
Edge computing
for disaster relief operations

Nicolai Vatne

Thesis submitted for the degree of
Master in Programming and System Architecture

30 credits

Department of Informatics
The Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2022

Edge computing
for disaster relief operations

Nicolai Vatne

© 2022 Nicolai Vatne

Edge computing for disaster relief operations

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

This thesis is the final product of my master’s degree in Informatics at the
University of Oslo.

The work was supervised by Carsten Griwodz. Frank T. Johnsen was helpful
as a subject matter expert.

I would like to thank Frank and Carsten for all their help and support.

Thank you to my family for all the motivation.

Finally, thank you to Nora and Mika for always being there.

1

Abstract

Humanitarian Assistance and Disaster Relief (HADR) operations are needed
to alleviate the effects of natural disasters on the local population. In HADR
operations, multiple branches of government and non-government organiza-
tions all need to collaborate toward the same goal. Therefore, there is a need
for a collective C2, which ensures everyone is coordinated and has the neces-
sary situational awareness to complete the mission. Historically, this has been
done through voice communication, but developments in modern technology
can provide valuable new resources for first responders. In this thesis, we ex-
plore the capabilities of an ad-hoc distributed networking solution built using
single-board computers. We explore its capabilities and limitations as we try to
enable new forms of communication. In addition, in this thesis, we investigate
Kubernetes as the resource framework for edge computing HADR operations.

List of Figures

2.1 Publish/Subscribe Pattern . 18

2.2 Quality of Service in MQTT [43] 20

3.1 Scenario . 28

3.2 K3s Architecture . 30

3.3 Kubernetes Architecture . 31

3.4 Pods Overview . 33

5.1 Gilbert Elliott Model [28] . 60

5.2 Mid-Band 5G Results . 65

5.3 CNR Results . 66

5.4 NBWF Results . 66

5.5 Tactical Network Results . 67

5.6 Mid-Band 5G Results . 68

5.7 CNR Results . 68

5.8 NBWF Results . 69

5.9 Tactical Network Results . 69

5.10 K3s Master network results . 72

5.11 MQTT Broker network results . 72

1

Listings

3.1 Deployments . 35
3.2 ConfigMaps . 36
3.3 Service . 37
3.4 Persistent Volume . 38
4.1 cmdline.txt . 44
4.2 k3s-install-master . 44
4.3 k3s-install-worker . 45
4.4 Move config to local machine . 45
4.5 MetalLB Install Manifest . 46
4.6 MetalLB Namespace configuration 47
4.7 MetalLB Configuration file . 47
4.8 Kubernetes Dashboard Install Manifest 48
4.9 Kubernetes Dashboard Configuration 48
4.10 Mosquitto Deployment File . 50
4.11 Mosquitto Service Deployment File 50
4.12 OpenSSL Commands . 51
4.13 Creating Kubenetes Secrets . 52
4.14 Mosquitto.conf . 52
4.15 Persistent-Volume Local Path . 54
4.16 Persistent-Volume Local Path Pod 54
5.1 Wondershaper [3] . 62

2

Contents

1 Introduction 7

1.1 Topic and Research Questions . 7

1.2 Related work . 8

1.3 Methodology . 10

1.3.1 State requirements . 11

1.3.2 State specifications . 11

1.3.3 Design and implementation 11

1.3.4 Testing . 11

1.4 Scope . 12

1.5 Outline . 12

2 Background 14

2.1 Defining IoT . 14

2.2 Edge computing . 15

2.3 Defining MQTT . 16

2.3.1 Publish/Subscribe . 17

2.3.2 QoS . 18

2.4 Military Federation of IoT . 21

2.4.1 NATO IST-147 and 150 . 21

2.4.2 Challenges with Federation 23

3

3 System Design 25

3.1 Scenario . 25

3.1.1 Disaster relief operation 25

3.1.2 Reflections on the need for digitization and edge computing 26

3.1.3 Proposed high-level technical architecture 27

3.2 Kubernetes . 28

3.3 K3s . 29

3.4 Kubernetes Architecture . 29

3.4.1 Pods/Containers . 32

3.4.2 Load Balancing . 34

3.4.3 Deployments . 35

3.4.4 ConfigMaps . 36

3.4.5 Services . 37

3.4.6 Kubernetes Volumes . 38

3.4.7 Secrets . 40

3.5 Hardware . 41

3.5.1 Raspberry Pi . 41

3.5.2 Raspian Buster . 42

4 Implementation 43

4.1 Preparation . 43

4.1.1 Hardware . 43

4.1.2 K3s . 44

4.1.3 Installation . 44

4.1.4 Kubernetes command line 45

4.2 Implementing a Load Balancer 46

4.3 Kubernetes Dashboard . 48

4

4.4 Mosquitto MQTT . 49

4.4.1 Open Implementation . 49

4.4.2 SSL / TLS Implementation 51

4.5 Storage . 53

4.5.1 Local Persistent Storage 53

4.5.2 Longhorn . 55

4.6 Scripts and code . 56

4.6.1 K3s MQTT Clients . 56

4.7 Versions . 57

5 Testing 58

5.1 Memory Usage . 58

5.2 Gilbert-Elliot Model . 59

5.3 Utilities . 61

5.3.1 Linux Netem . 61

5.3.2 TCPDump . 61

5.3.3 Wireshark . 61

5.3.4 Wondershaper . 61

5.4 Parsing the PCAP files . 62

5.4.1 Pyshark . 62

5.4.2 Implementation . 62

5.5 Results . 63

5.5.1 Scope of testing . 63

5.5.2 Network configurations 63

5.6 Results . 64

5.6.1 K3S Master Graphs . 64

5.6.2 MQTT Broker Graphs . 68

5

5.7 Discussion . 70

6 Conclusion & Future Work 74

6.1 Conclusion . 74

6.2 Experiences/Contributions . 75

6.2.1 Hardware challenges . 77

6.3 Future Work . 77

6.3.1 Longhorn & Persistent Distributed Storage 77

6.3.2 WebRTC Broadcasting node 78

6.3.3 Alternative congestion control 78

6.3.4 Real-world simulated tests 79

6.3.5 Messaging Application 79

A Mosquitto Deployment Manifest - TLS 85

B Mosquitto Service Manifest - TLS 87

C Mosquitto PVC Claim 88

D MQTT Client Code 89

E Table of results - K3s Master Node 91

F Table of results - MQTT Broker 92

6

Chapter 1

Introduction

1.1 Topic and Research Questions

In most parts of the developed world, continuous connectivity is a given - but
the tools enabling the connectivity still reside within ground cables or even cable
pylons in residential areas. In the last 20 years, the way people communicate
has shifted to handheld devices, which most commonly rely on a group of
communicating towers that distribute signals wirelessly. Cellular networks are
estimated to account for over 50 percent of website access in 2025, and has been
steadily growing ever since its inception [68].

The modern world needs to become ever so accustomed to natural disasters,
which have increased by a factor of five over the last 50 years [42]. Natural
disasters have a devastating effect on the area and infrastructure, which has the
indirect effect of making the human response even harder. In Humanitarian
Assistance and Disaster Relief operation, a quick and effective response can
prove vital to ensure that human lives are saved - and preserve the safety of those
responding. Communication and coordination are arguably one of the most
important aspects in HADR operation, which is what this thesis will research.

HADR operations will range in scale depending on many factors such as country,
existing infrastructure, technological capabilities and so on. HADR operations
are however normally a joint operation between multiple departments such
as the Military, fire and police, but also including humanitarian organizations
such as the Red Cross. Operations like this are commonly called CIMIC, which
means Civil-Military co-operation. It is a tactic deployed by countries all over
the globe, as situations have to be adapted to differently, which requires a wide
range of expertise.

In CIMIC operations, communication is vital to the outcome of the operation.
Secure and separated communication also play a very important role, as differ-
ent agencies should not be able to access the others classified communication.
Enabling this type of data-driven communication, specifically in the first few

7

hours after a disaster has been a subject of research for military organizations
such as NATO.

With the massive increase in IoT devices, NATO established a research task
force that has been exploring the applicability and usability of IoT in the military
domain, NATO STO IST-147, called "Military applications of IoT" [44]. During its
three years of operation, the group worked on experimenting and demonstrat-
ing how different components of IoT could be utilized from a military point of
view. The group has concluded that IoT has and is expected to have a significant
impact on future military operations and collaborative efforts such as HADR op-
erations, counter-terrorism, and even the logistical aspect of running a military.

In this thesis, we will explore the capabilities and processing power of the Rasp-
berry Pi to be utilized as an ad-hoc networking solution for HADR operations.
Raspberry Pi is a low-end off the shelf product used all over the world, which
is something we will discuss in subsection 3.5.1 of this thesis. We will imple-
ment a cluster a nodes consisting of Raspberry Pi’s using a lightweight version
of Kubernetes, called K3s. Kubernetes, which is described in more details in
subsection 3.2 is an open-source container system that allows everyone to utilize
the power of distribution [7]. We will explore the opportunities and limitations
related to this approach and subsequently evaluate the solution as a whole.

With the description given above, we derived a few questions which we aim
to answer

• In what capacity is it possible to utilize affordable single-board com-
puters with Kubernetes?

• Will a system of this sort be sufficient to operate on a variety of network
configurations, applicable to those relevant during a HADR operation?

1.2 Related work

Internet of things which is more commonly referred to by its acronym, IoT has
been a growing field of interest for researchers ever since its inception. With the
staggering amount of devices, researchers are trying to uncover new opportun-
ities, and testing its capabilities. We covered IoT and its various components
more comprehensively in chapter 2. As an offspring of the significant develop-
ments done within the field of cellular technology, new areas of interest such
as Edge and Fog computing have sprung out, as discussed in subsection 2.2.
The advancements in hardware has also contributed to IoT proving itself as a
valuable field to enable these technologies.

The main conceptual idea of IoT refers back to the idea of having ubiquitous
computing and a constant pervasive presence of things connected to a network.
These things fall into categories such as micro-computers, processors, RFID

8

devices, tags, sensors and actuators, all serving its own unique purpose in both
the private and public sector. These things have to be able to collaborate with
each other to reach common goals within computing, sensing or actuation [46].

Cloud-based computing, has in many cases, replaced the traditional on-site
servers that businesses historically relied on to maintain their services. With
this change, computing at the edge of networks has become essential for the
performance of IoT applications so that it can perform real-time computations of
filtered data at greater speeds. Offloading computations closer to the edges of the
network does not only benefit businesses and organization, but also the end-user,
as the necessary computations are done physically closer to the end-users device.

Cisco [51] estimates that the number of ubiquitous devices in the world reached
50 billion as of 2020 [51]. This is a staggeringly high number, which poses ques-
tions to the massive capabilities the industry now possesses. Researchers have
been investigating different options, which would allow this massive industry
to collaborate with each other. This has been done due to the fact that the actors
in the industry historically have not collaborated with each other. Establishing a
way for all of these devices to communicate with each other, could be beneficial
on many levels, as it would allow for businesses or even governments to get
a real-time data about several aspects in society. [69].

Looking at the capabilities of the IoT ecosystem, there are several factors to
consider to prove its feasibility for use in HADR operations. These factors fall
into categories such as IoT’s usability in cases where existing infrastructure is
non-existent or wiped out. Researchers at NATO have conducted significant
work that looked into the IoT infrastructure’s capabilities [30].

Several groups within NATO have been extensively researching and demon-
strating the capabilities of IoT in Military context. Within this field of study,
technologies such as Edge and Fog computing prove to be vital in its success [46].
NATO IST-147 worked on demonstrating the capabilities of IoT devices for mil-
itary HADR operations and concluded its work in late 2019 [30]. Their work
was later succeeded by IST-176, which is still on-going. IST-176 primary focus of
research lies in the interoperability of existing IoT systems with existing military
command and control systems [45].

Achieving federation within such a divided industry poses certain difficulties.
The difficulties lies in a very divided approach to production and software from
the companies behind the devices. Many of the devices are contained within its
own metaphorical silo. This silo serves to preserve the companies best interest in
terms of not sharing its design, functionality and otherwise valuable intellectual
property [70]. IoT devices do, however share its fair share of commonalities,
such as being ubiquitous, limited to no computing capabilities and low energy.
To achieve this set of specifications, messaging paradigms such as MQTT has
proven vital in its success, and MQTT has become more and more of an industry
standard as time has passed [55]. Because of this, MQTT has become a heavily
researched topic both within the business aspect, and for military capabilities,

9

as it offers general ease of use with other technologies such as JSON [5].

Achieving interoperability between existing IoT infrastructure has been the
topic of research for organizations, both military and civilian - as it would be
highly beneficial platform to utilize in cases such as natural disasters. Achieving
interoperability would also require that it could be utilized in combination
with military command and control systems, to externally monitor devices,
and having a centralized location where the devices would report back. As
previously stated, NATO IST-176 is currently researching different approaches
to interoperability. Their latest publication “Concepts and Directions for Future
IoT and C2 Interoperability” provides insight into the different guidelines they
suggest to achieve this [45].

Most of these works are oriented around the use and applicability of devices
in a less than perfect circumstances in the terms of network capabilities and
capacity. Exploring the use of Commercial of the shelf products in a distributed
manner is an interesting possible development in the field, as state of the art
distributed computing distributions such as Kubernetes will offer a picture of
how devices can be utilized in unison with each other.

1.3 Methodology

The work in this thesis follows Peter J. Denning’s Design paradigm [10]. Accord-
ing to Denning, computer science is an interdisciplinary field of study consisting
of three different archetypes [10]. These are theory, experimentation and design.

Theory is oriented around making conceptual frameworks and understanding
the theory of the different relationships between areas within the given field of
study.

Experimentation is about researching models of computer architectures within
an application domain and doing related testing to explore the capabilities of
those architectures in terms of exploring new opportunities.

The design archetype is described as an iterative process consisting of 4 main
steps, formulated in the collaborative article “Computing as a discipline” [9].

• State Requirements

• State Specification

• Design and implement

• Testing

We utilized these four stages during the time of this thesis. Each stage proved

10

helpful in terms of making the necessary adjustments along the way for our
previously untested theory.

1.3.1 State requirements

During this stage, we researched and documented the various requirements for
our system, and looked at the different support technologies we would require
and how they would interoperate with what we envisioned. This is due to the
infancy of the software available for ARM64 architectures which can be read
more about in section 3.5 and 6.2, several issue were discovered and required
further research to solve.

1.3.2 State specifications

Based on the issues and solutions we uncovered in the first stage, we laid out
the plans for the system’s architecture, while doing comprehensive research into
all the different supporting technologies required for the system. We covered
the various architectural elements throughout chapter 3

1.3.3 Design and implementation

With the research conducted in sections 1 and 2, we started implementing the
various services and applications required to make the system operate. This
included both the set-up of the hardware and implementing the underlying
software architecture, services and coordinators. We extensively covered the
various implementation stages in chapter 4

1.3.4 Testing

Several durability and performance testing were done to the complete techno-
logical solution to evaluate its applicability as an extension on the edge of the
network, specifically in terms of its applicability in a disaster relief operation.
Testing was done to ensure both its durability in terms of failing nodes, and its
performance with various networks, ranging in bandwidth and loss. We aimed
to test various components of our system. Both related to K3s and memory
usage, along with a variety of network configurations to get the broadest image
we could. This is covered in chapter 5.

11

1.4 Scope

This study aims to explore the boundaries of an IoT based networking solution
aimed explicitly at humanitarian relief situations. Due to the unpredictability
which normally occurs with existing infrastructure, the ability to have locally
configurable and accessible devices offers a unique opportunity for teams on
the ground, as they would easily be able to deploy or replace devices without
the need for complex configuration. The study will be conducted using Rasp-
berry Pi’s units grouped together in a Kubernetes cluster. Due to the size of
related frameworks and packages, K3s will be utilized - which is a lightweight
distribution of Kubernetes that can be utilized in the same fashion and to the
same extent as regular Kubernetes.

This thesis aims to host related services that could prove beneficial in HADR
situations, along with doing rigorous testing to ensure the flexibility, durability
and reliability of such as system.

This study will not cover the various IoT technologies that could further enhance
the systems or hardware alternatives that are comparable to the Raspberry Pi.
This thesis will also not explore or measure the outcome with different hardware
and software, other than what is being utilized in this paper. With respect to the
networking protocol, we will work with the assumption of a federated network
utilizing MQTT [55] as a messaging paradigm. MQTT will be discussed, in
detail in section 2.3, as it is an essential part of the ongoing research into enabling
edge computing for HADR operations.

The study was conducted over a five month time frame from January to May
2022. In the coming chapters, we summarize the possibilities that were explored,
and how the system was designed and operated to cover the cases we identified
and solved, like latency, distribution and architecture. Next, we will talk about
the implementation of the Kubernetes cluster and the related technologies and
services that we implemented on the network. Finally, we will go into detail
about the testing of the system, where we will utilize different technologies to
test the durability, stability and reliability of the system.

1.5 Outline

Chapter 2 provides the user with the necessary background information on
the different topics, terminologies and architectures related to this thesis. The
chapter starts off with an overview of the IoT ecosystem, defining the high
and low level concepts of how communication is conducted, before moving
on to the work done by NATO’s Research Agency for the applicability of IoT
infrastructure for HADR operations.

Chapter 3 discusses the practical aspects of the thesis, with an insight into the
underlying architectures and hardware that was utilized in the thesis. Our

12

primary focus here is to introduce the user to the vast amount of elements that
comprises the Kubernetes Architecture, and how each component plays a vital
role in how applications operate in a Kubernetes cluster.

Chapter 4 in this chapter, we extensively cover the work that was put into
running the K3s cluster with the various services and applications we required.
We detail the various implementations, and how we approached them, along
with providing insight into how storage is handled under various circumstances
in a K3s cluster.

Chapter 5 in this chapter we discuss the various tests we performed on the
system and how its performance can be interpreted in context to the use-case
we are working with. This chapter also includes the results of the testing, which
was done with a variety of network configurations, so that we can more ac-
curately draw a picture of how the system would perform in worse than best
circumstances.

Chapter 6 the last chapter summarizes the key points and findings throughout
the thesis and elaborate on our thoughts for future research.

