
UNIVERSITY OF OSLO
Department of Informatics

SQL-99 and
Persistent Objects

Including a Case Study
of IBM DB2 Universal
Database Server

Roald Andresen

Cand Scient Thesis

2002-07-01

UUNNIIVVEERRSSIITTYY OOFF OOSSLLOO
DDeeppaarrttmmeenntt ooff IInnffoorrmmaattiiccss

SSQQLL--9999 aanndd PPeerrssiisstteenntt
OObbjjeeccttss

IInncclluuddiinngg aa CCaassee SSttuuddyy ooff
IIBBMM DDBB22 UUnniivveerrssaall DDaattaabbaassee

SSeerrvveerr

CCaanndd.. SScciieenntt.. TThheessiiss

RRooaalldd AAnnddrreesseenn

22000022--0077--0011

Preface

The topic for this thesis was presented to me by my advisor and tutor
Dr. Ole Jørgen Anfindsen way back in 1998. It was then 8 years since I
finished my Cand.Mag. (Batchelor) degree, and I had more or less
given up on getting a chance to get a Cand.Scient. (M.Sc.) degree. The
topic suggested by Dr. Anfindsen just happened to coincide to a large
extent with my then current job at Posten SDS AS. This made it
possible to combine job and studies without creating any conflict. All
the work of my Cand.Scient. degree has been done in parallel to a full-
time professional career at Posten SDS AS (now Ergo Group AS) and
Logica Ltd.

This has been my third attempt at taking a Cand.Scient. degree
parallel to work and family. I would like to extend an apology to the
two professors who spent time in vain on my two previous attempts:
Prof. Khalid Azim Mughal and Prof. Trond Steihaug at the Dept. of
Informatics, University of Bergen, Norway.

I am very grateful to everyone that made it possible for me to start on
this endeavour, and furthermore, to actually finishing it. My thanks
go primarily to my wife, Eli Sæterdal, and my three children Thomas,
Ellen and Georg. They have all been far more supportive and
patience than I deserve.

Naturally, I would also like to thank Dr. Anfindsen for giving me the
opportunity to become Cand.Scient. and for his patience during the 4
years this project took to finish. And finally, for introducing me to
Indian cuisine. The opinions expressed in this thesis are my own and
are not necessarily shared by Dr. Anfindsen.

Furthermore, I would like to thank Guy Lohman at IBM Almaden
Research Center, Jim Melton at Oracle Corp. and Jan Ankarstrand at
IBM Norway for their input and help.

Roald Andresen
Skien, Norway, 01-July-2002

Contents

1. Introduction...6

1.1. Purpose ... 6
1.2. Past and Present of Database Modelling... 7
1.3. A New Millenium ... 12

2. Persistent Objects ..14

2.1. Impedance Mismatch Problem.. 14
2.2. Different Levels of Persistence ... 18
2.3. Session Persistence.. 19
2.4. Data Persistence... 19
2.5. Indicating orthogonal persistency... 19

3. Object-Relational Databases ..22

3.1. What is an object-relational database? ... 23
3.2. Type extensions.. 25
3.3. Functions .. 36
3.4. External Functions and Procedures .. 37
3.5. Operators.. 39
3.6. Inheritance ... 40
3.7. Constraints.. 41

4. How Object-Relational is DB2? ..46

4.1. Extended Base Type Set .. 46
4.2. Distinct Types ... 49
4.3. Structured Types.. 51
4.4. Functions .. 54
4.5. Procedures.. 57
4.6. Operators.. 58
4.7. Encapsulation... 58
4.8. Collection Constructors .. 58
4.9. Inheritance ... 58
4.10. Constraints.. 61
4.11. Implementation Issues .. 62
4.12. Is DB2 Object-Relational? ... 66

5. Object Persistence in an ORDBMS ..68

5.1. Test Case ... 70
5.2. Observations .. 76
5.3. Conclusion.. 79

Introduction

6. Conclusions..80

6.1. Recapturing the Findings.. 80
6.2. The DBMS Matrix.. 81
6.3. Future Work.. 82

App. A. Java Source Code..84

A.1 Library.java... 84
A.2 Book.java .. 87
A.3 Author.java ... 89

References...90

Page 5

Introduction

1. Introduction

HOW CAN YOU DO WHAT YOU OUGHT, IF YOU DON'T KNOW WHAT

YOU'VE GOT? AND IF YOU DON'T KNOW WHICH TO DO OF ALL THE

THINGS IN FRONT OF YOU, THEN WHAT YOU'LL HAVE WHEN YOU ARE

THROUGH IS JUST A MESS WITHOUT A CLUE
BENJAMIN HOFF: "THE TAO OF POOH"

1.1. Purpose

A recognized problem facing system developers today is that the data modelling
techniques and database technology in general have been outrun by current state-of-
the-art software development technology and modern programming languages. In
software development environments, object-oriented modelling and programming
(and even testing) is by far dominating. Most databases in use are relational and subject
to both the openness and the limitations of SQL-92.

In the recent years, the database communities have tried to converge the database
technology and the software development technologies. Object-oriented databases
have seen the light of day, and attempts have been made to make both the relational
data model and SQL more object-oriented. The emerging new data model is generally
known as the object-relational database model. SQL has gone through a large revision,
with many new features added. A major new version of the standard was published in
1999. This new version is commonly known as SQL-99.

This thesis will first describe what an object-relational database actually is. This
description will be based on several sources (Stonebraker et.al. 1990), (Stonebraker & Moore
1996) and (Gulutzan & Pelzer 1999) in addition to the standard itself.

Next, this thesis will look at one specific commercial database system that is marketed
as object-relational, namely IBM's DB2 Universal Database Server, version 7.1. The
supported SQL-99 features in DB2 UDB will be described and an analysis as to whether
it is justifiable to call DB2 UDB an object-relational database system or not, will be
given. To some extents, the impact the object-relational aspects of DB2 have on query
execution will be studied.

Finally, this thesis will describe different kinds of object persistence. The impedance
mismatch problem is described and sought solved by means of object-relational
modelling and a modern database programming API; explicitly JDBC 2.0. The database
engine used for this is Oracle9i.

Before all this, a very brief history of database modelling will be given in the rest of this
chapter.

This thesis assumes a basic knowledge of database theory, object-oriented concepts,
SQL and Java.

Page 6

Introduction

1.2. Past and Present of Database Modelling

Many a thesis, paper1 and book have started out with an outline of what have brought
the database world to where it is today. This is an attempt do draw a crude sketch of a
larger picture, and maybe even to peek into to the future to see what's in store.

Record keeping was one of the very first uses of any written language, alphabetic or
hieroglyphic. Even the early Cro-Magnon cave paintings are a sort of recordings of
everyday events, such as how many animals were killed during the latest hunt. One of
the very first "databases" found in Europe was the Linear-B tablet system of the Minoan
Kingdom. These 3500 years old scriptures were the book keeping system or the
logistics of a relatively advanced civilisation. Even earlier, the Sumerians kept records
of the royal assets and the taxes some 6000 years ago.

Linear-B tablet showing the reco dings of armour in sto e at the Knossos Palacer r

i ts f
l ti t. ,

t
t l

So, throughout the centuries, non-electronic databases have existed and developed
from clay tablets stored in jars to paper journals stored in files in filing cabinets.

Computers were originally thought of as advanced computing devises, so when the first
commercial computer was introduced in 1951, the means for information storage was
rather frail. Information could be stored on punched cards, and a modest amount of
10,000 cards could be stored on tape. The first proper database system was not to be
commercially introduced until 16 years later.

In what follows, the most important data models used during the last 4 decades will be
briefly introduced. To illustrate these data models, consider the need to model the
following scenario:

To develop a very simple library database, the following information should be stored
and maintained: A book cons s o one or more chapters. Information about the book
should inc ude title, ISBN, year of publica on and a page coun Furthermore
informa ion about the book's publisher should be maintained. Finally, a list of the
book's authors should be included. Informa ion about an author shou d include the
author's name, nationality and date of birth and death. The publisher's name, address
and phone number should also be included.

Naturally, the history of database technology involves a variety of research and
development areas: Concurrency, transaction processing, distributed databases,
recovery, security and query processing, just to mention a few. These are not described
in this thesis. There are excellent books covering these areas, e.g. (Papadimitriou 1986),
(Gray & Reuter 1993), (Özsu & Valduriez 1999) and (Yu & Meng 1998).

1 See e.g. (Gray 1996).

Page 7

Introduction

However, some questions about query processing in the object-relational features in
DB2 will be discussed in a later chapter.

1.2.1. The Network Data Model

The formal definition of the network data model was the result of 6 years of labour by
the Conference on Data Systems Languages committee. This committee is more
commonly known as the CODASYL committee. Their work was presented in a report
from the CODASYL Database Task Group in 1971.

Today, the network data model is almost without exception used on mainframes.
Furthermore, the database applications using this model are, with very few exceptions2,
legacy systems.

The network database model is comprised by two data structures, namely records and
sets.

Data is stored in records, which are classified into record types. In addition to having a
name, each record type also includes a list of data items with names and data types.
Complex record types can be defined, as a record type may include vectors and
repeating groups in addition to atomic items. A vector is a data item that may have
multiple values within a single record, and a repeating group allows the inclusion of a
set of composite values for a data item within a single record. Vectors and repeating
groups may be combined, resulting in the means to define very complex record types.

A 1-to-n relationship between two record types is described by a set type. A set type has
a name, an owner record type and a member record type. The owner record type
represents the 1-side of the relationship, whereas the member record type represent the
n-side of the relationship. The network data model has no construct for m-to-n
relationships. This is solved by the introduction of an additional record type, usually
called a linking record type.

Naturally, this is definitively not an exhaustive presentation of the network data model.
To give such is not within the scope of this thesis.

The library scenario immediately gives rise to four record types: Book, Chapter,
Publisher and Author. Since it is not natural to view a chapter to be an independent
entity, but as an integral part of a book, this can be modelled as a repeating group
within the book record type.

Since a publisher may publish more than one book, and (in a somewhat simplified
world), a book may have only one publisher, there exist a 1-to-n relationship from
publisher to book.

There clearly exists an m-to-n relationship between the author record type and the
book record type. A linking record type Authorship has to be introduced.

2 Even as late as December 1998, a major Norwegian company posted a request for an estimate on the development of a
new business critical application based on the network database model.

Page 8

Introduction

One possible network data model representation of the sample scenario is shown in
the diagram below:

NUMBER TITLE FROMPAGE TOPAGE

BOOK
CHAPTERTITLE ISBN PUBLICATIONYEAR PAGES

NAME ADDRESS ZIPCODE CITY COUNTRY PHONE
PUBLISHER

NAME NATIONALITY DATEOFBIRTH DATEOFDEATH
AUTHOR

AUTHORSHIP

Sample network data model

1.2.2. The Hierarchical Data Model

Although there is no specific document defining the hierarchical data model, it has
proved to become a powerful and important modelling paradigm when modelling the
many situations in which a hierarchical structure is evident.

The hierarchical data model is very similar to the network data model. The main
difference is that in the hierarchical model data is organised in tree structures rather
than in general graphs.

This clearly implies that the library scenario must be presented differently. The 1-to-n
relationship from publisher to book is straightforward. When trying to model the m-to-
n relationship between book and author, the linking record type cannot be used, since
this would result in a graph that is not a tree. To solve this, multiple hierarchies are
allowed within the same schema, and a virtual record type is introduced. So, a second
hierarchy must be introduced, containing a single virtual record type.

NUMBER TITLE FROMPAGE TOPAGE

BOOK
CHAPTERTITLE ISBN PUBLICATIONYEAR PAGES

NAME ADDRESS ZIPCODE CITY COUNTRY PHONE
PUBLISHER

NAME NATIONALITY DATEOFBIRTH DATEOFDEATH
AUTHOR

BOOKPOINTER

BOOK

HIERARCHY 1 HIERARCHY 2

Sample hierarchical data model

Page 9

Introduction

1.2.3. The Relational Data Model

Inspired by software designer's struggle with a very low-level navigational
programming interface, E.F.Codd offered an alternative when introducing the
relational data model in 1970 (Codd 1970). This proved to be a very successful model,
which led to a many very good database implementations, some of which are
considered the state-of-the-art database systems today.

In the relational data model, data is stored in relations (or tables). The global schema
may be seen as a relational schema R(A1,A2,...,An), where R is the relations name, and
the Ai are attributes of the schema. An attribute may be seen as representing a data
item. A relation of the schema R is a set of n-tuples {t1,t2,...,tn}, each tuple being an
ordered list of n values.

Usually R is split into components (or tables) such that a commonly acknowledged set
of normalisation rules apply. Each component should have a clearly defined key (i.e. a
set of attributes which uniquely defines each tuple).

It is possible to navigate (or to find related data) across the components by means of
keys and foreign-key constraints (defining a relationship between two components). A
more thorough description on the relational data model, and a description of the
normalisation rules are described in most basic database theory books, see e.g. (Korth &
Silberschatz 1991) or (Ullman 1988).

A 1-to-n relationship is defined by letting the component on the n-side have a foreign-
key (or a pointer) to the key of the component on the 1-side of the relationship. Tuples
on the n-side is subordinate to a tuple on the 1-side if the value of the foreign-key
equals the value of the key on the 1-side.

A 1-to-1 relationship is defined in somewhat the same way as a 1-to-n relationship. The
only difference is that it is simply a matter of choice which component should have to
foreign-key.

Just as the network and the hierarchical model, the relational model has no immediate
means to define an m-to-n relationship. In the relational model, this is solved by
introducing an additional join component (or a join table), which consists solely of a
foreign-key to the component on the m-side and a foreign-key to the component on
the n-side. There may be situations where it is useful to include additional attributes in
the join component. There is nothing in the relational model that prevents this.

A schema of the relational model is often expressed either in an entity-relationship
diagram3, or in an IDEF1X diagram4. In the latter diagram form, the example above is
model is expressed like this:

3 See (Chen 1976)

4 See e.g. (FIPS/184 1993)

Page 10

Introduction

Sample relational data model in IDEF1X syntax

t

1.2.4. The Object-Oriented Data Model

Even though object-oriented architectures have been around since the late 1960s, a
commercial and widespread use of object-oriented models and object-oriented
programming languages did not transpire until the early 1990s. Both object-oriented
machine architectures and operating systems have been around since the early 1980s.
GemStone, the first object-oriented database system saw the light of day on 1986.

When it comes to modelling principles, an object-relational model is actually an object-
oriented model realised in a relational database system.

In recent years, a de-facto standard for object-oriented modelling has been developed
through collaboration between a multitude of scientists and software engineers from
both commercial companies and academic research institutions. This work has been,
and still is, coordinated by the Object Managemen Group5. The de-facto standard is
known as the “Unified Modelling Language”, or UML. A very complete documentation
of UML is found in (Rumbaught et.al 1999), and the full specification of UML can be found
om OMG’s web pages. The application of UML to database modelling has not been
formalised, but good approaches described in (Naiburg & Maksimchuk 2001) and (Muller 1999).

As with the models described above, it is not within the scope of this thesis to describe
UML in any detail.

When used in data modelling, a UML diagram has, in the uncomplicated cases, much in
common with an IDEF1X diagram. When dealing with cases with greater complexity,
UML supports all object-oriented concepts such as inheritance and information hiding.
An additional and potentially great reward by using UML instead of IDEF1X is that the
same syntax can be used for the modelling of both the application logic and the

) r t
l

5 “The Object Management Group (OMG is an open membership, not-fo -profit consor ium that produces and
maintains computer industry specifications for interoperab e enterprise applications.” See http://www.omg.org

Page 11

Introduction

database model. This however assumes that object-orientation is supported in the
database in question.

The library scenario is expressed in UML like this:

Publisher
Name
Address
ZIPCode
City
Country
Phone

Chapter
Title
Number
FromPage
ToPage

Book
Title
ISBN
PublicationYear
Pages10..*

+ is publ ished by

1

+publishes

0..* 1
1..*

+is in

1

+has

1..*

Author
Name
Nationality
DateO fBi rth
DateO fD eath

1..*

1..*

+has written

+is written by

1..*

1..*

1.3. A New Millenium

Foretelling the future is indisputably a difficult, if not impossible, task. However,
leading personae from the database community gathers at regular intervals to do a self-
assessment as to where the database community is today, and which challenges lays
ahead. The resulting papers from two such gatherings are found in (Silberschatz, et.al.
1996) and (Bernstein, et.al. 1998).

Some of the issues raised are:

Define data models for new data types (such as spatial, temporal and multimedia
data), and integrating them with traditional database systems.

Scaling databases to allow for larger, more distributed and more heterogeneous
database systems.

Supply further support for automatic data mining and data analysis.

Automate database design.

Apply databases to the Web and utilise the Web as a database.

Further unifying program logic and database systems.

In (Bernstein, et.al. 1998), a ten-year goal for the database research community is
presented:

The Information Utility: Make it easy for everyone to
store, organize, access, and analyze the majority of
human information online.

Page 12

Introduction

This thesis will not dwell any further on neither database modelling concepts as such,
nor on the future goals of the database community. Object-oriented modelling using
UML will be used wherever necessary to illustrate examples and object-relational
constructs.

Page 13

Persistent Objects

2. Persistent Objects

IF NOTHING WERE ETERNAL,
EVEN BECOMING WOULD NOT BE POSSIBLE

ARISTOTLE, "METAPHYSICS"

Using the thesaurus in Microsoft Word, a wealth of synonyms are presented for the
word “persistent”:

• tenacious • enduring • immovable • insistent

• indefatigable • persevering • continuous • constant

• continual • continued • repeated • steady

It is clear that there is no single meaning to the word. For the meaning usually
attributed to persistent objects, the synonyms written in bold face above seem more
appropriate.

Naturally, every object ever created in an object-oriented program has some
endurance. This could be endurance within its block of declaration:

{
 SomeObjectType ShortLivedObject;
 ShortLivedObject.SomeMethod();
}

Alternatively, the object could persist throughout the whole of program execution.

Some objects, however, is only useful if their attributes and state can persist from one
execution to the next. Such an object is called a persistent object.

For how long an object persists is still dependent on the program in question. If a
program keeps all its runtime parameters in an object, and this is stored upon program
termination and read upon start-up, this is a very simple and short-lived persistent
object. The other extreme is an object that should continue to exist for a long time,
past the lifetime of both programs and machines. Naturally, it is not enough for the
object to be persistent, but it must also be readily available to programs throughout its
lifetime (however long it might turn out to be).

This chapter sets out to describe the infamous impedance mismatch problem and
different types of persistence. Furthermore, an answer is sought to the question of
whether orthogonal persistence can be achieved by accessing data in an ORDBMS
through JDBC.

2.1. Impedance Mismatch Problem

When working with database from some interfacing programming language, one is
often faced with some well-known problems. These problems often result in
programmers struggling to make information flow easily between an application and
the database. This could be seen as a kind of information flow inertia. The inertia is

Page 14

Persistent Objects

due to several fundamental differences in the logic of common programming
languages and database. A set of commonly known problems has collectively been
dubbed the impedance mismatch p oblem (IMP). When dealing with RDBMSs and
ORDBMSs in real life, IMP is an issue in the interface between SQL and the
programming language in question.

r

In (Melton 1998), several sides of this problem is presented:

1. Whereas an SQL SELECT statement is a set-at-a-time statement, programming
languages are dealing with element-at-a-time statements.

2. SQL has inherent mechanisms for handling NULL values.

3. There is usually, if not always, some mismatch between SQL data types and
programming language data types.

4. Most often, SQL has a different way of handling errors, than that of the
programming language.

Although it is a general agreement the IMP is a very serious issue when developing
applications that are using an RDBMS, it is still a matter of controversy whether
ORDBMSs can eliminate the IMP or not. A reasonable and somewhat diplomatic claim
is that ORDBMSs certainly lessen the problem.

