consistent with ex-
perimental values. Therefore, the superiority of the hybrid functional calculation concerning the
high-frequency dielectric constants can be described by the Moss relation, stating that these con-
stants are inversely proportional to the bandgap energy of a material.

The calculated lattice parameters, a, b and c, presented for the materials were in good align-
ment with the experimental lattice parameters.

Evaluating the calculated bandgap energies, a small deviation from the experimental values were
observed. However, the estimation of bandgap energies using the Kohn-Sham approach in DFT
is a known challenge and the bandgap energies are much more accurate compared to the PBE
calculated bandgap energies, presented in Sect. 3.1. The band structures for all the materials
were presented with the corresponding DOS per unit cell. By evaluating the DOS for the different
metal-oxides, it was possible to come to a conclusion that it is the O 2p orbitals that contributes
the most to the VBMs for all the materials.

The calculated dielectric constants had some deviations compared to the experimental values.
A trend in underestimating constants was observed for all the materials except for r-TiO2. A
major overestimation was especially seen for the static dielectric constants for r-TiO2, indicating
that its crystal structure is highly sensitive to relaxation. Ionic and electronic polarization were
evaluated in the form of dielectric functions. α-SiO2, β-Ga2O3, and ε-Ga2O3 showed the strongest
magnitude of polarization in the energy range 0 to 0.1 eV, indicating that the ions in these mate-
rials are sensitive to the applied electronic fields. Because of the significant amount of phonons in
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this region, the materials can absorb infrared radiation in the energy region 0.0 to 0.1 eV. a-SnO
and w-ZnO show low absorption coefficients in the visible light energy region. However, this is not
significant. Hence, all the materials are expected to be transparent, which is due to their large
bandgap energies. All the materials are expected to show absorbance of ultraviolet (UV) radiation.
The electronic polarization was also evaluated in light of the bandgap values. For α-SiO2, r-TiO2

and r-SnO2 the responses to an electronic field not in correspondence with the bandgap energies.
This indicates that a transition between the VBM and the CBM within each material is forbidden.
The same is seen for the indirect bandgaps for a-SnO and a-TiO2.

How the DOS and other optical properties are effected by the linear tetrahedron method was
demonstrated by presenting how the DOS near the CBM for r-TiO2 are dependent of number of k
points. The larger the reciprocal space to be integrated over, the better the approximation, which
is known knowledge. However, integrals tend to converge towards their exact solutions and the
amount of k points needed to achieve accurate results is usually not severe. It can be concluded
that a severe amount of k points is needed to achieve the expected trend of DOS in a material with
a CBM of high curvature. This could be important for example in order to achieve highly accurate
absorption coefficients near the CBM, or other optical properties near the CBM. However, the
error from the linear interpolation is significantly small.

In order to improve the calculations of semiconductor oxides, the k · p method was implemented
in a VASP routine. Due to an insufficient momentum matrix p generated by VASP, a momentum
matrix p generated by WIEN2k was used instead for the calculations. The k · p calculations were
compared to standard PBE calculations in the form of electronic band structures. The initial plan
was to use a Γ point calculation to provide the eigenvalues used as the basis set for the k ·p calcula-
tions, because it is more time efficient. However, the eigenstates provided by a Γ point calculation
proved to be highly insufficient. This resulted in a band structure with overlap between the VBM
and CBM. A standard calculation with a k mesh of 8× 8× 8 provided more accurate eigenstates
at the Γ point, compared to the Γ point calculation. The corresponding eigenvalues used as the
basis set resulted in a band structure in good agreement with the PBE band structure around the
Γ point. A deviation for the energy bands located at the k points furthest away from the Γ point
was however observed.
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5.2 Further Work

A summary of further investigation regarding the k ·p method that would be of interest, includes:

• Expanding the program for calculation of DOS in order to compare the accuracy to a standard
PBE calculation generated DOS, with respect to computational time.

• Increasing the number of reference points.

• Implementing a fully developed subroutine for calculating optical and electronic properties
with the use of this method.

Further investigations regarding the calculations of optical and electronic properties that would be
of interest, includes:

• Calculating the high-frequency dielectric functions with the Bethe-Salpeter equations in order
to evaluate if this is a better method for providing results in alignment with experimental
values.

• The use of different approximations for the exchange-correlation functional, optimized for
each material in order to provide lattice parameters and band gap energies in better alignment
with experimental values.

• Convergence tests performed individually for each material, and use the most strict conver-
gence criterion for all the materials.
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and R. Fornari. CrystEngComm, 19, 1509, (2017).

[19] C. Kittel and P. McEuen. Introduction to Solid State Physics. (Wiley, Hoboken, 2005).

[20] G. Kresse and J. Furthmüller. Comput. Mat. Sci. 6, 15, (1996).

[21] G. Kresse and J. Furthmüller. Phys. Rev. B 54, 11, (1996).

[22] G. Kresse and J. Hafner. Phys. Rev. B 57, 558, (1993).

[23] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria. J. Chem. Phys. 125, 224106,
(2006).

[24] P. Mishra, S. Ayaz, T. Srivastava, S.Tiwari, R. Meena, B. Kissinquinker, S. Biring, and S. Sen.
J. Mater. Sci. 30, 20, (2019).

53



[25] M. Mulazzi, F.Reichmann, A. Becker, W. Klesse, P. Alippi, V. Fiorentini, A. Parisini, M. Bosi,
and R. Fornari. Rev. Adv. Mater. Sci. 44, 1, (2016).

[26] S. Nagar and S. Chakrabarti. Optimisation of ZnO Thin Films: Implants, Properties, and
Device Fabrication. Singapore: Springer, (2017).

[27] N. H. Nickel and E. Terukov. Zinc Oxide - A Material for Micro- and Optoelectronic Appli-
cations. (Dordrecht, Springer, 2005).

[28] C. Persson and C. Ambrosch-Draxl. Comput. Phys. Commun. 177, 3, (2007).

[29] N. Rahimi, R. A. Pax, and E. M. Gray. Prog. Solid. State Ch. 44, 3, (2016).

[30] R. Reddy and Y. N. Ahammed. Infrared. Phys. Technol. 36, 1, (1995).

[31] W. Setyawan and S. Curtarolo. Comput. Mater. Sci. 49, 2, (2010).

[32] T. Shao, S. Liu, and F. Zhang. Ferroelectrics 547, 1, (2017).

[33] D. S. Sholl and J. A. Steckel. Density Functional Theory. (Wiley, Hoboken, 2009).

[34] M. Shur. Solid State Electron., 155, (2019).

[35] G. T. Solola, M. Klopov, J. O. Akinami, T. A. Afolabi, S. Z. Karazhanov, and G. Adebayo.
Mater. Res. Express 6, 125915, (2020).

[36] S. Stepanov, V. Nikolaev, V. Bougrouv, and A.E.Romanov. Rev.Adv.Mater.Sci., 44, 1, (2016).

[37] J. E. N. Swallow, C. Vorwerk, P. Mazzolini, P. Vogt, O. Bierwagen, A. Karg, M. Eickhoff,
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