13

Chapter 2

Background

2.1 Defining IoT

The Internet of Things, more commonly referred to by its acronym IoT is a terms
used to describe the new architecture of single-purpose devices connected to
the Internet. There are many different definitions used to describe this vast
ecosystem of devices, whereas Oracle defines it as the following,

“The Internet of Things (IoT) describes the network of physical
objects—“things”—that are embedded with sensors, software, and
other technologies for the purpose of connecting and exchanging
data with other devices and systems over the internet [41].”

IoT devices in private homes are normally aimed at making everyday life
more connected, and automate tasks that previously required human focus and
interaction. IoT in the public sector is normally used as monitoring devices,
reporting statistics in agriculture, production or similar sectors, along with a
range of similar purposes.

The IoT industry has experienced an exponential growth over the last few
years, as new use-cases show up. IoT is unique in many ways, with maybe the
most notable being the ability for individuals and businesses to get a real-time
look into how systems work, along with providing valuable insight into the
performance aspect of the business.

IoT has already become an essential part of many people’s lives and exists
alongside everyone, all the time. This pervasive presence makes it ideal for
multi-usage purposes such as the one being proposed in this thesis. In this
chapter, we will look deeper into the key aspects that define IoT in 2022, along
with looking at some of the proposed architectures and research that has been
done in context to making IoT applicable for HADR operations.

14

2.2 Edge computing

Edge computing is another important paradigm for this thesis. Edge computing
has many names within modern technological solutions, and is considered more
than just a paradigm, but rather a philosophy [8]. Since Edge Computing is
used so widely, there has been made some misconceptions like Edge computing
being regarded as IoT or even Fog computing, but in reality - Edge computing is
more synonymous with running less computations and processing in the cloud,
instead off-loading it on local devices, which in many cases are very capable
of doing it by themselves. These local device include laptops, desktops and
IoT device. On the basis of this, we regard the use of devices in this described
fashion as Edge computing throughout the entire thesis.

Gartner defines Edge computing in the following way,

Edge computing is part of a distributed computing topology where
information processing is located close to the edge, where things
and people produce or consume that information [24].

The goal of Edge computing lies in the quote above, being to move the com-
puting closer to where the data is being collected or consumed, which in terms
minimizes the amount of long-distance communication that has to happen
before an end-user gets the desired result or response.

Within Edge computing, there is also a popular term called the network edge.
The term is used to describe the device that connects the local network to the
wider internet, which can be viewed as the node at the edge of the network [8].

When off-loading computations, lower transmission costs become a given, since
the need for larger capacity in a data center becomes unnecessary. Expanding
locally is normally easier and cheaper than in the cloud, considering you can
utilize devices under the same implementation [4].

Edge computing does come with some disadvantages as well. For one, the
security in Edge devices does not necessarily meet the same rigorous demands
that many data centers have to deal with in terms of authentication, and general
capabilities, which makes it a more vulnerable target than large cloud provider’s
data centers [4]. Following along at that, for large companies managing a wide
variety of applications, the infrastructure costs at the launch of the platform
can be massive, which is something that has to be considered. In the long term
however, the cost of running your application at a data center might exceed it.

In the modern world of smart homes, and large IoT infrastructures, Edge com-
puting has become a popular paradigm for many companies looking to expand
in the early stages. Some experts theorize that it might represent a paradigm
shift in terms of how we process data [4].

15

2.3 Defining MQTT

MQTT is a lightweight messaging protocol utilizing the publish and subscribe
messaging pattern [55]. MQTT specifically suits the needs of low-power and
resource-constrained IoT devices and applications, since it has a minimal code
footprint and network bandwidth utilization [55]. MQTT brokers can be de-
ployed anywhere it would be required, being in a cloud solution, enterprise
environment or a container architecture. Various implementations of MQTT are
available, which has enabled it to be run on a wide variety of architectures and
solutions.

The strength of the MQTT protocol lies in the fact that it allows persistent ses-
sions, and also a dynamic variable Quality of Service setting, which in turn
makes it suited for networking situations at the edge of the network [44].

In its core, MQTT is based on a client-server architecture, which means that there
is a centralized server that is responsible for the delivery and communication
paradigm between the different endpoints on the network [44], this can be seen
in other networks as the broker. However, this was deprecated in the third itera-
tion of the MQTT protocol, where it is now called the server. This was an attempt
to standardize and normalize it for widespread use in the IoT sector, along with
complementing new functionality that was added. [44]. This new version also
brought new terminology compared to the previous version, publishers and sub-
scribers were differentiated, whereas now both of them are referred to as clients.

There are also new elements to complement a typical use-case in modern IoT
devices, being lost messages and congestion at the server. Prior to version 5,
MQTT had a problem with published message deliveries that ended up not
being received by the nodes, which could happen in cases where nodes failed
or published messages simply ended up being lost [55]. The solution that was
proposed and implemented in version 5 was the concept of shared subscription.
Shared subscription allowed a set of nodes to participate in a group to share a
common subscription, instead of needing to individually send to every single
participating node, as this in many cases led to duplicated messages which
could strain the network [40]. The unique part of the subscription group is that
all participating nodes on the subscribed topic has an equally distributed load,
allowing for reduced traffic and computations to be performed on networks
during run-time.

Other prominent changes that came with the last version were a focus on better
supporting offline or persistent sessions, with the release of clean start mode,
which allows for the servers to request connections from devices so that they
can clean up their session state. This helps reduce the server loads that occur
in massive networks where clients may appear and disappear often. Along
with this MQTT was released with functionality that nicely complements the
idea of utilizing it in HADR operations. This includes flow control, that has
the preliminary goal of reducing the amount of messages and negotiations
involving both the client and the server.

16

For our thesis, we used the latest released MQTT Broker image from Eclipse,
allowing use to utilize the new aforementioned developments in the protocol.

2.3.1 Publish/Subscribe

The Publish/Subscribe paradigm, from now on called pub/sub, is a messaging
pattern that involves publishers, subscribers and brokers. pub/sub is available
through a variety of paradigms. The purpose of our research is the Publish/Sub-
scribe paradigm implemented in MQTT.

In its simplest terms, publishers do not create messages directed towards specific
receivers, instead it uses a predefined set of rules to categorize messages into
classes without knowledge of which subscribers are listening. This is contrary
to a traditional client-server architecture where a client directly communicates
with an endpoint [56].

A pub/sub networks provides great flexibility and scalability due to the afore-
mentioned nature of how publishers and subscribers are inherently unaware
of each other. This aspect happens on multiple different levels,

• The publisher and subscribers do not need to know anything about each
other.

• The publisher and subscribers can run in separate time-frames, and do
not need to run simultaneously.

• Operations and calls that happen locally on a node are not interrupted
during publishing and receiving.

In terms of scalability, Pub/sub has some unique abilities contrary to traditional
client-server approaches, which stems back to the fact that it allows the broker
to work highly parallelized and in an event-driven way, which makes it ideal for
small low powered devices that would not handle congestion, and a constant
high load recurrently.

MQTT is just one of many protocols that utilize the publish / subscribe pattern.
Each has their own variations in terms of how the protocol operates in its code.
MQTT follows the pattern of decoupling the publisher and subscriber, but only
to the extent that, if they want to participate in the network, publishers and
subscribers only need to know the host-name and port of the broker, or server,
as it is referred to from version 5.

Figure 2.1 is the publish subscribe paradigm in its simplest form, consisting of
multiple MQTT Clients. As you can note by the illustration, the measurement
device in the top right corner has no use for subscribing to anything from the
server, so it only performs publishing towards the central entity. In contrast, you
could have a device like a phone that would benefit from doing both publishing
and subscribing, to either control or verify measurements from other clients.

17

Figure 2.1: Publish/Subscribe Pattern

2.3.2 QoS

Quality of Service, or QoS for short, is a description and measurement used to
define the quality of a service, specifically in the area of networking. QoS can
be primarily seen as a quality seen by the users of the network.

Quality of Service has become a much more significant aspect of delivering
good software in the modern age of computing, as more and more service make
the total transition to cloud, and users on opposite sides of the world require
the same quality of service, even with the distribution challenges that can pose.

QoS plays a key role in delivery of the MQTT protocol as well, where it is
divided into 3 levels[57]. These 3 levels are,

At most once The lowest QoS level is zero. This service level guarantees a
best-effort delivery. There is no guarantee of delivery. The receiver does not
need to acknowledge receipts of the message and the message is not stored and
re-transmitted by the sender. This QoS level is often referred to as fire and for-
get, and has no relatable technological aspects as the underlying TCP protocol,
which is also a fire and forget protocol without many types of guarantees[57].

At least once The next QoS level in MQTT is level 1, where delivery is guar-
anteed at least one to the receiving client. The sender saves the message locally
until it gets a acknowledge packet from the receiving client of the message. With

18

this in mind, it is important to note a message can be sent of delivery multiple
times. The sending client uses a unique identifier from each packet and matches
it to the PUBLISH packet. If a sending client does not receive a packet in time,
it will send another message contained the PUBLISH packet[57]. Lastly, When
a receiving client gets a message at this QoS level, it can process the message
right away, without having to wait for additional acknowledgements.

Exactly once The last QoS level is the highest possible level of service in MQTT.
This level guarantees that each message is received only once by the intended
nodes, to prevent unnecessary load on the system and at the nodes. With this
added precaution, it is however the slowest quality out of the ones listed, but
also the safest if messages contain sensitive instructions related to running and
operating the end-node device.

The extra functionality compared to the other layers happen during the initial
PUBLISH message that goes from the sending node to the receiving one, and
both nodes use this one to coordinate with themselves. If the first PUBLISH
messages does not get acknowledged by the end-node, the sending node will
keep sending until it gets a message containing the PUBREC packet. If a sending
node has to send multiple PUBLISH messages, it will also include a DUP flag
to indicate that it has been sent multiple times.

When the PUBREC packets have been received by the sending node, it can
remove the original PUBLISH packet, as it does not need it anymore. Ones the
sender has received sufficient PUBREC packets, it sends a packet containing
PUBREL, which indicates to the end-nodes that it can discard the previously
exchanged messages.

And lastly, once the PUBREL message has become the new default for marking
the messages, we can be sure that message wont be processed twice, as it be-
come publicly identifiable on the network for re-usability. All of these principles
are valid for both MQTT client and brokers to make sure that both parties have
their messages delivered and sent [57].

19

Figure 2.2: Quality of Service in MQTT [43]

Figure 2.2 shows the various levels of QoS within the MQTT messaging
paradigm. The progression from 0 to 2 becomes apparent through the in-
creasing amount of segments being transmitted, from the "fire and forget" policy
up until QoS level 2, which aims to guarantee the deliver exactly once, requiring
the subscriber to acknowledge, and the broker to delete the message once it has
reached the theoretical end of the round-trip [43].

The difference separating these levels of Quality of service might not seem
obvious at first, considering that we are working on a such a flexible network in
the first place. There are however some things that stand out about the different
ones.

QoS 0, is for instance most usable in situations where you have a completely
stable connection between all the nodes, and similarly to TCP, it is most us-
able in situations where your application will still deliver even with a few lost
messages [57]. QoS 1 is applicable for situations where it is critical for your
application to get every message and the application wont be too affected by
handling duplicates. A typical scenario, when it comes to determining whether
QoS 1 or 2 is most suitable for the application, is to determine whether it is
critical for your application to get all messages exactly once, as the name of the
QoS level suggests. The final important thing to mention is the difference in
overhead between QoS 1 and 2, which makes QoS more widely used in modern
IoT solutions, where end-users is utilizing for example an app, where response
time and low overhead is a preferred state [57].

Determining QoS level, and the related work that goes into making the system
handle duplicates, and time-critical messages is something we will touch back on
in the implementation part of the thesis, where we more closely dive into the vari-
ous aspects surrounding the implementation of MQTT we used on our system.

20

2.4 Military Federation of IoT

2.4.1 NATO IST-147 and 150

This specific research can have implications in many sectors, and have been
researched since IoT systems started exponentially growing. NATO or the North
Atlantic Treaty Organization has shown a particular interest in this topic, to the
extent that it has established task forces to look at the opportunities for federated
inter-operability between military systems such as C2 and IoT networks in and
around cities[30].

NATO IST 147, more commonly called "Military applications of IoT" was the
task force working on this problem.

NATO IST-147, which was a part of the NATO Science and Technology Organiz-
ation worked on investigating a proving the applicability of COTS IoT systems
and Standards, which could be applied to Military context, and in September of
2019, they concluded their work successfully[30]. The group was succeeded by
NATO IST-176, which is still on-going. The group is primarily researching meth-
ods to enable both interoperability and integration for existing IoT systems[45].

In the group latest publication “Concepts and Directions for Future IoT and C2
Interoperability” [45] the group presents the key design requirements needed
in developing data models that would provide the necessary interoperability
and extensibility for Military systems and Commercial of the shelf IoT devices.
One of the fundamental elements used within NATO to maintain a cooper-
ability between the participating nations at STANAGs, which simply is the
abbreviation for Standardization Agreements, these have been used as means
to maintain compliancy and standardization for different military applications,
such as Technology. These Agreements are made by experts within their re-
spective fields to best suit the current state and the future state of the area of
interest[45]. In their latest paper, they do not propose new standards for the
already comprehensive and intricate IoT ecosystem, instead, their work has
been oriented around identifying and making clear guidelines for concepts of
reusability of existing standards that can prove helpful for future developments
within the smart systems sector.

STANAGs are identified as one of the causes that might have contribute to the
widespread gap that has risen in IoT over the later years, due to the fact that
STANAGs are made to complement existing use cases and technological do-
mains[45]. STANAGs are however not as resilient to change, and it often takes
a very long time to merge or re-purpose previously applied principles to, for
instance, the every developing IoT sector. The idea of incorporating commercial
digital ecosystems into military systems has therefore become challenging.

The group IST-147 has previously proposed the use of a simple messaging
paradigm based on Topic formats, that is employed using the MQTT

21

paradigm. They subsequently demonstrated the applicability of this topic based
communication which could support IoT and C2 data alike at a demonstration in
2018[45]. In this presentation, they mapped out the topic paradigm from MQTT
over a much more standardized JSON hierarchy, which proved to be successful
when employed over a range of coalition systems, consisting of a wide variety of
different sensor. Even with the advancements by the previous groups working
on the challenges with federating IoT platforms, all of them equally acknowledge
that one of the fundamental problems lies in the lack of open-source components,
such as data models, which is specifically acknowledge by the authors[45].

The proposed design considerations proposed by the group is adding descrip-
tions for device publishing data, automatic recognition and remote configuration,
network awareness and traffic distribution/management, security and privacy
and storage of processing of data.

Descriptions for Device Publishing Data concerns itself with how metadata is
is gathered, what format it is along with information about the owner. This
information will be vital for a NATO affiliate to determine the to what degree
the information can be utilized in a military situation, as precautions have to
be made with respect to security and validity in crisis situations [45].

The idea behind Automatic Recognition and Remote configuration lies in the
field of ubiquitous computing, and how IoT devices fall within the category.
The group suggests that there should be capabilities in the Shared Data mod-
els to allow for remote configuration and event based responses based on the
information that would be received in the Military Systems [45].

Enabling network awareness and traffic Distribution is another aspect that
should be included in the Shared Data Model, which allow for the network state
to be assessed along with controlling network distribution and management [45].

The storage and processing of Data relates to how the Shared Data Model should
support different types of storage and processing assessments such as how the
data should be stored and used for fusion with other data sources [45].

Lastly, the paper mentions how a shared data model should be helpful for
providers to ensure privacy and security of corresponding IoT data streams
with respect to anonymizing data that should not be accessible from a military
point of view [45]. This may include data such as personal information, which
serves no particular benefit to military systems, and is protected by legislations
in many different regions of the world.

In summarization, the initial paper by IST-176 [45] suggests the use of a open
Data-Model and a continuation in the work of STANAGs to be key contributors
towards enabling more interoperability within the IoT sector towards military
C2 systems. Through the use of open specifications in terms of how data should
be stored, processed and translated - along with allowing remote monitoring
of networks will be play a vital role in the usefulness and usability of systems
from a military context.

22

2.4.2 Challenges with Federation

During a demonstration in 2018, NATO IST-147 performed experiments proving
the applicability of IoT can be integrated in a urban HADR operation, but the
demonstration left some open questions [44].

In the 2021 article “Federation Based on MQTT for Urban Humanitarian Assist-
ance and Disaster Recover Operations” [44] they list the open ended questions
yet to be researched in terms of validating the use of IoT platforms for HADR
operations, which is listed below.

• How can multiple command and control (C2) system federate with each
other?

• How can an IoT protocol be leveraged for federation between the coalition
partners?

• Which C2 systems and which interface from the C2 systems can be used
for federation?

• How can the civilian data be accessed and at what granularity?

This section will however look at the questions from an IoT point of view, and
not in terms of the the corporation with military C2 systems, as most of the
literature regarding C2 systems lies outside the scope of this thesis.

IoT consists of a wide variety of platforms which is engineered and operated as
individual solution, with a lack of interoperability and cooperation, and a lack
of infrastructure in terms of collaboration will negatively influence future use
cases which can require larger scale IoT deployments, such as it’s applicability
for HADR operations[70].

As previously discussed, the IoT ecosystem is growing at a very fast pace, and
the need for cross-domain IoT applications have been ever growing. Utilizing
today’s vertically isolated platforms to cover a wider variety of domains has
become an area in which businesses need ever so much expertise[70]. One of the
proposed solutions, which is not federation based is for companies to engage
in strategic partnerships, to better be able to tackle larger distributions.

The interoperability in context of the IoT systems has been defined in the ETSI
whitepaper as “the ability of organizations to effectively communicate and trans-
fer (meaningful) data (information) even though they may be using a variety
of different information system over widely different infrastructures”[27].

IoT platform federation was described in the paper Collaboration Mechanisms
for IoT Platform Federations Fostering Organizational Interoperability [70] as
associations between two or more platforms, which are willing to share access
to their IoT resources in order to facilitate their fair interaction and collaboration.

23

Since the nature of most large IoT platforms in actuation and sensing, plat-
forms would benefit from having a collaborative effort, since devices are spread
out over large geographical areas. Enabling such a collaboratory effort would
however require the platform to adopt a decentralized privilege approach, not
allowing for one part of the network or one individual platform to use all of the
capacity to limit other parts.

A federated IoT platform would enable applications to use resources that would
also be managed and operated by other federated platforms as they were their
own, which offers a great advantage in prospect to large infrastructures for
sensing and actuation, such as Smart Homes and industrial plants. By feder-
ating platforms, it would remove the tedious task of interacting with multiple
different interfaces and platforms across a wide variety of applications.