2.1.1. Set-at-a-time Versus Element-at-a-time

Retrieving data through a SELECT statement from an external programming language
is not straightforward. Assume the following scenario:

A type and a table is defined in the database:

CREATE TYPE T_BOOK
(
 TITLE STRING,
 WRITTEN YEAR,
 ISBN ISBN
);
CREATE TABLE BOOK OF TYPE T_BOOK;

In a C++ program, the data type t_book can be defined as a class:

#define year int;
#define ISBN string;
class t_book
{
 string title;
 year written;
 ISBN isbn;

}

An object is defined as:

t_book booktable;

Page 15

Persistent Objects

The host program executes a SELECT statement S, which gives a result set RS:

SELECT * FROM BOOK WHERE WRITTEN = YEAR(1984);

If |RS|=1, a one-to-one mapping from the fields in the table to the attributes of the
C++ class can be made.

What if |RS|=0 or |RS|>1? The latter is the most usual situation.

Most database APIs6 approach this problem in a similar manner:

The approach starts with an execution statement, which takes the SELECT statement as
an input argument. This results in a cursor or an iterator, which are used to fetch data
from the result set. The various fields in the cursor/iterator are bound to host variable.
The actual retrieval is done through a fetching mechanism that copies a value from the
current row’s fields to their respective host variables.

Define a SELECT statement;
Parse and execute the statement;
Bind host variables to the statement fields;
While there are any more rows
 Fetch next row;
 Process the data;
Optionally drop the cursor/iterator;

Surely, this algorithm does deliver all rows, no matter the size of RS. Nevertheless, in
SQL Rs is one result set, and the application programmer is forced to do |RS| retrieves.

Some vendors have approached this problem by allowing the fetching
function/method to fetch a predetermined number of rows into an array of host
variables. Since |RS| is unknown, and most likely varies from execution to execution,
this is not an optimal solution. A more appealing approach is to allow the fetching
function/method to place its result into a linked list:

list< t_book > booktable;

However, if |RS| is very large this would prove not to be such a good idea after all.
Even if t_book is a relatively small structure, booktable could still put hard-to-meet
requirements on the systems resources. Consider the database of the larger National
and University Libraries, or the database of Amazon.com7 where the number of rows in
the book table would easily reach several thousands.

To check whether |RS|=0, APIs provide an exception, a RowCount() function/method
that would return 0 or an AtEOF() function/method that would return false
immediately after the execution of the statement.

6 E.g. ODBC, Oracle OCI, DB2 CLI, JDBC

7 http://www.amazon.com

Page 16

Persistent Objects

2.1.2. Handling NULL Values

Relational databases and SQL inherently handle missing values. E.g., in addition to
handle negative and positive values, and the value zero, an integer in an
RDBMS/ORDBMS can be without value at all. A variable that is missing a value is said
to be a NULL value. The concept of a NULL value was introduced into relational
databases to allow operations and calculations over a rowset without having to
eliminate missing values in advance.

Traditional programming languages do not have such a concept. To some extent, this
could be simulated by letting a variable address be void when a NULL value is intended.
For several reasons, this is not a good solution in the general case. One very simple
reason is that many languages do not allow pointers at all8.

In database APIs, the programmer will have to use an indicator variable to check if a
value is NULL. To run a SELECT statement resulting in an n-tuple, the programmer will
need 2n variables to fetch values from the database. Furthermore, after the fetch
statement has been executed, and before each value is in any expression, the
programmer will have to check each corresponding indicator variable to make sure
that the value is not NULL.

2.1.3. Mismatch of Data Types

When data is to be transferred between variables in a client application and fields in a
table, the ideal situation would be that this could be done without any consideration.
Unfortunately, this is not the way things work.

It is tempting to assume that at least when the variables in the client application are
scalar there should be no problem, but not even this is straightforward. To illustrate the
problem, the following tables show the numerical data types in Java, DB2 UDB 7.1 and
in Oracle9i respectively:

 Java DB2 Oracle9i 9

8-bit integer byte N/A N/A
16-bit integer short SMALLINT N/A
32-bit integer int INTEGER N/A
64-bit integer long BIGINT N/A

32-bit floating-point float REAL N/A
64-bit floating-point double DOUBLE/FLOAT N/A

As can be seen, not all of the numerical Java data types have the direct counterpart in
DB2 and none of them in Oracle9i 9.

8 E.g. Java

9 All numerical data types in Oracle are designated by specifying NUMBER(X,Y) where X is the precision and Y is the
scale of the numerical data type. So, even if Oracle does not have the specific data types, every precision range is
covered. The mapping, however, must be done by manually setting/checking X and Y for each column by the
programmer/modeller.

Page 17

Persistent Objects

In addition, DB2 also has numerical types where precision is controlled by a parameter
in the declaration. These are called DECIMAL or NUMERIC.

To declare a field to be in the bounds of a 16-bit integer in an Oracle table, the syntax
would be

SOMEFIELD NUMBER(5)

To some extent, similar problems exist with alphanumerical data types. Even trickier
problems occur when dealing with date/time data types.

If the RDBMS vendor chose to include a different set of data type mappings for each
language, compiler and operating system, this problem could be overcome. These
mappings would typically be a set of #define macros for a C compiler, or a set of data
type definitions for Java. Then, the application developer would be forced to use data
types not native to the programming language at hand.

As if this wasn’t enough, RDBMSs presents one further data type mismatch problem. If
a data structure in the client application code is not comprised by scalar variables,
there is no way to map this to a single database table. Consider a typical C structure:

struct t_author
{
 char *name;
 char *birthCountry;
 t_book books[][];
};

This would have to be mapped to no less than three tables: t_author, t_book and a
table for the many-to-many relation. Fortunately, this should be easier to handle in an
ORDBMS:

CREATE TYPE T_AUTHOR
(
 NAME STRING,
 BIRTHCOUNTRY STRING,
 BOOKS ARRAY< REF< T_BOOK > >
);
CREATE TABLE AUTHOR OF TYPE T_AUTHOR;

2.2. Different Levels of Persistence

In (Cooper 1997) any information system that has the ability to store data persistently is
called a persistent system. A persistent system that also provides the following features
is said to be orthogonally persistent:

• Persistently stored data has the same logical structure as it has when kept in
memory.

• Any data value of any data type can be either persistent or non-persistent.

Page 18

Persistent Objects

In addition to orthogonal persistence, there are at least two more levels of persistence:
Session persistence and data persistence10. These will be explained below.

2.3. Session Persistence

This may be regarded as the most primitive form of persistence. Any system that allows
the user to save whatever workspace the programming is maintaining in the current
session, so that the same workspace may be loaded for later use, can claim to support
session persistence. The persistent counterpart of the program’s workspace is typically
a non-shareable file.

Examples of this kind of persistence are found in word processing systems and
spreadsheets. I.e. systems that have little or nothing to do with databases at all.

2.4. Data Persistence

Many people automatically think of object-oriented databases when they hear
someone talk about persistency. They tend to forget that RDBMSs and even ordinary
file systems are persistent stores.

In a traditional relational database, data is stored in tables. As described on page 17,
the mismatch of data types in an RDBMS table and the class definitions of an object-
oriented programming language, forces a mapping to take place.

When an object is to be stored in the database, the properties that comprise the object
must be split into it’s scalar parts and placed into the appropriate table columns. Even
worse, it may be spread across more than one table.

Likewise, when the values are to be read from the database into some object, all the
parts have to be collected and glued together again.

This very clearly illustrates that the data is stored persistently, whereas there are little or
no correlation between the class hierarchy in the applications using the data and the
table schema in the database.

2.5. Indicating orthogonal persistency

Among all the classes and objects defined in an application system, most likely not all
should be made persistent. So, how should the application developers indicate which
classes and/or objects are to be persistent objects? In persistent systems that do not
deliver orthogonal persistence, the answer is obvious: The developer uses different
syntax when dealing handling whatever is to be persistent. Specific functions handle
file I/O, and access of RDBMS data is handled through either a special API or maybe
some kind of embedded SQL. Due to the very definition of "orthogonal persistence",
the answer is somewhat subtler.

10 In (Cooper 1997), data persistence is referred to as file persistence.

Page 19

Persistent Objects

Usually, the answer is dictated by the architecture chosen by the database vendor. At
least seven different approaches can be identified (Cooper 1997):

Persistent classes:
The persistence of an object is determined in the class declaration.

Persistent shadow class:
For each class, a persistent version of the class is also created. The persistence of an
object is determined by declaring it to be an instance of the persistent version of the
class.

Persistent root class:
A class C is declared as persistent. Any object that is an instance of C or of any class
derived from C, is inherently persistent.

System provided persisten roots:
The database system provides one or more predefined persistent root classes. Any
persistent object must be derived from one (or more) of these root classes.

t

Persistence declared at object creation:
The persistence of an object is indicated when the object is declared, or when its
constructor is called.

Persistence by explicit storage:
Any object is explicitly stored in the database through the means of a specific store
command.

Named root objects:
This is sometimes called persistence through reachability. One or more objects are
declared to be persistent, any object that can be reached through references from
one or more of these persistent objects are also persistent.

Page 20

Persistent Objects

Page 21

Object-Relational Databases

3. Object-Relational Databases

THINGS IN THE COSMOS ARE NOT DISTINCTLY
SEPARATE FROM ANOTHER, NOR ARE THEY CHOPPED

ASUNDER BY AN AXE
ANAXAGORAS

This chapter will describe the concept of an object-relational database system. A new
ANSI standard intended to extend the SQL-92 standard is under development. This
new, not yet fully defined, SQL standard has been given the name SQL-99. SQL-99 is a
multipart standard:

Part # Part name: Published11:

1 Framework12 Yes

2 Foundation13 Yes

3 CLI (Call Level Interface)14 Yes

4 PSM (Persistent Stored Modules)15 Yes

5 Bindings 16 Yes

6 (Obsolete) Expected publ.:

7 Temporal post 2002

8 (Obsolete)

9 MED (Management of External Data) Yes

10 OLB (Object Language Binding) Yes

11 Schemata post 2002

12 Replication post 2002

11 As of summer 2001

12 See (ISO/IEC 9075-1 1999).

13 See (ISO/IEC 9075-2 1999).

14 See (ISO/IEC 9075-3 1999).

15 See (ISO/IEC 9075-4 1999).

16 See (ISO/IEC 9075-5 1999).

Page 22

Object-Relational Databases

As the chart above shows, parts 1 to 5 and 9 and 10 have already been published. Parts
7, 11 and 12 on the other hand are planned and/or proposed parts that are to be
included in a future revision of SQL This future revision is expected to start at the end
of 2002.17

New extensions to SQL are proposed more or less continuously. Which proposals are
likely to enter the SQL standards in the future is not easy, if at all possible, to say. Here
is a few proposals found in resent articles:

SchemaSQL (Lakshmanan et.al 2001)
This extension offers the capability of uniform manipulation of data and schema in
relational multidatabase systems.

SQL/MM (Melton & Eisenberg 2001)
SQL/MM intends to standardize class libraries for science and engineering, full-text
and document processing, and methods for the management of multimedia objects
such as image, sound, animation, music, and video.

OSQL (Ng 2001)
This extension is intended to provide the users with the capability of capturing the
semantics of ordered data in relational databases.

Different commercial software vendors are involved in the development of this new
standard. This has proved to be a two-way relationship: On the one hand the vendors
have pushed for their already existing extensions of SQL, to be included in the
standard, and on the other hand they have to various degrees extended their supported
SQL syntax towards the SQL-99 standard specifications. This has resulted in slightly
diverging SQL syntaxes, and extracts from some of these diverging syntaxes18 will be
used throughout this chapter when illustrating the different aspects and possibilities in
an ORDBMS.

3.1. What is an object-relational database?

A complete and proper definition of what an object-relational database actually is has
never really been given. The concept was first introduced, or at least formalised in
(Stonebraker et.al. 1990), this being the first of three so-called manifestos, which all aims at
defining the future directions for database systems. A further elaboration on ORDBMS
functionality is found in (Stonebraker & Moore 1996). The second of the fore-mentioned
manifestos (Atkinson, et.al. 1990) gives a description of what are actually considered to be
the principles behind an object-oriented database. The third manifesto (Date & Darwen
1998) describes an alternative set of principles for an object-relational database. The
approach described by Date and Darwen is by most professionals considered a sound
theoretical work, but it will most likely never have much impact on the systems that are
dominating the commercial market. Despite this apparent indecisiveness both the SQL
standards committee and the leading DBMS vendors in the market has converged
towards SQL-99. This thesis will thus regard SQL-99 as the ORDBMS standard. This

17 According to (Melton 2000a)

18 Mainly the SQL implementations in DB2 UDB v.7.x and Oracle9i have been used.

Page 23

Object-Relational Databases

chapter aims at defining and describing the services and options that such an ORDBMS
should offer, and that which is covered in part 1 and 2 in the SQL-99 standard.

In (Stonebraker et.al. 1990), three creeds and thirteen propositions are presented as
guidelines to the development of a 3rd generation DBMS, or an ORDBMS. The general
opinion on what an ORDBMS should be, is to a somewhat varying degree based on
these creeds and propositions.

Creed 1: 3rd generation DBMSs will provide support for richer object structures and
rules.

Creed 2: 3rd generation DBMSs must incorporate 2nd generation DBMSs ideas and
structures.

Creed 3: 3rd generation DBMBs must be open to other subsystems.

As said, this is further elaborated in thirteen propositions, these are grouped according
to the main creeds:

Group 1:

1. A 3rd generation DBMS must have a rich type system: A list of desirables follows this
proposition:

Abstract data types.

Several type constructors (array, sequence, record, set and union)

Functions as types

Recursive combinations of the above constructors.

2. Multiple inheritance of types.

3. Functions, database procedures, methods and encapsulation.

4. Unique identifiers for records should automatically be assigned only in those cases
where a primary key is not defined.19

5. Rules will become a major feature in future systems.20

Group 2:

1. Essentially all programmatic access to a database should be through a
nonprocedural, high-level access language.

2. There should be at least two ways to specify collections, one using enumeration of
members, and one using the query language to specify membership.

19 This is opposed to the OlDs in the ODMG proposed standard for OODBMSs.

20 Some commercially available RDBMSs already support the use of rules.

Page 24

Object-Relational Databases

3. Updateable views are essential.

4. Performance indicators should not be a part of the data models.

Group 3:

1. Support for persistency through a variety of languages.

2. SQL is intergalactic “dataspeak”.

3. Queries and their resulting answers should be the lowest level of communication
between a client and a server.

The rest of this chapter will describe how the SQL-99 standard has answered these
creeds and propositions. A very good documentation of this new standard is found in
(Gulutzan & PeIzer 1999); this book will be used extensively as a reference throughout this
chapter.

3.2. Type extensions

The SQL-92 standard provides only a limited set of
data types.

Different RDBMS vendors provide different
variations over these data types. These variations
could be fixed and variable length character strings,
or single-byte and multiple-byte integers.

Most RDBMSs also supply an extended base type set.
A very common example of such extension is the
supplementation of a currency type21. These
extensions have become a part of the different
RDBMSs gradually, and more or less on a need-to-
provide basis. Existing RDBMSs thus provide divergent

This need, that has pushed RDBMS vendors to gradua
clear signal that developers and users are dealing wit
to what have been the situation in the past. A need to
and binary, has emerged from development in areas s
for handling multimedia. A fairly simple example of
storing the picture of an employee in a personnel data

create table emp
(
 name varchar(50),
 age integer,
 salary currency,
 photo image
);

21 E.g. Microsoft Access

Page 25
SQL-92 Data Types:

Integers

Floating point numbers

Character strings

Date, time and time intervals
 base types sets.

lly extend the base type set, is a
h more complex data compared
handle large objects, both textual
uch as CAD systems and systems
this need (or at least craving) for
base:

Object-Relational Databases

A similar example could be a dental database where all x-ray images are stored. Other
large objects could be sounds, videos, complete novels, etc.

The emp table above contains an attribute of the type currency and an attribute of type
image. These are not types defined in SQL-92. However, if developers and data
modellers were provided with a means to define data types as needed, solutions to real-
world problems would be easier to implement. This could very well result in data
models and programs with better performance, since developers then could
concentrate on the efficiency of code, rather than struggling to squeeze the world they
are trying to model into too narrow bounds.

Current RDBMSs are not strongly typed. This means you can easily combine values of
distinct but similar types with one another. For example: Assume the emp table above
is defined.

Since both age and salary are numerical types, there is nothing to prevent a user to run
the query:

select
 name,
 age*salary absurdity
from emp;

Naturally, it makes no sense to multiply an age with a salary, so this defies most
people's logic, and most likely is not in accordance with any application's semantics.
With strong typing, this would not be allowed. There could however be situations
where this kind of type mixing is actually wanted, but in these situations, a deliberately
chosen type casting should be the only way to get a result.

There are several ways to approach the need for richer object structures. New data
types can be organised as shown here:

Types

Scalar Types

Relationships

Collection

Scalar Types

Relationships

Collection

Scalar Types

Relationships

Collection

Built-In TypesAbstract Data
Types

Extended
Base Types

3.2.1. Extended Base Type Set

When it comes to providing the users with larger flexibility through more data types, a
comparatively easy way out for vendors is to statically implement an extended base
type set. As mentioned, this is something that vendors have been doing for some time
already.

Page 26

Object-Relational Databases

For instance, all relational database management systems provided by IBM have had
large object types. Until DB2 Common Server, version 2.1 these LOBs22 were limited to
a maximum length of 32 kilobytes, nevertheless, they were present.

Likewise, Oracle version 7.3 has a LONG data type handling variable-length character
data containing up to two gigabytes of information. It also has a RAW and a LONG
RAW data type provided to handle binary data.

Microsoft Access-97 includes a multitude of base types: text, memo, number, date/time,
currency, autonumber, yes/no, OLE object, and hyperlink.

The base data type set defined in SQL-99 is:

Numbers Integer

 smallint

 numeric [(precision [,scale])]

 decimal [(precision [,scale])]

 float [(precision)]

 double precision

Bit strings bit [(length)]

 bit varying (length)

Binary Large Objects binary large object (length) 9

Character Strings character [(length)]
 [character set < character set name >]
 [collate <collation name23>]

 national character [(length)]
 [collate <collation name>]

 character varying (length)
 [character set <character set name>]
 [collate < collation name>]

 national character varying (length)
 [collate <collation name>]

 character large object
 [(length)]
 [character set <character set name>]
 [collate <collation name>]

22 Large Object

23 A collation is defined in SQL-99 to be a set of rules that determines the result when character strings are compared.

Page 27

Object-Relational Databases

 national character large object
 [(length)]
 [collate <collation name>]

Temporal date

 time [(fractional seconds precision)]
 [with without time zone]

 timestamp [(fractional seconds precision)]
 [with|without time zone]

 interval (interval qualifier)

Boolean boolean

Some of these data types have also an alternative short name, e.g. national character
large object is also called nclob. The various parameters indicated in the type
definitions will not be described any further in this thesis.

3.2.2. Domain Types

An extended base type set does not make an ORDBMS. An object-relational database
system must provide facilities for the user to extend the type set when needed.

Allowing the user to create domain types could do this. A domain is a data type that is
based directly on existing base data types. This was never really suggested as a separate
option in either (Stonebraker et.al. 1990) or (Stonebraker & Moore 1996).

When a domain type has been created, it will be handled as an entirely separate data
type. The SQL-99 syntax for the creation of domains is:

create domain <domain name> [as] <base data type>
 [default <default value>]
 [<domain constraint list>]
 [collate <collation type>]

Assume two data types ohm and ampere have been defined, both as domain types based
on float:

create domain ohm as float
 constraint non_zero
 check (value >= 0);

create domain amphere as float
 constraint non_zero
 check (value >= 0);

Assume further that we have defined this table:

create table electricity
(
 id integer,
 resistance ohm,
 current ampere
);

Page 28

Object-Relational Databases

Even if both the attributes resistance and current are represented internally in the
database as floats, they are treated as utterly incompatible data types.

Imagine we would like to run the following query:

select resistance.current voltage
 from electricity

Since an ORDBMS is to be strongly typed, attributes of different data types cannot be
combined in expressions, and thus the query is illegal.

For every domain type, there should be casting functions that allow conversion from
the domain type to the type it is based on, and visa versa. If we assume further that, a
data type volt is also defined as a domain type based on float:

create domain volt as float
 constraint non_zero
 check (value >= 0);

Using type casting this query then should be legal:

select
 cast
 (
 (
 cast(resistance as float) *
 cast(current as float)
)
 as volt
) voltage
from electricity;

This query first casts resistance and current to floats, multiplies the results of this,
and finally casts the result of the multiplication to volt.

3.2.3. Abstract Data Types

One of the limitations of the traditional RDBMSs is that every kind of data is forced into
tables of atomic data values of basic data types. There is no natural way to model more
complex situations. To provide further complexity, and to provide data encapsulation,
an ORDBMS should accommodate the user with abstract data types.

An abstract data type in an ORDBMS is presented by a type declaration:

create type t_book
(
 title string, // being derived from varchar
 written year, // being derived from integer
 isbn ISBN // being derived from varchar
);

This type can then be used for instance in a table definition:

create table book
 of type t_book;

If such a type definition is considered the equivalent of a C++ class, then a row in the
book table can be regarded as the equivalent with a C++ object

Page 29

Object-Relational Databases

So, what is so great about that? Couldn't this simply have been defined as a table
looking like this?

create table book
(
 title string, // being derived from varchar
 written year, // being derived from integer
 isbn ISBN // being derived from varchar
);

Well, the type approach has several advantages over the traditional table approach:

A consistent representation of a logical data unit (or object) that may be used
throughout the model may be achieved.

References (i.e. pointers) to objects can be declared.

Objects can be used as parameters to functions.

Type inheritance can be provided.

Data that are inherently part of a relation can be presented as an attribute even if it
doesn't fit into the predefined atomic data types.

The introduction of abstract data types gives rise to a far more consistent
representation of attributes. Assume a librarian needs to implement a database of the
library's books. It is easy to imagine that she needs a table for loaners, and a table for
publishers:

create type t_location
(
 street string,
 zip string,
 city string,
 phone string
);
create table loaners
(
 name string,
 id integer,
 address t_location
);
create table publishers
(
 name string,
 address t_location
);

Both loaners and publishers have an address of type t_location. In a traditional
RDBMS the attributes of t_location would have to be defined either locally in both the
loaners table and the publishers table, or in a separate table addresses to which both
the loaners table and the publishers table would have to have a foreign key.

The examples given above encompass the bare basics of abstract data types, or user-
defined types (UDTs) as they are called in the standard, of SQL-99. Not surprisingly, the
complete standards syntax is much more elaborate than this. Some of the options
available will be covered below in the section on inheritance.

A database type is now becoming suspiciously similar to a class in the object-oriented

Page 30

Object-Relational Databases

sense of the word. To further narrow the gap between database types and object-
oriented classes, methods could be included as parts of the type definition. Except for a
feeble request for inheritance in (Stonebraker et.al. 1990), this has not been regarded as
something an ORDBMS needs to have. Nevertheless, some vendors24 have already seen
this as a natural part of an ORDBMS. SQL-99 certainly does include methods as a part
of user-defined types.

Still using the library example above, assume there is a need to keep track of when a
book was loaned, and when it is due for return. The checkout date is simply a good,
old traditional date attribute, but since the library allows loans for 4 weeks only, it
should not be necessary to store a return date in the type. We can therefore imagine
defining the t_book type like this:

create type t_book
(
 title string,
 written year,
 isbn ISBN,
 check_out date,
 method Due_Date()
 returns date
);
create table book
 of type t_book;

Ignoring the actual implementation of the Due_Date() method for now, it is easy to
imagine a query like this:

select title, Due_Date()
 from book
 where title = 'Phaedo';

The actual method is declared in a separate statement, which includes the
implementation of the method:

create method Due_Date()
 return date
 for t_book
begin
 return (checkout + 28);
end;

When a create type statement is executed to create type T, SQL-99 expects the
ORDBMS to create a constructor function for T. Following the example above, a
statement creating a constructor for t_book should be executed:

create function t_book()
 return t_book
declare
 v t_book;
begin
 ;
 return v;
end;

24 E.g. Oracle9i.

Page 31

Object-Relational Databases

where v is a value, of type t_book, with all attributes set to their default values. In
addition to the constructor function, the ORDBMS is also expected to create observer
and mutator functions for each of the types attributes. These functions are the get and
set functions of object-oriented classes.

It is tempting to ask whether to provide methods and constructor, observer and
mutator functions is a way to bestow the ORDBMS with data encapsulation. To achieve
encapsulation there are mainly two options:

1. Automatically enforcing encapsulation of all attributes, and thereby demanding
access functions to be provided for all attributes. These could then be provided
as default functions by the ORDBMS, with the option for the user to override
them when needed, or optionally dropped for those attributes that are intended
for internal use only.

2. Providing a means for the user to further qualify whether each attribute should
be encapsulated or publicly available25. The management of access functions for
those encapsulated attributes could then follow the guidelines given in option 1
above.

Option 1 is partly provided for in the SQL-99 standard, but it is still legal to access the
attributes directly. Option 2 is not supported at all. Therefore, SQL-99 does not cover
encapsulation. It can be argued whether encapsulation is an actual need in an
ORDBMS. There are mainly two reasons for encapsulation in object-oriented
modelling and programming. These are information hiding and validity checking.

The purpose of information hiding is to hide potential changes in the internal storage
of an attribute, and to prevent users from directly accessing an attribute. However, on
the one hand, a database type is not likely to change after the database system has been
set into production. The primary need a database user has is to access the tables, the
records and the attributes of a data model. This raises the question whether
encapsulation is actually needed or not. If rules (ref. proposition 5 in group 1 above) is
heeded, there is no need for validation through access functions, and therefore no
need for encapsulation to provide validity checking. On the other hand, for an
object-oriented language, encapsulation is essential and “the right way to do it”.

Most access methods can be generalised into the following patterns:

method SetAttribX(typeX Value)
begin
 Value := funcA(..., Value, ...);
 if (proposition) then
 begin
 Value := funcB(..., Value, ...);
 AttribX := Value;
 end;
end;

25 Maybe also provide some form of “friend” availability should be included?

Page 32

Object-Relational Databases

typeX method GetAttribX()
 result typeX;
begin
 result := funcC(...,AttribX, ...);
 return result;
end;

In SetAttribX(...), the parameter value is pre-processed in a function funcA(...
), checked against some proposition, and if the proposition is satisfied, the Value is
further processed in a function funcB(...), and finally the attribute AttribX
assigned its Value. Naturally, some or all of funcA, proposition and funcB could very
well be void.

Assume then that a validation rule has been made to trigger when a new record is
inserted or an update of a record is employed. This could then capture all of the
functionality of SetAttribX(...):

trigger Validation
 on insert, update of tableX
begin
 Value := funcA(..., new.AttribX, ...);
 if not (proposition) then
 cancel event;
 else
 begin
 Value := funcB(..., new.AttribX, ...);
 new.AttribX := Value;
 end;
end;

In GetAttribX() the function funcC (...) could potentially do some pre-
processing of the requested attribute before it is passed as a result of the method.

3.2.4. Collection Constructors

In (Stonebraker & Moore 1996), the abstract data type discussed above is presented as one of
three basic building blocks for creating complex types in an ORDBMS. Another of these
basic building blocks is the collection type constructor. This might come in several
flavours:

• Set • Bag • List

• Stack • Queue • Array

It should not be necessary to describe all of these in detail, so focus will be on the set
and the array constructors.

Formally, if T is any type, then set<T> must also be a data type, namely a set of items of
type T.

If supporting a set type, an ORDBMS should also support the most common set
theoretic operations. Assuming S1 and S2 are sets of type T, and x is an item of type T,
these operations should include:

union(S1 , S2) resulting in a set S 21 SS ∪= .

Page 33

Object-Relational Databases

intersection (S1 , S2) resulting in a set S 21 SS ∩= ,

difference (S1 , S2) resulting in a set S 21 SS −= .

inSet(x , S1) resulting in true if 1Sx ∈ , and in false if not.

add (x , S1) adding x to the set S, such that { }xS ∪S = 1 .

remove(x, S1) removing x from the set S, such that S { }xS −= 1 .

Likewise, if T is any type, then T[n] must also be a data type, namely an array of length n of
items of type T. Recursively this also implies multidimensional arrays.

Like the set type, the array type and all other collection types need their set of supporting
functions. For the array type, this should at least include element access by index:

x := a[k] assign x the value of the kth element of the array.

a[k] := x set the kth element of the array to the value of x.

If we allow the array type to be a dynamic array type, the set of supporting functions
should include:

a.Append(x) append x to the array.

a.Insert(x , k) insert an element into the array so that x become the kth

element, adjusting the array so that:
 a[m + 1] := a[m] ∀ m ≥ k.

a.Delete(k) delete the kth element of the array, adjusting the array so
that:
 a[m] := a[m + 1] ∀ m ≥ k.

This is assuming that the type of x is the same type as the array a is defined over.

One can easily imagine several other useful functions for addition, deletion and
insertion of elements, searching the array for a specific value, merging two arrays, etc.

The SQL-99 standard, however, only specifies one collection type, i.e. array. Several
of the other collection types described above would be very useful. So, hopefully, the
future will see both an expansion of the standard and beyond-standard implementation
in ORDBMS products.

The declaration of an array attribute is made with the syntax:

<data type> ARRAY[unsigned integer]

3.2.5. Reference types

The last of the three basic building blocks for an ORDBMS is the reference type. The
reference type is very much similar to an address pointer in traditional programming
languages, e.g. C/C++.

Page 34

Object-Relational Databases

Formally, if T is any abstract data type, then ref<T> must be a data type, namely a
reference to an object or item of abstract data type T.

The declaration of an array attribute is made with the syntax:

<data type> REF(<abstract data type>)
 [SCOPE <table name>
 [REFERENCES ARE [NOT] CHECKED
 [ON DELETE
 {CASCADE |
 SET NULL |
 SET DEFAULT |
 RESTRICT |
 NO ACTION
 }
]
]
]

Using references can easily be an alternative to traditional foreign keys. Assume the
following scenario:

t_ a uthor

name : s tring
nationality : s tring

t _book

title : s tring
w ritten : year
isbn : IS B N
check_out : d ate

D ue_D ate()

1..* 11..* 1

In this scenario, an author may have written one or more books, whereas a book
(somewhat artificially) can have been written by only one author. This can then be
expressed as:

create type t_book
(
 title string,
 written year,
 isbn ISBN,
 check_out date,
 function DueDate() return date
);
create table book of type t_book;

create type t_author
(
 name string,
 nationality string,
 books ref(t_book) array[x]26
);
create table author of type t_author;

The books attribute is then an attribute that is an array of references to objects of type
t_book.

26 This limits the number of books written by a specific author to x.

Page 35

Object-Relational Databases

3.3. Functions

It is strongly recommended (in (Stonebraker et.al. 1990)) that an ORDBMS must provide the
user with the ability to register functions that accept arguments and return results that
are anything from scalars to sets of composites. If a function f returns a value/object of
type t, The ORDBMS should allow f to be used anywhere a value/object of type t is
expected. This notion is also covered in the SQL-99 standard.

One can easily see at least three breeds of functions:

1. Functions that simply return the result of an ordinary SQL select statement:

create function AuthorsBooks(p_name string)
 return array< ref< t_books > > as
 select books from author where name = p_name;

2. Functions implemented in some ORDBMS internal structured programming
language27:

create function AuthorsBooks(p_name string)
 return array< ref< t_books > > as

 tmp-books array< ref < t_books > >;
 cursor tmp_author is
 select * from author;

begin
 // use some kind of constructor to initialise
 // the tmp_books variable
 tmp books := NewArray(ref < tbooks >);

 for author_rec in tmp_author loop
 if (author_rec.name == p_name) then
 tmp_books.Append(author_rec.books);
 end if;
 end loop;

return trap-books;
end;

3. Functions implemented in some external structural programming language28:

create function AuthorsBooks(p_name string)
 return array< ref< t_books > > as
 external name 'e:\cproj\bibl\f-AuthBook'
 language C;

Every function should have zero or one return value, and should be able to handle an
arbitrary number of parameters. Both parameters and return value should be a scalar
value, an object, an object reference, a row set or a collection.

Example:

27 E.g. Oracle's PL/SQL.

28 This could e.g. be C+ +, Java, SmallTalk, etc.

Page 36

Object-Relational Databases

Consider the situation described on page 12. Assume that a new book is purchased by
a library and that this book has to be inserted into the database. This could of course
be done like this:

INSERT INTO BOOK
 (TITLE , WRITTEN , ISBN)
 VALUES
 ('3001 - The Final Odyssey' , 1997 , '0-246-12689-2');
UPDATE AUTHOR
 BOOKS.APPEND(SELECT REF(BOOK) FROM BOOK
 WHERE ISBN='0-246-12689-2')
 WHERE NAME='Clarke, Arthur C.';

This will do the job, but it is awkward. A somewhat better solution would be to define a
function AddBook on the t_author type that takes the title, the written year and the
ISBN as input parameters. AddBook would then more or less do the same job as the two
statements above, but the operation to do the actual addition would then simply be:

UPDATE AUTHOR
 AddBook('3001 - The Final Odyssey' ,
 1997 ,
 '0-246-12689-2')
 WHERE NAME='Clarke, Arthur C.';

3.4. External Functions and Procedures

An alternative to persistently stored procedures and functions is to link the database to
an externally defined function or procedure. An externally defined function or
procedure is a function or procedure that is implemented and stored outside of the
database. It is theoretically irrelevant for a database system what programming
language such a function or procedure are to be implemented in. In real-life systems
however, the options are usually limited to one or more of the languages C, C++ and
Java.

3.4.1. Implementation Options of Functions and Procedures

When implementing an object-relational (or an SQL-99 adherent) database
management system, designers and developers are faced with a tough challenge. In
which context should external functions and procedures run? In (Melton 1998), three
different approaches are presented. These approaches are to place the execution
context in:

the same context of the database server itself,

the same context as the actual application program,

or the context outside both the database server and the application program.

All of these have both advantages and disadvantages. In the discussion that follows,
only external procedures are discussed. The same argument holds for functions.

Page 37

Object-Relational Databases

In the database server

In this approach, the procedure is executed in the same memory space as the kernel of
the database server.

PROCEDURE A(...) AS
BEGIN

....;
END;

{
EXEC SQL

CALL A(...);
}

Kernel1

23

4

Application Program SQL Server

When an application program makes a call to a stored procedure A with a set of
parameters, the call is passed to the SQL server's kernel, which passes them on to the
actual, external procedure. Since the procedure runs in the same memory space as the
kernel, the parameter passing between the procedure and the kernel can be done very
efficiently.

The drawback of this solution is that bug infected procedures may corrupt the kernel of
the database server. If, for instance, the index of an array reference is out of bounds
and this situation is allowed in the execution environment for the procedure, an
erroneous write operation could bring down the whole database system.

In the application program

In this approach, the external procedure actually runs in the same memory space as
the application program.

{
EXEC SQL

CALL A(...);
}

void ext_a(...)
{

....;
};

Kernel
1

2

3

4

Application Program SQL Server

PROCEDURE A(...)
EXTERNAL NAME ‘ext_a’
LANGUAGE C …

The application program makes a call to a stored procedure A registered in the
database server. The database server sees that this procedure is an external procedure
ext-a, and executes this through some kind of callback mechanism to the application
program's execution environment. This zigzagging can repeat several times, dependent
on the interrelationship between procedures in the application program and the
database server. Each context switch, with the implicated parameter passing, is a real

Page 38

Object-Relational Databases

performance challenge for the execution environment. If these context switches also
include sending packages across some network connection, the overhead will be even
bigger. However, this approach protects the runtime environment of the database
server from any bugs in the stored procedures implementation.

In a separate context

The last approach is to even keep the external routine in a separate memory space.

{
EXEC SQL

CALL A(...);
}

void ext_a(...)
{

....;
};

Kernel
1

4

Application Program SQL Server

PROCEDURE A(...)
EXTERNAL NAME ‘ext_a’
LANGUAGE C …

Separate Context

2

3

As the illustration above shows, the number of context switches is the same as for the
previous approach, but the operating system has to handle one more context. This
approach gains protection of both the database runtime context and the application
runtime context.

3.5. Operators

Some object-oriented programming languages (such as C++) provide means for the
programmer to define and/or overload operators. This could also prove to be useful in
ORDBMs. As is well known for programmers familiar with user-defined operators,
these are nothing more than methods with special syntaxes. If a binary + operator is
defined on a C++ class c, taking an object of class c as both its arguments and resulting
in an object of class c, this would be used like this:

{
 ;
 x = y + z;
 ;
}

This would be equivalent to having a method +(c i , c j):

{
 ;
 X.+(y , z);
 ;
}

Using this paradigm, a user-defined operator in an ORDBMS could simply be a
registration of an operator against an already defined user-defined function29:

29 As is how it is done in the database system formerly known as Illustra.

Page 39

Object-Relational Databases

create operator
 binding operator_name to functionnatne;

User-defined operators are not considered a part of SQL-99. Furthermore, they are not
presented as an important issue in (Stonebraker & Moore 1996).

3.6. Inheritance

No class concept has been introduced into the ORDBMS description, and inheritance is
usually associated with classes. In an ORDBMS inheritance should apply to user-
defined types, or abstract data types to be more specific.

In the library database, it is useful to distinguish between fictional books and non-
fictional books partly since they often are categorised differently. Assume that
information about a book's chapters is valuable only for non-fictional books. This
could be expressed in UML as:

t_ fiction_ book

category : s tring

t_ non_ f ictio n_ book

class ificat ion : D ew eyC od e
subject : s tring

t_ book_ cha pte r

number : in teger
t it le : s tring

t_ book

t it le : s tr ing
w rit ten : year
isbn : IS B N
check_out : d ate

D ue_ Da te()

This could naturally be implemented in a traditional RDBMS, without any inheritance
functionality, by means of either two entirely independent tables, or one single table
containing all attributes for t_book, t_fiction_book and t_non_fiction_book. In an
ORDBMS however, this can be implemented like this:

create type t-book
(
 title string,
 written year,
 isbn ISBN,
 check_out date,
 function Due_Date() return date
);

create type t_book_chapter
(
 number integer,
 title string
);

create type t_fiction_book
(
 category string
) under t_book;

Page 40

Object-Relational Databases

create type t_non_fiction_book
(
 classification DeweyCode,
 subject string
) under t_book;

It can be argued whether an ORDBMS should support multiple inheritance or not.
Providing this feature certainly empowers the modelling possibilities, but then again,
there are always the usual problems such as name conflicts, etc.

As can be seen from the UMI, diagram above, a function (or method) Due_Date () is
defined on the t_book type. It is reasonable to expect that this function is made
available to t_book's heirs by means of inheritance.

3.7. Constraints

Having a good data model is all very fine. However, it is no good if the actual data
stored in the database is not reliable. Therefore, every ORDBMS should have some
means to enforce data quality. This not only goes for ORDBMSs; the same aspects are
just as important to more traditional RDBMSs. In SQL-99, data quality is the concern of
a set of schema objects called integrity constraints. These are described in detail in
(Türker & Gertz 2001).

In general, constraints enforcement can be seen to have one of three granularities, or
constraints levels:

Row constraints:
These constraints works on a single row in a single table.

Table constraints:
These constraints works on two or more rows within the same table.

Inter-table constraints:
This is the most general constraint level, and operates on one or more rows for two
or more tables.

Looking at constraints from a different angle, the constraint enforcement is
differentiated according to how many and which database states are involved when the
constraints are enforced:

Single state constraints:
Constraints are evaluated for a single database state. This means that the constraints
are used to check that its conditions are fulfilled as the database enters a new state.

State transition constraints:
These constraints are used to compare to consecutive database states. In general,
these constraints are of the form:

 if (old state satisfied condition1) then
 new state must satisfy condition2;

Typically condition2 has some functional dependency on condition1.