When federating IoT platforms several aspects have to be taken into account,
such as resource utilization and fair usage properties. Research has been done
as to rectifying this, through the use of Service Level Agreements, first pro-
posed in "Collaboration Mechanisms for IoT Platform Federations Fostering
Organizational Interoperability" [70].

Service Level Agreements is a solution that enables multi-level trust and repu-
tation, along with providing a a fair usage sharing process among the federated
platforms to allow each individual platform to gain the most out of the feder-
ation. Service level agreements can also be seen as a service where performance
requirements of the different applications are noted in a standardized way that
suits the nature of the end-to-end architecture that is the IoT domain. This
agreements would play a vital role when accounting for things like Quality of
Service metrics, which has be accounted for at every level such as the network
gateways, edge nodes and in the cloud [1].

Interoperability within IoT platforms has so far not had much attention in re-
search [70], but with the staggering amount of devices increasing daily, the need
for federated IoT platforms grows. With the primary reason being to better
complement the future developments in IoT.

24

Chapter 3

System Design

For the purpose of this thesis, several different software components were made,
such as data emulation software and testing suites, with the most significant
work being the Kubernetes Cluster made up of Raspberry Pi’s. This section will
cover the various discussions and aspects that went into creating the applications
for this thesis.

3.1 Scenario

3.1.1 Disaster relief operation

Natural Disasters is an umbrella term to describe an unusual intensity of a
natural agent. It can range from avalanches, droughts, tornadoes, volcanic
eruptions to landslides.

Norway faced one of its latest disasters on 30th of December 2020, when a
landslide struck a significant area in Gjerdrum, a small town north of Oslo [39].

The devastating landslide happened early in the morning hours, dragging 13
buildings and homes with it [23].

The first few hours after a natural disaster is often critical. If humans are trapped
in the rubble, every minute can be vital for their survival. At Gjerdrum, the first
few hours after the landslide were chaotic, as infrastructure and communication
was destroyed. This is where an ad-hoc networking implementation can be
valueable, such as the one we are proposing. It is an intermediary solution
until the surrounding infrastructure is re-deployed. With an approach aimed
to be utilized as a theoretical bubble on the Edge, our theory is to roll out the
detached ad-hoc solution, which can later be utilized in the coalition with the
surrounding infrastructure, once it returns.

25

Search and rescue at Gjerdrum was an ongoing effort until January 5th. During
the span of the week, several organizations participated in the operation to find
the residents of the homes that were struck by the landslide.

The search and rescue operation was comprised of multiple state departments,
private organizations, voluntary organizations and the Norwegian military. This
made the communication efforts complex with the resources at hand.

Ten people lost their lives in the landslide, while another ten were saved from
the rubble. The infrastructure in the area was completely destroyed, forcing
many people to relocate from their homes. The aftermath of the landslide still
affects the area at the time of writing this thesis.

3.1.2 Reflections on the need for digitization and edge computing

One of the primary means of communication among the search and rescue
teams is voice communication, specifically for the Gjerdrum incident where it
would be "Nødnett".

"Nødnett" is a product of The Norwegian Public Safety Network, which is a
public network system based on Terrestrial trunked Radio, or more commonly
referred to as TETRA. TETRA is a formal standard for a voice-based radio sys-
tem, where actors in the network are grouped and encrypted [32]. The TETRA
network used in Norway was made to be a replacement for the existing radio-
channel based communication that persisted in many departments around the
country [32]. There have been some proposed technologies that might be viable
as an alternative to the TETRA network, 5G being one of them.

5G technology has been under discussion in terms of acting as a replacement
for traditional standards such as TETRA, which with its increased bandwidth
and modernized standards, would open up for future emergency networks
to include more than just voice based communication [13]. Traditional 5G net-
works are based on existing infrastructures in urban cities and areas. However,
the alternative is 5G core, which can be operational on the edge, acting as a
beacon, connecting the rest of the devices out of reach back to the infrastructure.
This can be related back to the concept we covered in subsection 2.2, being the
network edge. This is per now a proprietary technology, such as the 5G Vinni
project, which is currently in experimental stages[67]. The 5G Vinni project is
working on speeding up the innovation in the sector, by providing industries
and businesses with a end to end solution that lowers the general entry level
to 5G. They have solutions which can contribute to innovation on the edge of
the 5G networks, along with the idea of providing separate slices within 5G
networks. This is to allow communication to flow freely within those dedicated
slices[67]. This research also has culminated to 5G Vinni, along with other in-
dependent researchers experimenting with mobile facility sites, such as vehicles,
which would allow for a quick response to a HADR situation[67].

26

To limit the need for voice communication, which is currently a tightly inter-
department system and extend the intercommunication between departments,
we propose a system in which there is an increased use of data, contrary to voice.
Transitioning information to data channels would open up for more particip-
ating actors, which would allow for higher coordination across departments.
This can be assumed to be a way of streamlining communication, allowing for
missions to be completed faster, and with a higher degree of cooperation.

We believe that utilizing the IoT infrastructure and its capabilities can profoundly
affect this type of scenario. Devices come in all shapes and sizes with varying
degrees of robustness. We can, however, assume for the purpose of our proposal,
that the raspberry pi units can be retrofitted with an IP68 or military standard
battery pack to increase the robustness of the devices in the field, along with an
appropriate casing solution.

We aimed to have our solution be based on completely open-standards and
open-source software to allow for maximum interoperability. Doing this in
such a manner would allow a system of this sort to communicate with any
end-systems wishing to utilize it, given the proper procedures.

3.1.3 Proposed high-level technical architecture

We devised a scenario, shown in figure 3.1 where we would have both internal
and external devices transmitting over MQTT. Our initial idea was comprised
of a centralized system oriented around the Kubernetes architecture. Still, not all
devices would be included in such a system, so to better emulate a realistic scen-
ario for testing, we included some stand-alone devices reporting to the broker.

We wanted to have services inside and outside the cluster reporting various
activities and metrics. The idea behind having both internal and external service
reporting to the Broker that lies on the cluster, was primarily to see if they would
respond differently in cases of lackluster connectivity. It would also provide
some realism to the scenario.

As discussed in subsection 3.1.2, data can become a new driving force in this
specific use case, which is now primarily based on voice communication. The
system we are proposing would enable voice, video and sensory data through
the use of the MQTT protocol, along with WebRTC. Utilizing MQTT, with its
favorable aspects in terms of disseminating large amounts of data, would allow
for an autonomous collection of data throughout the cluster, giving responders
a clear view in terms of what the situation is like through the use of data. In
addition, enabling voice and video would allows responders to get an overview
of the situation from afar and maintain a high level of communication between
the participating responders.

27

Figure 3.1: Scenario

Figure 3.1 depicts the base architecture for our system. This simple high-level
schematic shows two external devices reporting back to the interconnected
cluster where the coordinating MQTT broker resides. Within the depiction,
Green represent the Master node of the cluster, and red represent the worker
nodes.

3.2 Kubernetes

Kubernetes is an open source software used for managing containerised applic-
ations across multiple nodes or hosts. It has basic mechanisms for all aspects
of application maintenance [60].

Kubernetes results from 15 years of research and development at Google, based
on the workloads from Google’s own internal cluster manager called Borg which
consists of thousands of applications, running over many clusters [66].

In 2014, Google open-sourced the Kubernetes project, and the Cloud Native
Computing Foundation currently maintains it.

Kubernetes has proven to be useful in many deployments, specifically in sys-
tems that should be able to rectify faults by automatically deploying a new
container to prevent unnecessary down-time [60].

Looking back at the different deployments in modern computing, companies
originally ran applications on physical servers. In these servers, there was
normally no clear way to define boundaries. Obviously, this caused issues if
multiple applications ran on the same server. If one server would take up most
of the servers resource, the other applications would suffer the consequence.
The way to solve this issue would be to separate the applications across different
servers, but this would, in many cases, cause hardware to be under-utilised and
very expensive in the long run.

A solution to this was the introduction of Virtualisation, which allowed you to

28

run multiple Virtual Machines or VMs on a servers CPU. VMs allowed for better
utilisation of servers through better scalability through being able to present a
set of physical resources as a cluster of disposable virtual machines [60].

Containers, such as those used in Kubernetes, are fairly similar to Virtual Ma-
chines, but have more abstract properties to share the host operating system
among the applications in the containers. Furthermore, due to the nature of
containers and VMs, they are generally portable across clouds and operating
systems. With all this in mind, Kubernetes and the container deployment is
a great choice for this thesis since it offers a lightweight architecture for edge
devices [60].

3.3 K3s

K3s was developed by a company called Rancher Labs as an alternative distribu-
tion aimed at enabling Kubernetes for small, low powered IoT devices. The K3s
distribution is a single binary of less than 40MB, which completely incorporates
all the elements of the Kubernetes API [52].

To incorporate the otherwise large executable at 40MB, the extra drivers that
did not need to be part of the core executable were removed, but is easily added
if the developer needs it. K3s have very low resource requirements, so it is
possible to run it on machines as long as it has at least 512MB of RAM [52]. Due
to the small size of the binary, it is very fast and easy to install compared to a
regular Kubernetes cluster, making it perfect for Raspberry Pi’s and other small
sized IoT devices.

Considering the size of K3s, it would be reasonable to assume that there would
be a considerable difference in terms what is offered compared to Kubernetes.
In reality - both have the same capabilities in terms of load-balancing, isolation
and deployment procedures [52].

Considering that the distributions are similar in many respects, there are some
notable differences, one of them being the database. The default database is
used in Kubernetes is a key-value database called etcd. In K3s however, the
default database is SQLite. SQLite offers great performance for smaller clusters,
with a notable drop-off when reaching a certain threshold [52].

3.4 Kubernetes Architecture

Kubernetes was a platform made by Google, and was released in 2014 under
a open-source license. Kubernetes is, in simple terms, used as a tool to help
developers and companies to manage and deploy newer versions of software
without requiring any downtime. In this section, we will explore the different

29

Figure 3.2: K3s Architecture [52]

architectures of K3s and Kubernetes, to better uncover their capabilities for our
thesis.

We used K3s [52] as an alternative to the traditional Kubernetes deployment.
We will refer to K3s and Kubernetes interchangeably unless there is a significant
difference.

One of the most fundamental aspects of Kubernetes is the idea behind a Cluster.
A cluster is just an alternative word to describe a system of nodes you propagate
using Kubernetes. A cluster is made up of two main types of elements, which
are the Master and Worker nodes. The Worker nodes serve a different purpose
than the master, as the master contains the control plane.

Figure 3.2 shows the basic high-level architecture for K3s. It mainly consists
of two components, the server and the agent, which is synonymous with the
master and worker node terminology in the standard Kubernetes Implement-
ation [11]. One of the fundamental things that make K3s more lightweight and
easy to run than its counterpart is the fact that in both the server and the agent,
the components are grouped together and run in the same process. Whereas in
traditional Kubernetes, every component run in a stand-alone process. Even in
cases where the cluster only consists of a single node, K3s have the option to run
the server and the agent within a single process, making it an ideal distribution
for typical low-power IoT devices. As previously stated, K3s and Kubernetes
share a fair amount of similarities in terms of functionality, with the differences
illustrated in Figure 3.2 as SQLite, Flannel, and Tunnel Proxy components [11].

Regarding the components separating the two deployments, we can start by
looking at Flannel. Flannel is K3s own abbreviation for an encapsulation pro-
tocol called VXLAN [11]. VXLAN is a protocol that addresses the scalability
problems associated with large cloud computing systems [37]. VXLAN is a com-

30

Figure 3.3: Kubernetes Architecture [6]

mon protocol used to create overlay networks that sit on top of existing physical
networks to enable virtualization [37]. Within the Kubernetes distribution, it is
commonly referred to as a Container Network Interface or CNI [11]. Another
precautionary measure in the K3s deployment was to remove the dependency
of the etcd database, which is a distributed key-store database in the regular
Kubernetes deployment. Lastly, there is the Tunnel Proxy component. The
tunnel proxy is a component that enables secure communication between the
kube-proxy on the agent and the API server on the k3s server. This allow secure
bi-directional communication over a single port, compared to Kubernetes, where
the kube-proxy uses a number of ports to communicate with the API-server [11]
which would not be suitable for smaller scale IoT clusters.

The differences above are the only aspects where the K3s deployment differs
from regular Kubernetes. Figure 3.3 shows an illustration of how the same
architecture looks with traditional Kubernetes. For the purpose of this thesis,
the Cloud Controller Manager, and the Cloud provider API is excluded as it
does not benefit us in our approach. When comparing figures 3.3 and 3.2, we
see similarities in the remaining components making up the control plane being
the Controller Manager, Scheduler, API-server and Cluster DNS.

The API-server is the component that, as the name suggests, deals with API
requests and is the working frontend server of the cluster. The API service also
serves to track the state of the different cluster components and deals with the

31

interaction element between them all [15]. The scheduler is the component in
charge of deciding where to run the newly created pods and applications, along
with distributing the unscheduled workloads across the worker nodes available
in the cluster [17]. Finally, there is the Controller Manager, which is a very
essential component in the Kubernetes architecture. The Controller Manager or
CM is responsible for running all the built-in internal controllers in the cluster,
which handles aspects such as the node and the replication controller. This
controller plays a vital part when a node should eventually go down and fail,
it will then communicate to the rest of the system that a replication is required
to set up a new node [16].

The last essential part of the Kubernetes architecture lies in the Worker node. The
worker node is responsible for deploying and running the containers containing
the applications. In addition, worker nodes run all the different services that
are required for different container to communicate with each other. Finally, the
worker nodes communicate with the control plane, which asks the scheduler
to delegate resource capacity for containers so that they can be run and installed
on particular nodes.

Workers consist of a few different components such as the kubelet, kube-proxy,
and the runtime environment for the containers. A kubelet is a component that
directly enables the Kubernetes ecosystem, and is responsible for managing the
local run-time environment of the container, and doing scheduled work related
to aspects such as monitoring and surveillance of resources. The runtime envir-
onment starts and stops containers and is responsible for their communication.
A typical example of a container runtime that is widely used today is Docker.
The final component in the K3s Agent architecture is the networking proxy that
serves to routing responses and requests between the pods and the internet.

3.4.1 Pods/Containers

Within the Kubernetes Distribution, some essential linguistics are used to ex-
plain the different components, for how it runs, and how to deploy and regulate
resources on the cluster.

Before explaining the Kubernetes unique terminology, it is important to know
about containers. Containers can be described as a form of enclosure for an
application. The enclosure is in a more technical aspect, a form of virtualization
[54]. The enclosure can contain components of a larger microservice-based archi-
tecture, or a larger executable consisting of an entire application. All the building
block within the enclosure are for the code to run as intended, such as binaries,
libraries, and config files [54]. Containers are operating system neutral, meaning
it can be run across all the platforms that it is being built for, such as X86, AMD64
or ARM. The process of building container images is normally done through
the use of software such as Docker, but there are many different alternatives.

Containers are often praised for their many benefits within software devel-

32

Figure 3.4: Pods Overview [14]

opment, such as less overhead, efficient development, consistency ,and as
mentioned earlier, the ability to run across multiple platforms without any
added labor. These benefits play back to the fact that containers, compared
to alternatives such as virtual machines, does not contain a operating system
image. This makes it more lightweight and suited for lower capacity devices,
such as the ones existing on the network edge. This, along with the fact that con-
tainer processes are normally automated, such as building, patching or scaling
enhances its capabilities with IoT.

Containers especially gained traction when more and more companies and
organizations made a move over to a cloud-based architecture, where most of
the ubiquitous computing requires the use of images [54]. With this transition,
architectures based on separating components into micro-services became the
new normal. A container-based architecture also adds value by allowing ap-
plications to be more resilient to failures and allowing applications to be scaled
more efficiently than before [54], which we can see with the use of distributions
such as Kubernetes.

In Kubernetes, the notion of containers is expanded into the concept of a pod.
A pod is a group of one or more containers. Within a pod, there are also com-
ponents such as shared storage, which is commonly called Persistent Volumes
within Kubernetes[14]. Persistent Volumes will be covered in subsection 3.4.6,
as it is a reasonably comprehensive component.

The containers within a pod share a common IP address and port space in the
cluster. The address and port are, however just their identifiable address from
within the cluster, not from the outside. With this approach, containers run
in parallel with each other and co-schedule their routines fairly. This process
is automatically done by the master and is determined based on the available
resource that is present on the node [14].

Illustration 3.2 represents the base overview of a pod is structured within Kuber-
netes, and shows the steps in which a pod is deployed, in simplistic terminology,
the Kubernetes team refers to a pod as an atomic deployment, which can be

33

noted from the illustration [14]. Pods are also bound to a node within the cluster
that they are deployed in, where the pod lives until the node fails, or the pod
is deleted. A node can contain multiple pods, as distribution allows for device
of lower capacity to host several systems when utilizing Kubernetes. A node,
is normally a worker with the cluster and is commanded and maintained by
the Master node, or more specifically, the control plane of the master node.

3.4.2 Load Balancing

Load balancing is a familiar concept within modern networking, and more spe-
cifically within cloud computing. It describes a paradigm to efficiently distribute
network traffic across a series of networked back-end systems [38].

Load balancing has been around since the 1990s, but back then it was a hardware
component installed across server parks. The need for load balancers stems back
to organization’s wanting to improve the performance of applications running
on servers [2].

A modern software-based load balancer acts as the symbolic gate in front of the
server. It provides routes for incoming requests across all capable and operative
servers, which in turn should be helpful to maximize the performance and
utilization across the servers so that one should not be overwhelmed in times
of high traffic. Along with this, it also serves the purpose to mitigate against
failure, which can happen if one server should go down, then the load balancer
can compensate for this event by routing the traffic to another server [38].

A Load balancer can be divided into three main categories based on function-
ality [38].

• The Load balancer contributes to distributing traffic across localized serv-
ers

• Provides organizations and applications with high availability and reli-
ability by sharing the traffic.

• Gives the flexibility to add or decrease capacity during high or low activity
times.

Building on the premise of high availability and reliability, it becomes clear why
it is a central building block in the Kubernetes distribution. Kubernetes and its
different distributions, such as the one we utilized in this thesis, K3s all have
different approaches to Kubernetes. Within the distributions, load balancing is
an aspect that is highly flexible and configurable to suit each cluster’s need [38].
Load balancing serves as a flexible solution within clusters to expose deploy-
ments, pods, and services to the outside world, and provide the functionality
mentioned above.