Page 41

Object-Relational Databases

State sequence constraints:
These constraints are used to compare the new database state that is sought to be
entered with some state that the database has been in sometime in the past.

3.7.1. SQL-99 Language Constructs

The support for constraints in SQL-99 can roughly be divided into four groups:

Simple constraints:
These are constraints that can be seen as part of the structure of a table. They are:

• CHECK:
A check constraint enforces that a condition involving one or more values
within a single row of a table. This is a row constraint.

• NOT NULL:
This can be regarded as a special case of a CHECK constraint. The condition
always involves a single value, and enforces that that value is never NULL.

• DEFAULT:
This condition makes sure that if a specific value in a row is set to NULL, it
gets a default value instead. It is thus a NOT NULL constraint with an
assignment action.

• PRIMARY KEY:
The primary key of a table is enforced by the single PRIMARY KEY constraint
of the table. This is a table constraint.

• UNIQUE:
This constraint enforces that the value(s) of the specified attribute(s) are
unique within the whole of the table. Alternate keys are defined by means
of UNIQUE constraints. This is a table constraint.

• FOREIGN KEY:
A constraint of this type enforces that before the value(s) of the involved
attribute(s) are set, corresponding value(s) must already exist in the
primary key of the referenced table. This is a table constraint.

DOMAIN:
These constraint are describe on page 28.

ASSERTION:
An assertion is an inter-table check constraint. The assertion definition will contain
a search condition involving one or more tables. The assertion is satisfied when the
search condition evaluates to true.

TRIGGERS:
Triggers are the realisation of event-condition-action (ECA) rules. Triggers are
(among other things) used to enforce inter-table constraints.

Page 42

Object-Relational Databases

Constraint modes

All constraints can be declared to have a specific checking mode. A checking mode
defines when the constraints should be enforced. A constraint can be made DEFERRABLE
allows for a choice of whether the time of checking should be at the end of statement
execution (IMMEDIATE) or at the end of transaction execution (DEFERRED). A constraint
that is NOT DEFERRABLE will always have check time IMMEDIATE.

Foreign key actions

A foreign key constraint can have actions associated with it. These actions are
executed when and if a change to the value(s) of the foreign key attribute(s) causes the
constraint to be violated. The events that can cause a violation are UPDATE and DELETE.
A foreign key can have one action for each of these events. The actions defined in
SQL-99 are:

SET DEFAULT:
This action sets the value(s) of the foreign key attribute(s) to its/their default values.
This action requires the existence of DEFAULT constraint(s). If the referenced table
does not have a primary key value corresponding to the given default values, this
action fails.

SET NULL:
This action sets the value(s) of the foreign key attribute(s) to NULL. This action
requires the non-existence of NOT NULL constraint(s).

CASCADE:
If the event is UPDATE, this action causes the value of the corresponding primary key
to be updated according to the updates of the foreign key value. If the event is
DELETE this action causes the corresponding rows in the referenced table to be
deleted.

RESTRICT:
This action cancels the involved UPDATE/DELETE event unconditionally.

NO ACTION:
This action cancels the involved UPDATE/DELETE event if a violation results.

Constraint scopes

A reference column in a typed table (see page 29) can be given a SCOPE. This is an
analogue to FOREIGN KEY constrains for ordinary columns. A SCOPE states whether a
reference is checked or not. If a reference is to be checked, the SCOPE must specify an
action to be executed in the case of a DELETE event. The legal actions are the same as
for FOREIGN KEY constraints.

Inheritance of constraints

If a constraint is defined for an abstract data type, that constraint also holds for all
typed tables defined on that type, and for all attributes of that type.

Page 43

Object-Relational Databases

In both a type hierarchy and a table hierarchy constraints are inherited. This means
that if a constraint holds for a specific type or table, it also holds for any sub-types or
sub-tables derived from it. Constraints cannot be overridden.

Triggers

Triggers are needed to enforce more complex data quality regulations. An event is the
result of one of the SQL commands INSERT, UPDATE, SELECT or DELETE. A trigger can be
specified to fire BEFORE or AFTER the event is applied to the database. SQL-99
differentiates between row-level triggers and statement-level triggers. If a trigger is to
be a row-level trigger, this is indicated by a FOR EACH ROW clause. Otherwise, and
default, a FOR EACH STATEMENT clause may be used. A row level trigger is fired for each
row affected by the triggering event, whereas a statement-level trigger is fired only
once. A trigger can be also be specified to execute only when a given condition is
fulfilled.

An action will typically be some other SQL command. Alternatively, it could be some
stored procedure or function, possibly implemented in a language more expressive that
SQL. If the trigger action is implemented in a language that supports some form of an
IF...THEN...ELSE structure, the support of trigger conditions are not important. The
condition, or conditions, can then be programmed into the action part of the trigger.

Page 44

Object-Relational Databases

Page 45

How Object-Relational is DB2?

4. How Object-Relational is DB2?

OF COURSE, IBM WILL SUPPORT EVERY VERSION OF SQL.
AFTER ALL, WE INVENTED IT!

DONALD CHAMBERLAIN, PERSONAL COMMUNICATIONS

This chapter will follow much the same steps as chapter 2 did. The main exception is
compliance to the creeds and propositions described in the beginning of chapter 2. This
will be dealt with at the end of this chapter. As the syntax of the various SQL
statements are very complex, the syntactical descriptions given throughout this chapter
are stripped to the bare necessities, only describing or illustrating the point discussed.

4.1. Extended Base Type Set

Base types are also called scalar types. These are the holders of atomic values. They can
all hold (or be assigned) a null value. At the turn of the millennium, the set of base types
has grown rather large, so it makes sense to divide them into groups. But first, an
overview of all the types in the base type set and their inter-relationships:

VARCHAR
BLOB

built-in data types

datetime

TIME

TIMESTAMP

DATE

string

character

varying length

graphic

varying length

VARGRAPHIC
DBCLOB

fixed length
GRAPHIC

fixed length
CHAR

varying length binary
BLOB

signed numeric

exact

binary integer

16 bit
SMALLINT

32 bit
INTEGER

64 bit
BIGINT

decimal

packed
DECIMAL

approximate

floating point

single precision
REAL

double precision
DOUBLE

external data
DATALINK

Page 46

How Object-Relational is DB2?

4.1.1. Large Object Types

Type Max size Description

CLOB 2 GB Large character string consisting of single byte characters of
up to the specified maximum length in bytes.

DBCLOB 1 GB Large character string consisting of double byte characters
of up to the specified maximum length in bytes. A DBCLOB is
regarded as a graphic string.

BLOB 2 GB Large binary object string of the specified maximum length
in bytes. Intended to hold non-traditional data such as
pictures, sound, video, etc. BLOB is not associated with a
character set.

All of these types will be referred to by the common denominator LOB. A LOB is
usually too large to be transferred between the database and the application program
as a whole. The most common approach is to transfer it piece by piece through a
special host variable called a LOB locator. During transactions, the only way to refer to
a LOB value is through a LOB locator.

DB2 allows LOBs (and long character fields) to be placed in a designated LONG
tablespace. Furthermore, LOBs cannot be part of a WHERE clause or an ORDER clause in
an SQL statement.

4.1.2. Character Strings

A character string is a sequence of bytes. This is primarily used with single-byte character
strings.

Type Max size Description

CHAR 254 bytes Fixed length character string.

VARCHAR 32 Kb

LONG VARCHAR The same as
VARCHAR(32Kb)

Variable length character strings. Special
restrictions apply when the maximum width of
a row exceeds limits which are dependent on
the page size of its tablespace:

Page size Row size limit

4K 4 005 bytes

8K 8 101 bytes

16K 16 293 bytes

32K 32 677 bytes

CLOB 2 GB See above

Page 47

How Object-Relational is DB2?

4.1.3. Graphic Strings

A graphic string is a sequence of bytes representing double-byte character data. This is
used for instance when storing text in some Asiatic writing (e.g. Chinese or Cantonese)

Type Max size Description

GRAPHIC 127 bytes Fixed length graphic string.

VARGRAPHIC 16 Kb

LONG VARGRAPHIC The same as
VARGRAPHIC (16Kb)

Variable length strings of double-byte
characters. Similar restrictions apply to
these as to VARCHAR and LONG VARCHAR.

DBCLOB 1 GB See above

The database manager will always assume that whatever character is inserted into a
graphic string is a double-byte character. A single-byte character may be inserted
without any validation preventing it. If this single-byte character is followed by a
double-byte character cd, the first byte of cd will be appended to the preceding single-
byte character while the second byte of cd will be appended to the string as new a
single-byte character.

However, the database manager will check that the whole of the graphic string contains
an even number of characters when committed to the database. This means that if the
application inserts a single-byte character, it is also the application's responsibility to
rectify this bias.

4.1.4. Numbers

Type Min. Max. Size

SMALLINT -32768 32767 2 bytes

INTEGER -2147483648 2147483647 4 bytes

BIGINT -9223372036854775808 9223372036854775807 8 bytes

REAL -3.402e+38 3.402e+38 4 bytes

DOUBLE/FLOAT -1.79769e+308 1.79769e+308 6 bytes

DECIMAL/NUMERIC -1031+1 1031+1

Page 48

How Object-Relational is DB2?

4.1.5. Date and Time Values

Type Size Description

DATE 4 bytes Date as a three-part value (year, month
and day). Year ranges from 000 1 to
9999.30

TIME 3 bytes Time as a three-part value (hour, minutes
and seconds) according to a 24H clock.

TIMESTAMP 10 bytes Date and time as a seven-part value (year,
month, day, hour, minutes, seconds and
microseconds). Ranges are as for DATE
and TIME.

4.1.6. Data Link Values

A DATALINK value is an encapsulation of a logical reference from the database to a file
stored outside the database. When defining a column with data type DATALINK, several
attributes needs to be set:

Attribute Description

link type As of UDB 7.2, only URL is allowed as link type.

The other parts of the URL are:

• the file server name for the HTTP, FILE and UNC schemes

• the cell name for the DFS scheme

• the full file path name within the file server or cell

schema As of UDB 7.2,: HTTP, FILE, UNC or DFS

comment Up to 254 bytes of descriptive information

4.2. Distinct Types

The very first user-defined data types that DB2 supported was distinct types. The syntax
for creating a distinct type is:

CREATE DISTINCT TYPE type-name AS source-data-type [WITH COMPARISONS]

The WITH COMPARISONS option specifies that system-generated comparison operators
(to compare two values of the newly defined data type) are to be generated. This option

30 This means that DB2 UDB does not handle a potential Y20K problem. ☺

Page 49

How Object-Relational is DB2?

is illegal for all distinct types based on LOBS, LONG VARCHAR, LONG VARGRAPHIC and
DATALINK. For every other source data types, this option is mandatory.

Creating a distinct data type CURRENCY based on REAL is done like this:

CREATE DISTINCT TYPE CURRENCY AS REAL WITH COMPARISONS;

Distinct types are a stripped-down implementation of domain types. The distinct type
definition has no support for default values, constraints or collation rules.

4.2.1. Repository Impact

When the distinct type CURRENCY above is created, this results in changes to 3 system
tables' data.

One row being added to the SYSIBM.SYSDATATYPES
table, with the following fields set (among others
such as defining schema and creation date)
according to the table to the right.

SOURCETYPEID is a recursive foreign key. REAL has
10 as the type identification number. TYPEID is
assigned by the database manager. The very first
user-defined distinct type is given the value -32767,
and the type id for subsequent user defined
distinct types is always set to one larger than the
previous type id used. This implies a limit of
approximately 32K user defined data types. This
should be more than enough for most data models, but could prove, in some cases, to
be an annoying limit for some models.

Field: Value:

NAME CURRENCY

SOURCETYPE REAL

SOURCESCHEMA SYSIBM

METATYPE T

TYPEID -32767

SOURCETYPEID 10

In the repository table SYSIBM.SYSFUNCTION, nine new functions have been created.
These new functions are operator functions and type cast functions31:

Function name: Parameter list: Result type:
= CURRENCY,CURRENCY BOOLEAN

< CURRENCY,CURRENCY BOOLEAN

> CURRENCY,CURRENCY BOOLEAN

<= CURRENCY,CURRENCY BOOLEAN

 CURRENCY,CURRENCY BOOLEAN

<> CURRENCY,CURRENCY BOOLEAN

CURRENCY REAL CURRENCY

CURRENCY DOUBLE CURRENCY

REAL CURRENCY REAL

31 A complete description of CAST functions is given in the (IBM DB2 SQL Reference Guide)

Page 50

How Object-Relational is DB2?

The parameter types and the result type is defined in the system table
SYSIBM.SYSFUNCPARMS.

4.2.2. Usage

Creating two distinct types:

create distinct type ohm as double with comparisons;
create distinct type amphere as double with comparisons;

and a table based on these:

create table electricity
(
 ID integer,
 resistance ohm,
 current amphere
);

gives the following table realization in DB2:

Column Type Type
name schema name Length Scale Nulls
------------------ ----------- ------------------ -------- -------- --------
ID SYSIBM INTEGER 4 0 Yes
RESISTANCE TEST OHM 0 0 Yes
CURRENT TEST AMPHERE 0 0 Yes

With these type definitions in place, running this query:

select resistance*current voltage from electricity;

causes DB2 UDB to give a negative response:

=> SQL0440N No function by the name "*" having compatible arguments
was found in the function path. SQLSTATE=42884

To do this multiplication, the following solves the problem:

create distinct type volt as double with comparisons;
select volt(double(resistance)*double(current)) voltage
from electricity;

To detour via the volt data type is actually not needed to get the multiplication done,
since it is definitely possible to write the select statement so that it simply returns a
double as result. However, it is more in the spirit of strong typing to create the volt
data type.

4.3. Structured Types

Structured types are created by the CREATE TYPE statement. The syntax for this is:

Page 51

How Object-Relational is DB2?

CREATE TYPE type_name [UNDER supertype_name] AS
(
 attribute list
)
 [NOT INSTANTIABLE]
 [WITHOUT COMPARISONS]
 [NOT FINAL]
 MODE DB2SQL
 [REF USING < ref-type >]
 [<method specifications>];

The UNDER supertype_name clause is the means by which inheritance is defined. As can
be seen from the syntax description, only single inheritance is provided for. Other
supplementary clauses are described below. The attribute list is defined mainly in the
same way as the attribute list for tables. Attributes that are part of a type can be of a
data type that either belongs to the base type set, are a distinct type (i.e. a synonym
type), or a reference to another structured type. It is worth noting that recursive (or
nested) type definitions are not allowed.

Clause Description

NOT INSTANTIABLE When a structured type is specified to be NOT INSTANTIABLE,
no constructors is generated for this type. It cannot be used
as basis for a typed table32. Such type fulfils much the same
function as virtual classes in C++ and Java. It can, however
be used as the type of a column. A column of a NOT
INSTANTIABLE type can only be given a NULL value or a
value of one of its types' subtypes.

WITHOUT COMPARISONS This clause results in the data type to be realised without
any comparison functions/operators being generated.

NOT FINAL This clause indicates that this type may be used as a
supertype.

MODE DB2SQL This indicates that the data type is defined in DB2 SQL
mode33.

REF USING < ref-type > This clause specifies which built-in data type that is to be
used as the reference type34 for this structured type and all
its subtypes.

This clause can only be specified for the root type of a
structured type hierarchy.

There are some limitations as to which built-in data type can
be used as a reference type. For more information see (IBM
DB2 SQL Reference guide).

32 See below.

33 What modes the future has in store will be very interesting to see.

Page 52

How Object-Relational is DB2?

Default value for this option is REF USING VARCHAR(16) FOR
BIT DATA.

method specifications This clause defines the methods for the structured type. For
a short description of the syntax, see the example below.
For complete details one the syntax, see (IBM DB2 SQL
Reference guide).

4.3.1. Repository Impact

To define a structured data type person with attributes for first name, last name, date of
birth and a method that calculates a persons age, the command would be:

CREATE TYPE PERSON AS
(
 FIRSTNAME VARCHAR(50),
 LASTNAME VARCHAR(50),
 BORN_ON DATE
)
 WITHOUT COMPARISONS NOT FINAL MODE DB2SQL
METHOD AGE()
 RETURNS INTEGER
 LANGUAGE SQL
 NOT DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION;

The very long (and cumbersome) declaration of method AGE needs some explanation:

Clause Explanation

RETURNS <data type> This specifies the data type returned from the method. Every
data type described above is allowed as result type.

LANGUAGE SQL This clause is used to indicate that the method is written in
SQL with a single RETURN statement.

[NOT] DETERMINISTIC This optional clause specifies whether the method always
returns the same results for given argument values
(DETERMINISTIC) or whether the method depends on some
state values that affect the results (NOT DETERMINISTIC).

Example: The method AGE() defined above is not
deterministic as the result is has no input arguments and the
result of the method is dependent on a value stored in a
PERSON object. A method CAPITALISE(...) defined as

METHOD CAPITALISE (IN_STR IN VARCHAR)
 RETURNS VARCHHAR
 LANGUAGE SQL

DETERMINISTIC

34 The data type of an objects OID.

Page 53

How Object-Relational is DB2?

 NO EXTERNAL ACTION;

that simply returns its input capitalised will return the same
result independent of attribute values. Since the result of
CAPITALISE(...) is dependent only of its arguments, this is
a DETERMINISTIC method.

CONTAINS SQL Indicates that SQL statements that neither read nor modify
SQL data can be executed by the method.

[NO] EXTERNAL ACTION This optional clause specifies whether the method takes some
action that changes the state of an object not managed by the
database manager.

The above only declares that the person type is to have a method called age(). The
actual implementation of the method is given in a separate SQL99 statement:

create method age()
 for person
 return ((current date) – self..born_on) / 365;

This is stored in the SYSIBM.SYSFUNCTIONS and the SYSIBM.SYSFUNCPARAMS tables the
same way as the other functions and operators that the type owns. Since the age()
method uses the born_on attribute of the person type, a dependency between the
method age() and the function born_on() is created. This dependency is registered in
the SYSIBM.SYSDEPENDENCIES table.

4.3.2. Usage

Structured types can be used as any other type; i.e. as table attribute types, procedure
parameter types, etc. They can even be used as attribute types in other structured types.
In addition, they may be used directly in table definitions:

CREATE TABLE
 table-name OF type-name
 (REF IS oid-column-name USER GENERATED);

As in any use of the CREATE TABLE command, far more complexity may be used. The
above is just an extract to illustrate this use of structured types.

The oid-column-name indicates that an object identifier column is to be defined as the
first column of the table. This column will be of type REF(type-name). To have an oid
column, the table must be a type-based table that is not a sub-table.

4.4. Functions

DB2 provides three different types of user-defined functions:

External Scalar

External Table

Sourced

Page 54

How Object-Relational is DB2?

The differentiation between these functions is dependent on how they are defined (or
described) to DB2, and on what they return.

4.4.1. External Scalar Function

An external scalar function is written in some programming language35 external to DB2,
or is an OLE object36. It returns a single scalar result.

In general, a reference to an external scalar function is legal wherever an SQL
expression is legal.

Example: Assume there already exist a C function that takes the ISBN of a book as
input and finds that book's Dewey classification code by searching certain servers on
the Internet. This function would be very useful in a library database, and could be
made available to DB2 by declaring the following external scalar function:

CREATE FUNCTION DEWEY CODE (VARCHAR)
 RETURNS VARCHAR
 EXTERNAL NAME 'librarian!deweyCode'
 LANGUAGE C
 PARAMETER STYLE DB2SQL,
 NOT DETERMINISTIC
 NOT FENCED
 RETURNS NULL ON NULL INPUT
 NO SQL;

This establishes a link to an external C function deweyCode that resides in the library file
librarian.lib. Special operating system dependent rules decides where DB2 looks for
the library file. The absolute library path may also be used.

The option PARAMETER STYLE DB2SQL is used to specify the conventions for passing
parameters to and returning the value from external functions that conform to C
language calling and linkage conventions.

The option NOT DETERMINISTIC says that this function is not guaranteed to always
return the same result given the same input parameter37. Thus, the DB2 server cannot
cache the result.