34

Kubernetes is a widely used component within modern cloud architecture,
where it is being utilized on virtual machines with a designated capacity. The
other option is what is called a bare-metal approach [35]. A bare-metal approach
is a terminology used to describe clusters that live and run on physical hardware,
such as our cluster, running across a set of Raspberry Pi devices.The Kubernetes
distribution, both the official and sub-official, like K3s, does not offer a imple-
mentation of a network based load balancer for bare-metal clusters. Instead
it just offers implementations that are compatible with cloud solution such as
Azure, AWS and others [35]. There are however many different open-source
alternatives available, MetalLB being one that stands out, since it attempts to
provide a network load balancer that is compatible with traditional networking
equipment found on regular computer hardware. This opens up new oppor-
tunities for experimentation with bare-metal clusters [35].

A more in-depth explanation and comparison of Metallb will be discussed in
section 3.4.2 of this thesis. We also covered the steps we used to implement it
on our cluster.

3.4.3 Deployments

Deployments are another vital element in Kubernetes. A deploy is used to
describe a resource object that provides updates to existing applications, which
resides in pods across the system. A deployment consists of a wide range of
parameters, the life-cycle events, what images to pull, and the initial number
of replicas or pods that should be initialized [19].

A deployment can be looked at as a way to command the cluster of how you, as
the developer, wants the computation to be performed. By applying a deploy-
ment, it is a way to ensure that the system strives to maintain the applications
desired state [19].

Listing 3.1: Deployments

apiVersion : apps/v1
kind : Deployment
metadata :

name : foo −deployment
l a b e l s :

app : foo
spec :

r e p l i c a s : 3
s e l e c t o r :

matchLabels :
app : foo

template :
metadata :

l a b e l s :

35

app : foo
spec :

c o n t a i n e r s :
− name : foo

image : foo : 1 . 1 4 . 2
ports :
− c on t a i n er Po r t : 80

The code sample 3.1 shows a simplified example of how a deployment script
is structured in Kubernetes. Here we have the makeshift application foo-
deployment which is defined to replicate itself three times in the system.
The application is retrieved from the example image foo:1.14.2 and exposed
internally on the cluster through containerPort 80. Most of the scripted code you
deploy to Kubernetes share a reasonably similar buildup. The notable exception
is the parameter "kind", which separates a deploy from a service, ingress,
persistent volume, or any other scripted calls to that is aimed at the system.

3.4.4 ConfigMaps

A configuration file in Kubernetes is called ConfigMaps, and is considered an
API object used to store data in key-value pair. Configmaps can be considered
as regular environment variables and application arguments[58].

Configmaps work to decouple the configuration containers so that applications
are more easily portable both across the cluster and across systems.

Configmaps are restricted in size, not exceeding 1Mib of data to prevent an
exceeding amount of data from continuously passing through the system.

Configmaps prove especially useful in scenarios where applications have differ-
ent declarations and configurations for development and production, allowing
for separate sets of the same application to share similar code, but not similar
configurations [58].

We utilized Configmaps in several cases. The most important being the TLS
certificates required to run a secure MQTT-broker.

Listing 3.2: ConfigMaps
apiVersion : v1
kind : ConfigMap
metadata :

name : mosquitto − conf ig
namespace : mosquitto

data :
foo . conf : /−

A typical Configmap deployment manifest can be seen in listing 3.2 and is pretty

36

similar in buildup compared to the other kinds of objects in Kubernetes, with
the notable exception being the data declaration towards the end of the file.

3.4.5 Services

A service in Kubernetes is an abstraction used to represent a set of deployed
pods within a Cluster. A service’s main job is to connect a given set of pods
to a higher service name, along with the port number and IP address. When
a service groups together a collection of pods, it opens up for discovery and
routing internally between pods in a cluster [64]. There are several different
kinds of services, like LoadBalancer, which we covered in section 3.4.2, along
with Cluster-IP and Node-Port. Node-Port opens up a service through the use
of a static port on all the participating nodes, while Cluster-IP, which will be
listed below, opens up a service to the rest of the cluster [64].

A typical example of how a service operates can be thought of as a composition
of a back-end and front-end system, both co-existing within a Kubernetes cluster.
Since the front and back end of the application might be run across different
pods and nodes, then the service helps group together the co-existing pods
across multiple nodes within the cluster [64]. Therefore, a service can be seen
as a binding element between applications that require each other to function.

As all other Kubernetes objects, a service is defined in the YAML format.

Listing 3.3: Service

apiVersion : apps/v1

kind : Serv ice

metadata :

name : serv ice −frontend

spec :

− port :4000

protoco l : TCP

t a r g e t P o r t : 5454

s e l e c t o r :

run : serv ice −frontend

type : Clus ter IP

37

Listing 3.3 shows a typical setup for the makeshift object “service-frontend.”
When applying this object to the cluster, any pods within the cluster would
be able to access it on port 5454 under the name “service-frontend”[64]. This
example shows a typical ClusterIP build, which would also open for pods to
utilize the main specification port, set to 4000.

Many objects within Kubernetes are bound to each other, such as Deployments,
Services, and LoadBalancers. Still, as seen here, even abstracted services serve
their unique purposes when deploying applications to a cluster [64].

3.4.6 Kubernetes Volumes

Kubernetes, like most other systems, are based on storage. Within Kubernetes
it is crucial due to the nature of the fault-tolerance.

The umbrella terminology used to explain the different ways to persist data
in Kubernetes is simply called Kubernetes Volume. Under this terminology,
Persistent Volume, Persistent Volume Claim and Storage class, are the 3 main
approaches to persisting data in Kubernetes[36].

The concept of persistent storage plays a vital role in determining the viability
of Kubernetes for HADR operations. Persistent Volumes will be the answer in
terms of reconciling data and information from being lost on nodes that might
fail.

The basic needs for storage within applications are often provided through a
database, such as MySQL. If you put that context into the bigger Kubernetes
picture, things change. This is because applications reside in a container image
that is enclosed within a pod that resides on one or many nodes throughout
a system. This fact pertains to storage as well, which could be deployed as a
separate pod residing together with application specific containers, which rely
on each other for functionality[36].

Persistent Volume, however describes the next layer above this, which deals
with storage related to when or if nodes should fail then the data defined and
stored within these pods, have to be retrieved and set up on a new node, but
still keeping the information that was stored prior to the nodes failure, which
is exactly what persistent volume deals with in Kubernetes.

Three characteristics often characterize Kubernetes Volumes. First of all, as
mentioned earlier, Storage must not be dependent on the pod life cycle, it must
be available across all nodes, and storage needs to survive even if the entire
cluster crashes [36].

Persistent Volume is the first of the three main pillars of Volume storage. Persist-
ent volume is a cluster resource equal to CPU or RAM capacity. Like all other
Kubernetes objects, it is defined and applied as a YAML file.

38

Listing 3.4: Persistent Volume

apiVersion : foo/v1

kind : PersistentVolume

metadata :

name :

spec :

capac i ty :

s torage :

volumeMode :

accessModes :

ReadWriteOnce

PersistentVolumeReclaimPolicy : Recycle

storageClassName : slow

mountOptions :

Listing 3.4 shows a typical template YAML file that would be used to define
the Persistent Volume resource. You can note from the listing, that the kind is
specified as a PersistentVolume, and the spec is used as a sheet to define the
capacity, volumeMode, and accessMode for the storage.

Examples of Persistent Volumes are typically cloud-based storage such as
Amazon AWS or NFS servers. The alternative that is popularized on bare-metal
clusters such as ours is simply using the local storage on the participating nodes.

A Persistent Volume claim, which is the second way of defining storage, is done
similarly to a Persistent Volume. A Persistent Volume claim is a request for
a new container, pod or application. Persistent volume claims are defined as
a request to already existing Persistent Volumes on the cluster. Based on the
desired specifications defined in Persistent Volume Claim, a suitable Persistent
Volume will be chosen. This is done so that applications have easily scale up
their persistence as they grow. A persistent volume claim can be done dynam-
ically from other operations and compared to adding persistent volumes; it can
be done after an application image has been deployed to the cluster [36].

A Persistent Volume Claim has to be deployed in context to a Pod deployment

39

or any similar deployment. In this YAML used to deploy the Pod, there has
to be a reference to the Persistent Volume Claim, for them to be matched up
with each other. Otherwise the Claim will reside in the Cluster until a pod has
referred to it [36].

Storage Class is the final pillar of Persistent Volumes in Kubernetes and is
typically the case for large-scale applications and enterprise-level systems. In
addition, a Storage class can provision Persistent Volumes dynamically when
a Persistent Volume Claim is made on the Cluster, henceforth automating the
entire process mentioned above [36]. A Storage Class is, however a component
that largely resides outside of the scope of this thesis, and on lightweight clusters
such as the ones covered in this thesis.

Persistent Volumes offer a fair bit of challenges due to the amount of computa-
tions required. This makes it a challenge to incorporate on lightweight devices
such as the Raspberry Pi. Projects are, however, ongoing and being released to
meet the requirements of lightweight edge-computing.

3.4.7 Secrets

Applications and software in general relies heavily on security, both in terms
of communication and to protect internal systems.

To keep keys, certificates and other types of classified information hidden from
prying eyes, software usually retrieve them from remote locations or keep them
stored encrypted within the source code.

Kubernetes uses the principles of secrets to store confidential information such
as tokens, keys, certificates or password. Utilizing secrets to keep and preserve
the confidential aspects used in application code allows the developer to not
include the data directly in the application code [59].

Secrets are created and deployed independently of the Pods that use them,
which allows for a less chance for secrets and its data to be reveled during
creating, editing and maintaining Pods[59].

The Secrets object in Kubernetes also has different added features, allowing
for configuration for several use-cases, such as preventing the data contained
within secret to be written to nonvolatile storage, and special reading writes to
prevent unauthorized access [59].

The overall, base implementation of the Secrets object in Kubernetes is not a
security measure per se, as it is stored un-encrypted in the API servers data store,
namely etcd on Kubernets, and SQLite on K3s [59]. Storing it in this manner
would allow for anyone with access to the essential data store, to query and
view the underlying data.

40

3.5 Hardware

3.5.1 Raspberry Pi

The Raspberry Pi is a small computing device made by a foundation under the
same name. The foundation is based in the United Kingdom and is a charity
that works to provide children, schools and youth organizations with the tools
to help them learn coding and digital creation [18].

The Raspberry Pi is a low cost product available in almost every country in the
world. It has the appearance of a circuit board, but is in reality a full-fledged
computer at about the size of a credit-card, and has the ability to do most things a
regular desktop computer can, only being restricted by the capacity of hardware
on it [18].

The Raspberry Pi has been through several iterations since they came about
around 10 years ago, and since then, they have aimed to be prized at around
15-40 dollars, depending on which version [18].

In this thesis, we utilize multiple Raspberry Pi 3 Model B as the worker nodes
in our Kubernetes cluster, and a Raspberry Pi 4 Model B as a master node
and control plane . The Raspberry Pis used for this project have the following
specifications [33],

Raspberry Pi 3 Model B:

• ARM Cortex-A53 1.2Ghz processing unit

• 1GB SRAM

• Integrated Wi-Fi supporting 2.4Ghz, and Ethernet support

• Bluetooth 4.1

• Integrated SD-Card Reader

Raspberry Pi 4 Model B:

• ARM Cortex-A72 1.5Ghz processing unit

• 4GB LPDDR4 SDRAM

• Integrated Wi-Fi supporting 2.4Ghz and 5Ghz, and Ethernet support

• Bluetooth 5.0

• Integrated SD-Card Reader

41

For our devices, we used a San-disk Ultra 32GB SD-Card with a Read/Write
speed of 98MB/s.

Raspberry Pi has also become a very popular device in the general market as
well, due to it’s unique ability to interact with other devices and have been used
in everything from robots, weather stations, cameras.

Due to the massive popularity that the Raspberry Foundation received for their
devices, many different alternatives to came on the market which we will not
cover in this thesis. The alternatives also have very suitable qualities, yet the
Raspberry Pi remains a favorite on the market due to its ease of use and low
cost of entry.

3.5.2 Raspian Buster

The Raspberry Pis used in this thesis runs the same operating system, Raspian
10, more commonly called Buster.

The Raspian operating system is a free OS specifically suited for Raspberry Pi
hardware. It contains all the necessary functionality to utilize the most out of
the Raspberry Pi hardware [50].

Contrary to belief, the Raspian OS is not affiliated with the creators of the
hardware but was created and is maintained by a small team of developers.

The operating system has primarily been distributed in a 32-Bit version, but as
of February 2022, Raspberry Pi OS became available as a 64Bit version [50].

Raspian OS is based on the Debian, being one of many popular distributions
for Linux. Since its release back in 2021, it has gone through 4 iterations, with
the latest one being released in 2022, based on Debian 11 "Bullseye" [50].

42

Chapter 4

Implementation

The utilities deployed to our cluster stems from pre-compiled images compiled
and available from Docker’s open-source repository. There are still several pro-
jects in early stages of development due to the continuous innovation happening
with the Kubernetes architecture. We made adjustments to existing images to
complement our use case when we deemed it necessary. If changes were made
to existing images, we covered it in its respective section. For example, in
section 4.6 we built ARM64 images, and published them to Docker Hub.

We made adjustments to existing images to complement our use-case when we
deemed it necessary.

4.1 Preparation

4.1.1 Hardware

Once the Raspberry Pi was ready, we started flashing the 32Gb SD Cards to
become identical copies of themselves. The devices use the 64Bit version of the
Raspian Buster operating system. Raspian Buster is the predecessor of the cur-
rent version called Bullseye. However, there are some reports about incompatib-
ility when running K3s with Raspian Bullseye, which made it a safer choice to go
with the lastest version of Buster, which is based on the Debian 10 Linux Kernel

In retrospect, we have noticed that we could have rather used Raspian OS Lite.
Raspian Lite is a smaller OS in terms of space, only occupying 400Mb. K3s does
however always suggest using a 64Bit OS as most images are prebuilt for that,
contrary to 32Bit, which historically has been the standard.

We utilized Raspberry Pi Imager to easily flash all the devices with the same
distribution, speeding up the process significantly compared to command-line
based approaches. During the imaging process, we automatically enabled SSH

43

and added our network configuration to configure them from the terminal on
our local machine directly.

To preserve most of the RAM capacity on the Raspberry Pi’s we deactivated the
processes related to having a graphical UI on the Raspberry Pi’s and enabled
them to boot into terminal mode instead. We also went into the rasp-config
and decreased the default RAM allocation to the GPU from 64mb to 16, to
further allocate memory for our system. When validating, we noticed around 8
percent less RAM usage, compared to when the GUI was activated. During the
configuration, we also added unique host-names to each individual Raspberry,
as it is a formal requirement for running K3s.

4.1.2 K3s

We used the official documentation available at Rancher’s website[48] to set up
the K3s Cluster. There are several different ways to install K3s, as there is a thriv-
ing community of open-source developers backed by the creators of Kubernetes.

The official documentation has some prerequisites prior to doing the installation.
For linux distributions published after 2015, one has to enable legacy Iptables,
as K3s rely on the original getsockopt/setsocketopt-based interface in the kernel
to allow for horizontal distribution between nodes.

For devices running ARM64, we also had to enable the control group feature,
more commonly known by is abbreviation as cgroup, which has to be added
in the kernel.

Listing 4.1: cmdline.txt

cgroup_enable =1 cgroup_enable
=memory cgroup_enable=cpuset cgroup_memory=1

Listing 4.1 provides the necessary features that have to be appended in
/boot/cmdline.txt. K3s also occupies port 6443, which has to reserved across
all participating nodes in the cluster. Port 6443 is the port which makes nodes
accessible to each other in the cluster.

4.1.3 Installation

Installing the traditional Kubernetes distribution is usually a tedious job, con-
sisting of multiple steps of setup and installation. K3s differ quite significantly
from this by having downloading and installation grouped in one command.

Listing 4.2: k3s-install-master
export INSTALL_K3S_EXEC

= −−no−deploy s e r v i c e l b −−no−deploy t r a e f i k

44

c u r l −sfL [ht tps :// get . k3s . io] (h t tps :// get . k3s . io /) | sh −

grep /var/ l i b /rancher/k3s/ server /node−token

After using SSH to access the device we wanted to use as our Master node,
we ran the curl command in listing 4.2 downloading and initializing all the
necessary components for the master node and control plane. During our
discovery, we noticed that the integrated traffic distributor and load-balancer,
namely servicelb and traefik had a significant memory overhead on bare-metal
clusters, which opted us to find an alternative load balancer more suited for our
use-case. We, therefore, chose not to deploy servicelb and traefik as optional
arguments during the installation on the master node. To set up worker nodes
corresponding to this newly set up master node, we also had to get the unique
token generated during installation, as it will be used as a command line argu-
ment to install workers. The token can be retrieved from the master node by
using the grep command provided in listing 4.2.

Listing 4.3: k3s-install-worker

export K3S_URL= ht tps :// myserver :6443
export K3S_TOKEN=mynodetoken

c u r l −sfL [ht tps :// get . k3s . io] (h t tps :// get . k3s . io /) | sh −

To install a worker corresponding to the master, we ran the curl command
provided in listing 4.3, where the K3S-URL corresponds to the IP Address of
the master node, and the K3S-TOKEN argument was the value retrieved from
the final command provided in listing 4.2.

4.1.4 Kubernetes command line

Rancher’s setup only goes as far as setting up everything locally on the nodes.
To be able to access and perform operations on the cluster from our local ma-
chine on the same network, we had to set up the Kubernetes command line
client, called kubectl.

Once Kubectl was installed on our machine, we copied the content of the con-
figuration file over to our local machine in the appropriate path for the client
to find it, which can be seen in listing 4.4. This enabled us to perform operations
on the cluster with the use of the kubectl client on our local terminal, making
the cluster operational.

Listing 4.4: Move config to local machine

scp pi@master
−ip −address :~/ e t c /rancher/k3s/ conf ig . yaml ~/. kube/ conf ig

45

4.2 Implementing a Load Balancer

We worked with devices that generally had low capabilities in terms of storage,
memory and processing power. Therefore, some modifications had to be made
to the original K3s distribution, with one of them being the Ingress Controller
called Traefik. An Ingress controller is a specialized version of a LoadBalancer
that serves a number of purposes in Kubernetes. For a more detailed description
of LoadBalancer and Ingress Controllers, please refer to subsection 3.4.2.

During initial testing, we discovered that the traditional implementation of
Traefik had quite a significant overhead in terms of RAM usage, peeking at
upwards of 180 Mb continuously when running very few pods. It accounted
for roughly 20 percent of the entire memory usage on the control plane when
running, we wanted to explore alternatives.

MetalLB presented itself as a nice complementary LoadBalancer, which can be
used in harmony with Traefik. However, considering our initial problem, we
chose to run MetalLB as a stand-alone LoadBalancer, as we could not benefit
from the cloud connectivity Traefik offered. For our thesis, we did not identify
any particular case in which a LoadBalancer would be instrumental. A load
balancer would however be beneficial for development and testing, as it would
autonomously delegate resources and services between nodes in case any of
them would disconnect.

MetalLB is an open-source LoadBalancer made especially for bare-metal clusters,
using traditional routing protocols that exist locally on the networking cards on
the hardware [35]. This separates MetalLB from the network LoadBalancers that
is implemented in the standard distribution of Kubernetes and K3s, as those
LoadBalancers are made and shipped with the intent of running it against Infra-
structure as a Service platforms such as Microsoft Azure and Amazon AWS [35].

So for developers that wish to not be reliant on a IaaS platform, LoadBalancers
will remain in a Pending state, and never reach its full potential. MetalLB how-
ever, does the work locally on the networking equipment, and aims to provide
applications and services on bare-metal implementations to be exposed as good
as possible [35].

The implementation of MetalLB, along with many existing sandbox projects are
fairly easy to implement, given the correct preconditions, as mentioned above.

We initialized MetalLB by pulling the latest manifests from their official Github
repository

Listing 4.5: MetalLB Install Manifest

kubect l apply − f [ht tps
://raw . gi thubusercontent . com/metal lb/metal lb/v0 . 1 0 . 2 /
manifests/namespace . yaml] (ht tps ://raw . gi thubusercontent
. com/metal lb/metal lb/v0 . 1 0 . 2 / manifests/namespace . yaml)

46

kubect l apply − f [ht tps
://raw . gi thubusercontent . com/metal lb/metal lb/v0 . 1 0 . 2 /
manifests/metal lb . yaml] (ht tps ://raw . gi thubusercontent
. com/metal lb/metal lb/v0 . 1 0 . 2 / manifests/metal lb . yaml)

The first manifest simply contains a name-space declaration. Name-spaces offer
a unique feature of grouping related tasks together, and also isolating them
within a single cluster. In this way, they are able to run in a parallel execution
with other tasks, and their failure primarily affects other resources also contained
within the given name-space [53].

Listing 4.6: MetalLB Namespace configuration

apiVersion : v1

kind : Namespace

metadata :

name : metallb −system

l a b e l s :

app : metal lb

Listing 4.6 shows the simple implementation file for creating a dedicated
namespace. This follows the same notion throughout all namespace imple-
mentations, except being a unique name under metadata.

The next manifest file contains the unique code implementation and images of
the MetalLB load-balancer.

MetalLB also required a unique configuration file containing the implement-
ation and declaration of a pool of IP addresses. It could utilize it to expose
applications outside of the local cluster nodes.

Listing 4.7: MetalLB Configuration file

apiVersion : v1

kind : ConfigMap

metadata :

namespace : metallb −system

name : conf ig

data :

conf ig : *|*

47

address −pools :

− name : d e f a u l t

protoco l : l ayer2

addresses :

− " 1 9 2 . 1 6 8 . 0 . 2 4 0 − 1 9 2 . 1 6 8 . 0 . 2 5 0 "

The listing 4.7 shows a typical configuration file, where data contains a unique
name for the address pool, to make it easier to reference from other declara-
tions, along with a protocol and address declaration that suits our network and
router. When this was deployed, MetalLB utilized the address space declared
in listing 4.7, across nodes, pods, and namespaces.

4.3 Kubernetes Dashboard

Kubernetes dashboard is a web-based user interface that provides the same
functionality as the command-line client, along with several other helpful fea-
tures such as visualization, troubleshooting options, and general management
of clusters and the pods within them.

The dashboard is a beneficial tool when deploying various applications, since
it provides links between different pods, services, and deployments to help
visualize their interactions.

We deployed the Kubernetes dashboard to our cluster, specifically for the pur-
pose of error handling and logging, since some of the containerized applications
we were running had some experimental functionality that need to be mon-
itored.

Listing 4.8: Kubernetes Dashboard Install Manifest

kubect l apply − f ht tps ://raw . gi thubusercontent . com
/kubernetes/dashboard/v2 . 0 . 5 / aio/deploy/recommended . yaml

Listing 4.8 references the official executable made by the Kubernetes team, which
is compatible across the different distributions of Kubernetes, such as K3s.

Once the installation is complete, we had to configure a root account to access
all fashboard metrics. This account is commonly called a a Service account in
Kubernetes, since it most often is a widely distributed set of applications, with
dedicated personnel doing maintenance.

Listing 4.9: Kubernetes Dashboard Configuration

48

apiVersion : v1
kind : Namespace
metadata :

name : kubernetes −dashboard

−−−

apiVersion : v1
kind : ServiceAccount
metadata :

name : admin−user
namespace : kubernetes −dashboard

−−−

apiVersion : rbac . a u t h o r i z a t i o n . k8s . io/v1
kind : ClusterRoleBinding
metadata :

name : admin−user
ro leRef :

apiGroup : rbac . a u t h o r i z a t i o n . k8s . io
kind : ClusterRole
name : c l u s t e r −admin

s u b j e c t s :

kind : ServiceAccount
name : admin−user
namespace : kubernetes −dashboard

Listing 4.9 shows the setup that we used to make an administrative account,
which would then contain the token that we used to access and gain adminis-
trative privileges with.

4.4 Mosquitto MQTT

The implementation covered in this section utilizes the official docker image
published by the creators of the Broker, Eclipse [20]. Existing documentation
from the creators does not cover implementation details for Kubernetes.

4.4.1 Open Implementation

The MQTT broker from Mosquitto Eclipse is a well known broker within the
IoT community. It offers fair scalability for smaller systems, with a considerable
drop off when reaching around 10 000 devices. This is due to the coordination
mechanisms in the broker, making it generally unsuitable for enterprise level
implementations. For the purpose of this thesis it was suitable, as we were
working with less than 10 devices in total.

49

Initially, we created a simple deployment file which contained a reference to the
Eclipse docker image.

Listing 4.10: Mosquitto Deployment File

apiVersion : apps/v1
kind : Deployment
metadata :

name : mosquitto −deployment −open
namespace : mosquitto

spec :
s e l e c t o r :

matchLabels :
app : mosquitto

r e p l i c a s : 1
template :
metadata :

l a b e l s :
app : mosquitto

spec :
c o n t a i n e r s :

− name : mosquitto
image : e c l i p s e −mosquitto : 1 . 6 . 1 5
imagePullPol icy : Always
ports :
− c on t a i n er P or t : 1883

Listing 4.10 shows the deployment manifest required for deploying a mosquitto-
broker, which will listen on port 1883, which is what the Eclipse Foundation
recommends for as an unauthenticated port.

Listing 4.11: Mosquitto Service Deployment File

apiVersion : v1
kind : Serv ice
metadata :

name : mosquitto − serv ice −open
namespace : mosquitto

spec :
type : LoadBalancer
ports :

− name : mqtt −1883
port : 1883
t a r g e t P o r t : 1883

s e l e c t o r :
app : mosquitto

To expose the mosquitto deployment, we had to make a service manifest to
make it accessible. Since we already implemented MetalLB we implemented
the service as a LoadBalancer, which can be under spec in listing 4.11. This
allows MetalLB to read the configuration of Mosquitto with its pre-defined

50

ports. With this approach, we achieved a outwards facing broker, and a logical
service between the nodes on the cluster.

4.4.2 SSL / TLS Implementation

Due to the nature of our use case, an important aspect was security - both across
devices and also for the systems being used. During development, we decided
to add SSL certificates to enable the MQTT broker to use TLS security.

Existing documentation listed a TLS implementation as experimental, due to
the nature of how IP-addresses and services are exposed to outside the cluster.

We initially started of by creating,

• A Certificate of the CA or Certificate Authority that has signed the brokers
certificate, which will be used on both the client and broker side.

• CA certificate for broker.

• Server private key that will be used for decryption

This approach allows us to only use trusted server certificates for our applica-
tions. In larger scale applications, adding individual username and password
authentication and generating unique client certificates and keys would be more
suitable. This is because sharing a common server certificates among a large
deployment of devices would jeopardize security.

To create the necessary certificates, we used the software by OpenSSL.

Listing 4.12: OpenSSL Commands

1 − $ openssl genrsa −des3 −out ca . key 2048

2 − $ openssl
req −new −x509 −days 1826 −key ca . key −out ca . c r t

3 − $ openssl genrsa −out server . key 2048

4 − $ openssl req −new −out server . c s r −key server . key

5 − $ openssl x509 −req −in server . c s r −CA ca . c r t
−CAkey ca . key − C Ac r e a t e se r ia l −out server . c r t −days 360

Listing 4.12 shows the necessary commands needed to make the certificates. The
first command produces a ca.key file, which is a key pair that we used to verify
the certificate authority. The second uses the ca.key file to request a certificate for
the CA. Command 3 generates a server key, like we did with the first command.
The fourth command creates a certificates request for using the server.key file to

51

complement the ca.crt file. Lastly, the fifth command uses the ca.key file that we
created with the first command to verify and sign the server certificate, which
in terms creates the server certificate that we used on the broker on our system.

Listing 4.13: Creating Kubenetes Secrets

kubect l c r e a t e
s e c r e t t l s mqtt− t l s −− c e r t = server . c r t −−key= server . key

kubect l c r e a t e s e c r e t gener ic mqtt−ca −−from− f i l e =./ ca . c r t

When the necessary certificates was made, we had to experiment with how
correctly implement the certificate on to the cluster to be read by the broker.
Several approaches exist, such as defining them individually through the use
of a ConfigMap manifest. We eventually decided upon implementing the cer-
tificates as secrets internally on the cluster using the commands provided in
listing 4.13. We covered secrets in subsection 3.4.7.

With the recent added complexity, several modifications had to be made to the
deployment and service we covered in subsection 4.4.1.

The updated deployment manifest, which can be viewed in Appendix A shows
the differences, primarily in terms of mounting the secrets that we deployed to
the cluster, along with a unique Mosquitto configuration file. In addition, to initi-
ate locally persistent storage for the node, we also allocated a persistent volume
claim to be used by Mosquitto. This is particularly helpful in cases where the
node disappears and re-appears, so it could continue execution without having
to set itself back up.

Listing 4.14: Mosquitto.conf

apiVersion : v1

kind : ConfigMap

metadata :

name : mosquitto − conf ig

namespace : mosquitto

data :

mosquitto . conf : /−

log_dest stdout

protoco l mqtt

t l s _ v e r s i o n t l s v 1 . 2

52

l i s t e n e r 8883

allow_anonymous true

c a f i l e /mosquitto/ t l s −ca/ca . c r t

c e r t f i l e /mosquitto/ t l s − server / t l s . c r t

k e y f i l e /mosquitto/ t l s − server / t l s . key

In the Mosquitto configuration we defined port 8883 for secure communication,
as per the official documentation [21]. Due to a fall-back error in the official
mosquitto image, we specifically specified that the broker should use TLS ver-
sion 1.2 to prevent the broker from misinterpreting certificates in past formats.
We did not enable user authentication with username and password for this
thesis.

The Mosquitto configuration in Listing 4.14 is similar to traditional broker sys-
tems on any other arbitrary operating system, but it is loaded as a ConfigMap in
Kubernetes and referenced in the Deployment, which can be seen in appendix A
under section Volumes and volumeMounts as Mosquitto-config and mounted
in the virtual container under /mosquitto/config/mosquitto.conf.

Appendix B shows the changes made to the service file, which is no more than
another declaration for allowing for incoming traffic to the cluster over port
8883, which again is delegated towards the mosquitto deployment.

Appendix C is the necessary code for the persistent volume claim on our sys-
tem, which contains the reference to the local-path storageClassName that we
previously configured on the cluster.

4.5 Storage

4.5.1 Local Persistent Storage

In subsection 3.4.6 we introduced the concept of Kubernetes Volumes, along
with the challenges of implementing a distributed persistent storage solution
on a bare-metal cluster.

Most Pods and containerized applications do, however require storage in some
fashion, for either momentary data or configurations required to run the contain-
ers. As for our implementation, we chose to utilize Persistent Storage available
locally on the device.

Having locally enabled storage would enable the cluster to configure a local-
path on the node to store data belonging to the container running on that given
node. On typical Raspberry Pi implementations, it is configured by making a

53

hostPath backend persistent volume claim, which is a reference to a part of local
storage which can be utilized for storing data locally on nodes.

Listing 4.15: Persistent-Volume Local Path

apiVersion : v1
kind : PersistentVolumeClaim
metadata :

name : l oc a l −path −pvc
namespace : d e f a u l t

spec :
accessModes :

− ReadWriteOnce
storageClassName : loc a l −path
resources :

reques ts :
s torage : 15Gi

Listing 4.15 shows the base implementation of a local persistent volume claim
from Ranchers documentation [49]. To enable Rancher’s Local Path Provi-
sioner [49], we also had to implement a pod, which would allow for resources
on the cluster to access the local path storage, which can be seen in listing 4.16

Listing 4.16: Persistent-Volume Local Path Pod

apiVersion : v1

kind : Pod

metadata :

name : l oc a l −path

namespace : d e f a u l t

spec :

c o n t a i n e r s :

−name : lo ca l −path − t e s t

image : nginx : s tab le − alp ine

imagePul lPol icy : I fNotPresent

volumeMounts :

name : l oc a l −path −pvc

54

mountPath : /data

ports :

− c on t a i n er Po r t : 80

volumes :

− name : lo ca l −path −pvc

persistentVolumeClaim :

claimName : l oca l −path −pvc

Once these manifests were applied, they were configured in a bounded state.
This allowed for external containers to access the storage through creating a
claim, referencing the name found under volumemounts, which we configured
to local-path-pvc.

4.5.2 Longhorn

Longhorn is a software developed by the same company as the one that pub-
lished and maintains the K3s distribution[47].

Longhorn is a lightweight distributed block storage system created especially
for K3s, but it is also compatible across other Kubernetes distributions.

As of March 2022, Longhorn is currently marked as experimental if implemen-
ted on a cluster consisting of devices with ARM64 architecture, such as the ones
we utilize for our testing [47].

Longhorn is based on a paradigm of block storage. The fundamental principal is
that each storage volume acts as an individual storage unit. Based on the block
storage paradigm, data is saved to the storage drive as fixed-sized chunks, re-
ferred to as blocks [12]. Furthermore, every block in the storage unit is identified
with a unique address, which is the only identifiable aspect of the each block [12].

Longhorn is an innovative approach to the idea of distributed storage, which pre-
viously was unheard of concept within lightweight solutions such as bare-metal
clusters [47]. Longhorn simplifies the perceived storage model by implementing
a large block storage controller into a small number of storage controllers allow-
ing for a powerful storage paradigm to be utilized on low-capability devices
such as Raspberry Pi’s. This in terms culminates to significantly increased
capacity on Edge devices compared to before.

One of the examples brought up by the developing team at Longhorn, regarding

55

its capabilities for ARM64 devices, is the trouble related to the capacity of the
storage units on smaller single-board devices. The problem lies in the significant
amount of read and write operations required by the Longhorn Manager, which
is the component responsible for coordinating the blocks across the cluster. The
significant amount of read and write operations puts a heavy strain on devices,
that in many cases relies on smaller capability SD-card which is considered
unsuited for these operations [47].

As an alternative approach, Longhorn suggests putting the computations re-
quired by the software to dedicated storage nodes in the system. In regards
to our use-case, we propose implementing a stand-alone storage unit. This
node would serve no other purpose than acting as a unit of storage for the con-
tainerized applications in the cluster. This could solve the problem of storage,
allowing for a separate entity to restore the data that might get lost, as nodes
could drop-off or fail.

4.6 Scripts and code

In subsection 3.1 we covered a fairly simple architecture overview for the dif-
ferent services and programs we wanted to use as a basis for this thesis. In this
section we will cover the various services and applications, along with how we
implemented them.

The code samples referenced in thi section will be available in the appendix
section at the thesis’s end.

4.6.1 K3s MQTT Clients

For testing, we made three different containerized versions of the code in ap-
pendix D.

The code follows the structure provided by Eclipse Paho, which is the same de-
veloper responsible for the Mosquitto broker we implemented in the K3s cluster.

The essential parts of the code lie in the connect and publish functions, where
we establish the connection to the broker and validate our certificate.

In the publish method, we generate a variable "msg-count" which we utilized
to see in the server log for dropped messages during testing. The messages are
pseudo generated with a timestamp and a range of values for a pre-determined
set of devices, such as a fan controller, temperature controller, and a Becquerel
controller.

When the values are read, we packaged tehm using json.dumps from the JSON
framework available in Python. We then publish the payload with the pre-

56

defined topic set at the top of the code sample.

Lastly, we call the run method that connects the client to the broker. Since we
wanted the clients to continuously report, we made a call to the function "loop-
start" establishing a new thread and handling re-connections automatically
before publishing the payload generated in the publish method.

This code is replicated three times to simulate three different clients reporting
to the network.

4.7 Versions

Software Version
Raspi-OS Buster ARM64 Published: 07.05.2021
K3s distribution v1.19.13+k3s1
Kubernetes Dashboard v2.0.5
MetalLB Load Balancer v0.10.2
Eclipse Mosquitto MQTT Broker v1.6.15
Grafana v7.5.2
Nginx Ingress v4.0.1
Python v3.9
Docker v20.10.8 Build 3967b7d
Rancher Longhorn v1.1.0

Table 4.1: Table of Versions

57

Chapter 5

Testing

The concluding step in our thesis was testing. Our goal was to get a impression
of how a distributed computing approach would operate under various circum-
stances, reminiscing of the network conditions it would face in a real-world
scenario.

This section will cover various metrics we gathered from the cluster. The most
significant part of our testing was done with various network configurations,
but we do however include other interesting metrics such as memory usage, as
it could be a valuable resource to determine what type of hardware to use.