The option NOT FENCED informs the DB2 server that this function does not interfere with
the database managers operating environment.

The option RETURNS NULL ON NULL INPUT indicates that the function will return a NULL
value if the input parameter is NULL.

The mandatory option NO SQL indicates that the function cannot issue any SQL
statements. The existence of this option suggests that future versions of DB2 will allow
for the function to issue SQL statements.

35 As of version 7.2, the programming languages supported are C and Java.

36 32-bits MS-Windows platforms only.

37 The task of classifying a book always involves a great deal of individual judgement by the librarian performing the
classification. Therefore, a classification can be altered due to misunderstanding and errors.

Page 55

How Object-Relational is DB2?

4.4.2. External Table Function

The difference between an external table function and an external scalar function is in
the produced result. An external table function will return a row set result. Thus, it can
be used in the FROM clause (or any other place where a row set is expected) of a SELECT
statement, just as if it were a table or a view.

Example: Assume there exists a C function getReferencingBooks(char* isbn) that
takes the ISBN of a book as input and finds the title, the authors and the ISBN of every
book referencing it by searching certain servers on the Internet. This function can be
wrapped in a C function that concurs with the specifications for DB2 stored
procedures38:

void SQL_API_FN DB-getReferencingBooks(
 /* Input field */
 SQLUDF_VARCHAR in_isbn,
 /* Return row fields */
 SQLUDF_VARCHAR *title,
 SQLUDF_VARCHAR *authors,
 SQLUDF_VARCHAR *isbn,
 /* Input null indicatior */
 SQLUDF_NULLIND null_in_isbn,
 /* Return row field null indicators */
 SQLUDF_NULLIND *null_title,
 SQLUDF_NULLIND *null_authors,
 SQLUDF_NULLIND *null_isbn,
 /* UDF always-present (trailing) input arguments */
 SQLUDF_TRAIL_ARGS_ALL
)
{
 if (! null_in_isbn)
 {
 /* Call the original function */
 getReferencingBooks(....);
 /* And prepare the results for the UDF */
 ;
 }
}

This function could be made available to DB2 by declaring the following external table
function:

CREATE FUNCTION GET_REFERENCING_BOOKS(VARCHAR(10))
 RETURNS TABLE
 (
 TITLE VARCHAR(100),
 AUTHORS VARCHAR(I00),
 ISBN VARCHAR(10)
)
 NOT FENCED
 NOT DETERMINISTIC
 NO SQL
 NO EXTERNAL ACTION
 LANGUAGE C
 PARAMETER STYLE DB2SQL
 EXTERNAL NAME 'librarian!DB_getReferencingBooks';

s

38 This format is describe in detail in (IBM DB2 Application Development Guide) in the chapter "Writing User-Defined
Functions (UDFs) and Methods" and " Example of UDF Code".

Page 56

How Object-Relational is DB2?

The option NO EXTERNAL ACTION specifies that the function in question does not do
anything that can change the state of any object that is managed by the database
manager.

For all the other options, see the descriptions in the previous example.

4.4.3. Sourced Function

Sourced functions are the only functions that are defined and registered entirely within
the DB2 server. A sourced function is used to define a function that is based on another,
already existing, scalar or column39 function. This may be used to create functions that
take distinct types as parameters, without having to write the implementation of the
function all over again.

Assume the types described on page 51 are defined, and there is a need to calculate
average resistance in the electricity table. Simply giving the statement

SELECT AVG(RESISTANCE) FROM ELECTRICITY;

would result in an error:

SQL0440N No function by the name "AVG having compatible arguments
was found in the function path. SQLSTATE=42884

No function avg that takes a parameter of type ohm exists. This can be solved by casting
the resistance column to double:

SELECT AVG(DOUBLE(RESISTANCE)) FROM ELECTRICITY;

This becomes clumsy and not very readable. Defining a sourced function is another
solution:

CREATE FUNCTION AVG(OHM)
 RETURNS (OHM)
 SOURCE SYSIBM.AVG(DOUBLE);

With this function in place, the type casting in the SELECT statement is no longer
needed, and the first SELECT statement becomes legal.

4.5. Procedures

Like functions, procedures are implemented in an external programming language40.
From an SQL syntax point of view, a procedure is equivalent to a function without any
return value. Curiously, however, a procedure can return a cursor to a result set. This
indicates that the user in some situations is free to use procedures and table functions
interchangeably.

39 A column function is often referred to as an aggregate function.

40 As of version 7.2, the programming languages supported are C and Java.

Page 57

How Object-Relational is DB2?

4.6. Operators

From what is written in sections 4.2 and 4.3 on distinct types and structured types, one
would assume that support for user-defined operators is a feature in DB2 UDB. However
strange it may seem, this is not so. The only operator extensions available are the
comparison operators that may implicitly be generated as a by-product of a distinct
type and those that are always generated when a structured type is created.

4.7. Encapsulation

There is not much to say about encapsulation in DB2. This is simply because there are
none.

Naturally, it is possible to create column access procedures and functions, but the
columns themselves will remain just as exposed to direct manipulation as ever.

4.8. Collection Constructors

When it comes to being object-relational, or SQL-99 compliant, the weakest point in
DB2 UDB is the lack of collection constructors. According to internal personnel in IBM,
it was IBM's initial intention to include collection constructors in DB2 UDB. Still, This
was given a low priority. When Michael Carey left his position as head of the UDB team
in 2000, his successor decided that collection constructors should not be included in
DB2 UDB, at least not for quite a while.

4.9. Inheritance

4.9.1. Type Inheritance

As has already been mentioned, DB2 supports type inheritance through the CREATE
TYPE statement:

CREATE TYPE type_name [UNDER supertype_name] AS
(
 attribute list
) WITHOUT COMPARISONS
NOT FINAL
MODE DB2SQL;

This gives rise to a single-inheritance hierarchy. The supertype, from which a new type
inherits its attributes, must already exist in the schema of the new type. Alternatively, if
the supertype exists in a different schema, the supertype name must be prefixed with
the schema name. This is according to standard SQL naming rules.

The NOT FINAL clause indicates that the type created may be used as a supertype. As
described above, this clause is mandatory as of version 5.2. Nevertheless, the presence
of this clause announces that some future version of DB2 may include the option where
a type can be restricted from being used as a supertype.

Page 58

How Object-Relational is DB2?

4.9.2. Table Hierarchies

In addition to allowing for the creation of a type inheritance, DB2 also supports a table
inheritance mechanism through one of the variations of the CREATE TABLE statement:

CREATE TABLE table_name
 OF type_name
 UNDER supertable_name INHERIT SELECT PRIVILEGES;

Such a statement will indicate that the new table table_name will become a subtable of
supertable_name.

The supertable must be an existing table and must have been defined using a structured
type that is the immediate supertype of type_name. The schema of table_name and
supertable_name must be the same.

The resulting table will have columns based on the attributes of type_name, plus the
object identifier column of the supertable with type modified to REF(type_name).

The mandatory INHERIT SELECT PRIVILEGES clause indicates that any user who has a
SELECT privilege on the supertable will be granted the same privilege on the new table.
In addition to having all select privileges inherited, all storage related parameters of the
table are inherited. Thus, it is not possible to specify a tablespace for the subtable.

Example: For the illustration of this, consider the class model described in the
following UML diagram:

Fictional Book
targetAudience : string
synopsis : string
genre : string

Anthology
editor : string
theme : string

Short story
title : string

0..*1..*

+anthology

0..*

+contents

1..*

Nonfictional Book
subject : string
deweyCode : string

Author
name : string
nationality : string
born : date
dead : date

1..*

0..*

+authors 1..*

+storyList 0..*

Book
title : string
ISBN : string
writtenYear : integer
edition : integer

1..*

0..*
+authors

1..*

+bookList

0..*

In DB2 this model is expressed as:

CREATE TYPE T_AUTHOR AS
(
 NAME VARCHAR(100),
 NATIONALITY VARCHAR(50),
 BORN DATE,
 DEAD DATE
) MODE DB2SQL REF USING INTEGER;

Page 59

How Object-Relational is DB2?

CREATE TYPE T_BOOK AS
(
 TITLE VARCHAR(100),
 ISBN VARCHAR(20),
 WRITTENYEAR INTEGER,
 EDITION INTEGER
) MODE DB2SQL REF USING INTEGER;

CREATE TYPE T_FICTIONAL_BOOK UNDER T_BOOK AS
(
 TARGET_AUDIENCE VARCHAR(100),
 SYNOPSIS VARCHAR(1000),
 GENRE VARCHAR(40)
) MODE DB2SQL;

CREATE TYPE T_NONFICT_BOOK UNDER T_BOOK AS
(
 SUBJECT VARCHAR(100),
 DEWEY_CODE VARCHAR(10)
) MODE DB2SQL;

CREATE TYPE T_ANTHOLOGY UNDER T_FICTIONAL_BOOK AS
(
 EDITOR VARCHAR(100),
 THEME VARCHAR(50)
) MODE DB2SQL;

CREATE TYPE T_SHORT_STORY AS
(
 TITLE VARCHAR(100)
) MODE DB2SQL REF USING INTEGER;

CREATE TABLE BOOK
 OF T_BOOK
 (REF IS ID USER GENERATED);

CREATE TABLE AUTHOR
 OF T_AUTHOR
 (REF IS ID USER GENERATED);

CREATE TABLE SHORT_STORY
 OF T_SHORT_STORY
 (REF IS ID USER GENERATED);

CREATE TABLE FICTIONAL_BOOK
 OF T_FICTIONAL_BOOK
 UNDER BOOK INHERIT SELECT PRIVILEGES;

CREATE TABLE NONFICTIONAL_BOOK
 OF T_NONFICT_BOOK
 UNDER BOOK INHERIT SELECT PRIVILEGES;

CREATE TABLE ANTHOLOGY
 OF T_ANTHOLOGY
 UNDER FICTIONAL_BOOK INHERIT SELECT PRIVILEGES;

CREATE TABLE BOOK_AUTHOR
(
 BOOKLIST REF(T_BOOK) NOT NULL,
 AUTHORS REF(T_AUTHOR) NOT NULL,
 CONSTRAINT PK_BOOK_AUTHOR PRIMARY KEY (BOOKLIST , AUTHORS)
);

Page 60

How Object-Relational is DB2?

CREATE TABLE SHORTSTORY_AUTHOR
(
 STORYLIST REF(T_SHORT_STORY) NOT NULL,
 AUTHORS REF(T_AUTHOR) NOT NULL,
 CONSTRAINT PK_SHSTORY_AUTHOR PRIMARY KEY (STORYLIST , AUTHORS
)
);

CREATE TABLE SHORTSTORY_ANTHOLOGY
(
 CONTENTS REF(T_SHORT_STORY) NOT NULL,
 ANTHOLOGY REF(T_ANTHOLOGY) NOT NULL,
 CONSTRAINT PK_SHSTORY_ANTH PRIMARY KEY (CONTENTS , ANTHOLOGY)
);

Please note that some of the type-, table- and attribute names have been shortened due
to limitations in object name lengths in DB2.

4.10. Constraints

As mentioned in chapter 2, constraints are a necessary means to enforce data quality.
The various constraint constructs specified in SQL-99 is also described to some extent
in chapter 2. DB2 UDB supports these constraint constructs to a variable degree. A very
thorough evaluation of this is found in (Türker & Gertz 2001) together with a similar
evaluation for several other commercial database systems.

4.10.1. Simple constraints

DB2 UDB supports all simple constraint types, with some limitations. In addition to the
SQL-99 defined simple constraints, DB2 UDB also supports a constraint FOR BIT DATA.
If a column has been specified to have a FOR BIT DATA constraint, the data in that
column is always treated as binary data. The effect of this is that data transfer to and
from the database, and between databases, ignores any code page translation rules.
Furthermore, comparisons are done in binary, irrespective of the database collating
sequence.

Not all constraint types can be used on all columns. Which types that can be used are
dependent on the column’s data type. The ground rule is that all constraint types may
be applied unless the column’s data type is DATALINK, LONG CARCHAR, any of the LOB
types, or any of the graphic string types. For these data types, only the NOT NULL
constraint can be used.

In connection with constraint types that somehow are involved an index, there is also a
limitation as to how many columns are involved in each single constraint. The
limitation is that a maximum of 16 columns can be involved, and the sum of the
involved columns’ stored length must not exceed 1024 bytes.

Constraint modes are partly supported in DB2 UDB. All constraints will have default
modes INITIALLY IMMEDIATE and NOT DEFERRABLE. This means that all constraints are
always checked at the end of each statement. DB2 UDB provides means for turning
constraints checking on and off for a specific table. This is done with a SET INTEGRITY
command. The details of this command can be found in (IBM DB2 SQL Reference guide).

Page 61

How Object-Relational is DB2?

4.10.2. Domain constraints and assertions

DB2 UDB supports SIMPLE TYPEs as an alternative to domains. However, SIMPLE TYPEs
do not support constraints. This means that domain constraints are not supported in
DB2 UDB.

There is no support for assertions at all in DB2 UDB.

4.10.3. Foreign key actions and scopes

The limitations on the cardinality and length of a key described above also hold for
foreign keys. DB2 UDB supports actions for both of the potentially violating events in
foreign keys, i.e. UPDATE and DELETE. In case of the DELETE event, the NO ACTION,
RESTRICT, CASCADE and the SET NULL actions are allowed. NO ACTION is the default
action. For the UPDATE event, only RESTRICT and NO ACTION is allowed. The default is
the same as for DELETE.

Scopes are supported without actions in DB2 UDB.

4.10.4. Inheritance

Both table hierarchies and type hierarchies are supported in DB2 UDB. This has be
described above (see 4.9). In accordance with SQL-99, structured types does not allow
constraints to be defined on them. There is, however, an exception: The DB2 UDB
specific constraint FOR BIT DATA is allowed in the definition of a structured type. This
type attribute constraint is inherited from a super-type to its sub-types and cannot be
overridden. Constraints in table hierarchies are inherited in concurrence with SQL-99.

4.10.5. Triggers

The support for triggers is very good in DB2 UDB. Triggers are supported for all the
event types specified by SQL-99, i.e. INSERT, UPDATE, SELECT and DELETE. Triggers are
allowed to fire both BEFORE and AFTER the triggering actions are executed. Both row-
level and statement-level triggers are supported. DB2 UDB also supports conditions for
when to execute the trigger.

As of version 7.0, DB2 UDB includes support for SQL-99 part 4: SQL/PSM. This means
that the action of the triggers can be implemented in a rich language, giving a high
degree of flexibility as to what the trigger action can do.

4.11. Implementation Issues

When extending any product by adding new features, developers are always faced with
key design tradeoffs, considerations and decisions to be made. To make sure that the
decisions that are to be made are as much according to policy as possible, guidelines
need to be defined. According to (Carey, et.al. 1999), four main principles guided IBM's
researchers and developers when implementing the new object-relational features in
DB2. These principles were:

Page 62

How Object-Relational is DB2?

1. The performance of all features needed to be at least as good as their relational
equivalents.
It would be unacceptable to offer new object-relational features that caused
applications to perform worse than equivalent relational solutions.

2. The design had to be modifiable to support future work on schema- and
instance-level type migration.

3. The bulk of the initial object-relational changes should be in the query compiler
if possible.
This was motivated by a desire to localise the changes as much as possible.

4. Structured type instances were eventually to be storable in columns as well as
rows of tables.

4.11.1. Table Hierarchies

When implementing inheritance into an object-relational database, the inheritance
structure needs to be mapped into relational tables. Relational tables have to be used
to satisfy IBM's design principle 4. Three different implementation approaches are
considered viable. These approaches are described in (Heinckiens 1998).

Vertical Partitioning

In a vertical partitioning approach, one table is used for the base class and a separate
table is used for each derived class. The tables for the derived classes only contain rows
to hold the additional information that the derived class shall contain. Any base table
additionally needs a foreign key column to each of its derived class tables.

Consider the class hierarchy presented in the UML diagram to the left.

BaseClass
attr1
attr2
attr3

Derived_1
attr4

Derived_2
attr5

Derived_2_1
attr6

Derived_2_2
attr7

Page 63

How Object-Relational is DB2?

Implementing this using a vertical partitioning would result in a table structure looking
like this:

BaseClass attr1 attr2 attr3 fk_derived_1 fk_derived_2
val-1-1 val-2-1 val-3-1 NULL NULL
val-1-2 val-2-2 val-3-2 NULL NULL
val-1-3 val-2-3 val-3-3 NULL
val-1-4 val-2-4 val-3-4 NULL
val-1-5 val-2-5 val-3-5 NULL
val-1-6 val-2-6 val-3-6 NULL NULL
val-1-7 val-2-7 val-3-7 NULL NULL
val-1-8 val-2-8 val-3-8 NULL
val-1-9 val-2-9 val-3-9 NULL

val-1-10 val-2-10 val-3-10 NULL
val-1-11 val-2-11 val-3-11 NULL
val-1-12 val-2-12 val-3-12 NULL
val-1-13 val-2-13 val-3-13 NULL
val-1-14 val-2-14 val-3-14 NULL
val-1-15 val-2-15 val-3-15 NULL NULL

Derived_1 attr4
val-4-8
val-4-9

val-4-10
val-4-11

Derived_2 attr5 fk_derived_2_1 fk_derived_2_2
val-5-3 NULL
val-5-4 NULL NULL
val-5-5 NULL
val-5-12 NULL
val-5-13 NULL NULL
val-5-14 NULL NULL

Derived_2_1 attr6
val-6-3
val-6-12

Derived_2_2 attr7
val-7-5

Columns for OIDs are not included in the illustration.

This approach is by some considered to be the most correct way to implement a class
hierarchy into relational tables. A major drawback however, is the introduction of
extra joins. The simple query

SELECT * FROM DERIVED_2_2;

will actually cause a query involving two joins to be executed:

SELECT
 T1.ATTR1, T1.ATTR2, T1.ATTR3,
 T2.ATTR5, T3.ATTR7
FROM
 BASECLASS T1, DERIVED_2 T2, DERIVED_2_2 T3
WHERE
 T1.FK_DERIVED_2 = T2.OID
AND T2.FK_DERIVED_2_2 = T3.OID;

Horizontal Partitioning

In a horizontal partitioning, one table is created for each class in the class hierarchy.
Each table will include every attribute that comprises the corresponding class, so that
the attributes inherited from the root class are duplicated in all derived classes. Thus,
the tables needed to implement the hierarchy given above, are:

BaseClass attr1 attr2 attr3
val-1-1 val-2-1 val-3-1
val-1-2 val-2-2 val-3-2
val-1-6 val-2-6 val-3-6
val-1-7 val-2-7 val-3-7

val-1-15 val-2-15 val-3-15

Derived_1 attr1 attr2 attr3 attr4
val-1-8 val-2-8 val-3-8 val-4-8
val-1-9 val-1-9 val-1-9 val-4-9

val-1-10 val-1-10 val-1-10 val-4-10
val-1-11 val-1-11 val-1-11 val-4-11

Derived_2 attr1 attr2 attr3 attr5
val-1-14 val-2-14 val-3-14 val-5-14

Derived_2_1 attr1 attr2 attr3 attr5 attr6
val-1-3 val-2-3 val-3-3 val-5-3 val-6-3

val-1-12 val-2-12 val-3-12 val-5-12 val-6-12

Derived_2_2 attr1 attr2 attr3 attr5 attr7
val-1-5 val-2-5 val-3-5 val-5-5 val-7-5

Page 64

How Object-Relational is DB2?