5.1 Memory Usage

An important part of verifying the validity of our proposed solution was to
document the memory usage across the cluster. Mainly since we wanted this
to be running on typical IoT devices with limited hardware capabilities.

During development, we continuously worked on implementing the low-
est resource-intensive alternatives what was included in the K3s distribution.
This also included the extra frameworks we used to make the cluster operate
autonomously. Choices like MetalLB, Eclipse MQTT Broker and the removal of
unnecessary connections to infrastructures such as Amazon AWS and Microsoft
Azure contributed to the low memory footprint we achieved across the devices.

58

Name CPU(cores) CPU% Memory(bytes) Memory%
HADR-Worker-1 212m 5% 570Mi 62%
HADR-Worker-2 170m 4% 570Mi 62%
HADR-Worker-3 187m 4% 472Mi 51%
HADR-Worker-4 165m 4% 558Mi 62%
HADR-Worker-5 204m 5% 568Mi 62%
HADR-Worker-6 197m 4% 569Mi 61%
HADR-Worker-7 199m 4% 562Mi 62%
HADR-Master 373m 9% 1384Mi 36%

Table 5.1: Average metrics

Table 5.1 illustrates an average reading we collected on 10 separate occasions
during run-time. This was a helpful, as it gave us a general idea in terms of how
much memory was actually needed to operate a cluster of this size.

What we can denote from this is that the latest developments of Kubernetes, in
which K3s is tightly related to, has brought with it some more resource intensive
aspects. From the table, we can see that 1GB will be sufficient for operating a
MQTT Broker and a fair bit of clients, while also leaving some space for running
other services.

The Master node, which is listed at the bottom of table 5.1 illustrates that using
K3s for its intended purposes requires a fair bit of capacity, specifically in terms
of memory. For earlier reference, this was the node that was substituted during
development, in favor of a Raspberry Pi 4 with 4Gb of local memory, compared
to the Raspberry Pi 3 with 1GB, which we initially started using.

5.2 Gilbert-Elliot Model

Gilbert-Elliott model is a simple burst error model formalized by Edgar Gilbert
and E. Elliott back in the early 1960s at Bell-Labs [29].

The model is based on a mathematical model called the channel model [34],
which is described in a variety of ways. The model introduced by Gilbert and
Elliot is widely used for describing burst error patterns for transmission proto-
cols, and is commonly used to simulate digital errors in communication links,
which is what we used it for.

A channel model is , simply put, a mathematical representation of how a com-
munication channel with wireless signals is affected. Gilbert and Elliott’s model
is based on a Markov Process or Chain, where you have two states, often rep-
resented by G and B, for good and bad. When we exists in the G state, there
is a probability determining the chance of transmitting a bit correctly, which is
represented by k. At the same time, if the channel is in a B state, the probability
is derived by h.

59

The Gilbert-Elliott model has some different representations based on the use
case. For our usage, we utilized the function within TCPDump 5.3.2, where the
model is represented in equation 5.1.

< p> [<r> [<1−h> [<1−k>]]] (5.1)

In equation 5.1, there are a few different parameters to note,

• p is the probability of going from a good to a bad state

• r is the probability of going from a bad to a good state.

• 1-h is the probability of a transmit when in a bad state.

• 1-k is the probability of a loss when in a good state.

We applied this model to the network to simulate an unpredictable set of events
on the communication links. We will touch closer on the actual usages in
subsection 5.5.1

Figure 5.1: Gilbert Elliott Model [28]

Figure 5.1 shows the flow of the model, representing the two different states that
the model can traverse between, with the p and r parameters representing the
probability of transitioning between the good and bad state. 1-p has a technical
difference compared to the Linux netem implementation, where it is referred
to as 1-k, representing the probability of a loss in a good state. Lastly, 1-r also
has a slight difference from netem, where it is represented with 1-h, being the
probability of a transmit in the bad state.

60

5.3 Utilities

We had to utilize multiple different libraries and frameworks to conduct the
testing. However, most of the tools we used are available in any Linux distri-
bution, and can be used out of the box is most of the operating systems based
on a Linux kernel.

5.3.1 Linux Netem

NetEm is a tool in the Linux operating system which allows you to modify
the traffic control facilities on the link layer protocol [22]. This includes adding
packet loss, delays and duplication of packets, and a range of other modifica-
tions, such as the Gilbert-Elliott Loss model, which we utilized for our testing.

5.3.2 TCPDump

TCPDump is another utility we used during testing. It is a tool that captures
network traffic and prints it out, or writes it to a file [26]. TCPDump out-
puts every line to represent one packet of data. For the purpose of analyzing
and creating metrics, we used the built in tool to write the output to a .PCAP
format [26]. We wrote it to the PCAP format so that we could analyze the results
in Wireshark 5.3.3.

5.3.3 Wireshark

Wireshark is a free and open tool created by The Wireshark team. Wireshark
has several use-cases, such as network troubleshooting, analysis and general
software development, where networking plays an essential role [63].

Wireshark allowed us to see the networking packets at an abstracted level,
which is one of the unique features that has made it the industry standard
packet analyzer [63].

We used Wireshark to identify various performance aspects of the different
networks we tested. Considering that we ran many tests using automated
scripts, verifying the results before producing the graphs proved beneficial.

5.3.4 Wondershaper

Wondershaper is an open-source command-line utility to limit bandwidth on
machines with Linux-based kernels. It was made by Bert Hubert, Jacco Guel
and Simon Séhier [3]. The script was initially released by Hubert in 2022 and

61

has been continuously iterated over since then, with contributions from the two
authors mentioned above, along with Hubert [3].

Wondershaper utilizes iproute’s tc command, which is a core utility in the Linux
operating system, it does, however simplify the process of limiting bandwidth,
as Linux netem can be quite overwhelming, requiring a lot of work to layer
limitations on interfaces like eth0 or wlan0.

Wondershaper simplifies the operations down to a few simple parameters, as
shown in

Listing 5.1: Wondershaper [3]
wondershaper [− hcs] [−a <adapter >] [−d <rate >] [−u <rate >]

We utilized wondershaper to limit the bandwidth of all the participating nodes
when testing the cluster. More information and metrics regarding the different
networks will be covered in the first part of section 5.5, where we discussed our
results.

5.4 Parsing the PCAP files

To produce comprehensible results that could be compared properly, we wrote
a application using Python, with libraries that could take PCAP files as inputs,
and produce suitable graphs. We covered the relevant steps to re-produce the
application in the subsections to come.

5.4.1 Pyshark

Pyshark is a wrapper based on the Wireshark interface, provided by the com-
pany responsible for the all popular networking tool, Wireshark.

Pyshark utilizes TShark, which is a network protocol analyzer [62]. Tshark
works in many cases in the same manner as the TCPDump framework which
we covered in subsection 5.3.2, TShark allows for analysis of pcap formatted
captures.

5.4.2 Implementation

We wanted to produce metrics and visualizations that were more comprehensive
than what was available in the Wireshark application.

To solve this problem, we wrote a python application utilizing Pyshark 5.4.1
where we could access and filter out the information we needed through the
use of their Python package. Since we had a significant amount of files to parse,

62

we implemented a queuing mechanism, which would handle every file as they
finished running on the cluster.

We applied three different filters to the files to help uncover the possible causes
of problems or issues, tcp.analysis.lost-segment, tcp.analysis.retransmission and
tcp.analysis.flags. These three filters would allow us to visualize the number
of packets lost while also providing enough data to form an opinion about the
of the network during run-time.

Once we parsed ten sets of each run, we determined that we wanted to visualize
packet loss, since it would be an appropriate metric to represent the TCP state.

We utilized the matplotlib library [61] to visualize the output from the Pyshark
parsing.

The source code is available in the Github repository [65]

5.5 Results

5.5.1 Scope of testing

We limited the scope of our testing to the network configurations listed in sub-
section 5.5.2. These configurations were the basis of our networking tests, along
with the Gilbert-Elliott Burst loss configuration.

For the Gilbert-Elliott model, which we covered in section 5.2 we used the base
parameters when running these tests. This entailed that we only provided the
p parameter for the model. The Gilbert Elliott model implemented in Linux
Netem, defaults to the other parameters in the model accordingly, based on
earlier representations [29].

We tested the network configurations with four different loss values, namely 0,
1, 5, and 10% which can be noted as the x values in the graphs in appendix 5.6.

We recorded ten different series of each execution, spanning 10 000 packets each
time to get a fair range for the plots. In addition, each execution was configured
to only record TCP-packets, to prevent unnecessary duplication packages that
might occur during handshakes and broadcast messaging. This was also done
as the services on our cluster primarily use TCP, or MQTT over TCP.

5.5.2 Network configurations

For this thesis, we wanted to utilize network configurations that would be
suitable for the use case were working with. We therefore decided to run a set of
tests on very limited networks with data rates far below what is typical for mod-

63

ern networks, along with a configuration which is derived from modern 4G/5G
networks, that can be found in most countries around the world. We did this
to explore the differences in terms of performance of our solution for networks
that are widely different in terms of bandwidth and close to what would be the
applicable situation in which our solution would be used in the real world.

Network Data Rate Latency
Mid-Band 5G 100 mbit/s 20ms
Tactical Network 2 mbit/s 20ms
NATO Narrowband Waveform 16 kbit/s 20ms
Combat Network Radio 9.6 kbit/s 20ms

Table 5.2: Network Configurations

In terms of latency, we chose to run all the different networks with a 20ms
latency due to the nature of our use case. A HADR operation is typically con-
fined to a certain area, or the current operating area is at least restricted in such
fashion that testing anything above 20ms latency would make the theoretical
physical area too large for an operation of this sort.

5.6 Results

As discussed in subsection 5.5.2, we worked with four different network con-
figurations as the basis for our testing, running them with 0, 1, 5, and 10% loss,
using the Gilbert-Elliott loss model.

In the coming subsections 5.6.1 and 5.6.2 we illustrated our results using boxplots.
Boxplots is an excellent way to display descriptive data such as networking
metrics. Boxplots consist of two whiskers, the one above illustrates the upper
75% of values, while the one below illustrates the lower 25% of values. The
orange line passing through the boxes illustrates the median value. On the
outermost edges of every whisker, there is a black horizontal line crossing it. This
is used to represent the absolute maximum and minimum value of each box.

5.6.1 K3S Master Graphs

As mentioned in subsection 5.5.2, the network configurations vary significantly
in terms of bandwidth, ranging from 9.4kb/s to 100mb/s. This fact becomes
quite clear when seeing the graphs. Mid-Band 5G shows a stable loss rate
of about 52 packets lost during the entire execution of 10 000 packets, which
occurred late in the execution when a burst of packets got lost right towards the
end.

The Master node of the K3s cluster is the primary entity that deals with coordin-

64

ating and delegating the other worker nodes. K3s primarily use TCP, with some
broadcast messaging when bursts of coordination is required. When opening
the PCAP files in Wireshark, we noted that most of the connection on this node
was used to send larger payloads and segments, contrary to other tested nodes
that primary dealt with MQTT over TCP.

Figure 5.2: Mid-Band 5G Results

65

Figure 5.3: CNR Results

Figure 5.4: NBWF Results

66

Figure 5.5: Tactical Network Results

The graphs provided in this subsections 5.3, 5.2, 5.4, 5.5 contains estimations
of the packets lost during testing according to the output of our test suite. It is
particularly interesting to note the slight differences when increasing the Gilbert-
Elliott loss model parameter. We believe a variety of factors can contribute to
the fact that loss only increased slightly.

In appendix E, we listed out a rough average of the number of packets lost dur-
ing testing, which also follows the pattern mentioned in the paragraph above of
not having a statistical linear progression in terms of the amount of packets lots.

We covered our interpretation and assumptions related to the outcome of the
results in subsection, 5.7.

67

5.6.2 MQTT Broker Graphs

Figure 5.6: Mid-Band 5G Results

Figure 5.7: CNR Results

68

Figure 5.8: NBWF Results

Figure 5.9: Tactical Network Results

Figures 5.7, 5.6, 5.8 and 5.9 show graphs from running the testing suite on the
MQTT broker that resides in the cluster. Initially, it shows a reasonably similar
pattern in terms of many packets that got lost during execution, with some slight

69

variations for the networks with a higher bandwidth capacity, the Mid-Band
5G and Tactical Network configuration. The MQTT broker primarily transmits
MQTT packets, which are smaller segments than traditional segments over TCP.

The tables provided in appendix F shows a rough estimate of the average packet
loss on the MQTT Broker during the execution. As noted from the graphs, the
primary difference between these results and the aforementioned results from
the master, is the lower general average on the higher capacity networks, with
a significantly worse result for the CNR network.

We also covered the results, along with our interpretation of why the results
differed slightly across the two nodes in subsection 5.7.

5.7 Discussion

When reviewing the results in section 5.6 it becomes apparent that the higher
the bandwidth, the fewer packets are dropped, which is the obvious answer
when presented with network configurations on each of its spectra in terms of
bandwidth capabilities.

An interesting aspect to note is that when decreasing the bandwidth, other
aspects of the TCP protocol become the issue. In the case of a packet-switching
network, congestion control presents itself as the next area of focus. Congestion
is a state that can occur in a network when the traffic is so overwhelming that it
decreases the overall response of a given network [25]. If a network is lackluster
in terms of bandwidth, congestion issues arise, and if congestion is present on
the network, it leads to the loss of packets in transit [31].

Congestion control varies in terms of performance and implementation across
different protocols. For example, TCP utilizes both a congestion policy and a
window to avoid congestion [25], the window is commonly referred to as cwnd.
In TCP, the congestion policy is built up of three phases being the Slow Start
Phase, Congestion Avoidance Phase and the Congestion Detection Phase.

During the slow start phase, packet’s sender starts with a very low rate until
it increases exponentially to detect a threshold, and when it reaches it, it reduces
the rate to avoid congestion [31]. During this phase, if congestion is detected,
it has fallback mechanisms to start over again with slow start or move on to
congestion avoidance [25].

Congestion avoidance is a more conservative policy than slow start and is based
on the principle of increasing the congestion window at the end of every ACK. If
all the segments are correctly acknowledged, this policy increases the congestion
window by 1. This increase will continue until congestion is detected, whereas
it will have fallback mechanisms similar to slow start [31].

Congestion detection is the final policy, which we believe plays a role in the

70

outcome of our networking testing. Congestion detection is a policy where, if
congestion is detected, the window size has to be lowered. In TCP, the only way
a participating sender can find out if congestion has occurred is to re-transmit
its segment. To get to the retransmission stage in TCP, one of two things must
have happened, either 3 similar ACKs are received for the same segment, or the
time-out mechanism expires before even receiving the ACKs [31]. In all of these
cases, the window size is cut in half, which is significantly larger than it can rise,
given the policies we just covered.

Congestion detection can prove to be a problem in networks with weak band-
width such as ours. During manual review of the PCAP files, we noticed, on
multiple occasions that the network reached time-outs, also indicating that the
packets never came through. Based on our knowledge of TCP, this is an indica-
tion that the cwnd must have been halved so many times that most of the testing
we conducted on the weaker network configurations simply bottle-necked the
network. If this is the case, it can provide an explanation as to why the nodes
presented a fairly similar pattern in terms of loss, which differed from our initial
assumption, which would be that they would have a progressive increase, as
we increased the percentage of loss with the Gilbert-Elliott model.

If our assumption is correct, preventative measures can be tested, utilizing altern-
ative congestion control algorithms such as fast recovery and fast re-transmit,
which potentially could speed up the time it would take to recover lost segments
on the network. Alternatively, there is also the case in which the bandwidth is
simply too constrained for the cluster to operate normally.

Given the results, we can, however make an assumption in terms of how con-
strained the bandwidth can be, given the circumstances. Considering that we
made no further modifications to the hardware or software to complement
any particular use-case, we can say that both the Mid-Band 5G and Tactical
Network on the nodes we tested had positive results in terms of its utilization
and packets lost. We believe that further configurations to prevent congestion on
the network can help reduce the packet loss even further. The NBWF and CNR
network configurations showed varied results, specifically when testing with
the 0% configuration. Our findings indicate that most of the traffic simply seizes
when packet loss is configured higher than 0%. This enhances our opinion
from earlier that due to a continuous loop of timeouts, the congestion control
mechanisms in TCP is simply working on such a restricted network capacity,
that the mechanism reaches a point where it simply discards packets. This is
one possible explanation to the increased packets lost during some of our testing
on the more restricted network configurations.

71

Figure 5.10: K3s Master network results

Figure 5.11: MQTT Broker network results

In general, figures 5.10 and 5.11 represent our overall opinions in terms of the
results we collected. Green represents a result that met our expectations in terms
of number of packets lost, while red is used to indicate an inadequate result that
did not meet our expectation. As previously discussed on in this section, many
of the tests we ran showed similarities in terms of congestion, but we feel that the
overall impression of the networking tests is well presented using the figures.

Our theory and assumptions is based on a sample of the PCAP files we pro-
duced during testing. We manually analyzed significant pieces of the PCAP files
using Wireshark, and our assumption regarding congestion was based on ob-
servations of larger bulks of marked retransmission packets, where we utilized
Wiresharks TCP Stream tool, which indicated that the congestion had occurred.

72

We sampled that fact from several PCAP files, specifically those produced when
running the weaker bandwidth configurations like CNR and NBWF.

73

Chapter 6

Conclusion & Future Work

6.1 Conclusion

Our thesis was oriented around exploring the capabilities and opportunities of
edge computing in a less-than-perfect environment to test its capabilities as an
ad-hoc solution for HADR operations. This thesis aimed to shed light at recent
innovations in modern computing, such as the one we utilized in this thesis,
called K3s. Additionally, we wanted to answer the questions proposed towards
the end of section 1.1.

Our first question was as follows,

In what capacity is it possible to utilize affordable single-board computers
with Kubernetes?

Proving the usability of a modern edge-based approach for this scenario breaks
down into multiple parts. Initially, we researched and discovered a well-
established open-source distributed solution that would suffice when grouping
together a set of affordable single-board computers, with our choice ultimately
being K3s, the lightweight solution to Kubernetes.

Secondly, based on the research conducted by the NATO research groups, we
used MQTT as a messaging paradigm, due to its favorable factors in the terms
of size, complexity and flexibility. MQTT’s conversion to other common data
types, along with its varied levels of QoS offered favorable aspects that suited
our use case well.

On-wards, our focus turned to the services we wanted to host on the cluster. Con-
sidering the choice of hardware on typical IoT devices, this became a question
of simply what was available at the current time and what could be modified
to be run on ARM64 architectures. We utilized our somewhat modified and
experimental deployment of the MQTT broker from Mosquitto, deployed on
our fully portable set of networked devices.

74

With our extensive research into the matter, we conclude the research success-
fully considering our findings in terms of both what is available and what the
future might hold for bare-metal clusters 3.4.2. When utilizing the K3s architec-
ture in the future, the only real limitations will be in terms of what is compatible
or available for devices running the ARM architecture.

With regards to our question, we consider the research we did a success and
have concluded that single-board computers such as the Raspberry Pi certainly
has the capabilities to operate in a cluster, and future research into the manner
can further its usability as a viable alternative in modern computing. We believe
that the only real limitations will be what is compatible or available for devices
running the ARM architecture.

Our second question was as follows,

Will a system of this sort be sufficient to operate on a variety of network
configurations, applicable to those relevant during a HADR operation?

Testing the solution with various network configurations closely representing
what would be available in a real-world scenario was a key part our work.
We provided the metrics and graphs in subsection 5.6 with the subsequent
discussion in subsection 5.7 to shed light on our discoveries when reviewing
the files we collected. Our findings indicate that a system of this sort has the
capabilities to be run in a variety of network configurations and be able to
operate successfully. In section 6.3, we propose suitable areas to research to
further enhance our system, both in terms of capabilities and performance.

Our findings culminate to what we considered the goal of this thesis. We ex-
plored the capabilities of an distributed ad-hoc networking solution, capable
of being deployed on the network edge. We consider the thesis successful due
to what achieved, and also for what all the different enabling technologies we
were able to explore.

The repository and thesis can be a valuable resource for any further research,
as it contains fully reproducible steps for further research.

6.2 Experiences/Contributions

Our work was oriented around a vast amount of technological components
within all software and hardware aspects. Many of the technologies we utilized
were still in the early stages of development or marked as experimental.

The experimental software we used was in many respects, used to complement
either the Raspberry Pi or the K3s distribution.

In several cases, we were met with different bugs, as the software did not
complement other equipment or software we were using.

75

Initially, using K3s as an alternative to the regular Kubernetes distribution
brought its fair share of challenges in terms of compatibility since most third
party images rely on components that are removed in K3s as a precautionary
measure for it to run smoothly on ARM64-based devices.

One of the most challenging aspects of development was related to the ARM64
architecture, which is present on Raspberry devices. Most of the popular con-
tainerized applications on Docker are built for AMD64 and other desktop
architectures.

There is, however a large open-source community supporting the development
of these images for ARM64 architecture, which was very helpful in in terms of
finding and using compatible images for the MQTT broker and load-balancer. In
some rare cases, we had to manually pull a version and make the necessary ad-
justments to build it for ARM, which often required changes to the intermediary
storage solution over to what has been popularized on IoT devices, being SQLite.

With the nature of our use case, which was operability in disaster-struck areas,
we wanted to account for nodes falling out of reach, or otherwise stop working.
This obviously entails a fair bit of intercommunication between the devices, for
them to be able to restore the services or information contained in the given
node. Kubernetes, but more specifically K3s has accounted for this issue by
introducing Block-Storage, which we covered in subsection 4.5.2. However,
with such a complicated system of blocks scattered throughout the system, the
most prominent problem became the read and write capacity on the SD-cards.

Our device were fitted with high quality SD-Cards, which proved to weak for
Rancher’s block storage solution. Eventually ending up decreasing the overall
capacity of the nodes significantly to the point where it could not operate at the
intended capacity.

This presented an issue for us, as the autonomous nature of K3s would other-
wise allow for a system, as long as it was configured properly, to essentially fix
itself if a node died, or a malfunction occurred.

As we discovered, however, block based storage was simply too demanding
for regular SD-Cards. and forced a complete wipe and re-install several times
during testing, ultimately forcing us to abandon the implementation towards
the end of our work. We came to the conclusion that our system of Raspberry
Pi devices simply could not handle the amount of computations required to run
block-based storage solutions.

In chapter 6.3 we aimed to further elaborate on our findings, and propose our
ideas on how some of the issues can be resolved or how it naturally resolves
itself as projects go beyond early stages of development, as many are as of
writing this thesis.

76

6.2.1 Hardware challenges

One of the most significant challenges we faced during development was related
to hardware. Our initial scope in terms of hardware was 7 Raspberry Pi 3 Model
B units, where each one was suppose to have a dedicated role, as either Master
or Worker.

The K3s distribution is marketed as having a very low footprint [52], requiring
as a little as 512Mb of storage.

During the building, and implementation process we discovered that this was
not the case. K3s have had several iterations over the last 2 years, keeping up
with the current release of the traditional Kubernetes, and somewhere along the
line, it seems that the general memory requirement has significantly increased.

The platform we planned out consisted of several small containers, with a
limited amount of frameworks to best incorporate even the lowest capacity
devices out there. When initializing and applying these different components
we reached maximum memory capacity on the master node, which was a Rasp-
berry Pi 3. The cluster started halting, delivering time-out errors as a result of
this deficit.

Luckily, The Raspberry Foundation released the Raspberry Pi 4 back in 2019,
which was a significant change compared to the previous iterations, most es-
pecially in terms of memory – as they now deliver 2, 4 and 8 Gb configurations.
To maintain and work within the scope of the thesis, we acquired one of these
devices in the 4 Gb configuation to use as our master node, which significantly
changed the development experience, and also provided us with the necessary
memory to complete our goal.

6.3 Future Work

When working on the thesis, we identified several different interesting areas,
which we wanted to complete. Due to the time-frame of the thesis, we were not
able to accomplish them. This section aims to give an overview of the most sig-
nificant areas that can improve the already established cluster implementation.

6.3.1 Longhorn & Persistent Distributed Storage

Throughout the thesis, we have made several references to Longhorn, which
we introduced in subsection 4.5.2. In this subsection, we also covered some of
the problems we faced with implementing Longhorn as a service on our cluster.
In short, this was most likely related to a restricted read/write capacity on the
SD-Cards we used in the Raspberry Pis.

77

Considering the vital role that persistent distributed storage could potentially
have for our use-case, we have come up with a theory to be explored further.

As most of the applications and services we ran were fairly lightweight both
in terms of storage and performance, having one or multiple dedicated storage
nodes can present itself as a viable solution. With reference to subsection 3.1.2,
we talked about recent innovations in the field of 5G and how it can be applic-
able for our scenario. With this development in 5G technology, it is not a stretch
to assume that the standalone 5G core could also act as an intermediate storage
node to enable the use of technologies such as Longhorn.

This idea requires some research, as Longhorn has to perform computations
on the API-layer of the master node, in order to operate sufficiently. Due to
the limited time-frame of this thesis, we were not able to test this on our imple-
mentation. Further research into the matter is required to implement distributed
block storage on the cluster.

6.3.2 WebRTC Broadcasting node

Voice and video was identified as a very important part of what we aimed to
include in our current system, but due to a lack of time, we were not able to
complement this. We prepared a Raspberry Pi with a local on-board camera,
broadcasting its surroundings using WebRTC. Our initial idea was that we
would host this as a service in the cluster. We realized quite early that this would
be a challenge, as WebRTC requires a significant amount of ports, that would
have to be designated and delegated in Kubernetes. Using WebRTC, these ports
would also change frequently, posing a problem when hosting the application
in a constrained architecture, where it is delegated a port manually or through
the use of a load-balancer 3.4.2.

An alternative approach, however, would be to host WebRTC directly on a
participating node, allowing it to operate in a non-constrained environment.
This, along with making it communicate its URL back to the cluster using MQTT
as a means of messaging, would allow for the idea of voice and video to be
realized, as the implementation could be built in the same manner. but also
communicate back to the MQTT broker and the other clients of on the cluster.

6.3.3 Alternative congestion control

In section 5.7 we extensively covered our assumptions as to explaining why
some our testing concluded with a significant amount of packets lost. This
was more noticeable on the more constrained network configurations such as
CNR and NBWF 5.5.2. In section 5.7 we elaborate about our findings when
manually reviewing the PCAP files, which indicated to us that there was severe
congestion on the network, likely due to the severely limited bandwidth.

78

Testing with alternative congestion mechanisms can prove helpful in reducing
the amounts of packets lost, overall, improving the performance of our solution.

6.3.4 Real-world simulated tests

To prove its usability in an HADR situation, a real-world simulated test would
be highly beneficial. A real-world simulated test would, for instance, be com-
posed of two teams performing the same task, one utilizing the current approach,
while the other team utilizes a data-driven approach through the use of a version
of our system. Performing a simulated test such as this would be beneficial to
figure out its capabilities in a less than perfect environment, not only network
wise, but also in an environment with obstacles and challenges. Making it as
user-friendly and autonomous as possible will be a key factor in determining
its success as a real-world application.

6.3.5 Messaging Application

The MQTT messaging paradigm is an essential component of our proposed
system. In subsection 2.3.2, we elaborate about the different levels of Quality
of Service in MQTT. For the purpose of our initial prototype, we utilized QoS
level 0, as we did not reach the point of developing an application that could
operate on top of the MQTT broker.

Our idea was to create a messaging application, which could utilize MQTT to
broadcast messages between participating nodes. With this in mind, we wanted
to implement a mechanism, allowing for some vital messages to be sent using
either QoS level 1 or 2, ensuring that it reaches the designated senders. These
messages would allow for a separation of context in terms of how messages
are perceived in the system, allowing for important messages to be of higher
priority than others.

An application like this could be highly beneficial, as it would allow for a strong
data-driven approach contrary to what exists today. Many other aspects of the
application must also be considered and carefully tested to ensure its usability
in the field.

79

Bibliography

[1] Awatif Alqahtani et al. ‘End-to-End Service Level Agreement Specification
for IoT Applications’. In: 2018 International Conference on High Performance
Computing Simulation (HPCS). 2018, pp. 926–935. DOI: 10.1109/HPCS.2018.
00147.

[2] AVI-Networks. What is Load Balancing? URL: shorturl . at / oryN5.
(accessed:26.02.2022).

[3] Simon Séhier Bert Hubert Jacco Geul. Wondershaper. URL: https://github.
com/magnific0/wondershaper. (accessed: 5.05.2022).

[4] Pranav Bhardwaj. Advantage and Disadvantage of Edge Computing. URL:
https://www.tutorialspoint.com/advantage-and-disadvantage-of- edge-
computing. (accessed: 06.02.2022).

[5] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 8259. Dec. 2017. DOI: 10.17487/RFC8259. URL: https://www.rfc-
editor.org/info/rfc8259.

[6] Max Brenner. Kubernets Overview Diagrams. URL: https://shipit.dev/posts/
kubernetes-overview-diagrams.html. (accessed: 17.2.2022).

[7] Steve Buchanan. What is Kubernetes, and why is its popularity exploding
in the cloud? URL: https://cloudblogs.microsoft.com/industry-blog/en-
gb/technetuk/2020/09/17/why- is-kubernetes-exploding- in- the-cloud/.
(accessed: 01.02.2022).

[8] Cloudflare. What is Edge Computing? URL: https://www.cloudflare.com/
learning/serverless/glossary/what-is-edge-computing/. (accessed: 05.02.2022).

[9] D. E. Comer et al. ‘Computing as a Discipline’. In: Commun. ACM 32.1
(Jan. 1989), pp. 9–23. ISSN: 0001-0782. DOI: 10.1145/63238.63239. URL:
https://doi.org/10.1145/63238.63239.

[10] Peter J. Denning. ‘Computer Science’. In: Encyclopedia of Computer Science.
GBR: John Wiley and Sons Ltd., 2003, pp. 405–419. ISBN: 0470864125.

[11] Abhinav Dubey. All about k3s - Lightweight Kubernetes. URL: https://dev.to/
abhinavd26/all-about-k3s-lightweight-kubernetes-3ell. (accessed: 17.02.2022).

[12] Sarah Wilson Eric Sullivan. URL: https://www.techtarget.com/searchstorage/
definition/block-storage. (accessed: 29.03.2022).

[13] Håvard Fossen. 5G kan erstatte DTT, Tetra og GSM-R. URL: https://www.
insidetelecom.no/artikler/5g- kan- erstatte- dtt- tetra- og- gsm- r/167868.
(accessed: 10.05.2022).

80

https://doi.org/10.1109/HPCS.2018.00147
https://doi.org/10.1109/HPCS.2018.00147
shorturl.at/oryN5
https://github.com/magnific0/wondershaper
https://github.com/magnific0/wondershaper
https://www.tutorialspoint.com/advantage-and-disadvantage-of-edge-computing
https://www.tutorialspoint.com/advantage-and-disadvantage-of-edge-computing
https://doi.org/10.17487/RFC8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://shipit.dev/posts/kubernetes-overview-diagrams.html
https://shipit.dev/posts/kubernetes-overview-diagrams.html
https://cloudblogs.microsoft.com/industry-blog/en-gb/technetuk/2020/09/17/why-is-kubernetes-exploding-in-the-cloud/
https://cloudblogs.microsoft.com/industry-blog/en-gb/technetuk/2020/09/17/why-is-kubernetes-exploding-in-the-cloud/
https://www.cloudflare.com/learning/serverless/glossary/what-is-edge-computing/
https://www.cloudflare.com/learning/serverless/glossary/what-is-edge-computing/
https://doi.org/10.1145/63238.63239
https://doi.org/10.1145/63238.63239
https://dev.to/abhinavd26/all-about-k3s-lightweight-kubernetes-3ell
https://dev.to/abhinavd26/all-about-k3s-lightweight-kubernetes-3ell
https://www.techtarget.com/searchstorage/definition/block-storage
https://www.techtarget.com/searchstorage/definition/block-storage
https://www.insidetelecom.no/artikler/5g-kan-erstatte-dtt-tetra-og-gsm-r/167868
https://www.insidetelecom.no/artikler/5g-kan-erstatte-dtt-tetra-og-gsm-r/167868

[14] Cloud Native Computing Foundation. Pods and Nodes. URL: https ://
kubernetesbootcamp.github.io/kubernetes-bootcamp/3-1.html. (accessed:
26.02.2022).

[15] Kubernetes Foundation. kube-apiserver. URL: https : / / kubernetes . io /
docs/reference/command-line-tools-reference/kube-apiserver/. (accessed:
17.02.2022).

[16] Kubernetes Foundation. Kubernetes Controller Manager. URL: https : //
kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-
manager/. (accessed: 17.02.2022).

[17] Kubernetes Foundation. Kubernetes Scheduler. URL: https://kubernetes.io/
docs/concepts/scheduling-eviction/kube-scheduler/. (accessed: 17.02.2022).

[18] Raspberry Pi Foundation. About us. URL: https://www.raspberrypi.org/
about/. (accessed: 12.02.2022).

[19] RedHat Foundation. What is a Kubernetes deployment? URL: https://www.
redhat.com/en/topics/containers/what-is-kubernetes-deployment. (accessed:
26.02.2022).

[20] The Eclipse Foundation. Eclipse Mosquitto Image. URL: https://hub.docker.
com/_/eclipse-mosquitto. (accessed: 01.03.2022).

[21] The Eclipse Foundation. Mosquitto.conf main page. URL: https://mosquitto.
org/man/mosquitto-conf-5.html. (accessed: 23.03.2022).

[22] The Linux Foundation. netem. URL: https ://wiki . linuxfoundation .org/
networking/netem#packet_loss. (accessed: 21.03.2022).

[23] Verdens Gang. Flere hus har rast i Gjerdrum – frykter flere vil rase. URL:
https://www.vg.no/nyheter/innenriks/i/8655KQ/flere-hus-har- rast- i-
gjerdrum-frykter-flere-vil-rase. (accessed: 9.05.2022).

[24] Gartner. Edge Computing. URL: https://www.gartner.com/en/information-
technology/glossary/edge-computing. (accessed: 16.05.2022).

[25] GeeksforGeeks. Congestion Control in Computer Networks. URL: https://
www.geeksforgeeks.org/congestion-control-in-computer-networks/. (accessed:
10.05.2022).

[26] The Tcpdump Group. TCPDUMP and LIBPCAP. URL: https : //www.
tcpdump.org/. (accessed: 10.04.2022).

[27] Anthony Wiles Hans van der Veer. Achieving Technical Interoperability - the
ETSI Approach. URL: shorturl.at/nuzHX. (accessed: 08.01.2022).

[28] Gerhard Haßlinger and Oliver Hohlfeld. ‘The Gilbert-Elliott Model for
Packet Loss in Real Time Services on the Internet.’ In: Jan. 2008, pp. 269–
286.

[29] Gerhard Hasslinger and Oliver Hohlfeld. ‘The Gilbert-Elliott Model
for Packet Loss in Real Time Services on the Internet’. In: 14th GI/ITG
Conference - Measurement, Modelling and Evalutation of Computer and
Communication Systems. 2008, pp. 1–15.

81

https://kubernetesbootcamp.github.io/kubernetes-bootcamp/3-1.html
https://kubernetesbootcamp.github.io/kubernetes-bootcamp/3-1.html
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://www.raspberrypi.org/about/
https://www.raspberrypi.org/about/
https://www.redhat.com/en/topics/containers/what-is-kubernetes-deployment
https://www.redhat.com/en/topics/containers/what-is-kubernetes-deployment
https://hub.docker.com/_/eclipse-mosquitto
https://hub.docker.com/_/eclipse-mosquitto
https://mosquitto.org/man/mosquitto-conf-5.html
https://mosquitto.org/man/mosquitto-conf-5.html
https://wiki.linuxfoundation.org/networking/netem#packet_loss
https://wiki.linuxfoundation.org/networking/netem#packet_loss
https://www.vg.no/nyheter/innenriks/i/8655KQ/flere-hus-har-rast-i-gjerdrum-frykter-flere-vil-rase
https://www.vg.no/nyheter/innenriks/i/8655KQ/flere-hus-har-rast-i-gjerdrum-frykter-flere-vil-rase
https://www.gartner.com/en/information-technology/glossary/edge-computing
https://www.gartner.com/en/information-technology/glossary/edge-computing
https://www.geeksforgeeks.org/congestion-control-in-computer-networks/
https://www.geeksforgeeks.org/congestion-control-in-computer-networks/
https://www.tcpdump.org/
https://www.tcpdump.org/
shorturl.at/nuzHX

[30] Nato IST. Federated Interoperability of Military C2 and IoT Systems. URL: https:
//www.sto.nato.int/Lists/STONewsArchive/displaynewsitem.aspx?ID=564.
(accessed: 08.02.2022).