Since all tables are disjoint and unrelated, this approach makes joins superfluous.
However, in queries where polymorphism is needed, unions will be compulsory. For
the query

SELECT * FROM BASECLASS;

to be executed, and to include data from subclasses, the query processor will have to
execute:

SELECT
 ATTR1, ATTR2, ATTR3
 FROM BASECLASS
UNION
SELECT
 ATTR1, ATTR2, ATTR3
 FROM DERIVED_1
UNION
SELECT
 ATTR1, ATTR2, ATTR3
 FROM DERIVED_2
UNION
SELECT ATTR1, ATTR2, ATTR3
 FROM DERIVED_2_1
UNION
SELECT ATTR1, ATTR2, ATTR3
 FROM DERIVED_2_2;

Hierarchy table

The third implementation approach for implementing inheritance in a relational table
structure makes use of a single table. This table has a column for all attributes in the
inheritance hierarchy. It is often referenced to as the hierarchy table. The example
hierarchy used above will then be implemented as a table looking like this:

BaseClass_Hierarchy attr1 attr2 attr3 attr4 attr5 attr6 attr7
val-1-1 val-2-1 val-3-1 NULL NULL NULL NULL
val-1-2 val-2-2 val-3-2 NULL NULL NULL NULL
val-1-3 val-2-3 val-3-3 NULL val-5-3 val-6-3 NULL
val-1-4 val-2-4 val-3-4 NULL val-5-4 NULL NULL
val-1-5 val-2-5 val-3-5 NULL val-5-5 NULL val-7-5
val-1-6 val-2-6 val-3-6 NULL NULL NULL NULL
val-1-7 val-2-7 val-3-7 NULL NULL NULL NULL
val-1-8 val-2-8 val-3-8 val-4-8 NULL NULL NULL
val-1-9 val-2-9 val-3-9 val-4-9 NULL NULL NULL

val-1-10 val-2-10 val-3-10 val-4-10 NULL NULL NULL
val-1-11 val-2-11 val-3-11 val-4-11 NULL NULL NULL
val-1-12 val-2-12 val-3-12 NULL val-5-12 val-6-12 NULL
val-1-13 val-2-13 val-3-13 NULL val-5-13 NULL NULL
val-1-14 val-2-14 val-3-14 NULL val-5-14 NULL NULL
val-1-15 val-2-15 val-3-15 NULL NULL NULL NULL

As can be seen from this table, this approach implies an extensive presence of NULL
values. Dependent of the database implementation, this could result in a waste of
storage space. Query processing, on the other hand, is very easy: Since all data is
stored in a single table, no joins or unions are needed for queries involving only classes
within the inheritance hierarchy.

IBM's Choice

As it happens, the three approaches presented above are exactly the alternatives that
IBM chose to evaluate for the implementation of inheritance hierarchies (Heinckiens 1998).
Preliminary implementations where done for each approach, and tested for

Page 65

How Object-Relational is DB2?

performance. In the test a three level hierarchy with two generalisations at the root
and at each intermediate level was implemented. Every table was populated with
40,000 rows of data. The table41 below shows the result normalised with the results for
the hierarchy table approach set to one.

Hierarchy
Table

Vertical
Partitioning

Horizontal
Partitioning

Count all rows at root 1.00 1.13 1.27
select 1 row at root 1.00 0.96 0.93
select 1 row at leaf 1.00 1.25 0.90
select 1 row and join at root 1.00 1.23 111.27
select 1 row and join at leaf 1.00 1.65 9.90
join all rows at root 1.00 0.68 3.81
join all rows at leaf 1.00 4.66 1.04
Average: 1.00 1.65 18.45

Even if both the vertical and the horizontal partitioning approach have a couple of
results that are better than the hierarchy table approach, the overall performance of the
hierarchy table approach convinced IBM's researchers and developers that this was the
best solution, and they went for it.

The hierarchy table in DB2 UDB will always follow the naming convention
<rootclass>_HIERARCHY where <rootclass> is the name of the root table in the
hierarchy. DB2 UDB will not allow queries on the hierarchy table directly, but any
query on any table in the inheritance hierarchy will be redirected to the hierarchy
table.

4.12. Is DB2 Object-Relational?

The question this chapter set out to answer was: Is DB2 UDB an object-relational
database? For better or for worse: Taking SQL-99 to be the recognised definition of
what an object-relational database is, maybe the best thing to do is to make a checklist
over what is expected of an ORDB and what DB2 UDB has to offer. This checklist is
found on in the table on the next page.

It would be very tempting to conclude that IBM DB2 UDB supports enough object-
relational (or SQL-99) features to justifiably be called an object-relational database
system. However, a very vital ingredient is missing: Collection constructors. Without
collection constructors, application object-oriented models are very difficult to map
into the database model. The verdict must then be that DB2 UDB is not object-
relational until at least one collection constructor is supported.

41 This table is adopted from (Carey, et.al. 1999)

Page 66

How Object-Relational is DB2?

SQL-99 DB2 UDB

Extended base type set Yes.

Domain types Yes, but no default values or domain constraints

Abstract data types Yes.

Collection constructors No.

Reference types Yes.

Function and procedures Yes.

External function and procedures Yes.

Operators Partly. Some operators are defined implicitly
when new types are defined. No user defined
operators supported.

Inheritance Yes. Both table and type inheritance.

Simple constraints Yes. Some limitations exist with respect to some
data types. Also, some limitations exist on the
cardinality and size of columns involved in
index related constraints.

Domains No.

Assertions No.

Foreign key actions Partly.

Scope actions. No.

Inheritance Yes.

Constraints

Triggers Yes.

Page 67

Object Persistence in an ORDBMS

5. Object Persistence in an ORDBMS

WE CANNOT PROVIDE A PRIORI OR A POSTERIORI

JUSTIFICATIONS FOR A NUMBER OF OUR BELIEFS LIKE,
“OBJECTS AND SUBJECTS PERSIST IDENTICALLY OVER TIME”

DAVID HUME

It would be of great value to the database community to get a conclusive answer to the
question “Can an ORDBMS give orthogonal persistence?”. It is, however, rather
pretentious to try to answer this question within the scope of a masters thesis. It has
been said that given an unlimited amount of time and money, anything can be done in
a computer program. Although this probably is not true, if every involved part in the
development of computer programming standards and APIs had managed to pull in
the exact same direction, and had set forth to make every ORDBMS to support
orthogonal persistence, they would most likely succeed. This statement is however, at
best, qualified guesswork.

A more reasonable question to ask is: Can an ORDBMS deliver orthogonal persistence
given the existing standards and open APIs? Narrowing even further: Can we achieve
orthogonal persistence in an ORDBMS through JDBC?

Database access from Java is always done through JDBC directly or alternatively
through some API built on top of JDBC. This means that JDBC represents the limit of
what you can do vis-à-vis an object-relational database from a Java application. There
are several such add-on APIs on the market: Java Blend from JavaSoft, Java database
components in Borland Jbuilder, just to mention two of the more well known. This
section will only discuss JDBC in detail. However, one of these alternative APIs built on
top of JDBC must be briefly discussed, namely SQLJ. SQLJ is a proposed standard
seeking to embed SQL in Java. This section will by no means be a tutorial on Java,
JDBC or SQLJ. There are excellent reference books available for this42. SQLJ is being
developed as a standard and will most likely become a part of SQL-99-part 10: Object
Language Bindings (SQL/OLB).

JDBC has been through several major releases:

JDBC 1.0

JDBC 2.0

JDBC 2.0 – Standard Extension

JDBC 2.1

JDBC 3.0

42 For a very good guide and reference to Java, see (Flanagan 1999). (White et.al. 1999) is a thorough guide and reference to
JDBC. Both JDBC and SQLJ are well described in (Melton & Eisenberg 2000).

Page 68

Object Persistence in an ORDBMS

This is the situation at the time of writing43. The JDBC release used by an application is
first dependent on the release available when the application was made. Secondly, but
more importantly, release compliance of the database vendor’s JDBC driver(s) imposes
on the JDBC compliance of the application. Sadly, but probably necessarily, there
seems to be a constant lag between the current release of JDBC and the release
supported by the database vendors. The different releases will not be covered
individually. JDBC 3.0 will be regarded as the current version, even if not necessarily all
database vendors support this release at the time of writing. SQLJ is subdivided into
three parts, namely parts 0, 1 and 2.

Discussions with senior development staff at Norwegian and international software
development companies and consultancy companies44 indicate that developers are not
very keen on the embedded SQL approach. Developers tend to dislike both the pre-
compiler concept, and the mixing of two different programming languages. This is an
attitude that might just as well be based on gut feeling as on professional
considerations. Nevertheless, none of the consulted persons expressed any interest in
SQLJ as a possible solution to the impedance mismatch problem.

The choice of JDBC as an acronym for a Java database API has proven to be somewhat
unfortunate. It gives developers too many associations with ODBC45. This vast API has
been the cause of many programmers’ headaches and many slow applications. The
JDBC API is a much simpler API. It also gives much better performance than ODBC, as
every database system vendor who has a Java strategy provides a JDBC driver that is
closely integrated with the database engine.

The main purpose with this section is thus to try to answer the question: Can we
achieve orthogonal persistence in an ORDBMS through JDBC? Alternatively, do JDBC
provide a solution to the impedance mismatch problem? More specifically, an attempt
to find answers to the following questions46 will be given:

1. Can the set-at-a-time/element-at-a-time conflict be solved?

2. How are NULL values handled?

3. Is there a mismatch between SQL data types and Java data types? If so, how is this
problem bridged?

4. Can SQL errors and Java errors be handled in a consistent way?

The classes and interfaces of the JDBC 3.0 API are shown in the UML diagram below.
The classes Date, Throwable and Exception are not part of the JDBC 2.0 API, but still of
major relevance. Not all of the JDBC classes are of interest for the purpose of this
chapter.

43 I.e.. first half of 2002.

44 Staff from companies such as Ergo Group AS, Logica Ltd., Microsoft Inc., Fast Search & Transfer ASA has been
involved in discussions about these issues.

45 Microsoft’s Open Database Connection API

46 These questions emerge when considering the problems described above in chapter 2.1.

Page 69

Object Persistence in an ORDBMS

Array
<<In ter face>>

B atch U p d ateE xcep tio n

B lo b
<<In ter face>>

CallableStatem en t
<<In terface>>

P rep ared Statem en t
<<In terface>>

Clo b
<<In ter face>>

Co n n ectio n
<<In ter face>>

D atabaseM etaD ata
< <In ter face>>

D ataTru n catio nSQ LW arn in g

D ate

D riverM an ager

D river
<<In ter face>>

Statem en t
<<In ter face>>

Ref
<<In ter face>>

R esu ltSet
<<In terface>>

Resu ltSetM etaD ata
<<In ter face>>

S Q LDa ta
<<In ter face>>

S Q LIn pu t
<<In ter face>>

S Q LO u tp u t
<<In ter face>>

Stru ct
<<In ter face>>

Tim e

Tim estam p

Typ es

E xcep tio n
(from la ng)

D r iverP ro p ertyIn fo

SQ LE xcep tio n

-n e xt

D r iverIn f o
d river

Th ro wable
(fro m lan g)

D ate
(from util)

Clas se s an d I nte rfa ce s in th e jav a.s ql p acka ge in J ava 1 .2

In the example Java code following, a general knowledge of Java is assumed. Java
concepts will not be explained.

5.1. Test Case

5.1.1. Example Data Model

Throughout the rest of this chapter, the following model will be used (note that private
attributes and operations are not shown in the diagram):

Library
nam e : String
database : Connection

add(newBook : Book)
delete(isbn : String)
save()
Library(conn : Connection)
load(nam e : String)
toString() : String
find(isbn : String) : int

Author
nam e : String
birthCountry : String
born : Date
dead : Date

Book
titl e : Str ing
isbn : Stri ng
wr itte nYear : int

add (newAuthor : Author)
delete(au thorN am e : String)

0.. *1

+collection

0.. *1

1..*1..*

+writtenBy

1..*1..*

It must be admitted that a more sensible and thorough model could have been
constructed, but this will suffice for the purpose of the rest of this chapter.

Page 70

Object Persistence in an ORDBMS

The model can be described as follows: A library (which servers as a persistent root)
can have zero or more books. A book is written by a single author or several authors,
and an author may have written one or more books47.

The Author class provides no logic whatsoever. All logic is implemented in the Book
class and the Library class:

Method Description

Library.Library The Library constructor takes a java.sql.Connection object
as input parameter, and thus makes the object persistent.

Library.save The save method updates the Library object (complete with
books and authors). Any locks acquired for the object is
released.

Library.delete The delete method removes a Book object specified by its ISBN
(complete with authors) from the Library’s book collection.

Library.add Adds a new book object to a Library’s book collection.
Library.toString Standard toString() method.
Library.load Reads the library with LIBRARY.NAME=name into the client

application.
Library.find Returns the index of the book specified by isbn;
Book.add Adds a new author object to a Book’s author list.
Book.delete This delete method removes an Author object specified by its

name from the Book’s author list.

Please note that this is by no means to be regarded as a complete model. Both obvious
attributes and methods are absent in all of the three classes, but as already said: This
model will suffice for the purpose of illustration.

The model must be realised in both Java and SQL for the use in the application and the
database respectively. The methods will only be implemented in Java. The database
used for the implementation of the database will be Oracle9i, as a database that
supports collections is needed. The SQL-99 support in Oracle9i will not be dealt with in
any details, nor will Oracle9i specific syntaxes be described. For more information on
these areas, please refer to Oracle’s manuals (Oracle9i A88878-01)and (Oracle9i A90125-01) or
to other off-the-shelf references such as (Loney & Koch 2000).

Oracle’s implementation of the ARRAY constructor is called a VARRAY. VARRAY stands for
varying array. A varying array is an array which is given a maximal size instead of an
absoulte size. The difference between ARRAY and VARRAY is much the same as the
difference between CHARACTER and CHARACTER VARYING (see chapther 2). Oracle’s
preferred syntax is to use VARRAY when declaring collection types, but ARRAY is also
allowed. This, however, is an undocumented feature.

Since collection types must be arrays, and arrays must have a maximal size, the model
will only allow a book to have at most 100 authors, and a library to have at most 10
million books.

47 A more philosophical question is whether you should be considered an author if your works haven’t been published,
maybe due to controversy. ☺

Page 71

Object Persistence in an ORDBMS

The realisation of the database model is as follows:

CREATE TYPE T_AUTHOR AS OBJECT
(
 NAME VARCHAR(100),
 BIRTHCOUNTRY VARCHAR(100),
 BORN DATE,
 DEAD DATE
);

CREATE TYPE T_AUTHORS AS ARRAY(100) OF T_AUTHOR;

CREATE TYPE T_BOOK AS OBJECT
(
 TITLE VARCHAR(500),
 ISBN VARCHAR(11),
 WRITTENYEAR INTEGER,
 WRITTENBY T_AUTHORS
);

CREATE TYPE T_BOOKS AS ARRAY(10000000) OF T_BOOK;

CREATE TYPE T_LIBRARY AS OBJECT
(
 ID INTEGER,
 NAME VARCHAR(100),
 COLLECTION T_BOOKS
);

CREATE TABLE LIBRARY OF T_LIBRARY
 OBJECT IDENTIFIER IS SYSTEM GENERATED;

In a more lifelike situation, it would be sensible to keep both books and authors in
separate, autonomous tables. To facilitate for this, two alternative collection types
must be defined:

CREATE TYPE T_AUTHORS_REF AS ARRAY(100) OF REF T_AUTHOR;
CREATE TYPE T_BOOKS_REF AS ARRAY(10000000) OF REF T_BOOK;

Furthermore, T_BOOK.WRITTENBY would have to be of type T_AUTHORS_REF and
T_LIBRARY.COLLECTION of type T_BOOKS_REF. Finally, the two object tables BOOKS and
AUTHORS would have to be defined. The definition given in the script above will be used
for the remainder of this chapter. Another benefit of using the alternative approach
would be that constraints could have been placed on the BOOKS and AUTHORS tables.
Since constraints cannot be placed on types48, the only way to enforce rules on the
chosen solution would be to apply triggers or to implement access methods in the
types. Neither triggers nor access methods are necessary for the purposes of this
chapter, and will thus not be included.

The example database is initialised with data about the two books “Dune” by Frank
Herbert and “Child of Time” by Isaac Asimov and Robert Silverberg. These data is
entered (with some deliberate informational errors) with the statement:

48 Neither Oracle9i nor DB2 UDB supports assertions.

Page 72

Object Persistence in an ORDBMS

INSERT INTO LIBRARY VALUES
(1 ,
 'Alexandria' ,
 T_BOOKS
 (T_BOOK
 ('Dune' ,
 '0450011844' ,
 1965 ,
 T_AUTHORS
 (T_AUTHOR('Herbert,Frank' ,
 'USA' ,
 '08-Oct-1920' ,
 '11-Feb-1986'))),
 T_BOOK
 ('Child of Time' ,
 '0330325795' ,
 1999 ,
 T_AUTHORS
 (T_AUTHOR('Asimov,Isaac' ,
 'Russia' ,
 '02-Jan-1920' ,
 NULL)))));

5.1.2. Main Program

The main program in this example will make several modification to the data entered
through the statement above. The modification will be:

Correct to year of writing of “Child of Time” to be 1991.

Enter the sad fact that Isaac Asimov died 16th April 1992.

Add Robert Silverberg to the list of authors for “Child of Time”.

Add the newly purchased book “Look to Windwards” by Iain M. Banks to the library.

Since some scoundrel of a loaner has managed to “loose” the library’s only copy of
“Dune”: Delete it from the library database.

In addition to these data manipulation operations, the test program establishes a
connection to the database, and maintains this in a java.sql.Connection object.

import java.sql.*;
import java.io.*;

Page 73

Object Persistence in an ORDBMS

class test
{
 private static Connection connectToDatabase()
 {
 Connection conn;
 try
 {
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 String url = "jdbc:oracle:oci:hovedfag/hovedfag@library";
 conn = DriverManager.getConnection(url);
 return conn;
 }
 catch(Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 }
 return null;
 }

 public static void main(String argv[])
 {
 try
 {
 Connection db = connectToDatabase();
 if (db != null) // Connected OK!
 {
 Library library = new Library(db);
 library.load("Alexandria");

 int i = library.find("0330325795");
 library.collection[i].writtenYear = 1991;
 library.collection[i].writtenBy[0].dead =
 new Date(92 , 03 , 16);

 Author silverberg = new Author();
 silverberg.name = "Silverberg,Robert";
 silverberg.bornCountry = "Usa";
 silverberg.born =
 new java.sql.Date(35 , 00 , 15);
 library.collection[i].add(
 silverberg , "T_AUTHOR");

 Book windward = new Book();
 windward.title = "Look to Windward";
 windward.isbn = "1857239695";
 windward.writtenYear = 2000;

 Author banks = new Author();
 banks.name = "Banks,Iain M.";
 banks.bornCountry = "Scotland";
 windward.add(banks , "T_AUTHOR");
 library.add(windward , "T_BOOK");

 library.delete("0450011844");

 library.save();

Page 74

Object Persistence in an ORDBMS

 System.out.println(library);
 }
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

First of all, the program creates a Library object library, and loads the entire contents
of the “Alexandria” library into library49:

Library library = new Library(db);
library.load("Alexandria");

The program then locates “Child of Time”, and corrects the year it was written, and
enters Asimov’s date of death:

int i = library.find("0330325795");
library.collection[i].writtenYear = 1991;
library.collection[i].writtenBy[0].dead =
 new Date(92 , 03 , 16);

Next, the program creates a new Author object silverberg, sets the appropriate
attributes and adds silverberg to the author list of “Child of Time”;

Author silverberg = new Author();
silverberg.name = "Silverberg,Robert";
silverberg.bornCountry = "Usa";
silverberg.born = new java.sql.Date(35 , 00 , 15);
library.collection[i].add(silverberg , "T_AUTHOR");

A new Book object windward is created and set, a new Author object banks is likewise
created and set. Then banks is added to the author list of windward, and windward is
added to the library’s collection:

Book windward = new Book();
windward.title = "Look to Windward";
windward.isbn = "1857239695";
windward.writtenYear = 2000;

Author banks = new Author();
banks.name = "Banks,Iain M.";
banks.bornCountry = "Scotland";
windward.add(banks , "T_AUTHOR");
library.add(windward , "T_BOOK");

Next, alas, “Dune” is removed from the library’s collection:

library.delete("0450011844");

49 This would naturally not be done in a real-life situation where the library might include a collection of a very large
quantity of books.