[31] Mr. Vishal Jaiswa. TRANSMISSION CONTROL PROTOCOL. URL: https:
//miet.ac.in/assets/uploads/cs/TCP.pdf. (accessed: 10.05.2022).

[32] Agenda Kaupang. Etterevaluering av TETRA Nødnettprosjektet. URL: shorturl.
at/kFZ12. (accessed: 10.05.2022).

[33] Maker.io. Meet the New Raspberry Pi 3 Model B. URL: https://www.digikey.
no/en/maker/blogs/2018/meet- the-new-raspberry-pi-3-model-b-plus.
(accessed: 12.02.2022).

[34] MatLab. Simulate channel models for wireless systems. URL: https://www.
mathworks.com/discovery/channel-model.html. (accessed: 09.03.2022).

[35] MetalLB. MetalLB. URL: shorturl.at/bcuC9. (accessed: 26.02.2022).

[36] TechWorld with Nana. Kubernetes Volumes explained | Persistent Volume,
Persistent Volume Claim and Storage Class. Youtube. URL: https://www.
youtube.com/watch?v=0swOh5C3OVM&ab_channel=TechWorldwithNana.
(accessed: 26.02.2022).

[37] Juniper Networks. What is VXLAN? URL: shorturl.at/fxKMN. (accessed:
17.02.2022).

[38] the NGINX Team. What Is Load Balancing? URL: https://www.nginx.com/
resources/glossary/load-balancing/. (accessed:26.02.2022).

[39] NRK Nyheter. Leirskredet i Gjerdrum. URL: https://www.nrk.no/nyheter/
leirskredet-i-gjerdrum-1.15307406. (accessed: 08.05.2022).

[40] Oasis. MQTT Version 5.0. URL: https://docs.oasis-open.org/mqtt/mqtt/v5.0/
os/mqtt-v5.0-os.html#_Toc3901017. (accessed: 01.02.2022).

[41] Oracle. What is IoT? URL: https://www.oracle.com/internet-of-things/what-
is-iot/. (accessed; 15.02.2022).

[42] World Meteorogical Organization. Weather-related disasters increase over
past 50 years, causing more damage but fewer deaths. URL: https://public.wmo.
int/en/media/press-release/weather-related-disasters-increase-over-past-50-
years-causing-more-damage-fewer. (accessed: 08.01.2022).

[43] Paolo Patierno. MQTT & IoT protocols comparsion. URL: https://www.
slideshare . net / paolopat / mqtt - iot - protocols - comparison. (accessed:
16.05.2022).

[44] Manas Pradhan. ‘Federation Based on MQTT for Urban Humanitarian
Assistance and Disaster Recovery Operations’. In: IEEE Communications
Magazine 59.2 (2021), pp. 43–49. DOI: 10.1109/MCOM.001.2000937.

[45] Manas Pradhan, Marco Manso and James R. Michaelis. ‘Concepts and
Directions for Future IoT and C2 Interoperability’. In: MILCOM 2021 -
2021 IEEE Military Communications Conference (MILCOM). 2021, pp. 231–
236. DOI: 10.1109/MILCOM52596.2021.9653093.

82

https://www.sto.nato.int/Lists/STONewsArchive/displaynewsitem.aspx?ID=564
https://www.sto.nato.int/Lists/STONewsArchive/displaynewsitem.aspx?ID=564
https://miet.ac.in/assets/uploads/cs/TCP.pdf
https://miet.ac.in/assets/uploads/cs/TCP.pdf
shorturl.at/kFZ12
shorturl.at/kFZ12
https://www.digikey.no/en/maker/blogs/2018/meet-the-new-raspberry-pi-3-model-b-plus
https://www.digikey.no/en/maker/blogs/2018/meet-the-new-raspberry-pi-3-model-b-plus
https://www.mathworks.com/discovery/channel-model.html
https://www.mathworks.com/discovery/channel-model.html
shorturl.at/bcuC9
https://www.youtube.com/watch?v=0swOh5C3OVM&ab_channel=TechWorldwithNana
https://www.youtube.com/watch?v=0swOh5C3OVM&ab_channel=TechWorldwithNana
shorturl.at/fxKMN
https://www.nginx.com/resources/glossary/load-balancing/
https://www.nginx.com/resources/glossary/load-balancing/
https://www.nrk.no/nyheter/leirskredet-i-gjerdrum-1.15307406
https://www.nrk.no/nyheter/leirskredet-i-gjerdrum-1.15307406
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901017
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901017
https://www.oracle.com/internet-of-things/what-is-iot/
https://www.oracle.com/internet-of-things/what-is-iot/
https://public.wmo.int/en/media/press-release/weather-related-disasters-increase-over-past-50-years-causing-more-damage-fewer
https://public.wmo.int/en/media/press-release/weather-related-disasters-increase-over-past-50-years-causing-more-damage-fewer
https://public.wmo.int/en/media/press-release/weather-related-disasters-increase-over-past-50-years-causing-more-damage-fewer
https://www.slideshare.net/paolopat/mqtt-iot-protocols-comparison
https://www.slideshare.net/paolopat/mqtt-iot-protocols-comparison
https://doi.org/10.1109/MCOM.001.2000937
https://doi.org/10.1109/MILCOM52596.2021.9653093

[46] Manas Pradhan, Filippo Poltronieri and Mauro Tortonesi. ‘Generic
Architecture for Edge Computing Based on SPF for Military HADR
Operations’. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT).
2019, pp. 225–230. DOI: 10.1109/WF-IoT.2019.8767181.

[47] Rancher. Longhorn. URL: https://longhorn.io/. (accessed: 29.03.2022).

[48] Rancher. Rancher Docs: K3s. URL: https://rancher.com/docs/k3s/latest/en/.
(accessed: 9.3.2022).

[49] Rancher. Volumes and Storage. URL: https://rancher.com/docs/k3s/latest/
en/storage/. (accessed: 29.03.2022).

[50] Raspian. Welcome to Raspbian. URL: https://www.raspbian.org/FrontPage.
(accessed: 9.3.2022).

[51] Weisong Shi and Schahram Dustdar. ‘The Promise of Edge Computing’.
In: Computer 49.5 (2016), pp. 78–81. DOI: 10.1109/MC.2016.145.

[52] K3s Team. K3s. URL: https://k3s.io/. (accessed: 15.02.2022).

[53] Kubernetes Team. Namespaces. URL: https://kubernetes.io/docs/concepts/
overview/working-with-objects/namespaces/. (accessed: 17.03.2022).

[54] NetApp Team. What are containers? URL: shorturl.at/cmH23. (accessed:
26.02.2022).

[55] The HiveMQ Team. Introducing the MQTT Protocol - MQTT Essentials: Part
1. URL: https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-
mqtt/. (accessed: 15.02.2022).

[56] The HiveMQ Team. Publish and Subscribe - MQTT Essentials. URL: https:
//www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/. (accessed:
02.02.2022).

[57] The HiveMQ Team. Quality of Service 0,1 and 2 - MQTT Essentials: Part 6.
URL: https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-
service-levels/. (accessed: 04.02.2022).

[58] The Kubernetes Team. ConfigMaps. URL: https://kubernetes. io/docs/
concepts/configuration/configmap/. (accessed: 24.03.2022).

[59] The Kubernetes Team. Secrets. URL: https://kubernetes.io/docs/concepts/
configuration/secret/. (accessed: 23.02.2022).

[60] The Kubernetes Team. What is Kubernetes? URL: https://kubernetes.io/docs/
concepts/overview/what-is-kubernetes/. (accessed: 26.02.2022).

[61] The MatPlotLib development team. Matplotlib. URL: https://matplotlib.org/.
(accessed: 10.05.2022).

[62] The Wireshark Team. TShark. URL: https://www.wireshark.org/docs/man-
pages/tshark.html. (accessed: 23.04.2022).

[63] The Wireshark Team. Wireshark. URL: https : / / www . wireshark . org/.
(accessed: 10.04.2022).

[64] VMWare Team. What are Kubernetes Services? URL: https://www.vmware.
com / topics / glossary / content / kubernetes - services . html. (accessed:
27.02.2022).

83

https://doi.org/10.1109/WF-IoT.2019.8767181
https://longhorn.io/
https://rancher.com/docs/k3s/latest/en/
https://rancher.com/docs/k3s/latest/en/storage/
https://rancher.com/docs/k3s/latest/en/storage/
https://www.raspbian.org/FrontPage
https://doi.org/10.1109/MC.2016.145
https://k3s.io/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
shorturl.at/cmH23
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://matplotlib.org/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/
https://www.vmware.com/topics/glossary/content/kubernetes-services.html
https://www.vmware.com/topics/glossary/content/kubernetes-services.html

[65] Nicolai Vatne. Master Thesis Repository. URL: https://github.com/NickVatne/
master-thesis-nicolai. (accessed: 10.05.2022).

[66] Abhishek Verma et al. ‘Large-scale cluster management at Google with
Borg’. In: Proceedings of the European Conference on Computer Systems
(EuroSys). Bordeaux, France, 2015.

[67] 5G Vinni. 5G Verticals Innovation Infrastructure. URL: https://www.5g-
vinni.eu/concept-approach/. (accessed: 19.05.2022).

[68] Rupert Wood. Wireless Traffic Forecasts : 5G Will Make Little Difference to
Long-Term trends. URL: https://aglmediagroup.com/wireless-traffic-forecasts-
5g-will-make-little-difference-to-long-term-trends/. (accessed: 08.01.2022).

[69] Konrad Wrona et al. ‘Leveraging and Fusing Civil and Military Sensors to
support Disaster Relief Operations in Smart Environments’. In: MILCOM
2019 - 2019 IEEE Military Communications Conference (MILCOM). 2019,
pp. 790–797. DOI: 10.1109/MILCOM47813.2019.9021004.

[70] Ivana Podnar Žarko et al. ‘Collaboration Mechanisms for IoT Platform
Federations Fostering Organizational Interoperability’. In: 2018 Global
Internet of Things Summit (GIoTS). 2018, pp. 1–6. DOI: 10.1109/GIOTS.2018.
8534547.

84

https://github.com/NickVatne/master-thesis-nicolai
https://github.com/NickVatne/master-thesis-nicolai
https://www.5g-vinni.eu/concept-approach/
https://www.5g-vinni.eu/concept-approach/
https://aglmediagroup.com/wireless-traffic-forecasts-5g-will-make-little-difference-to-long-term-trends/
https://aglmediagroup.com/wireless-traffic-forecasts-5g-will-make-little-difference-to-long-term-trends/
https://doi.org/10.1109/MILCOM47813.2019.9021004
https://doi.org/10.1109/GIOTS.2018.8534547
https://doi.org/10.1109/GIOTS.2018.8534547

Appendix A

Mosquitto
Deployment Manifest - TLS

apiVersion : apps/v1
kind : Deployment
metadata :

name : mosquitto −deployment −open
namespace : mosquitto

spec :
s e l e c t o r :

matchLabels :
app : mosquitto

r e p l i c a s : 1
template :

metadata :
l a b e l s :

app : mosquitto
spec :

c o n t a i n e r s :
− name : mosquitto

image : e c l i p s e −mosquitto : 1 . 6 . 1 5
imagePul lPol icy : Always
ports :
− c on t a i n er P or t : 1883
volumeMounts :

− name : mosquitto − conf ig
mountPath : /mosquitto/ conf ig /mosquitto . conf

subPath : mosquitto . conf
− name : t l s −ca

mountPath : /mosquitto/ t l s −ca
readOnly : t rue

− name : t l s − server
mountPath : /mosquitto/ t l s − server

85

readOnly : t rue
volumes :

− name : mosquitto − conf ig
configMap :

name : mosquitto − conf ig
− name : t l s −ca

s e c r e t :
secretName : mqtt−ca

− name : t l s − server
s e c r e t :

secretName : mqtt− t l s
− name : mosquitto −data

persistentVolumeClaim :
claimName : mosquitto
emptyDir :

86

Appendix B

Mosquitto Service Manifest - TLS

apiVersion : v1
kind : Serv ice
metadata :

name : mosquitto − serv ice −open
namespace : mosquitto

spec :
type : LoadBalancer
ports :

− name : mqtt −1883
port : 1883
t a r g e t P o r t : 1883
protoco l : TCP

− name : mqtt −8883
port : 8883
t a r g e t P o r t : 8883
protoco l : TCP

s e l e c t o r :
app : mosquitto

87

Appendix C

Mosquitto PVC Claim

apiVersion : v1
kind : PersistentVolumeClaim
metadata :

name : mosquitto
namespace : mosquitto
l a b e l s :

app : mosquitto
spec :

accessModes :
− ReadWriteOnce

resources :
reques ts :

s torage : 8Gi
storageClassName : loc a l −path

88

Appendix D

MQTT Client Code

import time
import random
import datetime
import j son
import uuid
from paho . mqtt import c l i e n t as m q t t _ c l i e n t
import s s l

broker = " 1 9 2 . 1 6 8 . 0 . 2 3 0 "
unique_id = uuid . uuid4 ()
port = 8883
t o p i c = "home/bequerel /"
deviceID = " Bequeruel − Control ler −RPI " + unique_id . _ _ s t r _ _ ()

def connect () :
def on_connect (c l i e n t , userdata , f lags , rc) :

i f rc == 0 :
p r i n t (" Connected to HADR Network ")

e l s e :
p r i n t (" Fa i led

to connect to HADR Network , Returned " , rc)
c l i e n t = m q t t _ c l i e n t . C l i e n t (deviceID)
c l i e n t . t l s _ s e t (

" ca . c r t " ,
t l s _ v e r s i o n = s s l . PROTOCOL_TLSv1_2)

c l i e n t . t l s _ i n s e c u r e _ s e t (True)
c l i e n t . on_connect = on_connect
c l i e n t . connect (broker , port)
return c l i e n t

def publish (c l i e n t) :
msg_count = 0
f a u l t = random . randint (1 , 2)
while True :

data = { }
data [" deviceID "] = deviceID
data [" timeStamp "] = ' { :%Y−%

89

m−%d %H:%M:%S } ' . format (datetime . datetime . now ())

i f f a u l t == " 1 " :
data [" bequerel

"] = round (random . uniform (3 0 . 0 , 1 0 0 0 0 . 0) , 1)
e l s e :

data [" bequerel
"] = round (random . uniform (3 0 . 0 , 1 0 0 0 0 . 0) , 1)

payload = json . dumps(data , e n s u r e _ a s c i i = Fa lse)
p r i n t (payload)
r e s u l t = c l i e n t . publish (topic , payload)
s t a t u s = r e s u l t [0]
i f s t a t u s == 0 :

p r i n t (" Message sent ")
e l s e :

p r i n t (" Fa i led to send message to t o p i c ")
msg_count += 1
time . s leep (3 0)

def run () :
c l i e n t = connect ()
c l i e n t . l o o p _ s t a r t ()
publish (c l i e n t)

i f __name__ == ' __main__ ' :
run ()

90

Appendix E

Table of results - K3s Master Node

Mid-Band 5G Packets lost
0% loss 51
1% loss 107
5% loss 121
10% loss 134

Table E.1: Master - Mid-Band 5G

CNR Packets lost
0% loss 111
1% loss 396
5% loss 411
10% loss 604

Table E.2: Master - CNR

NBWF Packets lost
0% loss 107
1% loss 546
5% loss 572
10% loss 598

Table E.3: Master - NBWF

Tactical Network Packets lost
0% loss 59
1% loss 132
5% loss 139
10% loss 142

Table E.4: Master - Tactical Network

91

Appendix F

Table of results - MQTT Broker

Mid-Band 5G Packets lost
0% loss 34
1% loss 38
5% loss 40
10% loss 43

Table F.1: MQTT broker - Mid-Band 5G

CNR Packets lost
0% loss 123
1% loss 551
5% loss 589
10% loss 602

Table F.2: MQTT broker - CNR

NBWF Packets lost
0% loss 107
1% loss 443
5% loss 452
10% loss 489

Table F.3: MQTT broker - NBWF

Tactical Network Packets lost
0% loss 36
1% loss 41
5% loss 41
10% loss 44

Table F.4: MQTT broker - Tactical Network

92

	Introduction
	Topic and Research Questions
	Related work
	Methodology
	State requirements
	State specifications
	Design and implementation
	Testing

	Scope
	Outline

	Background
	Defining IoT
	Edge computing
	Defining MQTT
	Publish/Subscribe
	QoS

	Military Federation of IoT
	NATO IST-147 and 150
	Challenges with Federation

	System Design
	Scenario
	Disaster relief operation
	Reflections on the need for digitization and edge computing
	Proposed high-level technical architecture

	Kubernetes
	K3s
	Kubernetes Architecture
	Pods/Containers
	Load Balancing
	Deployments
	ConfigMaps
	Services
	Kubernetes Volumes
	Secrets

	Hardware
	Raspberry Pi
	Raspian Buster

	Implementation
	Preparation
	Hardware
	K3s
	Installation
	Kubernetes command line

	Implementing a Load Balancer
	Kubernetes Dashboard
	Mosquitto MQTT
	Open Implementation
	SSL / TLS Implementation

	Storage
	Local Persistent Storage
	Longhorn

	Scripts and code
	K3s MQTT Clients

	Versions

	Testing
	Memory Usage
	Gilbert-Elliot Model
	Utilities
	Linux Netem
	TCPDump
	Wireshark
	Wondershaper

	Parsing the PCAP files
	Pyshark
	Implementation

	Results
	Scope of testing
	Network configurations

	Results
	K3S Master Graphs
	MQTT Broker Graphs

	Discussion

	Conclusion & Future Work
	Conclusion
	Experiences/Contributions
	Hardware challenges

	Future Work
	Longhorn & Persistent Distributed Storage
	WebRTC Broadcasting node
	Alternative congestion control
	Real-world simulated tests
	Messaging Application

	Mosquitto Deployment Manifest - TLS
	Mosquitto Service Manifest - TLS
	Mosquitto PVC Claim
	MQTT Client Code
	Table of results - K3s Master Node
	Table of results - MQTT Broker