Page 75

Object Persistence in an ORDBMS

Finally, the library object is saved back to the database50:

library.save();

The resulting library object is then dumped to the screen:

System.out.println(library);

Result:

Library:
 Name: Alexandria
 Id.: 1
 Book #1: Child of Time 0330325795 1991
 Asimov,Isaac Russia 1920-01-02 1992-04-16
 Silverberg,Robert Usa 1935-01-15 null

 Book #2: Look to Windward 1857239695 2000
 Banks,Iain M. Scotland null null

A complete listing of the implementation of the classes Library, Book and Author is
found in appendix A.

5.2. Observations

5.2.1. Reading and Writing

A JDBC based application working with user-defined SQL-99 types does all reading and
writing of objects through implementations of the java.sql.SQLData interface. Any
implementation of this interface must implement the following methods:

String getSQLTypeName()

 Returns the fully-qualified name of the SQL user-defined type that
this object represents. Usually, the body of this implementation is:

{
 return sql_type;
}

Where sql_type is a private String attribute initialised by the
readSQL(…) method.

void readSQL(SQLInput stream, String typeName)

 Populates this object with data read from the database.

void writeSQL(SQLOutput stream)

 Writes this object to the given SQL data stream, converting it back to
its SQL value in the data source.

50 Wouldn’t it have been nice if they could have done that in Alexandria back in 47 b.c.?

Page 76

Object Persistence in an ORDBMS

The effort needed to implement these methods is directly dependent on the complexity
of the class’ attribute list. A comparison of the number of lines of code for the readSQL
and writeSQL methods of the Book class and the Author class illustrates this:

Book.readSQL 22

Book.writeSQL 10

Author.readSQL 5

Author.writeSQL 4

In principle, the implementation of readSQL and writeSQL should be straightforward.
However, it turns out that the standard JDBC 2.0 classes have no support for arrays of
objects. Fortunately, Oracle’s implementation of the JDBC 2.0 interfaces adds support
for this, allowing the programmer to use an oracle.sql.ARRAY object to retrieve arrays
of objects. This works very fine, but makes the program less database transparent.

When the methods of the java.sql.SQLData interface has been implemented, the
complexity of the actual read and write operations are dependent on the complexity of
the objects that are to be read or written. For the details, see the source code in
appendix A.

Before using these implementations of the java.sql.SQLData interface, the association
of the Java classes and the ORDBMS UDT classes must be mapped for JDBC. This means
that a mapping must be inserted into the JDBC connection’s type map for each class
pair. In the example program, this is done in the Library class constructor:

Library(Connection conn)
 throws SQLException
{
 db = conn;
 try
 {
 Map map = conn.getTypeMap();
 map.put("T_BOOK", Class.forName("Book"));
 map.put("T_AUTHOR", Class.forName("Author"));
 }
 catch (ClassNotFoundException e)
 {
 e.printStackTrace();
 }
}

It could, just as well have been done somewhere else in the program (i.e. before any
data is transferred), e.g. in test.ConnectToDatabase().

5.2.2. The set-at-a-time/element-at-a-time conflict

There is little doubt that the dynamics of both java.sql.SQLData.readSQL and
java.sql.SQLData.writeSQL could have been more streamlined when it comes to the
handling of complex objects. Nevertheless, as soon as a program gets the “feeling” of
how to do this, it will work smoothly. Moreover, as soon as these methods are
implemented, the data exchange works satisfactory. Most importantly, from the Java
programmer point of view, it is objects that are exchanged. However, it is a completely

Page 77

Object Persistence in an ORDBMS

different question how this is handled internally in JDBC. This is wholly up to each
individual JDBC driver vendor.

The example Java code does not include any INSERT statements. This follows from the
fact that the program handles the same Library object throughout its execution. In
Library.save an UPDATE command is used:

sql = "UPDATE LIBRARY L SET ";
sql += "L.ID = ?,";
sql += "L.NAME = ?, ";
sql += "COLLECTION = ? ";
sql += "WHERE L.NAME = ?";

PreparedStatement stmt = db.prepareStatement(sql);

....

stmt.setInt(1, id);
stmt.setString(2 , new_name);
ARRAY tmp = new ARRAY(collectionDescriptor , db , collection);
stmt.setArray(3 , tmp);
stmt.setString(4 , old_name);

stmt.executeUpdate();

This illustrates that objects can be passed as single SQL parameters in UPDATE
commands too. The same holds for INSERT commands

From these examples, the set-at-a-time/element-at-a-time conflict seems to be solved.

5.2.3. Handling NULL values

When inserting the banks object into the list of authors of the windward object on page
75, the banks object does not get any values for the born and dead attributes. Their Java
values are thus null. Still, no specific action has to be taken before the banks and
windward objects are sent to the database. Furthermore, the final results of the program
(shown on page 76) show that the corresponding attributes of the objects in the
database have correctly been set to NULL and are retrieved back as null.51

It can be concluded that NULL values are handled in a satisfactory way.

5.2.4. SQL data types versus Java data types

When it comes to SQL data types versus Java data types, it has already been shown in
chapter 2 that the type system of an SQL-99 compliant database can express the same
data structures that most object-oriented programming languages. It is up to the
individual ORDBMS and/or JDBC driver vendor to implement the constructs specified
in the standard. The base type set of an SQL-99 compliant database is for the most part
matched in Java through the base type set of the programming language itself. The
base types that are not matched by Java’s base type set, are implemented in the
java.sql package. A sufficiently malevolent mind could probably always figure out

51 NULL (all capitals) designates a non-existent database attribute value, whereas null (all lower-case) designates a non-
initialised Java variable value.

Page 78

Object Persistence in an ORDBMS

some Java type construct that becomes more or less unfeasible to implement in SQL-
99, but the data type mismatch problem seems to be solved in a satisfactory way in
Java.

5.2.5. SQL errors versus Java errors

Any error situations that occur the database systems are reported through an
SQLException. This is a specialization of a java.lang.Exception. From this it is
reasonable to conclude that the handling of SQL errors and Java errors are done in a
consistent way.

5.3. Conclusion

Can an ORDBMS deliver orthogonal persistence? Well, as said above (on page 68) this
is a question that is too ambiguous to try to answer within the scope of a Masters Thesis.
The answers to the questions on page 69 have all turned out to be yes. This means that
JDBC can provide a solution to the impedance mismatch problem, and that we thus
can achieve orthogonal persistence in an ORDBMS through JDBC.

Page 79

Conclusions

6. Conclusions

THE SKILL WITH WHICH TERMINATION, OR A CONDITION WE

MIGHT CALL “NEAR TERMINATION”, IS MANAGED HAS A GREAT

DEAL TO DO WITH THE QUALITY OF LIFE AFTER THE PROJECT.
(MEREDITH & MANTEL 1989)

6.1. Recapturing the Findings

6.1.1. SQL-99

During the 1990s and into the new millennium, the SQL standard has been subject to
major revisions and additions. What has commonly become known as SQL-99 is a
multipart standard, and this thesis has mainly been looking at the object-oriented
extensions in part 2 (ISO/IEC 9075-2 1999) of the new standard. Many object-oriented
concepts have been incorporated into SQL-99, among these are:

Extended and extendable type set, including object types with methods.

Collection and reference types.

Typed tables.

Type and table inheritance.

Function and procedure overloading.

Despite these major achievements, there are still constructs missing from making SQL-
99 a completely object-oriented language. To facilitate the user with tools to freely
build complex data types and classes, better support for collection types is needed.
Although user defined operators are not considered a necessity for an object-oriented
language, the support for this would be a valuable asset to the object-orientation of
SQL. The lack of support for encapsulation and information hiding is probably the
weakest point in new SQL-99 standard. This shows that despite a significant revision of
the SQL standard, there are still reasons to be reluctant as to declaring SQL-99 as
object-oriented.

6.1.2. DB2

In DB2 Universal Database Server, IBM has delivered a database product with very good
support for the new features and facilities in the 2nd part of SQL-99. As already
mentioned in chapter 3: The largest “hole” in IBM DB2 UDB is the absolute absence of
collection constructors. The decision to put this “on ice” may have been a good
business decision (as probably few have started to take advantage of the object-
relational aspects of SQL-99), but it is still the one thing that might justify the
conclusion that DB2 UDB is not an object-relational database.

DB2 UDB will also become a better database product if the DISTINCT TYPE construct is
converted into a DOMAIN construct and made to include a domain constraint list.

Page 80

Conclusions

6.1.3. Persistent Objects and Java

This thesis has shown that it is possible to solve the impedance mismatch problem by
means of the object-oriented constructs already defined in SQL-99 and the APIs defined
in JDBC 2.0. It is also possible to achieve some object persistence by means of the
technology available today. This thesis has not shown whether orthogonal persistence
can be achieved, and if not, what it does take to get there.

6.2. The DBMS Matrix

In (Stonebraker & Moore 1996) the situation on the database systems market is described in
a simple 2x2 matrix:

RDBMS ORDBMS

OODBMSFile System

Data Complexity

Q
u

er
y

re
qu

ir
em

en
ts

According to this matrix, it is only an ORDBMS that can satisfy a situation with complex
data that also has a need for query capabilities.

Based on what he sees as two "dramatic" driving forces, namely:

1. Computerisation of new multimedia applications.

2. Business data processing will show a growing need for complex query possibilities
on complex data.

Stonebraker predicts a development that results in the following distribution of market
shares in the year 2005:

RDBMS
40%

ORDBMS
59%

OODBMS
1%

RDBMS ORDBMS

OODBMS

There are several other aspects of the database community that should be taken into
consideration when making such a prediction.

Page 81

Conclusions

First, there are at least two very good reasons why OODBMSs will play a much larger
part in the future. Given the fact that OQL is being standardised and that it or some
other object query mechanism (such as SQL) is being implemented in most of the
commercially available OODBMSs, these are no longer restricted to the lower, right
quadrant of the DBMS matrix. Therefore, OODBMSs will be able to answer the demand
for database systems managing complex data and provide query capabilities. Thus,
taking a larger part of the ORDBMS's market shares.

In addition, developers are today giving more and more of their attention to object-
oriented analysis, modelling and programming. It is not unreasonable to assume that
by the year 2005, a major part of new development is done with object-oriented tools
and languages. Programmers are, even today, struggling with the interfaces between
object-oriented classes and relational tables. Object-oriented databases, with or
without flaws, seem to be the “promised land” for many programmers developing
database applications in an object-oriented environment.

Second, it is highly unlikely that the leading RDBMS vendors will keep on developing
(or even supporting) pure RDBMS products. Oracle 8 and 9 will totally replace Oracle 7
within very few years, and DB2 Universal Server will, in time, replace older DB2
versions. So, even if some database customers will be conservative and cautious taking
advantage of the new object-relational functionality in these systems, the number of
pure relational database systems will dwindle and in time fade to zero.

Furthermore, it should not be forgotten that there still are large hierarchical databases
and network databases in use today. These are in many cases critical databases in
governmental and military systems, and are not necessarily replaced in the immediate
future.

Based on these considerations, a more realistic prediction might look like this:

RDBMS
20%

OTHERS
5%OODBMS

5%

ORDBMS
70%

RDBM S
ORDBM S
OODBM S

OTHERS

These predictions are by no means claimed to be accurate, but might be closer to what
will prove to be the future situation.

6.3. Future Work

6.3.1. SQL-99

Several issues concerning SQL-99 have deliberately been omitted from this thesis due
to its intended scope. None of the parts 3 or 5 have been looked into, and part 4 has
only briefly been examined in chapter 2. Also, this thesis has not discussed whether

Page 82

Conclusions

SQL-99 is the right way to go to achieve object-orientation within the relational
database framework.

Possible topics for future research is:

• A comparison between the different approaches to object-orientation in
databases described in (Atkinson, et.al. 1990), (Stonebraker et.al. 1990) and (Date & Darwen
1998).

• Objects persistence by means of the API described in SQL-99 Part 3 - Call-Level
Interface (SQL/CLI).

• Objects persistence by means of the API described in SQL-99 Part 5 - Host
Language Bindings (SQL/Bindings).

6.3.2. DB2

As with SQL-99, this thesis has only studied DB2 UDB with respect to the
implementation and support for SQL-99 Part 2 - Foundation (SQL/Foundation) and to
some extent SQL-99 Part 4 - Persistent Stored Modules (SQL/PSM). Worthwhile future
work with regards to IBM DB2 (and other commercial SQL-99 compliant databases)
includes:

Compliance to SQL-99 Part 3 - Call-Level Interface (SQL/CLI).

More on compliance to SQL-99 Part 4 - Persistent Stored Modules (SQL/PSM).

Compliance to SQL-99 Part 5 - Host Language Bindings (SQL/Bindings).

6.3.3. Persistent Objects and Java

In chapter 4 this thesis has looked into solving the impedance mismatch problem and
persistent objects in object-relational databases by means of JDBC 2.0. There are
several possible ways to proceed further from this work. Examples are:

Persistent objects in object-relational databases by means of C#.

Persistent objects in object-relational databases by means of CORBA services such as
“Persistent Object”, “Relationship”, “Transaction” and “Query”52.

52 See (Mowbray & Ruh 1997)

Page 83

Conclusions

App. A. Java Source Code

A.1 Library.java
import java.sql.*;
import oracle.sql.*;
import oracle.jdbc.*;
import java.util.*;

public class Library
{
 public int id;
 public String name;
 public Object[] objects;
 public Book[] collection;

 private ArrayDescriptor collectionDescriptor;
 private Connection db;
 private boolean libr_exists_in_db;
 private boolean have_read_collection = false;

 Library(Connection conn)
 throws SQLException
 {
 db = conn;
 try
 {
 Map map = conn.getTypeMap();
 map.put("T_BOOK", Class.forName("Book"));
 map.put("T_AUTHOR", Class.forName("Author"));
 }
 catch (ClassNotFoundException e)
 {
 e.printStackTrace();
 }
 }

 public int find(String isbn)
 {
 int i = 0;
 boolean found = (collection[i].isbn.equals(isbn));

 while ((! found) && (i < collection.length - 1))
 {
 ++i;
 found = (collection[i].isbn.equals(isbn));
 }
 return i;
 }

 public void save()
 {
 String sql;
 Boolean success;
 try
 {
 sql = "UPDATE LIBRARY L SET ";
 sql += "L.ID = ?,";
 sql += "L.NAME = ?, ";
 sql += "COLLECTION = ? ";
 sql += "WHERE L.NAME = ?";

 PreparedStatement stmt = db.prepareStatement(sql);

Page 84

Conclusions

 if (! have_read_collection)
 collectionDescriptor =
 ArrayDescriptor.createDescriptor("T_BOOKS" , db);

 stmt.setInt(1, id);
 stmt.setString(2 , name);
 ARRAY tmp =
 new ARRAY(collectionDescriptor , db , collection);
 stmt.setArray(3 , tmp);
 stmt.setString(4 , name);

 stmt.executeUpdate();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }

 public void load(String libname)
 {
 String sql;
 Boolean success;
 try
 {
 sql = "SELECT * FROM LIBRARY ";
 sql += "WHERE NAME = '" + libname + "'";
 ResultSet rs = db.createStatement().executeQuery(sql);

 libr_exists_in_db = (rs.next());

 if (libr_exists_in_db)
 {
 id = rs.getInt("ID");
 name = rs.getString("NAME");

 ARRAY tmp = (ARRAY)(rs.getArray("COLLECTION"));

 objects = (Object[])tmp.getArray();
 collection = new Book[objects.length];

 for (int i = 0 ; i < objects.length ; ++i)
 {
 collection[i] = (Book)objects[i];
 collection[i].setConnection(db);
 }

 collectionDescriptor = tmp.getDescriptor();
 }
 have_read_collection = true;
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }

Page 85

Conclusions

 public String toString()
 {
 String buff;
 buff = "Library:\n" +
 "\tName:\t" + name +
 "\n\tId.:\t" + id +
 "\n";
 for (int i = 0 ; i < collection.length ; ++i)
 {
 buff += "\t\t" + "Book #" + (i + 1) + ": ";
 buff += collection[i].title + "\t";
 buff += collection[i].isbn + "\t";
 buff += collection[i].writtenYear + "\n";

 buff += "\t";
 for (int j = 0 ; j < collection[i].writtenBy.length ; ++j)
 {
 buff += "\t";
 buff += "\t" + collection[i].writtenBy[j].name;
 buff += "\t" + collection[i].writtenBy[j].bornCountry;
 buff += "\t" + collection[i].writtenBy[j].born;
 buff += "\t" + collection[i].writtenBy[j].dead;
 buff += "\n\t";
 }
 buff += "\n";
 }

 return buff;
 }

 public void add(Book b , String typename)
 throws SQLException
 {
 if (! have_read_collection)
 collection = new Book[0];

 Book[] newBookList = new Book[collection.length + 1];
 int i;
 for (i = 0 ; i < collection.length; ++i)
 {
 newBookList[i] = new Book();
 newBookList[i] = collection[i];
 }
 newBookList[i] = b;
 newBookList[i].setConnection(db);

 collection = new Book[newBookList.length];

 for (i = 0 ; i < newBookList.length ; ++i)
 {
 collection[i] = new Book();
 collection[i] = newBookList[i];
 collection[i].setSQLTypeName(typename);
 }
 }

Page 86

Conclusions

 public void delete(String isbn)
 {
 Book[] newBookList = new Book[collection.length - 1];
 int i;
 int j = 0;
 for (i = 0 ; i < collection.length; ++i)
 if (! collection[i].isbn.equals(isbn))
 {
 newBookList[j] = new Book();
 newBookList[j] = collection[i];
 ++j;
 }

 String typename = "";
 if (newBookList.length > 0)
 typename = newBookList[0].getSQLTypeName();

 collection = new Book[newBookList.length];

 for (i = 0 ; i < newBookList.length ; ++i)
 {
 collection[i] = new Book();
 collection[i] = newBookList[i];
 collection[i].setSQLTypeName(typename);
 }
 }
}

A.2 Book.java
import java.sql.*;
import oracle.sql.*;

public class Book implements SQLData
{
 public String title;
 public String isbn;
 public int writtenYear;
 public Author[] writtenBy;
 public int x;

 private ArrayDescriptor authorsDescriptor;
 private String sql_type;
 private Connection db;
 private boolean have_read_authors = false;

 public void setConnection(Connection conn)
 {
 db = conn;
 }

 public void add(Author a , String typename)
 throws SQLException
 {
 if (! have_read_authors)
 writtenBy = new Author[0];

 Author[] newAuthorList = new Author[writtenBy.length + 1];
 int i;
 for (i = 0 ; i < writtenBy.length; ++i)
 {
 newAuthorList[i] = new Author();
 newAuthorList[i] = writtenBy[i];
 }
 newAuthorList[i] = a;

Page 87

Conclusions

 writtenBy = new Author[newAuthorList.length];

 for (i = 0 ; i < newAuthorList.length ; ++i)
 {
 writtenBy[i] = new Author();
 writtenBy[i] = newAuthorList[i];
 writtenBy[i].setSQLTypeName(typename);
 }
 }

 public void setSQLTypeName(String name)
 {
 sql_type = name;
 }

 public String getSQLTypeName()
 {
 return sql_type;
 }

 public void readSQL(SQLInput stream, String type)
 throws SQLException
 {
 sql_type = type;

 title = stream.readString();
 isbn = stream.readString();
 writtenYear = stream.readInt();
 ARRAY tmp = (ARRAY)(stream.readArray());

 if (tmp == null) // No authors
 {
 writtenBy = new Author[0];
 } else
 {
 Object[] objects = (Object[])tmp.getArray();

 writtenBy = new Author[objects.length];
 for (int i = 0 ; i < objects.length ; ++i)
 writtenBy[i] = (Author)objects[i];

 authorsDescriptor = tmp.getDescriptor();

 have_read_authors = true;
 }
 }

 public void writeSQL(SQLOutput stream)
 throws SQLException
 {
 if (! have_read_authors)
 authorsDescriptor =
 ArrayDescriptor.createDescriptor("T_AUTHORS" , db);

 stream.writeString(title);
 stream.writeString(isbn);
 stream.writeInt(writtenYear);

 ARRAY tmp = new ARRAY(authorsDescriptor , db , writtenBy);

 stream.writeArray(tmp);
 }
}

Page 88

Conclusions

A.3 Author.java
import java.sql.*;
import oracle.sql.*;

public class Author implements SQLData
{
 public String name;
 public String bornCountry;
 public Date born;
 public Date dead;

 private String sql_type;

 public String getSQLTypeName()
 {
 return sql_type;
 }

 public void setSQLTypeName(String name)
 {
 sql_type = name;
 }

 public void readSQL(SQLInput stream, String type)
 throws SQLException
 {
 sql_type = type;
 name = stream.readString();
 bornCountry = stream.readString();
 born = stream.readDate();
 dead = stream.readDate();
 }

 public void writeSQL(SQLOutput stream)
 throws SQLException
 {
 stream.writeString(name);
 stream.writeString(bornCountry);
 stream.writeDate(born);
 stream.writeDate(dead);
 }
}

Page 89

Conclusions

References

Atkinson, et.al. 1990:

Atkinson, M.P. & Bancilhon, F. & DeWitt, D. & Dittrich, K. & Maier, D. & Zdonik, S.:
"The object-oriented database system manifes o"
Proceedings of the 1

t

t ti i t

st International Conference on Deductive and Object-Oriented
Databases, pp. 223-240
Elsevier Science, New York, USA, 1990

Bernstein, et.al. 1998:
Bernstein,Phil & Brodie,Michael & Ceri,Stefano & DeWitt,David & Franklin,Mike & Garcia-
Molina,Hector & Gray,Jim & Held,Jerry & Hellerstein,Joe & Jagadish,H.V. & Lesk,Michael &
Maier,Dave & Naughton,Jeff & Pirahesh,Hamid & Stonebraker,Mike & Ullman,Jeff:
” The Asilomar Report on Database Research”
SIGMOD Record, vol.27, no.4, ACM 1998

Carey, et.al. 1999:
Carey,Michael & Doole,Doug & Mattos,Nelson:
"O-O, What Have They Done to DB2?"
Proceedings of the 25th VLDB Conference, pp.542-553
Morgan Kaufmann Publishers, San Francisco, California, USA, 1999.
ISBN 1-55860-615-7

Cattell 1997:
Cattell, R.G.G., et.al (eds):
"The Object Database Standard: ODMG 2.0"
Morgan Kaufmann Publishers, San Francisco, California, USA, 1997.
ISBN 1-55860-463-4

Chen 1976:
Chen,P.P.:
”The entity-relationship model – Towards a unified view of data”
ACM Transactions on Database Systems, Vol.1, No.1, pp.9-36, 1976.

Codd 1970:
Codd, E.F.:
"A Relational Model of Data for Large Shared Data Banks"
Communications of the ACM, Vol.13, No.6, pp. 377-387, 1970.

Cooper 1997:
Cooper, Richard:
"Object Databases – An ODMG Apporach"
International Thompson Computer Press, 1997.
ISBN 1-85032-294-5

Date & Darwen 1998:
Date,C.J. & Darwen,Hugh:
”Foundation for Object/Relational Databases – The Third Manifesto”
Addison Wesley, Reading, Massachusetts, USA, 1998.
ISBN 0-201-30978-5

FIPS/184 1993:
S andard For Integra on Definit on For Informa ion Modeling (Idef1x)
http://www.nist.gov/
National Institute of Standards and Technology, 1993

Page 90

Conclusions

Gray 1996:
Gray, Jim:
"Evolution of Data Management"
IEEE Computer, Vol.29, No.10, pp.38-46

Gray & Reuter 1993:
Gray, Jim & Reuter, Andreas:
"Transaction Processing: Concepts and Techniques"
Morgan Kaufmann Publishers, San Francisco, California, USA, 1993.
ISBN 1-55860-190-2

Gulutzan & Pelzer 1999:
Gulutzan,Peter & Pelzer,Trudy:
”SQL-99 Complete, Really – An example based reference manua of the new standard”
R&D Books, Lawrence, Kansas, USA. 1999.
ISBN 0-87930-568-1

l

l t

t

t

t
t

t

t
t

Flanagan 1999:
Flanagan, David:
”Java in a Nutshell, 3rd edition”
O’Reilly & Associates, Sebastopol, California, USA, 1999.
ISBN 1-56592-487-8

Heinckiens 1998:
Heinckiens,Peter M.:
"Building Sca able Database Applica ions"
Addison Wesley, Reading, Massachusetts, USA, 1998.
ISBN 0-201-31013-9

IBM DB2 SQL Reference guide:
IBM DB2 Universal Database SQL Reference
DB2 Online Books: <DB2DIR>/doc/html/db2s0/index.htm

IBM DB2 Application Development Guide:
IBM DB2 Application Development Guide
DB2 Online Books: <DB2DIR>/doc/html/db2a0/index.htm

ISO/IEC 9075-1 1999:
Information Technology - Da abase Languages - SQL
Part 1: Framework (SQL/Framework)
ISO 1999

ISO/IEC 9075-2 1999:
Information Technology - Da abase Languages - SQL
Part 2: Foundation (SQL/Foundation)
ISO 1999

ISO/IEC 9075-3 1999:
Information Technology - Da abase Language SQL
Par 3: Call Level Interface (SQL/CLI)
ISO 1999

ISO/IEC 9075-4 1999:
Information Technology - Da abase Languages – SQL
Part 4: Persistent Stored Modules (SQL/PSM)
ISO 1999

ISO/IEC 9075-5 1999:
Information Technology - Da abase Languages – SQL
Par 5: Host Language Bindings (SQL/Bindings)
ISO 1999

Page 91

Conclusions

Korth & Silberschatz 1991:
Korth, Henry F. & Silberschatz, Abraham:
"Database System Concepts"
McGraw Hill, New York, 1991.
ISBN 1-55860-397-2

Lakshmanan et.al 2001:
Lakshmanan,Laks V.S. & Sadri,Fereidoon & Subramanian,Subbu N.
”SchemaSQL – An Extension to SQL for Multidatabase Interoperability”
ACM Trans. on Database Systems, Vol.26, No.4, pp. 476-519, ACM 2001

Loney & Koch 2000:
Loney,Kevin & Koch,George
”Oracle8i : The Complete Reference”
Osborn McGraw-Hill, Berkeley, California, USA, 2000.
ISBN: 0072123648

Melton 1998:
Melton, Jim:
"Understanding SQL's Stored P ocedures – A Complete Guide to SQL/PSM"
Morgan Kaufmann Publisher, Inc. San Francisco, California, USA, 1998.
ISBN 1-55860-461-8

r

il i t

 tri

Melton 2000a:
Melton, Jim:
Personal e-ma commun ca ions
18th March 2000

Melton & Eisenberg 2000:
Melton, Jim & Eisenberg, Andrew:
”Understanding SQL and Java Together – A Guide to SQLJ, JDBC and Related
Technologies”
Morgan Kaufmann Publisher, Inc. San Francisco, California, USA, 2000.
ISBN 1-55860-562-2

Melton & Eisenberg 2001:
Melton, Jim & Eisenberg, Andrew:
”SQL Multimedia and Application Packages (SQL/MM)”
SIGMOD Record, vol.30, no.4, pp.97-102, ACM 2001

Meredith & Mantel 1989:
Meredith,Jack R. & Mantel,Samuel J. Jr.:
”Project Management - A Managerial Approach”
John Wiley & Sons, Toronto, Canada, 1989.
ISBN 0-471-50534-x

Mowbray & Ruh 1997:
Mowbray,Thomas J. & Ruh,William A.:
”Inside CORBA – Dis buted Standards and Applications”
Addison Wesley, Reading, Massachusetts, USA, 1998.
ISBN 0-201-89540-4

Muller 1999:
Muller,Robert J.:
”Database Design for Smarties – Using UML for Data Modelling”
Morgan Kaufmann Publisher, Inc. San Francisco, California, USA, 1999.
ISBN 1-55860-515-0

Naiburg & Maksimchuk 2001:
Naiburg,Eric J. & Maksimchuk,Robert A.:
”UML for Database Design”
Addison Wesley, Reading, Massachusetts, USA, 2001.
ISBN 0-201-72163-5

Page 92

Conclusions

Ng 2001:
Ng,Wilfred:
”An extension o the Relational Data Model to Inco porate Ordered Domains”
ACM Trans. on Database Systems, Vol.26, No.4, pp. 344-383, ACM 2001

f r

t

r

if

Oracle9i A88878-01:
Oracle9i Application Developer’s Guide - Object-Relational Features,
Release 1 (9.0.1), Oracle Coorporation, June 2001
http://download-uk.oracle.com/
 otndoc/oracle9i/901_doc/appdev.901/a88878.pdf

Oracle9i A90211-01:
JDBC Developer’s Guide and Reference.
Release 1 (9.0.1) , Oracle Coorporation, June 2001
http://download-uk.oracle.com/
 otndoc/oracle9i/901_doc/java.901/a90211.pdf

Oracle9i A90125-01:
Oracle9i SQL Reference.
Release 1 (9.0.1) , Oracle Coorporation, June 2001
http://download-uk.oracle.com/
 otndoc/oracle9i/901_doc/server.901/a90125.pdf

Özsu & Valduriez 1999:
Özsu, M.Tamer & Valduriez,Patrick:
"Principles of Distributed Database Sys ems", 2nd ed.
Prentice Hall, Upper Saddle River, New Jersey, 1999.
ISBN 0-13-659707-6

Papadimitriou 1986:
Papadimitriou, Christos:
"The Theory of Database Concur ency Control"
Computer Science Press, Rockville, Maryland,1986.
ISBN 0-22715-027-1

Rumbaught et.al 1999:
Rumbaugh,James & Jacobsen,Ivar & Booch,Grady:
”The Unified Modelling Language Reference Manual”
Addison Wesley, Reading, Massachusetts, USA, 1999
ISBN 0-201-30998-x

Silberschatz, et.al. 1996:
Silberschatz,Avi & Stonebraker,Mike & Ullman,Jeff:
”Database Research Achievements and Opportunities Into the 21st Century”
SIGMOD Record, vol.25, no.1, ACM 1996

Stonebraker et.al. 1990:
Stonebraker, M. & Rowe, L.A. & Lindsay, B. & Gray, J. & Carey, M. & Brodie, M. & Bernstain,
P. & Beech, D.:
"The Third-Generation Database System Man esto",
SIGMOD Record, vol.19, no.3, ACM 1990

Stonebraker & Moore 1996:
Stonebarker, Michael & Moore, Dorothy:
"Object-Relational DBMSs - The Next Great Wave"
Morgan Kaufmann Publisher, Inc. San Francisco, California, USA, 1996.
ISBN 1-55860-397-2

Türker & Gertz 2001:
Türker, Can & Gertz, Michael:
”Semantic integrity support in SQL:1999 and commercial (object-)relational database
management systems”
The VLDB Journal, vol.10, no.4, pp. 241-269, Springer-Verlag Berlin Heidelberg 2001.

Page 93

Conclusions

Ullman 1988:
Ullman, Jeffrey D.:
"Principles of Database and Knowledge-base Systems" vol. I & II
Computer Science Press, Rockville, Maryland,1988.
ISBN 0-7167-8158-1 and ISBN 0-7167-8162-x

White et.al. 1999:
White, Seth & Fisher, Maydene & Cattell, Rick & Hamilton, Graham & Hapner, Mark:
” DBC API Tutor al and Reference, 2J i nd Edition”
Addison Wesley, Reading, Massachusetts, USA, 1999.
ISBN 0-201-43328-1

Yu & Meng 1998:
Yu, Clement T. & Meng, Weiyi:
"Principles of Database Query Processing for Advanced Applications"
Morgan Kaufmann Publishers, San Francisco, California, USA, 1998.
ISBN 1-55860-434-0

Page 94

Conclusions

Page 95

Conclusions

Index

A

r

t t

abstract data type...29
array16, 24, 33, 34, 35, 36, 38, 71
ASSERTION...42
Atkinson, et.al. 1990.........................23, 83, 90

B

Bernstein, et.al. 199812, 90
BIGINT ...48
binary large object27
bit ...27
bit varying ...27
BLOB..47
boolean..28

C

Carey, et.al. 199962, 66, 90
CASCADE...43
CHAR..47
character ...27
character large object..................................27
character varying ...27
CHECK ...42
Chen 1976..10, 90
CLOB..47
CODASYL ..8
Codd 1970 ...10, 90
collection constructors................................58
collection type constructor33
Constraint modes ...43
Constraint scopes ...43
Constraints ..41
constraints levels ..41
constructor function....................................31
Cooper 1997................................18, 19, 20, 90
CREATE DISTINCT TYPE49
create domain ..28
create function ...36
create operator...40
CREATE TABLE ... UNDER59
create type ..29
CREATE TYPE ...52, 58

D

data encapsulation.......................................32
Data Persistence ...19
DATALINK value ...49
date ..28
DATE ..49
Date & Darwen 199823, 83, 90
DBCLOB...47, 48
DBMS Matrix ...81
decimal..27

DECIMAL..48
DEFAULT..42
Distinct Types ..49
DOMAIN...42
domain constraint list28
domain type..28
DOUBLE...48
double precision...27

E

Element-at-a-time...15
encapsulation ...58
entity-relationship diagram10
event-condition-action rules42
Extended Base Type Set.........................26, 46
External Functions37
External Procedures.....................................37
external scalar function...............................55
external table function.................................56

F

FIPS/184 1993 ..10, 90
float ..27
FLOAT..48
FOR BIT DATA...61
FOREIGN KEY...42
Foreign key actions......................................43
functions..36

G

GRAPHIC ...48
Gray & Reuter 19937, 91
Gray 1996...7, 91
Gulutzan & PeIzer 1999................................25
Gulutzan & Pelzer 1999............................6, 91

H

Heinckiens 1998................................63, 65, 91
hierarchical data model9
hie archy table..65
horizontal partitioning.................................64

I

IDEF1X diagram ..10
Impedance Mismatch Problem14
impedence mismatch problem15
information hiding32
Informa ion Utili y..12
inheritance ..40
Inheritance implementation Issues............62
Inheritance of constraints43
Integer..27
INTEGER..48
intergalactic “dataspeak”.............................25

Page 96

Conclusions

Inter-table constraints..................................41
interval...28
Is DB2 Object-Relational?............................66
ISO/IEC 9075-2 1999.........................22, 80, 91

J

t

j t

t t

s

s
l

t

java.lang.Exception......................................79
java.sql classes and interfaces.....................70
java.sql package ...78
java.sql.Connection71, 73
java.sql.SQLData76, 77
JDBC6, 14, 16, 68, 69, 76, 77, 78, 79, 81, 83,

92, 93, 94

K

Korth & Silberschatz 199110, 92

L

Levels of Persistence....................................18
link type...49
Loney & Koch 200071, 92
LONG VARCHAR..47
LONG VARGRAPHIC48

M

methods...31
Mismatch of Data Types17
Muller 1999..11, 92
mutator function..32

N

Naiburg & Maksimchuk 2001................11, 92
Named root objec s......................................20
national character..27
national character large object28
national character varying27
nclobSee national character large object
network data model8
NO ACTION ..43
NOT NULL ...42
NULL value..17, 52, 55
NULL Value handling...................................17
numeric ...27
NUMERIC...48

O

Ob ec Management Group........................11
Object-Oriented Data Model11
object-relational creed24
object-relational database...........................23
Object-Relational Databases.......................22
object-relational proposition......................24
observer function...32
ODBC ...69
operators ...58
Operators ..39
Oracle9i A88878-0171, 93

Oracle9i A90125-0171, 93
ORDBMS standard..23
orthogonal persistency................................19
orthogonal persistent...................................18
overload operators.......................................39
Özsu & Valduriez 19997, 93

P

Papadimitriou 1986..................................7, 93
Persis ence by explici storage....................20
Persistence declared at object creation.....20
Persistent classes...20
per istent objects ..14
Persistent Objects ...14
Persistent root cla s......................................20
Persistent shadow c ass................................20
persistent system ..18
PRIMARY KEY ...42
procedures ..57

R

REAL...48
ref<T>...35
reference type...34
relational data model10
relational schema...10
RESTRICT ..43
Row constraints ..41
Rumbaught et.al 199911, 93

S

Session Persistence19
SET DEFAULT ..43
SET NULL...43
Set-at-a-time..15
Silberschatz, et.al. 1996..........................12, 93
Simple constraints..42
Single state constraints41
smallint ..27
SMALLINT..48
sourced function ..57
SQL-99 ...22
SQLException ... 75, 77, 79, 84, 85, 86, 87, 88,

89
SQLJ ...68
State sequence constraints..........................42
State transition constraints41
Stonebraker & Moore 1996 ..6, 23, 28, 33, 40,

81, 93
Stonebraker et.al. 1990 .. 6, 23, 24, 28, 31, 36,

83, 93
SYSIBM.SYSDATATYPES..............................50
SYSIBM.SYSFUNCPARMS............................51
SYSIBM.SYSFUNCTION50
System provided persisten roots20

Page 97

Conclusions

T

Table constraints ..41
Table Hierarchies..59
time ..28
TIME ...49
timestamp ...28
TIMESTAMP...49
Triggers ..44
TRIGGERS...42
Türker & Gertz 200141, 61, 93
Type extensions ..25
Type Inheritance ..58

U

UDT...30
Ullman 1988 ..10, 94
Unified Model ing Language11 l

UNIQUE ...42
user-defined types ..30

V

VARCHAR ..47
VARGRAPHIC..48
vertical partitioning63

Y

Yu & Meng 1998 ..7, 94

Page 98

	Introduction
	Purpose
	Past and Present of Database Modelling
	The Network Data Model
	The Hierarchical Data Model
	The Relational Data Model
	The Object-Oriented Data Model

	A New Millenium

	Persistent Objects
	Impedance Mismatch Problem
	Set-at-a-time Versus Element-at-a-time
	Handling NULL Values
	Mismatch of Data Types

	Different Levels of Persistence
	Session Persistence
	Data Persistence
	Indicating orthogonal persistency

	Object-Relational Databases
	What is an object-relational database?
	Type extensions
	Extended Base Type Set
	Domain Types
	Abstract Data Types
	Collection Constructors
	Reference types

	Functions
	External Functions and Procedures
	Implementation Options of Functions and Procedures
	In the database server
	In the application program
	In a separate context

	Operators
	Inheritance
	Constraints
	SQL-99 Language Constructs
	Constraint modes
	Foreign key actions
	Constraint scopes
	Inheritance of constraints
	Triggers

	How Object-Relational is DB2?
	Extended Base Type Set
	Large Object Types
	Character Strings
	Graphic Strings
	Numbers
	Date and Time Values
	Data Link Values

	Distinct Types
	Repository Impact
	Usage

	Structured Types
	Repository Impact
	Usage

	Functions
	External Scalar Function
	External Table Function
	Sourced Function

	Procedures
	Operators
	Encapsulation
	Collection Constructors
	Inheritance
	Type Inheritance
	Table Hierarchies

	Constraints
	Simple constraints
	Domain constraints and assertions
	Foreign key actions and scopes
	Inheritance
	Triggers

	Implementation Issues
	Table Hierarchies
	Vertical Partitioning
	Horizontal Partitioning
	Hierarchy table
	IBM's Choice

	Is DB2 Object-Relational?

	Object Persistence in an ORDBMS
	Test Case
	Example Data Model
	
	Method

	Main Program

	Observations
	Reading and Writing
	The set-at-a-time/element-at-a-time conflict
	Handling NULL values
	SQL data types versus Java data types
	SQL errors versus Java errors

	Conclusion

	Conclusions
	Recapturing the Findings
	SQL-99
	DB2
	Persistent Objects and Java

	The DBMS Matrix
	Future Work
	SQL-99
	DB2
	Persistent Objects and Java

